
UNIVERSITÉ DE LIMOGES

ÉCOLE DOCTORALE Sciences et Ingénieries pour l’Information

Année : 2012 Thèse N° 35-2012

Thèse
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE LIMOGES

Discipline : Informatique et Applications

présentée et soutenue par

Oana Livia APOSTU

le 25 Octobre 2012

Analytic visibility in Plücker space:
From theory to practical applications

Thèse dirigée par Djamchid GHAZANFARPOUR,
Co-encadrée par Frédéric MORA

JURY :

Jean-Pierre JESSEL Professeur, Université de Toulouse Président
Kadi BOUATOUCH Professeur, Université de Rennes 1 Rapporteur
Mateu SBERT Professeur, University of Girona Rapporteur
Djamchid GHAZANFARPOUR Professeur, Université de Limoges Examinateur
Frédéric MORA Maître de conférences, Université de Limoges Examinateur

“The truth is out there”

The X-Files

“I don’t need sleep, I need answers.

I need to determine where,

in this swamp of unbalanced formulas,

squatted the toad of truth.”

Shelodon Cooper

This thesis is dedicated to my parents, who filled my childhood with books and dreams.

And to Alex, who makes the sweetest cookies in the world.

Contents Page 1

Contents

Contents Page 2

Contents . 1

List of Figures . 5

List of Tables . 9

Nomenclature . 11

Introduction . 13

Chapter 1 : Analytic Visibility . 17
1.1 Geometric Preliminaries . 19

1.1.1 Polyhedrons and Polytopes . 19
1.1.2 Oriented Projective Space . 20
1.1.3 Plücker Coordinates . 24

1.2 Theoretical Framework . 27
1.2.1 Ray Triangle Intersection Problem . 27
1.2.2 Equivalence Classes of Oriented Lines . 27

1.3 From-Point Analytic Visibility . 30
1.3.1 Point-to-Point Visibility . 30
1.3.2 Beam Tracing . 30
1.3.3 Other Methods . 33

1.4 From-Polygon Analytic Visibility . 36
1.4.1 Preliminary Definitions . 36
1.4.2 The Aspect Graph . 38
1.4.3 The Asp . 39
1.4.4 2D Visibility Complex . 40
1.4.5 3D Visibility Complex . 40
1.4.6 The Visibility Skeleton . 41
1.4.7 Plücker space and Visibility . 43
1.4.8 Cells and Portals . 45
1.4.9 PSP Tree . 45
1.4.10 Exact From-Region Visibility Culling . 46
1.4.11 A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries 49
1.4.12 Exact From-Region Visibility - Occlusion Tree . 50
1.4.13 Exact Polygon-to-Polygon Visibility . 51
1.4.14 nD Visibility . 52

1.5 Summary . 54
1.6 Conclusion . 56

Chapter 2 : From-Polygon Occlusion
Application to Soft Shadows . 59
2.1 Soft Shadow Generation . 61

2.1.1 Sampling-based Methods . 62
2.1.2 Analytic Methods . 65
2.1.3 Silhouette Based Soft Shadows . 69
2.1.4 Other Methods . 71
2.1.5 Conclusion . 72

2.2 Algorithm Design . 74
2.2.1 Equivalence Classes of Oriented Lines . 74
2.2.2 Encoding the Occlusion Information . 76
2.2.3 Extracting the Occlusion Information . 77

Contents Page 3

2.3 Implementation . 80
2.3.1 Overview . 80
2.3.2 Core Algorithm . 87
2.3.3 Key Points . 90

2.4 Soft Shadows Framework . 92
2.5 Results . 94

2.5.1 Comparisons on time and quality . 94
2.5.2 Increasing the Area of the Light . 96
2.5.3 Increasing the Number of Lights . 97
2.5.4 Focus on the mai nQuer y Algorithm’s Behavior . 98

2.6 Discussion and Future Work . 100

Chapter 3 : From-Polygon Visibility
Application to Ambient Occlusion . 101
3.1 Ambient Occlusion Theory . 104

3.1.1 The Obscurances Illumination Model . 104
3.1.2 The Ambient Occlusion Illumination Model . 106
3.1.3 Differences and Similarities . 107
3.1.4 An Analytic Solution to the Ambient Occlusion Integral 107

3.2 Ambient Occlusion Computation . 111
3.2.1 Calculating Ambient Occlusion : The First Milestones 111
3.2.2 Ray Tracing . 112
3.2.3 Analytic and High Quality Solutions . 113
3.2.4 Other Methods . 116
3.2.5 Conclusion . 118

3.3 Algorithm Design . 120
3.3.1 From Occlusion to Visibility . 120
3.3.2 Encoding the Visibility Information . 123
3.3.3 Extracting the Visibility Information . 124

3.4 Implementation . 128
3.4.1 Overview . 128
3.4.2 Core Algorithm . 133
3.4.3 Key Points . 135

3.5 Falloff Function . 139
3.6 Ambient Occlusion Framework . 140
3.7 Results . 141

3.7.1 Mental Ray® Comparison on Quality and Time . 141
3.7.2 Time Analysis . 142
3.7.3 Memory Analysis . 144
3.7.4 Visibility Coherence . 144
3.7.5 The δ Parameter . 145
3.7.6 Ambient Occlusion Volumes Comparison . 147
3.7.7 Falloff Function . 150

3.8 Discussions and Future Work . 152

Conclusion . 154

Annex . 161

Bibliography . 167

Contents Page 4

List of Figures Page 5

List of Figures

List of Figures Page 6

1.1 H-representation / V-representation of a polytope . 20
1.2 The projective plane . 21
1.3 Lines in the projective plane . 22
1.4 Arbitrary lines intersecting in the projective plane . 23
1.5 Interpretation of the Plücker coordinates. 25
1.6 The relative orientation of two lines . 26
1.7 Ray-triangle intersection test . 27
1.8 Equivalence classes according to Pellegrini . 28
1.9 Geometry of beam tracing . 31
1.10 2D illustration of an occlusion tree . 34
1.11 VE Visual events . 37
1.12 EEE Visual events . 38
1.13 Extremal stabbing line . 39
1.14 Aspect graph of a convex cube in orthographic projection 40
1.15 Plücker-complex construction . 44
1.16 Bounding a convex polyhedron in Plücker space . 47
1.17 Silhouette edges . 49
1.18 Degenerate case . 53
2.1 Point and area light sources . 61
2.2 Shadow rays . 63
2.3 Impact of number of samples . 64
2.4 Hard and soft shadow generation using beam tracing . 67
2.5 Shadow volume . 68
2.6 Soft shadow volume with penumbra wedge . 69
2.7 Restraining the arrangement of lines . 75
2.8 Arrangements of lines . 76
2.9 BSP representation of a triangle . 78
2.10 Locating a line into a BSP tree . 78
2.11 Analytical split using a plane . 79
2.12 Selecting occluders . 81
2.13 Dealing with degenerate cases . 84
2.14 Dealing with over-occlusion cases . 84
2.15 2D illustration of how an occluder is located into a tree . 86
2.16 Occlusion query – part 1 . 88
2.17 Occlusion query – part 2 . 88
2.18 Occlusion query – part 3 . 89
2.19 Visual comparison between our algorithm and ray traced soft shadows 95
2.20 Time and memory variation when the light size is increased 97
2.21 Time and memory variation when the number of lights is increased 97
2.22 Lazy construction of a representative BSP tree . 98
3.1 Geometry for obscurances / ambient occlusion . 104
3.2 Graph of ρ function . 105
3.3 Impact of the dmax parameter . 106
3.4 Geometry for Lambert’s formula . 109
3.5 Impact of samples number . 113
3.6 Shadow approximation in Dynamic Ambient Occlusion and Indirect Lighting 114
3.7 Calculating occlusion in High-Quality Ambient Occlusion 114
3.8 Ambient Occlusion Volumes . 115
3.9 Sorting a subset of occluders . 121
3.10 Arrangements of lines . 122

List of Figures Page 7

3.11 Equivalence classes according to Pellegrini and to our implementation 123
3.12 BSP representation of a triangle . 124
3.13 From-polygon and from-point visibility . 125
3.14 Extracting the visibility information for a point . 126
3.15 Restricting the visibility information . 127
3.16 Selecting occluders . 130
3.17 Inheriting the depth information . 132
3.18 Depth culling . 132
3.19 Ambient occlusion visibility query – part 1 . 136
3.20 Ambient occlusion visibility query – part 2 . 136
3.21 Ambient occlusion visibility query – part 3 . 137
3.22 Visual comparison between our results and Mental Ray 143
3.23 Memory consumption during an execution . 144
3.24 Increasing the maximum occlusion distance . 146
3.25 Visual comparison between different δ values . 147
3.26 Comparison with Ambient Occlusion Volumes . 148
3.27 Maximum δ for the Ambient Occlusion Volumes technique 149
3.28 Applying our algorithm for very large δ values . 149
3.29 Visual comparison between the enhanced and the base version of our algorithm 151
3.30 2-dimensional case for the obscurances integral . 163
3.31 Calculating the coordinates of M(θ) . 164

List of Figures Page 8

List of Tables Page 9

List of Tables

List of Tables Page 10

1.1 Summary of analytic visibility algorithms - part 1 . 54
1.2 Summary of analytic visibility algorithms - part 2 . 55
2.1 Time and memory consumption for our soft shadows algorithm. 96
3.1 Memory and time consumptions for our algorithm, and time consumption for Mental

Ray . 142
3.2 Comparison between the standard and the modified version of our algorithm 145
3.3 Variation of parameters with respect to the δ value . 146

Nomenclature Page 11

Nomenclature

The following notations and assumptions are considered through out this thesis:

• A line refers to an oriented line, unless otherwise stated.

• A surface refers to a planar convex and oriented polygon, unless otherwise stated.

• A polygon refers to a planar convex and oriented polygon, unless otherwise stated.

• Although the term triangle is usually employed, all statements equally apply to planar convex

polygons in general, unless otherwise stated.

• Since we are working with oriented primitives only, the terms above and behind are always

defined with respect to the upper normal. Moreover, we consider that all the lines stabbing a

polygon have a coherent orientation with respect to the polygon’s orientation, and thus to its

upper normal.

• pol y(S → T) denotes the minimal polytope containing all the lines stabbing two convex

polygons S and T , in this order, as described in Chapter 1, Section 1.4.14.

• O(S,T) denotes all the occluders of two polygons S and T , as defined in Chapter 2.

• O(S) denotes all the potential occluders of a polygon S, as defined in Chapter 3.

• x yz denotes a 3-dimensional point.

• hemi spher e(x yz,δ) denotes the upper hemisphere, with respect to x yz’s normal, centered at

x yz and having a δ radius.

Nomenclature Page 12

Introduction Page 13

Introduction

Introduction Page 14

N image synthesis, determining visibility is a required step in many techniques. The

visibility problems range from simple questions such as what is visible from a point, to

more global issues describing the visibility between objects. For example, calculating the

hard shadows due to a point light source is a classic point-to-point problem, since it requires to

detect if the light is visible from the point to shade. On the other hand, the soft shadows generated

by an area light source represent a point-to-surface problem. In this case, the visibility of the entire

light source needs to be determined from the point to shade. A similar situation is that of an observer

or a camera. In this case, the visibility of the surrounding environment must be described from the

point representing the camera. More complex visibility issues are raised in the context of global

illumination. In this case, the problem is extended to the visibility relation which exists between each

polygon and its entire environment.

An important point in solving visibility is the nature of the solution. This has an impact both

on the complexity of the calculations, as well as on the final results. Discrete approximations and

sampling methods translate the various visibility problems to point-to-point visibility queries, which

can be easily solved using ray tracing. Thus, they are robust and simple to implement. However, they

cannot solve all visibility problems. The classic example is that of the mutual visibility or invisibility

of two objects, which cannot be proven using a ray tracing approach. Also, their results are subject

to noise. On the other hand, analytic methods provide a continuous and exact representation of

visibility, which allows answering a wider range of problems. Moreover, the results are accurate and

noise free. However, analytic methods are more complex to implement.

The efficiency of the visibility solution often relies on exploiting the visual coherence which

exists between neighbor view rays. The notion of coherence can be translated by the fact that two

rays which are "close" are more likely to intersect the same objects, since they travel close paths in the

scene. In the context of discrete visibility, packet tracing [WSBW01, RSH05, WIK+06, Wal07, WK06]

was introduced in order to take advantage of the coherence between the rays originating from the

camera. The idea was to group rays together into packets, so the travel cost could be amortized

over the entire packet. An analytic solution equally exists. More exactly, early research in image

synthesis attempted to replace the conventional ray with volumetric structures, generally called

beams [Ama84, HH84, STN87, GH98].

Both the discrete and the analytic methods exploit the coherence from a single view point. However,

it is obvious that two close points also exhibit a strong visual coherence, since they share a similar

view of the surrounding environment. For example, in the context of soft shadows, two neighbor

points located on the same surface will most likely receive the same amount of light, since they have

analogous views of the light source. Exploiting the visual coherence which exists between the view

rays originating from a surface is a from-polygon visibility problem. This subject has received less

attention, because of the its inherent complexity.

Introduction Page 15

From-polygon visibility is by nature a four-dimensional problem [Dur99]. While it can be

theoretically described in an elegant manner [Pel91, Pel04], few practical solutions are available, and

they all lack robustness and efficiency.

In this thesis, we aim to fill this existing void between theory and practice by providing an analytic

approach which exploits the visual coherence from a polygon in order to optimize from-point

visibility queries, while ensuring high quality results.

Our contributions can be summarized as follows:

• First of all, we propose a method which solves from-polygon occlusion and which is used in

the context of soft shadow generation. Our algorithm encodes an analytic representation of the

occlusion information between an area light source and the polygon containing the points to

shade. Then, for each one of these points to shade, we extract the exact visible parts of the light

source and compute its analytic and exact soft shadow value. Our tests demonstrate that this

solution is robust and efficient, and yields accurate and high quality results.

• Next, we build on our first algorithm and propose a method which takes into account an

additional depth information and therefore computes from-polygon visibility. The applicative

context is the calculation of ambient occlusion effects. Our second algorithm retains all the

advantages of our first implementation. For each visible polygon from the viewpoint, we

encode its exact visibility of the surrounding environment. Then, for each one of its points, we

extract the visibility information and use it together with an analytic formulation to compute

noise free and high quality ambient occlusion.

Overview

The first chapter starts with the definition of the necessary geometric preliminaries, and explains

the basis of Plücker space, which is a necessary tool in the context of from-polygon visibility. We

then describe the theoretical framework representing the starting point of our work. Next, we briefly

present the methods which have proposed analytic solutions to from-point visibility problems,

followed by a detailed description of from-polygon visibility techniques. We conclude the first

chapter with a summary of the drawbacks associated with the current methods, and we announce

the aims and motivations of this work with respect to the presented context.

The second chapter details our from-polygon occlusion method, as well as its application to

the generation of soft shadows. The first section presents a brief overview of high-quality and

analytic soft shadow generation methods. Then, we describe our occlusion algorithm from a

theoretical point of view. Next, we present the details of our implementation and the soft shadows

framework. The last two sections present the results we obtain and a global analysis of the method.

This chapter corresponds to the first contribution previously presented.

Introduction Page 16

The third chapter is dedicated to the presentation of our from-polygon visibility method, and

to its application to the calculation of ambient occlusion. First of all, we present the ambient

occlusion illumination model, and detail the methods which achieve high quality results. We

then explain the main differences between this new approach and our from-polygon occlusion

algorithm. Next, we present our visibility algorithm from a theoretical point of view, followed by the

implementation details and a description of the ambient occlusion framework. Finally, we detail and

analyze the results we obtained. This chapter corresponds to the second contribution previously

presented.

Chapter 1 : Analytic Visibility Page 17

Chapter 1 :

Analytic Visibility

Chapter 1 : Analytic Visibility Page 18

HIS chapter provides a study of analytic visibility methods. Attempting to define visibility

or providing a survey of existing visibility problems and algorithms is outside the scope

of the work. In his PhD thesis, Durand [Dur99] provides a global and comprehensive

overview on visibility problems in various research fields. We can also recall here the classic study on

hidden-surface algorithms proposed by Sutherland et al. [SSS74], and the classification of visibility

in computer graphics provided by Bittner and Wonka [BW03].

The definition of analytic visibility concerns the techniques which define visibility using a set

of mathematical equations. These methods deal with continuous representations of lines and

surfaces. Contrary to discrete solutions, the calculations involved are of higher complexity and the

current implementations suffer from several drawbacks.

First of all, Section 1.1 defines some required geometric notions and explains the basis of Plücker

space, which allows an elegant parametrization of real lines. In the context of from-polygon visibility,

this parametrization represents a necessary tool. Next, Section 1.2 details a theoretical framework

based on the Plücker parametrization. This framework provides a classification of lines according

to the geometry they intersect. Thus, it can be used in the context of analytic visibility. Sections 1.3

and 1.4 analyze different methods which have attempted to provide analytical solutions to from-

point and from-polygon visibility problems, respectively. All these techniques are then synthesized

in a table contained in Section 1.5. Finally, Section 1.6 concludes by summarizing the drawbacks of

the existing solutions. In this context, we define our motivation and our aims.

Chapter 1 : Analytic Visibility Page 19

1.1 Geometric Preliminaries

This section summarizes some geometric concepts which are essential to this study. First of all, we

review the notions of polyhedron and polytope, together with some adjacent definitions. Next, we

present a few notions of projective geometry, which allow us to define the Plücker space, an oriented

projective space providing an elegant parametrization of 3-dimensional lines.

1.1.1 Polyhedrons and Polytopes

The words polyhedron and polytope have various, and sometimes conflicting, definitions. A naive

characterization defines a polytope as a geometric object with flat sides and which exists in any

general number of dimensions [wik12c]. In order to avoid all ambiguities, we are summarizing here

a list of definitions [HRGZ97].

We present two equivalent definitions for a polyhedron: algebraic (Definition 1) and a more

intuitive one (Definition 2).

Definition 1. A d-dimensional convex polyhedron is the set of points x ∈R
d which are the solutions to

a system of linear inequalities:

mx ≤ b

Where m ∈R
n×d is a real n ×d matrix and b ∈R

n is a real n vector.

Definition 2. A d-dimensional convex polyhedron is an d-dimensional object having a boundary

composed of a finite collection of polyhedral facets of dimension d −1.

Definition 3. A polytope is a bounded convex polyhedron.

There are two distinct ways to represent polytopes: using a half-space representation or a vertex

representation.

Definition 4. H-polytope (Half-space representation, H-representation): a set of n half-spaces whose

intersection in R
d gives the polytope.

This characterization can be obtained from Definition 1: Let mi ,1 ≤ i ≤ n be the lines of matrix m,

and bi the elements of vector b. mi x −bi = 0 is the equation of a hyperplane, Hi . Thus, the set of

solutions to the linear system in Definition 1 is the set of points x ∈R
d :

x ∈
n
⋂

i=1
H−

i

Definition 5. V-polytope (Vertex representation, V-representation): the convex hull of a finite set V =
v1, ..., vk of points in R

d :

conv(V) = {
k
∑

i=1
λi xi | λ≥ 0,

k
∑

i=1
λi = 1}

V is the set of the polytope’s vertices. Figure 1.1 gives an illustration of the half-space and vertex

representation of a R
3 polytope.

Chapter 1 : Analytic Visibility Page 20

Figure 1.1: The Halfspace representation (left) and Vertex representation (right) of a R
3 polytope.

Theorem 1. The definitions of V-polytopes and of H-polytopes are equivalent. That is, every V-polytope

has a description by a finite system of inequalities, and every H-polytope can be obtained as the convex

hull of a finite set of points (its vertices).

The vertex enumeration problem concerns the determination of an object’s V-representation (its

vertices) given the set of linear equations describing its H-representation. On the other hand, the

construction of the H-representation is known as the facet enumeration problem. This is actually a

particular case of the classical convex hull determination problem.

The dimension of the V-representation gives the dimension of the polytope.

Notation. A d-polytope denotes a d-dimensional polytope.

1.1.2 Oriented Projective Space

The need for a different system

Euclidean geometry is consistent with intuition: intersecting lines define angles, objects have sides

with fixed lengths, parallel lines never meet. However, from some points of view, Euclidean geometry

is either incomplete or not adapted to deal with certain problems.

A conclusive example is the case of railroad tracks. They represent parallel lines situated in the

same plane, therefore they never intersect. However, for an observer, the two tracks intersect in a

vanishing point on the horizon. Moreover, the same observer will perceive a square box as having

angles smaller or larger than 90◦ and sides of different lengths. This perspective view is consistent

with the behavior of a camera and is therefore very common in various areas of computer graphics

and computer vision.

A second example which illustrates the limitations of Euclidean geometry is the case of exceptions.

If we consider two lines in a plane, Euclidean geometry states that these lines intersect, with the

exception of parallel lines.

Projective spaces have the advantage of providing definitions and properties which are more

Chapter 1 : Analytic Visibility Page 21

P
2(R)

R
2

x

y

w

w = 1
(x, y,1)

(x, y, w)

Figure 1.2: The projective plane P
2(R). Each point in R

2 corresponds to a point in P
2(R). Geometrically, this

can be seen as a vector in R
3. If we consider the projection plane w = 1, the points belonging to the equivalence

class < X ,Y ,0 > have no corresponding point in R
2. These ideal points only exist in the projective plane.

consistent and without exceptions. Moreover, they are compatible with the perspective view of a

camera.

This section discuses some aspects of projective geometry, which are required for a better

understanding of this work. An extensive presentation can be found in [Sto91].

The Classic Projective Geometry

A n-dimensional projective space can be defined as follows:

Definition 6. Let K be a field. The projective space of dimension n over K (noted P
n(K)) is the set of

lines passing through the origin in K
n+1. More formally, let ∼ be an equivalence relation on the set of

non-zero points K∗ =K
n+1 \ {0}, defined as follows:

x ∼λx, x ∈K
n+1 \ {0}, λ ∈K\ {0}

P
n(K) represents the set of corresponding equivalence classes.

Let x = (x0, ..., xn−1) ∈ K
n . In order to represent the same point in P

n(K), we use a system of

coordinates called the homogeneous coordinates. x can be rewritten as (x0, ..., xn−1,1). This defines

the equivalence class < X0, ..., Xn >, where any point (x0, ..., xn) ≡ (λx0, ...,λxn), ∀λ ∈ K \ {0}. Note

that (x0, ..., xn) ∈K
n+1. This equivalence class corresponds to a vector containing (x0, ..., xn) in K

n+1.

Moreover, Pn(K) represents the set of all n-dimensional vector spaces over Kn+1.

In order to better understand this definition, as well as the properties it implies, we give a succinct

description of the classic projective plane P2.

Chapter 1 : Analytic Visibility Page 22

P
2(R)

R
2

x

y

w

Figure 1.3: A line in R
2 corresponds to a set of 2-dimensional vectors in P

2(R). Geometrically, this can be
interpreted as a plane which contains the origin in R

3.

The Projective Plane

Points. Let (x, y) ∈ R
2 be a point in Euclidean plane. This corresponds to the equivalence class

< X ,Y ,W >, where any point (x, y, w) ≡ (λx,λy,λw), ∀λ ∈ R \ {0}. This is actually the real line (∈ R
3)

containing both the origin and the point (x, y, w) (the vector (x, y, w) ∈R
3).

To characterize the correspondence between R
2 and the classic projective plane P

2(R), we use

a projection plane. This can be any plane in R
3, which does not contain the origin. Let w = 1 be the

chosen projective plane. It can be easily demonstrated that there is a one-to-one correspondence

between the points on this plane and R
2. Indeed, any point (x, y,1) on the projection plane

can be mapped to (x, y) ∈ R
2. Moreover, each point (x, y,1) corresponds to a equivalence class

< X ,Y ,1 >∈P
2(R). Therefore, any point in R

2 can be mapped to a point in P
2(R).

However, not all points ∈ P
2(R) can be mapped to R

2. With respect to the chosen plane, the

points corresponding to the equivalence class < X ,Y ,0 > cannot be represented in R
2. These points

are called ideal points or points at infinity. Figure 1.2 gives an illustration of the projective plane.

Lines. If a point in R
2 corresponds to a point in P

2(R) (a vector in (R)3), a line in R
2 corresponds to a

line in P
2(R) (a plane containing the origin in R

3). The intersection of this plane with the projection

plane w = 1 yields a set corresponding to a unique line in R
2. Just like in the case of points, every line

in R
2 will correspond to a unique plane containing the origin in R

3, and therefore to a line in P
2(R).

And similarly, there is one line in P
2(R), called ideal line or line at infinity, which does not exist in R

2.

Moreover, all the ideal points lie on the ideal line. Figure 1.3 illustrates the representation of lines in

P
2(R).

From this point of view, the projective plane can be seen as the standard plane R
2 augmented

Chapter 1 : Analytic Visibility Page 23

P
2(R)

R
2

x

y

w (x, y, w) P
2(R)

R
2

x

y

w

a) b)

Figure 1.4: a) The intersection of two lines in R
2 corresponds to the intersection of two lines in P

2(R) (ie. the
intersection of two planes in R

3, both containing the origin). b) Two parallel lines in R
2 share an intersection in

in P
2(R). This intersection corresponds to a point at infinity, < x, y,1 > in this case.

by a set of ideal points and an ideal line. Moreover, the ideal points and the ideal line are not

distinguishable from regular points and lines, their definitions in the projective plane being identical.

This is important because it allows uniform definitions and properties, without having to consider

the particular cases taken into account by Euclidean geometry.

This simplification can be illustrated using the example of parallel lines. Two lines in R
2 correspond

to two lines in P
2(R), which can be interpreted as two planes going through the origin in R

3. Since

both these planes contain the origin, they are not parallel and thus they intersect. This intersection

corresponds to an ideal point in P
2(R). Note that no assumption is made concerning the two initial

lines. Therefore, since any line in R
2 corresponds to a plane going through the origin in R

3, and all

these planes intersect in lines going through the origin, then all the lines in P
2(R) intersect in a point

in P
2(R). Figure 1.4 offers a geometric illustration of arbitrary lines and their intersection in P

2(R).

Duality

The principle of duality represents an interesting and useful property of projective geometry. Its

definition can be formulated as follows :

Definition 7. Any theorem or definition of projective geometry has a dual theorem or definition, in

which the terms "points" and "hyperplanes" have been interchanged.

In a n-dimensional projective space, this can be demonstrated as follows: Let a and b be two points

in P
n(K). Their homogeneous coordinates are (a0, ..., an) and (b0, ...,bn), respectively. If the points

satisfy the equation : a0b0 + ...+anbn = 0, then the following statements are both true:

• The point a is contained in the hyperplane b0x0 + ...+bn xn = 0.

• The point b is contained in the hyperplane a0x0 + ...+an xn = 0.

As with the previous definition, we illustrate this using the projective plane P
2(R).

Chapter 1 : Analytic Visibility Page 24

Let (x0, y0) be a point in R
2. < X ,Y ,W > is the equivalence class corresponding to the mapping

of this point to P
2(R).

