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(Spécialité : Informatique)

par
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Résumé

La cryptographie est désormais un terme quasi omniprésent dans notre quotidien quel que
soit l’intérêt que tout un chacun puisse porter à cette science. Elle représente aujourd’hui
un rempart entre nous et les intrusions des pirates ou des institutions sans retenues qui
ne se préoccupent guère du respect de notre vie privée. La cryptographie peut protéger
nos données personnelles que nous stockons sur de multiples support numériques solides,
voire nuageux pour les plus téméraires. Mais utiliser des mécanismes cryptographiques
ne suffit pas. Il faut également les implémenter de telle sorte que leur utilisation soit
résistante à une catégorie d’attaques particulière nommée les attaques physiques. Depuis
1996, date de leur divulgation dans le domaine public, ces techniques d’attaques se
sont diversifiées et continuellement améliorées donnant notamment lieu à de nombreuses
publications et brevets.

Nous présentons dans les travaux qui suivent, de nouvelles techniques d’attaques
physiques que nous avons pu valider et tester de manières théorique et pratique. Nous
introduirons des techniques d’attaques par canaux auxiliaires innovantes tirant parti au
maximum de l’information fournie par une seule execution d’un calcul cryptographique.
Nous détaillerons également de nouvelles attaques CoCo (Collision Correlation) ap-
pliquées à deux des standards cryptographiques les plus utilisés: l’AES et le RSA. Nous
utiliserons les techniques d’injection de fautes pour monter de nouvelles attaques com-
binées sur des implémentations de l’AES et du RSA.

Nous introduirons ensuite des méthodes de génération de nombres premiers dites
générations prouvées qui s’avèrent efficaces et propices à un usage dans des composants
de type carte à puce. Et enfin nous conclurons ce mémoire par la première méthode
d’exponentiation sécurisée Carré Toujours.

Mots clefs: cryptographie embarquée, analyse par canaux auxiliaires, analyse par in-
jection de fautes, analyse horizontale, nombres premiers prouvés, PACA et ROSETTA.
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Abstract

Cryptography has became a very common term in our daily life even for those that are
not practising this science. It can represent today an efficient shield that prevent us
from hackers’ or other non respectable entities’ intrusions in our privacy. Cryptography
can protect the personal data we store on many physical numerical supports or even
cloudy ones for the most intrepid people. However a secure usage of cryptography is
also necessary. Cryptographic algorithms must be implemented such that they contain
the right protections to defeat the category of physical attacks. Since the first article has
been presented on this subject in 1996, different attack improvements, new attack paths
and countermeasures have been published and patented.

We present in the next pages the results we have obtained during the PhD. New
physical attacks are presented with practical results. We are detailing innovative side-
channel attacks that take advantage of all the leakage information present in a single
execution trace of the cryptographic algorithm. We also present two new CoCo (Collision
Correlation) attacks that target first order protected implementations of AES and RSA
algorithms. We are in the next sections using fault-injection techniques to design new
combined attacks on different state of the art secure implementation of AES and RSA.

Later we present new provable prime number generation method well suited to em-
bedded products. We show these new methods can lead to faster implementations than
the probabilistic ones commonly used in standard products. Finally we conclude this
report with the secure exponentiation method we named Square Always.

Keywords: embedded cryptography, side-channel analysis, fault injection analysis, hor-
izontal attacks, provable prime numbers, PACA and ROSETTA.
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férentes expériences professionnelles. Je remercie donc mes anciens collègues d’Oberthur,
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Chapter 1

When Cryptology meets Physical
Resistance

The price of freedom is eternal vigilance.
Thomas Jefferson.

This chapter introduces the Cryptology, often said the science of secret, and the physical
resistance of products like smart cards or smart-phones.
It is dedicated to my family and friends. It is written in English (this chapter) and French
(next chapter) languages. They have so many times asked me what my job consisted in
that I decided my PhD was the occasion to answer once for all to this question.

1.1 Cryptology - The Science of Secret

Cryptology can be split in two activities: cryptography and cryptanalysis. First one
consists in building algorithms and techniques to protect messages in confidentiality
from unauthorized persons. Second term regroups the techniques that target to defeat
the cryptographic techniques and recover encrypted messages without knowing the secret
part (most of the time the secret is the key) of the method.

What is the exact definition of Cryptology? A definition is given in the Handbook
of Applied Cryptography [?]: Cryptography is the study of mathematical techniques re-
lated to aspects of information security, such as confidentiality, data integrity, entity
authentication and data origin authentication.

This sentence summarizes the services offered by the cryptography:

• Confidentiality: gives assurance that only authorized persons have access to infor-
mation. In the digital word confidentiality can be obtained thanks to encryption
methods. For instance Alice and Bob encrypt data they want to exchange on a
insecure network (i.e. internet) by sharing a secret they use with an encryption
algorithm.
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CHAPTER 1. WHEN CRYPTOLOGY MEETS PHYSICAL RESISTANCE

• Integrity: gives assurance that information has not be modified by an unauthorized
person. It guaranties the data has not been modified by an attacker during the
transmission.

• Authentication of data: gives assurance on the origin of the data. It allows the
receiver of the data to know its origin and its author(s). Data authentication also
provides data integrity.

• Identification: identification is synonym of entity authentication. Identification of
a first person A gives assurance to a second person B the first person he is dealing
with is effectively A.

• Signature: gives assurance on the non repudiation of the document signed. It
prevents the signer entity to deny he is at the origin of the signed document and
to refuse to complete the engagements he has signed. It is much stronger than
the former and commonly used paper signature. A properly implemented digital
signature cannot be reproduced by anyone else than the unique owner of the secret
key involved in this mathematical operation.

Although cryptology was initially mainly limited to military activities, it has become
in this new century a key ingredient to secure our privacy in our more and more connected
society.

1.1.1 From Ancient Ages to the Modern Cloudy World

Cryptology has been associated for centuries to military conflicts and strategic games
far from the generic concerns of other sciences. The former cryptographic techniques
used in the first centuries seem very simple to us. At this time most of them were built
without real deep theoretical basis and every new cryptographic technique was broken
in short time by the cryptanalyst. This game between clever secret code designers
and cryptanalyst became much more serious in the 20th century with the apparition
of the computer science. Nowadays cryptology involves many different sciences like
mathematics, computer science and micro-electronic.

Our society has changed a lot during the last decade. With the massive development
of fast internet and smart multimedia devices like smart-phones the world has become
a connected world. Communications have become a key element of our daily life. More
recently the development of cloud technology and services on the web has contributed
to the spreading of our personal informations on millions of servers in the world. Recent
scandals on the PRISM activity from the NSA has highlighted the fact that information
circulating on these networks are the heart of spy activities.

Confidentiality through encryption, authentication and signature services are efficient
solutions to protect our privacy. Cryptography offers these services. For years now these
techniques have been used in public domain and are no more limited to spy agencies and
military services. Their use will continue to become more and more important in future.
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1.1. CRYPTOLOGY - THE SCIENCE OF SECRET

1.1.2 Ancient Ages

Cryptography has been used for centuries. We can consider it was already existing
1900 B.C when some Egyptians were using non ”standard” hieroglyph. Another very
old example is the ATBASH used by the Hebraic scripts 500 years before J.C. The
Atbash uses the alphabet in reverse order to transcript the Jeremiah book. At the
same time Greeks were using the scytale to encrypt their messages. It is known as the
first military encryption process with the CAESAR one. The Lacedemonian scytale is
a simple transposition of the letters of a plain text (message). The classical method
consisting in using a cylinder as depicted in figure ??. The secret key is the diameter of
the cylinder. The message could be written on a belt out of leather that has been rolled
up on the cylinder. The messenger just wear the belt on the reverse side to bring the
encrypted message.

Figure 1.1: Scytale principle.

But the most famous cryptosystem from this period is the CAESAR cipher. It is one
of the first military known encryption process and is named after the famous emperor
Julius Caesar designed and used it for his correspondence. It consists in replacing the
alphabet by the alphabet rotated of k letters. For instance in figures ?? and ?? the key
k is equal to 3. Each letter of the alphabet of the plain message is then replaced by the
corresponding rotated letter to design the cipher text. The reverse operation is used to
decrypt. One can remark here that once the technique is known the number of possible
keys is only equal to 25.

This technique can be simply improved to increase the decryption complexity by using
the mono-alphabetic substitution. Instead of shifting the alphabet letter it consists in
replacing (substituting) a letter by another one. The number of potential new alphabets
is then the number of permutations of the 26 alphabet letters, so Factorial(26) that
corresponds to about 288 possibilities. It seems this technique was described for the first
time in the Kamasutra (before the CAESAR cipher). It was the most used encryption

Figure 1.2: CAESAR encryption with key
equal to 3 (right rotations)

Figure 1.3: CAESAR decryption with key
equal to 3 (left rotations)
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CHAPTER 1. WHEN CRYPTOLOGY MEETS PHYSICAL RESISTANCE

method during the first millenary. Many scientists from this period were convinced it
was unbreakable. At this time cryptosystems were resistant to cryptanalysis. Indeed
the mono-alphabetic substitution led to a huge number of possibilities for the secret key
(that would be still today a big number for a space of keys).

But finally in the 9th century Arabs succeeded first to break mono-alphabetic en-
cryption. We could say they are at the origins of cryptanalysis.

Abu ’Abd al-Raham al-Khahil ibn Ahmad ibn’Amr ibn Tammam al Farahidi al-
Zadi al Yahamadi (Abu-Yusuf Ya’qub ibn Ishaq al-Kindi, called Al-Kindi) published
in the 9th century the first book on cryptanalysis. He is the first one to analyse the
letter frequency and exploit those results to decrypt messages encrypted with mono-
alphabetic substitution. For each language the apparition frequency of letters differs.
However each time some letters of the alphabet are more present in texts than others.
Those frequencies can be computed and are known. For instance in french the most used
letters are ”e”, then ”a”, then ”s”, etc. Therefore by computing for a given ciphertext the
frequency of each letter we can guess which one corresponds to ”e”, ”a” and so on. This
technique can be also improved by using the frequency of couple of letters.

From this time it became difficult to design ”strong” and resistant cryptosystems.
Marie Stuart would have may be lived longer if the improved mono-alphabetic substitu-
tion cryptosystem she used had been more resistant to cryptanalysis.

Only in the 16th century appeared the first resistant cryptosystem. Blaise de Vi-
genère designed a clever cryptosystem (named Vigenere) that resisted for 3 centuries to
cryptanalysis. He designed a simple and subtle code based on poly-alphabetic (circular)
substitution. This technique resisted to cryptanalysts for decades when it was named
”The unbreakable cipher”. Finally in the 19th century Charles Babbage and Friedrich
Wilhelm Kasiski broke it independently in the mid 19’s.

These are some of the famous cryptographic methods which have been used at dif-
ferent critical periods of our history in previous centuries. However the latest one, the
20th, has been certainly the most exciting one in term of cryptology’s developments. It
has been said this was the time of modern cryptography.

In between it is interesting to introduce the Enigma machine that was used by Ger-
mans during the second world war. It represents one of the most exciting period of
cryptography history. The cryptanalysis and new computer science techniques designed
at this time have influenced the course of our history.

1.1.3 Enigma

Enigma (cf. figure ?? ) 1 was designed by the German engineer Arthur Scherbius in
1919 that makes the first commercial product in 1923. From 1929 it was used by the
German army. This is an electro-mechanic machine. The power supply is used to turn
rotors when the user press a letter of the ”keyboard”. Two consecutive similar letters are
not substituted with the same letter. It is then a poly-alphabetic substitution. The key
was the initial positions to apply to the rotors. During the second world war Germans
used it to encrypt sensitive messages, there were more than 30000 machines in usage.

1http://www.nsa.gov/about/photo gallery/gallery.shtml
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Before Enigma was used cryptanalysts of many countries succeeded to decrypt German
communications. Suddenly with the apparition of Enigma all of them were confronted
to the impossibility to decrypt any German cipher text.

Figure 1.4: Enigma

In December 1932, Marian Rejewski, working for the secret services of Poland, suc-
ceeded to broke the first version of the Enigma encryption machine with his mathe-
matician colleagues Jerzy Rozicki and Henryk Zygalski. They exploited information
transmitted by a french officer. At this time Poland was afraid of German invasion.
Rejewski and his team succeeded to decrypt thousands of German messages. They
succeeded where all other nations failed.

Before the German invasion happened Polish revealed to British their techniques to
break Enigma.

British cryptanalysis activities were located and centralized at the place of Bletchley
Park. Many thousands of persons were working here with the unique objective of de-
crypting German ciphered communications. German cryptographers regularly improved
this machine to enhance its security resistance. However, even if sometimes and for short
periods Allies failed to decrypt messages, Bletchey park succeeded finally to decrypt the
majority of the ciphered messages. The most famous contributor to this success is named
Allan Turing. With his colleagues, they designed the famous Bombe machines (cf. figure
??)2 dedicated to Enigma deciphering computations.

Many battles have been won, many German boats and submarine sunk thanks to the
cryptanalysis of Enigma. Enigma has been publicly used by organisations until 1974.
They though they were protecting their data as no public weakness has been revealed
on Enigma. Indeed the Bletchley Park decryption results were only disclosed in 1974.

2http://www.nsa.gov/about/photo gallery/gallery.shtml
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Figure 1.5: Turing Bombe

”The security of any cryptographic system must not rely on the secrecy
of the algorithm used.”

A. Kerckhoffs.

1.1.4 The Modern Symmetric Cryptography

The modern symmetric (also said secret-key) cryptography relies on the fundamental
principles enounced by Auguste Kerckhoffs [?]. One of these most important principles
are given in the following:

Symmetric cryptography relies on the fundamental condition that a secret key, a
simple sequence of bits, has been initially shared by the communicating people. This
secret key is the same secret that is used to encrypt and to decrypt. A conventional
symmetric encryption is defined by an algorithm taking as parameter the secret key.
It has the property to transform a plain text to a cipher text such that the reversed
calculation is easy to who knows the key but unfeasible to others.

Figure ?? illustrates this principle of the symmetric cryptography. Alice and Bob
want to share a confidential information (message) m through an insecure channel such
as internet for instance. Hence they need initially to share a secret key K with a given
symmetric algorithm using K: EK . Once they have done this key exchange the sender,
Alice for instance, can use EK to encrypt any message m she wants to transmit. The
ciphered message C = EK(m) can then be send to Bob that use the reverse algorithm
Dk with the secret K to recover m = DK(C) from the encrypted message C. This is
summarized by figure ??.

A good encryption algorithm requires the two following properties enounced by Shan-
non in 1949:

8
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”Security must rely on the secrecy of the secret key used.”
A. Kerckhoffs.

Figure 1.6: Symmetric encryption principle.

• diffusion: 1 bit of the plain text modified will modify the many bits of the cipher
text,

• confusion: it must be difficult to obtain statistics on the plain text from statistics
of the cipher text.

The most famous symmetric encryption is the Vernam’s one. Vernam designed and
patented in 1917 the one-time cipher also said the One Time Pad. It is still today the
only cryptosystem with perfect secrecy as it was proven in 1949 by Shannon. However
it is not really practical due to the big key length involved in the operations. Indeed it
necessitates the key to be as long as the plain text. Moreover a fresh key must be used
at each encryption operation.

Symmetric encryption modes includes two cipher families: the stream ciphers and
the block ciphers. Stream ciphers allow encryption bit per bit of the plain text and
then it can be used for ”on the fly” encryption operations. It is the case of the Vernam
encryption. Block ciphers encrypt plain texts per block of bits. They are the most used
algorithms today.

We are focusing in the rest of this document on block cipher algorithms. Block ciphers
allow fast encryption that is necessary for encrypting big data quantities. Another
requirement is to have a sufficiently big enough key but small if possible. For instance
128-bit keys are strong enough today (of course the algorithm structure must also be
good enough to resist cryptanalysis techniques). It is opposed to the 2048-bit keys
that are used in asymmetric cryptography or at least with the huge key that would be
necessary for the Vernam cipher.

The major drawback is however the key management that has to be put in place for
such encryption. Indeed for each couple of persons willing to communicate encrypted a
secret key must be generated and shared. For instance let’s consider a 100 persons group
where people need to communicate securely two per two. Then each couple of persons
needs a unique secret key. In this example 4950 different keys are necessary. As we can
see it can quickly lead to a huge number of secret keys.
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CHAPTER 1. WHEN CRYPTOLOGY MEETS PHYSICAL RESISTANCE

Many block ciphers have been designed for years, some have been broken (cryptanal-
ysed) when others are still resistant like the DES algorithm in his triple-DES (TDES)
operation mode only. Of course, because of the technological evolutions, computational
power is increasing every year. It is then necessary to increase key-length of algorithms
regularly to ensure techniques remain resistant. Common resistant block cipher have
key sizes varying from 112 to 256 bits.

Most famous and used algorithm is the DES or TDES (in its 2 or 3 key version).
This algorithm is present in millions of daily life products. You can find it in your bank
cards, your mobile or smart phones, your computers and so on... The second one is the
AES. It has been selected as Advanced Encryption Standard by the NIST in 2001 [?] to
progressively replace the (T)DES. We are presenting TDES and AES in the following.
Many other algorithms exist but we do not list and detail them in this introduction.

DES Algorithm

This is the most famous symmetric algorithm. DES stands for Data Encryption Stan-
dard. It has been selected as international standard by the NIST in January 1977 [?].
DES was initially published in 1975 after some modifications made by the NSA on the
initial version, named Lucifer and designed by IBM. Since 1977 it has been maintained
as standard at many occasions and has resisted for years to many attacks. Due to tech-
nology evolutions it has been recommended for use in 2004 in the triple DES form. In
this stronger version 2 or 3 keys of 56-bits are necessary. Indeed DES is using a 56-bit
key. Such a key length is weak today as recovering a DES key would require ”only” 256

DES computations that is achievable today in less than 1 day for less than 50 000 euros
of investment. It is then mandatory to use the DES in the triple-DES version as depicted
in figure ??.

Figure 1.7: Triple-DES principle.

DES is based on the famous Feistel scheme [?] that is described with figure ?? for a
single Feistel round and figure ?? when many consecutive rounds are chained.

A Feistel round transforms his entry (Li−1, Ri−1) to the output (Li, Ri) by applying
the following operations:

• Li = Ri−1

• Ri = Li−1 ⊕ fKi(Ri−1)

The left part of the output is simply obtained by copying the input right part. The
output right part is the result of the XOR operation between the input left part Li−1

10
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Figure 1.8: Feistel scheme single round.

and the transformation fKi(Ri−1) of the right input by a bijective function f . The round
function takes as parameters the round keys Ki that are derived from the initial key K.

Figure 1.9: Feistel scheme consecutive rounds (said Tour here).

DES is based on this scheme. It takes as input parameter a 64-bit key K and a 64-bit
plain text M . Each byte of the key containing a parity bit, the actual key size is 56 bits.
The number of Feistel’s rounds equals 16. At the beginning the plain text is transformed
through the Initial Permutation IP and split in a 32-left part L0 and a 32-bit right part
R0 from the most to the least significant bits of IP (M).

The function f is non linear and is made of a substitution, two permutations and a
round key addition (XOR). At each round i the round key Ki is obtained from the main
key K following a key schedule depicted in figure ??

11
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Figure 1.10: DES encryption principle.

Figure 1.11: DES decryption principle.

Figure 1.12: DES Round detail.
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DES security The security of DES has been scrutinized for three decades. Single
DES is weak today for many reasons. The first one is the size of the key. Contrarily to
the period it was designed, 56-bit key does not offer enough resistance today to brute
force attacks. Trying exhaustive search on all 256 possible keys at a given plaintext/ci-
phertext pair is feasible for a reasonable cost. Brute force really started in 1997 with the
DESCHALL project led by Rocke Verser, Matt Curtin and Justin Dolske. They used
idle cycles of thousands of computers accross the internet to broke a message encrypted
with DES. They earned $10000 offered by the RSA Security company for the contest. In
1998 a custom DES cracker machine showed it was possible to recover a DES key in only
two days. The EFF’s3 $250000 machine contained 1536 custom chips and could brute
force a DES key in a matter of days. Seven years later an equivalent machine named
COPACOBANA [?] was built by Bochum and Kiev universities for less than $10000. It
was made of 120 low cost commercial FPGAs. COPACOBANA can brute force a DES
key in an average key search of 8.7 days.

Before these brute force practical results, new cryptanalysis techniques have been
designed during the DES security studies. The differential cryptanalysis was published
in 1990 by Eli Biham and Adi Shamir [?]. Their analysis required 247 chosen plain texts
to recover the full DES key. Their study also highlighted that DES was designed to be
resistant to this technique. It made people thinking that NSA and IBM already knew
this technique at this time as it has been affirmed by Don Coppersmith [?].

In 1993 Mitsuru Matsui discovered the Linear cryptanalysis [?]. His technique needed
243 known plain texts. It was implemented and was the first experimental cryptanalysis
of DES to be reported. There is no evidence that DES was tailored to be resistant to
this type if attack.

Today DES must not be used in his single encryption mode. Most of the applications
are using it in his triple mode version where it is still a standard. However another
standard has been selected by the NIST in 2001: the AES.

AES Algorithm

The Advanced Encryption Standard has been adopted in 2001 by the NIST after the
call for candidates this institute had made in 1997. Fifteen candidates were initially
proposed by the worldwide scientific community. After a first selection phase, where
some candidates were broken and others saw their security reduced, five candidates
remained for the second phase. They were MARS, RC6, Rijndael, Serpent, and Twofish.
In October 2001 the Rijndael was selected as the new standard to become the AES [?].
It was designed by two Belgians named Vincent Daemen and Joan Rijmen. When the
DES is not working in a particular mathematical field the AES is processing on elements
of the Galois Field GF(28). It is not based on the Feistel scheme but more generally it is
a Substitution Permutation Network (SPN). This block cipher encrypts 128-bit blocks
of message. Three modes in AES are available for different security levels:

• AES-128 with 10 rounds and a 128-bit key,

3EFF=Electronic Frontier Fondation, a cyberspace civil rights group

13



CHAPTER 1. WHEN CRYPTOLOGY MEETS PHYSICAL RESISTANCE

• AES-192 with 12 rounds and a 192-bit key,

• AES-256 with 14 rounds and a 256-bit key.

It must be noticed that the AES is a subset of the possible configurations of the
Rijndael algorithm. Indeed Rijndael offered the possibility to encrypt 128 or 192 or
256-bit of plaintext. The NIST has removed the 192 and 256-bit sizes for the plaintext,
AES can only encrypt 128-bit plaintext messages.

The operations of this algorithm are mathematical operations in the field GF(28).
This mathematical structure gives many implementation possibilities. It is then very
useful to implement protections and countermeasures against side-channel attacks we
will see later. It means an element can be represented in a normal basis or a polyno-
mial basis. If we consider the polynomial representation each byte must be seen as a
polynomial. As GF (28) is a field of characteristic 2 it makes the addition operation
easy to implement as a simple eXclusive OR (XOR). The multiplication corresponds to
a polynomial multiplication modulo F (X) where F (X) is X8 + X4 + X3 + X + 1 that
is the irreducible polynomial used for the field definition.

The operations are performed on two dimensional array of bytes called the State.
The 16-byte input plain text (in0 = m0, in1 = m1, ..., in15 = m15) is transposed in the
state configuration. Then the operations are processed on the state array until the final
result is obtained. This is described by figure ??.

Figure 1.13: AES State array.

AES is composed of five operations if we include the Key Schedule as one. Each of
them is part of each round except in the final one the MixColumn operation has been
removed. These are listed in the following:

• KeySchedule: from the initial master key K, a round key Ki is derived to be used
in the key addition at each round i,

• AddRoundKey: it adds the round key value of the current round to the current
state array,

• ShifRows: it permutes the byte of the state,

• SubBytes: it is the non linear part of the algorithm. Using a look-up table it
simply consists in replacing a byte by the corresponding one in the SubBytes table.
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Mathematically it is the composition of the pseudo-inverse operation in GF (28)
with an affine transformation.

• MixColumn: the most time consuming operation; it corresponds to the multipli-
cation of each row of the state by a degree 3 polynomial in GF (28).

An overview of the AES is given in figure ??.

Figure 1.14: AES data structure.

AES security AES has been designed to be resistant to Differential and Linear crypt-
analysis.

TDES and AES are the most used symmetric algorithms today. The other final candi-
dates MARS, RC6, SERPENT and TWOFISH are also recommended by NIST as secure
algorithms. So there are nowadays many symmetric algorithms that offer fast and secure
encryption methods.

However the main drawback of this method is that they require a secret key to be
shared between two persons or the members a group of persons. Such key values have
to be generated and exchanged before any communication could happen.

Another issue is that signature with non repudiation property are not possible with
secret key algorithm. Indeed as the key is shared between two persons at least, it is not
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possible to legally prove who has encrypt (signed) what.

To solve these problems, here comes the asymmetric cryptography.

1.1.5 Asymmetric Encryption

This area in the science of secret is very recent. It appeared in 1976. It created a
breakthrough in the domain because of the new possibilities it offered. There are two
fundamental articles [?, ?].

In both cases the security relies on difficult mathematical problems on long integers:
the discrete logarithm problem an the factorization of large integers.

Two difficult mathematical problems

We need in this paragraph to remind the reader what a prime number is.
A prime number is a number that is only divisible by 1 and by itself. For instance 2, 3,
5, 7, 65537 are prime numbers. 6 = 2.3 is not prime.
The public key cryptography is based on the two following difficult mathematical prob-
lems.

The factorisation of large integers Consider a big integer value N long of many
hundreds of bits (for instance 4096 bits) that is not prime. It’s prime factorization is
given by N = p1 × p2 × . . . × p` where each pi is a prime number. For instance the
prime decomposition (or factorisation) of 165 is 3× 5× 11. The factorisation of 435959
is 547 × 797. It can easily be done by testing if any number lower to

√
N divides N .

This is the method known as the sieve of Erastothenes. But for large numbers it be-
comes difficult to use such an exhaustive search method. For instance let’s consider the
following number N :

N =
587550236494541478611353138138578005580467762975368463260434976974827347
298863536769702787504358685623450049651464713011105781834657180993917147
795455354319871288463981950412427844745210882196662444451496593704726012
842114427229399542508112651032937251896150838667012906416143534775658474
962257629444310328863641190139357294013078175893340907911676471004226775
314027700238652460322736506279420652528325927819898091797669696076153293
517121898320098306918494234607501965814599521826364630359302267452207241
259184968025844763409493111542369543640881930909114859769081139704680895
741606209683318352990679791906988517067091838982195005818674928151024779
465435454043887613239322575517697128252333590544804532997861726426790342
951218411719461586767769098362520252456939340195279712558343115464915678
615011719542995067793822166076311289149218256749448785510068590506532536
247956724632173820166413319724970565483027969935938175229014362018284558
441113924560532083148647586219397756338884075799242976697423815060755726
319295762837214405179055800023960367088566816087500266222103509654668441
479561825577503878029848567733258508012046001848565070355842154160814816
379752561379604641078225075724022799050477051865207506694881194342567749
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101012307

This is a 2048-bit value. The most efficient factorization method can not factorize such
a big number as it is composed of the following big prime values p1 and p2.

p1 =
314772541281499992528824314641220261310623982678168297576962484516052571
825953434378892136437909367708846092382436073561218024262587282659518400
634517997927415776963154959863761365745610288998512148546685033185451343
211698411364931438393895042570932768235030157857114019004275394916375205
890313617632148443967612363247871017721042274335230685505921345327582877
013330785156944588312169103704903954534090735671785266755168555773920253
427076399631735443972755508543300780915901373491238175128051386960470640
225445132841568143077199041776694075429867374807248996667363105867654817
26908531755888095687788392063183805457389

p2 =
186658669178229666106813851436321641198971097159921949098064507363756882
798561438394738056811044444456631882476933054411111492712143811375053425
705288425286253697787787130932516241674704080207056575612684847851794322
394358112296356233399625831236565950916179605695413712290582158373312216
509550578313170050631332509688653369522533093240902377310106034998369579
615073191406501706293381211863095916988503055611818325237609795019581925
711518567479609526765864763245583487300287288368887980569661476806741003
122925508521590090014085727326343319526730410365697081041529973033613480
58677719200047993223805912972693769971263

This illustrates the difficulty to factorize large integer values.

Amongst the different factorization methods the most efficient today are the Elliptic
Curve Method (ECM) from Lenstra [?] and the Number Field Sieve methods (NFS)
from A. Lenstra, H. Lenstra, M. Manasse and J. Pollard [?]. ECM can recover small
prime factor pi of a large integer value in shorter time than NFS but it cannot recover
as large value as NFS does. For instance ECM biggest factor recovered today is a 83-bit
integer4. Today the largest integer (factored with NFS algorithm) is the RSA 768-bit
(232 digits) value; This value is composed of two same lengths prime factors from the
RSA’s challenge list. It was achieved in December 2009 by Kleinjung et al. [?].

The Discrete Logarithm Problem Let’s consider the following parameters: p a prime
value, α < p is a generator element of (Z/pZ)? and β in (Z/pZ)?. Recovering the value
0 6 x 6 p− 1 such that β = αx mod p is difficult.

Diffie-Hellman - DH

The main drawback of the symmetric encryption is the following: Alice and Bob, far
from each others, want to exchange sensitive information on internet. In order to protect

4http://www.loria.fr/ zimmerma/records/top50.html

17



CHAPTER 1. WHEN CRYPTOLOGY MEETS PHYSICAL RESISTANCE

this data in confidentiality they want to encrypt it using for instance the AES algorithm.
It means they need to share a secret key K to be used with AES.

The question is (and has been for years): ”how can they create such a key and be
sure the transmitted information on the channel are not exploitable by an attacker?”.
The solution is given by the Diffie-Hellman key exchange protocol. But let us explain
before the notion of public an secret key. Each user owns a key pair made of a public

key A and a private key a. The public key value is shared (on internet for instance) in
order to make it available to everyone. The knowledge of the public key A is sufficient
to encrypt a message but does not allow to recover the private key a. The decryption of
a message requires the knowledge of the private key a to be possible. With this scheme
anyone can send encrypted messages to the public key owner. Being the private key
unique owner he is the only one able to decrypt the messages encrypted with his public
key. Then, to summarize, each person (for instance here Alice) owns a couple of keys
(A,a) such that:

• a public key A to encrypt: everybody can use it to encrypt a message to Alice.

• a secret key a to decrypt: only the secret key owner can decrypt the cipher text
encrypted with the public key.

It is illustrated in figure ??. Here the encryption key is different from the decryption
key.

Figure 1.15: Asymmetric encryption principle.

This concept was introduced in 1976 by W. Diffie and M. Hellman in New directions
in Cryptography [?]. They did not succeed to design such a public key encryption system.
However they invented the key exchange mechanism based on the mathematical discrete
logarithm problem.

For instance, we give in the following an example to illustrate this protocol.
Alice Bidochon has gone in Tazmanie to visit her family. She has discovered a secret

information on his family that could make them very rich... she is convinced! She
wants to communicate this very important information to her husband Bob Bidochon
who stayed in France. (They have of course chosen to use secret names for a better
anonymity). Alice decides to use the Diffie-Hellman cryptosystem to exchange a secret
key to encrypt this secret message. Alice and Bob proceed as depicted in figure ??.

18



1.1. CRYPTOLOGY - THE SCIENCE OF SECRET

Figure 1.16: Diffie-Hellman key exchange.

1. They use as parameters a long prime integer p and an integer g < p.

2. Alice takes a random integer a < p

3. She computes A = ga mod p

4. She sends the value A to Bob(ert).

5. Bob, on his side, takes a random integer b < p

6. He computes B = gb mod p

7. He sends B to Alice.

8. By computing Ba mod p Alice obtains a value K = gab mod p

9. By computing Ab mod p Bob obtains the same value K = gba mod p

Alice and Bob Bidochon are now sharing a secret key K they can use to exchange
encrypted information with a symmetric algorithm. As one can see A and B are public
information as sent through a insecure network. But knowing A and B does not allow
to recover neither a, b and ab.

This key exchange scheme is very used today.

Rivest-Shamir-Adleman for RSA

In 1977 R. Rivest, A. Shamir and L. Adleman presented their public encryption scheme
named RSA [?]. It is the first practical and concrete public key cryptography encryption
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scheme presented. Its security relies on the difficulty to factorize big integers. The
principle of RSA is given in figure ??.

Figure 1.17: RSA Encryption scheme

If we take the previous example, Alice wants to send to Bob(ert) the secret infor-
mation m she discovered on her family in Tazmanie. She decides to use the public key
(N ,e) of her husband. She encrypts the secret m by computing C = me mod N and
sends this value C to Bob.

Bob receives the encrypted message C and decrypts it by using the secret key he is
the unique owner by computing: m = Cd mod N .

Explanation:
C = me mod N
The decryption calculates:
D = Cd mod N
D = me.d mod N
D = m1+k.ϕ(N) mod N 5

D = m1.1k mod N
D = m

The RSA cryptographic system security relies on the difficulty to recover the secret key
d from the public exponent e and the modulus N . Being able to decipher a cipher text is
called the RSA problem: from (n,e) and C, compute C(1/e) mod N . The RSA problem
and the factorization problem are strongly related. RSA problem may be easier to solve
than factorization but this question has been investigated for 35 years now and it is still
an open problem...

The Non Secret Encryption - NSE

The story of J. Ellis, C. Cocks and M. Williamson has been revealed by J. Ellis in
1987 with the authorization from the British secret services (CESG). In 1969 J. Ellis
was working for the British Government Communication Headquarters (GCHQ). He

5ϕ(N) is the order of the multiplicative group Z/NZ?, then uϕ(N) = 1 for any u in the group.
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established the basis of what would be, to his mind, the Non Secret Encryption in [?].
But he did not succeed in designing a functional cryptographic system. In 1973 C.
Cocks worked on Ellis idea and designed a cryptosystem pretty similar to RSA in [?].
He exposed his idea also to M. Williamson. Williamson was trying to cryptanalyse the
Cocks system when he discovered the Diffie-Hellman key exchange cryptosystem. In
1975 they had then discovered the fundamentals of Public key cryptography. But this
was kept secret by the military service. NSE was the name they used for what is now
called PKC.

Cocks Algorithm Alice chooses two large primes p and q and sends N = p × q to
Bob. Bob encrypts his message m by calculating C = mN mod N and sends C to Alice.
To decipher Alice finds p′ and q′ such that:
p.p′ = 1 mod (p− 1)
q.q′ = 1 mod (q − 1)
then you decrypt by computing:
m mod p = Cp

′
mod p

m mod q = Cq
′

mod q
and you can then recover m.

It is interesting to notice that this NSE scheme is a particular case of RSA for the
public exponent being set to N . There are few differences (it is not the same algorithm
to encrypt than to decrypt) but the NSE scheme from Cocks could then be the first
public key encryption algorithm.

Williamson Schemes In 1974 M. Williamson presented to J. Ellis an encryption
scheme that is the following: Alice and Bob share a public prime value, say p. Alice
wants to send encrypted a message m to Bob.
Alice chooses a large number a, and sends A = ma mod p,
Bob chooses a large number b and sends AB = Ab mod p to Alice. Here the message is
encrypted so that AB = mab mod p.
Alice computes a′ such that a.a′ = 1 mod (p − 1), and C = Aa

′
B mod p to remove her

original encipherment and lets the message encrypted by Bob’s key. She sends then
C = mb mod (p− 1) to Bob.
Bob receives C. He computes b′ such that b.b′ = 1 mod (p − 1), and removes his enci-
pherment by computing Cb

′
mod p = m. It was reported secretly in [?].

This idea corresponds also to what is known in cryptography as the double lock process.
Alice and Bob want to share a secret. Alice puts the secret in a box, she locks it and
sends to bob. Bob locks the box again with his lock and sends it back to Alice. Alice
removes her lock and sent it again to Bob. Then Bob can unlock and open the box to
get the secret.

Later Williamson designed a simpler method using exponentiations [?]. This idea corre-
sponds to the Diffie-Hellman protocol.
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ElGamal

It is the first asymmetric encryption scheme based on the discrete logarithm problem
presented in 1983 by T. ElGamal [?].

Parameters: g, q such that g is a generator element of the cyclic group G of order q.
Key generation: Alice chooses randomly a value a ∈ 1 . . . q − 1 and calculates A =
ga mod q.
She discloses her public key (G, g, q, A) and keeps secret the private key a.

Encryption: Bob wants to encrypt the message m to send it to Alice. He processes as
detailed in the following:
He generates a random value r ∈ 1 . . . q − 1 and computes c1 = gr mod q
Computes s = Ar mod q
Compute c2 = m · s mod q
Bob sends the cipher text (c1, c2) to Alice.

Decryption: Alice has received (c1, c2) from Bob that she wants to decrypt.
Alice computes w = ca1 mod q
She computes u = w−1 mod q
and v = c2 · u mod q
At this step v = m the original plain text from Bob.

Explanation
v = c2 · u
v = (m ·Ar) · ((gr)a)−1)
v = (m · (ga)r) · (gr)−a)
v = m

Practical Concerns

As it can be seen asymmetric cryptography involves calculations on long integers as
modular exponentiation which is much time consuming. A first practical solution consists
then in using the DH key exchange to share a symmetric key K. This secret key is then
used to exchange encrypted information using a symmetric algorithm like TDES or AES
that allows fast encryption operations compared to RSA. This solution is very used in
practice in many daily life products.

Another key concern of the public key cryptography is the public key certification.
Indeed any individual can generate a pair (private a, public A) key and spread the public
key A to anybody. But the problem is: ”How can I be certain the public key I use belongs
to the right person I want to communicate with?”. Another concern is the famous attack
known as ”the man in the middle attack”. Alice decides to send by email her public key
AAlice to Bob. But she doesn’t know that Oscar has hacked her mail account and can
intercepts all her emails. Then Oscar get the public key from Alice and send to Bob
his public key AOscar instead of the one from Alice. Bob receives the public key and
thinking it was the one from Alice use it to encrypt the message m he wanted to send to
her. Oscar intercepts the mail, decrypts it with his private key, reads it and re-encrypts
it with the public key from Alice. Neither Alice nor Bob will know the message content
is known by Oscar. The key certification solves all these issues. It consists in using
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a trusted third party that signs all the keys with her secret key. Then each user can
verify the key he uses has been certified by the known third party by verifying the key
signature. The public keys management in cryptographic systems defines a Public Key
Infrastructure PKI.

If asymmetric schemes are more practical for key exchange than for encryption pur-
poses they become mandatory and are widely used for data signature mechanisms.

1.1.6 Digital Signature and Authentication

The signature permits to authenticate a given message has been sent by a
precise emitter. For centuries the signature of any document was the manuscript sig-
nature. It is still the most signature used to today. However it is something very easy
to reproduce. A more modern and efficient mechanism of our recent world is the digital
signature. It is now possible thanks to the Public Key Cryptography. The process is
similar to encryption but this time the private key is used to sign a message (and not to
decrypt).

The authentication of a person must permit to authenticate a person is the
right one. Even today to prove your identity you have to show your identity card
(paper), your driving licence card (paper), etc. It is worth to notice that more and more
some of these documents are becoming electronic documents but the paper part is still
the most used today.

A signature algorithm must respect many properties. The signer must easily be able to
produce a signature S for a message m when s must be easily verifiable by anyone. How-
ever the verification capability must not allow the verifier to reproduce such a signature
value.

The second fundamental property of the signature is the non repudiability property.
As Alice is the unique owner of the private key she is the only person able to generate
the signature s of a given message m. It signifies that Alice cannot deny she has signed
this message m.

As it is depicted in figure ?? Alice, the owner of the secret key, is the only person
capable to sign a message m to produce the signature value S. But everyone can check
with the public key that S is the signature of m by Alice. However the knowledge of
the public key A does not allow to reproduce a signature. The requested properties for
signature are then fulfilled with the asymmetric cryptography.