Let ax + by + c = 0 be a line in R
2. This line corresponds to the vector (a,b,c) in R

3 (a line

passing through the origin in R
3). Thus, it can be mapped to a unique point < a,b,c >∈P

2(R).

If the point is on the line, then ax0 + by0 + c = 0, which is equivalent to aX + bY + cW = 0.

This can be rewritten as p × l = l ×p = 0, where p =< X ,Y ,W >∈P
2(R) and l =< a,b,c >∈P

2(R).

Therefore, in the projective plane P
2(R), saying that the point < X ,Y ,W > is on the line < a,b,c > is

equivalent to stating that the point < a,b,c > lies on the line < X ,Y ,W >.

Similarly, the dual statement of "Two points are concurrent" is "Two lines are incident". A

demonstration, as well as additional dual properties, can be found in [Bir98].

The duality principle has several advantages. First of all, a demonstration in projective space is

simultaneously a proof to two different theorems. Moreover, it is possible to use a more intuitive

solution to a problem, in order to solve the problem’s dual statement.

Oriented Projective Geometry

Geometric primitives are not oriented in the classic projective geometry. This is a major drawback,

since many problems involve oriented lines or planes. In [Sto87] Jorge Stolfi discusses the problems

which arise from the lack or orientation in classic projective geometry and describes how these

inconveniences are solved by using oriented projective geometry. We only summarize here how the

classic projective space can be modified in order to include orientation.

Roughly speaking, an oriented projective space is a double copy of a classic projective space,

where each copy has a different orientation. This implies that < +x0, ...,+xn > and < −x0, ...,−xn >
are treated as two different equivalence classes. For example, in P

2(R), each line of the classical

projective plane is replaced by two lines which coincide, but are oppositely oriented. Therefore, they

are distinct. By applying the principle of duality, we also obtain two oppositely oriented copies for

each point.

1.1.3 Plücker Coordinates

Plücker space (P5(R), or simply P
5) is a 5-dimensional oriented projective space, which provides an

efficient representation of lines. Plücker coordinates are a special case of Grassmann coordinates,

which can be used to parametrize a k-dimensional affine sub-space embedded in an n-dimensional

space as a point in a projective
(

n+1
k+1

)

−1 dimensional space. In the context of parameterizing lines

(k = 1) in R
3 (n = 3), this yields the Plücker space.

For the rest of this work, the terms point, line and plane will refer to geometric elements in R
3,

Chapter 1 : Analytic Visibility Page 25

R
3

O

Q

P

l −−→
PQ

l0
l1
l2

−−→
OP ×−−→

OQ
l3
l4
l5

x
y

z

Figure 1.5: Geometrical interpretation of the Plücker coordinates: (l0, l1, l2, l3, l4, l5) is the Plücker mapping of
the line l ∈ R

3. The first three coordinates (l0, l1, l2) correspond to the direction of the line, while the last three
(l3, l4, l5) encode its position. (l3, l4, l5) represents a vector which is perpendicular on the plane containing the
line and going through the origin (OPQ).

unless otherwise stated.

Let p = (px , py , pz) and q = (qx , qy , qz) be two distinct points which define an oriented line l .

In Plücker space, this line is represented by a set of six coefficients, called the Plücker coordinates, πl ,

of the line l .

πl = (l0, l1, l2, l3, l4, l5)

where
l0 = qx −px l3 = qz py −qy pz

l1 = qy −py l4 = qx pz −qz px

l2 = qz −pz l5 = qy px −qx py

Although this parametrization is far from intuitive, a geometric interpretation can be given. The first

three coordinates correspond to the direction of the line, while the last three coordinates describe the

position of the line in space. Figure 1.5 gives an illustration.

Any Plücker point is in bijection with its dual hyperplane:

hl (x) = l3x0 + l4x1 + l5x2 + l0x3 + l1x4 + l2x5 = 0

wi th x(x0, x1, x2, x3, x4, x5) ∈P
5.

Therefore, there are two geometrically dual ways to describe an oriented real line in Plücker space:

either as a point or as its dual hyperplane.

An important property of the Plücker space is that we can characterize the relative orientation

Chapter 1 : Analytic Visibility Page 26

si de(l ,r) > 0 si de(l ,r) = 0 si de(l ,r) < 0

l

r

hl

πr

l

r

hl

πr

l

r

hl πr

Figure 1.6: Above: The relative orientation of two lines is given by the sign of the side operator. Below: Since
si de(l ,r) = hl (πr), the side operator is equivalent to testing the position of the Plücker point of one line against
the dual hyperplane of the other line.

of two lines. This can be done using the so-called side operator:

si de(l ,r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5

where l and r are two lines and πl (l0, l1, l2, l3, l4, l5) and πr (r0,r1,r2,r3,r4,r5) their Plücker

coordinates. In particular, two lines are incident (or parallel) if their side operator equals zero.

We can notice that si de(l ,r) = hl (πr). From a geometric point of view, this translates to the fact that

computing the relative position of two lines comes down to testing the position of the Plücker point

of one line against the dual hyperplane of the second line (see Figure 1.6).

Although any line in R
3 can be mapped to a point in P

5, not all the points in P
5 correspond to

lines in R
3. The set of real oriented lines corresponds in P

5 to a particular four-dimensional quadric

surface, known as the Plücker hyper-surface (also known as the Grassmann manifold, the Klein

quadric, or the Plücker quadric). Formally, the Plücker hyper-surface can be defined as follows :

Q = {x ∈P
5|hx (x) = 0} \ {0}

Using the Plücker coordinates, the edges of polygons can be defined as directed lines, which

correspond to hyperplanes in Plücker space. These hyperplanes define a 5-dimensional polyhedron.

Therefore, the Plücker parametrization allows an easy characterization of continuous sets of lines

using convex volumes.

Chapter 1 : Analytic Visibility Page 27

1.2 Theoretical Framework

1.2.1 Ray Triangle Intersection Problem

A well-known application of the side operator is an easy and robust line-triangle intersection test.

The solution is based on the following observation: An oriented line intersects a triangle if its relative

orientation is consistent with respect to the lines spanning the triangle’s edges. An illustration is

given in Figure 1.7.

Let T be a triangle and l0, l1, l2 the lines spanning its edges. If T is oriented, then l0, l1, l2 have

coherent orientations. These three lines correspond to three hyperplanes in P
5, which split the

Plücker space into cells. Any line intersecting the triangle will map to a Plücker point located in the

same cell, which corresponds to the intersection of the three half spaces induced by the hyperplanes.

Therefore, this cell contains all the lines (i.e. their Plücker points) stabbing the triangle, whereas the

other cells contain all the lines missing the triangle. This provides an analytical representation of all

the lines intersecting a triangle.

This property remains valid for any oriented convex polygon.

d

l0

l1

l2

πd

hl0

hl1

hl2

Figure 1.7: Left: a triangle in 3D space. l0, l1, l2 are the lines spanning the triangle’s edges. d is a line stabbing
the triangle. Right: hl0 , hl1 and hl2 are the Plücker hyperplanes mapped from l0, l1 and l2 respectively. πd is
the Plücker point mapped from the stabbing line d . πd has a consistent orientation in respect to l0, l1, l2. From
a geometrical point of view, πd lies at the intersection of the half spaces induced by hl0 , hl1 and hl2 . Thus, these
3 hyperplanes provide an analytical representation of all the lines stabbing the triangle.

1.2.2 Equivalence Classes of Oriented Lines

Description. The ray-triangle intersection property has been extended to any set of convex polygons

by Pellegrini [Pel91, Pel04]. Let Tset be a set of oriented triangles (or convex polygons). The Plücker

hyperplanes corresponding to the lines spanning the triangles’ edges divide the Plücker space into

cells. This builds an arrangement, having the following property: all the points belonging to the same

cell have the same sign with respect to its bounding hyperplanes. Therefore, in Plücker space, all the

lines (i.e. their Plucker points) belonging to the same cell intersect the same subset of triangles in

Tset . The decomposition of Plücker space into cells allows to group lines together according to the

Chapter 1 : Analytic Visibility Page 28

R
3

P
5

a b c

P

Q

πa

πb

πc

PQ

P

Q

P

Q

P

Q

Figure 1.8: Equivalence classes according to Pellegrini. Left: Two triangles (P , Q) and three lines (a, b, c)
in various configurations. Right: The arrangement of hyperplanes (illustrated by 6 2D lines) mapped from
the triangles edges. Filled cells are set of lines intersecting at least one triangle. The intersected triangles
are associated with the corresponding cells. πa , πb and πc are the Plücker points mapped from a, b and c,
respectively. They are located in the cells according to the triangles they stab. For example, πb has a consistent
orientation with respect to the 6 hyperplanes, since b intersects the two triangles.

subset of triangles they intersect. This defines an equivalence relation on lines. As a consequence,

each cell corresponds to an equivalence class. To sum up, the Pellegrini approach allows an exact

and analytical representation of all the sets of lines generated by a set of triangles. Figure 1.8 gives an

illustration.

Theoretical complexity. An arrangement of n hyperplanes in R
d has a maximum of O(nd)

cells [EOS86]. If this arrangement is restricted to a (d − 1)-dimensional algebraic surface (i.e. the

cells intersecting this surface), the maximum number of cells is O(nd−1 logn) [APS91]. In the above

description, we are considering the arrangement of real lines (thus the Plücker points located on the

Plücker quadric) in P
5. Therefore, the equivalence classes generated by a set of real lines in Plücker

space have a theoretical complexity of O(n4 logn).

For a set of n disjoint triangles, Pellegrini [Pel91, Pel04] calculates a theoretical bound of O(n4+ǫ) for

the considered arrangement.

Occlusion and Visibility. It is important to note that these equivalence classes correspond to

an information of occlusions, rather than one of visibility. Pellegrini’s definition provides the

information of which lines intersect which subset of triangles, but not the order in which these

triangles are intersected. In [Pel93], Pellegrini explains how the arrangement of lines can be used

to answer the ray-shooting problem. More exactly, for each ray, the arrangement provides its

equivalence class, and thus the triangles it intersects. The first intersection for the ray can be

calculated using these triangles.

Therefore, speaking in terms of visibility, the definition of equivalence classes provides all the

occlusion information for a view direction, without any particular order.

Chapter 1 : Analytic Visibility Page 29

Other theoretical results. It is important to note that this framework has been extensively used to

provide important theoretical results concerning oriented lines in space. Some of these problems

involve grouping lines according to different types of geometry, answering various ray shooting

problems, or dealing with moving lines among obstacles. A complete analysis of these problems,

along with the established theoretical complexities has been provided by Pellegrini [Pel97].

The theoretical results provided by Pellegrini represent only a part of the research based on the

Plücker space. The Plücker parametrization can be used to solve various problems involving

lines [CEG+96], and has served as a framework for visibility computations in the field of computer

graphics [TH99, NBG02, HMN05, Bit02, Mor06].

Chapter 1 : Analytic Visibility Page 30

1.3 From-Point Analytic Visibility

This section provides a concise description of the analytic methods which calculate from-point

visibility. We start with the most simple case, the point-to-point visibility. Then, we continue with

the beam tracing methods, which were initially designed to replace rays with volumetric structures,

in order to take advantage of spatial coherence and improve both the performance and the quality

of the rendering. We also describe a method which encodes the conservative visibility from a point

using a BSP tree, and a second one which calculates a partial representation of visibility in order to

compute analytical irradiance in polygonal environments.

1.3.1 Point-to-Point Visibility

The most simple definition of visibility can be formulated as follows:

Definition 8. Two points in space are mutually visible if the line containing them does not intersect

any other objects between them.

Let us consider the ray tracing algorithm, which uses rays to determine the visible surfaces from

a viewpoint. For each ray, the algorithm determines the first visible surface by testing line-surface

intersections between the ray and each object in the scene. Since the image is sampled, the output

of the algorithm can be seen as a set of viewpoint-to-point visibility proofs. Thus, ray tracing can be

considered as a point-to-point analytic visibility solution.

1.3.2 Beam Tracing

Ray Tracing with Cones

Amanatides [Ama84] proposed a method which replaces rays with cones, in order to gather sufficient

information to perform anti-aliasing and achieve various effects such as fuzzy shadows and dull

reflections. Instead of shooting one conventional ray through the center of each pixel, a cone is

constructed which contains the pixel in question. Determining the intersection of this volume with

a primitive provides a double answer: if an intersection exists, and the percentage of the cone which

is blocked by the object. Three methods are given for calculating the intersection of the cone with

a sphere, a polygon and a plane. A sorted list is maintained of the closest objects which intersect

the cone, which are used for anti-aliasing. A restriction is imposed on the input geometry: although

overlapping surfaces are calculated correctly, the algorithm fails when faced with adjacent elements.

The method achieves general anti-aliasing, and some auxiliary effects. Dull reflections are correctly

obtained for all types of objects, but fuzzy shadows are limited to opaque surfaces only. Because

of the nature of the volumetric structure, reflection and refraction calculations are more complex

than in the case of convectional rays, and no sufficient information is provided on the construction

of the reflected and refracted cones. Although the article claims to have improved the intersection

calculations, no comparison is given with respect to a conventional ray tracer.

Chapter 1 : Analytic Visibility Page 31

S

T

P

Figure 1.9: Geometry of beam tracing [HH84]. The primary beam is defined by the viewpoint and the screen
(S). The beam is tested against the polygons in the scene, and each intersecting object is subtracted from
the beam. This leads to arbitrary shapes for the primary beam, thus increasing the complexity of future
intersections. Illustration from [HG98].

Beam Tracing Polygonal Objects

Heckbert and Hanrahan [HH84] proposed a method which replaces the conventional ray with a

volumetric structure, called a beam. They aim to reduce the number of intersection tests and thus

the total rendering time. Moreover, the beam should provide enough information to perform anti-

aliasing and to obtain diffuse shading effects. The method is proposed for polygonal environments,

and is composed of two parts. First of all, a beam tree is constructed, which is an object space

representation of the entire final image. The second part consists of a rendering phase, where the

color of each pixel is being calculated.

The beam tracer is a recursive polygon hidden surface algorithm. The procedure begins with

an initial beam, having the viewpoint as apex and the screen as section. A depth ordered list of the

polygons in the scene is maintained. The beam is intersected with the polygons in this list, in order

to find the first visible surface. When such a polygon is found, it is added to the list of visible surfaces

and then its shape is subtracted from the beam. This is illustrated in Figure 1.9. If the encountered

polygon is reflecting or refracting, new beams will be created for the reflected and transmitted

directions.

The main drawback of the beam tracer is that with each new subtraction, the shape of the beam

becomes more and more complex. This can be seen in Figure 1.9. Thus, the complexity of each new

intersection calculation is increased.

Similarly to [Ama84], secondary beams are not as simple to trace as primary beams. Correct

secondary beams can be created for shadows and reflections, which is a linear transformation.

However, reflection cannot be handled correctly and the authors propose an approximation.

Chapter 1 : Analytic Visibility Page 32

Dadoun et al. [DKW85] construct on the initial method of Heckbert and Hanrahan [HH84],

and describe some of its drawbacks and possible optimizations. They propose a hierarchical

decomposition of the environment, based on a Binary Space Partitioning (BSP) tree, that will allow to

further exploit the scene’s coherence.

Pencil Tracing

Shinya et al. [STN87] propose a mathematical study and applications of pencil tracing. The

conventional ray is replaced with a pencil, which is defined by an axial ray and several par-axial rays

around it, all having a common origin. Thus, a pencil can be simply represented by its spread angle

at the start point, which is its direction deviation from its axial ray. The main idea is to provide a

mathematical tool which solves some of the limitations associated with cone and beam tracing, and

to perform an error analysis in order to improve the image accuracy.

Pencil tracing can be used to accelerate image synthesis, by solving refraction and reflection

calculations with matrix-vector operations. However, the algorithm cannot handle the edges of

objects and their neighborhood. Thus, a conventional ray tracer is used to cover these areas. Also,

small objects are not detected accurately, and may not appear at all in the final image.

The authors also propose a modification of Heckbert and Hanrahan’s [HH84] beam tracer, with

the purpose of handling refractive objects.

A Beam Tracing Method with Precise Antialiasing

Ghazanfarpour et al. [GH98] propose a hybrid method that combines a beam tracer with a ray tracer

in order to provide a general solution to aliasing problems. The algorithm is decomposed into two

main parts. First of all, a beam tracer is used to recursively detect all regions of the image that may

contain aliasing problems. Secondly, a conventional ray tracer is used to calculate the color of each

pixel on the screen.

The first part is based on an adaptive recursive subdivision of the image space. A view beam is

traced through the entire screen and recursively subdivided until either a uniform region is obtained

or the pixel subdivision limit is reached. The view beam is a pyramid defined by the viewpoint

and the four rays passing through the corners of an image region. If the corresponding region is

ambiguous, it is subdivided and four new sub pyramids are traced. The intersection calculations are

replaced with a technique that uses separating planes to detect if an object is inside or outside the

beam. When a uniform region has been detected, the next step is to create secondary beams for that

region, in order to calculate shadows, reflections and refractions. Once all the ambiguous regions

have been detected, a conventional ray tracer is used for the color computation. All the necessary

ray-object intersection details have been provided in the first part, thus accelerating the rendering

pass.

Chapter 1 : Analytic Visibility Page 33

A Real-time Beam Tracer with Application to Exact Soft Shadows

Overbeck et al. [ORM07] propose a new beam tracing method which aims at solving two common

drawbacks of earlier methods: the complexity of the intersection tests and the lack of adaptability

to acceleration structures. Their first contribution is a robust beam-triangle intersection algorithm,

which ensures sub-beams with convex cross-sections. The second contribution consists in

developing a kd-traversal method for beam tracing.

The algorithm starts with one large pyramidal beam representing a volume of perspective parallel

rays, which will be recursively split at triangle edges into a list of beams which represent the visible

surface of the scene. In order to take advantage of parallel SIMD instructions, beams are represented

by three or four corner rays having a common origin. The beams traverse the scene’s kd-tree and are

split into two lists of sub-beams: hit and miss beams. The latter ones continue the tree traversal until

they either hit a triangle or exit the scene.

Since the method scales linearly with the visible triangles, the authors note that the algorithm

is more efficient for shadow beams, than for calculating primary visibility. Also, if the visible triangles

become smaller or equal to the considered pixel size, other ray tracing methods yield faster rendering

times for both primary and shadow beams. The method provides accurate and high quality results,

but is limited to scenes with moderate complexity and the images are rendered at a 512×512 pixels

resolution in order to achieve interactive frame rates.

1.3.3 Other Methods

Occlusion Trees

Bittner et al. [BHS98] proposes a method which encodes the visibility from a point in a BSP data

structure, called the occlusion tree. For the considered viewpoint a set of potential occluders is

determined using a spatial hierarchy structure. These occluders are then processed in a depth first

order, and their occlusion volumes are used to build the occlusion tree. For a convex polygon having

e edges, its occlusion volume corresponds to the intersection of (e+1) half-spaces. These half-spaces

are formed by the support plane of the polygon and the planes passing through the viewpoint and

each edge of the polygon.

Each inner node of the occlusion tree is associated with a plane passing through the viewpoint

and an edge of an occluder. Thus, the nodes of the occlusion tree correspond to spatial regions. The

visibility of such a region can be determined as visible, partially visible or invisible. Starting from

the root of the occlusion tree, if a node is determined as visible or invisible, all its descendants are

considered to be visible or invisible, respectively. On the other hand, if a node is marked as partially

visible, its descendants must be further tested. When the visibility of all the leaves is known, the

objects belonging to regions that are either visible or partially visible form a superset of polygons,

which is then used by the graphics hardware (z-buffer) to solve exact visibility from the viewpoint.

Chapter 1 : Analytic Visibility Page 34

vi ew poi nt

A
B

C

l1

l2
l3

l4 l5
A

B

C

l1

l2

l3

l4

l5

out

out

out

Figure 1.10: 2-dimensional illustration of an occlusion tree [BHS98]. The occluders are processed in a depth
first order, and successively intersected with the hyperplanes in the inner nodes. The visible leaves are replaced
by the BSP representation of the occluder reaching them. If the leaf is invisible, the fragment of occluder is
discarded. This is the case of the fragment of polygon B which is behind A.

The visibility of a polygon is determined as follows: In each inner node of the occlusion tree, the

position of the polygon is tested with respect to the associated plane. If the polygon lies completely

in front or back of the plane, the visibility algorithm is applied on either the left or the right child of

the current node. Otherwise, the polygon is split in two fragments and the algorithm continues in

both children using the relevant fragments. The fragments which reach a leaf corresponding to an

invisible region are deleted. Otherwise, the leaf is replaced with the occlusion volume representation

of the fragment. Figure 1.10 gives an illustration.

It is important to note that the leaves of the occlusion tree correspond to view beams. The

main advantage of this method, is that the algorithm only performs polygon–plane operations,

instead of the complex intersections which need to be calculated for the majority of beam tracing

methods. Note that Overbeck et al. [ORM07] proposes a similar technique (splitting beams at

triangles’ edges) in order to increase the robustness of their beam tracing algorithm.

The occlusion trees are extended to visibility from a region in 2-dimensional space [BP01] and

in 2.5-dimensional space [BWW05]. In his PhD thesis [Bit02], Bittner provides an implementation of

the occlusion tree to solve the visibility from a region in 3-dimensional space, based on the Plücker

coordinates. This is detailed in Section 1.4.12.

Exact Illumination in Polygonal Environments using Vertex Tracing

In the context of exact computation of irradiance, Stark et al. [SR00, Sta02] propose a vertex tracing

algorithm and an alternative analytical expression to Lambert’s formula, which is adapted to partially

occluded emitters.

Chapter 1 : Analytic Visibility Page 35

In the case of an emitting polygonal light, the direct lighting calculated at a receiver point (irradiance

term) is a surface integral that can be evaluated in closed-form using Lambert’s formula [Lam60].

However, the drawback of Lambert’s formula is that it only works for a polygonal light source which

is entirely visible from the receiver point. In order to handle partially occluded environments, the

exact fragments of the light source need to be calculated for each receiver point, and then Lambert’s

formula can be applied to each individual fragment.

The alternative formula provided by Stark et al. is valid in general environments where the

light source can be partially occluded. Instead of summing over the edges of a polygon, the new

expression is formulated in terms of vertices. Thus, all polygon clippings and fragment calculations

are avoided.

First of all, the emitting polygons are projected onto an image plane, parallel to the surface

containing the receiver point. Three types of vertices can be distinguished: intrinsic, which are

the vertices of the original polygons, apparent, which are formed by the apparent intersection of

two edges, and conjunctive, which may appear to coincide as viewed from the received point. The

visibility of these vertices is determined using ray tracing. A ray is traced from the receiver point and

through each projected vertex, and all the intersection information is collected and used to calculate

the final irradiance value.

Although correct from a mathematical point of view, the method proposed by Stark et al. suffers from

numerical instabilities. More exactly, theoretical conjunctive vertices cannot be determined exactly

when using finite precision floating-point implementations. A solution proposed by the authors

is to trace a cone, instead of a ray, as described by Amanatides [Ama84]. This allows for detecting

conjunctive vertices more accurately. However, cone tracing is not enough to avoid all errors and

furthermore, it slows the computations by a factor of three.

Chapter 1 : Analytic Visibility Page 36

1.4 From-Polygon Analytic Visibility

This section outlines the techniques which attempt to calculate exact and analytic from-polygon

visibility. We divide these techniques into two categories. The first one contains the methods which

provide a description of 3-dimensional visibility independently of any parametrization. The second

category concerns the methods which rely on the Plücker parametrization. By analyzing these

techniques we remarked that they all represent visibility using a sub-part of a line arrangement, as

described by Pellegrini (see Section 1.2.2).

The first part summarizes some definitions and concepts which are of importance in this context,

followed by a description of the first category of visibility methods. Then we provide a general

overview of how the Plücker parametrization can be used to solve visibility problems. The methods

relying on this theoretical framework are detailed next.

1.4.1 Preliminary Definitions

Stabbing Lines

Definition 8 characterizes the visibility between two points. If we consider two objects, we can

translate their mutual visibility using the set of lines intersecting them. Such a line is referred to

as a stabbing line.

Definition 9. Let A = {Ai ,1 ≤ i ≤ n} be a set of objects. A line corresponds to a stabbing line if it intersects

(or it is tangent to) all the objects in the set.

Definition 10. st ab(A1, ..., An) denotes the set of all the lines stabbing all the objects in A.

Degrees of Freedom

The degrees of freedom (DOF) associated with an object denote the number of independent

parameters that define the displacements which are available for the object within the considered

space [wik12a]. The degree of freedom can also be deducted using the minimum number of

parameters required to specify a position. In 3-dimensional space a line can have maximum four

degrees of freedom.

Visual Events

The visual events (or visibility events) represent topological changes in visibility. This occurs when

an object disappears or appears as seen by a mobile observer which moves through the scene. An

example of visual events in image synthesis is the boundaries of hard shadows, or the limits of the

light, penumbra and umbra in the case of soft shadows. It is important to underline that the visual

events can be represented using the sets of lines which are incident to the given geometry.

Several types of visual events can be characterized. An EEE (Edge-Edge-Edge) visual event is

defined by three distinct edges, in a non degenerate position. The lines incident on these three edges

Chapter 1 : Analytic Visibility Page 37

A

B

e
v

e

v

vi ew poi nt a

vi ew poi nt b

vi ew poi nt c

vi ew a

vi ew b

vi ew c

Figure 1.11: A vertex-edge visual event, defined by a vertex (v) of polygon A and an edge (e) of polygon B . Left:
Three viewpoint configurations. Right: The views from the viewpoints. View a: vertex v is completely visible.
As the viewpoint moves downwards, vertex v becomes hidden (view c). View b is the limit viewpoint and it lies
on a visual event.

have two degrees of freedom. A VE (Vertex-Edge) visual event is defined by a vertex of one polygon

and an edge of a second distinct polygon. Thus, the incident lines have one degree of freedom. A VV

(Vertex-Vertex) visual event is defined by a vertex of one polygon and a vertex of a second polygon.

The line incident on these two vertices has no degrees of freedom. Figure 1.12 and 1.11 illustrate the

EEE and VE visual events.

Extremal Stabbing Lines

Definition 11. A critical line is tangent to at least one object. Therefore, it has at least one less degree of

freedom.

Definition 12. An extremal stabbing line has no degrees of freedom.

Figure 1.13 illustrates the possible configurations of extremal stabbing lines in 3-dimensional space.

All these definitions indicate that it may be more natural to describe visibility problems in line

space, rather than in the classical 3-dimensional Euclidean space. However, the continuous sets of

lines which represent the visual events are generated by the 3-dimensional geometry of the scene.

Therefore, the following question arises: Is line space or object space more suitable to represent

and solve from-polygon visibility problems ? The following sections present the two categories of

methods, those who represent from-polygon visibility in 3-dimensional object space, and those who

chose a line space representation.

Chapter 1 : Analytic Visibility Page 38

P

Q

R

e1

e2

e3

vi ew a

vi ew b

vi ew cvi ew poi nt s : a b c

Figure 1.12: An edge-edge-edge visual event, defined by three distinct edges (e1,e2,e3) of polygons P,Q,R

respectively. Left: Three viewpoint configurations. Right: The views from the viewpoints. View a: vertex v

is completely visible. As the viewpoint moves, polygon P becomes hidden more and more by Q and R. View b

is the limit viewpoint, where the three edges appear to be intersecting. This view lies on a visual event.

1.4.2 The Aspect Graph

The Aspect Graph is a representation of all the possible views of a an object. It was first introduced in

computer vision for model-based recognition [KD76, KD79, EBD92]. The idea was to define all the

possible views of an object in order to identify it, whatever the viewpoint. In order to obtain such an

information, the viewing space needs to be partitioned into regions where the view is qualitatively

invariant. Thus, a robot can compare its view of a particular object with the views stored in the aspect

graph. If one of the views corresponds, then the robot is able to identify the object.

The aspect graph is directly linked to the notion of visual event. More exactly, each node of the

aspect graph represents a general view of the considered object, and each arc is a visual event

describing a transition between two neighboring general views. This organization translates the fact

that the view of an object changes as the observer is traversing a visual event. Figure 1.14 illustrates

the aspect graph of a convex cube, in orthographic projection.

Building the aspect graph is a complex task. Calculating the visual events is not sufficient, and

their arrangement (i.e. the decomposition of the viewpoint space into cells) needs to be computed

also. More exactly, this involves calculating the intersections between the visual events in order

to obtain the segments of events which form the boundaries of the cells. An arrangement of n

hyperplanes in R
d has a maximum of O(nd) cells [EOS86]. For convex polyhedrons, this gives O(n2)

cells for an arrangement of n lines in R
2 and O(n3) for R3. For general polyhedrons, the visual events

to calculate are much more complex, which yields a maximum size for the aspect graph of O(n6) for

orthographic projection and O(n9) for perspective projection.

Chapter 1 : Analytic Visibility Page 39

a) b) c)

Figure 1.13: Possible configurations for an extremal stabbing line in 3-dimensional space. a) The line is
incident on two vertices. b) The line is incident on one vertex and two edges. c) The line is incident on four
edges. The first two cases are just special cases of the third, since a vertex is incident on two edges.

From a practical point of view, the majority of the construction algorithms approximate the

aspect graph. The viewpoint space is sampled and similar views are merged to obtain the graph’s

nodes [HK85]. The drawback of such methods is that their accuracy is dependent of the sampling

density and thus some important views may be missed. This motivated a series of research which

aimed to compute exact construction methods [GMM90, GCS91]. However, no exact and complete

solution to the construction problem has been successfully implemented.

In his PhD thesis, Durand [Dur99] provides a synthesis of the existing construction algorithms.

Moreover, a state of the art has been provided by Eggert and Dyer [EBD92].

1.4.3 The Asp

The Aspect representation (asp) is a intermediate data-structure to build the aspect graph of

polyhedrons. For a convex polygon, the asp is the set of lines intersecting it. Thus, visibility and

occlusion can be described using the asp [PD90]. More exactly, the occlusion created by two polygons

corresponds to the union of their asp. Similarly, the occlusion of a polygon by another polygon can be

obtained by subtracting their asp. The definition of the asp depends on the viewing space considered.

In the case of orthographic projection, the asp is defined in the 4-dimensional space of lines, while

for perspective projection, the 5-dimensional space of rays is used.

No full implementation of the asp exists, although research exist for model-based recognition,

or view maintenance [PSD90].

Chapter 1 : Analytic Visibility Page 40

1

2 3
2 2

2
2

Figure 1.14: The Aspect graph of a convex cube in orthographic projection [Dur99]. a) The initial cube with
numbered faces. b) The partition of the viewpoint space for orthographic projection with some representative
aspects. c) Corresponding aspect graphs.

1.4.4 2D Visibility Complex

Pocchiola and Vegter [PV93] define the 2-dimensional visibility complex. The intuitive concept

behind their data structure is to group all the rays which see the same objects. These rays are actually

maximal free segments, which are plane segments which do not intersect the interior of any object,

and whose extremities lie on the objects of the scene (or are at the infinity). Using this notion, the

2-dimensional visibility complex is defined as a partition of the plane segments according to the

objects at their extremities. They use a parametrization of directed lines in the plane based on the

polar coordinates, and define the free space containing an object at infinity, which is a basically a disk

sufficiently large to enclose all the objects in the scene. This last detail allows an uniform description

of the visibility complex, and reminds of the similar description of projective spaces.

The authors give a O(n logn + m) complexity for building the 2-dimensional visibility complex,

where n is the total number of objects and m is the size of the corresponding visibility graph. An

optimal time and space construction algorithm is developed by Pocchiola and Vegter [PV96] for

curved objects, and by Riviere [Riv95] for polygonal objects.

The initial aim of the 2-dimensional visibility complex was to provide solution for problems

where objects act as obstacles, by either blocking the view from other objects, or in motion planning

where they may interfere with the movement of an object along a straight path. In practice, the 2-

dimensional visibility complex was used for 2D global illumination simulations [DORP96, ORDP96],

and for calculating and maintaining views [Riv97a, Riv97b].

This analytical 2-dimensional approach to describing visibility has inspired the 3D visibility

complex study.

1.4.5 3D Visibility Complex

Inspired by the work of Pocchiola and Vegter, Durand et al. [DDP96, DDP02, Dur99] propose a

theoretical study of global visibility in 3-dimensional space. They describe the 3D visibility complex,

a data structure which contains all the visibility events corresponding to a scene composed of

Chapter 1 : Analytic Visibility Page 41

polygons and convex smooth surfaces.

Similarly to the 2D Visibility Complex, their analysis is based on the notion of free maximal

segment, which is interpreted as a ray being able to see the two objects at its extremities, without

intersecting their interior. A distinction is made between line and ray visibility. In the case of line

visibility, all the objects intersected by the line are considered (as if they were transparent). On the

other hand, if occlusion is taken into account, only the first object intersected by a ray is reported

(objects are not transparent).

The main concept is to group the lines of the 3D space into connected components according

to the objects they intersect. This forms a visibility arrangement. The 3D visibility complex is defined

as the partition of the maximal free segments of the 3D space into connected components according

to the objects they touch. The underlying idea is that for each set of rays the visibility properties are

invariant, and the boundaries of these sets correspond to changes in visibility. This is connected to

the notion of visual events.

The 0-dimensional faces of the 3D complex are segments which are tangent to four objects, the

1-faces are tri-tangent segments, the 2-faces are bi-tangent segments and finally the 3-faces are

segments which are tangent to one object. More exactly, the set of lines related to a k-face have k

degrees of freedom.

The 3D visibility complex is described in line space, or more exactly in maximal free segment

space. They use a parametrization which maps 3-dimensional lines to points in a 4D space. This

parametrization is based on the spherical coordinates of the director vector for the lines and a

projection which retains the position of the line. However, the authors note that their concepts

do not rely on a particular parametrization of lines and the same notions can be described using

different parametrization. For example, the visibility arrangement is equivalent to the arrangement

proposed by Pellegrini [Pel91, Pel04] and described in Section 1.2.2.

The theoretical size of the 3D visibility complex is O(n4), where n is the number of considered

objects. Moreover, a O((k + n3) logn) theoretical build time is given, where n retains its previous

definition and k is the number of 0-faces of the complex. No complete implementation of the 3D

visibility complex exists and the authors note that its direct practical interest is questionable. This

is due to the fact that implementing a 4D arrangement as the one described is not straightforward

and it is prone to numerical instabilities and robustness issues. Moreover, as compared to the 2D

visibility complex, the 3D data structure is not a cell complex (the faces can have holes) and some of

the properties which are valid in 2-dimensional space do not hold in 3D.

1.4.6 The Visibility Skeleton

The Visibility Complex encodes all the visibility information for a scene in 3-dimensional space. In

order to avoid calculating a 4D cell-complex, Durand et al. [DDP97] propose the Visibility Skeleton,

Chapter 1 : Analytic Visibility Page 42

which is partial representation of the Visibility Complex. The main idea is to create a complete

catalog of visual events, which encodes all the possible changes in visibility in a considered scene.

With respect to the Visibility Complex, only the 0 and 1 -dimensional faces are kept. More exactly,

the Visibility skeleton is a graph structure where each node corresponds to an extremal stabbing

line and each arc translates a visual event (VE or EEE). An arc connects two nodes if the visual event

representing the arc is delimited by the two extreme stabbing lines stored in the considered nodes.

A construction process is presented for scenes containing oriented convex polygons. A catalog is

created, which encodes all the possible geometric configurations which can define extremal stabbing

lines and visual events. The scene is then processed and the occurrence of such configurations is

detected.

A series of constraints are imposed on the input scene. The algorithm cannot handle a number of

geometric degeneracies, such as intersecting edges or vertices which are almost aligned or coplanar.

All these geometric degeneracies multiply the number of possible configurations which create

visual events. This can lead to an infinite catalog and cannot be dealt with correctly. Moreover,

if a model is inaccurate and its polygons are lacking connectivity information, a correct catalog

cannot be build. All these drawbacks are also demonstrated by the small test scenes (less than

1500 polygons). In order to process larger and more complex environments, the authors propose

a lazy on-demand version of the construction algorithm, adapted to global illumination. This

has a positive impact on the computation times, since less data is calculated. However, it does not

seem to solve the limitations concerning the size of the scene because of the geometric degeneracies.

The authors describe the Visibility Skeleton as a multi-purpose tool, which can solve different

problems. An extension of the Visibility Skeleton has been used for global illumination

computations [DDP98, DDP99]. Although the resulting images are of high quality, the

implementation suffers from important drawbacks. First of all the memory usage is high, limiting

the applications to really small scenes (maximum 500 polygons). Secondly, the method suffers from

numerical robustness and cannot handle all the degenerate cases that arise.

Duguet et al. [DD02, Dug04] propose a more robust visibility skeleton, used in the context of

shadow computation. In order to correctly handle geometric degeneracies, they no longer rely

on a visual event catalog, but use a flexible definition of extremal stabbing lines based on a ǫ

precision. The tests show that scenes up to 120 000 polygons can be handled. Although many of

the previous limitations are solved, the detection of skeleton’s elements are dependent of the ǫ

parameter. Moreover, if this value is to large, the shadows are no longer correct or even visible. As

with the original Visibility Skeleton, the input scene must have a complete and correct connectivity

information.

Chapter 1 : Analytic Visibility Page 43

1.4.7 Plücker space and Visibility

In order to provide an accurate description of visibility, a line parametrization corresponding to

a line space is necessary. The 2D and 3D Visibility Complexes, as well as the Visibility Skeleton,

construct a representation of visibility which is independent of the chosen line parametrization.

Their characterizations of coherent sets of lines prove to be either too complex to implement

(3D visibility complex), or not sufficient enough to represent a complete information of visibility

(visibility skeleton). This underlines even further the need for a solid mathematical framework which

allows working with continuous sets of lines.

Therefore, the majority of from-polygon visibility solutions are based on the Plücker parametrization

and the concepts described by the theoretical framework, in Section 1.2.2. More exactly, they

formulate the visibility problems in terms of sub-parts of the arrangement of lines described by

Pellegrini. Before presenting these techniques, we summarize some relevant notions and definitions.

Definition 13. Let A and B be two convex polygons. A third convex polygon O is called occluder of A

and B if it intersects the convex hull of A and B.

To determine if A and B are mutually visible, or if B is visible from A, analytic methods study the set

of stabbing lines of A and B . These lines are represented in Plücker space as a polyhedron (we note

this P (A,B)).

For an occluder O, the set of lines stabbing both O and B (or both O and A) can also be represented

as polyhedron in dual space, P (O,B) (P (O, A), respectively).

Two polygons are mutually visible if at least one of their stabbing lines does not intersect any

of their occluders. More formally:

Definition 14. Let A and B be two convex polygons and let O(A,B) = {Oi ,1 ≤ i ≤ n} be the set of their

occluders. A and B are visible if and only if there is at least one stabbing line l ∈ st ab(A,B), such as

l ∉
n
⋃

i=1
st ab(Oi).

Calculating the set of lines which stab only A and B and none of their occluders can be done by

subtracting from P (A,B) the parts representing the lines stabbing each occluder. This can be done

using CSG operations in Plücker space. An example is given in Figure 1.15. After each split, the

remaining volume is not necessarily convex. In order to deal with convex polyhedrons only, this

volume is split into convex parts, forming a complex of convex polyhedrons.

A few remarks can be made concerning these operations.

First of all, in order to perform the required 5D CSG operations, the polyhedron P (A,B) needs

to be bounded [Nir03, NBG02]. The solution was to add two hyperplanes, one on each side of

the Plücker quadric, in order to obtain a complete V-representation of P (A,B). The position of

Chapter 1 : Analytic Visibility Page 44

a) b)

c) d)

G

GG

A

B

O

Figure 1.15: Calculating occlusion for two polygons A and B , with occluder O [Nir03, NBG02]. a) The given
configuration. b) A visualization of the mapping of the edges of O to a volume in Plücker space. G is the Plücker
quadric. c) A visualization of the mapping of each edge of A and B which form a volume in Plücker space.
d) The subtraction of the occluder volume from the initial volume. What remains represents the set of lines
between A and B , which miss O.

these hyperplanes has an important impact on the computations. Each time P (A,B) is cut using

a hyperplane from an occluder, the resulted complex may contain polytopes which represent no

real lines (i.e. no intersection with the Plücker quadric). Thus, the closer the two supplementary

hyperplanes are to the quadric, the less redundant operations are made. This method has been

used by all works on from-polygon visibility relying on the Plücker parametrization. However, none

of these methods obtain the minimal polytope which contains all the stabbing lines of two convex

polygons. The existence of the minimal polytope, as well as its characterization has been proved by

Charneau [Cha07] and will be detailed in Section 1.4.14.

Second of all, since all operations are performed in Plücker space, the final complex of polytopes

needs to be intersected with the Plücker quadric in order to determine the existence of a real solution.

Chapter 1 : Analytic Visibility Page 45

1.4.8 Cells and Portals

Teller et al. [TH92] extends the ray-triangle intersection problem to a set of oriented convex polygons.

More exactly, for a given collection of oriented convex polygons, he wants to determine the existence

of a line which simultaneously intersects them. Let {li ,1 ≤ i ≤ n} be the lines spanning all the edges

of the considered polygons. As explained in Section 1.2.1, a line intersects a triangle if its relative

orientation is consistent with respect to the lines spanning the triangle’s edges. Therefore, any line d

intersecting all the polygons verifies

πd ∈
n
⋂

i=1
hli

.

Where πd is the Plücker point mapped from the line d , and hli
,1 ≤ i ≤ n are the Plücker hyperplanes

corresponding to the lines spanning the polygons’ edges.

Each hyperplane splits the Plücker space into two half-spaces. The intersection of the half-

spaces induced by all the hyperplanes hli
is a convex polyhedron in P

5. Teller remarks that this

polyhedron is not necessarily bounded. However, its intersection with the Plücker quadric is. The

intersection of the polyhedron with the quadric corresponds to the Plücker points representing all

the lines stabbing the polygons,
⋂n

i=1 st ab(Pi). Therefore, in order to decide if a real line exists which

stabs all the polygons, an intersection test must be performed with the Plücker quadric. Teller et

al. [TH92] provide an algorithm which determines if the related polyhedron exists (i.e. non empty),

and if so, a stabbing line is calculated. The time complexity is O(n2), where n is the total number of

edges of the considered polygons.

If the convex polygons correspond to portals which connect different cells, the above problem

can be formulated in terms of visibility. More exactly, for a set of portals, we want to know if there is a

sight line allowing one cell to be visible from another.

Teller et al. [Tel92, TS91] propose a cell to portal method in global illumination application.

Although the visibility through a sequence of portals theory is valid for arbitrary sets of convex

polygons, the proposed application is adapted to architectural environments which are axis-aligned.

Teller et al. [TH93] solve this limitation, by proposing a conservative approach for which the result

is a superset containing all partially and totally visible elements. Concerning the implementation,

Teller notes in his PhD thesis that a robust package for CSG operations is required. Moreover,

these complex operations are prone to numerical instability and degeneracy problems. [TH93] is a

simplified method, based only on point-hyperplane comparisons in Plücker space.

1.4.9 PSP Tree

Mount and Pu [MP99] make one of the first attempts to represent the exact from-region visibility.

They encode this information in a PSP tree (Plücker Space Partition), which is actually a BSP tree

(Binary Space Partition) in Plücker space. Each node of the tree represents a region in Plücker space.

Each inner node of the data structure contains a Plücker hyperplane corresponding to a directed line

Chapter 1 : Analytic Visibility Page 46

in 3-dimensional space. This hyperplane subdivides the region associate with the node in two. Each

leaf represents a coherent set of lines which intersect the same objects. The algorithm calculates the

complete arrangement of hyperplanes, as described by Pellegrini (see Section 1.2.2). Thus, for each

set of lines (leaf), we know which polygons are intersected, but not in which order.

An optimized version of the algorithm is also presented. Two trimming operations are applied

to the PSP tree in order to reduce its size.

Although the construction of the PSP tree starts with a specific view region, the algorithm calculates

and stores the complete arrangement of hyperplanes generated by the scene’s geometry. Therefore,

they are bounded by the theoretical complexity of an arrangement of real lines in Plücker space,

which is O(n4 logn) (see Section 1.2.2). After a series of tests, Mount and Pu conclude that the

practical complexity of their algorithm is O(n5.17) for the base version, and O(n4.31) for the optimized

version.

However, the algorithm of Mount and Pu seems impracticable. The tests presented by the authors

were done on scenes of maximum 15 random triangles. And even for such small number of polygons,

the time and memory consumption are a clear drawback.

1.4.10 Exact From-Region Visibility Culling

Nirenstein et al. [NBG02] propose an algorithm which answers if two polygons are mutually visible.

The aim of the method is to provide a pre-process step for computing Potentially Visible Sets (PVS)

for visibility culling during walkthroughs. The algorithm only tests if the pair polygons are mutually

visible or invisible, and does not aim to calculate a full representation of the visibility information.

Moreover, a single proof of visibility is sufficient (i.e. a single line stabbing the two polygons, which

does not intersect any other geometry between them) and the calculated data is dropped as soon as

such a visibility/invisibility answer has been found.

The principle of the method is to represent the polygons and their stabbing lines in Plücker

space, and then solve the visibility by subtracting the sets of occluded lines from the global set of

stabbing lines, as explained in Section 1.4.7. Let PS and PT be the two polygons for which visibility

needs to be answered. The first step is to clip all the scene’s geometry to the interior of the convex

hull defined by PT and PS . All the occluders intersecting this convex hull are blocking a set of lines

between PS and PT . The occluders are tested successively, and for each one, the set of lines it blocks

is removed. If the remaining (after all occluders have been processed) set of lines is empty, then the

two initial polygons are mutually invisible. If, on the other hand, the remaining set is not empty,

the resulting structure needs to be intersected with the Plücker quadric. If no intersection is found,

then again there are no real lines which miss all the occluders, and thus PS and PT are mutually

invisible. Only if the intersection of the final structure with the Plücker quadric is not empty, the

initial polygons are considered to be visible.

Chapter 1 : Analytic Visibility Page 47

PS

PT
~r

~−r

b

b

a)

b) c)

Figure 1.16: The Plücker convex polyhedron containing all the lines stabbing two convex polygons (PS and
PT) is unbounded. Nirenstein’s solution [NBG02] consists in adding two planes, one on each side of the Plücker
quadric, in order to cap the polyhedron. a) The polyhedron is open in directions −→r and −−→r . The intersection
of each edge with the Plücker quadric is a line containing one vertex of PS and one vertex of PT . b) In order to
bound the polyhedron, two planes orthogonal with −→

r are added on each side of the Plücker quadric. c) The
vertices of the resulted polytope are the projections of the vertex-to-vertex lines on the two planes.

In his PhD thesis, Nirenstein [Nir03] details the selective stabbing problem, a generalization of

Teller’s stabbing problem [TH92]. This can be summarized as follows: For two sets of convex

polygons, compute a representation of all the lines stabbing all the polygons in one set and missing

all the polygons is the second set. The case where the first set has only two elements (PS ,PT)

corresponds to the visibility problem in the above described algorithm. For this case, Nirenstein

provides a O(mn) worst case optimal algorithm which constructs a polytope in Plücker space

containing all the lines stabbing both PS and PT (m and n are the number of edges of PS and PT ,

Chapter 1 : Analytic Visibility Page 48

respectively). The constructed polytope is not minimal and the calculations require that one of the

polygons is embedded in the x = 0 plane. Figure 1.16 illustrates the construction of this polytope.

Once the stabbing polytope has been constructed, the lines blocked by each occluder are removed.

Let O be an occluder of PS and PT . The hyperplanes corresponding to the support lines of O’s edges

define a convex volume in Plücker space. Subtracting this volume from the initial stabbing polytope

is equivalent to calculating the set of lines between PS and PT which are not blocked by O.

The subtractions are done using 5D CSG operations, based on the algorithm provided by Bajaj

and Pascucci [BP96]. This method solves the problem of intersecting a complex of convex polytopes

with a hyperplane and is valid in any dimension. The advantage of the algorithm is that numerical

operations are reduced to the bare minimum. However, it requires calculating the incidence graph

for the polytope P (PS ,PT).

In order to avoid as much as possible the 5D CSG operations which are both time consuming

and prone to numerical instabilities, Nirenstein et al. [NBG02] constructed a framework which

implements early termination mechanisms and organizes both geometry and visibility queries.

A ray casting mechanism is used to decide if two polygons are mutually visible without using

the complex mechanism described above. More exactly, a number of rays is cast from one polygon

to another. If at least one ray reaches the second polygon, without intersecting any occluder, then

the faces are considered visible. On the other hand, if all the rays are blocked, then the visibility

algorithm is applied.

The data resulted from this trivial acceptance step is further used to optimize the visibility algorithm.

The authors remark that 5D CSG is more efficient if a large number of stabbing lines can be removed

as soon as possible. Thus, the occluders can be sorted according to the number of rays that

intersected them during the test step. The one having the largest number of stabbing rays will be

subtracted first. Each new choice is made by removing the rays that have already been accounted for.

Moreover, the scene is hierarchically subdivided, so that visibility queries could be organized

by view cells. Thus if a region is detected as invisible, there is no point in testing its individual

polygons. The faces of a cell are used as virtual occluders. If a face has been found as invisible, it will

also hide all the objects located behind it.

The complex computations associated with 5D CSG operations have an impact on execution

time, memory consumption and robustness of the solution. For scenes of about 1.45 millions

triangles, the algorithm processes the scene in approximately 70 hours, on a 1.7Ghz Pentium 4.

Despite these drawbacks, Nirenstein’s algorithm has the merit of being the first practical solution to

the polygon-to-polygon visibility problem.

Chapter 1 : Analytic Visibility Page 49

a)

P1 P2o1

o2

o3

o4

o5

b)

P1 P2o1

o3o5

Figure 1.17: Not all the edges of an occluder need to be used when splitting a stabbing complex. In this
example [HMN05], P1 and P2 are two query polygons, and {o1, ...,o5} are the edges of one of their occluders. a)
o2 and o5 are internal edges, while o1,o3 and o4 represent from-region silhouette edges. This translates the fact
that they are from-point silhouette edges simultaneously for at least one point of the polygon P1 and at least
one point of the polygon P2. Thus, they define visual events. b) The internal edges are redundant they are not
used when calculating the set of blocked rays.

1.4.11 A Low Dimensional Framework for Exact Polygon-to-Polygon Occlusion Queries

Haumont et al. [HMN05] build on Nirenstein’s method, and provide an improved algorithm for

answering polygon-to-polygon occlusion queries.

First of all, they generalize Nirenstein’s algorithm for determining a stabbing polytope. Geometric

transformations are no longer required to achieve a valid configuration. Moreover, they demonstrate

that maintaining occlusion in Plücker space requires only the 1-skeleton of the polytopes: the 0-faces

(vertices) and 1-faces (edges). However, additional combinatorial operations are required in order to

identify the new edges. Also, the obtained polytope is still not minimal.

Contrary to Nirenstein’s approach, the computations are restricted to the silhouette edges, instead

of individual polygon edges. The silhouette of an object from a view point can be seen as the set of

edges which form the visual boundaries of the object. More exactly, each boundary defines a visual

event. This is used to avoid redundant 5D CSG operations, by excluding the internal edges when

splitting a stabbing complex of polytopes. Figure 1.17 gives an illustration.

All this is embedded in a new framework, which aims to find an answer to the polygon-to-polygon

occlusion queries as fast as possible. Early termination mechanisms are implemented, based on ray

casting into the apertures created by the occluders which have already been removed. The same

rays are used for occluder selection, thus taking advantage of previous computations. Similarly to

Nirenstein’s approach, a single proof of visibility is enough to terminate the query.

The practical complexity for answer a visibility query for two polygons is of O(n1.44), where n is

the number of tested occluders. Compared to Nirenstein’s approach, Haumont’s framework can

process scenes of as large as 4.6 million triangles. Although the early termination mechanism is

improved, in the case of mutually invisible polygons, Haumont’s method would have done more

calculations than Nirenstein’s algorithm. As noted by the authors, the most costly operations remain

the CSG calculations in Plücker space.

Chapter 1 : Analytic Visibility Page 50

1.4.12 Exact From-Region Visibility - Occlusion Tree

Contrary to Nirenstein and Haumont, Bittner [Bit02] proposes to encode the visibility information

in a data structure, called the occlusion tree. Similarly to the PSP tree proposed by Mount and Pu

(see Section 1.4.9), he builds a BSP tree in Plücker space. However, the encoded information is

different, since Bittner also takes into account a depth information, and does not compute the same

arrangement of hyperplanes. The method is proposed in the context of calculating exact PVS sets.

Section 1.3.3 has presented the from-point visibility algorithm, based on occlusion trees. The

exact from-region visibility algorithm in 3-dimensional space can be viewed as a generalization of

the from-point method. The occlusion tree becomes a BSP tree in Plücker space which encodes

visibility using a set of 5-dimensional polyhedrons. Let PS be the source polygon for which visibility

needs to be evaluated. This visibility can be described by using all the rays emerging from PS . For a

polygon O, the occlusion volume is the polyhedron obtained by calculating the intersection of the

half-spaces induced by the Plücker hyperplanes corresponding to the support lines of the edges of

PS and O. As previously noted by Nirenstein and Haumont, this polyhedron is unbounded. Thus,

Bittner adds two cap planes, located one on each side of the Plücker quadric and aligned with it. The

intersection of this resulting polytope with the Plücker quadric yields all the extremal stabbing lines

of PS and O.

As in the from-point approach, an approximate occlusion sweep is used to order the occluders

in the scene. The algorithm processes incrementally each occluder, by inserting it in the occlusion

tree. At each step the tree contains a representation of the lines blocked by the already processed

geometry. The root of the occlusion tree represents the problem relevant line set (i.e. all the lines

emerging from PS). Each node represents a subset of lines. Also, a leaf represents a subset of lines

which are either occluded or unoccluded. Each inner node is associated with a hyperplane, which

is tested against each occlusion volume reaching the node. The occlusion volumes are split if they

intersect the hyperplanes.