RSA and ElGamal schemes can be used to generate digital signatures with respects
to the process described in figure ??. Another method is the Digital Signature Algorithm
DSA.

DSA

The Digital Signature Algorithm has been adopted as Digital Signature Standard by the
NIST in 1994 [?]. It is a variant of the ElGamal signature scheme. It requires the use
of the hash function SHA-1 (or SHA-2). Its security relies on the Discrete Logarithm
problem. DSA can only be used for signature contrarily to RSA which can be used for

23



CHAPTER 1. WHEN CRYPTOLOGY MEETS PHYSICAL RESISTANCE

Figure 1.18: Signature principle.

encryption and signature objectives. DSA is not a message recovery function. It means
the signature verification will answer ’true: signature is verified’ or ’false: signature is
refused’ but without leading to the recovery of the signed message.

Zero Knowledge

A similar problem to the signature is the person authentication. Electronic authentica-
tion is replacing the former authentication with your paper ID document. It requires
new authentication mechanisms. The notion of zero knowledge proof of knowledge allows
a first party to prove its identity to a second party via some secret information... but
without leaking any information on its secret to this second person!

This concept of Zero-knowledge was introduced in 1985 by Goldwasser, Micali and
Rackoff in [?]. They surprisingly showed it was possible to proof a second party your
are the owner of a secret without disclosing any information about this secret.

A nice explanation has been given in 1989 by Quisquater and Guillou’s families and
T. Bergson in the paper titled ”How to Explain Zero Knowledge Protocols to Your
Children” [?].

1.1.7 On the Importance of Random Numbers

Random numbers are the most important element of cryptography. They are required
to generate key values, and are at the heart of most of the cryptosystems. Generating
random numbers is a science that involves physical and mathematical concepts.

It is then of prior importance to evaluate the quality of random numbers that are gen-
erated by a random source in order to decide if they can be used or not for cryptosystem
calculations.
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Many publications can be found in the literature to design random number generators
and to describe statistical tests. Some standards like AIS 20 and AIS31 from BSI [?],
FIPS 140-2 [?] and 140-3 (draft) [?] from the NIST describe and specify how to evaluate
the security requirements of cryptographically secure random number generations.

Key Lengths

It is obvious the lengths of the cryptographic keys is a fundamental element of the security
of a cryptographic algorithm that would be properly designed to thwart cryptanalytic
attacks.

Figure ?? gives a brief comparison of the key length involved in AES, RSA and ECC
cryptographic algorithm for same security levels.

Figure 1.19: Key length comparison

Tables are given by NIST, ANSSI, etc. The site www.keylength.com lists these tables.
In figure ?? the term ”date” corresponds to the period when the listed key length must
be used. For instance from 2011 to 2030 NIST recommends tu use 2048-bit keys for RSA
operations.

Figure 1.20: NIST Key length recommendations
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1.2 Physical Security and Embedded Devices

Don’t you know what a secure micro-controller is? Do you know how to implement in a
secure way the standard cryptographic algorithms in micro-controllers? What are these
attack techniques named side-channel and fault injection attacks? How do the manufac-
turer proceed to prevent their products from these numerous and strange attacks?

We are discussing these very exiting subjects in the next paragraphs.

You can find many micro-controllers in so many products of your daily life. It can be
the one present in your washing machine, your banking card, your smartphone, etc. But
amongst these different products the security requirements for the integrated circuits are
very different. Nowadays the term security product concerns for instance your electronic
passport, your SIM card, your ID card, your banking cards, etc. All these products have
been designed with highest security requirements.

Secure micro-controllers have been designed for years in the military and the smart
card domains. Since smart cards were created in 1970 these circuits have known many
technological improvements. Actually they seem still destined in future to play more and
more their role of digital safe box and not only in the classical smart card form factor.

Secure circuits aims at offering confidentiality services to protect the secret assets like
cryptographic keys that are stored and manipulated by the product from the numerous
attacks that exist. In practice each product manufacturer must submit his product to
evaluation laboratories. These experts audit in detail the architecture of the products
and of their security protections. In a second practical phase they will apply the state-
of-the-art attacks to the product to evaluate its practical resistance to attacks. After
many weeks or months of testing the product will obtain its security certification if all
the tests are passed with success. The security certificate is issued by the government
services, for instance in France by the ANSSI, in Germany the BSI and in the United
Kingdom by the CESG.

These security constraints are not really known by the users. We have seen in the
previous section of this chapter the most known cryptographic techniques. Modern
cryptographic standards are considered to be secure from a theoretical point of view if
the keys and parameters are well chosen.

But as far as a cryptosystem can be theoretically secure against actual cryptanalysis,
in real implementations (for instance, in a smart card), it faces other threats than the
mathematical ones; in particular side-channel attacks and fault injection attacks.

In the following we are first going to deal with invasive attacks. As it is not the heart
of this report we do not go in these techniques details. Then we discuss in detail the
non-invasive attacks including side-channel analysis and fault injection techniques.

But before let’s first introduce you the basic concepts of a microcontroller architecture
and the way cryptographic algorithms are embedded in such devices.

1.2.1 Embedded Devices

There are many devices that meet the category Embedded devices. Smart card is certainly
the most famous.
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Micro-controller Classical Architecture

Figure ??6 illustrates the classical architecture of a smart card microprocessor. Figure
??7 gives an example of the structure of a smart card microprocessor when observed
with a microscope in 0.25mm2 technology.

Figure 1.21: Example of microprocessor architecture: Infineon SLEE66 Block Diagram

Figure 1.22: Example of smart card chip structure

In the smart card case the microprocessor is located under the chip module. The chip
module is the visible part on the card surface that connect the microprocessor to the
external world (here the smart card readers). As depicted by figures ?? and ?? it is made
of many elements. The Central Processor Unit (CPU) is the core used for calculations

6Figure extracted from [?]
7source; www.eastautomation.com
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and manipulations of data. It can be seen as the motor in a car. There are different
kinds of memories connected to the core via buses. RAM (Random Access Memory)
is a volatile memory that is used for data manipulation and storage. It contains the
context data of any operations. It is erased as soon as the chip is no more powered.
ROM (Read Only Memory) can only be read and usually contains the program(s) to
be executed (for instance test code, Operating system code). It is a non modifiable
memory. In between we have the EEPROM or FLASH memories that are non volatile
memory that can be read and written. It could be compared to the hard disk of your
personal computer. These memories are connected to the CPU through buses that can
be 8, 16 or 32 bits. Bigger the bus is faster is the data transfer but higher is the power
consumption and die size. For cryptographic purposes some additional hardware blocks
must be integrated in the circuit. A hardware random number generator (RNG) is
necessary for all cryptographic operations and when random values are required in some
functions of the operating system. To perform efficient DES, AES, RSA and ECDSA
some dedicated accelerators are often designed and embedded in the integrated circuit.
Finally to prevent the product from many attacks some countermeasures and sensors
are integrated into the microprocessor.

Symmetric Implementations

The symmetric algorithms embedded in security products are most of the time the
standard ones like TDES and AES. Depending on the country where the product is
being used other algorithms like FEAL, RC5, SEED ... can also be implemented.

Symmetric implementations can be done in two different forms. The most frequent is
the hardware implementation by the use of a cryptographic accelerator. The terms DES
(resp. AES) hardware accelerator or TDES (resp. AES) engine is commonly met in the
literature. In such a case a specific circuit dedicated to the DES (resp. AES) calculation
is added to the microprocessor that makes the calculation processing done in few clock
cycles. In this case the whole cryptographic calculation is done by the accelerator. Data
to encrypt (or decrypt) and keys are loaded into specific hardware registers and the
computation is launched by setting some bits in a configuration register that is used to
pilot the engine. The computation time is very short as memory accesses are limited
(if there are any) and some calculation can be done in parallel as for instance the 8
substitutions of the DES S-Boxes. For instance a DES computation can be done in 16
clock cycles if one round is computed per clock cycle. Such performances cannot be
reached by a software implementation.

The second technique consists in a software implementation of the algorithm using
C and/or assembly language. It makes use of the basic set of instructions of the Central
Processing Unit (CPU) of the micro-controller. The code is written most of the time
in assembly language. Indeed it allows to minimize the read and write operations in
memories by taking advantage as much as possible of the core registers instead of RAM
local variables.
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Asymmetric Implementations

RSA is well known to be currently the most used public key cryptosystem in smart
devices. Other public key schemes such as DSA [?], Diffie-Hellman key exchange [?]
protocols, and their equivalent in Elliptic Curve Cryptography (ECC) – namely ECDSA
and ECDH [?] – are also often involved in security products.

Interestingly, all of them are based on the modular exponentiation or the scalar
multiplication and in both cases the underlying operation is modular long integer multi-
plication. Heavy efficiency constraints thus lie on this operation, especially in the context
of embedded devices.

Many methods such as the Montgomery multiplication [?] and interleaved multipli-
cation reduction with Knuth, Barrett, Sedlack or Quisquater methods [?] can be applied
to perform efficient modular multiplications and modular squaring operations. Most of
them have in common that the long integer multiplication is internally done with a loop
of one (or more) smaller multiplier(s) operating on t-bit words. An example is given in
Alg. ?? which performs the schoolbook long integer multiplication using a t-bit internal
multiplier giving a 2t-bit result. The decomposition of an integer x in t-bit words is given
by x = (xl−1xl−2 . . . x0)b with b = 2t and l = dlogb(x)e. Other long integer multiplication
algorithms may also be used such as Comba [?] and Karatsuba [?] methods.

Alg. 1.2.1 Long Integer Multiplication

Input: x = (x`−1x`−2 . . . x1x0)b, y = (y`−1y`−2 . . . y1y0)b
Output: multiplication result LIM(x, y) = x · y

1. for i = 0 to 2`− 1 do
2. wi ← 0
3. for i = 0 to `− 1 do
4. c← 0
5. for j = 0 to `− 1 do
6. (uv)b ← wi+j + xj · yi + c
7. wi+j ← v and c← u
8. wi+` ← c

9. return w

Multiplication with Barrett Reduction. Here a modular multiplication x × y
mod n is the combination of a long integer multiplication LIM(x,y) followed by a Barrett
reduction by the modulus value n. We use the notation BarrettRed(a,n) for this reduc-
tion, thus BarrettRed(LIM(a,m),n) corresponds to the computation of a×m mod n. We
do not detail the Barrett reduction algorithm here, for more details the reader can refer
to [?] or [?].

Montgomery Modular Multiplication. Given a modulus n and two integers x and
y, of size v in base b, with gcd(n, b) = 1 and r = bdlogb(n)e, MontMul algorithm computes:

MontMul(x, y, n) = x× y × r−1 mod n
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Refer to papers [?] and [?] for details of MontMul implementation.

We denote by ModMul(x,y,n) the operation x× y mod n, it can be done using Bar-
rett or Montgomery processing.

We do not detail the Barrett reduction algorithm here, for more details the reader
can refer to [?] or [?]. Other techniques can be chosen for processing modular multipli-
cations such as the interleaved multiplication-reduction with Knuth, Sedlak, Quisquater
or Montgomery methods [?]. Although we have chosen the Barrett reduction our results
can also be adapted to these other methods.

Definitions and Notations.

• x = (x`−1 . . . x1x0)b corresponds to integer x decomposition in base b, i.e. the x
decomposition in t-bit words with b = 2t and ` = dlogb(x)e.

• LIM(x,y) = x · y long-integer multiplication operation is detailed in the following.
Algorithm ?? presents the classical long integer multiplication algorithm.

• BarrettRed(x,n) = x mod n using the Barrett reduction method. In this paper we
consider reduction operations are done using this algorithm.

• ModMul(x,y,n) = x · y mod n = BarrettRed(LIM(x,y),n). It is the combination
of a long integer multiplication LIM(x,y) followed by a Barrett reduction by the
modulus value n.

• Exp(m,d,n)= md mod n. Algorithm ?? gives more detail on this exponentiation
algorithm.

We consider that a modular multiplication ModMul(x,y,n) = x · y mod n is per-
formed using a long integer multiplication followed by a Barrett reduction denoted by
BarrettRed(LIM(x,y),n).

To perform the modular squaring operation the algorithm ?? is performed and then
followed by a Barrett reduction. It is denoted by: ModSquare(x,n) = x · x mod n =
BarrettRed(LIS(x),n)

The long-integer squaring algorithm complexity is approximately one half the long-
integer multiplication algorithm. It means the modular squaring operation is faster
than the modular multiplication. In practice we consider a ratio of 0.8, a ModSquare
execution timing is about 0.8× ModMult execution timing.

Alg. ?? presents the classical square and multiply modular exponentiation algorithm
using Barrett reduction. More details on Barrett reduction can be found in [?, ?] and
other methods can be used to perform the exponentiation such as sliding window tech-
niques [?].
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Alg. 1.2.2 Long Integer Squaring

Input: x = (x`−1x`−2 . . . x1x0)b
Output: multiplication result LIS(x) = x2

1. for i = 0 to 2`− 1 do
2. wi ← 0
3. for i = 0 to `− 1 do
4. (uv)b ← w2i + xi · xi
5. w2i ← v and c← u
6. for j = i+ 1 to `− 1 do
7. (uv)b ← wi+j + 2xj · xi + c
8. wi+j ← v and c← u
9. wi+` ← c

10. return w

Alg. 1.2.3 Exponentiation

Input: integers m and n with m < n, k-bit exponent d = (dk−1dk−2 . . . d1d0)2

Output: Exp(m,d,n) = md mod n

1. R0 ← 1; R1 ← m
2. for i = k − 1 down to 0 do
3. R0 ← ModSquare(R0, n)
4. if di = 1 then R0 ← ModMul(R0, R1, n)
5. return R0
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Exponentiation and RSA. Let p and q be two secret prime integers and n = p · q be
the public modulus used in the RSA cryptosystem. Let e be the public exponent and d
the corresponding private exponent such that e · d ≡ 1 mod φ(n) where φ(n) = (p− 1) ·
(q − 1). Signing with RSA a message m consists in computing the value s = md mod n.
Signature s is then verified by checking that se mod n is equal to m.

In the case of decryption of signature mechanisms the exponent value is as long as the
modulus, for instance consider 2048-bit modulus n and exponent d values. Straightfor-
ward implementation of RSA through a modular exponentiation is then time consuming
as it require 2048 long-integer squaring modular operations and an average of 1024 long-
integer modular multiplications. It is then of strong interest to reduce as much as possible
the computational time. A very efficient solution has been proposed by Quisquater and
Couvreur in [?] based on the Chinese Remainder Theorem. It is commonly known as
the RSA CRT algorithm.

Remember the standard RSA signature operation consist in computing: S = md mod
n. Now consider the following parameters for the computations:
n = p · q
dp = d mod (p− 1)
dq = d mod (q − 1)
iq = q−1 mod p
The RSA CRT computation performs first the exponentiation modulo p and q.

mp = m mod p

sp = m
dp
p mod p

mq = m mod q

sq = m
dq
q mod q

Then as gcd(p, q) = 1 the Chinese Remainder Theorem ensures it is possible to re-
cover the unique value s from sp and sq such that s mod p = sp and s mod q = sq. The
value s can be computed thanks to the Garner’s algorithm:

s = sq + ((sp − sq) · iq mod p) · q

The exponentiation modulo n in md mod n is then replaced by two exponentiations of
half size. As the complexity of this operation is in O(`3) (with ` the bit-size of n) a half
size exponentiation is 8 times faster. The RSA CRT is then about 4 times faster than
the non CRT exponentiation.

It is not possible, even with a 32-bit CPU that offer a multiplication operation to imple-
ment efficiently a public key algorithm, CRT or not for the RSA. Indeed a straightforward
2048-bit exponentiation requires an average of 3072 modular multiplication operations.
To solve this performance issue most of the chip manufacturers include an arithmetic
long integer accelerator– also said public key coprocessor – to compute efficiently modu-
lar multiplication operations. Depending on the manufacturer the choice of the modular
arithmetic among Montgomery, Barrett, Quisquater, etc. can vary. It allows then to
obtain efficient implementation of RSA(CRT), DSA, DH schemes. This coprocessor is
also useful to implement efficient elliptic curves operations in ECDSA or ECDH schemes.
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1.2.2 Invasive Attacks

Part of this paragraph on invasive attacks is extracted from the chapter 28 [?] I wrote
with my co-authors for the book [?]. Invasive attack techniques originate from the
failure analysis domain, but have also been used to attack electronic devices such as
smart cards. Equipping a laboratory is very expensive, typically costing several millions
of euros. However price is less important as it is possible to rent a full laboratory station.
Depending on the complexity of the work involved and the available knowledge of the
chip being targeted, it can take many days or even weeks of work in a very specialized
laboratory. Moreover the owner of the card should notice these attacks in most cases
because of the (partial) destruction of the chip, and warn his provider. Nevertheless it is
important to bear in mind that such attacks could fatally undermine an entire security
system. For instance, shared master keys should not be present into a card; in that case
only the secret proper to the card attacked could be extracted.

Gaining Access to the chip consists in removing the chip module from the card in
order to connect it in a test package. With a sharp knife simply cut away the plastic
behind the chip until the resin becomes visible. A chemical processing is then applied to
remove the resin. It can be later reconnected into another package with fine aluminium
wires and a bonding machine.

Reconstitution of the layers consists in reverse engineering the chip layout. It
allows to determine the electronic design of a circuit. This type of attack can also be
sufficient to provide direct access to sensitive data in the memory. It can also give rise to
more complex scenarios such as micro-probing or critical signals or chip reconfiguration.
Reverse engineering mainly consists in removing layers sequentially.

Reading the memories consists in directly reading the non-volatile memories such
as ROM, EEPROM or FLASH. The remaining effort depends on the kind of memory
read, the technology used, and the scrambling of the memory plan.

Probing takes advantage of the information obtained with the previous invasive tech-
niques. Indeed it is possible to observe data flow into internal buses by probing these
buses... then one can gain direct access to sensitive data.

FIB and Test engineers scheme flaws make use of focused ion beam (FIB) work-
stations. This useful tool is a vacuum chamber with an ion gun (usually gallium), which
is comparable to a scanning electron microscope. A FIB can generate images of the sur-
face of the chip down to a few nano meter resolution and operates circuit reconfiguration
with the same resolution. The FIB is designed initially for IC testability. But the FIB
can also be used to modify the internal behaviour of the device by changing the internal
connections. Finally FIB is used to facilitate physical analysis of the device by making
localized cross sections.

Invasive attacks are very expensive in terms of time, resources and equipment. More-
over these attacks destroy the chip and damage the packaging around it. So it makes
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the attacks to be detected by the owner of the card.
It is not true for the second category of attacks named non-invasive attacks. Moreover
they are also extremely dangerous because the equipment needed to perform them is
relatively inexpensive. Smart cards are nowadays utilized in many security domains and
applications: bank cards, mobile communications and secure access, etc. Thus, groups
of attackers or illegal organizations could create laboratories in order to process such
attacks on the different products that are widely available within our society.

The non-invasive attacks can be split in two categories: the side-channel attacks also
said passive attacks and the fault injection attacks or active attacks.

1.2.3 Side-channel Analysis or Passive Attacks

Side-channel analysis were publicised by P. Kocher in [?]. The first attack he presented
was the timing attack.

Timing attack A timing attack takes advantage of the running time variations in the
different executions of an algorithm with different input messages to gain information on
the secret key involved. In [?] Kocher publicised the first timing attacks done on personal
computer implementations of RSA and DSA. It was presented during the conference
CRYPTO at Santa Barbara in 1996. The author measured the execution timings to
realize a modular exponentiation md mod n for different message values m. By analysing
these execution timings the attack can recover bit per bit the whole secret exponent value
d. Two years later such a timing attack on a smart card was performed by Dhem et al.
[?].

A simple and efficient countermeasure consists in implementing the computation such
that the execution time is constant whatever the key or data manipulated are. A variant
of this kind of attacks has been developed and studied. It consists in the cache attacks.
Indeed when a data is already present into the cache memory the read access is then
faster than if it is not into the cache. It means the data access when it is into the cache
is faster than when it is not. It creates then variations in the execution timing and this
information can be exploited to recover the secret key. Many cache attacks have been
published on smart card or more generic embedded devices.

It is worth to notice that timing attacks do not concern only cryptographic calcu-
lations. Another famous example is the PIN Verify command present in EMV banking
product. Everyone knows he has to enter its PIN (Personal Identification Number) when
he wants to pay per his debit bank card. Into your bank card the microprocessor com-
pares the number you have entered with his PIN value that is stored in memory (NVM).
If the comparison operations varies depending on the PIN value it can then be exploited
to recover the PIN value as we illustrate in the following.

One can observed in step ?? of algorithm ?? that as soon as one byte of the submitted
candidate for PIN differs from the correct value the comparison stops and returns the
false status. It means the comparison execution time depends on the correctness of the
first bytes tested. The execution time can then be ranked in k different executions timings
from t0 to tk−1. Execution timing ti means that the first i bytes of the PIN candidate
are correct: (CP0, . . . CPi−1) = (RP0, . . . RPi−1. It can be exploited as explained in the
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Alg. 1.2.4 PIN Verify comparison

Input: candidate PIN value PinSubmit = (CP0, . . . , CPk−1)8, correct PIN value
RightP in = RP0, . . . , RPk−1 (stored in smart card memory)

Output: comparison status = True or False

1. i← 0
2. while i < k do
3. if CPi 6= RPi then
4. return False
5. i+ +
6. return True

following. The attacker search for the first byte of the PIN. When the guess CPO is
correct then the execution timing of the comparison increases from t0 to t1. Once has
has recovered the first byte he can guess the second one until timing increases from t1 to
t2. Then he repeats the same operation byte position per byte position until he recovers
the entire exact PIN value RP .

Each of the byte can vary from 0 to 9 as PIN values are most of the time digits and
not whole byte values. Exhausting the space for all possible PIN values would require
10k PIN candidates to be tested in brute force by an attacker. Using the timing attack
technique the set of the PIN candidates is reduced to k · 10. For instance for a k = 8
digits PIN the timing attack requires 80 PIN values to be tested instead of 108 for the
secret recovery.

A simple countermeasure consists in always comparing the k bytes without any con-
ditional branches code instructions before returning the comparison status.

Power Analysis Another very common side-channel analysis exploits the measure of
the power consumption of an electronic device to retrieve information about the secrets
inside a tamper proof device. It was publicised by Kocher et al. [?] who presented the
Differential Power Analysis (DPA) that is the first differential side-channel analysis
(DSCA) technique published. These new attack technique has become fundamental
attacks that have changed the smart card security domain.

Today most chips are designed in CMOS technology. An electronic device such as a
smart card is made of thousands of logical gates that switch differently depending on the
complexity of the operations executed. These communications create power consumption
for a few nanoseconds. Thus the current consumption is dependent on the operations
of its different peripherals: CPU, cryptographic accelerators, buses and memories, etc.
In particular, during cryptographic computations, for the same instruction, the current
consumption changes if the value of registers and data processed are different. Monitoring
the power consumption, eventually followed by a statistical treatment, one can expect to
deduce information on sensitive data when they are manipulated. With some experience
and knowledge on the cryptographic algorithms, such analysis can be applied to many
smart cards.

Using other side-channels such as the electromagnetic radiations [?, ?] and the radio
frequency analysis is quite similar and can lead to a more precise information leakage
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depending on the kind of chip analysed and the type of measurement probes and antennas
used.

To mount these attacks the basics of the necessary equipment is a numerical oscil-
loscope, a computer, a card reader to communicate with the card. Antennas, amplifier
and EM probes are required for electromagnetic side-channel analysis. Fore more com-
plicated attacks like Differential side-channel analysis (such as DPA and CPA) other
softwares are also necessary: to acquire the side-channel traces, to treat the traces (sig-
nal processing) and process the attacks. Nowadays the setup required to attack recent
devices is still affordable for small organizations.

Simple side-channel analysis SSCA on exponentiation has been introduced by
Kocher et al. in [?], and one year later improved by Mayer-Sommer in [?]. It needs only
a single observation of the current side-channel trace. The attacker can find information
just by looking carefully at the trace representing the execution of a cryptographic al-
gorithm. This is carried out by a detailed analysis of the trace. The side-channel trace
of a microprocessor is different according to the executed instruction and data manipu-
lated. For instance a multiply instruction executed by the CPU needs more cycles than
a eXclusive OR (XOR) operation, or in a circular rotation where the value of the carry
is either 0 or 1. Most of the algorithm embedded in products are generally standards
ones. The implementation variants are not so numerous and depending on the hardware
characteristics. For a given algorithm, an attacker can then deduce the structure of the
implementation and gain knowledge on the algorithm he is attacking.

The original simple side-channel analysis [?] recovered the secret exponent manip-
ulated in an RSA exponentiation from a single consumption trace. Here SPA targets
the modular exponentiation implementation when the algorithm used is the classical
square-and-multiply method as described in figure ??. Indeed, when the squaring and
the multiplying operations have different recognizable and sizeable patterns the recov-
ery can be done easily because the bits of the secret exponent are directly read on the
side-channel trace for a classical Square and Multiply algorithm. Indeed two consecutive
squares on the trace imply the exponent bit is 0 while when a squaring is followed by a
multiplication the exponent bit is 1.

Since these two papers very few publications have dealt with simple side-channel
analysis on exponentiation. One of them is the zero value side-channel attack from
Goubin [?]. It was originally presented as a differential analysis but works on a sin-
gle execution trace of an elliptic curve scalar multiplication. Walter et al. [?] showed
the power consumption of integrated circuits hardware multipliers is data dependant.
Later Yen et al. [?] presented a chosen message SSCA defeating some of the common
exponentiation algorithms.

SSCA targets to exploit any visible power difference into few traces. It can target
any algorithm and any implementation that leaks information.

DPA and statistical side-channel analysis Simple side-channel analysis exploits
signal variation in a single or few traces. By comparing these traces he can recover
the secret key. However it is not always (and fortunately) efficient when some counter-
measures are implemented or because the signal variations are not exploitable for secret
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recovering. In that case SSCA can be the starting point for another technique. SSCA
is first used by the attacker to obtain as much information as possible. What is the
algorithm executed? What is the part of the signal that contain much information that
could be useful for another attack technique?

Then the attacker decides to realize some statistical attacks. These attacks require
a large number of executions and their associated side-channel traces with different
message (input) values. The first statistical attack has been publicised in 1998 by Paul
Kocher. Indeed Kocher et al. presented the Differential Power Analysis (DPA) in [?] on a
microprocessor software DES implementation. One year later Messerges et al. published
[?] the first DPA on the modular exponentiation (so the standard RSA algorithm).

DPA attack uses statistics to amplify the power variations and differences in power traces
to reveal the secret key involved in the targeted cryptographic calculation.

Principle of the DPA on an algorithm F Let F (M,K) be cryptographic algorithm
with the secret Key K and M the input message. The attacker collects ` power con-
sumption traces C1 . . . C` of the executions F (M1,K) . . . F (M`,K) on the smart card for
` random messages Mi, i = 1 . . . `. To recover the secret key K the attacker must have
the knowledge of the input messages Mi. He proceeds by guessing the key per blocks of
bits involved in operations. For instance during the code execution we know there is an
operation (for instance a XOR or an addition) between a t-bit part of the message value
Mi and a t-bit part of the key value K at an instant I of the computations. This moment
I corresponds to a certain number of cycles of operation. Then the attacker focuses only
these t bits of the key in opposition to the full key as brute force technique that is not
possible on standard algorithm. Indeed he knows that only information on these t bits
of the key is strongly related at instant I to the power variations into the chip. It means
the power value(s) at instant I that is represented by precise points in the power trace,
contain information on the data which is only related to t bits of the key. The attacker
wants to guess these t bits of the secret key K. He makes a supposition G on these bits
value and uses this guess G to generate some intermediate value of the computation.
This intermediate value is the real value manipulated by the chip at instant I when the
guess G corresponds to the real t key bits targeted by the attack. At instant I the inter-
mediate data processed by the algorithm is equal to a value D(Mi,K1...t) with D(., .) a
known function. Depending on the resulting value of this function the attacker decides
to separate the power traces in two sets G0 and G1 where basically:

• G0 = {Ci s.t. at instant I the power consumption is low - because D(Mi,K1...t)
has one (or several) bit(s) to zero}

• G1 = {Ci s.t. at instant I the power consumption is low - because D(Mi,K1...t)
has one (or several) bit(s) to one}

Then by subtracting the means of the two groups of traces for each supposition G
we obtain 2t differential traces Tj with j = 0, . . . , 2t − 1.

Basically one can choose a bit of D(Mi,K1...t) to make the selection in the two
groups( if it equals zero (G0) or 1 (G1)), but many more evolved methods exist to split
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the traces into sets and process the attack. It is important to notice that the bit (value)
used for splitting the traces depends on the input message and the t bits guessed on the
key. It predicts the real bit value handled by the CPU into the card. For the correct
guess on G this bit value will be the same than the one present in the hardware. Only
in this case the separation in the two sets G0 and G1 will create two groups of high and
low average consumptions. Then the differential trace Tu that will show one or many
peaks of consumption that will indicate the attacker the guess G = u corresponds to the
real key bit values of the secret key K.

So here, to perform the attack we need to know the value of inputs Mi (else it can be
done in a similar way with the knowledge of the outputs if we attack by the computation
result) and the specification of the algorithm implemented. DPA is also known as the
DoM attack for Difference of Means.

DPA does not require the knowledge of the power consumption model of the attacked
device. But it requires the power variation to be dependant of some bit(s) value(s). This
condition is not always true. Indeed the power variation is more related to the gates
transitions and not to bit values themselves. Moreover the core registers are generally
8, 16 or 32 bits in CPUs. It means the power variation is not related to a single bit
value but to 8, 16 or 32 bits. It renders the one-bit selection for DPA not always efficient
and not as optimised as could be statistical side-channel attacks. Another drawback of
DPA is the presence of ghost peaks. Some peaks not related to the correct key value
can appear on differential traces for incorrect guesses. In such cases it is not obvious
to recover the secret key value. Ghost peaks have been discussed by Brier, Clavier and
Olivier [?, ?] and by Canovas and Clediere [?].

The function used to statistically process the side-channel traces is said to be the
distinguisher. For instance in the DPA attack the distinguisher is the difference of means.
A first improvement of DPA was proposed by Coron et al. in [?] with the T-test. To
solve the ghost peaks issue, different statistical techniques have been designed to improve
DPA attack and key recovery efficiencies. We can mention the method from Bevan and
Knudsen in [?].

Amongst these techniques the Correlation side-channel analysis remains the most
popular and most of the time the most efficient. It has been presented in 2003 by Brier,
Clavier and Olivier [?, ?]. The authors consider a power leakage model that is linear
in the Hamming weight of the data manipulated. Power consumption W can then be
modelized by: W = a.HW (D) + b where D is the word machine value manipulated
by the CPU at the instant I of the attack and HW (D) the Hamming weight value of
D. Then the Pearson linear correlation factor is computed between the set of collected
power traces Ci and the estimated power consumption values Wi. The attacker consider
the secret key bits are given by the guess leading to the maximum value of the Pearson
correlation factor. This distinguisher is still today one of the most efficient in practice.
It is important to notice that the power consumption model presented is linear in the
Hamming weight of the data D. It can be also improved by considering the Hamming
distance between the data D manipulated at instant I in a register R of the CPU in
the power trace and the value contained in register R at instant I − 1. In that case we
consider the consumption is linear in the Hamming distance model and we can modelized
it by W = A.dH(R,D) + b with dH(R,D) the Hamming distance value between R and
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D. R can be a fixed value or not. It can be an address value into the code, for a look-up
table in the DES for instance. In that case guessing this value for the attack is also
necessary. If R is null then it is equivalent to the Hamming weight model. A proposal
to improve the CPA has been discussed and given by Le et al. [?].

Other distinguishers have been introduced more recently as the Mutual Information
Analysis (MIA) [?], the Linear Regression Analysis (LRA) [?]. Comparison between
these different distinguishers have been conducted in different publications and thesis.
No universal distinguisher has yet been defined.

DSCA targets any kind of algorithm, symmetric or asymmetric. It fundamentally con-
sists in guessing intermediate value(s) of any algorithm partial computation to statis-
tically process the execution traces in order to reveal t-bit per t-bit blocks which t-bit
guess corresponds to the real key bits. This attack is very powerful and has been proven
for years efficient on many different products. However it is obvious that applying sta-
tistical attacks on recent microprocessors is not so simple. It requires two essential steps
in the attack. The signal measurement step is the most crucial. The choice of the probes
for EM analysis and the experience and motivation of the attacker to localize on the
chip surface the probe position that gives the best exploitable signal. But a second very
important step is required: the signal processing operations. On recent devices many
countermeasures have rendered the traces noisy and difficult to synchronize. However
applying any DPA, CPA or another distinguisher has no sense if the traces used for the
attack are not resynchronized or realigned. It is one of the crucial steps of the attack.
These two attack steps must not be underestimated as they are the base and a crucial
condition for any future success of the statistical attack.

Countermeasures

We consider here there are three categories of existing countermeasures.

First countermeasures are inherently induced by the kind of application using the crypto-
graphic algorithm. For instance the use of (random) padding in a RSA signature prevents
the implementation from chosen message attacks; similarly the use of counter value(s)
into the data sent to the card does not allow an attacker to sent twice the same data to
the cryptographic algorithm.

The second category targets to modify the signal either with hardware security features
(noise generators, dummy cycles, clock jitters or power filtering aim at reducing the
circuit leakage) or software countermeasures (e.g. dummy operations). The aim is to
desynchronize the curves and prevent an attacker from correctly exploiting them during
their statistical treatment.

The third kind of countermeasures consists in de-correlating the curves with the data
related to the algorithm’s execution. The principle is to prevent attackers from pre-
dicting any intermediate value manipulated during the known algorithm execution. For
instance code with constant time execution, masking and randomization techniques on
input data and secret key are in this category [?, ?, ?, ?].

We focus in this PhD report on the third category of countermeasures. It implies algorith-
mic and mathematics aspects in order to hide the computational data with randomness
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to the attacker during the execution of a known cryptographic algorithm. These tech-
niques are very interesting and funny to implement or to defeat from and a theoretical
and a practical point of view. We give in the following an overview of these techniques
on symmetric and asymetric cryptographic implementations.

Countermeasures in Asymmetric Algorithms

The first security requirement consists in preventing any implementation from timing
and simple side-channel analysis attacks. It requires the developer to implement its
algorithm, like the modular exponentiation such that it executes in constant time.

Efficient constant time implementations are often said as regular implementations.
Two regular exponentiation method are discussed in the side-channel community. The
square-and-multiply always exponentiation processes both a squaring and a multiplica-
tion operation for each bit value. It is achieved by the execution of a ”dummy” multipli-
cation when the secret exponent bit equals zero as it is depicted by algorithm ??.

Alg. 1.2.5 Square-and-multiply always regular exponentiation

Input: integers m and n with m < n, k-bit exponent d = (dk−1dk−2 . . . d1d0)2

Output: Exp(m,d,n) = md mod n

1. R0 ← 1, R1 ← 1; R2 ← m
2. for i = k − 1 down to 0 do
3. R1 ← ModSquare(R1, n)
4. Rdi ← ModMul(R1, R2, n)
5. return R1

The multiplication operation is always performed but the result is only taken into
consideration in the next squaring operation if the secret exponent bit is one. Such an
implementation prevents the product from simple side-channel analysis techniques even
those taking advantage of the possibility to choose the input message values. However
the main drawback of this method is the additional cost added to the execution time.

The second regular method is the Montgomery Ladder exponentiation [?, ?]. It is pre-
sented hereafter in algorithm ??. It is generally preferred over the square-and-multiply
always method since it does not involves dummy multiplications which makes it naturally
immune to specific fault attacks named the C safe-error attacks [?, ?].

Such regular algorithms perform one squaring and one multiplication at every itera-
tion and thus require one multiplication and one squaring operation per exponent bit.

One of the most efficient countermeasure against SSCA is the side-channel atomicity in-
troduced by Chevallier-Mames et al. [?]. In an atomic implementation the code executed
during the whole exponentiation loop is the same for a squaring and a multiplication
step rendering the attack no more possible. It regroups the exponent bit operation and
the modular long integer operation in a same atomic code block.

However such a countermeasure does not prevent the implementation from chosen
message side-channel attacks [?] because the power consumption of integrated circuits
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Alg. 1.2.6 Montgomery Ladder Exponentiation

Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1. R0 ← 1 ; R1 ← m
2. for i = k − 1 to 0 do
3. R1−di ← ModMul(R0, R1, n)
4. Rdi ← ModSquare(Rdi , n)
5. return R0

Alg. 1.2.7 Atomic exponentiation

Input: integers m and n with m < n, ` · t-bit exponent d = (d`·t−1d`·t−2 . . . d1d0)2

Output: Exp(m,d,n) = md mod n

1. R0 ← 1
2. R1 ← m
3. i← ` · t− 1; α← 0
4. while i > 0 do
5. R0 ← ModMul(R0, Rα, n)
6. α← α⊕ di;
7. i← i− 1 + α
8. return R0

hardware multipliers is data dependant as presented by Walter and Samyde in [?]. More-
over an atomic exponentiation can also be threatened by DSCA techniques like DPA and
CPA as presented by Amiel et al. [?]. Another threat is the technique that consists in
distinguishing squaring from multiplication operations by Amiel et al. [?]. We detail it
in the next paragraph.

Distinguishing Squaring from Multiplication Operations Amiel et al. showed
in [?] that the average Hamming weight of the output of a multiplication x × y has a
different distribution whether:

• the operation is a squaring performed using the multiplication routine, i.e. x = y,
x uniformly distributed in [0, 2k − 1],

• or the operation is an “actual” multiplication, i.e. x and y independent and uni-
formly distributed in [0, 2k − 1].

This attack can thus target an atomic implementation such as Alg. ?? where the same
multiplication operation is used to perform x× x and x× y.

First, many exponentiation curves using a fixed exponent but variable data have to be
acquired and averaged. Then, considering the average curve, the aim of the attack is to
reveal if two consecutive operations are identical – i.e. two squarings – or different – i.e. a
squaring and a multiplication. As in the classical SPA, two consecutive squarings reveal
that a 0 bit has been manipulated whereas a squaring followed by a multiplication reveals
a 1 bit. This information is obtained using the above-mentioned leakage by subtracting
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Figure 1.23: Power trace of the RSA exponentiation implementing the atomicity principle

the parts of the average curve corresponding to two consecutive operations: peaks occur
if one is a squaring and the other is a multiplication while subtracting two squarings
should produce only noise. It is worth noticing that no particular knowledge on the
underlying hardware implementation is needed which in practice increases the strength
of this analysis.

A classical countermeasure against this attack is the randomization of the exponent8,
i.e. d∗ ← d + rϕ(n), r being a random value. The result is obtained as md mod n =
md∗ mod n.

In spite of the possibility to apply the exponent randomization, this attack brings
into light an intrinsic flaw of the multiply always algorithm: the fact that at some instant
a multiplication performs a squaring (x× x) or not (x× y) depending on the exponent.
In the rest of this paper we propose new atomic algorithms that are exempt from this
weakness.

As these attacks requires either the knowledge or in most powerful attack scheme
the control of the input data, the most common additional countermeasure to protect
exponentiation (or other public key operations) consists in ”hiding” the intermediate
data processed during the operation with randomness. The term ”blinding” is generally
used to refer to this technique. Many blinding techniques exist in the literature. We list
in the following the most classical ones.

Message blinding It consist in adding randomness to the input message that is re-
moved at the end of the calculation to obtain the correct computation result. The two
common techniques are the multiplicative blinding and the additive one.