In the end, the occlusion tree represents all the lines emerging from PS and grouped according

to the first geometry they intersect.

Concerning the intersection of polytope with a hyperplane, Bittner’s implementation is similar

to the enumeration algorithm provided by [AF93]. Basically, if an intersection is detected, the

hyperplane is added (twice, a second time with a reversed orientation) to the H-representation of the

polytope. Then the vertices of the polytope are calculated, which yields the V-representation. This

solution has the advantage of a simpler implementation when compared to the solutions provided

by Nirenstein and Haumont. However, the computation time involved is more important, since all

the vertices (not only the new ones) need to be re-calculated at each new step. Also, the method is

less robust.

As with previous methods, all the polytopes obtained in the end need to be intersected with

Chapter 1 : Analytic Visibility Page 51

the Plücker quadric in order to obtain only the real lines describing the visibility.

The complexity of the occlusion tree is up-bounded by the same theoretical O(n4 logn). However,

when compared with the PSP tree (see Section 1.4.9), the methods performs better, because the

computation are limited to the region concerned by an occluder.

However, the method does not seem to behave very well in practice. The tests are limited to

scenes composed of a few thousand random triangles, and the authors note that the splitting method

is prone to numerical inaccuracies. Since the hyperplane-polytope intersection is a crucial point in

the construction of the occlusion tree, several methods have been tested, included the algorithm of

Bajaj and Pascucci [BP96], previously used by Nirenstein. However, all tests showed problems with

numerical stability.

1.4.13 Exact Polygon-to-Polygon Visibility

Mora et al. [MAM05] constructs on Nirenstein and Bittner’s approaches in order to propose

a new method which describes the visibility between two convex polygons. They retain the

CSG computations present in Nirenstein’s algorithm, but output a data structure similar to the

one proposed by Bittner. This information is used in image synthesis to render analytic soft

shadows [MA05], and in electromagnetic waves propagation [Mor06].

Nirenstein’s method is optimized in order to improve the visibility coherence. Mora [Mor06]

remarks that some of the split operations performed by Nirenstein’s algorithm are redundant and

result in a high degree of visibility fragmentation. This has an impact on both the calculation times

and the robustness of the solution. Thus, he proposes an enforced intersection test which limits this

problems.

In order to encode the visibility information between two polygons, a BSP tree in Plücker space

is proposed (noted VBSP). The authors note that this is however different from the occlusion tree

proposed by Bittner because no depth information is taken into account. Thus, the order in which

the occluders are processed can be optimized to improve the computations. Each inner node,

ni , of the VBSP tree contains a hyperplane and a polytope which represents the region of space

partitioned by the sub-tree having ni as root. Each leaf can be either visible or invisible. A visible

leaf contains a polytope representing a set of lines not blocked by any occluder. Each occluder is

hierarchically inserted into the tree and all the intersection calculations are done in the visible leaves.

The complexity of the method is inferior to the theoretical O(n4 logn) bound. For two polygons

and a set of about 9 000 random occluders, they achieve a memory complexity of O(n1.76). In the

case of 2.5-dimensional environment, the VBSP construction needs to be applied to each set of two

polygons in the scene. The authors note that the complexity is bounded (i.e. there are two polygons

for which the complexity is maximal).

Chapter 1 : Analytic Visibility Page 52

For the two proposed applications (soft shadows and electromagnetic waves propagation), the

occlusion algorithm is used as a pre-process step. The authors note that its two main drawbacks are

the required calculation time and the robustness issues resulting from the 5D CSG operations.

The advantage of this method is that it avoids many redundant CSG operations, thus improving

robustness. However, as the authors note their algorithm remains subject to numerical instability.

The split operations are performed on a polytope similar to the one used by Nirenstein, under the

same assumptions (one polygon needs to be contained in the x = 0 plane). Moreover, as with all the

other 5D CSG operation-based methods, in the end of each split procedure, the intersection with

the Plücker quadric needs to be tested. The authors note that it would be interesting to start with a

minimal polytope and use it for all computations.

The proposed data structure encodes all the information between two polygons and the occluders

contained in their convex hull. No depth information is being considered, since no distinction is

being made between the sets of blocked lines according to the blocking geometry. Thus, the VBSP

encodes the occlusion information between two polygons.

1.4.14 nD Visibility

In his PhD thesis [Cha07], Charneau studies the application of geometric algebras to the global

visibility problem, in a projective n-dimensional space. His research provides a theoretical

generalization of the visibility between surface elements of any dimension. The main difference

between his approach and the previous works [Nir03, HMN05, Mor06] is the fact that he describes

polygon-to-polygon visibility using an algebraic framework, valid in all dimensions. This allows him

to define the geometric operations independently of the data representation or the dimension of this

representation. As noted by the author, these theoretical definitions should allow the possibility to

define robust and valid visibility algorithms in all dimensions, capable of treating all exceptions and

degenerate cases in an exact and accurate manner. Moreover, in the 3-dimensional case, the line

parametrization in this algebraic framework is equivalent to the Plücker parametrization.

An implementation is provided for the 3-dimensional case, and compared to the works of

Nirenstein [NBG02, Nir03], Haumont [HMN05] and Mora [Mor06].

The most important (for the purpose of this study) result demonstrated by Charneau concerns the

minimal polytope containing all the lines stabbing two convex polygons. As shown in Section 1.4.7,

having an accurate and optimal representation of the lines in st ab(A,B) is crucial to the visibility

calculations in Plücker space. Nirenstein [NBG02, Nir03], Haumont [HMN05], Bittner [Bit02] and

Mora [Mor06] constructed a conservative polytope containing the relevant set of stabbing lines

by bounding a polyhedron with two hyperplanes, on each side of the Plücker quadric. Charneau

provides the solution to the minimal polytope problem and demonstrates that the solution cannot

be achieved using two hyperplanes only. Moreover, he studies the possible degeneracies which can

occur and provides exact and accurate solutions for each case.

Chapter 1 : Analytic Visibility Page 53

A B l+1

l+2
A B

l−

l+

Figure 1.18: Left: If the support plane of polygon A does not intersect the polygon B (and vice versa), then all
the lines stabbing both A and B have a coherent orientation. Right: A degenerate case. The supporting plane
of polygon B intersects A. Thus, it is not possible to group together the lines stabbing both A and B in one
convex polytope. The lines l+ and l− have opposite orientations.

We summarize here this important result, as it is crucial for our own implementations. All the

concerned demonstrations, as well as further details can be found in [ACFM11] or [Cha07].

Let A and B be two convex polygons, and let HA and HB be their supporting planes respectively.

Theorem 2. If HA and HB do not intersect the faces B or A respectively, then all the lines intersecting

both A and B are contained in a minimal convex polyhedron defined in Plücker space (we note

this pol y(A → B)). The vertices of this polyhedron are the Plücker points corresponding to the lines

defined by one vertex of A and one vertex of B. The bounding hyperplanes are the Plücker hyperplanes

corresponding to the support lines of the edges of A and B.

Corollary 1. Testing the position of pol y(A → B) with respect to a hyperplane is equivalent to

calculating the orientation of the lines stabbing A and B with respect to the hyperplane. If all the

vertices of pol y(A → B) have the same sign with respect to the hyperplane, the polyhedron lies

completely in the positive or negative half-space defined by the hyperplane. Thus, all the stabbing

lines have the same orientation. Otherwise, pol y(A → B) is intersected by the hyperplane and the

orientation of the lines stabbing A and B is no longer coherent.

If one of the faces has an intersection with the support plane of the second face, it is not possible

to group together the lines stabbing both faces. An illustration of both a valid and a degenerate

case is provided in Figure 1.18. However, this particular case can always be handled by splitting the

intersected face along the intersection with the support hyperplane of the second face.

Chapter 1 : Analytic Visibility Page 54

1.5 Summary

Tables 1.1 and 1.2 summarize the various analytic methods which aim at computing from-point and

from-polygon visibility.

Algorithm Application Domain Space Data structure

Amanatides ray-set tracing from-point 3D cone
[Ama84] visibility
Heckbert and Hanrahan ray-set tracing from-point 3D beam
[HH84] visibility
Shinya ray-set tracing from-point 3D pencil
[STN87] visibility
Ghazanfarpour ray-tracing from-point 3D beam
[GH98] anti-aliasing visibility
Bittner PVS from-point 3D occlusion tree
[BHS98] visibility
Stark irradiance from-point 3D none
[SR00] calculation visibility
Overbeck GPU beam from-point 3D beam
[ORM07] tracing visibility KD-tree

soft shadows

Pocchiola and Vegter 2D visibility 2D line space 2D visibility
[PV93] complex visibility complex
Durand 3D visibility 3D 3D to line 3D visibility
[DDP02] complex visibility complex
Durand [DDP97] 3D visibility 3D line space 3D visibility
Duguet [DD02] skeleton visibility skeleton
Teller portal portal Plücker none
[Tel92, TS91] antipenumbra visibility
Mount and Pu visibility maps from-poly Plücker PSP tree
[MP99] occlusion
Nirensetein PVS poly-to-poly Plücker none
[NBG02] occlusion
Haumont PVS poly-to-poly Plücker none
[HMN05] occlusion
Bittner PVS from-poly Plücker occlusion tree
[Bit02] visibility
Mora soft shadows poly-to-poly Plücker VBSP tree
[MAM05, Mor06] electromagnetic occlusion

wave propagation

Table 1.1: Summary of analytic visibility algorithms.

Chapter 1 : Analytic Visibility Page 55

Algorithm Drawbacks

Pocchiola and Vegter limited to 2D case,
[PV93] incomplete implementation
Durand no practical
[DDP02] implementation
Durand robustness,
[DDP97] degeneracies

Duguet ǫ precission
[DD02]

Teller cannot handle
[Tel92, TS91] occluders
Mount and Pu 5D CSG, complete arrangement,
[MP99] worst complexity
Nirensetein 5D CSG, computation time,
[NBG02] proof of visibility only
Haumont 5D CSG
[HMN05] proof of visibility only
Bittner 5D CSG, computation time
[Bit02]
Mora 5D CSG, computation time
[MAM05, Mor06]

Table 1.2: Summary of the main drawbacks of the analytic from-polygon visibility algorithms.

Chapter 1 : Analytic Visibility Page 56

1.6 Conclusion

Exact from-polygon visibility is a complex, four dimensional problem, which can be expressed

elegantly in terms of lines. The continuous sets of lines which represent the visual events in a scene,

are generated by the 3-dimensional geometry of the scene. Therefore, we can distinguish between

the methods which represent and solve visibility in object space and in line space.

The first class of methods concerns the visibility complex [DDP02] and the visibility skeleton [DDP97].

However, the first one is to complex to allow an implementation, and the second one represents

only a partial information of visibility. From a theoretical point of view, these two techniques are

intuitive because they provide an explicit representation of the relation between the geometry and

the visibility events generated by this geometry. However, in practice, they use a 3-dimensional

description of objects in order to represent 4-dimensional relations. Therefore, to our knowledge, a

complete and accurate implementation does not exist.

These two solutions underline even further the need of a solid mathematical framework allowing

working with continuous sets of lines.

Such a representation is provided by the Plücker parametrization. In Plücker space, continuous

sets of lines can be described using convex volumes, which are easier to manipulate. Moreover,

using the Plücker parametrization, both the geometry and the visibility relations it generates can

be represented as continuous sets of lines. This motivated a series of algorithms which encode

from-polygon visibility in P
5.

Using the Plücker parametrization, Pellegrini [Pel91, Pel04] describes a theoretical framework

which allows an exact and analytical representation of all the sets of lines generated by a set of

triangles. He groups lines into equivalence classes and provides theoretical bounds for the calculated

arrangement. This theoretical framework, together with the Plücker parametrization, represent a

powerful tool which can be used to solve global visibility problems. However, from a practical point

of view, the existing implementations are limited in their application and suffer from important

drawbacks.

Although the existing methods are not directly based on the theoretical framework described

by Pellegrini, they all calculate a sub-part of an arrangement of lines in Plücker space.

Teller provides a solution to the line-polygons intersection problem and applies it to portal

visibility and global illumination calculation (see 1.4.8). His algorithm determines if a sight line exists

for a set of portals. This translates to the calculation of one single cell from an arrangement of lines:

the cell corresponding to the equivalence class containing all the sight lines which traverse the given

sequence of portals.

Chapter 1 : Analytic Visibility Page 57

Mount and Pu attempt to use the Plücker parametrization to calculate the classes of blocked

lines from a source polygon. Their algorithm computes and stores the complete arrangement of

hyperplanes generated by the scene’s geometry. Therefore, their method is too close to the theoretical

complexity bound and fails in practice (see 1.4.9).

The methods proposed by Nirenstein and Haumont focus on polygon-to-polygon occlusion

and provide algorithms which are used in the context of PVS determination (see 1.4.10 and 1.4.11).

Both methods output a boolean result. Contrary to Mount and Pu, Nirenstein and Haumont limit

their calculations to a sub-part of theoretical arrangement of lines. They only calculate those cells

corresponding to the sets of lines stabbing the two polygons considered for each query.

Contrary to Nirenstein and Haumont, Bittner encodes the visibility from a source polygon into

a BSP tree in Plücker space (see 1.4.12). Although bounded by the same theoretical complexity, the

method performs better than the one proposed by Mount and Pu, due to a better implementation.

In order to take advantage of both Nirenstein and Bittner’s algorithms, Mora proposes a method

which calculates and stores all the occlusion information between two polygons (see 1.4.13). Again,

the calculation is limited to a sub-part of the theoretical arrangement of lines.

All these methods rely on 5D CSG operations in Plücker space. As noted by the authors themselves,

the results are thus subject to robustness issues and numerical instabilities. Moreover, the complexity

of the operations has a negative impact on the computation times. Thus, all these methods are only

used as pre-process steps.

Another problem concerns the definition of the 5-dimensional polytope used to characterize

the lines between two polygons. As underlined by Charneau [Cha07], none of these methods use

the minimal polytope which contains all the lines stabbing two convex polygons. This results in

redundant 5D CSG operations and an intersection test with the Plücker quadric is always necessary.

In conclusion, the Plücker parametrization together with the 5-dimensional arrangement of lines

described by Pellegrini provide an elegant theoretical framework. However, there is an important gap

between the theoretical results and the existing implementations. The existing methods suffer from

important drawbacks and thus are unable to fully exploit the potential of the theoretical framework.

Therefore, we start from Pellegrini’s framework and intend to propose a method which fills the

existing void between the theoretical tools and the existing implementations. Our objective is to

develop a robust and accurate algorithm which calculates exact from-polygon visibility in a given

applicative context. Although we are bounded by an important theoretical complexity, we aim to

demonstrate that we can achieve practical and efficient algorithms.

Chapter 1 : Analytic Visibility Page 58

The two main contributions of this thesis can be outlined as follows:

First of all, we want to provide a robust and accurate solution to the from-polygon occlusion problem.

Our method considers a simplification of Pellegrini’s framework, and analytically distinguishes

between the lines which are blocked by some geometry and those which are not. In order to

implement a numerically stable algorithm, we need to avoid all 5D CSG operations. This is achieved

by a conservative insertion process, and a 5-dimensional solution operating only on real lines, which

is based on Charneau [Cha07]’s study on the minimal polytope. In order to test the robustness and

the accuracy of our method, we apply it in the context of soft shadows generation. This is presented

in Chapter 2.

Secondly, we want to provide an answer to the from-polygon visibility problem. More exactly,

we build on the same concept of equivalence classes and develop a new definition which analytically

groups the rays issued from a polygon according to the first triangle they intersect. This allows us to

propose an exact and robust solution to the from-polygon visibility problem. The applicative context

for this second algorithm is the calculation of analytic ambient occlusion. This second algorithm

retains all the advantages of the first implementation. This is presented in Chapter 3.

Both algorithms encode the calculated information using a BSP tree in Plücker space. These

data structures are build on demand at run time, when and where the information is required, thus

avoiding all pre-process calculations.

It is important to note that our algorithms encode the exact from-polygon occlusion (first solution)

and visibility (second solution), and use this information to efficiently solve from-point individual

queries, by taking advantage of the visual coherence which exists between neighbor points.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 59

Chapter 2 :

From-Polygon Occlusion

Application to Soft Shadows

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 60

N this chapter we present our new method which calculates the exact and analytic visibility

of a polygon, as seen through a set of occluders. This information is used to take advantage

of the visual coherence which exists between neighbor points and generate accurate and

noise-free soft shadows of high quality.

Calculating soft shadows is essentially a point-surface problem, because it requires the visibility

of the light source, as seen from each point in the scene. However, in order to take advantage of

the visual coherence which exists between neighbor points, we are faced with a surface-to-surface

occlusion problem. Therefore, the aim of our method is to calculate the occlusion information

between surfaces and use it to answer point-to-surface occlusion queries. This will allow the

algorithm to take advantage of the visual coherence.

From a theoretical point of view, the starting point of our method are the equivalence classes

described by Pellegrini, which allow grouping lines according to the geometry they intersect.

Contrary to this theoretical framework, our new algorithm only distinguishes between occluded and

unoccluded lines, thus representing a simplification of the initial concept.

With respect to the previous works which rely on calculating an arrangement of lines in Plücker

space, our new technique avoids all 5D CSG operations, thus being accurate and robust.

In the context of off-line rendering, we use our algorithm to analytically calculate the visibility

of the light source as seen from every point to shade, and compute the direct illumination for

these points. Since the soft shadows are calculated only for the visible points from the camera, we

design our algorithm to perform the computations lazily at run time, when and where the visibility

information is required.

The first part of this chapter details some related work on high quality soft shadows (Section 2.1),

followed by a description of our new method, from a theoretical point of view (Section 2.2). Next, we

present the practical aspects of our implementation (Section 2.3), and the soft shadows framework

we use (Section 2.4). The final sections focus on the results we obtained (Section 2.5) and a discussion

of our method (Section 2.6).

The work presented in this chapter has been published as

Lazy Visibility Evaluation for Exact Soft Shadows

F. Mora, L. Aveneau, O. Apostu, D. Ghazanfarpour

in

Computer Graphics Forum,

Volume 31, Issue 1, pages 132–145, February 2012

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 61

2.1 Soft Shadow Generation

Generating soft shadows is a topic that has received increased attention over the years. An extensive

survey on real time soft shadows algorithms has been provided by Hasenfratz et al. [HLHS03], and a

more recent synthesis can be found in [EASW09] and [ESAW11].

Soft shadows are the result of objects partially blocking the light coming from area light sources.

Figure 2.1 illustrates the difference between hard and soft shadows, which appear in the presence of

point and area light sources, respectively.

Umbr a Umbr a

Penumbr a

Poi nt l i g ht sour ce Ar ea l i g ht sour ce

Figure 2.1: Left: Point light source generate hard shadows that consist of umbra. Right: Area light sources (or
any volumetric light source) generate soft shadows which consist of an umbra (light source is invisible), and a
smooth transition, the penumbra (light source is partially visible).

Calculating the amount of soft shadow for a point is equivalent to determining the direct illumination

value for the point, which is represented by the radiance reaching the point directly from the light

sources. Radiance can be seen as the color perceived by the human eye, and is defined as the radiant

flux per unit solid angle per projected area. The direct illumination can be derived from the rendering

equation [Kaj86], and is expressed as follows:

Ldi r ect =
∫

Ω

vi s(x, x ′) fr (x,ωi ,ωr)E (x,ωr)
cosθi cosθr

||x −x ′||2
dωi (2.1)

Where:

• x is the point of interest

• x ′ is a point on the area light source

• ωi is the direction of the incident radiance

• ωr is the direction of the emitted/reflected radiance

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 62

• ||x −x ′||2 is the distance between x ′ and x

• Ω is the integration domain

• θi is the angle between the normal vector and the direction of an incident light

• θr is the angle between the normal vector and the direction of an emitted light

• fr (x,ωi ,ωr) is the proportion of light reflected at x (from inward direction to outward direction)

• E (x,ωr) is the emitted radiance in direction ωr

• vi s(x, x ′) is the visibility function which equals 1, if x ′ is directly visible from x, and 0 otherwise.

In order to compute an accurate direct illumination, the integral needs to be solved for the surfaces

of the light sources. The main step consists in integrating over all the visible fragments of these light

sources, as seen from the point to shade. In the case of uniformly emitting diffuse surfaces, a closed

form evaluation can be achieved using Lambert’s formula [Lam60].

In practice, the majority of soft shadow algorithms separate the visibility and the lighting

calculations. Moreover, they usually approximate the visibility of the light sources and/or the

amount of direct illumination. In this section, we distinguish mainly between sampling-based,

analytic and approximated methods. From a mathematical and physical point of view, solving the

direct illumination integral using a sampling based technique is an exact solution, when the number

of samples tends towards infinity. However, from a practical point of view, this is an impossible

scenario, since the number of samples is always finite. Thus, in practice, we can say that the

complete visibility is approximated using the visibility of the selected samples. Because of this, the

resulted images are subject to noise. On the other hand, analytic methods deal with continuous

representations of lines and surfaces, and thus avoid noise. However, any approximation in the

visibility calculations usually results in visual artifacts. It is important to note that in the majority of

the current methods there is a fine line between all these distinctions. Some methods use analytic

representations of the shadow volumes, but sample the light in the end in order to solve the direct

illumination integral, while other techniques are based entirely on either sampling or analytic and

exact calculations.

In this section we focus on various methods which compute high quality or exact soft shadows.

We start by a short analysis of the ray traced soft shadows, followed by a description of some

analytical methods. We then present silhouette based techniques, which can be seen as a crossing

point between sampling-based methods and analytical approaches. Finally, we mention briefly some

of the recent algorithms capable of producing high quality soft shadows, despite the approximations

made to reach interactive frame rates.

2.1.1 Sampling-based Methods

Soft shadows can be easily generated using ray tracing. This consists of two main steps. First of all, the

light source is sampled. Next, rays are traced for each point and all the light samples. These rays are

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 63

Sampled ar ea l i g ht sour ce

Shadow
r ays

P

Figure 2.2: 2D illustration of a sampling based method. P is the surface point to shade. The shadow rays
emerge from P and have as directions the sample points on the area light source. The rays reaching the light
without intersecting any object are counted as visible.

usually called shadow rays, and their purpose is to test if the incoming light is blocked by an object.

Figure 2.2 provides an illustration. Summing all the shadow rays reaching the light without being

blocked yields an approximation of the visible percentage of the source, as seen from the point. In

order to calculate the soft shadows value for the point, this value needs to be weighted by the intensity

of the light source. Thus, both the visibility and the incoming intensity are approximated. Another

solution consists in considering each sample as an independent point light source. In this case, the

soft shadows calculation uses the cosine-weighted intensity of each visible sample.

Ray traced soft shadows is a robust solution, which can be applied to all types of light sources.

Moreover, it can be easily integrated in any ray tracing based rendering engine. Therefore, it

represents today one of the most common solution in production rendering.

On the other hand, ray traced soft shadows have the same disadvantages as any other sampling-

based method. The quality of the final images is dependent on the number of rays and the results are

sensitive to noise. In order to attenuate this, the number of samples needs to be increased. However,

this has a negative impact on performance, by drastically slowing down the rendering process.

Figure 2.3 provides an illustration of how the number of samples impacts on the quality of the final

result.

All these drawbacks are common to ray tracing in general, both for primary and secondary rays.

Therefore, an important amount of research has been done in order to propose various solutions

which may improve both the rendering performance and the quality of the results.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 64

4 r ays / pi xel 16 r ays / pi xel 256 r ays / pi xel

Figure 2.3: When generating soft shadows using ray tracing, the number of samples has an significant impact
on the quality of the result. An important number of samples is necessary to attenuate the noise in the final
results.

Several research have attempted to exploit spatial coherence by grouping rays into packets and

thus amortizing computational costs over the entire packet. Wald et al. were the first to propose

a coherent ray tracing method [WSBW01], which traces groups of four rays through a kd-tree and

uses SIMD instructions to process the rays in parallel. Another optimization was the use of frustum

or interval arithmetic based methods. The rays are grouped into packets of variable sizes and

the bounds of the packet are used to avoid traversal steps or object intersections. The concept

was introduced by Reshetov et al. [RSH05], who applied it to a kd-tree, and was later extended to

grids [WIK+06] and BVHs [Wal07, WK06]. These ray aggregation techniques can be successfully

implemented for shadow rays, because these sets of secondary rays have a high spatial coherence.

Another optimization consists in improving the sample distribution. Interleaved sampling [KH01] is

a hybrid method between regular and irregular sampling, which uses an arbitrary irregular sampling

pattern, repeated to form a regular grid. Keeping regular grids allows an easy exploitation by

raster graphics hardware, while aliasing is reduced by the fact that neighbor pixels have different

sampling patterns. A second technique, importance sampling [SWZ96, SSSK04, wik12b], is based on

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 65

sampling some parts of the light source more than others, according to their importance, which is

defined based on previous knowledge of the visibility function. A comparison of different sampling

techniques used in the context of soft shadows can be found in [FBP08].

Depending on the optimization technique and the type of scene, we can obtain the same quality

results while tracing fewer shadow rays. However, the images remain sensitive to noise. Therefore, a

common noise reduction technique consists in applying a post-process filter to the results. Durand et

al. [DHS+05] propose a theoretical framework designed to provide a complex frequency analysis of

the radiance function. The authors state that a better understanding of the light transport would

allow for more efficient sampling approaches. They describe an algorithm which computes visibility

using a low number of samples per pixel and then determines the parts of the image which need to

be reconstructed using filtering. A similar method is proposed by Egan et al. [EHDR11]. They target

the generation of soft shadows produced by intricate geometries, which usually require a prohibitive

number of samples to attenuate noise. A Fourier analysis of the shadow signal is used to create a

filter which is customized to the frequency content of the shadow. The algorithm can be divided into

three main steps. First of all, a small number of rays is used to roughly sample the occlusion in a 4D

light field. The 4D parametrization of each ray is stored into a database. Next, for each receiver point,

a programmable shader construct the shape of the appropriate filter, and uses the database to find

all the samples inside the filter’s 4D footprint. These samples are then weighted using the filter, in

order to reconstruct the shadow value.

Ramamoorthi et al. [RAMN12] provide a comprehensive analysis of the effectiveness of different non-

adaptive sampling patterns for rendering soft shadows. They consider linear and area light sources

and focus mainly on visibility sampling. For linear light sources, the analytic analysis indicates that

uniform sampling has the lowest maximum error rate, although it produces banding artifacts. In

order to avoid them, an uniform jitter sampling can be used instead. This applies a constant jitter

to all samples in a uniform pattern. In the case of area light sources, the authors show that the best

sampling method depends on the type of light source (circular, gaussian, or square/rectangular).

The theoretical analyses are completed by practical tests, executed on two separate platforms, an

off-line and a real-time engine: RenderMan, and NVIDIA’s Optix GPU ray-tracing API, respectively.

The authors note that the guidelines resulting from their analysis may not yield the best results in

the case of very complex geometry. In this cases, a method such as the one proposed by Egan et

al. [EHDR11] would give better results.

Despite various improvements, rendering high quality soft shadows using a ray traced approach

remains a challenging task.

2.1.2 Analytic Methods

Beam tracing methods (see Chapter 1, Section 1.3.2) represent an analytic solution to the point-

to-surface visibility problem. Most of these methods date from a period (1984 – 1998) when the

computers’ performances limited the interest towards sampling solutions. Todays’ hardware makes

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 66

possible tracing several hundreds rays per pixel in order to attenuate the noise in the final images.

However, this was not always the case. Thus, the researchers have oriented their efforts towards the

beam tracing methods, in order to remove noise, and solve some aliasing problems.

In the context of soft shadow generation the main advantage of beam tracing is that it achieve

noise free results, due to the analytic representations of the visibility of the light sources. However,

beam tracing have received limited attention from the rendering community for many years, because

of their inherent limitations. More exactly, they suffer from two main drawbacks. First of all, the

geometry of the beam is more complex than the simple ray, and thus more complicate to manipulate.

The basic geometry intersections become significantly more complicated when the classic rays are

replaced with beams. Also, many algorithms subtract the encountered polygons from the beam,

whose shape becomes more and more degenerate. Therefore, beam tracing algorithms generally

have an increased computational cost. Secondly, the classic ray tracing acceleration structures

cannot be easily applied to beams, which limits the possible optimizations.

The method proposed by Amanatides [Ama84] (see Chapter 1, Section 1.3.2) replaces each ray

with a cone, which contains exactly one pixel. Soft shadows (or fuzzy shadows, as called by the

author) are calculated by replacing the shadow rays with cones which contain the entire light source.

The method is restricted to spherical lights, non transparent surfaces and does not handle multiple

occlusions. Therefore, the visibility is approximated.

The beam tracer proposed by Heckbert and Hanrahan [HH84] (see Chapter 1, Section 1.3.2)

considers a view beam defined by the viewpoint and the projection screen, which is successively

intersected with the objects in the scene. The authors apply the same principle to the generation of

soft shadows, with the difference that the light beams are traced from the light sources instead of the

viewpoint. Each beam of light will therefore contain the entire scene. Although the visibility of the

light source is analytically determined, no information is given on how the direct illumination values

are calculated. The authors note that if the light sources are infinitely distant, a constant diffuse

intensity is associated with each face.

Ghazanfarpour et al. [GH98] (see Chapter 1, Section 1.3.2) provide a hybrid method, based on

an adaptive recursive subdivision of the image space. A vision beam is traced through the entire

screen and recursively subdivided until either a uniform region is obtained or the pixel subdivision

limit is reached. The method handles point and spherical light sources. Shadows are generated

by constructing beams from the light sources, as illustrated in Figure 2.4. In order to compute soft

shadows, the algorithm detects the regions which are either uniform (entirely in shadow or entirely

lighted), or located in the soft shadow zone. In this latter case, the beam is recursively subdivided

until an uniform region is obtained or the pixel subdivision limit has been reached. If the region is

greater than one pixel, four corner rays are traced for each pixel. The total illumination for each pixel

is then calculated as the sum of its four sub-pixels. If the region is smaller than one pixel, a single

ray is traced through the middle of the sub-pixel. The direct illumination of a sub-pixel is calculated

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 67

V i ew poi nt

Poi nt
l i g ht sour ce

Shadow
beam

Pr i mar y
beam

scr een

V i ew poi nt

Spher i cal

l i g ht sour ce

So f t
shadow

beam

Pr i mar y
beam

scr een

Figure 2.4: Hard and soft shadow generation using beam tracing [GH98]. Left: Shadow beam for a point light
source. Right: Shadow beam from a spherical light source.

using a point light source placed at the center of the initial spherical source. Therefore, the initial

light source is only used to detect the different shadow regions, and the final illumination value is

approximated. As noted by the authors, the obtained soft shadows are realistic, but not exact.

Overbeck et al. [ORM07] (see Chapter 1, Section 1.3.2) propose a method which applies kd-

traversal for beam tracing and improves beam - triangle intersection calculations. The shadow

beams are defined by the points to shade and the light area source. They are used to solve exact

visibility of the light from the point to shade. The irradiance from the visible portion of the light is

then analytically calculated for the point to shade. The method provides accurate and high quality

results, but is limited to scenes with moderate complexity. In the case of soft shadows, the performed

tests only deal with less than 10 visible triangles for each pixel to shade, and thus for each shadow

beam. Beam tracing methods scale linearly with the visible triangles. Thus, the authors note that

their algorithm is more efficient for shadow beams, than for primary visibility, because there are less

triangles to be taken into account.

In his PhD thesis, Stark [Sta02] provides a comprehensive study of analytic techniques for evaluating

partially-occluded irradiance in polygonal environments. The first results concern the calculation

of exact soft shadows, by representing emitters and occluders as generalized perspective prisms in

4D. The method, detailed in [SCLR99], is limited to single occluders or to multiple occluders whose

shadows do not interact. A more general approach is provided in [Sta02], but the authors note that

its interest is rather theoretical than practical. Their third analytic contribution [SR01] is the use of

the vertex tracing algorithm (see Chapter 1, Section 1.3.3) to calculate exact soft shadows in arbitrary

polygonal environments. The method computes the exact visible parts of an area light source as seen

from the point to shade, and then analytically calculates the irradiance of each visible fragment, using

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 68

Poi nt
l i g ht sour ce

vi ew poi nt

Poi nt
l i g ht sour ce

+1−1

+1
+1

Figure 2.5: Shadow volumes according to Crow [Cro77]. Left: The shadow volume for a given triangle. Right:
Each time a viewpoint ray enters a shadow volume, a counter value is incremented. Exiting a shadow volume is
marked by a decrementing the same value. Therefore, deciding if the hit point is in shadow or not is equivalent
to checking the value of the counter.

a formulation derived from Lambert’s formula [Lam60]. Aside the numerical instability described

in 1.3.3, the performance of the algorithm also suffers when there is a lot of shadow interaction.

Mora [Mor06] provides a method which calculates accurate and high quality soft shadows, based on

an algorithm which computes the exact occlusion information between the area light source and

the surfaces in the scene. More exactly, this information is encoded in a 5D BSP tree (see Chapter 1,

Section 1.4.13) for each set composed of a polygon and the light source. After this pre-process step,

the exact visibility of the area light source is extracted for each point to shade. Since all the exact

occlusion information is calculated and stored for the entire scene, independently of the viewpoint,

the required times are an important limitation. Moreover, this exact visibility is calculated using

complex 5D CSG operations, which subject the results to numerical instabilities and robustness

issues.

It is important to note that our algorithm represents a continuation of the work of Mora [Mor06]. We

also compute the exact visibility information between a polygon and a light source, in order to exploit

the visual coherence and accelerate from-point queries. However, our aim is to provide a solution to

all the robustness issues which are characteristic of all the previous work on from-polygon visibility,

and in particular of the soft shadow method provided by Mora. Thus, our new is designed to avoids

all 5D CSG operations, and to computes only the necessary information, during run time, without

any additional pre-process steps.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 69

spher i cal

l i g ht sour ce

vi ew poi nt

entr y poi nt

exi t poi nt

penumbr a

wed g e

umbr a

volume

ob j ect

Figure 2.6: Soft shadow volume with penumbra wedges [AMA02].

2.1.3 Silhouette Based Soft Shadows

The shadow volume and soft shadow volume techniques propose a crossing point between analytic

and sampling based methods. These method use an analytic description of the shadow and the

penumbra volumes. Also, the majority of these algorithms are object based, and therefore the

visibility computations are accurate. However, the light source is still sampled and thus aliasing

problems remain an issue. Moreover, the various approximations and simplifications which are

made in order to achieve real time rendering compromise even further the quality of the results.

In the context of hard shadows, Crow [Cro77] defines the shadow volume of a point light source and

an object. The proposed algorithm constructs this volume by considering the planes formed by the

light and the silhouette edges of the polygons in the object. A silhouette edge is an edge shared by

two polygons, one oriented towards the light, and a second one oriented away from the light. During

rendering, the algorithm counts for each ray if it has entered and exited a shadow volume, thus

determining if the hit point needs to be shaded or not. Figure 2.5 gives an illustration.

Akenine-Möller and Assarsson [AMA02] propose a soft shadow algorithm, which builds on the

shadow volume method, proposed by Crow [Cro77]. They consider light sources to be spheres

instead of points, and each silhouette edge as seen from the light source defines a penumbra wedge.

The penumbra volume created by these wedges represents an approximation of the soft shadow

volume. Figure 2.6 provides an illustration. The light intensity computation for each point is also

approximated, using linear interpolation. As stated by the authors, all these approximations are

motivated by the aim to achieve the best compromise between quality and rendering speed. The

method is suited for objects which have really simple silhouette edges, and robustness issues arise

in some particular scenarios (for example, silhouette edges which are parallel with the direction of

the incoming light). These cases are treated by removing the edges causing problems. However,

this solution has a negative impact on the quality, since the accuracy of the geometry is no longer

preserved and visual artifacts arise.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 70

Assarsson and Akenine-Möller [AAM03] address these limitations in a GPU method, intended

for real time rendering of dynamic scenes. Although the penumbra wedge construction algorithm

is improved and some robustness issues are solved, the method continues to sacrifice accuracy for

speed. In order to construct soft shadow volume, they consider the silhouette edges as seen from a

single point on the area light source, which results in visual artifacts. The penumbra volumes are an

approximation of the real soft shadow volumes, but the points inside the wedge but outside the real

penumbra do not affect the visibility calculations. Another visual artifact results from overlapping

objects. All objects are treated independently and therefore, two objects which overlap as seen from

the light source will cause an overestimation of the shadow. The authors note that these issues are

acceptable in contexts such as games, or other real time applications.

The soft shadow volume algorithm is extended to off-line ray-tracing by Laine et al. [LAA+05]. The

authors propose a two step method which constructs a conservative and analytical representation of

the silhouette edges that overlap the area light source, as seen from the point to shade. The algorithm

uses a hemicube, which stores the penumbra wedges for all the silhouette edges. During rendering

time, for each point P , the wedges that may contain P are recuperated from the hemicube, and

their corresponding silhouette edges are projected on the surface of the light source, in order to

reconstruct the visibility function. The light source is sampled and the visibility function indicates,

for each sample, if the sight-line from P is blocked or not. The algorithm takes into account all the

silhouette edges and handles overlapping cases correctly. However, the use of a hemicube exposes

the method to several drawbacks. The algorithm is overly sensitive to the size of the scene and the

orientation of the light source.

Lehtinen et al. [LLA06] provide a complete analysis of the previously described method [LAA+05],

and propose an improved algorithm. Their main contribution is replacing the hemicube with an

axis-aligned 3D BSP tree which covers the entire scene. The data structure is no longer constructed

as a pre-process step, but built lazily at run time, as directed by the queries. The method calculates

the exact visibility between each point to shade and all the samples chosen on the area light source.

The algorithm manages to improve the solution of Laine et al. [LAA+05] both in terms of efficiency

and memory consumption.

Forest et al. [FBP08] build on the works of [AAM03] and [LLA06]. For an area light source, the

visible points located in the penumbra region are identified using penumbra wedges, similarly to

[AMA02, AAM03]. A new evaluation of the visibility function is proposed, based on a dedicated

implementation on graphics hardware. For each light source, the algorithm identifies the points

located in the penumbra region, and uses a set of light samples to evaluate the visibility of the

source, as seen from the point. Next, the direct illumination is calculated by solving the direct

illumination component of the rendering equation [Kaj86] for a set of uniformly distributed samples.

The algorithm achieves a rendering performance of several frames per second on moderate scenes

and using an average of 16 light samples per area light source. However, as the authors state it, the

method suffers from precision errors and robustness issues, which result in various artifacts. Also,

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 71

since the lights are sampled, the results are also subject to sub-sampling artifacts.

2.1.4 Other Methods

Laine and Aila [LA05] change the pre-processing order of ray tracing. Instead of finding a triangle hit

by a shadow ray, they search all the shadow rays intersecting a given triangle. Two hierarchies are

maintained simultaneously, one for the points to shade and one for the light samples. The algorithm

starts by determining the visible surfaces from the viewpoint of the camera, and constructing the

receiver points and the light samples hierarchies. Next, all the blocker triangles are processed. Each

one of these triangles is associated with penumbra volume, which is used to reject the receiver points

which are not affected by the current blocker. Thus, only the points affected by the current triangle

are shaded with the appropriate value. No acceleration structure is built for the scene’s geometry.

Thus, the authors state that the method is particularly convenient for very large scenes and dynamic

environments, where maintaining a coherent acceleration structure between frames represents

an important cost. The algorithm is dependent on the output resolution and the number of light

samples. However, increased area light sources has a negative impact on the performance, and the

memory complexity consumption is more important than in the case of a ray tracing with a standard

acceleration structure. Thus, the authors note that one algorithm may perform better than the other,

according to the scene used.

Eisemann et al. [ED07] propose an algorithm which samples the visibility between two surfaces. The

entire method is implemented on the GPU, and the triangles are treated in a similar way as [LA05].

An application to soft shadows is provided. Let S be a source and R a receiver. The algorithm

traverses all the triangles and all the samples of R which are potentially affected by the current

triangle, in order to find the samples of S which are hidden by the current triangle, as seen from

the samples of R. In order to optimize this step, the viewpoint of the rendering can be chosen

to coincide with the receiver. In order to compute the samples which are potentially affected by

a triangle (called the triangles’s influence region), penumbra wedges are used. The resulted set

is conservative, and the implementation can be further optimized if an axis-aligned bounding

quadrilateral is used instead of a generic receiver. The triangle is back-projected onto the source and

the blocked source samples are calculated by a fragment shader. The algorithm can handle correctly

very large sources that are either rectangular or simply planar polygons. However, in the latter case,

a bounding rectangle approximation is used. The method approximates both visibility and direct

illumination computations and takes full advantage of the GPU implementation, in order to achieves

interactive frame rates, while preserving visually pleasing soft shadows. As an example, a single

model composed of 4K polygons is rendered in less than 0.03 seconds at a 512×512 resolution. Since

all triangles are treated independently, the overall performance of the algorithm suffers in the case of

a highly tessellated model.

A similar GPU method is presented by Sintorn et al. [SEA08], which can handle arbitrary shaped area

or volumetric light sources. Instead of using a back-projection, blocked source samples are calculated

using a frustum defined by the triangle’s edges and the source sample. The visibility calculations

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 72

are decoupled from the shading operations, which are implemented using a Phong illumination

model and bent vertex normals with respect to adjacent faces. The method is significantly faster

when compared to the shadow volume presented by Laine et al. [LAA+05] and to the beam tracer

developed by Overbeck et al. [ORM07]. However, as the authors note, their solution is sampled,

instead of the exact visibility calculations provided by Overbeck et al..

2.1.5 Conclusion

Generating soft shadows is a complex process, which consists of two main operations: calculating the

visibility of the light source as seen from the point to shade, and computing the direct illumination

value for the point in question. In practice, these two steps are often approximated. An accurate

and physically correct algorithm would have to detect the exact fragments of the light source and

then calculate the shading using an analytic formulation. It is important to note that a closed form

solution to the direct illumination integral only exists for uniformly emitting light sources.

In the previous sections we have reviewed a series of methods which attempt to generate high

quality soft shadows. We have chosen to divide them into analytic and sampling-based algorithms.

The latter ones suffer from noise because the visibility is sampled, and require an important number

of shadow rays in order to attenuate this problem. However, they remain an industry standard

for off-line rendering, mainly for their robustness and simplicity. On the other hand, the analytic

methods are noise free, but prone to numerical instabilities and robustness issues, due to the

complex intersections which need to be calculated. We have also detailed silhouette based soft

shadows, which can be seen as a crossing point between the analytic and sampling methods. These

methods use analytic descriptions of the shadow and penumbra volumes, but sample the light

source. Thus, sampling problems remain an issue, and visual artifacts may also arise.

Initially, beam tracing methods were created to take advantage of the spatial coherence which

exists between the rays sharing a common origin. However, dealing with volumetric structures

instead of simple rays has proven to be a very complex task. The idea was later adapted to single

rays and led to the development of packet tracing, a technique which groups rays into packets

and amortizes the computational cost over the entire packet. However, none of these methods

exploit the visual coherence which exists between the visibility queries originating from the points

belonging to the same surface. This is mainly because computing from-polygon visibility is by nature

a 4-dimensional problem, and thus much more complex than from-point visibility. An attempt in

this direction is made by Mora [Mor06], which designed an algorithm capable to encode the exact

occlusion information between two surfaces as a pre-process step. This information is then used

during run time to accelerate the independent queries for the points to shade. However, his approach

suffers from numerical instabilities and robustness issues, due to the complex 5D CSG operations

involved. These operations have a prohibitive cost and limit the application of the algorithm to

scenes of small to moderate size and complexity.

Therefore, we can conclude that the current implementations are still far from an analytic solution

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 73

which could successfully exploit the visual coherence between the points to shade, and which would

yield accurate and high-quality soft shadows.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 74

2.2 Algorithm Design

In this section we present our from-polygon occlusion algorithm from a theoretical point of view.

The applicative context of our algorithm is the generation of exact and analytic soft shadows.

In this context, we consider a planar light source, S, and an arbitrary polygon T , which contains the

points to shade. We note O(S,T) all the potential occluders of S and T .

The aim of our new method is to calculate the occlusion information related to S, as seen from

T through the geometry in O(S,T), and use it to speed up from-point occlusion queries. This will

allow the algorithm to take advantage of the visual coherence which exists between the occlusion

queries.

The starting point of our new method is the theoretical framework described by Pellegrini. First of

all, we explain how we adapt the equivalence classes to our context (Section 2.2.1). Then, we present

the design of a data structure capable to encode the occlusion information (Section 2.2.2). We then

analyze how the occlusion of S can be extracted for each point on T (Section 2.2.3). Since in this

section we are only providing a theoretical analysis, we do not explain how our algorithm builds the

data structure. The practical details of our implementation are presented in Section 2.3.

2.2.1 Equivalence Classes of Oriented Lines

Our work relies on the concept of equivalence classes of lines, as described by Pellegrini, and detailed

in Chapter 1, Section 1.2.2. Equivalence classes are continuous sets of lines which hit or miss the

same subset of triangles. Therefore, in this context, they represent coherent paths through the scene,

independently of any viewpoint. As a consequence, two lines belonging to the same equivalence

class are spatially coherent.

This definition can be restricted to the arrangement of lines induced by S and all the geometry

in O(S,T). More exactly, since we want to describe the occlusion of S, through the geometry in

O(S,T), we only consider the oriented lines which stab S.

In Pellegrini’s case, an occluder can be represented by all the oriented lines which intersect it.

In our case, an occluder is represented by all the oriented lines which intersect S and then intersect

the occluder. Figure 2.7 provides an illustration.

At this point we make the following assumption: For S and any occluder O, we suppose that

neither polygon has an intersection with the support plane of the other polygon. This assumption is

necessary in order to respect the hypothesis of Theorem 2, presented in Section 1.4.14, and which will

be later used by our algorithm. This supposition is without loss of generality, since the degenerate

cases can be reduced to a valid configuration, as explained in Section 1.4.14. Also, Section 2.3

provides further details on how our algorithm deals with these cases.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 75

O O

S

l1

l2

l3
l4

l5 l1

l2

l3

l4

Figure 2.7: The equivalence classes of lines (Pellegrini) can be restrained to the arrangement of lines induced by
S and its occluders. This illustration considers the case of a single occluder O. Left: In Pellegrini’s case, we can
represent O by all the oriented line stabbing it. The arrangement induced by O contains a cell corresponding
to the lines stabbing O, (l1, l2, l3), and the cells corresponding to the lines missing O, (l4, l5). Right: In our case,
we represent O by all the oriented lines which stab S and then stab O. The arrangement induced by S and O

only considers the line stabbing S, and contains a cell corresponding to the lines stabbing S and O ,(l1, l2, l4),
and the cells corresponding to the lines stabbing S and missing O ,(l3).

In order to describe the occlusion from S, we focus on the coherent sets of lines which intersect S

and either miss all the occluders in O(S,T), or hit at least one occluder in O(S,T). Thus, we want to

calculate the arrangement of lines where each cell corresponds to either one of these two cases:

• A coherent set of lines stabbing S and missing all the occluders in O(S,T). The Plücker points

in this cell correspond to unoccluded lines.

• A coherent set of lines stabbing S and at least one of the occluders in O(S,T). The Plücker points

in this cell correspond to occluded lines.

Figure 2.8 gives a 2-dimensional example of a random scene and the lines which are considered in

Pellegrini’s case and in ours.

In our context, we only distinguish between occluded and unoccluded lines. Moreover, since

we only want to know which are the fragments of S visible from T , we do not care which occluders

block the same path between T and S. Thus, we are actually calculating a simplification of the

equivalence classes described by Pellegrini. In order to avoid confusion, we use the term occlusion

classes to denote the cells of our arrangement of lines. Thus, our methods considers two types of

occlusion classes: occluded and unoccluded, according to the cells previously described.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 76

S

T

Equivalence classes of lines (Pellegrini)

Occlusion classes of lines (our context)

Figure 2.8: Comparison between the arrangement of lines from Pellegrini’s theoretical framework (up) and
the line partition considered in our case (down). The arrangement from the theoretical framework concerns
all the lines in Plücker space, while we are limiting our computations to the arrangement induced by S and
all the geometry in O(S,T). Moreover, in the first case, the lines are distinguished according to the triangles
they intersect, while in our case, we only consider two types of lines: occluded (marked with a rectangle) and
unoccluded (marked with a double circle). Note that for the clarity of this figure, we only represent some classes
of lines, and not all the possible configurations.

2.2.2 Encoding the Occlusion Information

From an algorithmic point of view, the occlusion classes can be stored using a binary space

partitioning (BSP) tree, since they are defined by an arrangement of hyperplanes. The inner

nodes contain the hyperplanes corresponding to the lines spanning the edges of the considered

geometry. Each leaf represents a cell of the arrangement, and thus an occlusion class. This can

either correspond to a coherent set of rays missing all the occluders (unoccluded class), or a coherent

set of lines intersecting at least one occluder (occluded class). Figure 2.9 illustrates the case of the

arrangement induced by a single occluder O.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 77

Up to this point, we have defined an analytical representation of the occlusion from a surface S

as seen through a set of occluders, as well as the structure suitable to encode it. The next section

focuses on how our line partition can be used to extract the exact visible fragments of S, as seen from

any point x yz on T .

2.2.3 Extracting the Occlusion Information

Given a point x yz on T , we want to find the visible parts of S from x yz. This involves all the lines

originating from x yz and intersecting S. Thus, we have to find the coherent subsets of lines which

are not blocked by any of the geometry in O(S,T).

We assume that the data structure representing the arrangement induced by S and O(S,T) and

described in the previous section is constructed. This BSP tree already contains all the occlusion

information of S, as seen from T . Thus, the information relative to x yz does not need to be

calculated, but extracted. This is equivalent to finding the occlusion classes corresponding to the

coherent set of lines which contain x yz.

Considering a line passing through x yz and stabbing S, we want to determine its occlusion

class. This is can be achieved by locating the line’s corresponding Plücker point into the data

structure. Starting with the root node, the position of the point is tested against the hyperplanes

contained in the inner nodes, until a leaf is reached. If the class associated with the leaf is an occluded

class, then the line is blocked. Otherwise, we have determined an unoccluded line between S and

x yz. Figure 2.10 illustrates this process using the example of data structure corresponding to a single

occluder O, and which was previously detailed in Figure 2.9.

In order to compute the complete occlusion of S, as seen from x yz, the above operation is

generalized to the infinite set of lines containing x yz and stabbing S. This can be seen as a view

beam, having x yz as apex and S as base. As previously explained, we want to find all the coherent

subsets of these lines, which are not blocked by any geometry. First of all, we explain how these

sets can be represented using convex fragments of S. Then, we illustrate how the sets can be tested

against the hyperplanes contained in the inner nodes.

Let us consider a line, l and its corresponding hyperplane πl in Plücker space. We observe that x yz

and l form a plane, pl ane(x yz, l), which sets apart the lines intersecting x yz and S into two sets:

The first one with a positive orientation with respect to l , the second one with a negative orientation.

Notice that the orientation of the plane is coherent with the orientation of the line. Figure 2.11 gives

an illustration. Testing the orientation of the set of lines stabbing S with respect to the hyperplane

πl is equivalent to testing the position of S with respect to the pl ane(x yz, l). If S lies in the positive

(or negative) half-space induced by the plane, the set of lines has a positive (or negative, respectively)

orientation with respect to the hyperplane πl . Otherwise, S can be subdivided by the plane into two

convex fragments, leading to two coherent sets of lines, one with a positive orientation, the other with

a negative orientation.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 78

R
3

P
5

l1

l2

l3

O

h1

h2

h3

h1

h2

h3

Figure 2.9: The BSP representation of an occluder O. Left: Let l0, l1 and l2 be the oriented lines spanning the
edges of O. Center: We note h0,h1 and h2 their dual hyperplanes in Plücker space. Right: We can build a BSP
tree whose leaves are the four occlusion classes generated by the triangle: Three unoccluded classes (left leaves)
and one occluded class (right leaf). The inner nodes contain the three hyperplanes, h0,h1 and h2. We note this
representation BSP (O).

R
3

P
5

l

O πl

h1

h2

h3

h1

h2

h3

Figure 2.10: Locating a line into the BSP (O). Left: The line l which stabs O. Center: Let h0,h1 and h2 be the
dual Plücker hyperplanes corresponding to the lines defined by O’s edges. πl is the Plücker point corresponding
to the line l . Right: By testing the orientation of πl with respect to the hyperplanes in the inner nodes, we can
locate the line into the occlusion class it belongs to.

This is actually a particular case of Theorem 2, presented in Chapter 1, Section 1.4.14, when

the first polygon is reduced to a single point.

The above procedure is repeated in each inner node reached by a subset of lines corresponding

to a fragment of S. Therefore, all the initial lines (containing x yz and intersecting S) are located

into the leaves of the BSP tree. If a fragment corresponding to a coherent set of lines reaches a leaf

representing an occluded class, then the lines are blocked by some geometry in O(S,T). Thus the

fragment can be discarded. Otherwise, we have determined a coherent set of unoccluded lines and a

corresponding visible fragment of S.

The result is a list of convex polygons (fragments of the initial S polygon), which correspond to

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 79

x y z

S

l

x y z

S

l

Figure 2.11: The point x y z and the line l define a plane which sets apart the lines stabbing S and having a
positive or negative orientation with respect to l .

coherent sets of unoccluded lines. These are oriented lines which contain x yz and stab only S, and

none of the occluders in O(S,T). Although the fragments do not alter that data structure, they are

used to represent the sets of stabbing lines, and to identify their occlusion classes.

Once all the visible fragments of S are known, the exact illumination of point x yz can be calculated.