The multiplicative blinding consist in multiplying to the input message a random
value powered to the public exponent e. The message m is transformed to the blinded
message m? with the following formula:

m? = re ·m

with r a random integer value. The blinded exponentiation (like in RSA) operation
becomes:

(m?d mod n) · r−1 mod n = md mod n

This countermeasures requires the knowledge of the public key (that is not always pos-
sible in many products for the private operation) and an inverse computation to be
processed at the end in order to remover the randomness added by r.

The additive blinding consists in adding to the message m a random multiple of the
modulus n. The message m is here transformed to the blinded message m? with the

8Notice however that the randomization of the message has no effect on this attack, or even makes it
easier by providing the required data variability.
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following formula:
m? = m+ r1 · n mod r2n

with r1, r2 two λ-bit random integer values (λ = 16 or 32 or 64 bits – the larger λ is, the
more secure). The blinded exponentiation (like in RSA) operation becomes:

(m?d mod r2n) mod n = md mod n

the final reduction is used to remove the randomness effect of the blinding and to lead to
the final expected result. The advantage of this technique compared to the multiplicative
one is that it does not require any costly inverse operation to remove the blinding at the
end of the exponentiation. Moreover it is less sensitive to zero value or particular input
chosen message attacks [?]. For these reasons we consider in the following the additive
blinding message technique.

We have then seen that a secure exponentiation requires an atomic algorithm and
the message blinding countermeasure. However both techniques must be completed with
another countermeasure to reach the state of the art in term of secure exponentiation
method. Indeed Amiel et al. presented [?] a side-channel attack that recovered the
secret exponent on a an atomic exponentiation with the additive (or multiplicative)
message blinding countermeasure. It highlighted the importance of also implementing
the exponent blinding countermeasure.

Exponent blinding The objective of this countermeasure is to randomize the se-
quence of squaring and multiplication operation all along the exponentiation. There
exist different techniques to apply exponent blinding.
Additive exponent randomization: it consists in adding to the private exponent a mul-
tiple of the multiplicative group order of (Z/nZ)?. This technique has been publicised
and patented by Kocher et al. in [] The exponent d is here transformed to the blinded
exponent d? with the following formula:

d? = d+ r · ϕ(n)

with r a λ-bit random integer value and ϕ(.) the Euler Phi function. It can be seen that
per design we have md? mod n = md mod n. The cost added by this countermeasure is
only a computational one that depends on the length λ of r. The blinding adds here an
average number of 1.5·λ long integer multiplications to the exponentiation computational
cost.

Splitting the exponent: this technique has been presented by Joye et al. [] The exponent
d is here split in two blinded exponents d1 and d2 such that d = d1 +d2. For instance one
can define d1 = d−r and d2 = r with r a λ-bit random integer value. The exponentiation
operation becomes:

(md1 mod n) · (md2 mod n) = md mod n

In that case two exponentiation are computed instead of one. It adds an extra cost that
makes the previous blinding more efficient when the value ϕ(n) is known.
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Blinded Exponentiation Including atomicity, message and exponent blinding coun-
termeasure lead to the protected blinded exponentiation method we detail in algorithm
??.

Alg. 1.2.8 Blinded exponentiation

Input: integers m and n with m < n, ` · t-bit exponent d = (d`·t−1d`·t−2 . . . d1d0)2, a
security parameter λ

Output: Exp(m,d,n) = md mod n

1. r1 ← random(1, 2λ − 1)
2. r2 ← random(1, 2λ − 1)
3. r3 ← random(1, 2λ − 1)
4. n̄← r2 · n
5. R0 ← 1 + r1 · n mod n̄
6. R1 ← m+ r1 · n mod n̄
7. d̄← d+ r3 · ϕ(n)
8. i← ` · t+ λ− 1; α← 0
9. while i > 0 do

10. R0 ← ModMul(R0, Rα, n̄)
11. α← α⊕ di;
12. i← i− 1 + α
13. R0 ← R0 mod n
14. return R0

Big Mac Attack

The only known side-channel attack able to threaten such a blinded exponentiation
before the results we present in this PhD is the Big Mac attack from Colin-D. Walter
[?] we are discussing later.

Elliptic Curves Equivalent atomic and blinding techniques applies also to the ellip-
tic curve exponentiation (also said scalar multiplication). We do not detail here these
countermeasures are elliptic curves attacks and countermeasures are not investigated in
the research results to be presented in this PhD report.

1.2.4 Fault Injection Analysis or Active Attacks

Fault effects and perturbations on electronic devices have been observed since the 1970’s
in the aerospace industry. However use for analyzing embedded cryptographic imple-
mentations has first been done in 1997, when D. Boneh, R. DeMillo and R. Lipton [?]
published the first theoretical fault attack. This is known as Bellcore attack. The most
famous attack in their paper threaten the RSA in CRT implementation mode where only
two faulted execution result are required to factorize the modulus. They also introduced
other fault attacks that threaten the standard RSA and the Fiat-Shamir and Schnorr
identification schemes. In case of computation error, the Bellcore researchers showed how
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to recover the secret factors p and q of the public modulus n from two CRT-RSA signa-
tures of the same message: a correct one and a faulty one. Thereafter Lenstra explained
in a short memo [?] that only one faulty signature is required when the message value is
also known to recover the modulus prime factors. In 1997, E. Biham and A. Shamir [?]
presented the first Differential Fault Analysis (DFA) on a symmetric algorithm applied
to the Data Encryption Standard (DES). Those attacks are seriously taken into account
during the design of secure products since very realistic and easy to mount in practice.
Thus any implementation can be threatened by fault injection techniques. As for power
analysis, many researches have been conducted in this domain [?, ?, ?, ?, ?, ?].

Countermeasures

There are many ways to protect implementations against fault analysis. The simplest
and most direct solutions consist in, either processing operations twice or verifying the
decryption by computing consecutively the encryption (similarly with signature and ver-
ification), then to compare both results. For instance one can compute an RSA signature
and, when the public key is small, compute the verification to be sure the process has
not been disturbed. However sometimes in practice, the public key is not available
and/or computing twice penalizes too much the execution time of the computation.
This is the reason why other solutions have been designed. In 1997 Shamir [?] pre-
sented a simple solution to prevent the previous attack: the signer first chooses a (small)
random number r relatively prime to n, then he computes srp = md mod ϕ(rp) mod rp
and srq = md mod ϕ(rq) mod rq. If srp ≡ srq (mod r), then the computations are as-
sumed correct, and s is computed by applying Chinese remaindering on (srp mod p) and
(srq mod q). However because this method does not detect error(s) generated during the
CRT recombination this idea has been improved later (also including the Yen’s ideas on
avoiding decisional tests) in [?, ?, ?].

Passive and Active Combined Attacks

Passive and Active Combined Attacks (PACA in short) have been introduced by Amiel
et al. [?].

As already mentioned, there are many existing countermeasures to protect secure
products either from active attacks or from passive ones. Usually when products have
to be protected from both passive and active attacks, developers add/combine counter-
measures. However fault countermeasures often react only at the end of the execution.
In such a case we show below that fault injection can be used to successfully realize a
passive attack even if active and passive countermeasures have been implemented.

Yen and Joye in [?] have shown that square and multiply always algorithm can help a
(certain type of) fault attack. Authors in [?] illustrate once again the need of considering
secure implementation as a monolithic block.

The basic principle is to combine active and passive analysis. By injecting a fault
disturbing a computation, it becomes possible to realize a passive attack on the perturbed
execution. The fault is detected at the end of the command. Unfortunately, this is too
late, even if the result is not returned. The secret value has already been recovered
using a classical power analysis. This is the basic principle of PACA based on the fact
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that fault countermeasures are only active after the end of the computation. Moreover,
even if the chip kills itself because of fault detection, this is useless since only one curve
leakage is necessary.

A kind of combined attack has already been presented in [?]. It applies to specific
hardware implementations which protection is based on balanced gates. Each successful
fault injection is supposed to unbalance the power consumption of a logical balanced
gate, the bias is then used to realize a DPA on the hardware cryptographic module. In
practice, such attack does not seem so easy to implement due to the difficulty to repro-
duce thousands of times a successful fault on a protected design and can be prevented by
adding classical software countermeasures. In [?] the author used similar idea to detect
bit change without interfering with the normal device operation.
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Chapter 2

Contributions and Outline

We summarize in this chapter the contributions we are presenting in this PhD report.
These results have been published through scientific articles in different international
conferences in cryptography and embedded security domains.

Advanced Simple Side Channel Analysis on Exponentiation

This section deals with simple side-channel attacks (SSCA) targeting public key im-
plementation, especially those dealing with the cryptosystem RSA. We explain in this
section how SSCA can be efficient when selecting particular value for input messages.
We also design chosen message techniques that render SSCA very efficient even on state-
of-the-art implementations. We also discuss the importance of the base multiplier and
the random bit-length on the leakage probability of an implementation. These studies
have conducted to a first publication at CARDIS in 2010 [?] and a second article [?] at
the COSADE 2013 conference.

Horizontal Differential Attacks on Exponentiation

We present here a new kind of attacks on Public Key implementations named Horizontal
Attacks. In the first part of this section we introduce the first Horizontal Correlation
attack. This technique recovers the secret exponent of a RSA exponentiation using the
correlation technique on a single side-channel trace. It renders the classical exponent
blinding countermeasure inefficient. In a second part we present another Horizontal
attack named ROSETTA which defeat message and exponent blinding countermeasure
using a single side-channel trace. The studies on this subject have conducted to a first
publication at the ICICS conference in 2010 [?]. Later a second article [?] has been
presented at the INDOCRYPT 2012 conference.
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Defeating with Fault Injection a Combined Attack Resistant
Implementation

PACA attack category has been introduced in 2007. It combines simultaneously side-
channel and fault injection techniques in a same attack in order to defeat the most
efficient countermeasures. Many algorithms have been designed to prevent implemen-
tation from these attacks. Recently Schmidt et al.have presented a combined attack
resistant implementation. We explain in this section how this countermeasure can be
defeated by using single fault injection attack. We also demonstrates that some PACA
can defeat the same algorithm. Finally we update the Schmidt et al.algorithm to make it
resistant against our attacks. This study has been published through a scientific article
at the COSADE 2013 conference in 2010 [?].

Collision Correlation Analysis on First Order Protected AES

First Collision Correlation attacks were introduced by Witteman et al. [?] on public
key implementation and by Moradi et al. [?] on AES implementation. We present here
two new attacks taking advantage of this technique. Our attack defeat different first
order protected implementations of AES and does not require any leakage model to be
mounted. This latter property makes this attack very efficient. Our results have been
published [?] at CHES 2011.

Combined Attack on First Order Protected AES

We present here a PACA technique that combines a single fault attack with a side-
channel attack in order to defeat a first order protected AES implementation. We also
discuss countermeasures to be implemented. Results were published at FDTC 2010
conference [?].

Efficient Provable Prime Number Generation for Embedded
Devices

In this section we present new algorithms to generate provable prime numbers in embed-
ded devices. Contrarily to the known previous algorithms from Shawe-Taylor and Maurer
we succeeded in obtaining methods faster than probabilistic ones. We also discuss the
countermeasures to make such prime generation algorithm prevented from side-channel
attacks. This study lead to the publication of article [?] at the PKC 2012 conference.

Square Always Exponentiation

Atomic principle has been used for years now to implement fast and secure exponen-
tiation in smart-cards. However it always uses atomic blocks relying on the modular
multiplication operation. We present here new atomic algorithms that relies only on

48



modular squaring operations. Our algorithm are nearly as efficient as the ones relying
on multiplication operations. However when the latter are not resistant to the attack
published in [?] our Squaring always method are resistant. Results have been published
[?] and presented at the INDOCRYPT 2011 conference.
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Chapter 3

Advanced Simple Side Channel
Analysis on Exponentiation

3.1 Introduction

In this chapter we focus our study on the blinded exponentiation, the atomic exponen-
tiation algorithm ?? where modulus, message and exponent are blinded. Considering
this state-of-the-art implementation we present how to build chosen messages leading to
more efficient SSCA when attacking blinded exponentiation on devices and show that,
contrarily to common belief, our SSCA can also be successful in some hashed message
models. Moreover we introduce a different leakage models for hardware multipliers we
know realistic for practical measurements. We then obtain new results when explain-
ing simple side-channel efficiency for different key length, multipliers and the size of
the random used for blinding. We highlight then that, even if the hardware multiplier
architecture is a 32-bit one, SSCA can be very efficient with a reasonable number of
executions to recover the secret exponent manipulated. We discuss then the need for
a deep side-channel characterization of hardware multipliers in order to establish the
best recommendations for any hardware multiplier being used for secure products. It
would allow developers to select with strong assurance the right countermeasures (and
algorithm) when implementing for a selected device any public key algorithm.

3.2 Enhanced Simple Power Analysis on Exponentiation

In Yen et al. attack and the other techniques introduced in this chapter, SPA does not
aim at distinguishing differences in code execution but rather to detect when specific
data are manipulated through their specific power signature. Indeed power signatures
during an operation (x×y) or (x×y mod n) will depend on values x and y. If x and/or
y have very particular Hamming weights then it will lead to a very characteristic power
trace for the multiplication. It has been discussed by Walter et al. [?].

We present here many values which can generate a recognizable pattern and thus
lead to the exponent being recovered from a single power trace.

We illustrate our analysis on the ModMul operation using the Barrett reduction
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xi yj C(xi, yj)

xi 6= 0 yj 6= 0 CHigh
xi 6= 0 yj = 0 CMedium

xi = 0 yj = 0 CLow

Table 3.1: Power Signal quantity for xi × yj

and especially during the computation of LIM(x,y). The same analysis can be done in
other kind of modular multiplication methods, for instance in the modular Montgomery
multiplication method MontMul(x,y).

3.2.1 Origin of Power Leakage

The power leakage appears during the operation xi×yj of the long integer multiplication
LIM(x,y). Any operation xi × yj has a power consumption related to the number of bit
flips of the bit lines manipulated. When one of the operands is null or has very few
bits set, for instance is equal to 0, or 2i with i in 0 . . . t− 1, the t-bit multiplication has
a lower power consumption than the average one. We can then distinguish in a long
integer multiplication when such a value is manipulated.

If the value of the multiplicand m contains one (or more) of the t-bit word(s) set to
0 or 2i with i in 0 . . . t− 1, during an atomic exponentiation loop we can recognize each
time this value m is manipulated, i.e. each time the exponent bit is 1.

The condition for this SPA to succeed is that one (or more) of the t-bit word(s) of x
or y is set to 0 (or in some cases it could be also to 2i with i in 0 . . . t− 1). We consider
here that the leakage appears only for zero values.

We can then quantify the power consumed by the device for computing xi × yj . We
denote by C(xi, yj) this power consumption . As illustrated in Table ?? we can distin-
guish three categories depending on whether xi and yj values are 0 or not.

When xi = 0 and yj = 0 the device only manipulates zero bits. Thus the amount of
power consumed by the multiplication is Low, we denote it as CLow. A multiplication
with non zero values (xi 6= 0 and yj 6= 0) yields a higher power consumption: we consider
this as High and denote it as CHigh. Finally when xi 6= 0 and yj = 0 the amount of
power consumed by a multiplication is considered as Medium: we denote it as CMedium.

In the operation LIM(x,y) we can graphically estimate the power curve by

CLIM(x,y) =

k−1∑
i=0

k−1∑
j=0

C(xi, yj) · T (k, i, j)

with C(xi, yj) being the power consumption of the device for computing xi × yj and T
a function which represents the clock cycles corresponding to the exact moments where
this operation is executed for the set (k, i, j).

This corresponds to the schematic power curve of Figure ??.
A graphical estimation of power consumption expected depending on whether we have
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Figure 3.1: CLIM(x,y): power curve repre-
sentation of operation LIM(x,y) with k = 4

Figure 3.2: Three cases of esti-
mated power curves for C(xi, yj)

CHigh, CMedium or CLow is given in Figure ??.

When an operation xi× yj leads to C(xi, yj) being CLow or CMedium we can identify
this operation in the curve. This explains why the SPA introduced by Yen et al. allows
the secret exponent recovering with a single curve for a well chosen message. Indeed when
comparing the three possible operations occurring in an exponentiation with the input
chosen message m = n − 1 we obtain for k = 3 the Table ??. In this table we observe
that CLIM(x,y) has different recognizable patterns for each long integer multiplication.

3.2.2 More Chosen Messages.

From this analysis we can enumerate other chosen messages leading to successful SPA
on atomic exponentiations such as messages with one or many t-bit word equal to 0 or
2i with i in 0 . . . t− 1. Messages with a globally low Hamming weight can also lead to a
medium or low power consumption and allow to recover the secret exponent in a single
power curve.

3.2.3 Experiments and Practical Results

We experimented this attack on many different multipliers processors to confirm our
theoretical analysis. In this section we present some results we obtained on two different
devices.

First Device.

We implemented a Montgomery Modular exponentiation on a 32× 32-bit multiplier, in
this case we have t equal to 32. We chose as input messages for exponentiations the
following values with k = 4: m1 = (α, α, 0, 0), m2 = (α, 0, 0, 0) where α is 32-bit random
value.

Figure ?? represents a part of the measured exponentiation curves of these two
messages. The black curve corresponds to the exponentiation with message m1 and grey
curve with m2. The multiplication is clearly identifiable by a lower power consumption
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Figure 3.3: Part of exponentiation power curves with messages m1 and m2 and k = 4,
zoom on LIM(m1,a) (black) and LIM(m2,a) (grey)

compared to the squaring. Message m2 takes one more 32-bit word equal to 0 than m1.
This results in Figure ?? in a low power consumption longer for grey curve than for
black curve during the multiplication.

In this case we also observed that CMedium is close to CHigh but the two can be
distinguished.

Second Device.

We designed an 8×64-bit hardware multiplier with the associated long integer exponen-
tiation. In the multiplication x× y the operand x is manipulated by 64-bit words when
the operand y is taken by 8-bit words. The message is placed in the second operand y
for the multiplications during the exponentiation.

We chose several messages containing one or more zero 8-bit words and executed the
corresponding long integer exponentiations. We then simulated the power consumption
of the synthesized multiplier we have designed. By analyzing these power curves we can
observe that a zero byte yj in operand y produces a lower power consumption curve
in the cycles where yj is manipulated. We are then able to recover the whole secret
exponent in an exponentiation when a zero byte is present in the message value.

We have explained here the potential power leakages related to multiplication and
exponentiation computations and confirmed our analysis with some practical results. In
the next paragraph we study the probability of leakage depending on the multiplier and
modulus bit lengths.

3.2.4 Leakage Probability

In this paragraph letters p and q design probabilities.

55



CHAPTER 3. ADVANCED SIMPLE SIDE CHANNEL ANALYSIS ON
EXPONENTIATION

Probability of leakage during a multiplication.

Let xi be a t-bit word, and p be the probability for xi to be null, then we have P (xi =
0) = 1

2t = p and P (xi 6= 0) = 1− p.
If Y is the event {None of the t-bit word is null in a k-word integer} with P (Y ) = (1−p)k,
then we have Y which corresponds to the event {at least one of the t-bit words is null in
a k-word integer} with probability:

q = P (Y ) = 1− P (Y ) = 1− (1− p)k = 1− (1− 1

2t
)k

During a long integer modular multiplication x × y the leakage appears only if at least
one of the k t-bit words of x or/and y is null. The probability for this leakage to appear
corresponds to 1− (1− p)2k.

Probability of leakage during an exponentiation.

During an exponentiation we focus on the probability of having a leakage in a t-bit
multiplication x× y when only y takes part in the leakage and not x (or the opposite).
Indeed during an exponentiation md mod n the message m is used during each multi-
plication at step ?? of Algorithm ??, when α = 1 (di = 1). Thus if the value m contains
a t-bit word mi leading to leakage in the operations mi × aj and/or mi × a then each
multiplication by mi and thus by m could be identified and the secret exponent d can
be recovered from a single power curve.
In this case the probability of having one or many of the t-bit words of m leading to a
signing pattern is:

q = 1− (1− p)k = 1− (1− 1

2t
)k

This is also the probability of having an SPA leaking curve for a single execution of the
exponentiation.

In the case of an 8-bit multiplier Figure ?? shows that the probability of having a
message with a signing pattern is about 0.394 for a 1024-bit modulus, 0.528 for a 1536-
bit modulus and 0.633 for a 2048-bit modulus. When the multiplier is greater than 16
bits this probability decreases for all modulus sizes.
It also obvious that bigger the key length is and smaller the multiplier size (t) is, the
higher the probability of recovering the secret exponent d in a single curve is.

Using Poisson law as an approximation of binomial law we have the property that
with 1/q exponentiation power curves the probability for recovering the secret exponent
is (1− 1

exp(1)). Thus the probability Pleak of recovering the secret exponent using one of

the h/q acquired curves is approximated by Pleak = P (h/q) = 1− ( 1
exp(1))h.

Figures ?? and ?? show how many curves would be needed to have, with a probability
close to 1, a message leading to a signing pattern which can be used for our SPA attack.
With an 8-bit multiplier (Figure ??), a very few messages (5 to 10) are necessary to
obtain an exploitable leakage with high probability. For a 16-bit multiplier (Figure ??)
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Figure 3.4: Probability of having a message with a signing pattern depending of multi-
plier size (t) and modulus size (1024, 1536, 2048)

Figure 3.5: Probability Pleak for an 8-
bit multiplier depending on the num-
ber of curves acquired and modulus size
(1024, 1536, 2048)

Figure 3.6: Probability Pleak for a 16-bit
multiplier depending on the number of
curves acquired and modulus size (1024,
1536, 2048)
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Modulus Multiplier size
size 8 16 32

1024 12 4720 ≈ 229

1536 9 3150 ≈ 229

2048 8 2360 ≈ 228

Table 3.3: Number of messages needed to have Pleak > 0.99

between 3000 and 5000 curves are needed for a success probability close to 1. But for
a multiplier size greater than 16 the number of curves needed for recovering the secret
exponent makes the attack not practical. The bigger the multiplier, the greater the
number of collected curves needed. Examples are given in Table ??.

3.2.5 Enhanced Simple Power Analysis on Blinded Exponentiations

In this section we consider that the exponentiation is secured using message and exponent
blinding.

Exponent Blinding.

This common countermeasure consists in randomizing the secret exponent d by d? =
d+ r1 ·n mod φ(n) with r1 being a random value. However here the exponent blinding
has no effect on our analysis since a single curve is used to recover the private exponent
and recovering d? is equivalent to recovering d.

Randomized Chosen Message.

Now we consider that the message is randomized additively by the classical countermea-
sure: m? = m + r1 · n mod r2 · n, with r1 and r2 being two l-bit random values. In
this case we have m? equal to m+ u · n with u being a l-bit value equal to r1 mod r2.
In this case an attack could consist of choosing a message m? being 1 or 2i, guessing a
random value uguess, computing message m from guessed randomized message m?, i.e.
m = m? − uguess · n, and executing at least 2l exponentiations with input message m.
One of the 2l exponentiation power curves should present leakages and should allow the
secret exponent to be recovered with SPA.

However if r1 and r2 are effectively chosen in a pure random way we observe that
this attack could be done faster. Indeed if we analyze the distribution of values u = r1

mod r2 we observe that values do not appear with same probability and that the more
frequent are the smallest ones. The most frequent one being u = 0. It is illustrated in
Figure ?? for l = 8. While less pronouced the same phenomenon can also be observed for
bigger l values. The best attack method in this case would consist of choosing uguess = 0
(or 1 or 2) and executing the exponentiation many times until a leaking power curve is
obtained.
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Figure 3.7: Distribution of u for l = 8

Unknown Message.

When analyzing the leakage probabilities of Section ?? it appears that the number of
curves needed to recover the secret exponent for a fixed multiplier size only depends on
the modulus length, even if the message is unknown to the attacker. For instance for a
1024-bit modulus and a 16-bit multiplier by collecting 5000 power consumption curves
of exponentiations done with unknown different messages the probability of recovering
the secret exponent is close to 1.

Synthesis.

As the additive randomization of the message does not significantly increase message
length, the amount of messages needed does not increase either. Thus if the attacker
can choose input messages of the blinded exponentiation, he will choose the attack
which requires less effort comparing number of chosen message acquisitions needed (when
guessing the random) with the number of curves to collect to have PLeak = 1.

3.2.6 Countermeasures and Recommendations

Balancing the Power Consumption

The attack presented in this chapter is based on the fact that manipulating zero t-
bit values results in low power consumption cycles. Thus a method to prevent this
attack would consist in using balanced power consumption technology such as dual rail
technique. In this case the manipulation of a value with a low Hamming weight (for
instance 0) will no longer have a different power consumption than the one due to the
manipulation of other values.

Random Choice for Blinding

As we showed previously the values r1 mod r2 are not uniformly distributed when r1

and r2 are random. A better solution consists of choosing a fixed value for r2 and a
random value for r1. From our analysis the best choice for r2 is to take the biggest l-bit
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Figure 3.8: Distribution of u for l = 8 and r2 = 251

prime number. In that case r2 will never divide r1, thus u cannot be null and u values
are uniformly distributed as it is showed in Figure ??.

Another consideration is that the random length choice is also directly related to the
multiplier size. In section ?? we have seen that while the number of possible random
values u is smaller than the number of messages to test given by the leakage probability
analysis, it is easier to test all random values u. Regarding this statistical properties we
showed that when the multiplier is small (8 or 16 bits) the quantity of curves needed for
a successful Simple Power Analysis is reasonable.

Thus by combining a multiplier with a size of at least equal to 32 bits, with big
random number r1 (longer than 32 or 64 bits) and the biggest prime integer r2, the
feasibility of the attack explained in this chapter is significantly reduced.

3.2.7 Remarks on RSA CRT and ECC

We presented our analysis on exponentiation computations. It corresponds directly to
straightforward implementations of RSA signature and decryption algorithms as they
simply consist of an exponentiation with the secret exponent. In case of RSA CRT the
analysis is a little bit different since the input message is reduced modulo p and q before
the exponentiations. Even if data manipulated into the multiplications are twice shorter
than the modulus n, similar analysis can be conducted on reduced messages. However
the countermeasure which consists in fixing the random value r2, must not be used in
RSA CRT implementations as it would not be protected against the correlation analysis
on the CRT recombination presented in [?].

ECC are also concerned. The analysis depends on the kind of coordinates and algo-
rithm chosen for the scalar multiplication, anyway implementations using small multipli-
ers and/or small random numbers for coordinates randomization [?] have to be avoided.

3.2.8 First Section Synthesis

In this section we have explained the origin of the power leakages during multiplications
and presented other ways to mount Simple Power Analysis attacks. Indeed by observ-
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ing differences in data power signatures instead of differences in code execution, using
some well chosen messages allows the whole secret exponent of RSA cryptosystem to
be recovered from a single curve. Moreover we have shown that some improvements in
SPA attacks lead to the recovery of the secret exponent on secured exponentiations using
blinding countermeasures and with non chosen messages. We analyzed the blinding coun-
termeasures and gave advice to developers to protect their implementations against this
enhanced SPA. Judicious choice and large random numbers in blinding countermeasures
combined with large size multipliers, especially greater than 32 bits, are recommended
for SPA resistance.

3.3 Improving the Previous Simple Side Channel Analysis
on Exponentiation

Previously (and [?]) we have considered that during a long integer multiplication R0 ·R1,
if the multiplicand R1 = m contains one (or more) of the t-bit words set to 0, it is possible
to recognize each time this value m is manipulated all along the exponentiation, i.e. each
time the exponent bit is 1.

In that case we say in the following a message m or an operand x are tagged because
their manipulation can be distinguished.

Authors considered for their leakage statistical analysis during exponentiation scheme
the following side-channel tag model:

[A0] Side-channel tag originates when a whole t bit word equals zero in the operand
m.

Notations: We denote by tag(m?) the event ”the operand m has a t-bit word equal to
zero” and by tagi(m?) the event ”the operand m has its ith t-bit word equal to zero”.
For a given `-word operand x = (x`−1 . . . x1x0)b we introduce the following notations:

xi = x mod bi+1 = (xi . . . x1x0)b

xi = x mod bi = (xi−1 . . . x1x0)b with x0 = 0

The general principle of the attack is based on the fact that whenever the randomized
message m? is tagged, this easily detectable event points the attacker to all LIM oper-
ations corresponding to multiplications by the message, which thus reveals the private
exponent d?. The probability for a tag to occur is usually quite small so that the at-
tacker has to acquire and analyze many side-channel traces until one of them eventually
happens to be tagged.

3.3.1 Improving the Analysis

A first contribution of this section is to observe that an attacker who has control of the
non randomized message m is able to further reduce the attack complexity – measured as
the number of required side-channel traces – by causing tags on the randomized message
m? to happen more frequently than by pure chance. More precisely, for any word index
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0 6 i < `, and for any integer 0 6 u(i) < 2λ − 1 which denotes a targeted value for
the random u = r1 mod r2 involved in the randomization of m, it is possible to find a
message m such that m? = m+ u(i) · n is tagged on word i. This chosen message gives
access to the private exponent whenever u = u(i) which may be more probable than
would naturally arise, particularly when λ < t.

We can even do better since we will show that it is possible to build a message which
simultaneously verifies such kind of conditional tag property on each of its words. Then
in a second study we consider the scenario where the attacker does not have full control
on the message which is to be randomized since we assume that this message is the
output of a deterministic hash function whose input is chosen by the attacker.

3.3.2 Known Message Scenario

We assume here a known message scenario where the message value to be exponentiated
is uniformly distributed over the set of all integers that can be represented on ` t bits.

Theorem 3.3.1 () Given a message m uniformly distributed over
{

0, . . . , 2`t − 1
}

, the
probability that the randomized message m? = m + u · n is tagged on any of its ` least
significant words is:

Proba
(
tag(m?)

)
= 1− (1− 2−t)`

' ` · 2−t

Proof 3.3.1 For any 0 6 i < `, and any arbitrary integer 0 6 u < 2λ − 1, letting
s = u · n, we have:

Probam
(
tag(i)(m?)

)
= Probam (m?

i = 0)

= Probam

(
mi = −

⌊
si +mi

bi

⌋
mod b

)
= 2−t

Now, considering also u as random:

Probau,m
(
tag(i)(m?)

)
=
∑
u

Proba(u)Probam
(
tag(i)(m?)

)
= 2−t

The proof follows immediately from the independence of the tag on each word.

In the known message only setting, the probability for a side-channel trace to be
tagged is close to ` 2−t. This result holds whatever the probability distribution of u. In
particular it makes no difference whether u is biased – which is the case when r1 and r2

are both random – or uniformly distributed.
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3.3.3 Chosen Message Scenario

Theorem ?? and Algorithm ?? show how an attacker can build a message whose ran-
domization will be tagged whenever u belongs to a set of ` prescribed chosen target
values.

Theorem 3.3.2 () Let U =
(
u(0), . . . , u(`−1)

)
be an arbitrary set of ` targets, with

∀i, 0 6 u(i) < 2λ−1. The message m returned by Algorithm ?? is such that m? = m+u·n
is tagged on word i whenever u = u(i).

Proof 3.3.2 For each i, let s(i) = u(i) · n. We have

mi = −

s(i)
i +mi

bi

 mod b

so that (m+ s(i))i = 0 which implies that m?
i = 0 if u = u(i).

Alg. 3.3.1 Chosen message construction

Input: a `-word modulus n and a set
(
u(0), . . . , u(`−1)

)
of targeted randoms

Output: a message m whose randomization is tagged for any specified target

1. m← 0
2. for i = 0 to `− 1 do
3. s(i) ← u(i) n

4. µ← −
⌊
s
(i)
i +mi
bi

⌋
mod b

5. m← m+ µ bi

6. return m

We now compute the probability that a randomization of the message returned by
Algo. ?? is tagged:

Proba
(
tag(i)(m?)

)
= Proba(u = u(i)) · 1 + Proba(u 6= u(i)) · 2−t

' Proba(u = u(i)) + 2−t

'
{

2−t if λ > t
2−λ if λ 6 t

(3.1)

' max(2−λ, 2−t)

Equation ?? clearly shows that our chosen message method is particularly interesting
when λ 6 t. Indeed, when λ > t the randomized message is tagged with same probability
than in the known message model. For this reason we consider from now on that λ 6 t.
In that case choosing the message according to Algo. ?? changes the complexity of tag
probability from O(2−t) to O(2−λ). Depending on λ, the attack may now be feasible
even on large multipliers (e.g. t > 64) as the tag probability does not depend on t any
more.
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When u has uniform distribution the choice of the u(i)s is not relevant provided they
are all distinct. In that case we have:

Proba
(
tag(m?)

)
' ` 2−λ

When u is biased due to the random choice of both r1 and r2 the smaller u the more
probable it is. The best strategy for an attacker is then to choose U = (0, . . . , ` − 1)
which has the largest probability. This results in a tag probability that can be expressed
as:

Proba
(
tag(m?)

)
' Proba(u ∈ U)

' ω ` 2−λ

where ω > 1 is a multiplicative factor which quantifies the gain related to the biased
case compared to the uniform one.

Let’s now enumerate the three advantages from which our chosen message attack
benefits:

1. Considering some given word of the randomized message, the probability that it is
tagged is at least 2−λ instead of 2−t (for λ 6 t). This is by far the more fundamental
advantage provided by our method.

2. As it is possible to simultaneously generate a conditional tag on all words, the
probability of a tag on m? is l times that of a tag on a single word. Note that this
gain by a factor l also holds in the known message model.

3. In case of biased randomization – which is more usually implemented than the
uniform randomization – the attacker targets the most probable random values u.
This results in another gain by a factor ω which is far from being negligible as
shown in Table ??.

Results

For different sets of parameters t, λ we have simulated our attack on a large number of
runs by generating a random 1024-bit modulus n, building a message m according to
Algo. ??, computing a randomized message m? by applying the classical biased masking
procedure, and testing whether m? is tagged.

We present in Table ?? the experimental averaged tag probabilities, together with
the theoretical ones for comparison. We also mention the resulting mean number of
side-channel traces needed, the gain factor ω, as well as the number of simulation runs
in each case.

From a practical point of view, the proposed chosen message method allows our tag-
based simple side-channel analysis on randomized exponentiation to be feasible in a much
wider range of settings. Definitely, the security against our attack cannot be provided
by a large multiplier. Also, Table ?? shows that the mean number of traces required to
recover the private exponent is small for λ = 16 and quite practicable for λ = 24, while
these random bit-length values may be considered providing enough security for message
blinding purpose. In light of our method, we can say that message blinding must not
use random values smaller than 32 bits.
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3.3.4 Hashed Message Scenario

In this section, we consider a more restricted model where the message is hashed and
padded before being randomized and then exponentiated. We still assume that the
message m is chosen by the attacker, but the aim is now to obtain a tag on h? where:{

h = H(m)
h? = h+ u · n

We assume that H is a deterministic hash and pad function – e.g. the full domain
hash RSA-FDH [?]. Because we do not have control on the hash output, it is not possible
to directly set some word of h to that precise value which would create a tag for some
given targeted u. Rather we can try to search for some m whose hash has this property.
Suppose we want to tag the least significant word of h?. In order for that word to be
tagged for a prescribed target u, we must find a message m such that h0 = −s0 mod b
with s = u · n. This allows the attack to necessitate only O(2λ) side-channel traces as
in the chosen message model, but requires an average of O(2t) hash computations.

We can do better if we allow any u value to be targeted. Let S0 = {s0 = (u · n)0}
where 0 6 u < 2λ − 1. Then we only have to find a message such that −h0 ∈ S0.
Provided that λ 6 t, the number of distinct values in S0 is close to 2λ and the search
for a convenient message requires O(2t−λ) hash computations and O(t 2λ) space storage.
We thus found a (time : memory : data) tradeoff – where data means the number of side-
channel traces required – which achieves (2t−λ : t 2λ : 2λ) complexity.

A further improvement consists in allowing the tag to appear on any word. Defining

S =
`−1⋃
i=0

Si where Si = {si = (u · n)i}

we now have about ` 2λ elements in S so that the tradeoff complexity becomes (2t−λ/` :
` t 2λ : 2λ).

This proposed hashed message attack admits three drawbacks compared to the chosen
message one:

1. We do not see any means to simultaneously target different u on different words.
As a consequence the number of traces required does not benefit from the division
by `.

2. Also it seems impossible to provoke a tag for a prescribed u – except if we accept
a time complexity O(2−t) instead of O(2t−λ). Thus, the number of traces required
is not divided by the gain factor ω.

3. The method requires the pre-computation of O(2t−λ) hash values and the storage
of ` t 2λ bits.

Despite these drawbacks we think that there are some settings for which the proposed
hashed message method can be practically applied while the known message one would
be infeasible. For instance when t = 32 and λ = 16 the attack needs 216 traces and a
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short pre-computation phase, while it would require 229 traces in the known message
model to break a 1024-bit key.

Note that the method described in this section seems restricted to the use of a
deterministic padding. It is an open question whether it could be modified to apply also
to probabilistic padding schemes such as RSA-PFDH [?] or RSA-PSS [?].

Those analysis exploits the well-known efficient leakage model [A0] to design an
SSCA efficient chosen message technique which improves the previous results and to
propose a hashed message attack. In the following we consider now a relaxed model
leakage. Indeed it is also realistic to consider less restrictive leakage models for a side-
channel tag to appear in a multiplication calculation. With these new leakage models
we give new results that highlight SSCA is still more efficient than said previously to
defeat state of the art blinded exponentiations.

3.3.5 Relaxed Side-Channel Leakage Model

We assume here a tag in a message could be due to two following assumptions that are
not independent:

[A1] Side-channel tag originates from the fact that at least τ consecutive bits in a
t-bit word of m are set to 0, with τ 6 t.

[A2] Side-channel tag originates from the fact that the Hamming weight h of the
t-bit word is lower than a value ν, with h 6 ν < t.

Both assumptions [A1] and [A2] are realistic and well suited for hardware implemen-
tations of multipliers. The choice of the most relevant model between [A1] and [A2] and
the best values of parameters τ and ν varies from one integrated circuit to another one,
it also depends on t. From our experiments we observed that some integrated circuits
are more resistant than others.

In this sequel we separately consider the two leakage models given by both assump-
tions [A1] and [A2]1.

We say that x is A1-tagged on word i whenever xi contains at least τ consecutive

zero bits. This event will be denoted by tag
(i)
A1

(x). We also denote by tagA1(x) the event
that x is A1-tagged on at least one of its words.

In the same way, we say that x is A2-tagged on word i whenever the Hamming

weight of xi is less than ν, and this event will be denoted by tag
(i)
A2

(x). We also denote
by tagA2(x) the event that x is A2-tagged on at least one of its words.

In the following let’s denote by p the probability for a t-bit word to be either A1-
tagged or A2-tagged depending on the considered leakage model.

Theorem 3.3.3 () Given a message m uniformly distributed over
{

0, . . . , 2`t − 1
}

, the
probability that the randomized message m? = m + u · n is tagged on any of its ` least

1[A0] leakage model is a particular case of model [A1] (resp. [A2]) when τ equals t (resp. when ν is
null).
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significant words is:

Proba
(
tag(m?)

)
= 1− (1− p)`

' ` · p

3.3.6 Tag Probabilities for τ and t Values with [A1] Leakage Model

Considering the leakage model [A1] we have computed the different p values for all τ
values in the range [0, . . . t]. We have then exhausted the number nτ of existing words
which have their longest consecutive zeros sequence being of exact length τ . Knowing this
number we compute p1(t, τ) the probability for a t-bit word to have its longest consecutive

zero sequence to be exactly τ : p1(t, τ) = nτ/(2
t). Then we have Proba(tag

(i)
A1

(x)) =∑t
j=τ p1(t, j). Once we obtain these different tag

(i)
A1

(x) values we compute the tagA1(m)
probabilities for 512, 1024 and 2048 bits long integer messages.

Case t = 16

Table ?? gives result examples for a t = 16-bit multiplier architecture. 2

Considering for instance the case τ = 12, we observe there are 28 words which have
their longest consecutive zeros sequence being of length 12. The probability for a word
to be exactly τ bit A1 tagged is p1(16, 12) = 4.27× 10−4. The probability for a word to

have at least τ = 12 consecutive zero bits is then Proba(tag
(i)
A1

(x)) =
∑16

i=12 p1(16, i) =

7.32× 10−4.

It is then worth to notice the probability a 1024-bit integer is tagged is reduced
from 9.76 × 10−4 to 4.58 × 10−2 from model [A0] to model [A1] with τ = 12 which can
happen in practice. It means that only 22 (≈ 1/(4.58 10−2)) messages would be enough
for recovering the secret exponent in a 1024-bit blinded exponentiation with probability
1/e ≈ 0.63 instead of 1020 messages when considering [A0]. Finally to reach a leakage
probability equal to 0.999 SSCA would require only 140 messages and not 6700 when
considering the previous leakage model [A0].

Case t = 32

We processed the same study for a 32-bit multiplier. Table ?? gives result examples.
In [?] authors considered that using a 32-bit multiplier counterfeited simple side-

channel analysis in blinded exponentiation when random used for blinding were big
enough (i.e. > 32 bits). We observe here than it is not exact considering the relaxed

but realistic model [A1]. Indeed considering τ equal to 16 we obtain Proba(tag
(i)
A1

(x)) =

1.37×10−4, it signifies Proba(tagA1(m)) = 4.39×10−3 for m a 1024-bit integer message.
It means that 230 messages would be enough for recovering the secret exponent in a 1024-
bit blinded exponentiation with probability 1/e ≈ 0.63 instead of 1.34 × 108 messages
when considering [A0]. Moreover to reach a leakage probability equal to 0.999 only 1480
messages are required instead of 8.73× 108.

2The complete result tables of our analysis for [A1] and [A2] models, considering all possible τ and ν
values in the range [0,. . . , t] are given in the extended version of this analysis [?].
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We have studied the leakage probabilities for exponentiation with the [A1] model.
Our analysis highlights the risk of SSCA leakage even when the hardware multiplier base
size is big, for instance 32-bit contrarily to previous section results. In the following we
reproduce the same study for the second ([A2]) model leakage.

3.3.7 Tag Probabilities for ν and t Values with [A2] Leakage Model

The number of t-bit words which have their Hamming weight being µ is
(
µ
t

)
. The

probability for a t-bit word to have its Hamming weight being exactly µ is p2(t, µ) =(
µ
t

)
· 2−t. Thus we obtain the probability for a t-bit word to be ν [A2] tagged is:

Proba(tag
(i)
A2

(x)) =

∑ν
µ=0

(
µ
t

)
2t

. (3.2)

Using this simple formula we compute in the following the values Proba(tag
(i)
A2

(x)) and
Proba(tagA2(m)) for t=16 and t = 32 bits multipliers and different message bit-length.

Case t = 16

Table ?? gives results examples of Proba(tag
(i)
A2

(x)) and Proba(tagA2(m)) for t=16.
Considering for instance the case ν = 2, the probability a 1024-bit integer is tagged is
Proba(tagA2(m1024) = 1.24×10−1. It signifies that only 8 messages would be enough for
recovering the secret exponent in a 1024-bit blinded exponentiation with a probability of
success equal to 1/e ≈ 0.63. Finally to reach a leakage probability equal to 0.999 SSCA
it would require only 49 messages (exponentiation executions).

Case t = 32

We processed the same study for a 32-bit multiplier.
We consider here a device where the power leakage appears for this [A2] model when
ν = 4, we know by experiments it is a realistic case. The probability a 1024-bit integer
is tagged becomes Proba(tagA2(m1024)) = 3.09 × 10−4. It means that only 3.24 × 103

messages would be enough for recovering the secret exponent in a 1024-bit blinded ex-
ponentiation with probability 1/e ≈ 0.63 instead of 1.34×108 when considering the [A0]
model. Moreover to reach a leakage probability equal to 0.999 2.1 × 104 messages are
required instead of 8.73× 108.

Synthesis

We have discussed the probability of SSCA leakage for the two relaxed models [A1] and
[A2] we have introduced. We have shown that the previous model [A0] is too restrictive
and that even for big size multipliers like 32-bit ones it is possible with a reasonable
number of executions to recover the private exponent in a blinded exponentiation.

To illustrate our results we gives in Table ?? different leakage probabilities for differ-
ent models we consider realistic. Of course this table is an example and each integrated
circuit will have different leakage characteristic. It is then important to measure the
right values τ and ν for each integrated circuit.
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It is important to notice that SSCA is much more efficient than previous studies said
and particularly can threaten blinded exponentiation implemented with 32-bit cores
which are commonly used today. Of course it depends on the kind of hardware selected
for the implementation, it is then very important to measure the exact side-channel
leakage of the multiplier, for instance the exact values τ and ν in our two models.

3.3.8 Countermeasures and Recommendations

We have shown previously that some mandatory conditions must be respected to prevent
any implementations from the enhanced simple side-channel analysis.

Hardware Multiplier Characterization The first consideration to take into ac-
count consists in precisely characterizing the leakage characteristics of any designed
hardware multiplier. Effectively, contrarily to the previous section results, we have
shown that for a t-bit hardware multiplier the leakage probability does not depend only
of t but more of the values τ and ν we described previously. It is of particular interest
when t = 32 as previous studies considered using such a hardware multiplier hardware
rendered the SSCA not available if the blinded exponentiation was using big enough
random values. But we have shown that it is not true. Indeed, whatever the random
size used for blinding and base t value are, if the value ν (resp. τ) is much smaller than
t (much bigger than 0) then SSCA can defeat a state of the art blinded exponentiation.
It is then important to determine for leakage models [A1] and [A2] the values τ and ν
leading to a power tag of the selected multiplier in order to determine the exact power
leakage of an exponentiation. Once these exact values are determined a developer can
select the appropriate algorithm and countermeasure(s) he must use (or not use) for his
implementation to be secure enough.

Moreover it is obvious that hardware countermeasures such as jitter, clock divider or
in best cases balanced consumption circuits should be also present in the embedded prod-
uct to enforce the resistance to side-channel analysis and render enhanced SSCA more
difficult.

The previous study recommendation still applies: ”λ (random bit-length) value must
be bigger than 32 bits whatever the value of τ and ν still applies. It is also still recom-
mended to use a constant (rather than random) value for r2. For instance r2 could be
equal to 2λ − 1.”

Exponentiation Algorithm Choice For better resistance we recommend to select
an exponentiation algorithm resistant to this analysis. The best solution to us consists
in always using right-to-left blinded exponentiation algorithm instead of left-to-right
classical ones. As already highlighted by Walter [?] and later by Fouque et al. in [?]
this implementation is much more resistant to the many side-channel attacks than the
left-to-right ones. Indeed the square operations being applied on the message value the
operands used in multiplications are never the same and it is not possible any more to
observe tags on any message multiplication in a same trace. Developers can also decide
to apply a new message randomization on the message operand m used in exponentiation
after each multiplying (squaring and multiplying) operation, for instance by using for
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message the new value m = m + n mod r2 · n. It is also interesting to notice than in
case of Barrett or Montgomery reduction methods, the resistant reduction algorithms
given in [?] offers a good protection.

3.3.9 Conclusion

In this chapter we have presented some SSCA improvements enhancing simple side-
channel analysis to recover of the secret exponent manipulated during state of the art
blinded embedded exponentiations, when all the other side-channel techniques are inef-
ficient. We have also demonstrated how to build a chosen message more significantly to
reduce the number of needed execution for SSCA attack to succeed with a higher proba-
bility. Moreover we have shown that, contrarily to a common belief, simple side-channel
analysis can be successful also in some hashed message models. Our results depend
on the size of the random values used for blinding and the way they are generated, as
well as on the hardware multiplier leakage properties. We have also presented two new
side-channel leakage models we consider realistic and well suited for long integer mul-
tiplications and exponentiation side-channel analysis. We observe that SSCA remains
a very powerful side-channel analysis to defeat blinded exponentiation even when using
big random values and big multipliers. Indeed it requires a deep characterization of the
hardware multiplier used.

Our new analysis strengthens again the advice previously given by Walter [?] at
CHES 2001 to use right-to-left exponentiations. Although less often used than left-to-
right exponentiation, right-to-left methods appear to be much more resistant against the
numerous side-channel attacks.

We then conclude this chapter with the sentence (title) from Fouque and Valette at
CHES 2003 [?]:

”Upwards is better than downwards!”.
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Chapter 4

Horizontal Analysis on
Exponentiation

4.1 Introduction

Securing embedded products from Side-Channel Analysis (SCA) has become a difficult
challenge for developers who are confronted with more and more analysis techniques as
the physical attacks field is studied. Since the original Simple Side-Channel Analysis
(SSCA) – which include Timing Attacks, SPA, and SEMA – and Differential Side-
Channel Analysis (DSCA) – including DPA and DEMA – have been introduced by
Kocher et al. [?, ?] many improvements and new SCA techniques have been published.
Messerges et al. were the first to apply these techniques to public key implementations [?].
Later on, original DSCA has been improved by more efficient techniques such as the one
based on the likelihood test proposed by Bevan et al. [?], the Correlation Power Anal-
ysis (CPA) introduced by Brier et al. [?], and more recent techniques like the Mutual
Information Analysis (MIA) [?, ?, ?]. A common principle of all these techniques is that
they require many power consumption or electromagnetic radiation curves to recover the
secret manipulated. Hardware protections and software blinding [?, ?] countermeasures
are generally used and when correctly implemented they counteract these attacks.

Among all those studies the so-called Big Mac attack is a refined approach intro-
duced by Walter [?, ?] from which our contribution is inspired. This technique aims at
distinguishing squarings from multiplications and thus recovering the secret exponent of
an RSA exponentiation with a single execution curve. This can be achieved by averaging
and comparing the cycles of a device multiplier during long integer multiplications.

We present in this chapter another analysis which uses a single curve. We named this
technique horizontal correlation analysis, which consists of computing classical statistical
treatments such as the correlation factor on several segments extracted from a single
execution curve of a known message RSA encryption. Since this analysis method requires
only one execution of the exponentiation as the Big Mac attack, it is then not prevented
by the usual exponent blinding countermeasure.

The horizontal correlation analysis is presented in Section ?? with some practical
results and a comparison between our technique and the Big Mac attack. Known and
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new countermeasures are discussed in Section ??. In Section ?? we deal with horizontal
side channel analysis in the most common cryptosystems.

4.1.1 Side-Channel Analysis

We have chosen to introduce in this chapter the terms of vertical and horizontal side-
channel analysis to classify the different known attacks. The present section deals with
known vertical and horizontal power analysis techniques. Our contribution, the horizon-
tal correlation analysis on exponentiation is detailed in Section ??.

Remember, as we said previously, side-channel attacks rely on the following physical
property: a microprocessor is physically made of thousands of logical gates switching
differently depending on the executed operations and on the manipulated data. There-
fore the power consumption and the electromagnetic radiation, which depend on those
gates switches, reflect and may leak information on the executed instructions and the
manipulated data. Consequently, by monitoring the power consumption or radiation of
a device performing cryptographic operations, an observer may recover information on
the implementation of the program executed and on the secret data involved.

Simple Side-Channel Analysis

In the case of an exponentiation, original SSCA consists in observing that, if the squaring
operation has a different pattern from the one of the multiplication, the secret exponent
can be read on the curve. Classical countermeasures consist of using so-called regular
algorithms like the square and multiply always or Montgomery ladder algorithms [?, ?],
atomicity principle which leads to regular power curves.

Differential Side-Channel Analysis

Deeper analysis such as DSCA [?] can be used to recover the private key of an SSCA
protected implementation. These analyses make use of the relationship between the
manipulated data and the power consumption/radiation. Since this leakage is very
small, hundreds to thousands of curves and statistical treatment are generally required
to learn a single bit of the exponent. Usual countermeasures consist of randomizing the
modulus, the message, and/or the exponent.

Correlation Power Analysis

This technique is essentially an improvement of the Differential Power Analysis. Initially
published by Brier et al. [?] to recover secrets on symmetric implementations, CPA is also
successful in attacking asymmetric algorithms [?] with much fewer curves than classical
DPA. The power consumption of the device is supposed to vary linearly with H(D⊕R),
the Hamming distance between the data manipulated D and a reference state R. The
consumption model W is then defined as W = µ · H(D ⊕ R) + ν, where ν captures
both the experimental noise and the non modelized part of the power consumption. The
linear correlation factor on N traces, ρC,H , is then used to correlate each power curve C
with H(D ⊕R).
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ρC,H =
cov(C,H)

σCσH
=

t
∑

(CiHi,R)−
∑
Ci

∑
Hi,R√

t
∑
C2

i − (
∑
Ci)2

√
t
∑
H2

i,R − (
∑
Hi,R)2

, i = 1 . . . N

The maximum correlation factor being obtained for the right guess of secret key bits,
an attacker can try all possible secret bits values and select the one corresponding to the
highest correlation value.

In [?], Amiel et al. apply the CPA to recover the secret exponent of public key
implementations. Their practical results show that the number of curves necessary to
an attack is much lower compared to DPA: less than one hundred of curves is sufficient.
It is worth noticing that the correlation is the highest when computed on t bits, t being
the bit length of the device multiplier.

The authors shows the details [?, Fig. 8] of the correlation factor obtained for
every multiplicand t-bit word Ai during the squaring operation A×A using a hardware
multiplier. Interestingly a correlation peak occurs for H(Ai) each time a word Ai is
involved in a multiplication Ai ×Aj .

We present in the next section our horizontal correlation analysis which takes advan-
tage of this observation.

Collision Power Analysis

The Doubling attack from Fouque and Valette [?] is the first collision technique pub-
lished on public key implementations. It is originally presented on elliptic curve scalar
multiplication but can be applied on exponentiation algorithms. It recovers the whole
secret scalar (exponent) with only a couple of curves. Other collision attacks have been
presented in [?, ?, ?]. They all require at least two power execution curves, therefore
the classical exponent randomization (blinding) countermeasure counterfeits those tech-
niques.

Notations Let Ck denote the portion of an exponentiation curve C corresponding to
the k-th long integer multiplication, and Cki,j denote the curve segment corresponding to

the internal multiplication xi × yj in Ck.

Big Mac Attack

Walter’s attack needs, as our technique, a single exponentiation power curve to recover
the secret exponent. For each long integer multiplication, the Big Mac attack detects
if the operation processed is either a × a or a ×m. The operations xi × yj – and thus
curves Cki,j – can be easily identified on the power curve from their specific pattern which

is repeated l2 times in the long integer multiplication loop. A template power trace T 1
m

is computed (either from the pre-computations or from the first squaring operation) to
characterize the message value m manipulation during the long integer multiplication.
The Euclidean distance between T 1

m and each long integer multiplication template power
trace is then computed. If it exceeds a threshold the multiplication trace is supposed
to be a squaring, and a multiplication by m otherwise. An example of such calculation
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Figure 4.1: Vertical Side Channel Analysis Figure 4.2: Horizontal side-channel analysis

is given in the following: for each t-bit word mi of the message m, compute T 1
mi =

1
l

∑l−1
j=0C

1
i,j by averaging the l subcurves C1

i,0 . . . C
1
i,l−1. Then the template curve T 1

m is

the concatenation of curves T 1
m0
...T 1

ml−1
. In the exponentiation loop, at each k-th long

integer multiplication, the curve T k is computed in the same manner. The Euclidean
distance between T k and T 1

m is computed. If it exceeds a threshold the multiplication is
supposed to be a squaring, and a multiplication by m otherwise. The attack is innovative
and has been presented by Walter with theoretical and simulation results. The efficiency
of the attack increases with the key length and decreases with the multiplier size.

Cross-Correlation

Cross correlation technique has been used in [?] to try to recover the secret exponent
in a single curve. However the cross correlation curve obtained by the authors did
not allow distinguishing a multiplication from a squaring. More generally no successful
practical result for cross correlation using a single exponentiation power curve has been
yet published.

4.1.2 Vertical and Horizontal Attacks Classification

We refer to the techniques analysing a same time sample in many execution curves –
see Fig. ?? – as vertical side-channel analysis. The classical DPA and CPA techniques
thus fall into this category. We also include in the vertical analysis class the collision
attacks mentioned above. Indeed even if many points on a same curve are used by
those techniques, they require at least two power execution curves and manipulate them
together. All those attacks are avoided with the exponent blinding countermeasure
presented by Kocher [?, Section 10].

We propose the horizontal side-channel analysis denomination for the attacks using
a single curve. First known horizontal power analysis is the classical SPA. Single curve
Cross-correlation and Big Mac attacks are also horizontal techniques.

Our attack, we present in the next section, computes the correlation factor on many
curve segments extracted from a single consumption/radiation curve as depicted in
Fig. ??. It thus contrasts with vertical attacks which target a particular instant of the
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4.2. HORIZONTAL CORRELATION ANALYSIS

execution in several curves. The exponent blinding is not an efficient countermeasure
against horizontal attacks.

4.2 Horizontal Correlation Analysis

We present hereafter our attack on an atomically protected RSA exponentiation using
Barrett reduction.

Alg. 4.2.1 Multiply Always Barrett Exponentiation

Input: integers m and n such that m < n, v-bit exponent d = (dv−1dv−2 . . . d0)2

Output: Exp(m, d, n) = md mod n

1. a← 1
2. Process Barrett reduction precomputations
3. for i from v − 1 to 0 do
4. a← BarrettRed(LIM(a,a), n)
5. if di = 1 then
6. a← BarrettRed(LIM(a,m), n)
7. Return(a)

Alg. ?? presents the classical square and multiply modular exponentiation algorithm
using Barrett reduction as previously discussed in this manuscript. We assume in the
following of this paper that Alg. ?? is implemented in an SPA resistant way, for instance
using the atomicity principle [?].

While we have chosen to consider modular multiplication using Barrett reduction,
and square and multiply exponentiation, the results we present in this paper also apply
to the other modular multiplication methods, long integer multiplication techniques and
exponentiation algorithms mentioned above.

4.2.1 Recovering the Secret Exponent with One Known Message En-
cryption

As in vertical DPA and CPA on modular exponentiation, the horizontal correlation
analysis reveals the bits of the private exponent d one after another. Each exponent bit
is recovered by determining whether the processing of this bit involves a multiplication
by m or not (cf. Alg. ??). The difference with classical vertical analysis lies in the way
to build such hypothesis test. Computing the long integer multiplication x × y using
Alg. ?? requires l2 t-bit multiplier calls. The multiplication side-channel curve thus
yields l2 curve segments Cki,j available to an attacker.

Assuming that the first s bits dv−1dv−2 . . . dv−s of the exponent are already known,
an attacker is able to compute the value as of the accumulator in Alg. ?? after processing
the s-th bit. The processing of the first s bits corresponds to the first s′ long integer
multiplications with s′ = s + H(dv−1dv−2 . . . dv−s) known from the attacker. The value
of the unknown (s + 1)-th exponent bit is then equal to 1 if and only if the (s′ + 2)-th
long integer multiplication is as

2 ×m.
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as �
��1
PPPq

dv−s−1= 1

dv−s−1= 0

as × as
as × as

- as
2 ×m

-dv−s−2= 0,1
as

2 × as2 · · ·

· · ·

Cs
′+1 Cs

′+2

At this point there are several ways of determining whether the multiplication by m
is performed or not.

First, one may show that the series of consumptions in the set of l2 curve segments
is consistent with the series of operand values mj presumably involved in each of these
segments. To this purpose the attacker simply computes the correlation factor between
the series of Hamming weights H(mj) and the series of curve segments Cs

′+2
i,j – i.e. taking

D = mj and R = 0 in the correlation factor formula. In other words we use the curve
segments as they would be in a vertical analysis if they were independent aligned curves.
A correlation peak reveals that dv−s−1 = 1 since it occurs if and only if m is actually
handled in this long multiplication.

Alternatively one may correlate the curves segments with the intermediate results of
each t-bit multiplication xi × yj , cf. Alg. ??, with x = as and y = m, or in other words
take D = ai×mj . This method may also be appropriate since the words of the result are
written in registers at the end of the operation. Moreover in that case l2 different values
are available for correlating the curve segments instead of l previously. This diversity
of data may be necessary for the success of the attack when l is small. Note that other
intermediate values may also lead to better results depending on the hardware leakages.

Another method consists of using the curve segments Cs
′+3
i,j of the next long integer

multiplication and correlating them with the Hamming weight of the words of the result
as

2×m. If the (s′+2)-th operation is a multiplication by m then the (s′+3)-th operation
is a squaring as+1

2, manipulating the words of the integer as
2×m in the t-bit multiplier.

As pointed out by Walter in [?] for the Big Mac attack, the longer the integer manipulated
and the smaller the size t of the multiplier, the larger the number l2 of curve segments.
Thus longer keys are more at risk with respect to horizontal analysis. For instance in an
RSA 2048 bit encryption, if the long integer multiplication is implemented using a 32-bit
multiplier we obtain (2048/32)2 = 4096 segments Cki,j per curve Ck. Remark The series

of Hamming weights H(mj) is not only correlated with the series of curve segments in
Cs
′+2 (provided that dv−s−1 = 1), but also with the series of curve segments in each and

any Ck corresponding to a multiplication by m. Defining a wide segment C∗i,j as the

set of segments Cki,j for all k on the curve C and correlating the series of H(mj) with

the series of wide segments C∗i,j (instead of the series of segments Cs
′+2
i,j ) will produce

a wide segment correlation curve with a peak occurring for each k corresponding to a
multiplication by the message. It is thus possible to determine in one shot the exact
sequence of squarings and multiplications by m, revealing the whole private exponent
with only one curve and only one correlation computation.
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4.2.2 Practical Results

This section presents the successful experiments we conducted to demonstrate the effi-
ciency of the horizontal correlation analysis technique. We used a 16-bit RISC micro-
processor on which we implemented a software 16 × 16 bits long integer multiplication
to simulate the behavior of a coprocessor. We aim at correlating a single long integer
multiplication with one or both operands manipulated – i.e. yj or xi × yj .

The measurement bench is composed of a Lecroy Wavepro oscilloscope, and home-
made softwares and electronic cards were used to acquire the power curves and process
the attacks.

Firstly we performed a classical vertical correlation analysis to characterize our im-
plementation and measurement bench, and to validate the correlation model; then we
processed with the horizontal correlation analysis previously described.

Figure 4.3: Beginning of a long integer multiplication power curve, lines delimitate each
Cki,j

Vertical Correlation Analysis

This analysis succeeded in two cases during the operation x×y. We obtained correlation
peaks by correlating power curves with values xi and yj and also by correlating the power
curves with the result value of operation xi×yj . Fig. ?? and Fig. ?? show the correlation
traces we obtained for both cases with 500 power curves.

This suggests that one can perform horizontal correlation as explained previously
either using yi values or using result values xi × yj for correlating with segment curves

Figure 4.4: Vertical CPA on value yj . Figure 4.5: Vertical CPA on value xi × yj .

83



CHAPTER 4. HORIZONTAL ANALYSIS ON EXPONENTIATION

Figure 4.6: Horizontal CPA on value ai×mj . Figure 4.7: Horizontal CPA on value mj .

of the long integer multiplication.

Horizontal Correlation Analysis

We have chosen to test our technique within a 512-bit multiplication LIM(x, y). This
allows us to obtain 1024 curve segments Cki,j of 16-bit multiplications to mount the
analysis, which should be enough for the success of our attack regarding the vertical
analysis results. From the single power curve we acquired, we processed the signal in
order to detect each set of cycles corresponding to each t-bit multiplication xi × yj and
divide the single power curve in 1024 segments Cki,j as depicted in Fig. ??.

We performed horizontal correlation analysis as explained in Section ?? for the two
cases D = ai×mj and D = mj and recovered the operation executed as shown in Fig. ??
and Fig. ??. In each figure, the grey trace shows a greater correlation than the black
one and thus corresponds to the correct guess on the operation.

Since our attack actually enabled us to distinguish one operation from another, it
is then possible to identify a squaring a × a from a multiplication a ×m in the Step 3
of Alg. ??. The secret exponent d used in an exponentiation can thus be recovered
by using a single power trace, even when the exponentiation is protected by an atomic
implementation.

We have presented here a technique to recover the secret exponent using a single
curve when the input message is known and have proven this attack to be practically
successful. Although the attack is tested on a software implementation, results obtained
by Amiel et al. [?, Fig. 8] prove that correlation techniques are efficient on hardware
coprocessors (with multiplier size larger than 16 bits), and enable to locate each little
multiplication involved in a long integer multiplication. We thus consider that our attack
can also threaten hardware coprocessors.

4.2.3 Comparing our Technique with the Big Mac Attack

We now compare our proposed horizontal CPA on exponentiation with the Big Mac
attack which is the most powerful known horizontal analysis to recover a private expo-
nent. A common property is that both techniques counteract the randomization of the
exponent.

A first difference between both methods is that the Big Mac templates are generated
by averaging the leakage dependency from a not targeted argument. It is thus implicitly
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accepted to lose the information brought by this auxiliary data. On the other hand,
horizontal correlation exploits the knowledge of both multiplication operands a and m
(under assumption on the exponent bit) to correlate it with all l2 segments Cki,j . This full

exploitation of the available information included in the l2 curve segments tends us to
expect a better efficiency of the correlation method particularly when processing noisy
observations.

But the main difference is not there. What fundamentally separates the Big Mac and
correlation methods is that the former deals with templates – which the attacker tries
to identify – while the later rather consider intermediate results – whose manipulation
validates a secret-dependent guess. With the Big Mac technique an attacker is able to
answer the question Is this operation of that particular kind? (squaring, multiplication
by m or a power thereof) while the correlation with intermediate data not only brings
the same information but also answers the more important question Is the result of
that operation involved in the sequel of the computation? The main consequence is that
horizontal CPA is effective even when the exponentiation implementation is regular with
respect to the operation performed. This is notably the case of the square and multiply
always1 and the Montgomery ladder exponentiations which are not threaten by the Big
Mac attack. In this respect we can say that our horizontal CPA combines both the
advantage of classical CPA which is able to validate guesses based on the manipulation
of intermediate results (but which is defeated by the randomization of the exponent)
and that of horizontal techniques which are immune to exponent blinding.

On the other hand the limitation of the Big Mac attack – its ignorance of the inter-
mediate results – is precisely the cause of its noticeable property to be applicable also
when the base of the exponentiation is not known from the attacker. The Big Mac attack
thus applies when the message is randomized and/or in the case of a Chinese Remain-
der Theorem (CRT) implementation of RSA. While the horizontal correlation technique
does not intrinsically deals with message randomization, we give in the next section some
hints that allow breaking those protected implementations when the random bit-length
is not sufficiently large.

4.2.4 Horizontal Analysis on Blinded Exponentiation

To protect public key implementations from SCA developers usually include blinding
countermeasures in their cryptographic codes. The most popular ones on RSA exponen-
tiation are:

• Additive randomization of the message and the modulus: m? = m+r1 ·n mod r2 ·n
=m+u·n with r1, r2 being λ-bit random values different each time the computation
is executed, and u = r1 mod r2.

• Multiplicative randomization of the message: m? = re ·m mod n with r a random
value and e the public exponent,

• Additive randomization of the exponent: d? = d+ r · φ(n) with r a random value.

1Referring to the description given in ?? the method using the curve segments Cs
′+3
i,j validates that

the value produced by the multiplication by m is involved or not in the next squaring operation. A
similar technique also applies to the Montgomery ladder.
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All these countermeasures prevent from the classical vertical side-channel analysis but
the efficiency of the implementations is penalized as the exponent and modulus are
extended of the random used bit lengths.

It is obvious here the additive randomization of the exponent is defeated by the
horizontal analysis. This technique allows to recover the complete value of the secret
blinded exponent in a unique side-channel trace.

Guessing the randomized message m?

In this paragraph we consider that the message has been randomized by an additive (or
multiplicative) method, the secret exponent has also been randomized and the message is
encrypted by an atomic multiply always exponentiation. We analyze the security of such
implementation against horizontal CPA. The major difference with vertical side-channel
analysis is that the exponent blinding has no effect since we analyze a single curve and
recovering d? is equivalent to recovering d.

Assuming that the entropy of u is λ bits, there are 2λ possible values for the message
m? knowing m and n. The first step of an attack is to deduce the value of the random
u. This is achieved by performing one horizontal CPA for each possible value of u on the
very first multiplication which computes (m?)2. Since this multiplication is necessarily
computed, the value of u should be retrieved as the one showing a correlation peak.
Once u is recovered, the randomized message m? is known and recovering the bits of
the exponent d is similar to the non blinded case using m? instead of m. Consequently,
the entropy of u must be large enough (e.g. λ > 32) to make the number of guess
unaffordable and prevent from horizontal correlation analysis.

In case the message were randomized by the multiplicative masking technique the
same analysis can be conducted when considering that λ is the bit length of the integer
r.

The actual entropy of the randomization

In the case of additive randomization of the message, m? depends on two λ-bit random
values r1 and r2. Obviously, the actual entropy of this randomization is not 2λ bits, and
interestingly it is even strictly less than λ bits. The reason is that m? = m+ u · n with
u = r1 mod r2, and thus smaller u values are more probable than larger ones.

Assuming that r1 and r2 are uniformly drawn at random in the ranges
[
0, . . . , 2λ − 1

]
and

[
1, . . . , 2λ − 1

]
respectively, statistical experiments show that the actual entropy of

u is about λ− 0.75 bits2.
A consequence of this bias on the random u is that an attacker can exhaust only a

subset of the smaller guesses about u. If the attack does not succeed, then he can try
again on another exponentiation curve. For λ = 8 guessing only the 41 smaller u will
succeed with probability 1

2 .
An extreme case, which optimizes the average number of correlation curve computa-

tions, is to guess only the value u = 0 3. This way, only 38 and 5352 correlation curve

2The loss of 0.75 bits of entropy is nearly independent of λ for typical values (λ 6 64).
3Or u = 1 if the implementation does not allow u = 0.
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computations are needed in the mean when λ is equal to 8 and 16 respectively.
These observations demonstrate that the guessing attack described in the previous

paragraph is more efficient than may be trivially expected. This confirms the need to
use a large random bit length λ.

4.2.5 Countermeasures

Having detailed the principle and the threats of our horizontal side-channel analysis on
exponentiation, We now study the real efficiency of the classical side channel counter-
measures and propose new countermeasures.

Hardware Countermeasures

Classical countermeasures consisting in perturbing the signal analysis e.g. clock jitters,
frequency clock dividers or dummy cycles, may considerably complicate the analysis but
should not be the only countermeasures since efficient signal processing could bypass
them depending on their real efficiency.

Techniques consisting in balancing the power consumption of the chip with dual rail,
precharge logics or other methods, if really efficient, could be a better solution. However
they are expensive countermeasures from the chip surface point-of-view.

Blinding

All SSCA resistant algorithms that can be used to implement the exponentiation – either
those protected with atomicity principle or regular ones as square and multiply always
and Montgomery ladder – are threatened by the horizontal analysis. It is then neces-
sary to randomize the data manipulated during the computation. As said previously
the blinding of the exponent is not an efficient countermeasure here, it is thus highly
recommended to implement a resistant and efficient blinding method on the data ma-
nipulated, for instance by using additive or multiplicative message randomization with
random values larger or equal to 32 bits. As regard to the previous analysis on the actual
entropy of u, an additional solution consists in eliminating the bias on u by setting r2

to a constant value, for instance 2λ − 1.

New Countermeasures

We suggest protecting sensitive implementations from this analysis by introducing blind-
ing into the t-bit multiplications, by randomizing their execution order or by mixing
both solutions. These countermeasures are presented on modular multiplication using
the Barrett reduction.

Blind Operands in LIM A full blinding countermeasure on the words xi and yj
consists in replacing in Alg. ?? the operation (wi+j + xi× yj) + c by (wi+j + (xi− r1)×
(yj − r2)) + r1 × yj + r2 × xi − r1 × r2 + c with r1 and r2 two t-bit random values. For
efficiency purposes, the values r1×xi, r2×yj , r1×r2 should be computed once and stored.
Moreover, these precomputations must also be protected from correlation analysis. For
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example, performing them in a random order yields (2l + 1)! different possibilities. In
this case the LIM operation requires l2 + 2l + 1 t-bit multiplications and necessitates
2(n+ 2t) bits of additional storage.

In the following we improve this countermeasure by mixing the data blinding with a
randomization of the order of the internal loops of the long integer multiplication.

Randomize One Loop in LIM and Blind This countermeasure consists in ran-
domizing the way the words xi are taken by the long integer multiplication algorithm.
In other words it randomizes the order of the lines of the schoolbook multiplication.
Then computing correlation between xi and Cki,j does not yield the expected result any-
more. On the other hand it remains necessary to blind the words of y. An example of
implementation is given in Alg. ??.

The random permutation provides l! different possibilities for the execution order of
the first loop. For example, using a 32-bit multiplier, a 1024-bit long integer multiplica-
tion has about 2117 possible execution orders of the first loop and with 2048-bit operands
it comes to about 2296 possibilities.

Algorithm 4.2.1 LIM with lines randomization and blinding

Input: x = (xl−1xl−2 . . . x1x0)b, y = (yl−1yl−2 . . . y1y0)b
Output: LinesRandLIM(x,y) = x× y

Step 1. Draw a random permutation vector α = (αl−1 . . . α0) in [0, l − 1]

Step 2. Draw a random value r in [1, 2t − 1]

Step 3. for i from 0 to 2l − 1 do wi = 0

Step 4. for h from 0 to l − 1 do
i← αh, ri ← r × xi and c← 0
for j from 0 to l − 1 do

(uv)b ← (wi+j + xi × (yj − r) + c) + ri
wi+j ← v and c← u

while c 6= 0 do
uv ← wi+j + c
wi+j ← v, c← u and j ← j + 1

Step 5. Return(w)

Compared to the previous countermeasure, Alg. ?? requires only l2 + l t-bit multi-
plications and 2t bits of additional storage.

Remark One may argue that in the case of very small l values such a countermeasure
might not be efficient. Remember here that if l is very small, the horizontal correlation
analysis is not efficient either because of the small number of curve segments.

Randomize the Two Loops in LIM We propose a variant of the previous coun-
termeasure in which the execution order of the both internal loops of the long integer
multiplication are randomized. This means randomizing both lines and columns of the
schoolbook multiplication. The main advantage is that none of the operands xi or yj
needs to be blinded anymore. The number of possibilities for the order of the l2 internal
multiplication is increased to (l!)2. An example of implementation is given in Alg. ??.
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Unlike the two previous countermeasures, Alg. ?? requires no extra t-bit multiplica-
tion compared to LIM. It is then an efficient and interesting countermeasure, while the
remaining difficulty for designers consists in implementing it in hardware.

Algorithm 4.2.2 LIM with lines and columns randomization

Input: x = (xl−1xl−2 . . . x1x0)b, y = (yl−1yl−2 . . . y1y0)b
Output: MatrixRandLIM(x,y) = x× y

Step 1. Draw two random permutation vectors α, β in [0, l − 1]

Step 2. for i from 0 to 2l − 1 do wi = 0

Step 3. for h from 0 to l − 1 do
i← αh

for j from 0 to 2l − 1 do cj = 0
for k from 0 to l − 1 do

j ← βk
(uv)b ← wi+j + xi × yj
wi+j ← v and ci+j+1 ← u

u← 0
for s from i+ 1 to 2l − 1 do

(uv)b ← ws + cs + u
ws ← v

Step 4. Return(w)

4.2.6 Concerns for Common Cryptosystems

We presented our analysis on straightforward implementations of the RSA signature
and decryption algorithms which essentially consist of an exponentiation with the secret
exponent. In the case of an RSA exponentiation using the CRT method our technique
cannot be applied since the operations are performed modulo p and q which are unknown
to the attacker. On the other hand DSA and Diffie-Hellman exponentiations were until
now considered immune to DPA and CPA because the exponents are chosen at random
for each execution. Indeed it naturally protects these cryptosystems from vertical anal-
ysis. However, as horizontal CPA requires a single execution power trace to recover the
secret exponent, DSA and Diffie-Hellman exponentiations are prone to this attack and
other countermeasures must be used in embedded implementations. It is worth noticing
that ECC cryptosystems are theoretically also concerned by the horizontal side-channel
analysis. However since key lengths are considerably shorter – for instance ECC 224
bits is considered having equivalent mathematical resistance than RSA 2048 – very few
curves per scalar multiplication will be available for the attack. On the other hand,
scalar multiplication involves point doublings and point additions instead of field mul-
tiplications and squaring operations. Each point operation requires about 10 modular
multiplications and thus correlation computation could take advantage of all the corre-
sponding curves. Nevertheless, a factor of about 10 should not balance the key length
reduction which has a quadratic influence on the number of available curve segments.
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4.2.7 Conclusion

We presented in this chapter a way to apply classical power analysis techniques such as
CPAon a single curve to recover the secret key in some public key implementations – e.g.
non CRT RSA, DSA or Diffie-Hellman – protected or not by exponent randomization.
We also applied our technique in practice and presented some successful results obtained
on a 16-bit RISC microprocessor. However even with bigger multiplier sizes (32 or
64 bits) this attack can be envisaged depending on the key size, cf. Section ??. We
discussed the resistance of some countermeasures to our analysis and introduced three
secure multiplication algorithms.

Our contribution enforces the necessity of using sufficiently large random numbers
for blinding in secure implementations and highlights the fact that increasing the key
lengths in the next years could improve the efficiency of some side-channel attacks. The
attack we presented threatens implementations which may have been considered secure
up to now. This new potential risk should then be taken into account when developing
embedded products.

Further work could target the use of other values and distinguishers for the horizontal
correlation analysis and then improve its efficiency. Possible ideas include: using more
intermediate values, some likelihood tests, guessing simultaneously many bits of the
secret exponent to increase the number of available curves for the analysis, using different
models like the bivariate one for correlation factor computation on curves. Non CRT
RSA cannot be threatened by the horizontal CPA (but still by the Big Mac Attack) as
the moduli values used in both exponentiation are unknown to the attacker. Another
further improvement would target to apply horizontal CPA to CRT RSA.

4.3 ROSETTA for Single Trace Analysis

4.3.1 RSA Implementation

The standard way of computing an RSA signature S of a message m consists of a modular
exponentiation with the private exponent: S = md mod N . The corresponding signature
is verified by comparing the message m with the signature S raised to the power of the

public exponent: m
?
= Se mod N .

In order to improve its efficiency, the signature is often computed using the Chinese
Remainder Theorem (CRT). Let us denote by dp (resp. dq) the residue d mod p− 1
(resp. d mod q − 1). To compute the signature, the message is raised to the power of dp
modulo p then to the power of dq modulo q. The corresponding results Sp and Sq are
then combined using Garner’s formula [?] to obtain the signature: S = Sq + q(q−1(Sp −
Sq) mod p).

If used exactly as described above, RSA is subject to multiple attacks from a the-
oretical point of view. Indeed, it is possible under some assumptions to recover some
information on the plaintext from the ciphertext or to forge fake signatures. To ensure
its security, RSA must be used according to a protocol which mainly consists in for-
matting the message. Examples of such protocols are the encryption protocol OAEP
and the signature protocol PSS, both of them being proven secure and included in the
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standard PKCS #1 V2.1 [?]. Note that, as they do not require the knowledge of the
exponentiated value, the new attacks described in this paper also apply when either
OAEP or PSS scheme is used.