The next section details the practical aspects of our method.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 80

2.3 Implementation

The previous section has detailed from a theoretical point of view a data structure representing

an arrangement of lines induced by a light source and its occluders, and how we can extract from

this structure the occlusion information for a point. However, in practice, the two steps are not

independent. The data structure is actually built on-demand depending on when and where the

occlusion information is needed. This lazy construction is directed by the occlusion queries so that

only the required classes are computed.

As indicated by the theoretical analysis provided by Pellegrini, the upper bound complexity of

an arrangement of lines in Plücker space is O(n4 logn). This represents an important limitation,

which can drastically restrict the application of an algorithm. Therefore, special care must be given

to the construction of the data structure, in order to keep the complexity low. Since we are interested

in the soft shadows for a scene as seen from a given viewpoint, we only apply our calculations to the

points which are visible from the viewpoint. The occlusion information is calculated only where and

when it is needed, in order keep a low complexity of the data structure and gain in performance.

2.3.1 Overview

The oriented lines stabbing S are partitioned into coherent sets according to the occlusion classes

they belong to. In Section 2.2.1 we have defined two types of occlusion classes: occluded and

unoccluded, representing the lines which are blocked by the geometry in O(S,T) and those which are

not, respectively. However, since our implementation is lazy, the occlusion classes are developed as

directed by the algorithm queries. Therefore, during execution, some leaves may not yet represent an

occluded / unoccluded class. In order to handle this case correctly, we define a third type of occlusion

class, the undefined class.

Our implementation works with the following classes of oriented lines:

• An unoccluded class: Any occlusion class representing a set of lines that do not intersect any

occluder.

• An occluded class: Any occlusion class representing a set of lines that intersect at least one

occluder.

• An undefined class: An occlusion class which has not yet been found as either unoccluded or

occluded.

The algorithm builds a BSP tree in Plücker space, providing a hierarchical representation of the

occlusion classes generated by the occluders. Each leaf represents one of these classes.

We first summarize the main operations performed by the method, and then provide a complete

description of each step, together with a pseudo-code and an illustrative example.

• At first, all the potential occluders for the light S and the triangle T are selected.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 81

• For an occluder O, the lines stabbing both S and O are contained in the 5-dimensional minimal

polytope, pol y(S → O). A partial representation of this polytope is then calculated for each

occluder.

• A root node of a BSP tree in Plücker space is created and associated with all the occluders.

• The tree is grown by inserting the occluders. This comes down to replacing a undefined class

with the sub-tree representing the occluded/unoccluded classes generated by an occluder.

• An undefined leaf is associated with one or several occluders. Therefore, after it has been

replaced, its occluders are located into the newly added subtree. For an occluder O, this

is achieved by successively testing the position of pol y(S → O) against the hyperplanes

contained in the inner nodes. In order to avoid performing 5D CSG operations, this process

is conservative.

Selecting occluders

Occluders are defined as the geometry intersecting the convex hull of a triangle and a light source.

In practice, the selection of the occluders relies on a shaft culling approach as described in [Hai00].

This involves the bounding box of a visible triangle and the bounding box of an area light source. The

shaft is defined as the convex hull of the two bounding boxes plus the triangle’s and the light’s support

planes. Any triangle intersecting the shaft is considered as a possible occluder. It is important to

underline that our algorithm does not perform any intersection calculations between the geometry

and the shaft. While this definition can lead to a conservative occluder set, it can be computed

efficiently. Figure 2.12 provides an illustration of the selection process, including the various cases

which can occur.

S T

O1

O2

O3

O4

O5

Figure 2.12: The occluders of S and T are defined as the geometry intersecting the convex hull of the
two polygons. O1 and O5 are rejected because they are located outside of the convex hull. O2, O3 and O4

intersect the convex hull, thus they are considered as potential occluders. Note that we are not performing any
intersection calculations for the geometry which intersects S and/or T or the edges of the convex hull. This
leads to a conservative set of occluders. Although it is best to have as few occluders as possible, calculating the
exact blocking geometry would be too expensive than dealing with a slightly conservative set.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 82

If the definition of the scene allows it, a back-face culling selection can also be applied to the

occluders.

Creating a 5-dimensional minimal polytope for each occluder

Let O be an occluder from O(S,T). As before, we assume that neither O, nor S, has an intersection

with the support plane of the other polygon.

As previously explained in Chapter 1, Section 1.4.14, all the lines stabbing S and O are contained

in a minimal polytope defined in Plücker space, noted pol y(S → O). Algorithm 1 details the

elements of this polytope (lines 1 – 5), and the procedure used to create it (lines 7 – 41). In our

case, the V-Representation is obtained by considering all vertex-to-vertex combinations, using one

vertex of S and one vertex of O (lines 12 – 18). The H-Representation would normally include the

H-Representation of the light source, as well as that of the occluder. However, our algorithm only

deals with the lines stabbing S, and all the queries are formulated with respect to the light source.

Therefore, we can omit its H-Representation, and only consider the H-Representation corresponding

to O (lines 20 – 24). This corresponds to the Plücker hyperplanes generated by the support lines of

the occluder’ edges.

In order to ensure an uniform orientation for the entire data structure, each polytope must be

verified and oriented respecting the same convention. Without loss of generality, we assume that the

interior of a polytope has a positive sign, while its exterior has a negative side (lines 26 – 40).

BSP representation of an occluder

Figure 2.9 has illustrated the BSP representation of an occluder. As previously explained in

Section 2.2.1, the BSP representation of an occluder O, noted BSP (O), is built using the Plücker

hyperplanes corresponding to the support lines of O’s edges, placed in the inner nodes. These are

the hyperplanes considered in the partial H-Representation of the polytope. Also, the right leaf

corresponds to the coherent set of lines stabbing O (occluded class, corresponding to the occluder’s

interior), while the left leaves correspond to coherent sets of lines missing O (unoccluded classes,

corresponding to the occluder’s exterior).

Creating the root node

The root node corresponds to the oriented lines stabbing S. These lines will be partitioned according

to whether or not they are blocked by the occluders in O(S,T).

For each one of these occluders, a Plücker polytope is created, using the procedure described

in Algorithm 1. The structure of a node is presented in Algorithm 2, and the initialization of the root

node is summarized in Algorithm 3. The main idea is to build one polytope for each occluder O in

O(S,T) and the light S. All the occluders are then associated with the root node.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 83

Algorithm 1 Creation of the 5-dimensional minimal polytope corresponding to the lines stabbing two convex
polygons, PS and PT , pol y(PS → PT)

1: Structure Polytope
2: {
3: VRep : list of Plücker points
4: HRep : list of Plücker hyperplanes
5: }
6:

7: Function create5DOccluder (Polygon PS , Polygon PT)
8: return Polytope
9:

10: Polytope O

11:

12: //Compute the V-Representation

13: for each vertex vS of PS do
14: for each vertex vT of PT do
15: Plücker v ← createPlücker (vS , vT)
16: O.VRep.add (v)
17: end for
18: end for
19:

20: //Compute the partial H-Representation

21: for each two consecutive vertices v1
T and v2

T of PT do
22: Plücker h ← createPlücker (v1

T , v2
T)

23: O.HRep.add (h)
24: end for
25:

26: //Check the orientation

27: Point BPS ← barrycenter of PS

28: Point BPT ← barrycenter of PT

29: Plücker l ← createPlücker(BPS ,BPT)

30: Int check ← 0
31: for each hyperplane h of O.HRep do
32: if si de(h, l) < 0 then
33: check ← 1
34: end if
35: end for
36: if check = 1 then
37: for each hyperplane h of O.HRep do
38: reverseOrientation (h)

39: end for
40: end if

41: return O

As previously described, degenerate cases may appear if S is intersected by the support plane

of the occluder. As explained in Chapter 1, Section 1.4.14, in this case it is not possible to group

together the lines stabbing both polygons in a single polytope. Thus, S needs to be split with respect

to the support plane of the occluder, and two polytopes are created. This is illustrated in Figure 2.13

and detailed in Algorithm 3, lines 14 – 19.

Another configuration that needs to be avoided occurs when an occluder O intersects T . In

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 84

this case, the fragment of O located below T , with respect to S, would also be counted as an

occluding geometry, thus resulting in an over occlusion of T . In this case, O can and must be clipped

with respect to the support plane of T . This is illustrated in Figure 2.14 and further explained by

Algorithm 3, lines 8 – 9.

S

T

O

S1 S2

T

O

Figure 2.13: Dealing with the degenerate case when an occluder intersects the light source. In this case, the
lines stabbing both O and S cannot have coherent orientations. Thus, the source needs to be split with respect
to the support plane of the occluder, and two polytopes are created: pol y(S1 → O) and pol y(S2 → O). This
operation is also described in Section 1.4.14 and Figure 1.18.

S

T

O

S

T

O

Figure 2.14: Dealing with over occlusion cases, when an occluder intersects the polygon T . In this case, the
occluder is clipped with respect to the support plane of T . This is possible because we are only interested in
the visibility from the points located on T .

We could also mention here the case when an occluder intersects the support plane of S. However,

this is a theoretical case only. In practice, the light is usually located above the scene and does

not intersect the geometry to shade. Although we are not dealing with this case in our current

implementation, it can be handled easily, by clipping the occluder with respect to the support plane

of S. This is similar to the process described for T .

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 85

Algorithm 2 The structure of a node

1: Structure Node
2: {
3: hyperplane : Plücker hyperplane
4: class : {occluded, unoccluded, undefined}
5: occluders : vector of Polytope
6: leftChild : Node
7: rightChild : Node
8: }

Algorithm 3 Creation of the root node, with creation of the initial list of occluders

1: Function createRoot (Polygon S, Polygon T , list of Polygon Ol i st)
2: return Node
3:

4: Node n

5:

6: for each Polygon O of Ol i st do
7:

8: if O ∩ suppor tPl ane(T) 6= ; then
9: O ← cl i p(O, suppor tPl ane(T))

10: end if
11:

12: // Test if S intersects the support plane of the occluder

13:

14: if S ∩ suppor tPl ane(O) 6= ; then
15: Split S into S1,S2 with respect to suppor tPl ane(O)
16: Polytope V O1 ← create5DOccluder (S1,0)
17: Polytope V O2 ← create5DOccluder (S2,0)
18: n.occluder s.add(V O1)
19: n.occluder s.add(V O2)
20: else
21: Polytope V O ← create5DOccluder (S,O)
22: n.occluder s.add(V O)
23: end if
24: end for
25:

26: n.class ← undefined

27:

28: return n

Growing the data structure: Inserting an occluder

The tree grows each time an occluder is inserted: The occluded/unoccluded classes generated by the

occluder are added to the tree. Inserting an occluder O into the tree consists in replacing a leaf by

the root of BSP (O). A leaf corresponding to an undefined class represents a set of lines which may be

partially or totally blocked by the occluders associated with the leaf. By replacing this leaf with the

sub-tree corresponding to one of its occluders we are further subdividing the set of lines with respect

to this blocking geometry.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 86

Locating an occluder

Locating an occluder into a subtree relies on the Theorem 2, presented in Chapter 1, Section 1.4.14.

The procedure is illustrated by Figure 2.15 and detailed in Algorithm 4.

Algorithm 4 Location of an occluder

1: Procedure locateOccluder (Node n, Polytope O)
2:

3: if n is a leaf then
4: if n.cl ass 6= occluded then
5: n.occluder s ← n.occluder s ∪O

6: end if
7: else
8: pos ← or i ent ati on(O.V Rep, n.hy per pl ane)
9: if pos > 0 then

10: locateOccluder(n.r i g htC hi ld , O)
11: else if pos < 0 then
12: locateOccluder(n.le f tC hi ld , O)
13: else
14: locateOccluder(n.r i g htC hi ld , O)
15: locateOccluder(n.le f tC hi ld , O)
16: end if

17: end if

S

O
h

S

O

h

S

O
h

O O O

h h h

Figure 2.15: 2D illustration of how an occluder is located with respect to an inner node using Theorem 2. An
occluder O intersects a subset of all the lines originating from S. This subset may have a negative (left example),
a positive (right example) or a mixed (center example) orientation with respect to any hyperplane h from an
inner node. Theorem 2 allows to define this orientation using the V-Representation lines, i.e. the lines defined
by one vertex of O and one vertex of S. As a consequence the occluder O is located into the right or left or both
subtrees of the node.

Occluders are inserted into the tree and located into the leaves (and thus the classes) they may affect.

Inserting an occluder O comes down to testing the relative orientation of a hyperplane from an

inner node and the lines occluded by O. The occlusion created by an occluder O is the set of lines

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 87

intersecting both S and O, thus the lines contained in the minimal polytope pol y(S →O). Therefore,

we use Theorem 2 to determine the orientation of the occluded lines with respect to the hyperplane.

If the current node n is a leaf which is not an invisible class, it is affected by the occluder O and

thus it is stored in the leaf (lines 3 – 7). Otherwise, if n is an inner node, we have to test the relative

orientation of the lines blocked by O with respect to n.hyper pl ane, the hyperplane contained in

the node n. This is done by applying Theorem 2 using the V-Representation of pol y(S → O) (line 8,

lines 9 – 17).

The three cases which may occur are detailed below and illustrated by Figure 2.15:

• If the orientation is positive, O is inserted in the right child of n (line 10).

• If the orientation is negative, O is inserted in the left child of n (line 12).

• Otherwise, O is inserted in both children (lines 13 – 17).

2.3.2 Core Algorithm

The core of our algorithm finds the occlusion classes related to the visible fragments of S, as seen from

a point x yz, through a set of occluders O(S,T). Algorithm 5 details such a query and Figures 2.16, 2.17

and 2.18 apply it to a given configuration.

Algorithm 5 starts with all the occluders associated to a single undefined leaf (the root node). For

each inner node, we compute the plane defined by x yz and the line stored in the node (line 9),

as illustrated by Figure 2.11 and explained in Section 2.2.3. Then, S is tested against this plane to

determine the orientation of the lines stabbing S and x yz (line 10). If S lies in the positive (resp.

negative) half-space of the plane, then all the lines have a positive (resp. negative) orientation, and

the algorithm continues in the left (resp. right) subtree (line 11 or 13). Otherwise, S is split against

the plane and the algorithm continues recursively in both subtrees with the relevant parts of S

(lines 15 – 16).

When a fragment reaches a leaf, two alternatives can occur:

• The leaf has no occluders, therefore it is either an unoccluded or an occluded class. In the first

case, the fragment is a convex part of S which is visible from x yz, thus it is returned (line 24).

Otherwise, the fragment is invisible from x yz and it is discarded.

• The leaf has some occluders, thus the class is undefined and we cannot answer the query

without further developing the tree.

In the latter case, the algorithm chooses a random occluder (line 26) RO among the occluders

associated with the current leaf. This occluder is used to grow the tree by replacing the leaf by

BSP (RO), the BSP representation of the four occlusion classes generated by RO (line 27). Next, the

remaining occluders are located into BSP (RO) which is now part of the tree. This is achieved by

the procedure at line 29 and described in Figure 2.15. When all the occluders have been located in

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 88

A

B

C

T

S

x y z

A, B , C

Figure 2.16: Illustration of Algorithm 5 for developing the BSP tree for the polygon S and the set of occluders
{A,B ,C }. This is achieved by calculating the visible fragments of S as seen from the point x y z on T . Left: The
algorithm starts with a root node, associated with the entire set of occluders. This represents an undefined leaf.
Right: The initial set of lines is defined by x y z and S.

A

B

C

T

S1 S2

x yz

hB0

hB1

hB2

BA

C

S2 S1

Figure 2.17: Left: One occluder is chosen randomly (B in this case), and the root is replaced by BSP (B). The
inner nodes contain the hyperplanes corresponding to B ’s edges (hB0,hB1,hB2). The left leaves represent the
lines missing B , while the right leaf represents the lines blocked by B . The remaining geometry is located
into the tree, using the technique described by the procedure locateOccluder. Since pol y(S → A) is found to
intersect πB2, the occluder is sent to both left and right leaves. However, since the right node represents a set of
blocked lines, the occluder is discarded. Right: Next, the conntinous set of lines stabbing S are located into the
tree. An intersection occurs in the last inner node (S → S1,S2), identifying thus the lines blocked by B (defined
by S1) and the lines missing B (defined by S2). The fragment S1 will be discarded, while S2 lands in the last left
leaf. This leaf has an associated occluder (A), and thus represents an undefined class. This means that the lines
missing B may stab A. In order to answer the query, the tree must be further developed.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 89

A

B

Q

T

S1 S2 S3

x yz

hB0

hB1

hB2

BhA0

hA1

hA2

A

S3 S2

S1

C

Figure 2.18: Left: BSP (A) replaces the leaf. The newly added left leaves correspond to lines missing both A

and B , while the right leaf represents a set of lines blocked by A. Right: P2 is analytically split into P2 and P3,
which are located into the tree with respect to the geometry they intersect.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 90

BSP (RO), the algorithm continues from the root of BSP (RO) until it finds the occlusion class for the

current light fragment.

Algorithm 5 Occlusion query (core of the algorithm): Given a point x y z on T , the algorithm answers the
query: "which parts of S are visible from x y z ?" S is used to drive the BSP tree construction and may be split
into several fragments representing coherent sets of lines from x y z. The fragments reaching unoccluded classes
correspond to visible parts of S from x y z."

1: Function mainQuery (Node n, Polygon S, Point x y z)
2: return Polygons
3:

4: loop
5:

6: // Querying the data structure

7:

8: while n is not a leaf do
9: Plane p ← makePl ane(x y z, n.hy per pl ane)

10: if posi t i on(p, S) > 0 then
11: n ← n.r i g htC hi ld

12: else if posi t i on(p, S) < 0 then
13: n ← n.le f tC hi ld

14: else
15: // Split the light (S) and work recursively

16: return mainQuery(n.r i g htC hi ld , S ∩p+, x y z) ∪ mainQuery(n.le f tC hi ld , S ∩p−, x y z)
17: end if
18: end while
19:

20:

21: // Building the data structure, if required to answer a query

22:

23: if n.occluder s is empty then
24: return (n.cl ass is unoccluded) ? S : ;
25: else
26: RO ← random occluder from n.occluder s

27: n ← root of BSP (RO)
28: for each O in n.occluder s, O 6= RO do
29: locateOccluder (n, O)
30: end for
31: end if

32: end loop

2.3.3 Key Points

This section underlines significant points of the algorithm.

Random selection of occluders:

The efficiency of the algorithm is related to the balance of the tree. To develop the data structure,

the algorithm chooses an occluder randomly. Obviously, some choices may lead to a more balanced

tree than others. However this is not predictable. In fact, we have tested different heuristics, trying to

make a "good choice". First of all, we have developed a selection procedure which chose the largest

occluders first. Secondly, we considered the beam formed by x yz and a fragment of S and selected an

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 91

occluder amongst those which either intersect this beam, or are located within a certain minimum

distance from it. Unfortunately, all of these heuristics achieved poor improvements compared to

the extra computational cost. Moreover, their behavior can be very different according to the nature

of the scene. We have reached the conclusion that a random choice gives better results, and more

important, it has a consistent behavior independently of the rendered scene. This is similar to the

choice of the pivot in the well known quicksort algorithm: Although a random pivot is not the optimal

choice, it leads to the best performance in practice.

Conservative insertion:

If all the lines stabbing an occluder O do not have the same orientation with respect to a hyperplane,

O is located in both subtrees of the relevant node. As a consequence this process is conservative. This

step could be computed exactly as in [Bit02, NBG02, HMN05, MA05]. But, as explained in Chapter 1,

this is expensive and prone to numerical errors. Our algorithm avoids these problems to remain

simple and robust.

Tree growth:

It is important to note that not all the queries will develop the data structure. Some queries develop

new occlusion classes, at least at the beginning since the BSP tree is empty. And more important, the

majority of the queries are expected to take advantage of the previous computations thanks to the

visibility coherence. This is a key point of the algorithm’s efficiency.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 92

2.4 Soft Shadows Framework

To illustrate the efficiency and the reliability of our exact occlusion algorithm, we plug it into a

ray-tracing rendering software for computing high quality soft shadows. Algorithm 6 describes the

process.

Algorithm 6 The following pseudocode illustrates how our occlusion algorithm is plugged in a ray
tracer software to analytically compute soft shadows

1: build vi si ble_tr i ang le, the triangle list visible from the camera
2: for each light S in the scene do
3: tr i ang le_l i st ← vi si ble_tr i ang le

4: // the following loop parallelization is straightforward

5: while tr i ang le_l i st is not empty do
6: remove a triangle T from the tr i ang le_l i st

7: select the occluders O(S,T) of S and T using shaft culling
8: initialize a BSP tree root node n associated with O(S,T)
9: for each image point x yz on T do

10: vi si ble_par t s ← mainQuery(n, S, x yz)
11: compute the illumination in x yz using vi si ble_par t s

12: end for
13: end while
14: end for

• Using the primary rays, all the image points are grouped together with respect to the triangle

they belong to. This builds a list of visible triangles (line 1).

• Multiple lights are handled successively and independently (line 2)

• For each visible triangle, an empty data structure is created and associated with its set of

occluders (line 8).

• Next, for each image point, Algorithm 5 is used to compute the visible parts of the light

(line 10). In our framework, we consider area light sources with a uniform emission, therefore

we compute direct illumination analytically (line 11) by integrating over the visible parts of the

light [NN85].

This framework is designed to allow an efficient implementation. The loop order is chosen to build

one data structure per light and per visible triangle. Since visible triangles are successively handled,

BSP trees are developed successively and independently. This improves the memory coherence and

avoids switching many times between the data structures. This also limits the memory consumption

since each BSP tree is deleted as soon as all its related image points are shaded. Moreover, the

implementation can be easily multi-threaded: A thread gets a visible triangle from the list, shades its

image points and starts over until the list becomes empty. In this case, the triangle list access (line 6)

has to be protected.

It is important to note that our method is designed as a black box, which can be integrated

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 93

with a rendering application. The input data consists of the points to be shaded, grouped by their

source surfaces, as well as the geometry of the scene. The algorithm returns, for each point, its final

shading value.

Implementation details:

At last, compared to Algorithm 5, a stack is managed to avoid recursive system calls. Except for this

detail, the implementation is straightforward, it uses single floating point precision and does not use

SIMD instructions.

The main operations performed by the algorithm are the position test which allow locating an

occluder into the leaves it may affect, and the tests which detect coherent sets of lines and direct then

to the corresponding class. Both these operations are in fact point-hyperplane and point-plane tests,

respectively, from which we only retain the sign of the result. This enforces the robustness of the

algorithm. The most complex operation is the clipping of a polygon with respect to a plane, which

usually does not raise numerical problems.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 94

2.5 Results

All tests were run on a 2.67 GHz Intel Core i7 920 processor with 6GB of memory. For comparison

purpose, all pictures were rendered at 1280×720 pixels with one primary ray per pixel. Four sets of

results are presented, three sets testing the global performance of our soft shadow framework, and a

last one giving an insight on the behavior of Algorithm 5.

2.5.1 Comparisons on time and quality

The first set of results compares our method to ray-traced soft shadows both at comparable time and

comparable quality. The ray tracer implementation is similar to [WBWS01]: It relies on an optimized

SAH kd-tree, uses SIMD instructions to trace four rays simultaneously, and supports multi-threading

to render several parts of the picture in parallel. Ray-traced soft shadows are computed using groups

of 4 shadow rays, and an uncorrelated stratified sampling of the area light sources. Since both our

method and the ray-tracer support multi-threading, all computations are run using 4 threads. This

type of implementation is particularly efficient when applied to coherent sets of rays, such as primary

or shadow rays.

We use four scenes to test our method in different configurations. Despite its moderate geometrical

complexity (26 673 triangles), the T-Rex scene is challenging for our approach because it presents

difficult and complex shadows due to a long rectangular light source. This means that the light

source visibility is complex and this is precisely what is computed by our algorithm. The modified

Sponza Atrium with the statue of Neptune (115 737 triangles) and Conference (282 873 triangles)

are significant and detailed models with different kinds of shadow complexities. At last, Soda

Hall (2 147K triangles) is used to test the scalability of our approach on a massive model with

heterogeneous geometry. The ambient light was intentionally increased in order to render visible the

entire geometry of the scene.

Figure 2.19 details these results, and presents the time spent computing the soft shadows for

each method. At comparable time, ray traced soft shadows are always noisy. At comparable quality

(i.e. the noise is not noticeable anymore in the stochastic shadows), our method is always faster. In

addition, this is very noticeable on a complex case such as the T-Rex scene, because the stochastic

approach requires a very high number of shadow rays to remove almost all the visible noise. In

contrast, the exact occlusion algorithm produces high quality results in a few seconds.

Table 2.1 presents the memory and time consumption for our algorithm. Since we compute

one BSP tree in Plücker space for each visible triangle from the camera, the memory footprint varies

during the process according to the building of the data structure. As a consequence, our results

report the maximum memory load reached by our soft shadow framework. In any case, the memory

footprint is low. The lazy evaluation is driven by the occlusion queries. Thus, the algorithm focuses

on the classes related to the shadows, and avoids the computation of useless data. In addition, our

framework is designed to avoid building too many BSP trees simultaneously (at most one per thread)

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 95

Comparable Time Our Method Comparable Quality

7 seconds / 32 shadow rays 6.5 seconds 1 min 22 seconds / 512 shadow rays

7 seconds / 32 shadow rays 7 seconds 23 seconds / 256 shadow rays

6 seconds / 32 shadow rays 6 seconds 24 seconds / 256 shadow rays

8 seconds / 32 shadow rays 5 seconds 38 seconds / 256 shadow rays

Figure 2.19: From top to bottom: T-Rex, Sponza with Neptune, Conference and Soda Hall. The middle column
shows the results computed with our algorithm. The left column presents the same pictures computed at
comparable time and the right one at comparable quality, both using shadow rays. As an indication of the
performance of our comparison method, we have rendered the same pictures under the same circumstances
(same computer, 4 threads), using Mental Ray© and obtained the following results: Trex (512 samples - 4”43)
Sponza-Neptune (256 samples - 3”52), Conference (256 samples - 2”20), Soda (256 samples - 3”04). These
timings concern only the shadow rays.

thus keeping the memory consumption low.

The total time can be subdivided in three steps: The occluder selection, the BSP tree initialization

(including the computation of the H-Representation and V-Representation for each polytope), and

the occlusion queries used for shading the image points. We can notice that the computation time is

clearly dominated by the occlusion queries (i.e. calls to the mainQuery function (Algorithm 5)) which

is the core of our method.