From a practical point of view, the RSA exponentiation is also subject to many at-
tacks if straightforwardly implemented. For instance, SSCA, DSCA or collision analysis
can be used to recover the RSA private key. SSCA aims at distinguishing a difference of
behavior when an exponent bit is a 0 or a 1.

DSCA allows a deeper analysis than SSCA by exploiting the dependency which
exists between side-channel measurements and manipulated data values [?]. To this end,
thousands of measurements are generally combined using a statistical distinguisher to
recover the secret exponent value. Nowadays, the most widespread distinguisher is the
Pearson linear correlation coefficient [?].

Finally, collision analysis aims at identifying when a value is manipulated twice during
the execution of an algorithm.

Algorithm ?? presents the classical atomic exponentiation which is one of the fastest
exponentiation algorithms protected against the SPA.

Alg. 4.3.1 Atomic Multiply-Always Exponentiation

Input: x, n ∈ N, d = (dv−1dv−2 . . . d0)2

Output: xd mod n
1. R0 ← 1
2. R1 ← x
3. i← v − 1
4. k ← 0
5. while i ≥ 0 do
6. R0 ← R0 ×Rk mod n
7. k ← k ⊕ di [⊕ stands for bitwise X-or]
8. i← i− ¬k [¬ stands for bitwise negation]
9.

10. return R0

When correctly implemented, Alg. ?? defeats SSCA since squarings cannot be dis-
tinguished from other multiplications on a side-channel trace, as depicted by Fig. ??.

M M M M M M M M M

p
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er

time

. . .

Figure 4.8: Atomic multiply-always side-channel leakage

To prevent the implementation of RSA exponentiation from DSCA, the two main
countermeasures published so far are based on message and exponent blinding [?, ?].
Instead of computing straightforwardly S = md mod n, one rather computes S̃ = (m+
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k0 · n)d+k1·ϕ(n) mod 2λ · n where ϕ denotes the Euler’s totient and k0 and k1 are two
λ-bit random values, then finally reduce S̃ modulo N to obtain S. Using such a blinding
scheme with a large enough λ (32 bits are generally considered as a good compromise
between security and cost overhead), the relationship between the side-channel leakages
occurring during an exponentiation and the original message and exponent values is
hidden to an adversary, therefore circumventing DSCA.

As the modular exponentiation consists of a series of modular multiplications, it
relies on the efficiency of the modular multiplication. Many methods have been pub-
lished so far to improve the efficiency of this crucial operation. Amongst these methods,
the most popular are the Montgomery, Knuth, Barrett, Sedlack or Quisquater modular
multiplications [?, ?]. Most of them have in common that the long-integer multiplica-
tion is internally computed by repeatedly calling a smaller multiplier operating on t-bit
words. A classic example is given in Alg. ?? which performs the schoolbook long-integer
multiplication using a t-bit internal multiplier giving a 2t-bit result. The decomposi-
tion of an integer x in t-bit words is given by x = (x`−1x`−2 . . . x0)b with b = 2t and
` = blogb(x)c+ 1.

Alg. 4.3.2 Schoolbook Long-Integer Multiplication

Input: x = (x`−1x`−2 . . . x0)b, y = (y`−1y`−2 . . . y0)b
Output: x× y

1. for i = 0 to 2`− 1 do
2. zi ← 0
3. for i = 0 to `− 1 do
4. R0 ← 0
5. R1 ← xi
6. for j = 0 to `− 1 do
7. R2 ← yj
8. R3 ← zi+j
9. (R5R4)b ← R3 +R2 ×R1 +R0

10. zi+j ← R4

11. R0 ← R5

12. zi+` ← R5

13.

14. return z

In the rest of this section we recall some previously published attacks on atomic
exponentiations which inspired our new technique detailed in Section ??.

4.3.2 Attacks Background

Distinguishing Squarings from Multiplications in Atomic Exponentiation

It has already been observed in [?, ?] that squaring and multiplication output results
had different distributions and it lead to attack paths. For instance the probability for
a subtraction by the modulus to happen in a Montgomery modular squaring is different
than the one for a Montgomery modular multiplication. This property was exploited
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by Walter et al. [?] to recover the secret exponent involved in a Montgomery modular
exponentiation.

In [?] Amiel et al. present a specific DSCA aimed at distinguishing squaring from
other multiplications in the atomic exponentiation. They observe that the average Ham-
ming weight of the output of a multiplication x× y has a different distribution whether:

• the operation is a squaring performed using the multiplication routine, i.e. x = y,
with x uniformly distributed in

[
0, 2`t − 1

]
;

• or the operation is an actual multiplication, with x and y independent and uni-
formly distributed in

[
0, 2`t − 1

]
.

Thus, considering a device with a single long-integer multiplication routine used to per-
form either x × x or x × y, a set of N side-channel traces computing multiplications
with random operands can be distinguished from a set of N traces computing squarings,
provided that N is sufficiently large to make the two distribution averages separable.
This attack can thus target an atomic exponentiation such as Alg. ?? even in the case of
message and modulus blinding. Regarding the exponent blinding, authors suggest that
their attack should be extended to success on a single trace but do not give evidence of
its feasibility. We thus study this point in the following of the paper.

Horizontal Correlation Analysis

Correlation analysis on a single atomic exponentiation side-channel trace has been pub-
lished in [?] where the message is known to the attacker but the exponent is blinded.
This attack called horizontal correlation analysis requires only one exponentiation trace
to recover the full RSA private exponent.

Instead of considering the whole k-th long-integer multiplication side-channel trace
T k as a block, the authors consider each inner side-channel trace segment corresponding
to a single-precision multiplication on t-bit words. For instance, if the long-integer
multiplication is performed using Alg. ?? on a device provided with a t-bit multiplier,
then the trace T k of the k-th long-integer multiplication x× y can be split into `2 trace
segments T ki,j , 0 6 i, j < `, each of them representing a single-precision multiplication
xi × yj . More precisely, for each word yj of the multiplicand y, the attacker obtains `
trace segments T ki,j , 0 6 i, j < `, corresponding to a multiplication by yj . The slicing of

T k into trace segments T ki,j is illustrated on Fig. ??.
In the horizontal correlation analysis the attacker is able to identify whether the k-th

long-integer operation T k is a squaring or a multiplication by computing the correlation
factor between the series of Hamming weights of each t-bit word mj of the message m
and the series of corresponding sets of ` trace segments T ki,j , 0 6 i, j < `. This correlation
factor is expected to be much smaller when the long-integer operation is a squaring (i.e.
R0 ← R0×R0 in Alg. ??) than when it is a multiplication by m (i.e. R0 ← R0×R1). The
correlation factor can be computed by using the Pearson correlation coefficient ρ(H,T k)
where H = (H0, . . . ,H`−1), with Hj = (H(mj), . . . ,H(mj)), H(mj) standing for the
Hamming weight of mj and T k = (T k0 , . . . , T

k
`−1) with T kj = (T k0,j , . . . , T

k
`−1,j).
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Figure 4.9: Horizontal side-channel analysis on exponentiation

Big Mac Attack

Walter’s attack needs, as our technique, a single exponentiation side-channel trace to
recover the secret exponent. For each long-integer multiplication, the Big Mac attack
detects if the operation performed is either R0 × R0 or R0 × m. The multiplications
xi × yj — and corresponding trace segments T ki,j — can be easily identified on the

side-channel trace from their specific pattern which is repeated `2 times in the long-
integer multiplication loop. A template side-channel trace is computed (either from the
precomputations or from the first squaring operation) to characterize the manipulation
of the message during the long-integer multiplication. The Euclidean distance between
the template trace and each long-integer multiplication trace T k is then computed. If
it exceeds a threshold then the attack concludes that the operation is a squaring, or a
multiplication by m otherwise.

Walter uses the Euclidean distance but we noticed that other distinguisher could be
used. In the following section, we extend the Big Mac attack using a collision-correlation
technique.

4.3.3 Big Mac Extension using Collision Correlation

A specific approach for SCA uses information leakages to detect collisions between data
manipulated in algorithms. A side-channel collision attacks against a block cipher was
first proposed by Schramm et al. in 2003 [?]. More recently Moradi et al. [?] proposed to
use a correlation distinguisher to detect collisions in AES. The main advantage of this ap-
proach is that it is not necessary to define a leakage model as points of traces are directly
correlated with other points of traces. Later, Clavier et al. [?] presented two collision-
correlation techniques defeating different first order protected AES implementations.
The same year, Witteman et al. [?] applied collision correlation to public key imple-
mentation. They describe an efficient attack on RSA using square-and-multiply-always
exponentiation and message blinding. All these techniques require many side-channel
execution traces. In this section, we extend Walter’s Big Mac attack using the collision
correlation as distinguisher instead of the Euclidean distance.
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We consider a blinded exponentiation and use the fact that the second and third
modular operations in an atomic exponentiation are respectively 1∗ m̃ and m̃∗ m̃, where
m̃ is the blinded message. The trace of the second long-integer multiplication yields `
multiplication segments for each word m̃j of the blinded message. Considering the k-th
long-integer multiplication, k > 3, we compute the correlation factor between the series
of ` trace segments T 2

j — each one being composed of the ` trace segments T 2
i,j involved

in the multiplication by m̃j — and the series of ` trace segments T kj . Since the blinded
value of the message does not change during the exponentiation, a high correlation occurs
if the k-th long-integer operation is a multiplication, and a low correlation otherwise.
Once the sequence of squarings and multiplications is found, the blinded exponent value
is straightforwardly recovered. Notice that recovering the blinded value of the secret
exponent is not an issue as it can be used to forge signature as well as its non-blinded
value.

This attack also works if we use the trace segments T 3
j of the third long-integer

operation instead of the trace segments T 2
j . One can also combine the information

provided by the second and third long-integer operations to improve the attack.

Remark

As the original Big Mac, this attack also applies to the CRT RSA exponentiation since
no information is required on either the message or the modulus. This is of the utmost
importance since, to the best of our knowledge, this is the first practical attack on a
CRT RSA fully blinded (message, modulus and exponent) atomic exponentiation.

4.4 ROSETTA: Recovery Of Secret Exponent by Triangu-
lar Trace Analysis

4.4.1 Attack Principle

The long-integer multiplication LIM(x, y) in base b = 2t is given by the classical school-
book formula:

x× y =

`−1∑
i=0

`−1∑
j=0

xiyjb
i+j

and illustrated, with for instance ` = 4 by the following matrix M :

M =


x0y0 x0y1 x0y2 x0y3

x1y0 x1y1 x1y2 x1y3

x2y0 x2y1 x2y2 x2y3

x3y0 x3y1 x3y2 x3y3


In the case of a squaring, then x = y and the inner multiplications become:

S =


x0x0 x0x1 x0x2 x0x3

x1x0 x1x1 x1x2 x1x3

x2x0 x2x1 x2x2 x2x3

x3x0 x3x1 x3x2 x3x3
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We consider four observations to design our new attacks, assuming a large enough
multiplier size t ≥ 16:

(Ω0) LIM(x, y) s.t. x = y ⇒ Prob(xi × yi are squaring operations) = 1 ∀i

(Ω1) LIM(x, y) s.t. x 6= y ⇒ Prob(xi × yi are squaring operations) ≈ 0 ∀i

(Ω2) LIM(x, y) s.t. x = y ⇒ Prob(xi × yj = xj × yi) = 1 ∀i 6= j.

(Ω3) LIM(x, y) s.t. x 6= y ⇒ Prob(xi × yj = xj × yi) ≈ 0 ∀i 6= j.

From observations (Ω0) and (Ω1) one can apply the attack presented in [?] on a single
trace as suggested by the authors. The main drawback is that only ` such operations are
performed during a LIM which represents a small number of trace segments. It is likely
to make the attack inefficient for small modulus lengths (with respect to the multiplier
size t).

From observations (Ω2) and (Ω3) we notice that collisions between xi × yj and xj ×
yi for i 6= j can be used to identify squarings from other multiplications. Moreover,
LIM(x, y) provides `2 − ` operations xi × yj , i 6= j, thus (`2 − `)/2 couples of potential
collisions. This represents a fairly large number of trace segments. The principle of our
new attack consists in detecting those internal collisions in a single long-integer operation
to determine whether it is a squaring or not. Visually, we split the matrix M into an
upper-right and a lower-left triangles of terms, thus we call this technique a triangle trace
analysis.

We present in the following two techniques to identify these collisions on a single long-
integer multiplication trace. The first analysis uses the Euclidean distance distinguisher
and the second one relies on a collision-correlation technique.

4.4.2 Euclidean Distance Distinguisher

We use as distinguisher the Euclidean distance between two sets of points on a trace
as Walter [?] in the Big Mac analysis. In order to exploit properties (Ω2) and (Ω3) we
proceed as follows. For each LIM(x, y) operation we compute the following differential
side-channel trace:

TED =
2

`2 − `
∑

06i<j<`

√
(Ti,j − Tj,i)2

If the operation performed is a squaring then the single-precision multiplications xi× yj
and xj × yi store the same value in the result register (or in the memory) at the end of
the operation. The side-channel leakage of the result storage of both operations should
thus be similar. On the other hand, if x 6= y, products differ and the side-channel leakage
should present less similarities. Assuming a side-channel leakage function linear in the
Hamming weight of the data manipulated, a squaring should result in E(TED) ≈ 0,
whereas we should expect a significantly higher value (about t/2 for each of the product
halves) in the case of a multiplication.
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4.4.3 Collision-Correlation Distinguisher

We define the two following series of trace segments, where the ordering of couples (i, j)
is the same for the two series:

Θ0 = {Ti,j s.t. 0 6 i < j 6 `− 1}

Θ1 = {Tj,i s.t. 0 6 i < j 6 `− 1}

Each set includes N = (`2 − `)/2 trace segments of base b multiplications.
In order to determine the operation performed by the LIM we compute the Pearson

correlation factor between the two series Θ0 and Θ1 as described in [?]:

ρ̂Θ0,Θ1(t) =
Cov(Θ0(t),Θ1(t))

σΘ0(t)σΘ1(t)

=
N
∑

(Ti,j(t)Tj,i(t))−
∑
Ti,j(t)

∑
Tj,i(t)√

N
∑

(Ti,j(t))2 − (
∑
Ti,j(t))2

√
N
∑

(Tj,i(t))2 − (
∑
Tj,i(t))2

where summations are taken over all couples 0 6 i < j 6 `− 1.
In case of a squaring operation, a much higher correlation value ρ̂Θ0,Θ1 is expected

than in case of a multiplication. Computing this correlation value for each LIM operation
allows to determine its nature and to recover the sequence of exponent bits.

Remark

Contrary to differential analysis on symmetric ciphers, each exponent bit requires to
distinguish one hypothesis out of only two, instead of for instance 256 considering a
differential attack on AES. Thus fixing a decision threshold is easier when dealing with
the exponentiation. This has already been observed when applying DPA or CPA on
RSA [?, ?] compared to DES or AES.

4.4.4 Comparison of the Different Attacks

In order to validate these two techniques, we generated simulated side-channel traces for
a classical 32 × 32-bit multiplier. As generally considered in the literature, we assume
a side-channel leakage model linear in the Hamming weight of the manipulated data —
here xi, yj , and xi × yj — and add a white Gaussian noise of mean µ = 0 and standard
deviation σ. We build simulated side-channel traces based on the Hamming weight of
the data manipulated in the multiplication operation such that each processed single-
precision multiplication generates four leakage points H(xi), H(yj), H(xi × yj mod b),
and H(xi × yj ÷ b), where ÷ stands for the Euclidean quotient.

Besides validating our two Rosetta variants — the Euclidean distance distinguisher
(Rosetta ED) and the collision-correlation one (Rosetta CoCo) — we compare Rosetta
with other techniques discussed previously, namely the classical Big Mac, the Big Mac
using collision correlation (Big Mac CoCo), and the single trace variant of the Amiel et al.
attack presented at SAC 2008.
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We proceed in the following way: we randomly select two `-bit integers x and y. Then
we generate the side-channel traces of the multiplication LIM(x, y) and of the squaring
LIM(x, x).

Each different attack is eventually applied and we keep trace of their success or failure
to distinguish the squaring from the multiplication. Finally, we estimate the success rate
of each technique by running 1 000 such experiments. These tests are performed for three
different noise standard deviation values4: from no noise (σ = 0) to a strong one (σ = 7).

Characterisation and Threshold

A threshold for the attack must be selected for each technique to determine whether
the targeted operation is a multiplication or a squaring. Using simulated side-channel
traces, it was possible to determine the best threshold value for each technique. Without
any knowledge on the component, it is more difficult to fix those threshold values. The
attacks could be processed with guess on these thresholds, for instance selecting 0.5
for the collision correlation, but it could not reach optimal efficiency or fail. It is then
preferable to determine the best threshold values through a characterization phase of the
multiplier, either with an access to an open sample or using the public exponentiation
calculation as suggested in [?].

Results

We obtain the success rates given in tables ?? (σ = 0), ?? (σ = 2) and ?? (σ = 7) for
different key lengths ranging from 512 bits to 2048 bits. Figures ?? and ?? present a
graphic comparison of these results for σ = 0 and σ = 7.

Technique 512 bits 768 bits 1024 bits 1536 bits 2048 bits

Big Mac [?] 0.986 0.990 0.993 0.994 0.995

SAC 2008 [?] 0.533 0.618 0.734 0.858 0.897

Big Mac CoCo (§??) 0.999 1.00 1.00 1.00 1.00

Rosetta ED (§??) 1.00 1.00 1.00 1.00 1.00

Rosetta CoCo (§??) 1.00 1.00 1.00 1.00 1.00

Table 4.1: Success rate with a null noise, σ = 0

Results Interpretation

We observe that with no noise (cf. Table ??) all techniques are efficient when applied
to large modulus bit lengths (1536 bits or more). For smaller modulus lengths, the SAC
2008 technique is inefficient (probability of success close to 0.5) as expected since the
number of useful operations in that case is too small.

In case of a noisy component, we observe that the original Big Mac and the attack
from SAC 2008 are not efficient, their probability of success is about 0.5–0.7. Big Mac

4Regarding the standard deviation of the noise, a unit corresponds to the side-channel difference
related to a one bit difference in the Hamming weight.
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Technique 512 bits 768 bits 1024 bits 1536 bits 2048 bits

Big Mac [?] 0.767 0.775 0.807 0.816 0.818

SAC 2008 [?] 0.546 0.629 0.717 0.805 0.855

Big Mac CoCo (§??) 0.981 0.998 0.999 1.00 1.00

Rosetta ED (§??) 1.00 1.00 1.00 1.00 1.00

Rosetta CoCo (§??) 1.00 1.00 1.00 1.00 1.00

Table 4.2: Success rate with a moderate noise, σ = 2

Technique 512 bits 768 bits 1024 bits 1536 bits 2048 bits

Big Mac [?] 0.557 0.577 0.621 0.614 0.632

SAC 2008 [?] 0.551 0.577 0.623 0.662 0.702

Big Mac CoCo (§??) 0.737 0.855 0.909 0.963 0.981

Rosetta ED (§??) 0.711 0.821 0.878 0.953 0.992

Rosetta CoCo (§??) 0.685 0.816 0.906 0.992 0.997

Table 4.3: Success rate with a strong noise, σ = 7
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Figure 4.10: Success rate of the different attacks with no noise.
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Figure 4.11: Success rate of the different attacks with a strong noise, σ = 7.

analysis using collision correlation, and both Rosetta techniques start to be efficient from
1024-bit operands and are very efficient for 1536-bit and 2048-bit operands.

Our study demonstrates that these three last techniques are the most efficient ones
and represent a more serious threat for blinded exponentiation than the original Big
Mac.

From Partial to Full Exponent Recovery

Depending on the component, on the leakage and noise level of the chip, we observe that
the success rate of the attack varies and may reveal too few information to recover the
whole exponent value. In the case where uncertainty remains on some exponent bits,
the attack from Schindler and Itoh [?] may help to reveal them. If necessary, Rosetta
analysis can thus be advantageously combined with this technique to completely recover
the exponent.

4.4.5 Countermeasures

As for the other attacks considered in this paper, both Rosetta techniques we introduced
present the following interesting properties: (i) they make use of a single side-channel
trace and, (ii) they do not require the knowledge of the message nor of the modulus. As a
consequence they are applicable even when the classical set of blinding countermeasures
(message, modulus, exponent) is implemented and whatever the size of the random
values used.

It is worth to notice that Rosetta won’t distinguish a squaring operation from a
multiplication if only one of the two operands has the additive countermeasure applied.
A first idea to prevent these attacks is to improve the message blinding by randomizing
it before each long-integer multiplication, for instance by adding the modulus n or a
multiple thereof to the message. At this point, it is worth noticing a specific difference
between both Rosetta and other attacks. Rosetta can distinguish a squaring from a
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multiplication without using any template or previous leakage. This is not the case with
the other techniques — except for the single trace variant of the SAC 2008 attack which
we demonstrate not to be efficient in the previous section. The consequence is that
Rosetta is still applicable even when this improved blinding is implemented.

We recall hereafter three existing countermeasures that we believe to withstand all
the techniques presented in this paper.

Shuffled Long-Integer Multiplication In [?], a long integer multiplication algo-
rithm with internal single-precision multiplications randomly permuted is presented.
More details are given in [?, Sec. 2.7]. This countermeasure makes Rosetta analysis
virtually infeasible as indices i, j of multiplication xi × yj are not known anymore.

Always True Multiplication This solution consists in ensuring that multiplication
operands are always different (or different with high probability). To achieve this ob-
jective, before each multiplication LIM(x, y), both operands x and y are randomized by
x? = x+ r1.n and y? = y + r2.n. If r1 6= r2, two equal operands x and y are traded for
x? and y? with x? 6= y? and the operation LIM(x?, y?) is not a squaring.

Square-Always algorithm The square-always algorithm presented in [?] processes
any multiplication using two squarings. As for the solution of using multiplications of
different terms only, Rosetta does not apply. Regular atomic square always algorithms
can be used to prevent SSCA. Exponent blinding countermeasure must be associated
with this solution.

4.4.6 Conclusion

We present in this study new side-channel methods — the Big Mac using collision cor-
relation and the two Rosetta techniques — allowing to distinguish a squaring from a
multiplication when the same long-integer multiplication algorithm is used for both op-
erations. They can be used to recover an RSA secret exponent — both in standard or
CRT mode — with a single execution side-channel trace. We compare our new tech-
niques with other single trace side-channel analyses and demonstrate that they are more
efficient than previous ones, especially on noisy measurements. We show that classical
combination of message, modulus and exponent blindings is not sufficient to counteract
our analysis and we suggest more advanced countermeasures. As a conclusion, we quote
Colin Walter [?] to recall the very interesting property of these attacks:

”The longer the key length, the easier the attacks.”
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Chapter 5

Defeating with Fault Injection A
Combined Attack Resistant
Implementation

5.1 Introduction

Fault Analysis (FA), or Active Attacks, consists in perturbing the algorithm process to
obtain an abnormal behavior. It can be done by injecting power glitches on the circuit
pad or by precise laser light emissions on the device surface (front side or back side). An
erroneous computation result is then obtained which can be exploited to recover entirely
or partially the secrets. Different active attacks exist: the Differential Fault Analysis
(DFA), the Ineffective Fault Analysis (IFA), the Collision Fault Analysis (CFA).

Most of the cryptosystems are nowadays threatened by both techniques like RSA [?]
and ECC [?, ?] embedded implementations. We focus our study in this chapter on
those embedded implementations. In the last decade many countermeasures have been
presented to design side-channel resistant algorithm on the first hand and fault injection
countermeasures on the other hand. For years implementing those countermeasures
separately has never been an issue. But in 1997 Amiel et al. [?] present a combined passive
and active attack on an RSA implementation which is considered at this time resistant
to both SCA and FA techniques separately. In 2010 Schmidt et al. [?] propose combined-
attack resistant algorithms to compute exponentiation and scalar multiplication. Their
implementations cleverly include tricks to thwart the Amiel et al. attack.

However in this chapter we present new attacks on their algorithms. The first tech-
nique we introduce is a first order fault attack which can recover the whole secret expo-
nent with a practical number of faulted results. Our fault injections benefit from a flaw
in the infective computation design of the Schmidt et al. algorithms. The second threat
on these algorithms is an attack combining fault injection with differential analysis on
many executions. This analysis targets their use of a specific exponentiation technique,
i.e. left-to-right multiply always, in order to thwart its supposedly resistance against
combined attacks.

In Section ?? we remind the reader the necessary background on side-channel and
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fault attacks, as well as on combined attack resistant implementation in order to un-
derstand the attacks presented in this chapter. In Section ?? we introduce the first
order fault attacks which can defeat the combined exponentiation from Schmidt et al.
on a simplified and the complete versions of this algorithm. New combined attacks are
presented in Section ??. Section ?? propose an improved version of the Schmidt et al.
algorithm which counterfeit the new attacks presented. We conclude in Section ??.

5.2 Background

We present in this section the combined attack principle and the previous publications
on the subject. We also remind the Schmidt et al. algorithms we are attacking in the
rest of this chapter.

5.2.1 Combined Attacks on Asymmetric Cryptosystems

Since the publication from Amiel et al., combined attacks have been more and more
investigated. This technique exploits leakage information from both a fault analysis (FA)
and a classical side-channel attack like SSCA or DSCA. Both symmetric and asymmetric
cryptosystems have been shown vulnerable to it. In this paragraph we briefly review the
combined attacks proposed in the literature.

The first combined attack publication from Amiel et al. [?] combines a fault attack
with an SSCA in order to break a modular exponentiation that is supposedly secure
against DFA and SSCA. The authors attack a left-to-right multiply always algorithm
implementing the atomicity principle from Chevallier-Mames et al. [?]. Additionally the
message and the secret exponent values were randomized to counterfeit DSCA. The first
step of the attack consists in injecting a fault in one of the registers (or in the RAM)
before (or during) the beginning of the exponentiation. The fault aims at creating a
modified message value that will leak in SSCA each time it is manipulated. For instance
a low Hamming weight value has been introduced into a part of the message, or the
message pointer has been modified to include an erased area of the RAM. This mes-
sage modification renders the message manipulations visible into a side-channel trace.
It becomes then possible to distinguish a squaring operation from a multiplication us-
ing SSCA as described in [?]. Hence, the FA protection that is present at the end of
the algorithm cannot prevent the SSCA leakage that has already occurred during the
computation. This attack is very efficient as a single fault applied successfully to the
calculation execution will make the SSCA efficient. The principle of the attack of Amiel
et al. seems to be applicable to any classic left-to-right atomic algorithm, either expo-
nentiation or scalar multiplication. In [?], the authors propose a countermeasure called
Detect and Derive based on the principle of infective computation. However, it was
shown vulnerable in [?]. In this paper, Schmidt et al. introduce a new resistant expo-
nentiation algorithm, as well as a scalar multiplication algorithm, also based on infective
computation. The idea is to be able to detect a fault as soon as it happens and corrupt
the data if necessary so that no relevant information is leaking anymore.

More recently, in [?], Fan et al. study the case of combined attacks specially targeting
elliptic curve scalar multiplication. Using the properties of elliptic curves, they develop
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a powerful attack that can defeat atomic and regular algorithms. In order to perform
the attack, one needs to choose a particular input point of the scalar multiplication. By
injecting a fault after the initial point verification, the attacker is then able to obtain
a point with a small order. During the scalar multiplication, computations with the
faulted point will end up on the infinity point which is particularly visible by SSCA in
most implementations. The attacker is then able to find information on the secret scalar.

5.2.2 Schmidt et al. Resistant Algorithm

We remind in the following the combined attack resistant implementation from Schmidt
et al. [?] to give the reader the necessary notions to understand our attacks. We princi-
pally consider the exponentiation algorithm in this chapter, however most of our attack
paths can be directly applied to the scalar multiplication counterpart.

Fault model considered.

In their paper [?], Schmidt et al. deal with the three following fault attack models. The
attacker is able with fault injection to:

• randomize data to an unknown value,

• reset data to all zeros or all ones or any given fix value,

• modify opcodes, i.e. skip instructions, break loops, etc.

The authors only take into consideration first order fault injections, i.e. an attacker
injects only one fault per execution of the algorithm. They present two algorithms
protected against combined attacks under these fault models. Their first algorithm
(Alg. ??) [?, Alg. 3] is a protected exponentiation, and their second one [?, Alg. 4] is
a protected scalar multiplication. Both algorithms are based on the same principles of
countermeasures.

We remind the reader through Algorithm ?? the detailed combined attack resistant
algorithm for exponentiation from Schmidt et al. [?].

Notations.

In the rest of the chapter, we use the following notations:

• let W be the block length that is generally the size of a processor word, i.e. W = 8
(resp. W = 16 or W = 32) for an 8-bit (resp. for a 16-bit or a 32-bit) architecture,

• let d be the t-bit secret exponent and d = (dt−1, dt−2, . . . d1, d0)2, with di the i-th
bit of d, its binary representation,

• let d̄ = (d̄t+λ−1, d̄t+λ−2, . . . d̄1, d̄0)2 be the blinded exponent,

• let d̃ be the blinded exponent encoded using the function ψα detailed below,

• let d̂ be the exponent decoded using ψ−1
α ,
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Alg. 5.2.1 Schmidt et al. [?, Alg. 3] left-to-right exponentiation.

Input: d = (dt−1, . . . , d0)2,m ∈ ZN , N and block length W .
Output: md mod N

1. r1 ← random(1, 2λ − 1)
2. r2 ← random(1, 2λ − 1)
3. i← (r−1

2 mod N) · r2

4. R0 ← i · 1 mod Nr2

5. R1 ← i ·m mod Nr2

6. d̄← d+ r1 · ϕ(N)
7. [d̃(l−1), . . . , d̃(0)]← [ψ0(d̄(l−1)), . . . , ψ0(d̄(0))]
8. k ← 0
9. j ← bitlength(d̃)− 1

10. while j > 0 do
11. R0 ← R0 ·Rk mod Nr2

12. if (R0 = 0) or (R1 = 0) then
13. [d̃(l−1), . . . , d̃(0)]← [1, . . . , 1]
14. d̂← ψ−1

(R0+R1 mod r2)(d̃
(bj/W c))

15. k ← k ⊕ bit(d̂, j mod W )
16. j ← j − (1− k)
17. c← R0 mod N
18.

19. return c

• let d(j) be the j-th W -bit word of d.

The exponent is protected through an encoding function ψα : Zr2 ×Zr2 → Zr2 which
is an invertible function defined as:

ψα(d(j)) = (α+N)−1 · d(j) mod r2,

ψ−1
α (d̃(j)) = (α+N) · d̃(j) mod r2,

with α ∈ Zr2 , N the modulus and r2 a small random value such that r2 > 2W .

In the next section, we introduce single fault attacks on a simplified version (without
exponent/scalar blinding) of Algorithm ?? and on the complete Algorithm ??.

5.3 Fault Attack on Schmidt et al. Algorithms

We show in this section that a classical single fault attack can still be applied to the
exponentiation algorithm proposed by Schmidt et al. [?, Alg. 3]. We consider in this
section fault attacks based on the modification of an opcode, i.e. skip of instruction.
We first propose a fault attack on a simplified version of Alg. ?? where the blinding of
the exponent is not present (Line 6). Then, based on the same fault attack principle, we
propose an attack on the complete version of Alg. ??.
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5.3.1 Fault Attack on a Simplified Algorithm

As we consider no exponent blinding in this section, we have that d̄ = d, hence the
encoded exponent d̃(k) = ψ0(d(k)) for 0 6 k 6 l − 1 where l is the length of d in W -bit
words.

To protect their implementation from the combined attack presented in [?], the
authors introduced at Line 12 of the algorithm an infective operation. The purpose
is to corrupt the secret exponent when a fault injection is detected in order to cancel
the side-channel leakage that could reveal the secret. More precisely the purpose of the
test Line 12 of Alg. ?? is to corrupt the exponent in case one of the registers R0 or
R1 was erased by fault which could leak simple side-channel information. Hence, the
exponentiation would continue its course but using false exponent bits. Schmidt et al.
choose to affect the value 1 to all words of the encoded exponent d̃. The decoding of a
word of exponent performed Line 15, assuming no faults in registers R0 or R1, computes
for the k-th word of the exponent:

d̂ = ψ−1
0 (d̃(k)) = N · ψ0(d(k)) mod r2 = d(k) mod r2.

It is very important for our attacks to notice that if the exponent has been corrupted
in Line 13, all the decoded W -bit words of exponent until the end of the exponentiation
are equal to the value:

d̂ = ψ−1
0 (1) = N · 1 mod r2 = N mod r2.

Moreover, we note from Line 16 that only the W least significant bits of d̂ are
considered for the exponentiation. It signifies that from the moment a single fault is
injected to skip the test at Line 12, all the remaining W -bit words d̂(i) being used for
the rest of the exponentiation are equal to this same and unique value N mod r2.

We introduce for our analysis two additional notations. Let H be the value (N mod
r2) mod 2W and t̃ = l ·W be the bit length of d̃.

Now consider that an attacker already knows the v (can be zero) first bits of the
exponent and skips Line 12 by fault injection u bits after in the loop of the algorithm.
The algorithm outputs the faulted result Šu that used the following exponent:

ďu =

t̃−1∑
i=t̃−v

2i · d̃i︸ ︷︷ ︸
known part of the exponent

+

t̃−v−1∑
i=t̃−v−u

2i · d̃i +

t̃−v−u−1∑
i=0

2i ·H(i mod W ). (5.1)

By doing a guess on the next u unknown bits of d and another guess on the value of
H, an attacker can compute the guessed result of the exponentiation, denoted Sg(u,H).
Then by comparing this value Sg(u,H) with Šu, he can decide if his guesses are correct
or not. After an exhaustive calculation for all possible values, when Sg(u,H) = Šu the
attacker recovers the right values (dt−v−1, . . . , dt−v−u) and H.
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Complexity.

The computational complexity C of our fault attack to recover the exponent is:

C = O

(
2(u+W ) · t̃

u

)
exponentiations.

The number of faulty signatures F to collect is:

F = O
(
t̃

u

)
.

We have validated our attack on a standard PC using the GMP library1 for different
RSA keys (values and bit-length) with success.

Table ?? gives examples of computational complexity of our attack for u = 1 and
different values of W and t.

W | Bit-length t 512 bits 1024 bits 2048 bits

8 C = 218 C = 219 C = 220

16 C = 226 C = 227 C = 228

32 C = 242 C = 243 C = 244

Table 5.1: Example of computational complexities for u = 1 to recover the exponent on
the simplified algorithm.

This attack also applies to the simplified scalar multiplication algorithm of Schmidt
et al. [?, Alg. 4], i.e. with no scalar blinding. However this analysis only works if the
attacker can retrieve the exponent u bits at a time using different faulty results. Hence
in the presence of exponent blinding, it cannot be applied directly. We present in the
following an adaptation of the attack to the blinded exponentiation algorithm.

5.3.2 Fault Attack on the Complete Version of the Algorithm

Based on the attack presented previously, we propose in this section a variation in order
to attack Alg. ?? considering the exponent blinding countermeasure. As previously
observed by Berzati et al. in [?], the blinding using ϕ(N) does not mask homogeneously
the exponent. We propose here an attack which exploits this flaw. We do not include
the processing of the exponent through the encoding function ψ for easier notation. As
seen in the previous section, the output size of the encoding function, i.e. the size of the
random r2, has no effect on the attack because the algorithm only considers bits modulo
W .

Let d̄ be the blinded exponent such that d̄ = d + r1ϕ(N) with r1 a λ-bit random.
Let d̄ =

∑t+λ−1
i=0 2i · d̄i be its binary decomposition. We can also write it as:

1The GNU Multiple Precision Arithmetic Library, available at urlhttp://gmplib.org/
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d̄ =

t+λ−1∑
i=t

2i · (r1N)i +

t−1∑
i=t/2+λ

2i · (d+ r1N)i +

t/2+λ−1∑
i=0

2i · (d+ r1ϕ(N))i. (5.2)

We observe that the least significant bits of the secret exponent d are randomized
with the full mask r1ϕ(N). On the other hand, the most significant (half upper) bits of
d are only masked with r1N . The attack consists in finding d from its most significant
bits to its least significant ones.

We note Šu the faulty result of an exponentiation where the test Line 12 of Alg. ??
has been skipped by fault after the u-th unknown bit of the exponent has been processed.
The faulty exponent ďu corresponding to Šu is detailed in Eq. (??). We consider that
the attacker has already retrieved the v most significant bits of d.

Retrieving the MSB part of d.

We first consider a fault injected after the u-th unknown bit within the range of bits of
d being [(t/2 + λ), t]. We consider then:

d̄ =

t+λ−1∑
i=t

2i · (r1N)i +

t−1∑
i=t−u

2i · (d+ r1N)i +

t−u−1∑
i=t/2+λ

2i · (d+ r1N)i +

t/2+λ−1∑
i=0

2i · (d+ r1ϕ(N))i. (5.3)

Let d̄[u] =
∑t+λ−1

i=t−u 2i · d̄i and d̄<u> =
∑t−u−1

i=0 2i · d̄i.
The faulty exponent ďu of the result Šu can be approximated as ďu ≈ d̄[u] + d̄<u>,

not considering the carry propagation.
Once the fault has been injected, as we observed previously, the least significant

part of the encoded exponent is fixed at 1 in Line 13 of Alg. ?? as an infective cal-
culation countermeasure. Hence, we have that after the fault at the u-th bit, d̄<u> =∑t−u−1

i=0 2i ·H(i mod W ) with H = (N mod r2) mod 2W .
In order to find d̄<u>, the attacker only needs to guess W bits of H. We note

dknown =
∑t−1

i=t−v 2i · di the most significant v bits of d already retrieved by the attacker.
From Eq. (??) and (??), the most significant part of the exponent d̄[u] can be

approximated as:

d̄[u] ≈
t+λ−1∑
i=t−u

2i · (d+ r1N)i

≈ dknown +

t−v−1∑
i=t−v−u

2i · di +

t+λ−1∑
i=t−v−u

2i · (r1N)i + carry

where carry is the possible carry bit resulting from the addition between the u first bits
of r1 and N . In order to find the value of d̄[u], the attacker needs to guess u bits of d
and λ bits of r1. The possible carry bit only gives an uncertainty on the parity of the
guessed value of d. By guessing 2(u+W+λ) bits, the attacker can construct a guess of the
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full exponent ďu. He can then validate his guess by checking if the following relation is
verified:

Šu
?
= md̄[u]+d̄<u> mod N. (5.4)

Retrieving the LSB part of d.

Once we have recovered the MSB part of d, we now consider a fault injected after the
u-th unknown bit within the range of bits of d being [0, (t/2+λ)]. Contrary to the MSB
case, the bits of d will not be guessable directly as the full mask r1ϕ(N) is now applied.

We consider then:

d̄ =

t+λ−1∑
i=t/2+λ

2i · (d+ r1N)i +

t/2+λ−1∑
i=t/2+λ−u

2i · (d+ r1ϕ(N))i +

t/2+λ−u−1∑
i=0

2i · (d+ r1ϕ(N))i. (5.5)

The least significant part of the faulted exponent is still equal to d̄<u> =
∑t/2+λ−u−1

i=0 2i ·H(i mod W ).
As previously, in order to find d̄<u>, the attacker only needs to guess W bits of H.

We can write the most significant part of the exponent using Eq. (??) as:

d̄[u] =

t+λ−1∑
i=t/2+λ−u

2i · (d+ r1ϕ(N))i

=
t+λ−1∑

i=t/2+λ−u

2i · (d+ r1N − r1(p+ q − 1))i

≈ dknown +

t/2+λ−v−1∑
i=t/2+λ−v−u

2i · δi +
t+λ−1∑

i=t/2+λ−v−u

2i · (r1N)i + carry

where δi = (d− r1(p+ q − 1))i and carry is the possible carry due to the addition of
the u bits of r1N with (d− r1(p+ q − 1)).