Aside the comparison with the stochastic approach, these results show that we can make the

most of from-polygon occlusion coherence to design an efficient and robust algorithm, in contrast

to previous works on this topic. As an example, we were unable to process the scenes presented in

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 96

Memory Time Modified Version

Scene Max Size Shaft Culling Init (%) Queries Total MV Time Acceleration
(KB) (%) (%) (%) (s) (s) Factor

T-Rex 19 916 4.8 1.9 93.3 6.5 314 ×48
Sponza 16 246 4.0 2.0 94.0 7 191 ×27
Conference 20 758 4.0 4.5 91.5 6 146 ×24
Soda Hall 20 991 1.6 3.5 94.9 5 83 ×16

Table 2.1: The time and memory consumption using our algorithm. The Max Size column is the maximum
memory load reached during the process. The Shaft Culling column gives the time percentage spent to select
the occluders. The Init column gives the time percentage spent to initialize each BSP tree. The Queries column
gives the time percentage spent to query the BSP trees for shading each image point. The Total column gives the
time in seconds for the whole process. MV Time column presents the result obtained using a Modified Version
of our framework, where all queries are prevented from taking advantage of the others. The last column gives
the acceleration factor between our framework (Time) and its modified version (MV Time).

this work with a method such as the one described in [MAM05]. The scenes are too complex for such

an approach, which relies on 5D CSG operations. This becomes numerically unstable and leads to

degenerate results.

As expected, the sensitivity of our algorithm to the visual complexity of the light source is confirmed.

For instance, the T-Rex scene required roughly the same amount of time as the Sponza and Neptune

scene or the Conference scene.

About the visual coherence:

A crucial property of our method is its ability to take advantage of the visual coherence between

image points. To test this ability, the same pictures were also rendered using a modified version of

our algorithm: Between each query (i.e. between each mainQuery call), the related BSP tree is reset

to its root node associated with its former occluder set (this additional operation is excluded from

the timings). In such a case, each query is "the first one" and we prevent all queries from taking

advantage of the previous ones. The last two columns of Table 2.1 present the computation times

achieved by our modified version, as well as a comparison between the two algorithms. The loss of

efficiency is considerable. This demonstrates the capacity of the algorithm to benefit from the visual

coherence, which is a key point to its efficiency.

2.5.2 Increasing the Area of the Light

The complexity of the soft shadows also depends on the size of the area light source. This is intrinsic

to the soft shadows problem and it will inevitably affect our algorithm since it relies on the visibility

coherence of the light source. If its area increases, the visibility coherence may decrease and lead to

a loss of efficiency. As a consequence, the second part of our tests investigates the behavior of our

framework when the area light source is increased. These tests were run on the Conference model.

Our choice was motivated by the fact that this model has a significant number of triangles, as well as

the wide range of shadows. The tests start using a small area light source whose size is progressively

increased until it becomes 100 times larger. For each light size, the time and maximum memory

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 97

used by our method are measured. Figure 2.20 sums up the results. As expected, it shows a loss of

efficiency, both in time and memory, as the light source size grows (left and right graph of Figure 2.20).

By extent, there is inevitably a critical light size where the time and the memory consumption would

become a problem, in particular the memory since it is a limited resource. However, our tests

show that even with the largest area light source we are far from such a point. In addition, further

comparisons using our ray-tracer show that our approach remains fast. At comparable quality, 1024

samples are required for the largest light and the computation takes 91 seconds against 39 seconds

using our algorithm (2.33 times slower). Independently of the increase in the noise, the break-even

occurs for a light source 184 times larger than the smallest one (92 versus 93 seconds using 1024

samples).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
]

Light Area

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

M
e

m
o

ry
 O

c
c
u

p
a

ti
o

n
 [

M
B

]

Light Area

Figure 2.20: Increasing the light size. Left: The time consumption. Right: The maximum memory load reached
during the computations. Center: A picture from our tests with the largest area light source (100 times larger
than the smallest one. This corresponds to a square whose side is exactly the width of the conference table).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

T
im

e
 [

s
]

Light Number

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

M
e

m
o

ry
 O

c
c
u

p
a

ti
o

n
 [

M
B

]

Light Number

Figure 2.21: Increasing the number of lights. Left: The time consumption. Right: The maximum memory load
reached during the computations. Center: A picture from our tests with 36 area light sources.

2.5.3 Increasing the Number of Lights

Generally, a scene has several light sources. As detailed by Algorithm 6, our implementation supports

multiple lights which are handled successively. Thus, it is interesting to test the behavior of our

framework in such a case. The Conference model is used again and rendered with 2 to 36 area light

sources. All the lights have the same size and cast roughly the same "amount" of shadow. Figure 2.21

presents the results. The left graph shows that the time consumption is linear with respect to

the number of area light sources. This is the expected behavior since our framework evaluates

the contribution of each light source one after another. In addition, this makes the memory load

independent from the number of lights, as shown on the right graph. However, we can notice a

significant growth of the memory load when the number of lights is more than 12. Indeed, the 12 first

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 98

lights are above the conference table while the 24 other lights are mainly above the chairs, casting

more complex shadows. The memory growth is independent from the number of lights in the scene,

but it is coherent with the increase in the visibility complexity.

By increasing the size of the light source we have shown that an over-sized area light source

can become a limitation for our method, mainly because of the memory consumption. By increasing

the number of lights, we have found a possible solution to this problem. Any huge light source, even

with a critical size, could always be treated as an union of several smaller lights. This does not affect

the quality of the results, which remain noise free. This is especially interesting, since a stochastic

method would require a high number of shadow rays for handling a huge light source.

Light visibility

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
im

e
 (

m
s
)

M
e

m
o

ry
 (

M
B

)

Query number

Time
Memory

Figure 2.22: Lazy construction of a representative BSP tree. The abscissa corresponds to the number of queries.
The left ordinate is the time in milliseconds and is related to the continuous curve, while the right one is the
memory consumption in MB and is related to the dashed curve. Above the graphic, a half-tone illustration of
the light visibility for each query. Black means invisible while white is fully visible.

2.5.4 Focus on the mai nQuer y Algorithm’s Behavior

The previous results demonstrated the global efficiency and robustness of our method, but they do

not highlight the behavior of the algorithm’s core (Algorithm 5), i.e. how the occlusion data and the

computational cost evolve with respect to the occlusion queries. Figure 2.22 provides such an insight.

It focuses on the construction of a single BSP tree for the Conference model. This tree was selected

because it is representative of the mainQuery behavior. It has 2 896 occluders and a significant

number of queries (17 878) are performed. In particular, most of the image points are located in the

umbra or penumbra, which represent the most complex cases for any algorithm.

At first, the tree grows quickly because there is no occlusion data and the algorithm has to

develop it in order to answer the occlusion queries. The timings show the extra computational cost

required for this construction. As a second step, the tree growth slows down drastically because the

previously computed occlusion classes can be re-used and only need to be completed from time

to time. As a consequence, the computational cost falls down. This is the global behavior of the

algorithm. In addition, the image points are shaded in the scan-line order. This allows consecutively

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 99

handling neighbor points which are likely to share the same occlusion data. This is noticeable locally:

An "expensive" query is always followed by "cheaper" queries, taking advantage of the previous

computational effort.

Chapter 2 : From-Polygon Occlusion. Application to Soft Shadows Page 100

2.6 Discussion and Future Work

In this section we discuss our algorithm and point out some limitations.

The lazy construction of the occlusion data is an important feature of our algorithm. The construction

is driven by the occlusion queries, which allows the algorithm to fit the image resolution and to focus

the computational effort where and when it is needed. On the other hand, such an approach cannot

solve all types of visibility problems. For example, it is not suitable to prove that the light source is

invisible from a polygon or to compute exact Potentially Visible Sets. Indeed, it is not possible to

query all the points on a polygon or on the PVS boundaries. However, using an adaptive sampling of

the surfaces, our approach could still be used to query the visibility from each sample and produce

an accurate solution to these problems.

In the current implementation, a BSP tree is built for each triangle with image points to shade

and makes the most of the visibility coherence between those points. This is an easy solution to

group image points. However, if the geometric resolution is very high with respect to the image

resolution, it can lead to very few image points per triangle and thus, a loss of efficiency, because

the occlusion data may be dropped before being re-used. To overcome this problem we plane to

develop an approach independent from the geometry. We are thinking about mapping image points

into a Bounding Volume Hierarchy built to balance the number of image points per leaf. Next, the

light source visibility could be computed per leaf, using its bounding box faces to apply our visibility

algorithm. This would probably require to solve the self occlusions that may occur inside a bounding

box. As a future work this is our main idea since it would solve any problems related to the image

versus object resolution. For example, it could even handled micro-polygons.

This chapter has presented our from-polygon occlusion algorithm, as well as it application in the

context of soft shadow generation. The next step is to build upon this work and make the step towards

a from-polygon visibility representation.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 101

Chapter 3 :

From-Polygon Visibility

Application to Ambient Occlusion

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 102

N the first chapter of this thesis, we described a theoretical framework based on the Plücker

parametrization, which can be used to solve from-polygon visibility problems. At that

point, we have outlined the void which exists between the theoretical tools and the existing

implementations. In this context, our objective was to provide a robust visibility algorithm which

can be successfully used in a given applicative context.

The first step towards this objective is our from-polygon occlusion algorithm and its application to

the generation of soft shadows. In the previous chapter, we have explained how we can simplify

Pellegrini’s theoretical framework, and use it to determine the coherent sets of lines which describe

the occlusion of a light source, as seen through a group of occluders. Although such an occlusion

data is sufficient for some applications, other require more complex information. For example,

in order to calculate the ambient occlusion for a point, we need to determine which polygons are

directly visible from the point. This would require an extra depth information, which is not present

neither in Pellegrini’s theoretical framework, nor in our from-polygon occlusion algorithm.

Pellegrini’s theoretical framework allows to analytically group lines together, according to the

triangles they intersect. As explained in Chapter 1, Section 1.2.2, this corresponds to an information

of occlusion. The equivalence classes, as defined by the theoretical framework, provide an indication

on which geometry is stabbed, but not the order in which these polygons are intersected by the lines

belonging to the equivalence class. Moreover, since we are dealing with random lines in space, the

notion of first intersection cannot be properly defined.

Our simplification, as presented in the previous chapter, only distinguishes between occluded

and unoccluded lines. These are the lines stabbing an area light source and which are partitioned

according to a set of occluders. The next step is to design an algorithm which encodes the exact

visibility information from a source polygon. More exactly, given a polygon and a set of occluders, we

want to know which of these polygons, or fragments of these polygons, are directly visible from the

source polygon. Therefore, we consider the set of rays originating from the source polygon. These

rays need to be analytically grouped according to the first geometry they intersect. Note that in this

context, contrary to the theoretical framework, the notion of first intersection can be defined with

respect to the source polygon.

Our new algorithm retains all the advantages of the method described in the previous chapter:

it avoids all complex 5D CSG operations, thus being very accurate and robust. Also, since we are only

interested in the ambient occlusion for the points visible from the camera, our algorithm executes

the visibility queries lazily at run time, when and where the information is required.

The first part of this chapter details the ambient occlusion theory (Section 3.1), and more exactly

the obscurances and ambient occlusion illumination models. Next, we review the main techniques

used to calculate ambient occlusion (Section 3.2). We equally present an analytic solution to the

ambient occlusion integral, which will be useful in the context of this work (Section 3.1.4). We

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 103

then provide a description of our method from a theoretical point of view (Section 3.3), followed by

the practical aspects of our implementation (Section 3.4). We also detail how we can enhance our

ambient occlusion algorithm to take into account a falloff function (Section 3.5). After describing

our ambient occlusion framework (Section 3.6), we present the results we obtained (Section 3.7),

followed by a discussion and some perspectives (Section 3.8).

The work presented in this chapter has been published as

Analytic ambient occlusion using exact from-polygon visibility

O. Apostu, F. Mora, D. Ghazanfarpour, L. Aveneau

in

Computers & Graphics,

Volume 36, Issue 6, pages 727–739, October 2012

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 104

3.1 Ambient Occlusion Theory

Ambient occlusion is an empirical illumination model used to simulate global illumination effects, at

a less expensive cost. It was first introduced by Zhukov et al. [ZIK98], under the name of obscurances,

and later adapted to the movie industry [Lan02, Bre02]. Roughly speaking, obscurances and ambient

occlusion represent a geometrical property of a point which approximates the amount of ambient

light blocked by the directly visible geometry close to the point. Moreover, the model does not take

into account the color of the objects, or the properties of their materials. The following subsection

briefly presents the obscurances illumination model, followed by a more complex analysis of its

simplification, ambient occlusion.

S

N

x yz

ω

Ω

P
hi t

Figure 3.1: Geometry for obscurances / ambient occlusion for point x y z on surface S. The point hi t on
polygon P is visible from x y z in direction ω. Thus, d(x y z,ω) = d(x y z,hi t).

3.1.1 The Obscurances Illumination Model

Let S be a surface with normal N , and x yz a point on S. The obscurances of x yz is defined by the

following integral:

Obs(x yz) =
1

π

∫

ω∈Ω
ρ(d(x yz,ω))(N ·ω)dω (3.1)

Where

• Ω denotes the upper hemisphere with respect to N ,

• d(x yz,ω) is the distance from x yz to the first intersection in direction ω,

• ρ(d(x yz,ω)) is an empirical attenuation function (falloff function), dependent on the distance

to the intersected surface in direction ω,

• 1
π is a normalization factor, such as if ρ(d(x yz,ω)) = 1,∀ω ∈Ω, then Obs(x yz) = 1.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 105

Figure 3.1 provides an illustration.

The ρ function. The obscurances model makes the assumption that the farther a point is obscured

in a given direction, the more light is coming from that direction. This attenuation with respect to

the distance is translated by the ρ function. Therefore, ρ needs to be a monotone increasing function

of the distance d .

Moreover, obscurances is a local property. The visible geometry that blocks the incoming light

is only considered in a given environment around the point. This is based on the same assumption

that objects which are too far away will no longer be able to influence the amount of light reaching

the point. Thus, ρ also needs to be up bounded. Let δ be the maximum distance around x yz for

which we are considering occlusions. The function ρ is defined on the following interval

ρ : [0,δ] → [0,1] (3.2)

and has a shape approximated by the plot in Figure 3.2. Since no formal definition of ρ is given by the

original article [ZIK98], various formulas have been used. In [MSN03], Méndez et al. suggested two

possible functions (Equations 3.3 and 3.4) and presented their results.

ρ(d) = 1−e
d
δ (3.3)

ρ(d) =

√

d

δ
(3.4)

ρ(d)

δ

d

1

Figure 3.2: Graph of function ρ.

The δ parameter. All geometry located within a δ radius from the point is taken into account

when calculating the obscurances for the point. This parameter is usually chosen by the user and it

determines the amount of shadow contained in the final result. Although it has to be in concordance

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 106

Figure 3.3: Impact of the δ parameter. The two bricks were rendered using two different δ values (illustrated
by the two spheres in the central image). From a practical point of view, both values are correct since they
produce shadowing effects and allow a good comprehension of the scene. However, the question of which
image is better / more pleasing remains a subjective matter and greatly dependent on the context in which the
result will be integrated.

with the size of the different elements in the scene, its value is rather artistic. Figure 3.3 gives an

illustration by showing the same scene rendered using two different δ values.

3.1.2 The Ambient Occlusion Illumination Model

Applying an attenuation function for each intersection with the surrounding environment can be an

expensive task. This can be challenging especially for games, where the rendering speed is crucial.

Also, in the movie industry, the main concern is to obtain a visually pleasant effect. The exactness of

the result is less important. Usually, the ambient light is attenuated in the final composition phase,

according to the influence of the visible surfaces. Thus, a simplification of the obscurances model,

known as ambient occlusion, was introduced.

The new illumination model replaces the ρ function with a visibility function:

AO(x yz) =
1

π

∫

ω∈Ω
vi s(x yz,ω)(N ·ω)dω (3.5)

In this context, we retain the following definition of the visibility function:

vi s(x yz,ω) =
{

1 , if an object is visible in direction ω

0 , otherwise
(3.6)

Note that some methods use the complementary definition (vi s(x yz,ω) = 0, if an object is visible in

direction ω, and 1 otherwise), which is directly deductible from the ρ(d(x yz,ω)) function.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 107

3.1.3 Differences and Similarities

Both ambient occlusion and obscurances represent a purely geometric property of a point. Their

effect can be seen as an interpretation of the point’s position with respect to its surrounding

environment. Therefore, their computation is independent of the light sources or the illumination

model used for rendering. Moreover, ambient occlusion and obscurances allow the visualization of

scene without any light source, since they translate the geometric position of objects.

The main difference between obscurances and ambient occlusion is the attenuation function

considered by the first method. According to [MFS09], the obscurances technique respects the

geometry of the scene by taking into account the distance between the points and the surfaces which

occlude them. On the other hand, ambient occlusion considers all geometry within a given radius

to be equally distant. However, in today’s research papers, the difference between the two methods

is fading more and more. Recent research on ambient occlusion include various types of attenuation

functions or various approximations of the original formulas in order to achieve different effects or

to take into account certain types of scenes.

In this study we consider the definition of ambient occlusion as given by Equation 3.5. However, our

aim is to design an algorithm which can either obtain basic ambient occlusion effects, or use the

base definition together with an attenuation function.

We present an analytic method based on applying a closed form solution of the ambient occlusion

integral in the context of exact visibility, in order to achieve noise free and high quality results. More

exactly, we use from-polygon visibility to exploit the visual coherence which exists between the

points belonging to the same surface. Such neighbor points share similar views of their surrounding

environment, and thus have close ambient occlusion values.

It is important to note that for the ambient occlusion integral, a closed form solution exists. More

exactly, this evaluation is frequently used in illumination theory to compute the irradiance function,

or the form factors corresponding to the radiative transfer between a point and a polygon. All these

solutions are equivalent to the base ambient occlusion integral 3.5. In the next subsection, we

explain how the closed form of this integral can be obtained, and indicate some related bibliographic

resources.

3.1.4 An Analytic Solution to the Ambient Occlusion Integral

S, x yz and N retain their previous definitions. Let P be a convex polygon which is entirely visible

from x yz. The goal is to produce a closed form evaluation of the ambient occlusion due to P . In

fact, such an evaluation already exists in illumination theory and it is used in the computation of

irradiance. In physically-based rendering, direct lighting is expressed using the surface irradiance

function. Irradiance is a physical quantity which measures the radiant energy incident on a surface

[CWH93]:

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 108

I (x yz) =
∫

ω∈Ω
L(ω)(N ·ω)dω (3.7)

Where L(ω) corresponds to the radiance arriving from direction ω and Ω denotes the upper

hemisphere with respect to the local surface normal.

Two assumptions are made in the context of this study: All polygons are ideal diffuse surfaces

and each polygon P emits constant radiance LP uniformly in all directions across its surface.

Therefore, the radiance term in Equation 3.7 becomes a function of position only and can be moved

outside the integral [SP94]:

I (x yz) =
∫

ω∈Ω
L(ω)(N ·ω)dω= L(x yz)

∫

ω∈Ω
vi s(x yz,ω)(N ·ω)dω (3.8)

For a completely visible polygon P , the irradiance integral (Equation 3.7) can be rewritten as a surface

integral over P .

I (x yz,P) = LP

∫

P
(N ·ω)dω (3.9)

This surface integral can be reduced to a line integral over the boundary of P (contour integral), which

can be evaluated in closed form using Lambert’s formula [Lam60]:

I (x yz,P) =
LP

2

n
∑

i=1
βi cosγi (3.10)

Where n is the number of vertices of P , βi is the angle (in radians) subtended by edge i of P , and γi is

the angle between N and the outward normal of the plane defined by x yz and the edge i . Figure 3.4

provides an illustration.

This analytic solution can be applied only for planar convex polygons and under the assumption

that the polygon is fully visible from the point. The detailed, yet far from trivial, demonstrations to

Equations 3.9 and 3.10 can be found in [Sta02].

On the other hand, the occlusion by P of ambient light can be represented by the radiant energy

emitted by P and incident at x yz. Thus, the ambient occlusion equation can be deducted from

irradiance:

I (x yz,P) = LP

∫

E
(N ·ω)dω

= πLP (
1

π

∫

E
(N ·ω)dω) =πLP AO(x yz,E) (3.11)

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 109

By replacing the left term with the result from Equation 3.10, we obtain a closed form expression for

the ambient occlusion due to an entirely visible polygon P :

AO(x yz,P) =
1

2π

n
∑

i=1
βi cosγi

=
1

2π

n
∑

i=0
(cos−1 vi · vi+1

‖vi‖ ·‖vi+1‖
)(

vi × vi+1

‖vi × vi+1‖
·N) (3.12)

Where n, βi and γi retain their previous definitions and vi = pi − x yz (the vectors defined by the

point x yz and each vertex of P). If there is more than one blocking polygon, the total ambient

occlusion is the sum of the integrals over each surface. As previously underlined, this is valid under

the assumption that each blocking polygon is fully visible from x yz.

Equation 3.12 can also be deducted using form factor theory. According to the initial definition

[ZIK98], the ambient occlusion due to a polygon P is equivalent to the form factor between x yz

and P , since form factors represent the fraction of radiant flux transfer between P and x yz. In the

simplified case of a point and a directly visible polygon, the form factor can be evaluated in closed

form using Lambert’s formula [Lam60], which yields the same definition as Equation 3.12.

An important property which can be illustrated using Equation 3.12 is that projectively equivalent

polygons produce the same irradiance, and thus ambient occlusion. The angles βi represent the

lengths of P ’s edges when projected onto the unit sphere centered at x yz, and the angles γi indicate

their position.

P

S

N

x yz

Ni

Ni
γi

βi

Figure 3.4: Geometry for Lambert’s formula.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 110

The next section focuses on the different ambient occlusion computation techniques. We briefly

review the major directions and provide a more detailed analysis of the methods directly related

to this study. A more comprehensive survey of the different obscurances and ambient occlusion

techniques has been provided by Méndez and Sbert [MFS09].

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 111

3.2 Ambient Occlusion Computation

According to [ZIK98], the ambient occlusion for a fully visible polygon resembles the form factor

corresponding to the diffuse radiative transfer between the polygon and the considered point. This

involves a visibility calculation in order to determine the exact visible geometry from a point, and

an evaluation of the integral in Equation 3.5. Usually, approximations are made when performing

both these steps. These approximations can lead to visual artifacts or noise in the final images. In

this survey we focus on how the current methods deal with these two problems: the visibility of the

environment and the evaluation of the ambient occlusion integral.

We start with a short description of the methods which introduced the notions of obscurances

and ambient occlusion (Section 3.2.1). Next, we present the ray traced ambient occlusion, which is

considered to be the reference computation method (Section 3.2.2). As explained in the previous

chapter, the ray tracing solutions are based on sampling the visibility of a polygon (soft shadows) or

of an entire environment (ambient occlusion). This solves both the visibility and the evaluation of

the integral, and can achieve quality results if the number of samples is sufficiently high. We then

discuss the techniques which either propose analytic solutions or achieve results matching those

produced by a ray tracer (Section 3.2.3). In this context, the analytic methods are those techniques

which are based on a closed form evaluation of the ambient occlusion integral. Their advantage is

that the results are no longer subject to noise, as in the case of the ray tracing method. However, the

approximated visibility can lead to visual artifacts. Next, we briefly review various ambient occlusion

methods, which are mostly adapted to specific contexts (Section 3.2.4). Finally, we summarize the

advantages and drawbacks of all the techniques presented in this chapter, and conclude with a few

indications on our own algorithm (Section 3.2.5).

3.2.1 Calculating Ambient Occlusion : The First Milestones

Direct illumination models simulate indirect lighting using a constant ambient term. This represents

a crude approximation which ignores the geometry of the scene and the different occlusions between

the objects. Therefore, it is computationally inexpensive. However, such a simplification usually

results in a lack of realism and richness in the final images. Thus, various research have constructed

on the classic concept of ambient term in order to provide better alternatives, without paying the

computational price of global illumination methods.

Before Ambient Occlusion. The first animated short movie, "The Adventures of André and Wally

B." (1985), used a particle system shading model in order to approximate the indirect illumination

effects on trees and grass. Their model used attenuation distances, and a random probabilistic

component which decided if a vegetation particle needs to be shaded or not [RB85]. Almost ten years

later, Miller [Mil94] defines the accessibility of a surface and proposes two algorithms that shade the

more hidden parts of the objects in different ways than the rest of the scene. In [CNS00], Castro et al.

replace the classic constant ambient term with a set of terms which take into account the orientation

of the polygons in the scene. In order to remain computationally inexpensive, the proposed method

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 112

does not calculate the occlusions between the various objects.

An Ambient Light Illumination Model. The Obscurances illumination model is formally defined in

[ZIK98]. Zhukov et al. describe "an empirical ambient light illumination model", which simulates the

darkening of the more hidden areas as a result of the lack of secondary light ray reflections. The model

is defined using the integral in Equation 3.1, and a physical justification is attempted. Although the

stated conclusion is that the physical foundation is empiric, the model remains interesting because

it successfully simulates indirect illumination without being expensive. A computation method is

also suggested, based on the resemblance between a patch’s obscurances and form factors.

A New Star is Born. At SIGGRAPH 2002, Hayden Landis [Lan02] from Industrial Light + Magic

and Rob Bredow [Bre02] from Sony Pictures Imageworks each spoke about ambient occlusion, a

technique that had been used in the movies Pearl Harbor and Stuart Little 2, respectively. In the first

course, ambient occlusion for a point was calculated by casting rays in a hemisphere around the

surface normal. This was used to shadow the surfaces that were less exposed, and also to calculate

a bent normal, a direction obtained by averaging the unoccluded directions. This allowed obtaining

the proper lighting for the unoccluded geometry. In the second course, ambient occlusion was

simulated using two large area lights, representing the sky and the ground, respectively. The method

had been implemented in the widely known RenderMan software.

3.2.2 Ray Tracing

One way to test the visibility from a point x yz is to cast rays from the point into the surrounding

environment and test for occlusions. The integral in Equation 3.5 (or Equation 3.1 for obscurances)

can be evaluated using Monte Carlo integration [Nie92]. The point’s upper hemisphere is sampled

in order to obtain the directions for the rays which will calculate the visibility from x yz. Suppose

ns is the number of samples and {~R1, ..., ~Rns} denote the rays corresponding to the chosen point

distribution. Equation 3.5 can be estimated using the following sum:

AO(x yz) =
1

ns

ns
∑

i=1
vi s(x yz, ~Ri)(N · ~Ri) (3.13)

Note that for the obscurances models, the visibility function is replaced with the ρ function.

The ray traced ambient occlusion has the same disadvantages as any other sampling based

method. The quality of the final images is dependent on the number of rays traced and the results

usually contain an important amount of noise. Moreover, this problem is more accentuated when the

δ parameter is increased, since the angular dispersion of the rays is more important. An illustration

is given in Figure 3.5. The sampling technique also has an impact, as shown in [MS04]. A more

comprehensive analysis of ray tracing optimizations and sampling distribution improvements has

been provided in Chapter 2, Section 2.1.1.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 113

a) 8 rays / pixel b) 8 rays / pixel

(zoom)

c) 256 rays / pixel

(zoom)

d) 256 rays / pixel

Figure 3.5: The impact of the number of samples. The images obtained using ray traced ambient occlusion are
sensitive to noise according to the number of considered samples. Two examples are given here, using 8 rays
for each pixel (a), b)) and 256 rays (c), d)). The noise is clearly visible in the left images, and bearly noticeable
in the right ones.