As previously, the possible carry bit is not taken into account in the analysis as it
only affects the parity of the final guess and is easily checkable. In order to find the
value of ďu, the attacker needs to guess 2(u+W+λ) bits: u bits of δ, λ bits of r1 and W
bits of H. The attacker can then construct a guess of the full exponent and validate this

guess by checking if Šu
?
= md̄[u]+d̄<u> mod N . Contrarily to the MSB case we described

previously, recovered bits are not bits of d but u bits of δi. This can be solved by using
many faulted executions instead of one. Indeed as the values of d and (p + q − 1) are
fixed between different exponentiations, by faulting at the same time u, the attacker
can obtain an additional guess for δ with a different r1. With two or more faulted
exponentiations, he will be able to determine the u bits of d and the u bits of (p+ q−1).
The validation of the guesses are made, similarly to the MSB case, by comparing the
faulted result of exponentiation to the exponentiation with our entire guessed exponent
(see Eq. (??)).
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Complexity.

The computational complexity C of our fault attack to recover the exponent is:

C = O

(
2(u+W+λ) · t

u

)
exponentiations.

The number of faulty signatures F to collect is:

F = O
(
t

u

)
.

We can note that our fault attack does not require non-faulted results of exponentiations.
The complexity of our attack is not impacted by the size of r2 used in the encoding
function ψ but by the size of the window W as only W bits of the output of the encoding
are used to perform the exponentiation. This undesirable effect of Alg. ?? implies that
the smaller processor words, the easier this fault attack is to perform. As previously,
this attack has been validated on a standard PC using the GMP library.

We have presented first order (single) fault injections that defeat the combined re-
sistant implementation with few faulted executions and a reasonable complexity that
render this attack practical. Our attacks use a flaw in the design of the infective com-
putation in Schmidt et al. algorithms. In the next section we discuss the resistance of
Algorithm ?? against combined attacks and particularly with regards to the combined
attacks we introduce.

5.4 Combined Attacks on Schmidt et al. Algorithms

Although the algorithms proposed by Schmidt et al. [?] are supposedly resistant to the
combined attack published by Amiel et al. [?], we explain in the following that Alg. ??
can be threatened by more advanced combined attacks.

Combining Fault Injection with Differential Analysis.

We consider the exponentiation algorithm (Alg. ??) for the description of this attack,
however it directly applies to the scalar multiplication algorithm [?, Alg. 4]. Note that
the internal registers R0 and R1 are randomized at the beginning of the algorithm with
a random idempotent element i (Line 6 Alg. ??). Hence, we can only use attacks that
consider unknown plaintexts as the randomization by i cannot be easily removed.

A combined attack that uses an instruction skip fault combined with one of the
differential attack using unknown plaintext can be mounted on Schmidt et al. algorithms.
If the attacker can skip Line 6 in Alg. ?? by fault injection, then the exponentiation is
performed without exponent blinding, i.e. d̄ = d. In case a bit of d is dj = 0, the
multiplication Line 11 becomes R0 · R0, whereas if a bit equals 1, it computes R0 ·
R1. More precisely, if dj = 0 the output of the multiplication will have the expected
Hamming weight of a squaring which is distinct from the expected Hamming weight of
a multiplication output as demonstrated in [?, ?]. Hence the attack of Amiel et al. [?]
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can be applied. However it requires few thousand curves in order to distinguish correctly
squaring from multiplication operations. The fault attack on Line 6 then needs to be
repeatable which is demonstrated realistic from recent fault injection techniques [?, ?].
Note that the fault repeatability does not need to be perfect as failed faults are considered
as noise in the differential analysis treatment. Hence, it only affects the number of curves
necessary to recover the secret.

Combining Fault Injection with Template Analysis.

A template attack2 using the same principle as Amiel et al. was proposed by Hanley
et al. [?]. With very few curves, the attacker can recover the full exponent in a template
matching phase. If the exponent blinding of Line 6 is removed, this attack can also be
applied with less faults and less traces compared to the previous one. Note that without
the fault injection, this template attack can be mounted using only one curve. Hence,
the recovery of the exponent will most certainly not be complete. Depending on the size
of the blinding factor r1 (Line 1), the size of the modulus N and the success rate of the
template attack, the methodology of Schindler and Itoh [?] can be applied to recover the
full exponent.

5.5 Improved Combined Attack Resistant Algorithms

We propose in this section improvements on the exponentiation algorithm (Alg. ??) to
prevent the attacks presented previously. Our proposed improvements also apply to the
scalar multiplication variant.

The fault attack presented in Section ?? exploits a skip of instruction on the condi-
tional test in Line 12 where the infective calculation replaced the entire encoded exponent
by 1. A simple and efficient countermeasure consists in replacing this fixed value by ran-
dom values for each words of the exponent. Another protection could be offered through
the classical DFA countermeasure consisting in verifying the calculation with the public
exponent e when possible.

To prevent the combined attacks we introduced, it becomes necessary to prevent
template and differential side-channel techniques. A possible fix consists in randomizing
the internal registers R0 and R1 before the multiplication so that even if we have to
compute R0 · R0 the representation of the two operands will be different. The Line 11
of Alg. ?? can be replaced by the following:

1. r3 ← random(1, 2λ − 1)
2. R2 ← Rk + r3 ·N mod Nr2

3. R0 ← R0 ·R2 mod Nr2

This modification adds to the cost of Alg. ?? one more register R2, one modular multipli-
cation with addition and the selection of a random value r3 at each turn of the loop. Even
if the exponent blinding is removed by fault, none of the attacks presented before can

2As the plaintext can be unknown to construct these templates, an open device is not mandatory
contrary to the usual definition of a template attack. The attacker only needs to record the power
consumption of multiplications and squarings with random inputs.
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Alg. 5.5.1 Improved Schmidt et al. left-to-right exponentiation.

Input: d = (dt−1, . . . , d0)2,m ∈ ZN , N and block length W .
Output: md mod N

1. r1 ← random(1, 2λ − 1)
2. r2 ← random(1, 2λ − 1)
3. i← (r−1

2 mod N) · r2

4. R0 ← i · 1 mod Nr2

5. R1 ← i ·m mod Nr2

6. d̄← d+ r1 · ϕ(N) (optional)

7. [d̃(l−1), . . . , d̃(0)]← [ψ0(d̄(l−1)), . . . , ψ0(d̄(0))]
8. for i = 0 to l − 1 do
9. wi ← random(1, 2W − 1)

10. k ← 0
11. j ← bitlength(d̃)− 1
12. while j > 0 do
13. r3 ← random(1, 2λ − 1)
14. R2 ← Rk + r3 ·N mod Nr2

15. R0 ← R0 ·R2 mod Nr2

16. if (R0 = 0) or (R1 = 0) then
17. [d̃(l−1), . . . , d̃(0)]← [wl−1, . . . , w0]
18. d̂← ψ−1

(R0+R1 mod r2)(d̃
(bj/W c))

19. k ← k ⊕ bit(d̂, j mod W )
20. j ← j − ¬k
21. c← R0 mod N
22.

23. return c

be applied now as multiplication and squaring operations are no more distinguishable.
A similar modification can be applied to the scalar multiplication algorithm [?, Alg. 4]
but at a higher cost. One needs to randomize each coordinates of the elliptic curve point
which means, in the case of classical projective coordinates, an overhead of 3 modular
multiplications, 3 random values and a point buffer. Moreover, this technique might
not be sufficient on most normalized curves, i.e. NIST curves, as their modulus have
very particular forms that can still allow for side-channel leakage on randomized coordi-
nates. A more costly alternative solution consists in using a randomized multi-precision
multiplication as proposed in [?] and [?, Sec. 2.7].

It is important also to notice that in practice the public exponent and the value ϕ(N)
can be unknown when computing an exponentiation. In that case, the exponent cannot
be blinded and the calculation verified. Although there are alternative solutions, as for
instance those proposed by Joye in [?], it only applies to particular cases. Hence it could
be sometimes impossible to apply the blinding on the exponent. However our improved
Algorithm ?? is resistant to combined attacks even when those values are unknown.

To the best of our knowledge, the only other exponentiation algorithm resistant
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against combined attacks is the algorithm proposed by Giraud [?] based on the Mont-
gomery ladder. However it only protects from a corruption of the data registers, the
integrity of the exponent is not assured contrary to Schmidt et al. algorithm.

5.6 Conclusion

We have presented in this chapter two new attacks which threaten the combined attack
resistant implementations Schmidt et al. published in [?]. Our first technique is a single
fault injection technique which can recover with few faulted ciphertexts the secret expo-
nent. This attack was possible due to a flaw in the infective computation countermeasure
proposed by the original authors. The second method combines fault injection with dif-
ferential analysis to reach the same objective. Introducing those new vulnerabilities lead
us to propose an improved version of this algorithm which offer better protection against
the different attacks based on side channel analysis and fault injection techniques.
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Chapter 6

Improved Collision Correlation
Analysis on First Order Protected
AES

6.1 Introduction

Since side-channel attacks potentially concern any kind of embedded implementations of
symmetric or asymmetric algorithms, it is recommended to apply various masking coun-
termeasures (among others) in sensitive products [?, ?]. Second-order or higher-order
side-channel analysis can however defeat such countermeasures by combining leakages
from different instants of the execution of an algorithm and canceling the effect of a
mask [?, ?]. Such attacks are considered very difficult to implement and generally re-
quire an important number of power curves.

A specific approach for side-channel analysis is using information leakages to detect
collisions between data manipulated in algorithms. Side-channel collision attacks against
a block cipher were first proposed by Schramm et al. in 2003 [?]. Their attack uses
differential analysis to exploit collisions in adjacent S-Boxes of the DES algorithm. In
[?] an attack against the AES is proposed to detect collisions in the output of the
first round MixColumns. Later, Bogdanov [?] improved this attack by looking for equal
S-Boxes inputs in several AES executions. He then studied in [?] statistical techniques
to detect collisions between power curves. Two recent papers have updated the state-of-
the-art by introducing correlation based collision detection: Moradi et al. [?] proposed a
collision attack to defeat an AES implementation using masked S-Boxes, while Witteman
et al. [?] applied a cross-correlation analysis to an RSA implementation using message
blinding.

In this chapter, we present two collision-correlation attacks on software AES im-
plementations protected against first-order power analysis using masked S-Boxes and
practical results on both simulated and real power curves. Our attacks are much more
efficient and generic compared to the one presented in [?]. Moreover we believe our tech-
niques to be applicable to other embedded implementations of symmetric block ciphers.

The remainder of the chapter is organized as follows: Section ?? presents the two
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AES first-order protected implementations targeted by our study. Then in Section ??
we present our attacks and practical results on simulated power curves and on a physical
integrated circuit. In Section ?? we compare our technique with second-order power
analysis. Section ?? deals with the possible countermeasures and finally we conclude
this chapter in Section ??.

6.2 Targeted Implementations

The AES Algorithm.

For the sake of simplicity in this paper we focus on the AES-128 which includes 10
rounds, each one decomposed into four functions: AddRoundKey, SubBytes, ShiftRows
and MixColumns. It encrypts a 128-bit message M = (m0, . . . ,m15) using a 128-bit
secret key K = (k0, . . . , k15) and produces a 128-bit ciphertext C = (c0, . . . , c15). Note
however that the techniques presented in this paper are easily applicable to AES-192
and AES-256.

The only non-linear function of the AES is SubBytes (also referred to as the S-Boxes
S in the following) which is a substitution function defined by the pseudo-inversion I
in GF(28) and an affine transformation. In this paper, we consider the two following
solutions that have been proposed to protect this function against first-order attacks.

6.2.1 Blinded Lookup Table

The first targeted implementation uses a masked substitution table as proposed by
Kocher et al. [?] and Akkar et al. [?]. This masked table S′ is defined by S′(xi ⊕ ui) =
S(xi) ⊕ vi, with ui (resp. vi) the mask of the i-th input byte xi (resp. output byte) of
function SubBytes, xi, yi, ui, vi ∈ GF(28), 0 6 i 6 15. This table is usually computed
before the AES execution and stored in volatile memory.

We further consider that the same masks u and v are applied on all S-Boxes during
one execution (or a round at least) of the algorithm, i.e. ui = u and vi = v for 0 6 i 6 15.
We believe that this hypothesis is realistic for embedded security products considering
that an expensive recomputation of the 256-byte substitution table S′ is necessary for
each new pair (u, v) and that the storage of many masked tables is not conceivable in
memory constrained devices.

6.2.2 Blinded Inversion Calculation

An alternative solution has been proposed by Oswald et al. [?] and improved on by
Canright et al. [?]. It consists in computing the inversion in GF(28) using a multiplicative
mask. To do this efficiently it is proposed to decompose the computation using inversions
in the subfield GF(24) (and possibly in GF(22)). Such masking method is well suited for
hardware implementations.

We recall some properties of the masked inversion. Let I ′ denote the masked pseudo-
inversion such that I ′(xi⊕ui) = I(xi)⊕ui. The element xi⊕ui in GF(28) is mapped to
a couple (xi,h⊕ui,h, xi,l⊕ui,l) of GF(24) such that xi⊕ui ∼= (xi,h⊕ui,h)X + (xi,l⊕ui,l).
As detailed in [?] many calculations occur on these subfield elements to compute the
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masked inversion of xi⊕ui. The exact details of these computations can be found in [?].
Note that in these formulas neither xi,h nor xi,l is directly inversed in GF(24) but the
following value:

di ⊕ ui,h = x2
i,h × 14⊕ (xi,h × xi,l)⊕ x2

i,l ⊕ ui,h .

Then the masked inversion in GF(24) of di⊕ui,h gives d−1
i ⊕ui,h and is used to compute

I ′(xi ⊕ ui).
The 16 input bytes of SubBytes are blinded using different masks ui, but one can

notice that input and output masks of the inversion stage are identical. Therefore another
threat to take into consideration is the zero value power analysis. This technique has
been introduced in [?] and [?], and recently implemented on the masked inversion in
[?]. Finally, note that the technique presented in this paper also applies to the improved
version of Canright et al. [?] when input and output of the inversion are masked with
the same value.

6.2.3 Measurements and Validation of Implementations

Curve Acquisition.

We have developed software implementations on a contact smart card using a 16-bit
RISC CPU with low power consumption. Two different methods were used to validate
our attacks.

First, we used simulated curves: a proprietary tool was used to simulate power curves
based on the chip architecture and the code executed. This tool generates ideal power
consumption curves without any noise which enables to validate in practice the resistance
of an implementation to a set of side-channel attacks leaving aside the acquisition and
signal processing problems.

Second, we used real curves: we made physical measurements on the chip itself using
a MicroPross MP100 reader and a Lecroy WavePro numerical oscilloscope.

First-Order Resistance Validation.

Since our aim was to present techniques able to defeat first-order protected devices,
we performed the classical first-order differential and correlation analysis on the two
implementations presented above, before testing our collision attacks.

To do so, we applied DPA and CPA on the AddRoundKey, SubBytes and MixColumns

functions at the first and the last rounds of our implementations. We also performed
detailed SPA for each input byte value using many average curves to detect any noticeable
(biased) power traces that would reveal a potential leakage. In any case no leakage were
observed. We also verified that both implementations were immune to zero value power
analysis and to the attack presented by Moradi et al.

We have thus verified that to the best of our knowledge both considered AES imple-
mentations are resistant to known first-order attacks. Nevertheless we present in the next
section two new collision-correlation techniques which jeopardize these implementations.
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Figure 6.1: General description of the collision-correlation attack

6.3 Description of our Attacks

In this section, we present the general principle of collision-correlation attacks and then
detail how it can be applied on the two considered AES implementations.

6.3.1 The Collision-Correlation Method

The principle of the attacks presented in this paper is to detect internal collisions be-
tween data processed in blinded S-Boxes on the first round of an AES execution. We
demonstrate in the following that if i) we are able to detect that the same data is pro-
cessed at instants t0 and t1, and ii) the S-Boxes are blinded such that either the same
mask is applied to all message bytes or the mask is identical at the input and the output
of each S-Box, then it is possible to infer information on the secret key with very few
curves.

In the following, we will denote (Tn)06n6N−1 a set of N power traces captured
from a device processing N encryptions of the same message M . Then we consider two
instructions1 whose processing starts at times t0 and t1 and denote l the number of
points acquired per instruction processing. As depicted in Fig. ?? we finally consider
Θ0 = (Tnt0)n and Θ1 = (Tnt1)n the two series of power consumptions segments at instants
t0 and t1.

Note that in practice the N power curves should start at the same instant of the
encryption and be perfectly aligned. Such conditions generally require signal processing
to be performed first. Note also that as the sampling rate is usually such that l > 1
points are acquired per instruction, we can generalize the definition of Θ0 and Θ1 as
being series of l-sample curve segments instead of series of single power consumption
samples.

1In our attacks we only consider the correlation between two identical instructions, but it may even
be possible to detect that two different instructions manipulate identical data, e.g. by spotting a data
bus using EMA.
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The final stage of the attack consists in applying a statistical treatment to (Θ0,Θ1)
in order to identify if the same data was involved in Tnt0 and Tnt1 for 0 6 n 6 N − 1.
Let Collision(Θ0,Θ1) denote a decision function returning true or false depending
on whether this property is presumed to be fulfilled or not. Such a decision function
would usually compare the value of a synthetic criterion with a practically determined
threshold. Possible examples of such a criterion include the mean2 squared difference,
the least squared difference with binary or ternary voting [?], and the maximum Pear-
son correlation factor. As we used this latter criterion in our study, we recall that an
estimation of the Pearson correlation factor between series of curve segments Θ0 and Θ1

at time offset t (0 6 t 6 l − 1) expressed as

ρ̂Θ0,Θ1(t) =
Cov(Θ0(t),Θ1(t))

σΘ0(t)σΘ1(t)

=
N
∑

(Tnt0+tT
n
t1+t)−

∑
Tnt0+t

∑
Tnt1+t√

N
∑

(Tnt0+t)
2 − (

∑
Tnt0+t)

2
√
N
∑

(Tnt1+t)
2 − (

∑
Tnt1+t)

2

where summations are taken over 0 6 n 6 N − 1, and Θi(t) = (Tnti+t)n for i ∈ {0, 1}.
Collision(Θ0,Θ1) thus consists in comparing max06t6l−1(ρ̂Θ0,Θ1(t)) to a given thresh-

old. In our experiments a preliminary characterization of the targeted device enabled us
to find proper values for l and the threshold.

Note that in this collision-correlation technique we compute the correlation factor
between a set of real power consumptions Θ0 with another set of real power consumptions
Θ1, rather than with model dependent estimations. As Bogdanov already described in
[?] about binary and ternary voting techniques, an interesting property of this method
is that, unlike Hamming weight based CPA, our criterion does not rely on a particular
leakage model. The consequences of this are that i) the attack is more generic and
requires much less knowledge of the targeted device, and ii) the secret S-Boxes may be
attacked as well as known ones.

As said above, correlating two instants (curve segments) on different traces has al-
ready been applied by Moradi et al. [?] on a particular AES implementation. However
they collect many traces obtained by encrypting random messages and average them
according to the value of an S-Box input byte. This results in 28 averaged curves for
each byte position, from which they try to detect collisions between two bytes. They
successfully carried out this attack on their implementation of the Canright et al. [?]
first-order protected implementation. However as indicated by the authors their im-
plementation presented a remaining first-order leakage based on zero-value attack. We
applied Moradi’s attack to the first-order protected implementations considered in this
study without success. We thus consider that this attack is not applicable to most first-
order protected implementations. Indeed averaging different traces implies the use of
new random mask values which should spoil the influence of the unmasked data and
make the collision of intermediate values undetectable. The technique we develop in
this paper improves on Moradi’s attack in order to detect data collisions by comparing
two instants on a same trace and repeating it on many executions without the destruc-

2The mean being taken over the N traces as well as over the l samples.
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Figure 6.2: Collision between the computation of two S-Boxes on bytes 4 and 9 on the
blinded lookup table implementation

tive averaging process. In the following we detail two applications of our attack on two
different implementations.

Remark Collision based analyses are also known as cross-correlation attacks in [?] and
multiple-differential collision attacks in [?]. We prefer the term collision-correlation at-
tacks since cross-correlation may be ambiguous depending on the context, and multiple-
differential collision attacks seems us too generic for our method.

6.3.2 Attack on the Blinded Lookup Table Implementation

First, we present an application using principle presented above on the implementation
described in Section ??. This attack targets the execution of the first round SubBytes

function. Each 16 masked input byte x′i = xi ⊕ u is substituted by a masked output
byte y′i = yi ⊕ v where y′i = S′(x′i). We try to detect when two SubBytes inputs (and
outputs) are equal within the first AES round as depicted on Fig. ??.

Detecting a collision in the first AES round between bytes i1 and i2 yields that
xi1 ⊕ u = xi2 ⊕ u and considering that xi = mi ⊕ ki ⊕ u implies the following relation of
the two involved key bytes:

ki1 ⊕ ki2 = mi1 ⊕mi2 . (6.1)

Description.

Practically, we encrypted N times the same message M and collected the N traces
corresponding to the first AES round. For each of the N traces we identified the 16
instants ti corresponding to the beginning of the computation S′(xi ⊕ u). This allowed
us to extract 16 segments from each trace and construct the series Θi used for collision-
correlation as explained in Section ??.

Performing Collision(Θi1 ,Θi2) for all the 120 possible pairs (i1, i2) yields a set of
relations (i1, i2,mi1 ⊕ mi2) given by Eq. (??). By repeating this process for several
random messages M one can accumulate enough relations so that the secret key is
recovered up to a guess on one key byte.
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Figure 6.3: Correlation curves obtained
for a message giving one collision (black
curve)
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Figure 6.4: Correlation curves obtained for
a message giving no collision

Based on 10 000 simulations we observed that on average 59 random messages (each
one being encrypted N times) provide enough relations to retrieve the key up to an
unknown byte.

Practical Results.

We present hereafter our results on both simulated and real curves.

On simulated curves. The threshold of Collision was fixed to having at least one
point among the l points correlation curve equal to 1. Under this condition our attack
was successful for N = 16. Since a mean of 59 different messages are required, then
16× 59 = 944 traces are sufficient on the average for the attack to succeed on simulated
curves.

Figures ?? and ?? show the correlation curves obtained for two different messages.
Both figures present the 120 outputs of ρ̂Θi1 ,Θi2

(t), i1 < i2 for each message. The black
curve on Fig. ?? corresponds to a collision found for the first message, whereas the second
message yields no collision.

On real curves. The attack was successful using N = 25 so that less than 1 500
traces allow to recover the key. Notice how few traces are needed to detect a collision by
correlation. This confirms that the collision-correlation technique is much more efficient
than classical model-based CPA which would not obtain high correlation levels with only
25 traces. Figure ?? shows an example of a correlation peak when an equality between
two S-Box outputs occurs, while Fig. ?? shows the correlation curve when all S-Box
outputs are different.

Note that in the case of real curves the threshold is slightly different. To identify
a clear relation between two S-Box outputs the correlation curve must be greater than
0.8 in the interval [130, 160]. So only these l = 30 points must be considered when
computing Collision(Θ0,Θ1).
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Figure 6.5: Correlation peak on real curves
when a collision occurs (black curve)
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Figure 6.6: No correlation peak occurs on
real curves when intermediate data differ

Attack Improvement.

The method for obtaining information about the key as described above basically ex-
ploits collision events where a pair (i1, i2) of indices gives a high correlation between Θi1

and Θi2 revealing the value of ki1 ⊕ ki2 . While very informative, such collision events
occur much less frequently than non-collision ones, that is when Θi1 and Θi2 show no
significant correlation between each other. Non-collision events individually bring quite
few information – namely that ki1 ⊕ ki2 is different from mi1 ⊕ mi2 – but they are so
numerous that it appears worth trying to exploit them also.

As was already noted in [?, ?], the problem of solving a set of equations involving
sub-parts of the key can be formulated in terms of a labelled undirected graph. Each
vertex i represents a key byte index and the knowledge of the XOR between two key
bytes is represented by an edge (i1, i2) labelled with ki1⊕ki2 . At the beginning the graph
does not include any edges. Each time a collision occurs between two unrelated key bytes
a new edge is put on the graph and results in the merge of two connected components
into a single larger one. All key byte values belonging to the same connected component
can be derived from each other, and the goal of the attacker is to end up with a fully
connected graph.

For a given message, only 0, 1, or 2 from the 120 pairs (i1, i2) lead to collisions in
most cases. All other pairs reveal some impossible value for each ki1 ⊕ki2 . Gathering all
the information provided by these non-collisions, for each (i1, i2) we maintain a blacklist
of impossible values for the XOR of the two key bytes3.

Given the information provided by previous messages to the current graph and black-
lists, we adaptively choose the next message in order to maximize its usefulness which
we define as the number of pairs (i1, i2) where one can expect new information (either
positive or negative) to be obtained. As a first idea we could define the penalty of a can-
didate message as the number of pairs (i1, i2) for which mi1 ⊕mi2 is already blacklisted.
Obviously the chosen message should minimize the penalty. Actually this is slightly
more complex and the definition of the penalty of a message should be refined. Indeed
we must also consider cases where the message is useful for (i1, i2) and (i1, i

′
2) – that

neither mi1⊕mi2 nor mi1⊕mi′2
are blacklisted – but the value of ki2⊕ki′2 is known to be

precisely equal to mi2 ⊕mi′2
. In such a case the two usefulness opportunities brought by

3Some of these blacklists must also be updated when two connected components are merged.
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Figure 6.7: Collision between the input and the output on byte 3 of the blinded inversion
I ′ (values 0 and 1 lead to a collision)

the message on pairs (i1, i2) and (i1, i
′
2) would bring the same information so that they

should count for a single one and the penalty of that message must be increased by one.
In order to find a message with minimal penalty we devised a heuristic which works

in two steps. In the first step we consider some random messages (say a few hundred)
and select the one with the lowest penalty. This first step ends with a somewhat good
candidate. Then in a second step we repeatedly attempt to decrease further the penalty
by trying small modifications on this candidate until no more improvements occur by
small modifications.

We simulated our method for adaptively choosing the messages. In these simulations
we assumed that the attacker is always able to correctly distinguish between collision and
non-collision events. Based on 1 000 simulations with random keys, we show that the key
is fully recovered (up to the knowledge of one of its bytes) with as few as 27.5 messages
instead of 59 messages with the basic method. As distinguishing between a collision
and a non-collision necessitates only 25 traces per message, a mere 700 executions would
suffice to recover the key by analysing real curves.

6.3.3 Attack on the Blinded Inversion Implementation

The previous attack cannot be applied to the blinded inversion implementation described
in Section ?? since the different S-Box input and output bytes are masked with different
values ui. However there may exist a possible leakage leading to what we may call a
Zero & One value attack.

One can notice that values 0 and 1 produce a collision between the input and the
output of the masked pseudo-inversion stage I ′ as depicted on Fig. ??. This is due to
the following properties of the pseudo-inversion:

I(0) = 0 ⇒ I ′(0⊕ ui) = 0⊕ ui
I(1) = 1 ⇒ I ′(1⊕ ui) = 1⊕ ui

The two cases leading to a collision are indistinguishable from one another. Detecting
a collision between the input and the output of a blinded inversion gives either x′i = 0⊕ui
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Figure 6.8: Collision-correlation curves in the pseudo-inversion of the first byte in GF(28)

or x′i = 1⊕ ui which reveals a key byte except one bit:

ki = mi or ki = mi ⊕ 1 .

Description.

Assume we want to recover the 7 most significant bits of k0. For every even byte value
gwe encrypt N times a single message M with m0 = g and collect the corresponding
power consumption traces Tn,g, 0 6 n 6 N − 1. Note that in this attack we only need
to guess the 7 most significant bits because the least significant one is indistinguishable.
Let’s denote t0 and t1 the instants when x0 ⊕ u0 is loaded before the pseudo-inversion
I, and when the result is stored respectively. For each of the N traces we extract the
two segments Tn,g[t0,t0+l−1] and Tn,g[t1,t1+l−1] and construct the series Θg

0 = (Tn,g[t0,t0+l−1])n and

Θg
1 = (Tn,g[t1,t1+l−1])n. For this step of our attack it is helpful to have some experience on

the targeted implementation identify exactly where these two segments are located.
Applying the decision function Collision(Θg

0,Θ
g
1) for all the 128 possible values g

will reveal two possibilities for k0. Repeating this step for all key bytes allows the key
space to be reduced to 216 values only. Note that a trick which allows to considerably
reduce the number of traces is to encrypt the messages Mg = (g, g, . . . , g) with all bytes
equal.

Results on Simulated Curves.

As for previous attack on simulated curves, a relation is established when at least one
point among the l points correlation curve is equal to 1. The attack is successful using
N = 16 curves for each key guess. Figure ?? shows the 128 correlation curves for all
possible guesses on k0. The black curve corresponds to the correct guess for k0.

The attack on this second implementation has thus been validated on simulated
curves. We did not acquire real curves for this implementation. Based on what has been
observed on the previous attack (successful results obtained using simulations have led to
successful results on the chip in practice), we believe that the attack would be successful
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Figure 6.9: Success rates of different simulated second-order attacks

on the real chip too, using a value for N of the same order to what was necessary for
the first attack.

6.4 Comparison with Second Order Analysis

In this section, we present a brief comparison between the collision-correlation method
and some known second-order attacks. Our analysis was inspired from the recent frame-
work introduced by Standaert et al. in [?] and refined later in [?]. This comparison gives
an overview on the efficiency of these different second-order techniques, and highlights
how much the collision-correlation analysis improves on second-order attacks.

Our analysis targets the first implementation only. We compared the collision-
correlation analysis with the second-order analysis involving the absolute difference com-
bining function f1, the squared absolute difference combining function f2 and the nor-
malized product combining function f3, when using as distinguisher the Pearson linear
correlation factor ρ̂. Note that we did not used Mutual Information Analysis, whose
results remain less efficient than the classical CPA in practice.

For sake of simplicity, we consider that the power consumption at instant t is the
Hamming weight of the intermediate data involved in the computation plus a centered
Gaussian noise ωσ with standard deviation σ. Therefore Hn(z) corresponds to the han-
dling of the value z for the n-th encryption. We now define θ0 and θ1 as:

θ0 = (Hn(S(mi ⊕ ki ⊕ u)⊕ v) + ωσ)06n6N−1

θ1 = (Hn(S(mj ⊕ kj ⊕ u)⊕ v) + ωσ)06n6N−1

Let gi (resp. gj) denote a guess on ki (resp. kj). We compute the estimated values
wgi,gj = H(S(mi ⊕ gi)⊕ S(mj ⊕ gj)). Considering the N messages we obtain the series
Wgi,gj = (wngi,gj )06n6N−1. Using the combining function fj , the right key bytes are
obtained for the highest correlation value ρ̂(fj(θ0, θ1),Wgi,gj ).

Then as in [?] we execute many times the attack with the different combining func-
tions and calculate the success rate of each one. Figure ?? shows two comparison graphs,
one for σ = 0.75 and the other for σ = 2. Both graphs plot the success rates on 50 runs
with respect to the number of curves used.
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We emphasise that in this comparison the second-order attacks are shown in a very
favorable light. Indeed the correlation model used here is exactly the one applied to
simulate the curves. In practice an attacker would not have such good properties.

6.5 Countermeasures

The attacks presented in this paper defeat first-order protected implementations. There-
fore, an obvious countermeasure would be to apply second-order masking. To the best
of our knowledge, the best solution should be the countermeasure presented by Rivain
et al. [?]. It allows the implementation of proven d-order DPA resistant AES for any
d ≥ 1.

Another countermeasure against our first attack may simply consist in executing the
SubBytes function in a random order. Even if this method is not theoretically perfect,
it may be sufficient to practically resist to second-order attacks. Considering the second
implementation, we think that its main weakness is the use of a same mask before and
after each byte pseudo-inversion. If the result is masked with a different value then the
collision-correlation attack is no longer feasible.

It is also necessary to consider that depending on the quality of the hardware coun-
termeasures provided by the device, these attacks can become much more complicated
in practice.

6.6 Conclusion

We have presented a new collision-correlation analysis method on first-order secured AES
implementations. We highlighted the fact that this kind of attack is more powerful and
practicable than previous second-order power analyses, and increases the risk of these
implementations being broken in practice. This confirms the necessity for developers
to take into account how collisions of masked data may be unsafe in cryptographic
implementations. A possible countermeasure could be the use of second (or higher)
order resistant schemes.

Though we presented practical results on software implementations, we believe that
this technique may also be a threat for hardware coprocessors. Therefore the collision-
correlation threat should be taken into consideration by developers and designers during
their embedded cryptographic design.
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Chapter 7

Combined Attack on First Order
Protected AES

7.1 Introduction

In this chapter we present another passive and active combined attack on a state of
the art SCA protected AES [?]. We combine a particular fault attack technique named
Collision Fault Analysis (CFA) that was introduced by Blömer and Seifert [?] in 2003,
with the classic Correlation side-channel analysis (CSCA) introduced by Brier et al. [?]
in 2004.

This chapter is organized as follows. Section ?? gives an overview of active and pas-
sive attacks with a focus on the collision fault analysis and the correlation side-channel
analysis. We present in Section ?? the AES state of the art implementation chosen
for this study and explain why this implementation is resistant to the previously pub-
lished CFA. In Section ?? we introduce our combined attack and explain how, with the
same fault model as the CFA, it can recover the secret key on our AES implementa-
tion. We discuss the countermeasures in Section ??, describe a safe-error variant of our
attack which defeats these countermeasures in Section ??, and conclude the chapter in
Section ??.

7.2 Side Channel and Fault Analysis Background

Passive attacks consist in observing side-channel information, such as the power con-
sumed by the chip while performing sensitive operations during a cryptographic com-
putation. Active attacks consist in perturbing the device when it is processing sensitive
data or calculations. Both techniques may result in the recovery of the secrets.

7.2.1 Side Channel Analysis

Most common countermeasures against power analysis, and particularly DPA and CPA,
consist in using random values for masking the operations. In this case even if an
attacker makes guesses on some secret key bits, he can not predict any intermediate
value as another unknown variable, the random mask, is part of any intermediate data
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during the computation. However in this case a more complex but realistic attack, named
High Order Differential Power Analysis (HODPA), presented by Messerges [?], is still
applicable if the mask values are identical on different bytes, and/or if some different
instants on a same power curve can be used to eliminate the random mask effect.

7.2.2 Fault Analysis

Fault effects and perturbations on electronic devices were first observed in the 1970’s
in the aerospace industry. Later the Differential Fault Analysis, DFA for attacking
embedded symmetric cryptosystems was introduced by Biham and Shamir [?] in 1997.
In this paper the authors explain how to recover the secret key by using between 50
and 200 ciphertexts. For years this threat was considered as only theoretical until the
first practical results of light attacks were presented (on an RSA implementation) by
Anderson and Skorobogatov [?]. The DFA has subsequently been studied and applied
on DES in [?] where Giraud and Thiebeauld recover the key by means of only 2 faulty
ciphertexts. In the case of the AES many attacks have been proposed [?, ?, ?] that allow
the secret key to be recovered by using as few as 2 faulty ciphertexts.

We now present the Collision Fault Analysis technique which is the active component
used in our combined attack.

Collision Fault Analysis

In [?] Blömer and Seifert first published a CFA on the first XOR of the AES. They
assume a fault model where the attacker has the ability to force to zero any chosen bit
of the result of this XOR operation. Then they compare a correct and a faulted AES
execution for the same message. If both ciphertexts are equal the original value of the
result bit is 0, otherwise it is 1. Knowing the message and scanning the different key
bits, the whole 128-bit AES key is retrieved with 128 faulty executions. An interesting
property is that the classical countermeasures which consist in checking the computation,
for instance by executing the AES twice and comparing the results, do not prevent this
attack. Indeed whether the card detects the fault or not will provide the attacker with
the same information as whether or not the fault corrupted the ciphertext.

Later Hemme [?] presented the first CFA on the DES. His attack consists in intro-
ducing one bit errors in the first rounds of the algorithm. Then by computing chosen
message encryption with the card (without injecting faults) the attacker obtains colli-
sions that he can exploit to recover information on the secret key. With enough collisions
he can recover the whole secret key. In this case, verifying the whole DES computation
is an efficient countermeasure.

Another CFA analysis on the AES first XOR computation can be done when the fault
effect resets a whole byte (or many bytes) instead of a bit. In this attack an induced
fault resets the result of a XOR between one message byte Mj and one key byte Kj

– with the other key addition byte results not being affected. The attacker stores the
faulty ciphertext C ′ and asks the card to encrypt the 256 messages M with Mj taking
all possible byte values. One of these 256 ciphertexts will be equal to C ′. This collision
is produced for Mj verifying Mj ⊕Kj = 0, which indicates that Kj = Mj .
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Amiel et al. [?] adapted this CFA to an AES protected from first order DPA by
random masking. In this implementation the same random byte r1 is used for masking
all 16 message bytes and the same random byte r2 is applied on all 16 key bytes. In
that case a single random byte r = r1 ⊕ r2 is applied on all the bytes of intermediate
values throughout the computation. The authors succeeded in faulting 2 to 16 bytes of
the result of the first XOR. Then by searching collisions they obtained relations between
known input bytes and key bytes masked. Exploiting these relations allows them to
recover the secret key. This attack needs the precomputation with the card of 223 non
faulty ciphertexts and in practice 112 faulty ciphertexts were used. Note that this attack
is applicable only if the same random mask r is applied on all of the 16 bytes of the
intermediate values. The targeted implementation was not protected against high order
differential analysis and in particular against a second order analysis. State of the art
implementations are thus not vulnerable to this CFA.

7.3 Targeted AES Implementation

We present here the implementation targeted by our attack. We have chosen a state of
the art side channel resistant AES implementation. To prevent DPA and CPA attacks,
a 16-byte random mask is used to mask the input message (and another one to mask
the key). This random mask is composed of 16 different random bytes that can change
at each round. This targeted implementation is designed to resist to the HODPA attack
presented in [?] and [?].

To realize such an implementation it is not possible to use a 256-byte substitution
table as randomizing this substitution table for each random byte r0, . . . , r15 would
necessitate precomputing and storing 16 × 256-byte substitution tables, one for each
byte ri. Moreover these tables would need to be recomputed at each round for changing
the mask between each round. The chosen implementation is the one presented by
Oswald et al. in [?], the inversion is here computed masked in GF (24). In this case all
the 16 bytes of the message and the intermediate calculations are masked with different
random bytes. This implementation is described in Fig. ??

Note that, as previously stated, the CFA presented by Amiel et al. is not applicable
on our targeted implementation.

We have carried out two implementations of a secure AES on an 8-bit microprocessor
with different security levels. The first one is resistant to DPA attacks and takes 20 000
cycles (2 ms at 10 MHz). Data are masked by the same byte which requires precomputing
only one substitution table for one AES execution. This implementation is not resistant
to HODPA attacks and is also vulnerable to Amiel et al. CFA. We also carried out the
implementation described above which uses inversion in GF (24). All data are masked
by different bytes which change between each round. This implementation is resistant to
HODPA attacks and takes 51 000 cycles (5.1 ms at 10 MHz). We will refer to both these
implementations as AESDPA and AESHODPA respectively. The performance and memory
footprint figures for both implementations are presented in Table ??. We introduce
the AESDPA implementation here only for comparison purposes to illustrate the cost
implied for protecting an AES from HODPA. Only the AESHODPA implementation will
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Figure 7.1: Secure HODPA Implementation
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Table 7.1: Performance and memory costs for AESDPA and AESHODPA implementations

Cycles ROM RAM

AESDPA 20 000 4 000 bytes 256 + 65 bytes

AESHODPA 51 000 5 500 bytes 75 bytes

be referred to in our attacks.

7.4 Passive and Active Combined Attack on Masked AES

In this section we present an analysis that can be carried out on our AESHODPA imple-
mentation with the same fault model as in previous publications. Our proposed attack
targets the first round calculations of the AES and necessitates choosing the input mes-
sage and obtaining the ciphertext computed by the card. Compared to previous CFA
on masked AES, it does not require a large number of messages to be encrypted by the
card.

Notation: We denote byM = (M0, . . . ,M15) the input message and byK = (K0, . . . ,K15)
the key used by the card for encrypting M . Given a message M , we also denote by
(M | condition) the message M modified so that the condition holds. For instance, mes-
sages (M |Mj = 0) and (M |Mj = 1) are identical except on the jth byte which is 0 in first
case and 1 in the other. We will also refer to a faulty computation or a result thereof by
means of the superscript symbol  . For instance C will refer to a faulty ciphertext.

7.4.1 Fault Model

We consider the following fault model: the result of an operation XOR can be set to
zero – or to a not necessarily known constant value – by the attacker. This model
has previously been assumed in several fault analysis papers and can be considered as
realistic since practical results were also presented.

In practice such kind of fault effect can be induced in a card by the following events:

• An operation can be bypassed. For instance the instruction to be executed is re-
placed by a NOP. As explained in [?] the opcode fetched by the microprocessor may
be replaced by 0x00 that, in some products, corresponds to the NOP operation.
In this case the expected computation is not done, and the result register keeps its
previous value that may be either 0 or another constant value. If the value is not
constant the attack will be not possible.

• A loop counter can be modified, for instance in [?] the AddRoundKey operation
is bypassed on some bytes by modifying (reducing) a counter value.

• The processing in the ALU can be perturbed and an XOR result can thus be
modified to zero or a constant value.
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Figure ?? gives an example of a typical code on an 8-bit microprocessor which can be
attacked by what has been presented above. It represents the XOR operation between
the masked message and the masked key carried out at the beginning of a secure AES.
We can observe in this code that our fault model can be used to model different effects,
if a NOP operation is executed, if a XOR result is forced to 0; if the counter value R2 is
modified or if the JNZ operation is perturbed, etc. . .

Addition:

MOV R0, #address_message_masked

MOV R1, #address_key_masked

MOV R2, #16

LoopMessageXorKey:

MOV A, @R0

MOV B, @R1

XOR A, B

MOV @R0, A

INC R0

INC R1

DEC R2

JNZ LoopMessageXorKey

Figure 7.2: Example code of masked AES AddRoundKey

7.4.2 Attack on the First Key Addition

As in [?] we assume that the key addition before the first round can be perturbed and
one or many bytes resulting from this addition can be set to zero. We describe our
analysis for the first bytes M0 and K0 of the message and the key. The analysis will be
identical for the other byte indices.

We denote by rm = (rm0, . . . , rm15) and by rk = (rk0, . . . , rk15) the two 16-byte
random masks on the message and the key respectively. The resulting mask of the XOR
between the message and the key is denoted by r = rm⊕ rk.

For a normal execution the first byte of the XOR result is:

B0 = (M0 ⊕ rm0)⊕ (K0 ⊕ rk0) = M0 ⊕K0 ⊕ r0

For a faulty execution we have:

B 
0 = 0

The key observation is that the effect of the fault is to introduce a differential δ on
the byte value just before the first round S-Box computation.

B 
0 = B0 ⊕ δ, with δ = M0 ⊕K0 ⊕ r0
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The same effect on the execution would have been obtained, without a fault, when
using an input message which differs from the initial one by this differential.

Considering without loss of generality an initial message M = (0, . . . , 0), the differ-
ential then reduces to δ = K0 ⊕ r0, and we have a collision opportunity corresponding
to the following equation:

C = AES (M) = AES(M |M0 = δ)

Note that a normal execution with (M |M0 = δ) will produce a collision with C 

whatever the random mask values for this execution.
For any ciphertext C obtained by injecting a fault we have the following properties:

1. C is characteristic of the mask value r0 in the faulty execution.

2. We can recover the value K0 ⊕ r0 of this execution by identifying which input
message leads to a collision with C without fault.

By computing AES(M |M0 = u) for all u = 0, . . . , 255, we can identify the u value
which verifies the relation:

u = δ = K0 ⊕ r0

At this point we are able, for any faulty execution, to recover the value of δ = K0⊕r0

involved in that execution. It is then possible to reproduce this analysis many times to
obtain k (k 6 256) such relations for k different values δi, i = 1, . . . , k, and store the
power consumption curve Wi of the faulty execution corresponding to each δi.

Now, observe the following property: for any possible guess g about K0, g =
0, . . . , 255, we obtain a unique set Sg = {r0,1, . . . , r0,k} of k random mask values. In
the HODPA resistant implementation these random values are generated and manipu-
lated in the card at different moments during the inversion in GF (24) and during the
MixColumn computation applied to the mask in the first round. It is then possible
to correlate these random values with the power curves Wi. By computing the linear
correlation factor between the set of curves {W1, . . . ,Wk} and the set of random masks
{r0,1, . . . , r0,k}, the most important correlation peak over the different guesses identifies
the correct set of random values manipulated in the card and thus indicates that the
corresponding guess g is equal to the secret key byte K0.

The analysis can be repeated on the next bytes of the key addition operation to
recover the other key bytes K1 to K15.

We summarize the different steps of the attack in Figure ??. Note that in phase 2 of
the attack, the expected number of faulty executions needed to obtain a new informative
δi grows constantly with i. The expected number of faults Nk required to gather k
relations is equal to

Nk =
k∑
i=1

256

256− (i− 1)

so that an average of 126 faults generates 100 relations, while the complete set of 256
relations requires N256 = 1 568 faults.
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Phase 1: dictionnary precomputation

M = (M0, . . . ,M15)← (0, . . . , 0)
for u = 0 to 255 do

Cu ← AES(M |Mn = u)

Phase 2: collision search

Γ = ∅
i← 1
while (i < k) do

C = AES (M)
if C 6∈ Γ do

δi ← u such that C = Cu with u ∈ {0, . . . , 255}
Wi ← power curve of the faulted execution
Γ← Γ ∪

{
C }

i← i+ 1

Phase 3: correlation

for g = 0 to 255 do
for i = 1 to k do

rn,i ← δi ⊕ g
ρg ← correlation trace between {rn,1, . . . , rn,k} and {W1, . . . ,Wk}

Kn ← g which gives the highest correlation peak

Figure 7.3: Attack algorithm on key byte Kn

Remark: Our attack is also applicable when the fault effect does not result in a 0 value
but in an unknown constant c. Instead of recovering the 16-byte key K we recover
K ⊕ (c, . . . , c). Then we just have to exhaust all 256 keys until a key matching some
correct plaintext/ciphertext pair is found.

7.5 Countermeasures

While data randomization with a full mask (i.e. 16 different bytes) is enough to protect
the AES algorithm against the Amiel et al. attack as well as high order differential
analysis, it is not sufficient against our combined attack. Below we mention some possible
countermeasures.

7.5.1 Inverse computation

A classical and efficient countermeasure used to protect cryptographic algorithms against
fault attacks in smartcards is the verification of the computation done. Before returning
the ciphertext the card performs the inverse computation on the result. If the value
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obtained corresponds to the input message then the computation is considered valid and
the card can return the result.
However if the comparison is not successful, it means that a fault was generated during
one of the two cryptographic computations. In this case, nothing is returned by the
card. As our attack requires faulty ciphertexts, it is not applicable when the inverse
computation countermeasure is implemented.

7.5.2 Duplicated Rounds

An alternative to the previous countermeasure consists in duplicating the execution of
the rounds exposed to the attacks, for instance the first and the last rounds. The rounds
which are duplicated must be performed with two different masks. Their executions
are carried out together, and bytes are processed in a random order regardless of their
masks. At the end of the round the following property must hold: the addition of the
two results must be equal to the addition of the masks. If this property does not hold
then a fault is detected. In order to protect against DFA, it is recommended to duplicate
the first three and the last three rounds.

7.5.3 Data error

Another way to protect an algorithm may be the deliberate introduction of data errors
appearing under some kinds of sequence flow disruptions. This notion of infective coun-
termeasure can be applied to loop counters, round counters,. . . Some infectious data are
supposed to be equal to zero or to a fixed value in a normal execution, but when a fault
modifies a loop counter (for instance during the AddRoundKey operation in AES) these
values become erroneous when they are XORed with this counter.

7.5.4 Checksums

Data used at the beginning of a cryptographic algorithm (message, key, mask, ...) may
be associated with a checksum. After executing sensitive operations a checksum on
the obtained data is computed and compared to these values stored in memory. A
comparison error implies that a fault occurred during this part of the algorithm. These
checksums can be carried out using hardware mechanisms.

We have implemented the first two countermeasures on the HODPA secure algorithm
described in Section ??. Their performances and memory costs are presented in the
Table ??.

7.6 Passive and Active Combined Attack on Masked AES
with Safe Errors

Here we present a variant of our combined attack which is not precisely based on collisions
but rather on safe errors, also known as ineffective faults.

In this variant, the way to obtain the knowledge of Kn⊕rn for some faulty execution
differs from the attack described in Section ??. Instead of comparing a faulty ciphertext
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Table 7.2: Performance and memory costs (bytes) for two FA resistant implementations

Cycles ROM RAM

AESHODPA

with
Inverse
Computation

102 000 5 500 75

AESHODPA

with
6 Duplicated
Rounds

81 000 5 900 91

C = AES (M |Mn = 0) with a pool of normal ciphertexts {Cu = AES(M |Mn = u)},
the attacker repeatedly compares some normal ciphertext Cu = AES(M |Mn = u) with a
faulty one C 

u = AES (M |Mn = u) obtained with the same input, until both ciphertexts
collide. Once this collision occurs the attacker knows that Kn ⊕ rn = u.

At first sight this variant may seem irrelevant since the distributions of the two ran-
dom variables C 

u and C 
0 are the same. Also this variant requires 256 faulty executions

on average to obtain one single collision, while the previously described attack requires
only one.

The great advantage of the safe errors variant becomes clear when the HODPA
resistant implementation is also protected against CFA, either by means of the inverse
computation countermeasure or by means of the duplicated rounds one. In both cases
the attacker identifies the collision event each time a result is returned. Indeed the result
is returned whenever the fault has not been detected, that is whenever it was safe and
had no local effect on the XOR result. Note that it is not possible to distinguish a safe
error event from a no fault at all event. Consequently the safe errors variant may be
difficult to perform in practice if the fault injection tool is not highly reliable.

An interesting and unexpected property of the safe errors variant is that it is easier
to perform when the computation checking countermeasures are implemented than when
they are not. Indeed when either of these countermeasures is present the attack consists
in a known message attack, otherwise it is a chosen message attack.

7.6.1 Countermeasures

The countermeasures presented in Section ?? no longer work here as no data has been
modified. Then the question is how can we prevent attacks which do not modify data
processed by the card? It seems to be an open problem and we do not have any good
response. However we can mention several mechanisms which can complicate the at-
tacker’s task.

We have not yet addressed hardware mechanisms. As stated previously by Blömer
and Seifert [?] we must insist on the fact that efficient hardware mechanisms to detect
or resist light injections help software implementations and help to prevent many fault
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attacks.
The randomization (time or order) during execution is also a good means to desta-

bilize the attacker as he does not exactly know where the targeted data is manipulated.
Due to the somewhat large number of fault injections required to perform the safe

errors variant, an efficient means to defeat the attacker could be to limit the number
of possible faulty executions. If more than a specified number of faults is detected the
card can kill itself or at least refuse to answer except under privileged conditions. Note
however that this principle may be difficult to implement in practice depending on the
card operating environment and requirements.

The best solution will be to mask the key with a value which is never manipulated
during the processing. It is then not possible to correlate power curves with the mask
and the only data that an attacker can find would is the masked key.

7.7 Conclusion

Sound countermeasures are known for protecting embedded cryptographic implemen-
tations from either high order side-channel analysis or differential and collision fault
analysis.

In this chapter we have shown that simply putting together different kinds of coun-
termeasures may not be sufficient. We have presented a Combined Active – CFA – and
Passive – CPA – Attack (PACA) which breaks a proposed state of the art side-channel
resistant AES implementation with a limited number of faults. We have enumerated
some possible countermeasures, but remark that a safe errors variant of our attack can
defeat most of them, such as executing and comparing twice a HODPA resistant im-
plementation – though it requires a significant number of fault injections and a highly
reliable fault injection tool. Although we have given some hints about how our last
attack may be rendered more difficult, it seems to be an open problem how to protect
implementations from ineffective faults, which are informative even though they do not
alter the computations.
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Chapter 8

Efficient Provable Prime Number
Generation for Embedded Devices

8.1 Introduction

Nowadays, due to continuous improvements of technology and computing capabilities,
larger and larger prime numbers are needed to operate RSA in embedded security de-
vices. Large prime numbers are a basic ingredient of keys in several other standardized
primitives such as Digital Signature Algorithm (DSA) [?] or Diffie-Hellman key exchange
(DH) [?]. This chapter precisely addresses the generation of provable prime numbers in
embedded, crypto-enabled devices.

When it comes to RSA key generation, two approaches coexist: key pairs may be
generated off-board (i.e. out of the device) in a secure environment such as a certified
Hardware Security Module (HSM) running in a personalization center, and loaded into
devices afterwards. Key pairs may also be generated on-board, that is, by the device
itself. In this case the private key cannot be compromised as it is never transmitted to
the outside world. This capability also allows the device to generate new keys later on,
when deployed in the field. However it implies that the device must be able to generate
large primes very efficiently and in a side-channel-secure manner.

Surprisingly enough, in spite of a quite abundant literature on primality testing and
on the validation of provable primes, research works that specifically suggest generators
for embedded devices are pretty inexistant. Commonly found prime number generators
rely on primality (pseudo-)tests to provide a high level of confidence that the output
number is prime. It is widely known that this confidence level can be increased arbitrarily
by applying sufficiently many iterations of the Miller-Rabin test [?]. It is even conjectured
that the error probability – the probability under which the tested number is actually
composite – is eliminated when a Lucas pseudo-test confirms Miller-Rabin testing [?].
This, however, may not be satisfactory because there is no absolute certainty that the
generated number is prime. Technical requirements for the generation of prime numbers
well-suited for RSA, DSA and ECDSA are described in industry standards such as FIPS
186-3 [?]. To ensure compliance, generating a 1024-bit DSA prime number requires as
many as 40 Miller-Rabin iterations, which can be reduced to 3 when performing an
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additional Lucas test. However carrying out a Lucas test is more costly on an embedded
device than a single modular exponentiation, and thus leads to a performance loss. This
chapter investigates another approach, namely the application of constructive techniques
to achieve truly provable primality.

In this chapter, we introduce two efficient methods for generating provable primes and
present fast implementations of these methods on a popular smartcard cryptoprocessor.
Our methods rely on Pocklington’s theorem and an extended result due to Brillhart,
Lehmer and Selfridge. We establish bounds on the entropy of the output distribution
of each method and provide evidence that both of them are secure and can be used
for cryptographic purposes. Performance measurements are given that demonstrate the
efficiency of our algorithms and how they compare with probable prime generation.
We also suggest a number of countermeasures against state-of-the-art side-channel and
fault-based analysis to ensure security in an untrusted environment.

Roadmap. Section ?? describes the constraints faced by cryptographic implementa-
tions on embedded devices and related security aspects. Section ?? recalls the usual
methods for primality testing, where we distinguish between probabilistic and true tests.
Generation algorithms for provable primes are discussed in Section ??, where we intro-
duce our two efficient constructive methods. The security of these methods in terms of
output entropy is discussed in Section ??. Practical results are reported in Section ??
together with performance comparisons for smartcard implementations of our probable
prime and provable prime generators. Section ?? addresses threats arising from side-
channel attacks and shows how to adapt our algorithms to resist these. We conclude in
Section ??.

8.2 Cryptographic Implementations on Embedded Devices

One faces two critical issues when designing an embedded cryptographic library: effi-
ciency and tamper resistance. A reference architecture for embedded devices is found in
smartcards: although microcircuits have been subject to significant improvements over
the last decades (increase of memory sizes and clock frequencies, technology shrink),
developing cryptographic algorithms and more generally any kind of embedded soft-
ware in a smartcard remains a technical challenge. In the mid-90’s, chip manufacturers
have started embedding coprocessors in their CPU cores to cope with cumbersome cryp-
tographic operations and achieve user-friendly execution times. Cryptoprocessors are
now a must-have feature of most smartcards and provide efficient support for symmet-
ric and asymmetric primitives such as (T)DES, AES, RSA and finite field operations
for elliptic curve-based schemes. Public-key accelerators all support modular multipli-
cations in hardware – and often modular additions and subtractions as well – with a
considerable speed-up factor compared to what can be done with the CPU alone. Com-
plete algorithms such as RSA or ECDSA are then developed in software on top of the
hardware-accelerated operations made available on the chip. Most commonly used arith-
metic architectures in these accelerators are based on modular reduction methods due
to Barrett, Montgomery, Quisquater or Sedlak. More details on these techniques can be
found in [?, ?, ?].
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However, public-key cryptoprocessors often provide little more than just native mod-
ular arithmetic. This lack of flexibility can sometimes be dramatic for innovative and
alternate programming, as practitioners are left with no other choice than using the
(much slower) CPU for performing the desired computations. Typically, right-shifting a
large integer by 3 bit positions may be slower than applying a modular operation on it.
In such an uncommon computational model, non-modular operations are prohibitive; to
come up with an efficient implementation of a non-mainstream algorithm, one must face
the challenge of completely rethinking that algorithm in terms of modular arithmetic.

In addition to that, it is also mandatory to protect cryptographic functions against
side-channel analysis and fault attacks to defeat cryptanalytic attacks based on infor-
mation leakage. Since the introduction of the original SPA and DPA attacks by Kocher
et al. [?], the diversity of attacks to protect embedded devices from has increased con-
siderably [?, ?, ?, ?, ?]. Many attacks have appeared on embedded implementations of
RSA and ECC with practical results [?, ?, ?, ?, ?] that are of particular interest in the
context of our work. We come back to this issue later in this chapter.

8.3 Prime Number Generation based on Primality Testing

In the broadest possible sense, a primality test > is a procedure that outputs a guess
>(n) ∈ {true, false} as to whether a positive integer n is prime or composite. It can be a
pseudo-primality test (also called compositeness test), in which case the guess can be a
false positive with some probability, or a true primality test that never fails and provides
a proof for primality when positively answered. Once one is given some primality test
>, it is natural to derive Algorithm ?? which provides a generic method for generating
prime numbers.

Alg. 8.3.1 Generic Prime Number Generation

Input: a primality test >, a constraining property P
Output: a prime integer n

1. generate a random candidate n verifying property P
2. while >(n) = false do
3. update n while preserving property P
4. return n

Following the naming of Brandt and Damg̊ard [?], we refer to the list of tested
candidates as the search sequence. In the generic prime number generator, each candidate
along the search sequence is required to verify some property P. The purpose of this
requirement is to reduce the average number of calls to >, which is assumed to be the
most time-consuming subroutine of the algorithm, by avoiding candidates known to be
composite.

Without this requirement – or equivalently, when P is satisfied for any n – the
average number of calls to > when generating an `-bit prime is close to ln(2`). An
obvious improvement is to let P be the property that n is odd and proceed to updating
a candidate by adding 2 to it. In that case the average number of calls to > drops
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to ln(2`)/2. A straightforward generalization of this idea is to take for P the property
that n is relatively prime with the t smallest primes p1, . . . , pt. The first candidate
in the search sequence thus requires the generation of an invertible element modulo
Π =

∏t
i=1 pi, which can be done either with trial divisions by each of p1, . . . , pt, using

Chinese remaindering (e.g. Garner [?] or Gauss algorithms), or using a technique due to
[?] based on Carmichael’s theorem. Several methods can be applied to update n while
preserving gcd(n,Π) = 1; Π can simply be added to n, or one can keep track of an
array of indicators ωi = n mod pi for i = 1, . . . , t and modular-add 2 to all of those until
none is equal to zero. Alternately, an efficient method for preserving gcd(n,Π) = 1 for
maximally large Π is found in Joye et al. [?, ?]. Overall, the techniques described in [?, ?]
provide the most efficient approach on a cryptoprocessor as they generate an invertible
element modulo Π faster than the classical trial division method. Irrespective of the
chosen methods to implement the different subroutines of Algorithm ??, the average
number of calls to > is close to

N(`,Π) = ln(2`) · φ(Π)

Π

where φ is Euler’s function. The optimal choice therefore consists in taking the largest
possible prime product Π = p1 · · · · ·pt. With ` = 512 for instance, the average number of
performed tests is 35.6 with t = 54 (pt = 251) instead of 177 tests when the candidates
are only required to be odd (t = 1). While N(`,Π) obviously further decreases with
larger t, the relative gain rapidly decreases as well as Π becomes larger.

8.3.1 Pseudo-Primality Tests

Pseudo-primality tests may erroneously view a composite number as being prime. Among
these, Fermat and Miller-Rabin tests are the most commonly used in embedded appli-
cations as they are particularly fast and easy to implement.

The random-base Miller-Rabin test has an error probability ε < 1/4. By iterating
this test h times with different random bases this probability is (often quite loosely)
upper bounded by 1/4h. Practitioners choose the number h of iterations depending on
the bitsize of the tested number, the cryptosystem intended to make use of the generated
prime, and the specific security requirements imposed by industry standards. Referring
to FIPS 186-3, a 1024-bit prime to be used as a DSA parameter requires 40 Miller-Rabin
tests (or 3 Miller-Rabin tests followed by a Lucas test). For a 2048-bit RSA key, each
1024-bit prime must pass 4 Miller-Rabin tests, and although applying the Lucas test is
not required, it is highly recommended.

The random-base Fermat test has approximately the same efficiency as the random-
base Miller-Rabin test while its error probability is higher. However, it is more simple to
implement and leads to optimally efficient pseudo-testing when using a base fixed to 2:
modular multiplications by 2 can then be replaced with modular additions in the modular
exponentiation 2n−1 mod n. Fermat testing is usually performed first with a = 2, and
only when n passes the Fermat test, does it undergo several Miller-Rabin rounds with
random bases before being considered to be prime. This leads to the efficient prime
number generator referred to as Algorithm ??, where Fa(n) and MRa(n) respectively
denote Fermat and Miller-Rabin tests with base a.
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Alg. 8.3.2 Efficient Generation of Probable Primes

Input: a bitsize `, Π = 2 · 3 · 5 · . . . · pt, a confidence parameter h
Output: an `-bit probable prime n

1. generate a random `-bit integer n with gcd(n,Π) = 1 and go to ??
2. update n such that gcd(n,Π) = 1
3. if F2(n) = false then go to ??
4. for i = 1 to h do
5. pick a base a at random from [2, n− 2]
6. if MRa(n) = false then go to ??
7. return n

Neglecting the probability that the output prime is a Fermat or a strong pseudoprime,
and denoting respectively by Ti, Tu, TF2 and TMRa the execution times of the routines for
generating the first candidate, updating the current candidate and performing Fermat
and Miller-Rabin tests, the average total execution time to generate a probable l-bit
prime amounts to

Tprobable(`) = Ti(`)− Tu(`) +N(`,Π) · (Tu(`) + TF2(`)) + h · TMRa(`) . (8.1)

This generation method is among the most popular ones in use in the embedded
security industry at the present time. Section ?? reports practical performance figures
for a typical smartcard implementation of this generator.

8.3.2 True Primality Tests

Prime number generators make use of pseudo-primality tests because of their efficiency.
However, to fully eliminate the error probability ε, one has to rely on true primality
testing a.k.a. primality proving. The asymptotically fastest true primality test is the
AKS method [?], which is the only known algorithm that runs in polynomial time.
However, the preferred general-purpose method for testing large numbers is currently
the Elliptic Curve Primality Proving test [?] which was used to ascertain the primality of
the largest general number, a prime with more than 20′000 decimal digits. Unfortunately
the AKS and ECPP methods are way too complex to be of any interest for embedded
implementations, where algorithms are preferably based on simple arithmetic operations
such as modular exponentiations.

A possible step in this direction relates to a deterministic variant of the Miller-Rabin
criterion. Following a result from Ankeny [?], Bach [?] proved under the Extended
Riemann Hypothesis (ERH) that any composite number n has a strong witness1 upper
bounded by 2 log2 n. Thus, verifying that n passes Miller-Rabin testing for all bases
smaller than 2 ln2 n would actually prove that n is prime. The drawback of this approach
is the fairly large amount of bases to consider before making sure that n is prime. Proving
the primality of a 512-bit number would require more than 250′000 Miller-Rabin rounds.
A secondary drawback is that the primality proof only holds under ERH.

1A strong witness for a composite number n is an integer a such that n does not pass the Miller-Rabin
test with base a, thereby proving its compositeness.
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Instead of relying on the existence of a small witness, it may be better to rely on
the existence of a small set containing at least one witness. Given an upper bound x on
candidates, a reliable set of witnesses is a set W such that every odd composite integer
n 6 x has a witness in W. An interesting result from Alford et al. [?] unconditionally
proves the existence of a reliable set containing at most (6/5) log x integers smaller than
x. This result does not rely on any conjecture and proves that n is prime with much
fewer Miller-Rabin rounds (only 426 rounds for 512-bit numbers). Unfortunately the
constructive method put forward by the authors for identifying such a reliable set does
not seem to be computationally practical.

8.4 Constructive Generation of Provable Primes

As previously discussed, there does not seem to be any practical true primality test that
would suit our context. Rather than testing the true primality of candidates along a
search sequence, we revisit Maurer’s approach [?] wherein provable primes are generated
in a constructive manner using Pocklington’s criterion:

Theorem 8.4.1 (Pocklington’s theorem) Let n > 3 be an odd integer, and let n =
rF + 1 where the factorization of F is known as F =

∏s
j=1 q

ej
j . If there exists an integer

a such that

(i) an−1 ≡ 1 (mod n) and

(ii) gcd(a(n−1)/qj − 1, n) = 1 for each j = 1 . . . s,

then every prime divisor p of n is congruent to 1 modulo F . In particular, if F >
√
n−1

then n is prime.

As opposed to Fermat and Miller-Rabin’s theorems, Pocklington’s theorem isolates
sufficient conditions for true primality. Unfortunately it cannot be used to test any given
integer since the factorization of n− 1 must be partially known. Based on Pocklington’s
theorem, Maurer [?] suggested a constructive method for generating provable primes.
The main idea there is to construct a prime n such that n−1 is divisible by one or more
smaller primes. A recursive use of the criterion then allows to generate larger primes at
each round starting from small integers whose primality proof is trivial.

Theorem 8.4.2 Let p be an odd prime, and r an integer such that r < p. Let n =
2rp+ 1.

(i) If there exists an integer a with 2 6 a < n such that an−1 ≡ 1 (mod n) and
gcd(a2r − 1, n) = 1 then n is prime.

(ii) If n is prime, the probability that a random value a satisfies an−1 ≡ 1 (mod n) and
gcd(a2r − 1, n) = 1 is 1− 1/p.

144



8.4. CONSTRUCTIVE GENERATION OF PROVABLE PRIMES

Maurer’s Algorithm Maurer proposed an iterative (and recursive) provable gener-
ation method based on this approach [?], which is described as Algorithm ?? for com-
pleteness.

This iterative method requires precomputing and storing the intermediate bitsize of
all provable primes from the highest to the lowest. The number of iterations is variable
and depends on a parameter r which is computed in order to provide the best output
entropy.

Alg. 8.4.1 Maurer’s iterative and recursive generation algorithm for provable primes.

Input: an integer `, a list L of small primes,
Output: ProvablePrimeMaurer(`) = a `-bit provable prime n.

1. if ` 6 20 then
2. generate randomly a `-bit integer n,
3. apply Erathostene sieve on n to determine if n is prime,
4. if n is prime, then return(n)
5. go to 1.1
6. set c← 0.1, m← 20 and B ← c · `2
7. if ` > 2m then
8. repeat
9. s← a real value in [0, 1]

10. r ← 2s−1

11. until (`− r · ` > m)
12. else r ← 0.5
13. q ←ProvablePrimeMaurer(br · `c+ 1)

14. I ← b2`−1

2q c
15. status ← false
16. while (status = false) do
17. r ← integer in [I + 1, 2I],
18. n← 2r · q + 1,
19. if no prime in L divides n do the following else go to 8.1,
20. a← an integer in [2, n− 2]
21. b← an−1(mod n)
22. if (b = 1), then do the following:
23. b← a2r et d← pgcd(b− 1, n)
24. if (d = 1) then status ← true
25. return(n)

We ran experimental simulations to analyze the average sizes of the recursive iter-
ations of this algorithm. Based on 100, 000 executions, we collect the results given on
Table ??.

The main drawback of this implementation is that it is not efficient enough and
therefore not suited to embedded implementations.

A simpler and faster algorithm can be derived from Theorem ?? (i) by iteratively
producing provable primes twice larger at each iteration. We detail thus in the following
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an efficient generation algorithm relying on this theorem and many implementation and
generation tricks.

8.4.1 The Square Root Method

We now show how to generate provable primes more efficiently using Theorem ?? with
fixed bitsizes for intermediate primes. We generate a provable prime by doubling at each
iteration the size of the current prime p to derive the new prime n = 2rp + 1. While
the entropy of this approach – estimated later in the chapter – is not as optimized as
in Maurer’s algorithm, this offers a more suitable and efficient algorithm in embedded
environments.

The intermediate prime sizes can be seen as equivalent to those in Maurer’s algorithm
when fixing r = 0.5 at Step ?? of Algorithm ??. An iterative and recursive method
relying on this idea – doubling each time the size of primes – was also proposed by
Shawe-Taylor in [?] before Maurer’s publication and is recommended by the NIST [?]
to generate provable primes for public key schemes. The first algorithm we propose
can therefore be seen as an adaptation of the Shawe-Taylor method, which also relies
on Pocklington’s theorem. As opposed to Shawe-Taylor, our algorithm is not recursive
but directly generates the primes iteratively from the smallest to the largest and many
additional optimizations are put forward to improve efficiency.

Initialization.

Before making use of Pocklington’s theorem, one starts the generation with a first prime
with initial bitsize l0. In his algorithm, Maurer suggests generating the first prime (which
is 20-bit long in the best case) using Erathostene’s sieve. Our approach here is different
and applies the Miller-Rabin criterion to generate initial primes up to 232. Indeed,
Pomerance et al. [?] and Jaeschke [?] have proven that any number lesser2 than 232 is
proven prime if it successfully passes the Miller-Rabin test with the three bases 2, 7 and
61. Making use of this trick, we obtain the algorithm InitGenPrime(`0) ??. We define
the bitsize of the initial prime as

`0 = min
k>0

{⌈
`n − 1

2k

⌉
+ 1 such that

⌈
`n − 1

2k−1

⌉
+ 1 > 32

}
.

As indicated previously, we make use of InitGenPrime(`0) to generate the initial prime
p for any given size `0 lesser than 32. Though the execution time dedicated to initiate
the sequence of primes is negligible compared to generating larger primes later in the
sequence, it could be further improved using trial divisions. To illustrate the different
steps of our method, Table ?? gives for different bitsizes `n, the initial prime size `0, the
number k of iterations of Pocklington’s theorem, and the intermediate prime sizes `i at
each iteration.

In order to reduce the number of Fermat tests throughout the generation, we apply
the same idea as in the generation of probable primes: we get rid of candidates n which
are not coprime to a product Π of the smallest primes. By verifying that none of the

2More precisely, the exact bound is 4′759′123′141.
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Alg. 8.4.2 Generation of the initial prime based on Miller-Rabin testing.

Input: bitsize `0 < 32 of the initial (provable) prime, Π = 2 · 3 · 5 · . . . · pt
Output: GenInitPrime(`0): a `0-bit provable prime

1. generate a random `0-bit integer n with gcd(n,Π) = 1 and go to ??
2. update n such that gcd(n,Π) = 1,
3. if F2(n) = false then go to ??
4. if MR2(n) = false then go to ??
5. if MR7(n) = false then go to ??
6. if MR61(n) = false then go to ??
7. return n

`n k `0 `1 `2 `3 `4 `5 `6 `7
512 5 17 33 65 129 257 512 - -

768 5 25 49 97 193 385 768 - -

1024 6 17 33 65 129 257 513 1024 -

1536 6 25 49 97 193 385 769 1536 -

2048 7 17 33 65 129 257 513 1025 2048

Table 8.2: Intermediate bitsizes (`0 and `i) and number of iterations (k) for different
sizes of the final prime (`n).

first t small primes divide the candidate n, the number of tests is reduced much further.
We thus obtain the provable prime generator presented as Algorithm ??.

Selection and Update of r and n.

A first solution for finding a suitable r at Step ?? of Algorithm ?? consists in randomly
selecting a first value r ∈ [I + 1, 2I], setting n = 2rp + 1, and then incrementing r
by 1 and n by 2p until the modular residues (ωi = n mod pi)i=1,...,t are all non zero.
Each ωi is then incremented by 2p mod pi. An efficient trick consists in obtaining the
values 2p mod pi by doubling modulo pi the residues ωi of the previous iteration since
the previous value of n corresponds to the new value of p in the current iteration. At
Step ??, the same incremental update of r and n is applied for generating the next
candidate coprime to Π. This leads to Algorithm ??.

A second solution consists in generating n simultaneously compliant with Pockling-
ton’s property (an even multiple of p plus one) and coprime to Π. This is done by first
selecting r as (x− (2p)−1 mod Π) where x is randomly selected from Z?Π using the tech-
nique of [?] based on Carmichael’s function. Then r is added to a random multiple of
Π so that it lies in [I + 1, 2I], and the first candidate n is computed as 2rp + 1. Doing
so, n is constructively coprime to Π. At Step ??, the next candidate is computed in the
same vein from the updated value x← pt+1 · x mod Π. It leads to algorithm ??.
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Alg. 8.4.3 Efficient-Square-Root-Generation(`n)

Input: a bitsize `n, Π = 3 · 5 · . . . · pt
Output: an `n-bit provable prime n

1. `← `n
2. while ` > 31 do
3. `← `/2
4. `← `+ 1
5. n← GenInitPrime(`) [compute the initial small prime]
6. while ` < `n do
7. p← n
8. `← min(2`− 1, `n)

9. I ← b2`−1

2p c
10. Select r at random from [I + 1, 2I] such that n ← 2rp + 1 is coprime to Π and

go to ??
11. Update r in [I + 1, 2I] such that n← 2rp+ 1 is coprime to Π
12. if ` < 129 then
13. pick an integer a at random from [2, n− 2]
14. else
15. a← 2
16. if an−1 mod n 6= 1 then go to ??
17. if gcd(a2r − 1, n) 6= 1 then go to ??
18. return n
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Alg. 8.4.4 EfficientProvablePrimeGen for Square Root method with Trial(`n,Π)

Input: a targeted bit size `n, Π = 2 · 3 · 5 · . . . · pt
Output: a `n-bit provable prime n

1. while ` > 32 do
2. `← `/2
3. `← `+ 1 [select initial size]
4. n← GenInitPrime(`) [compute the initial small prime]
5. `← `0
6. while ` < `n do
7. p← n, `← min(2`− 1, `n) and I ← b2`−1

2p c
8. if ` = `0 then
9. for i = 1 to t do

10. γi ← 2p mod pi
11. else
12. for i = 1 to t do
13. γi ← 2.ωi mod pi
14. pick an integer r at random from [I + 1, 2I]
15. n← 2rp+ 1
16. for i = 1 to t do
17. ωi ← n mod pi
18. test ← true
19. for i = 1 to t do
20. if ωi = 0 then
21. test ← false
22. while not test do
23. r ← r + 1 and n← n+ 2p
24. for i = 1 to t do
25. ωi ← ωi + γi mod pi
26. test ← true
27. for i = 1 to t do
28. if ωi = 0 then
29. test ← false
30. if r > 2I then
31. go to ??
32. if ` < 129 then
33. pick an integer a at random from [2, n− 2]
34. else
35. a← 2
36. if an−1 mod n 6= 1 then
37. test ← false
38. go to ??
39. if gcd(a2r − 1, n) 6= 1 then
40. test ← false
41. go to ??
42. return n
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Alg. 8.4.5 EfficientSquareGen Constructive(`n,Π)

Input: a targeted bit size `n, p0 = 3, . . . , pt
Output: a `n-bit provable prime n

1. while ` > 32 do
2. `← `/2 [select initial size]
3. `← `+ 1
4. n← GenInitPrime(`) [compute the initial small prime]
5. while ` < `n do
6. p← n
7. `← min(2`− 1, `n)

8. I ← b2`−1

2p c
9. select right Π = 3 · 5 . . . · pk from ` value

10. J ← b IΠc
11. Compute x in Z?Π
12. Invp ← (2p)−1 mod Π
13. r ← x− Invp mod Π
14. Choose z random in [J, 2J − 1]
15. r ← r + zΠ
16. if r < I then
17. r ← r + Π
18. if r > 2I then
19. r ← r −Π
20. go to ??
21. update x← 2x mod Π
22. update r ← x− Invp mod Π
23. go to ??
24. n← 2rp+ 1
25. if ` < 129 then
26. pick an integer a at random from [2, n− 2]
27. else
28. a← 2
29. if an−1 mod n 6= 1 then
30. go to ??
31. if gcd(a2r − 1, n) 6= 1 then
32. go to ??
33. return n
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Fixing a = 2 in Fermat testing.

From Theorem ?? (ii), we know that the probability that a random value a rejects a
prime n at Step ?? or ?? is 1/p. Assuming that the fraction of rejected primes does not
vary much from one value of a to another, choosing a constant value a has a negligible
impact on the distribution of the generated primes when the bitsize ` is sufficiently large.
For instance when generating a 128-bit prime number n = 2rp+1 from a 65-bit provable
prime p, less than 1/264 of the primes would never be reached. We accept this negligible
loss of entropy and use a = 2 for the Fermat test when ` > 128. This leads to faster
exponentiations for steps ?? and ?? where modular multiplications by the base can be
replaced with modular additions.

Estimated Performance.

Denoting respectively by Tinit, TI , Tu, TFa and Tg the execution times taken by the
initialization, computing I, updating the candidate n, the Fermat test with base a and
the gcd computation, the total average execution time of Algorithm ?? amounts to

Tprovable(`n) = Tinit(`0) +

k∑
i=1

(TI(`i) +N(`i,Π) · (Tu(`i) + TFa
(`i)) + Tg(`i)) . (8.2)

We report experimental results from our smartcard implementation of this prime number
generator in Section ??. Note that the value N(`i,Π) equals the average number of
primality tests in the generation of probable primes for `i-bit integers coprime to Π.
Also, as expected, we observed in our simulations that only one gcd is computed per `i-
bit prime so that its execution time is almost negligible compared to the overall execution
time.

8.4.2 The Cube Root Method

Our second method relies on (what we refer to) as the Cube Root Theorem put forward
by Brillhart, Lehmer and Selfridge in 1970. More details on this result can be found in
[?].

Theorem 8.4.3 (Brillhart-Lehmer-Selfridge-Tuckerman-Wagstaff [?]) Let n >
3 be an odd integer, let n = rF + 1 where F is completely factored and gcd(F, r) = 1.
Suppose there exists an integer a such that

(i) an−1 ≡ 1 (mod n),

(ii) gcd(a(n−1)/q − 1, n) = 1 for each prime factor q of F .

Let r = uF + s, 1 6 s < F , and suppose n < 2F 3 + 2F , F > 2. If u is odd, or if u is
even and s2 − 4u is not a perfect square, then n is prime.

As a corollary of Theorem ??, we derive the following result:

Theorem 8.4.4 (Cube Root Theorem) Let p be an odd prime, n = 2rp + 1 with r
an integer such that r < p2 + 1. If there exists an integer a with 2 6 a 6 n such that
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(i) an−1 ≡ 1 (mod n) and gcd(a2r − 1, n) = 1,

(ii) r = up+ s, 1 6 s < p for odd u,

then n is prime.

Theorem ?? makes it possible to put together a prime number generator that iter-
atively produces provable primes three times larger at each iteration (instead of twice
larger in the Square Root method). In order to speed-up the whole generation, we only
consider cases where the quotient u is odd. This reduces the output entropy by one bit
but has no significant impact on the security of cryptosystems such as RSA and DSA.
To generate a provable prime of `n bits, our algorithm starts with the generation of an
initial prime p of `0 bits, where `0 is established as follows:

`0 ← `n

while (`0 > 31) `0 ← b`0/3c+ 1

The generation of this `0-bit initial prime is performed as previously using the Miller-
Rabin criterion and algorithm InitGenPrime(`0) ??. The sizes `i of intermediate primes
are displayed on Table ??.

`n k `0 `1 `2 `3 `4
512 3 20 59 176 512 -

768 3 29 86 257 768 -

1024 4 14 41 122 365 1024

2048 4 26 77 230 689 2048

Table 8.3: Intermediate sizes (`0 and `i) and number of iterations (k) for different sizes
(`n) of the final prime.

We then obtain the Cube Root prime number generator described in Algorithm ??.

Initial Selection and Update of r and n.

A first solution for selecting a suitable r at Step ?? of Algorithm ?? is similar to the one
used in the Square Root algorithm ??. An additional step is necessary that consists in
computing u and s in r = up + s in order to avoid candidates for which u is even. We
obtain the algorithm ??.

Our second and most efficient solution for Step ?? consists in generating n in a con-
structive manner so that n is simultaneously compliant with Pocklington’s requirement
(an even multiple of p plus one), is coprime to Π and such that the quotient u = br/pc is
forced to be odd. To this end, we keep track of an invertible element x ∈ Z?Π which will
serve as the residue of n modulo the prime product Π, and set r = x− 1/(2p) mod Π to
ensure that n = 2xp mod Π is invertible modulo Π, so that the first two requirements are
fulfilled. Now note that letting r = up+ s, u is odd if and only if r and s have opposite
parities. Therefore, if s is set to a fixed odd value throughout the search sequence, it
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Alg. 8.4.6 Efficient-Cube-Root-Generation(`n)

Input: a bitsize `n, Π = 3 · 5 · . . . · pt
Output: an `n-bit provable prime n

1. `← `n
2. while ` > 31 do
3. `← b`/3c
4. `← `+ 1
5. n← GenInitPrime(`) [compute the initial small prime]
6. while ` < `n do
7. p← n
8. `← min(3`− 1, `n)

9. I ← b2`−1

2p c
10. Select r at random from [I + 1, 2I] such that r = up+ s, 1 6 s < p for odd u and

n← 2rp+ 1 is coprime to Π and go to ??
11. Update r in [I + 1, 2I] such that r = up+s, 1 6 s < p for odd u and n← 2rp+1

is coprime to Π
12. if ` < 129 then
13. select a at random from [2, n− 2]
14. else
15. a← 2
16. if an−1 mod n 6= 1 then go to ??
17. if gcd(a2r − 1, n) 6= 1 then go to ??
18. return n
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Alg. 8.4.7 EfficientProvablePrimeGen for Cube Root method with Trial(`n,Π)

Input: a targeted bit size `n, Π = 2 · 3 · 5 · . . . · pt
Output: a `n-bit provable prime n

1. while ` > 32 do
2. `← b`/3c+ 1 [select initial size]
3. n← GenInitPrime(`) [compute the initial small prime]
4. `← `0
5. while ` < `n do
6. p← n, `← min(3`− 1, `n) and I ← b2`−1

2p c
7. pick an integer r at random from [I + 1, 2I]
8. n← 2rp+ 1, u← b rpc and s = r mod p
9. if u mod 2 = 0 then

10. u← u+ 1, r ← r + p
11. if r > 2I then
12. go to ??
13. n← n+ 2p2

14. if ` = `0 then
15. for i = 1 to t do
16. αi ← p mod pi and ξi ← (2αi)

2 mod pi
17. else
18. for i = 1 to t do
19. αi ← ωi and ξi ← (2αi)

2 mod pi
20. for i = 1 to t do
21. ωi ← n mod pi
22. test ← true
23. for i = 1 to t do
24. if ωi = 0 then
25. test ← false
26. while not test do
27. u← u+ 2 and r ← r + 2p
28. if r > 2I then
29. go to ??
30. n← n+ 4p2

31. for i = 1 to t do
32. ωi ← ωi + ξi mod pi
33. test ← true
34. for i = 1 to t do
35. if ωi = 0 then
36. test ← false
37. if r > 2I then
38. go to ??
39. if ` < 129 then
40. pick an integer a at random from [2, n− 2]
41. else
42. a← 2
43. if an−1 mod n 6= 1 then
44. test ← false and go to ??
45. if gcd(a2r − 1, n) 6= 1 then
46. test ← false and go to ??
47. return n
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is enough to ensure that r is even to force the parity of u to one. We now describe
our method in more detail. Focusing on the search sequence associated with the i-th
iteration, our generator proceeds as follows:

1. Fetch precomputed values Π← Π[i] and Λ← Λ[i] from code data. Π ≈ 2`i−1−2 is
a product of small odd primes (thereby excluding 2 from the factorization of Π),
and Λ is the Carmichael function of Π.

2. Use [?] to generate a random invertible element x ∈ Z?Π, namely:

(a) Randomly select x modulo Π

(b) Compute t = xΛ mod Π

(c) If t 6= 1

i. Randomly select z modulo Π

ii. Update x = x+ z(1− t) mod Π

iii. Goto ??

3. Compute 1/(2p) = (2p)Λ−1 mod Π and derive 1/p mod Π

4. Randomly select an odd value s modulo p

5. Use Chinese remaindering to compute r ∈ [0, 2pΠ] such that r = x−1/(2p) mod Π,
r = s mod p and r = 0 mod 2. More precisely:

(a) Compute rΠp = (((x− 1/(2p)− s)/p) mod Π) · p+ s

(b) Compute r = (rΠp mod 2) ·Π · p+ rΠp

(c) Add appropriate multiple of 2pΠ to r to get r ∈ [I + 1, 2I]

This concludes the initialization of the i-th loop i.e. the random selection of r at
Step ?? at the i-th iteration. Updating r consists in just refreshing x as x = 2x mod
Π and performing a new round of Chinese remaindering as per Step ?? above. It is
worthwhile noticing optimizations here: since p and s are fixed throughout the search
sequence, the generator can just compute 1/p mod Π and (−1/(2p)−s) mod Π once and
for all and store these values. Step ?? then amounts to a couple of multiplications and
additions. Also, modular exponentiations modulo Π are particularly efficient since Λ is
small due to the particular form – extreme smoothness – of Π.
We obtain the algorithm ?? given in the following.

8.5 Estimating the Output Entropy

The rule for deriving at each iteration an `i-bit provable prime from an `i−1-bit other
provable prime (n← 2rp+1) intrinsically generates primes pi such that pi−1 is a multiple
of a half-size prime pi−1. This particular structure is not representative of the majority
of prime integers, and obviously does not allow to generate them all. This section
establishes the entropy of the output distribution of primes generated by Algorithms ??
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Alg. 8.4.8 EfficientCubeGenConstructive(`n,Π)

Input: a targeted bit size `n, p0 = 3, . . . , pt
Output: a `n-bit provable prime n

1. while ` > 32 do
2. `← b`/3c+ 1 [select initial size]
3. n← GenInitPrime(`) [compute the initial small prime]
4. while ` < `n do
5. p← n
6. `← min(3`− 1, `n)

7. I ← b2`−1

2p c
8. select right Π = 3 · 5 . . . · pk from ` value
9. J ← b2`−1

2p.Πc
10. Compute x in Z?Π
11. Invp ← 2p−1 mod Π
12. r ← x− Invp mod Π
13. Choose z random in [J, 2J − 1]
14. r ← r + zΠ
15. if r < I then
16. r ← r + Π
17. if r > 2I then
18. r ← r −Π
19. u← b rpc
20. if u even then
21. go to ??
22. go to ??
23. update x← 2x− Invp mod Π
24. go to ??
25. n← 2rp+ 1
26. if ` < 129 then
27. pick an integer a at random from [2, n− 2]
28. else
29. a← 2
30. if an−1 mod n 6= 1 then
31. test ← false
32. go to ??
33. if gcd(a2r − 1, n) 6= 1 then
34. test ← false
35. go to ??
36. return n
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and ?? 3 and compare the output entropy with that obtained by a perfect generator that
outputs uniformly random primes of a given bitsize `n.

Let us denote by R`i the number of `i-bit primes that are attainable by the Square
Root method at the end of iteration i. Note that any one of them can be uniquely
derived from the sequence (r1, . . . , ri) of the values taken by r at each iteration. Since
r is drawn at random, this suggests the heuristic approximation that the distribution of
generated primes is uniform and that its entropy is equal to H`i = log2(R`i). According
to Gauss’s theorem, the number π(x) of primes lesser than x is well approximated by
x

ln(x) for large x. The number of exactly `-bit primes can thus be estimated by

S` =
2`

ln(2`)
− 2`−1

ln(2`−1)
.

In an initial step, the algorithm randomly generates an `0-bit prime p0, so that R`0 = S`0 .
For x ∈

[
2`i−1−1, 2`i−1

]
, consider an interval of width dx centered on x. Every pi−1 in

this interval can generate I = b 2`i−1

2·pi−1
c ' 2`i−2

x candidates among which 2`i−2

x·ln(2`i )
are prime

numbers4. The total number of primes – that can or cannot be reached by the generator
– in the considered interval is dx

ln(x) , but only a fraction

R`i−1
· ln(2`i−1)

2`i−1−1

of these can be generated at iteration (i − 1), so that the number of primes pi−1 to
consider in the interval is

R`i−1
· ln(2`i−1) · dx

2`i−1−1 · ln(x)
.

Integrating over
[
2`i−1−1, 2`i−1

]
the number of primes that each pi−1 can generate, we

obtain

R`i
R`i−1

'
∫ 2`i−1

2`i−1−1

ln(2`i−1) · 2`i−2

2`i−1−1 · ln(2`i)
· dx

x ln(x)

' `i−1 · 2`i−2

`i · 2`i−1−1
·
∫ 2`i−1

2`i−1−1

dx

x lnx

' `i−1

`i
· 2`i−`i−1−1 ·

(
ln(`i−1)− ln(`i−1 − 1)

)
' `i−1

`i
· 2`i−`i−1−1

`i−1 − 1

3Note that for efficiency purposes Algorithm ?? only selects r values for which u = b r
p
c is odd. In

the sequel we first derive the entropy of our method when ignoring this trick. We subsequently address
the effect of this feature later on.

4This derives from a commonly accepted approximation that the Chebotarëv density theorem also
stands for large intervals. This theorem actually implies that for any coprime integers a and d, the
proportion of primes less than x belonging to the arithmetic progression {a+ nd}n tends to 1

φ(d)
when

x tends to infinity.
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whence

R`n = S`0 ·
`0
`n
· 2`n−`0−k∏k

i=1(`i−1 − 1)
(8.3)

where examples cases for k, `0 and `i are given in Tables ?? and ??.

As mentioned above, Equation (??) does not take into account that only half of
the values for r are selected as prime candidates in Algorithm ??. Assuming that even
and odd values of u are evenly distributed for r ranging from I + 1 to 2I, the effect of
ignoring half of potential candidates is that every prime pi−1 in the neighborhood of x

can generate only 2`i−3

x·ln(2`i )
primes. This results in the following expression for the number

of ln-bit primes generated by Algorithm ?? when only odd u values are selected:

R`n = S`0 ·
`0
`n
· 2`n−`0−2k∏k

i=1(`i−1 − 1)
. (8.4)

The estimated entropies H`n provided by Algorithms ?? and ?? are given in Table ??
for different output bitsizes `n together with the entropy H∗`n of a perfectly uniform
distribution.

`n 512 768 1024 1536 2048

H∗
`n

503 758 1014 1525 2037

H`n (Alg. ??, Eq. (??)) 467 720 968 1476 1980
H`n (Alg. ??, Eq. (??)) 479 733 981 1490 2000

Table 8.4: Entropy loss w.r.t. ideal prime generation

The entropy loss of the proposed prime generation ranges from 36 bits for 512-bit
primes to 57 bits for 2048-bit primes for the Square Root method, and only from 24 to 37
bits for the Cube Root method. While somewhat larger than the entropy loss of about 4
bits found in Maurer’s method, it is noticeable that it is small enough so that exhaustive
search remains infeasible for currently secure bitsizes. We believe that the security of
RSA and DSA cryptosystems is not in practice affected by using either Algorithm ??
or ?? for generating provable primes.

8.6 Implementation Results and Practical Aspects

8.6.1 On-board Generation of Probable Primes

Our implementation relies on an AT90SC chip supplied by Inside Secure embedding the
Ad-X cryptoprocessor and the 8-bit AVR core both running at 30 MHz. The chip man-
ufacturer provides a cryptographic toolbox for cryptography developers with all basic
operations over large integers: modular multiplication, modular exponentiation, GCD,
inversion, division, and so forth. The associated documentation provides estimated per-
formances (cycle count) for these operations. Using this information we know the exact
cycle count for any step of the generation algorithm. The exact average timings of our
prime number generators can then be deduced on this component using Equation ??.
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Using the development kit from IAR running on a chip emulator loaded with the tool-
box, the performance of our implementation of the generator for probable primes was
experimentally confirmed to coincide perfectly with Equation ??.

The Fermat test with base 2 runs in 11 ms for a 512-bit integer n while the Miller-
Rabin test with a random base is computed in 18 ms. We chose t = 54, so that Π is
the product of small primes ranging from 2 to 251 and we choose h = 3 (the number of
Miller-Rabin rounds).

On average, our generator outputs 512-bit probable primes in 580 ms (N(512,Π) =
35.6), 768-bit probable primes in 2′130 ms (N(768,Π) = 53.4) and 1024-bit probable
primes in 5′780 ms (N(1024,Π) = 71.2).

8.6.2 Generating Provable Primes

Similarly, we deduced from Equation ?? the execution timings for our generator of
provable primes on the same smartcard platform. We made use of the base-2 Fermat
test when ` is greater than 128 bits, and took the same value for Π as in the case of
probable primes. We have also implemented Algorithm ?? on the target chip. As a
result, using the Square Root method to generate provable primes of respectively 512,
768 and 1024 bits requires on average 810, 2′580 and 5′940 ms. The Cube Root method
decreases these figures to 760, 2′240 and 5′700 ms respectively.

8.6.3 Comparing Generators for Probable and Provable Primes

Given the expressions of TProb(`) and TProvable(`), a rough guesstimate is that about
the same number of modular exponentiations should be required to generate probable
and provable primes of the same size, assuming trial divisions and identical values for
Π. This is because the extra workload needed to generate the sequence of intermediate
primes in the provable case remains fairly small compared to the resources needed to
generate the full-length `n-bit provable prime. Moreover, this extra workload is some-
what compensated by the absence of final Miller-Rabin rounds or the Lucas test. All in
all, we observe that the generation of a provable prime is slightly less efficient that the
one of a probable prime when only a few Miller-Rabin rounds are required. However,
the Cube Root algorithm becomes the fastest option when either a significant amount
of Miller-Rabin iterations or a Lucas test is needed.

Even though it is not suitable for a smartcard implementation, we analyze here
what would be the exact performances of a prime number generator based on Maurer’s
algorithm. Algorithm ?? recalls Maurer’s approach. Based on these results, we can
evaluate the average time needed to compute a prime number. We find then a 1024-
bit prime number require 11 iterations starting with a 20-bit prime value. We consider
the method is optimised through the use of trial divisions to ensure the candidate n is
coprime with Π, and base for the exponentiation is set to value a = 2. We then adapt
Equation ??, inserting the additional operations to measure the average execution of an
optimized Maurer algorithm.

Figure ?? provides performance measurements for the various generation methods
discussed in the chapter.

160
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Bitlength `n h 512 768 1024 1536 2048 Lucas test

Algorithm ?? 3 580 1960 5400 24400 71800 no

Algorithm ?? 8 660 2200 5940 26100 75500 no

Algorithm ?? 3 640 2130 5780 25700 74400 yes

Algorithm ?? 40 1170 3700 9290 36800 98900 no

Algorithm ?? - 810 2580 5940 26500 75600 provable

Algorithm ?? - 760 2240 5700 24400 73550 provable

Algorithm ?? - 2060 4140 9280 34500 99900 provable

Figure 8.1: Time (in milliseconds) measurements for various prime number generators.

We find that a Lucas test, as defined in FIPS 186-3, is roughly equivalent to 3.5
Miller-Rabin rounds and is therefore rather efficient on the AT90SC – comparatively to
higher ratios found on other architectures.

Graphical Comparison

Figures ?? and ?? graphically compares the performance of Maurer’s algorithm with
the Square and the Cube root methods. The probabilistic generation has also been
represented.
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Figure 8.2: Comparison between prime generation techniques from 512 to 1024 bits.

Overall, our experimental validation shows that the Cube Root method is essentially
as efficient as the state-of-the-art generation algorithms for probable primes.

8.7 Achieving Leakage-Resistant Prime Number Genera-
tion

This section addresses side-channel attacks and ways to protect prime number genera-
tion from information leakage. Recent research works [?, ?] have highlighted that prime
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Figure 8.3: Comparison between prime generation techniques from 512 to 2048 bits.

number generation may be subject to power analysis. It is therefore necessary to ensure
resistance against side-channels, especially when the device is operated in an untrusted
environment. We give in this section a few guidelines for designing a protected imple-
mentation.

Assets to be protected are the output prime number as well as the secret elements
used throughout its generation, more precisely the random values r and the sequence of
intermediate primes reached by each iteration. It is therefore necessary to ensure that
the implementation does not leak these values either during their generation or while
they are being manipulated by the generation algorithm.

A first information leakage can occur during the generation of the first `0-bit prime.
Since this is done using the Miller-Rabin criterion, the Miller-Rabin test itself has to
be protected against side-channel attacks. A typical protection mechanism consists in
performing an atomic modular exponentiation in the sense of [?] but since the base we
use here is small, there is a risk that the exponent n − 1 leaks at each multiplication
as explained in [?]. The exponentiation may therefore be computed using a Square and
Multiply-Always exponentiation which is a regular algorithm. A second operation to
protect is the computation of I. This step involves the manipulation of p which must be
kept secret. We therefore suggest to implement a secure division algorithm as described
in [?].

Finke et al.presented in [?] an attack that specifically targets the computation of
the next prime candidate (coprime to Π) at Step 2. of Algorithm ??. The attack is
particularly applicable when a trial update operation is done with increments of 2 or
Π. This attack does not seem applicable on Step 9 (performed with trial updates) of
Algorithm ?? since the value used for next value of n is n+ 2p and p is unknown to the
attacker. We recommend to implement the constructive method which is not sensitive
to this attack and resists physical observation if the computation of p is done with the
same exponentiation as the one used when applying the Miller-Rabin criterion.

We also note that the exponentiation an−1 mod n in Step 11 must be performed
securely and that the atomic exponentiation is neither resistant nor efficient when a =
2. This part can be computed in a regular way using a Square and Multiply-Always
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exponentiation. In this case using a = 2 still results in negligible computational time
for the multiplication and the computation remains protected against the SPA attack
published in [?]. However the first squaring and multiplication operations (when the
accumulator is still a power of 2 smaller than the modulus n) could leak information.
It would then reveal the first bits of the exponent (about 10). It is then recommended
to blind the modulus with a random value: in that case the computation would be
(2n−1 mod r1 · n) mod n.

The final computations to protect from power analysis lie in Step 12. The exponen-
tiation 22r mod n must be protected against the disclosure or r by using, as previously,
the Square and Multiply-Always exponentiation technique. Also, the GCD operation
gcd(22r − 1, n) could reveal the value of p if not implemented in a secure way. Our im-
plementation of the GCD calculation has been carried out in constant time using dummy
operations.

Applying these methods, a side-channel protected yet efficient generator for provable
primes would lead to the performances given in Figure ??. When comparing to those
with a protected generation of probable primes, we get that performances are quite
similar.

Finally, we note that fault-based attacks are not considered as a serious threat for
prime number generators at the present time. This is mainly due to the inherently
randomized nature of the generation algorithms.

8.8 Giving the Proof of Primality

We showed previously that the Square Root and Cube Root methods generate efficiently
provable prime numbers. However it is not possible to verify the generated number
n = rF + 1 returned by the card respects the Pocklington theorem as the factorization
of F (for each iteration) is unknown out of the card. In case it were necessary for
testability and certification purposes it could then become problematic. To achieve this
objective, both algorithm can be simply modified to return with the generated provable
number n at the end all the primes pi from each pocklington iteration of the algorithm.
Knowing all the intermediate prime values it is easy to verify the returned prime n
complies with the Pocklington theorem. In that case the algorithm we have designed
also gives a proof of primality.

8.9 Conclusion

This chapter introduced two new methods to efficiently generate provable primes in
embedded environments. We put forward novel algorithmic solutions and report prac-
tical results from our smartcard implementations. We have demonstrated that efficient
generators exist for provable primes in constrained environments and compared the new
methods with state-of-the-art generators for probable primes. We addressed side-channel
analysis to ensure secure implementations of our generation methods. Overall, the study
opens the way to embedded generation of provable primes in nearly similar or better
performances than current generators.
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Chapter 9

Square Always Exponentiation

9.1 Introduction

Nowadays most embedded devices implementing public key cryptography use RSA [?]
for encryption and signature schemes, or cryptographic primitives over (Fp,×) such as
DSA [?] and the Diffie-Hellman key agreement protocol [?]. All these algorithms require
the computation of modular exponentiations. Since the emergence of the so-called side-
channel analysis, embedded devices implementing these cryptographic algorithms must
be protected against a wider and wider class of attacks.

Moreover, the cost and timing constraints are crucial in many applications of embed-
ded devices (e.g. banking, transport, etc.). This often requires cryptographic implemen-
tors to choose the best compromise between security and speed. Improving the efficiency
of algorithms or countermeasures generates thus a lot of interest in the industry.

An exponentiation is generally processed using a sequence of multiplications, some
of them having different operands and some of them being squarings. In [?], Amiel et al.
showed that this distinction can provide exploitable side-channel leakages to an attacker.
Classical countermeasures consist of using exponentiation algorithms where the sequence
of multiplications and squarings does not depend on the secret exponent.

Our contribution is to propose a new exponentiation scheme using squarings only,
which is faster than the classical countermeasures. Also, we introduce new algorithms
having a particularly low cost when two squarings can be parallelized.

This paper is organized as follow: in Section ?? we recall classical exponentiation al-
gorithms and present some well-known side-channel attacks and countermeasures. Then
we propose our new countermeasure in Section ??. Finally we present some practical
results in Section ?? and we conclude in Section ??.

9.2 Background on Exponentiation on Embedded Devices

We recall in this section some classical exponentiation algorithms. First we present
the square-and-multiply algorithms upon which are based most of the exponentiation
methods. Then we introduce the side-channel analysis and in particular the simple power
analysis (SPA). We present some algorithms immune to this attack, and we finally recall
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a particular side-channel attack aimed at distinguishing squarings from multiplications
in an exponentiation operation.

9.2.1 Square-and-Multiply Algorithms

Many exponentiation algorithms have been proposed in the literature. Among the nu-
merous references an interested reader can refer for instance to [?] for details. Alg. ??
and Alg. ?? are two variants of the classical square-and-multiply algorithm which is the
simplest approach to compute an RSA exponentiation.

Alg. 9.2.1 Left-to-Right Square-and-Multiply Exponentiation

Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1. a← 1
2. for i = k − 1 to 0 do
3. a← a2 mod n
4. if di = 1 then
5. a← a×m mod n
6. return a

Alg. 9.2.2 Right-to-Left Square-and-Multiply Exponentiation

Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1. a← 1 ; b← m
2. for i = 0 to k − 1 do
3. if di = 1 then
4. a← a× b mod n
5. b← b2 mod n
6. return a

Considering a balanced exponent d, these algorithms require on average 1S + 0.5M
per bit of exponent to perform the exponentiation – S being the cost of a modular
squaring and M the cost of a modular multiplication. It is generally considered in the
literature – and corroborated by our experiments – that on cryptographic coprocessors
S ≈ 0.8M .

These algorithms are no longer used in embedded devices for security applications
since the emergence of the side-channel analysis.

9.2.2 Side-Channel Analysis on Exponentiation

Side-channel analysis was introduced in 1996 by Kocher in [?] and completed in [?].
Many attacks have been derived in the following years.

On one hand, passive attacks rely on the following physical property: a microproces-
sor is physically made of thousands of logical gates switching differently depending on the
executed operations and on the manipulated data. Therefore the power consumption and
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the electromagnetic radiation, which depend on those gates switchings, reflect and may
leak information on the executed instructions and the manipulated data. Consequently,
by monitoring such side-channels of a device performing cryptographic operations, an
observer may infer information on the implementation of the program executed and on
the – potentially secret – data involved.

On the other hand, active attacks intend to physically tamper with computations
and/or stored values in memories. Such effects are generally obtained using clock or
power glitches, laser beam, etc.

Finally some works [?] have highlighted the fact that passive and active attacks
may be combined to threaten implementations applying countermeasures against both
of them but not against their simultaneous use.

In the remainder of this section we focus on two passive attacks : the SPA presented
hereafter with classical countermeasures, and a particular analysis from [?] discussed in
Section ??.

Simple Power Analysis

Simple side-channel analysis [?] consists in observing a difference of behavior depending
on the value of the secret key on the component performing cryptographic operations
by using a single measurement.

In the case of an exponentiation, the original SPA is based on the fact that, if the
squaring operation has a different pattern than a multiplication, the secret exponent
can be directly read on the curve. For instance, in Alg. ??, a 0 exponent bit implies
a squaring to be followed by another squaring, while a 1 bit causes a multiplication
to follow a squaring. Classical countermeasures consist of using regular algorithms or
applying the atomicity principle, as detailed in previous sections.

9.3 Square Always Countermeasure

We present in this section new exponentiation algorithms which simultaneously bene-
fit from efficiency of the atomicity principle and immunity against the aforementioned
weakness of the multiply always method.

9.3.1 Principle

It is well known that a multiplication can be performed using squarings only. Therefore
we propose the following countermeasure which consists in using either expression (??)
or (??) to perform all the multiplications in the exponentiation. Combined with the
atomicity principle, this countermeasure completely prevents the attack described in
Section ?? since only squarings are performed.

x× y =
(x+ y)2 − x2 − y2

2
(9.1)

x× y =

(
x+ y

2

)2

−
(
x− y

2

)2

(9.2)
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At the first glance, (??) requires three squarings to perform a multiplication whereas
(??) requires only two. Further analysis reveals however that using (??) or (??) in
Alg. ?? and ?? has always the cost of replacing multiplications by twice more squarings.
Indeed, notice that in the multiplication a← a×m of Alg. ?? m is a constant operand.
Therefore implementing a×m using (??) yields y = m, thus m2 mod n can be computed
only once at the beginning of the exponentiation. The cost of computing y2 can then be
neglected.

This trick does not apply to Alg. ?? since no operand is constant in step ??. However
b ← b2 is the following operation. Using equation (??) in Alg. ?? then yields to store
t ← y2 and save the following squaring: b ← t. The resulting cost is thus equivalent as
trading one multiplication for two squarings.

Remark In our context, (??) or (??) refer to operations modulo n. Notice however
that divisions by 2 in these equations require neither inversion nor multiplication. For
example, we recommend computing z/2 mod n in the following atomic way:

t0 ← z
t1 ← z + n
α← z mod 2
return tα/2

9.3.2 Atomic Algorithms

Trading multiplications for squarings in Alg. ?? and ?? just requires to apply formula
(??) or (??) at step ?? in Alg. ?? or step ?? in Alg. ??. However the resulting algo-
rithms would still present a leakage since different operations would be performed when
processing a 0 or 1 bit. Hence it is necessary to apply the atomicity principle on these
algorithms.

This step is achieved by identifying a minimal pattern of operations to be performed
on each loop iteration and rewrite the algorithms using this pattern. For the considered
algorithms, the minimal pattern should obviously contain a single squaring since it is the
only operation required by the processing of a 0 bit and performing dummy squarings
would lessen the performances of the algorithm. An addition, subtraction and division by
2 should also be present to compute formulas (??) or (??). Finally some more operations
are required to manage the loop counter and the pointer on exponent bits.

Algorithm ?? presented hereafter details how to implement atomically the square
always method in a left-to-right exponentiation using equation (??).

As in [?] we use a matrix for a more readable and efficient implementation:

M =


1 1 1 0 2 1 1 1 2 1
2 0 1 2 2 2 2 2 3 0
1 1 3 0 0 0 0 2 0 0
3 3 3 0 3 3 1 1 3 1


The main loop of Alg. ?? can be viewed as a four state machine where each row j

of M define the operands of the atomic pattern. The atomic pattern itself is given by
the content of the loop, i.e. steps ?? to ??. An exponent bit di is processed by the state
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Alg. 9.3.1 Left-to-Right Square Always Exponentiation with (??)

Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1. R0 ← 1 ; R1 ← m ; R2 ← 1 ; R3 ← m2/2 mod n
2. j ← 0 ; i← k − 1
3. while i ≥ 0 do
4. RMj,0 ← RMj,1 +RMj,2 mod n
5. RMj,3 ← RMj,3

2 mod n
6. RMj,4 ← RMj,5/2 mod n
7. RMj,6 ← RMj,7 −RMj,8 mod n
8. j ← di(1 + (j mod 3))
9. i← i−Mj,9

10. return R0

j = 0 (resp. j = 3) if the previous bit di+1 is a 0 (resp. a 1). This state is followed by
the processing of the next bit if di = 0, or by the states j = 1 and j = 2 if di = 1. For
more clarity, we present below the four sequences of operations corresponding to each
state. The dummy operations are identified by a ?.

j = 0
(di = 0 or 1)

R1 ← R1 +R1 mod n ?
R0 ← R0

2 mod n
R2 ← R1/2 mod n ?
R1 ← R1 −R2 mod n ?
j ← di [? if di = 0]
i← i− (1− di) [? if di = 1]

j = 2
(di = 1)

R1 ← R1 +R3 mod n ?
R0 ← R0

2 mod n
R0 ← R0/2 mod n
R0 ← R2 −R0 mod n
j ← 3
i← i− 1

j = 1
(di = 1)

R2 ← R0 +R1 mod n
R2 ← R2

2 mod n
R2 ← R2/2 mod n
R2 ← R2 −R3 mod n
j ← 2
i← i ?

j = 3
(di = 0 or 1)

R3 ← R3 +R3 mod n ?
R0 ← R0

2 mod n
R3 ← R3/2 mod n ?
R1 ← R1 −R3 mod n ?
j ← di
i← i− (1− di) [? if di = 1]

We also present in Alg. ?? a right-to-left variant of the square always exponentiation
using equation (??). This algorithm requires the following matrix:

M =


0 0 2 0 0 0 2 1
2 1 2 2 1 0 1 0
0 2 1 1 0 0 2 0
0 0 0 0 1 2 1 1


As for the previous algorithm, the main loop of Alg. ?? has four states. Here, the

state j = 0 corresponds to the processing a 0 bit and the sequence j = 1, j = 2, and
j = 3 corresponds to the processing of a 1 bit, as detailed below.
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Alg. 9.3.2 Right-to-Left Square Always Exponentiation with (??)

Input: m,n ∈ N, m < n, d = (dk−1dk−2 . . . d0)2

Output: md mod n
1. R0 ← m ; R1 ← 1 ; R2 ← 1
2. i← 0 ; j ← 0
3. while i ≤ k − 1 do
4. j ← di(1 + (j mod 3))
5. RMj,0 ← RMj,1 +R0 mod n
6. RMj,2 ← RMj,3/2 mod n
7. RMj,4 ← RMj,5 −RMj,6 mod n
8. RMj,3 ← RMj,3

2 mod n
9. i← i+Mj,7

10. return R1

j = 0
(di = 0)

j ← 0 [? if j was 0]
R0 ← R0 +R0 mod n ?
R2 ← R0/2 mod n ?
R0 ← R0 −R2 mod n ?
R0 ← R0

2 mod n
i← i+ 1

j = 2
(di = 1)

j ← 2
R0 ← R2 +R0 mod n ?
R1 ← R1/2 mod n
R0 ← R0 −R2 mod n ?
R1 ← R1

2 mod n
i← i ?

j = 1
(di = 1)

j ← 1
R2 ← R1 +R0 mod n
R2 ← R2/2 mod n
R1 ← R0 −R1 mod n
R2 ← R2

2 mod n
i← i ?

j = 3
(di = 1)

j ← 3
R0 ← R0 +R0 mod n ?
R0 ← R0/2 mod n ?
R1 ← R2 −R1 mod n
R0 ← R0

2 mod n
i← i+ 1

9.3.3 Performance Analysis

Algorithms ?? and ?? are mostly equivalent in terms of operations realized in a single
loop. The number of dummy operations (additions, subtractions and halvings) intro-
duced to fill the atomic blocks are the same in the two versions – it is generally considered
that the cost of these operations is negligible compared to multiplications and squarings.
Both algorithms require 2S per exponent bit on average or 1.6M if S/M = 0.8 which
represents a theoretical 11.1% speed-up over Alg. ?? which is the fastest known regu-
lar algorithm immune to the attack from [?]. Table ?? compares the efficiency of the
multiply always, Montgomery ladder, and square always algorithms when S = M and
S/M = 0.8.

In addition, our algorithms can be enhanced using the sliding window or m-ary
exponentiation techniques [?, ?] while the Montgomery ladder cannot. These techniques
are known to provide a substantial speed-up on Alg. ?? when extra memory is available.
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9.4. PRACTICAL RESULTS

Though we did not investigate this path, we believe that a comparable trade-off between
space and time can be expected.

9.3.4 Security Considerations

Our algorithms are protected against the SPA by the implementation of the atomicity
principle. The analysis from [?] cannot apply either since only squarings are involved.
As a matter of comparison, notice that the exponent blinding countermeasure does not
fundamentally remove the source of the leakage but only renders this attack practically
infeasible. Embedded implementations should also be protected against the differential
power analysis (DPA) which we do not detail in this study. However it is worth noticing
that classical DPA countermeasures, like exponent or modulus randomization, can be
applied as well. The interested reader may refer to [?, ?].

We recommend implementing Alg. ?? instead of Alg. ?? since left-to-right algorithms
are vulnerable to the chosen message SPA and doubling attack [?], and more subject to
combined attacks [?]. Besides, Alg. ?? requires one less register than Alg. ??.

It is well-known that algorithms using dummy operations generally succumb to safe-
error attacks. Immunity to C and M safe-errors can be easily obtained by applying the
exponent randomization technique, which also prevent the DPA. Nevertheless, special
care has been taken in our algorithms to ensure that inducing a fault in any of the
dummy operations would produce an erroneous result. For instance, in the following
sequence of dummy operations in Alg. ?? (j = 0), no operation can be tampered with
without corrupting R0 and thus the result of the exponentiation:

R0 ← R0 +R0 mod n

R2 ← R0/2 mod n

R0 ← R0 −R2 mod n

Only operations i ← i and j ← 0, appearing in some instances of Alg. ?? and ??
patterns, have not been protected for readability reasons. It is easy to fix these points:
perform i ← i ±Mj,· + α instead of i ← i ±Mj,· in Alg. ?? and ?? and add a step
i ← i − α in the loop. The j ← di(1 + . . . ) operation should be protected in the same
manner. In the end, our algorithms are immune to C safe-error attacks.

Further work may focus on implementing on our algorithms the infective computation
strategy presented by Schmidt et al. in [?] in order to counterfeit the combined attacks.

9.4 Practical Results

In this section, we briefly present practical implementation results of the non-parallelized
square always algorithm. As discussed in Section ?? we focused the right-to-left version.

We implemented this algorithm and the Montgomery ladder on an Atmel AT90SC
smart card chip. This component is provided with an 8-bit AVR core and the AdvX
coprocessor dedicated to long integer arithmetic. We used the Barrett reduction [?] to
implement modular arithmetic.
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9.5. CONCLUSION

We present in Table ?? the memory (code and RAM) and timing figures obtained
with the chip and the AdvX running at 30 MHz. The observed speed-up of the square
always algorithm over the Montgomery ladder is 5% on average. This is less than the
predicted 11% but the difference can be explained by the neglected operations of the
atomic pattern. Keep in mind that such results highly depend on the considered device
and its hardware capabilities.

We performed careful SPA on both implementations and observed no leakage on
power traces.

9.5 Conclusion

In this paper we show that trading multiplications for squarings in an exponentiation
scheme together with the atomicity principle provides a new countermeasure against
side-channel attacks aimed at distinguishing squarings from multiplications. Moreover,
this countermeasure is intrinsically more secure against such analysis than the classical
multiply always atomic algorithm with exponent blinding, and provides better perfor-
mances and flexibility towards space/time trade-offs than regular algorithms such as the
Montgomery ladder or the square-and-multiply always.
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Conclusion

We have presented in this manuscript some new side-channel and fault injection attacks.
We also introduced new efficient methods to generate provable prime numbers in devices
like smart cards and to compute exponentiation by only applying squaring operations.
We have tested in practice these results on devices.

In the chapter 3 we have first discussed the security of embedded exponentiations
methods with regards to the simple side-channel analysis. We showed that depending
on the hardware device used, especially the hardware multiplier, some of the common
countermeasures can be defeated by side-channel analysis. There is then a strong in-
terest to characterize the hardware multiplier used for such implementations. It is then
preferable to apply right-to-left exponentiations instead of left-to-right methods.

In chapter 4 we have introduced a new classification of attacks by using the terms
vertical and horizontal attacks. We have presented two new horizontal attacks that
can defeat some exponentiation implementations and compared these methods with the
other existing attacks like the Big Mac attack. We also presented some countermeasures
to thwart these new threats.

In chapter 5 we have presented a fault attack that defeat the Schmidt et al. combined
attack resistant implementation. We also presented some combined attack that threaten
this algorithm. Finally we concluded this chapter by proposing an improved version of
the Schmidt et al. algorithm resistant to the attacks we presented.

Chapter 6 deals with two new collision correlation attacks defeating some first order
protected implementation of the AES algorithm. We have tested these attack in practice
and showed their practical efficiency.

In chapter 7 we introduced a new attack that combines fault injection with differ-
ential side-channel analysis to defeat a first order implementation of the AES. We also
discussed the countermeasures to be implemented.

Chapter 8 discussed efficient embedded generation of provable prime numbers. We
showed that it is possible to implement in product like smart cards efficient provable
generation methods. We also showed that it can be more efficient than the classical
probabilistic methods present in many standards and products. We also gave advices to
implement our methods with regards to side-channel resistance.

An original method to compute exponentiation is presented in chapter 9. In opposi-
tion to the atomic multiply always exponentiation that only makes use of multiplication
operation we have presented atomic square always algorithm. These new methods are
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efficient and offer more security than the multiply always exponentiation against the
attacks that consist in distinguishing squaring from multiplying operations.
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Imagination is more important than knowledge.
A. Einstein.

Tout le monde savait que c’était impossible.
Est arrivé un qui ne le savait pas et qui l’a fait.

Marcel Pagnol.

Mouuuuuh.
Anonyme.
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Designing an up-to-date efficient secure platform need hardware and soft-
ware cohesion. e-Smart 2010.

[23] B. Feix. What’s up in PACA - passive and active combined attacks.
PASTIS 2010 workshop.

181