3.2.3 Analytic and High Quality Solutions

Dynamic Ambient Occlusion and Indirect Lighting. Bunnell [Bun05] represents the scene by

a hierarchical structure of disks. A disk is created for every vertex of every polygon. Each disk

has a position and a normal, derived from the original polygonal information, and an area,

which is calculated based on the areas of the polygons sharing the vertex. Thus, the disks act as an

approximation of the scene’s surfaces, in order to facilitate illumination and shadowing computation.

This data is stored into a texture map, so it can be easily accessed and updated using a GPU fragment

program. The occlusion between these disks is analytically approximated using a solid angle formula,

as illustrated in Figure 3.6. The actual visibility between two surface elements is never calculated. The

occlusion for one disk is simply a sum of shadow contributions from neighbor disks. Approximating

visibility using occlusion, along with the considered disk representation, have a negative impact

on the resulted images. The occlusion is over-estimated and thus, some areas appear darker than

expected and an important amount of detail is lost. Several passes are required in order to attenuate

the excessive shadowing, and their number needs to be carefully chosen since there is the risk of

surfaces becoming too light.

High-Quality Ambient Occlusion. Hoberock and Jia [HJ07] construct on Bunnell’s [Bun05] approach

to improve its robustness and the quality of the results. In order to avoid boundary artifacts, a

transition zone is defined where occlusion is smoothly interpolated, according to the position and

the hierarchy of the disks. Instead of placing disks at each vertex of the scene’s geometry, each

polygon is approximated by a disk located at its barycenter. Moreover, the disks at the lowest level

of the hierarchy are replaced with the actual polygons. This allows two optimizations: First of all,

the polygons can be clipped against the support plane of the point to be shaded. This gives a better

approximation of visibility. Second, the occlusion due to the obtained fragment is calculated using

an analytic expression derived from form factors. Figure 3.7 illustrates the two operations. Note

that for disks located in the higher levels of the hierarchy, the occlusion is still approximated as a

sum of shadow contributions from its neighborhood. Similarly to the initial method [Bun05], the

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 114

algorithm needs several passes to converge. Since the visibility is approximated, some artifacts are

still noticeable and the obtained images do not always match a ray traced result, as the authors

mention. Moreover, over-occlusion remains an issue.

R

E

r

θE

θR

Shadow(E → R) =

1− r cosθE max(1,4cosθR)
√

ar ea(E)
π

+r 2

Figure 3.6: Shadow Approximation [Bun05]. Left: The geometric relationship beteen an emitter and a receiver.
E is the disk casting the shadow (emitter) and R is the disk which is shadowed (receiver). r is the distance
beteewn the centers of the two disks. Right: An approximation of the disk-to-disk occlusion.

N N

p p

ei

Clipping Plane

Visibile

Clipped

F (A → p) =

= 1
2π

∑

i
N ·Γi

wher e

Γi = nor mal (pl ane(p,ei))

Figure 3.7: Ambient Occlusion calculation in [HJ07]. Left: Visibility calculations al the lowest levels of the disk
hierarchy. If a triangle is partially visible from point p, it will be clipped against the plane contain p and having
the normal N . Center and right: The occlusion due to the fragment is calculated using an analytic formula
derived from form factors.

Ambient Occlusion Volumes. McGuire [McG10] proposes an analytical method which yields

noise-free results. He builds an ambient occlusion volume for each polygon and locates the visible

points in the volumes using rasterization. Then for each visible point, its ambient occlusion

value is calculated using Lambert’s formula [Lam60], attenuated by a falloff function. The size of

the occlusion volumes is dependent on the polygon itself and the maximum occlusion distance

considered for the scene. An illustration is given in Figure 3.8. The use of an analytic solution to the

ambient occlusion integral provides noise-less quality results. However, the visibility from the point

to shade is approximated, which results in visual artifacts. More exactly, the visible points are simply

located in the bounding volumes of the polygons which affect them. Thus, if one bounding volume

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 115

is entirely contained into another, over-occlusion occurs. This results in over-darkened areas and a

loss of details. The same artifact also arises in some configurations when bounding volumes overlap.

A solution based on an empiric compensation map is proposed. Although it attenuates the obscured

parts, none of the missing details can be recovered.

NP

P
−δNP

P0 P1

P2

AO(P → x) =

= 1
2π

n
∑

i=0
(cos−1 pi ·pi+1

‖pi ‖·‖pi+1‖)×

×(pi×pi+1
‖pi×pi+1‖ ·NP)

Figure 3.8: Ambient Occlusion Volumes [McG10]. Left: The occlusion volume for polygon P . δ represents the
maximum occlusion distance for the scene. Right: The occlusion of P over a point x contained in P ’s occlusion
volume is calculated using Lambert’s formula.

Two Methods for Fast Ray-Cast Ambient Occlusion. Laine and Karras [LK10] propose a GPU

method, which computes high quality ambient occlusion and which is targeted for rasterization-

based engines. The bounding volumes are replaced with regions of influence, which are more

compact. Also, the triangles which are smaller than the the occlusion radius are handled separately,

in order to avoid the over-occlusion artifacts resulting from McGuire’s [McG10] algorithm. Moreover,

the authors propose a technique to avoid over counting occlusions. However, they replace the

analytical evaluation of the ambient occlusion integral with an improved stochastic sampling. A

second ray tracing method using BVH traversal is presented. An important feature of the solution

proposed by Laine and Karras is the decomposition of the computations according to the near-field

and far-field separation [AFO05]. The authors explain that the distant geometry has a very low

contribution to the ambient occlusion and can be calculated using simplified geometry, without

introducing artifacts or perturb the quality of the result. The algorithm thus constructs various

approximations of the initial geometry, depending on the distance from the receiver point. The

results remain noise-free, although they are no longer exact. Moreover, artifacts may appear if the

geometry representation is too coarse.

Point-Based Approximate Color Bleeding. Christensen [Chr08] describes in a Pixar Technical

Memo a new point-based method for computing diffuse global illumination. The technique is

designed to achieve color bleeding effects and can be easily applied to obtain various effects such

as ambient occlusion, soft shadows, glossy reflections and many other. The method works in two

phases.

First of all, a pre-computation phase creates a point cloud representation of the directly illuminated

geometry in the scene. For each surface element (surfel), its direct illumination value is calculated,

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 116

by taking into account the various light sources, and the characteristics added by the surface shaders.

This data is saved in the point cloud, which is organized using an octree. For each node, the

algorithm calculates a spherical harmonic representation of the power emitted from the surfels in

the node. Secondly, during the rendering phase, the global illumination value for each surface point

is calculated by traversing the octree and adding the contributions from the relevant surfels. In order

to determine the surfels which are to be considered for each point, a low-resolution image of the

scene as seen from the point is calculated using rasterization.

The method achieves noise-free high quality images, while being faster than a ray traced solution.

Since this technique is dedicated solution for the movie production industry, the main criteria is

visually acceptable and consistent results. Accuracy is not an issue, and the author underlines

several times that the method is an approximation and that its results are not as precise as ray

tracing solutions. Moreover, a series of errors may occur. These are mainly caused by the spherical

harmonics approximation, the rasterization phase, and the small or hidden objects which may give

incorrect contributions.

3.2.4 Other Methods

Obscurances and Beyond. Méndez et al. propose a series of articles which build on the initial

definition of obscurances in order to add various features, by taking into account the color of

the objects, and some properties of their materials. In [MSN03] they compute view dependent

obscurances which handle non diffuse environments using ray tracing. The integral in Equation

3.1 is modified in order to take into account the reflectivity of a point, as seen from the point for

which obscurances are calculated. This allows adding a color bleeding effect, a well known radiosity

effect which colors surfaces using the reflection of colored light from neighbor objects [MSC03].

Moreover, obscurances are also discussed in the context of particular surfaces [MS06], such as

specular, transparent or translucent. In all this cases, obscurances for a point is either calculated

using the ray tracing technique described in Section 3.2.2, or by depth peeling [MFSC+06], a GPU

technique that extracts visibility layers from the scene. In the latter case, the obscurances values are

approximated using an average of the calculations done for each pair of layers.

The Quest for Speed. In the movie industry, ambient occlusion methods were used in off-line

rendering to add realism to the final images. The obscurances illumination model was used in games

[IKSZ03], but as a pre-process step only. Real time update was possible only for a small number

of polygons. The development of graphic hardware and the game industry motivated a series of

research that proposed various methods of computing ambient occlusion in the context of real time

applications.

Sattler et al. [SSZK04] propose a method which runs without pre-calculations and handles inter

object occlusions and deformable or animated meshes. The novelty of their computation is that

visibility is not calculated in the classical way, from the points they wish to shade, but from a set of

directional light sources distributed over the hemisphere around the point (outside-in approach).

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 117

The geometry, as seen from each light source, is rendered into the depth buffer where visibility is

calculated and stored into a visibility matrix. Ambient occlusion is then approximated using this

data. Similar to the ray traced method, this approach is dependent on the number of "samples", in

this case the light sources. A small distribution results in numerous artifact. In order to reach real

time performance, the visibility is sampled only for the vertices of objects. As shown in [KLA04], the

methods using this type of calculations suffer from artifacts, due to under-sampling.

Kontkanen and Laine [KL05] propose an object based method which calculates inter-object

ambient occlusion. For each object, its occlusion is approximated using a spherical cap, and the

information is stored into cube maps, in order to be quickly accessed and used at run-time. Equation

3.5 is adapted to contain the visibility for a spherical cap. The authors state that an analytic evaluation

of this equation had been tested, but then abandoned since it was too expensive to apply using their

GPU implementation. In order to avoid under-sampling artifacts, a Gaussian reconstruction filter is

used.

Screen Space Ambient Occlusion. The main target of the screen space ambient occlusion (SSAO)

methods [Mit07] is the gaming industry. Therefore, SSAO algorithms are primarily oriented towards

speed and performance, to the detriment of visual quality. Roughly speaking, the ambient occlusion

between nearby geometry is crudely approximated in screen space. More exactly, a pixel shader

analyzes the scene depth buffer, and for every pixel on the screen it samples and compares the

depth values of its neighbors, in order to see if the pixel is occluded or not. This approximation is

the source of many limitations: all the occlusion information due to fragments outside the view

frustum is lost, far-away occluders are not taken into account and the final images look either noisy

or blurry, depending on the sampling filter. Various attempts to address some of these limitations

have been made. Shanmugam and Arikan [SA07] propose a multi-pass approach which handles

close and distant occlusion separately. Bavoli and Sainz [BS09] improve quality by using enlarged

depth images and an enlarged field of view. Ritschel et al. [RGS09] propose a method which retains

the directional information of the incoming light and adds some color bleeding effects. Although this

solutions bring some improvements to the visual quality of the results, SSAO methods remain crude

approximations of ambient occlusion.

Specific Environments. There are other studies which target specific applications, such as

molecular visualization [TCM06], tree [GSSK05, HPAD06] or character [KA06, KA07] rendering. Tarini

et al. [TCM06] propose an ambient occlusion model which enhances the real time visualization of

molecular environments. The ambient occlusion integral is solved by sampling and the models are

composed of only two basic primitives: spheres and cylinders. Garcia et al. [GSSK05] use obscurances

to simulate indirect illumination of trees. They represent trees using quadrilaterals, which simplifies

the rendering process. Visibility is extracted using a depth peeling approach, similar to [MSC03].

In the same context of tree rendering, Hegeman et al. [HPAD06] provide a simple approximation

to ambient occlusion, which gives visually pleasant results in real time. The trees are represented

using a bounding volume (sphere or ellipsoid), which are filled with blocking elements, according

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 118

to a chosen distribution. Visibility is then approximated in terms of average probability that a point

inside the bounding volume is visible from the outside. Kontkanen et al. [KA06] apply ambient

occlusion in the context of character animation. They use a set of precomputed reference poses and

approximate ambient occlusion as a linear combination of the ambient occlusion values calculated

for these poses. Thus, the quality of the results is dependent on the number of reference poses. Kirk et

al. [KA07] improve this initial approach, by redefining the pose function and introducing an efficient

compression method which improves rendering time. The method is based on pre-processed

ambient occlusion values, calculated using ray tracing.

All of the above methods provide approximated ambient occlusion models which are based on

assumptions valid only in their particular context. Therefore, they are not directly related to this

work.

3.2.5 Conclusion

Calculating the ambient occlusion for a point can be divided into two main operations. First of

all, the visibility from the point over its surrounding environment needs to be calculated. Then,

this visibility information is used to compute the ambient occlusion for the point. An analytic and

accurate method would have to detect the exact fragments of geometry which are directly visible

from the point and calculate its ambient occlusion value using a closed form solution of the integral

in Equation 3.5. However, in practice, both operations are often approximated. In this survey, we

have distinguished the various computation methods into three main categories: the standard ray

tracing solution, the high quality and analytic methods which are based on closed form evaluations

of the ambient occlusion integral, and the rest of the techniques which are usually adapted to a

particular context.

Considered as the quality standard, sampling based methods estimate the ambient occlusion

equation by using the sum in Equation 3.13. Their results are subject to noise, and an important

number of rays needs to be traced in order to attenuate these problems.

On the other hand, the analytic solutions usually use a closed form solution of the ambient

occlusion integral, and thus achieve high quality results. However, they suffer from artifacts, due to

the approximated visibility.

And finally, there are the other various computation methods presented which provide approximated

solutions, often based on their context. The methods which are oriented towards speed will sacrifice

accuracy in order to improve the computational cost. This is the mostly the case for the algorithms

designed for the game industry. Some algorithms will make simplifications in order to handle

deformable geometry or any other geometry interactions that occur during animating, while other

methods are applicable in specific environments only and thus take advantage of approximations

characteristic of the considered environment. And an important number of techniques answer a

demand for visually acceptable results, without paying the computational price of accuracy. Such

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 119

techniques are often used in production rendering for movies and animation films.

Therefore, we can conclude that, to our knowledge, no method exists which calculates the exact

visibility from a point over its surrounding environment, and uses this information together with

a closed form solution to the ambient occlusion integral. The main difficulty in such an approach

would be that the visibility needs to be computed for every visible point on each polygon. This can

be a very expensive task, especially since the results need to be exact in order to ensure artifact free

images.

In this context, our aim is to propose a method which calculates exact from-polygon visibility

and uses this information to speed up the visibility calculations from the points belonging to the

same surface, by taking advantage of their visual coherence. This is combined with the analytic

solution to the ambient occlusion integral provided by Lambert’s formula, in order to achieve high

quality, noise and artifact free results.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 120

3.3 Algorithm Design

In this section we present our from-polygon visibility algorithm from a theoretical point of view.

We also detail the application of our algorithm to calculating analytic and high quality ambient

occlusion.

Our approach relies on the same theoretical framework described by Pellegrini. More exactly,

we build on the occlusion algorithm presented in Chapter 2, in order to add the missing depth

information, and thus calculate the exact visibility from a source polygon. First of all, we explain

the theoretical passage from occlusion to visibility (Section 3.3.1). Then, following the same guiding

lines as in our previous chapter, we describe the design of the data structure used to encode this

information (Section 3.3.2), and how we can extract the visibility for each point of the source surface

(Section 3.3.3) and use it to calculate the ambient occlusion information for the point. Since our two

methods share a common basis, our description focuses mainly on the evolution from our occlusion

to our visibility algorithm.

3.3.1 From Occlusion to Visibility

Our aim is to describe the visibility from a surface S, over the set of all its potential occluders, noted

O(S).

Without loss of generality, we assume that the occluders in O(S) are not intersecting each other.

Otherwise, the existing intersections have to be handled as a pre-process step.

In Chapter 2 we have restricted Pellegrini’s definition of equivalence classes to the lines induced by S

and all the geometry in O(S,T), where T was a polygon containing the points to shade. Moreover, we

have simplified the initial framework, by only distinguishing between occluded and unoccluded lines.

This distinction is no longer sufficient in our new visibility context. Since we need to calculate the

complete visibility from the polygon S, we consider all the lines stabbing S and having an orientation

which is coherent to the upper normal of S. These view rays must be grouped according to the first

occluder in O(S) they intersect.

By restricting Pellegrini’s definition to the view rays originating from S, we obtain an arrangement

where each cell corresponds to either a coherent set of rays missing all the occluders in O(S), or a

coherent set of rays stabbing the same subset of occluders. We suppose that this subset is associated

with the cell. Since these occluders do not intersect each other, one of them is stabbed before all the

other by all the rays in the class. Moreover, all the other geometry associated with the cell are behind

the support plane of this occluder, with respect to S. Thus, they can be sorted in order to find the

first intersected one. Figure 3.9 provides an illustration. It is important to note that the degenerate

case when the support plane of the occluder intersects S is treated by splitting S, as explained in

Chapter 2, Section 2.3.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 121

S

O1

O2

O3

O4

Figure 3.9: If a coherent set of rays stab the same occluders, and these occluders do not intersect each other,
one of them is intersected before all the others. In this illustration, S,O1,O2 and O3 are all stabbed by a set of
rays, and S,O3,O4 are all stabbed by another set of rays. The first set of rays intersects O1 before intersecting O2

and O3, since these two occluders are located behind the support plane of O1 with respect to S. Similarly, O3 is
intersected before O4 by the second set of rays.

In conclusion, the rays originating from S can be grouped together according to the first occluder

they intersect. The result is continuous sets of rays. This corresponds to an analytical representation

of the geometry directly visible from S. Therefore, we have a new visibility equivalence relation, with

respect to a surface.

Each cell of the new arrangement induced by S and the geometry in O(S) corresponds to either

one of these two cases:

• A coherent set of rays originating from S and missing all the occluders in O(S). The Plücker

points in this cell correspond to rays belonging to a free class.

• A coherent set of rays originating from S and intersecting the same first occluder O before

stabbing any other geometry. The Plücker points in this cell correspond to rays describing the

visibility of O, as seen from S. These rays belong to a hit class. Note that in this case, O is

associated with the cell.

Figure 3.10 provides a 2-dimensional illustration of the differences between the equivalence classes

described by the theoretical framework, our occlusion classes defined in the previous chapter, and

our new concept of visibility classes. This illustration represents a continuation of the example given

by Figure 2.8 in Chapter 2, Section 2.2.1. Also, Figure 3.11 gives a 3-dimensional comparison between

Pellegrini’s definition and our new visibility classes.

It is important to note that each visibility class contains both a directional and a depth information.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 122

S

S

T

a) Equivalence classes of lines (Pellegrini’s framework)

b) Occlusion classes of lines: blocked and visible lines

c) Visibility classes of rays: according to the first intersected geometry

Figure 3.10: Comparison between the arrangement of lines from Pellegrini’s theoretical framework (a),
the arrangement considered for our from-polygon occlusion algorithm (occlusion classes) (b), and the one
considered for our from-polygon visibility algorithm (visibility classes)(c). The theoretical framework concerns
all the lines in Plücker space, and the occlusion algorithm limits the computations to the set of lines stabbing
S and the occluders of S and T , and distinguishes between occluded and unoccluded lines. In the case of from-
polygon visibility, we need to group the rays originating from S according to the first triangle they intersect.
These new definition of visibility classes remains simpler than the theoretical framework, but more complex
than the notion of occlusion classes.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 123

More exactly, the rays are grouped with respect to the geometry in the scene (directional information)

and according to the first triangle they intersect (depth information).

R
3

P
5

R
3

P
5

3) 4)

1) 2)

a b c

P

Q πa

πb

πc

PQ

P

Q

P

Q

P

Q

a b c

P

Q

S

πa

πb

πc

P

P

Q

P

Q

P

Q

Figure 3.11: Up (1,2): Equivalence classes according to Pellegrini. 1) Two triangles (P , Q) and three lines (a,
b, c) in various configurations. 2) The arrangement of hyperplanes (illustrated by 6 2D lines) mapped from
the triangles edges. Filled cells are set of lines intersecting at least one triangle. The intersected triangles
are associated with the corresponding cells. πa , πb and πc are the Plücker points mapped from a, b and
c, respectively. They are located in the cells according to the triangles they stab. For example, πb has a
consistent orientation with respect to the 6 hyperplanes, since b intersects the two triangles. However, there is
no indication on which is the first intersected triangle. Down (3,4): Our new visibility classes in the context of
visibility from a surface S. 3) The three lines (a, b, c) can be associated to visibility rays originating from S. 4)
The triangles formerly associated with the central cell have been depth sorted to find the first intersection with
respect to S. Thus, only P is associated with the cell and no ambiguity remains on which is the first triangle
intersected b.

3.3.2 Encoding the Visibility Information

From an algorithmic point of view, both our algorithms use a BSP tree to store the occlusion / visibility

information. However, the data structure needs to be adapted to each algorithm to account for the

differences between the two types of information. More exactly, the from-polygon visibility algorithm

associates an unique triangle to each visibility class. Therefore, we distinguish one visibility class

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 124

from another. This is an important difference with respect to our from-polygon occlusion algorithm,

where all occlusion classes had the same significance. Figure 3.12 provides an illustration.

O

l1

l2
l3

h1

h2

h3

O

Figure 3.12: The BSP representation of an occluder O. We retain the same notations and the same structure
as described for our from-polygon occlusion algorithm and illustrated in Figure 2.9. We can build a BSP tree
whose leaves are the four visibility classes generated by O: Three free classes (left leaves), corresponding to sets
of rays missing O, and one hit class (right leaf), corresponding to a set of rays intersecting O. However, in the
case of from-polygon visibility, we distinguish one visibility class from another. Thus, O is associated with the
right leaf and used to make the distinction.

Up to this point, we have provided a theoretical description of how we can analytically represent the

visibility from a surface, and the design of the data structure used to encode this information. The

next section focuses of how the BSP tree can be used to extract the exact visibility from any point x yz

located on S.

3.3.3 Extracting the Visibility Information

Let x yz be a point on S. Similarly to the description provided in the previous chapter, the visibility

information for x yz is already contained in the data structure and therefore does not need to be

calculated, but extracted. The need for such an operation is explained by the fact that an occluder

which is visible from S, is not necessarily visible from all the points located on S. Figure 3.13 provides

an illustration.

In order to describe the complete visibility from x yz we need to focus on all the view rays originating

from it. However, this is not as straightforward as in the case of from-polygon occlusion, mainly

because we are no longer limited to two polygons (S and T), but to a single polygon (S) and its entire

environment. In the context of from-polygon visibility we start with a single ray passing through

x yz and a point above S. This example is then generalized to the view rays originating from x yz and

stabbing an arbitrary polygon. Finally, we use the entire upper hemisphere centered at x yz, in order

to take into account all the rays issued from x yz. These three cases are illustrated in Figure 3.14.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 125

x yzS

N

T1

T2T3

Figure 3.13: The visibility from x y z needs to be extracted from the data source which encodes the exact
visibility from the surface S. The occluders T1, T2 and T3 are visible from S. This information is contained
in the data structure. However, T3 is not visible from x y z, thus the need to extract only the relevant visibility
information for x y z.

Let p be a point located above S. Note that p may or may not belong to any of the occluders

in O(S). The vector −→v =−−−−→
p, x yz defines the direction of a view ray, having x yz as origin. The view ray

is located in a leaf of the BSP tree using the same process described in Chapter 2, Section 2.2.3. If the

leaf corresponds to a free class, than the ray misses all the occluders in O(S), and p is directly visible

from x yz. Otherwise, the occluder associated with the class is the first geometry intersected by the

ray. In this case, p is not visible from x yz if it is located behind this occluder, with respect to S, and

visible otherwise. Figure 3.14.a provides an illustration.

Next, let P be a polygon located above S. x yz and P form a view beam containing all the rays

originating from x yz and stabbing P . Using the same method described in Chapter 2, Section 2.2.3,

P is split into convex fragments, each representing a coherent sub-set of view rays located in the

same leaf. In the context of our visibility algorithm, this translates to the fact that each fragment

represents a coherent set of view rays which either intersect the same first occluder, or miss all the

geometry in O(S). Figure 3.14.b provides an illustration. Let Pi be such a fragment. In order to decide

if Pi is visible or not from x yz, its position with respect to Oi must be determined. This process in

detailed below in the context of ambient occlusion computation and illustrated in Figure 3.15.

Calculating Ambient Occlusion

The above operation can be generalized for an arbitrary number of polygons. We describe this

generalization in the context of calculating the ambient occlusion for a point x yz. An illustration is

provided by Figures 3.14.c and 3.14.d.

Since ambient occlusion is a local property, we need to extract and limit the visibility information to

the local environment of each point x yz. This corresponds to the visible geometry located within

a δ radius from the point. Thus, we consider a polygonal representation of the upper hemisphere

centered at x yz (hemi spher e(x yz,δ)). The extraction process described for a single polygon can be

applied to all the polygons which form this representation. The result is a set of convex fragments,

each one representing a coherent set of view rays originating from x yz and stabbing the same first

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 126

a) b)

c) d)

x yzS

N

T1

T2p1

p2

p3

x yzS

N

T1

T2

P1 P2
P

x yzS

N

T1

T2

δ

x yzS

N

T1

T2

P1

P2

P3

P4

Figure 3.14: Extracting the visibility information for point x y z.
a) We consider three points, p1, p2 and p3, and we want to test if they are visible from x y z. In order to do that,
we locate into the data structure the Plücker points corresponding to the rays defined by x y z and p1, p2, p3.
This yields the visibility classes for each ray. The ray defined by p1 intersects the occluder T1. Since p1 is
located behind T1, with respect to S, it is not visible from x y z. On the other hand, p3 is located in front of T2

and thus is visible from x y z. The ray defined by p2 belongs to a free class, and thus p2 is directly visible from
x y z.
b) Let P be a polygon located above S. This polygon is used to guide the visibility extraction process for x y z.
This is achieved by locating the set of rays contained in the view beam defined by x y z and P into the BSP tree,
and splitting P if necessary. In this figure, we obtain two fragments, P1 and P2, the first one corresponding to
a hit class, and the second one to a free class. In the first case, there is no occluder intersected by the rays, and
thus P1 is visible from x y z. In the second case, P2 is located behind T 2, with respect to x y z, and thus it is not
visible from x y z.
c) The above operation is generalized in the context of ambient occlusion computation, to a set of polygons
corresponding to a polygonal representation of the hemi spher e(x y z,δ).
d) In the context of ambient occlusion, we can retain only the fragments of the hemisphere representation
which correspond to hit classes. In order to detect which occluder influences the ambient occlusion of x y z we
study the position of each fragment with respect to the occluder intersected by the set of rays represented by
the fragment.

occluder, or missing all the geometry in O(S). The latter case is the simplest, because it corresponds

to rays belonging to a free class and which have no contribution to the ambient occlusion calculation.

Let Pi be a fragment which represents a coherent set of rays which intersect the same first occluder

Oi . As explained in Section 3.1.4, Equation 3.12 yields the same results when applied to projectively

equivalent polygons. Therefore, we can either apply it to Pi , or to the exact fragment of Oi which

is visible from x yz. However, before performing this operation, the position of the occluder with

respect to the fragment needs to be further tested. Three cases can occur (see Figure 3.15 for an

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 127

S x yz

N

δ

O1

O2

O3

P1

P2

P3

Figure 3.15: Restricting the visibility information to the upper hemisphere hemi spher e(x y z,δ). The
occluders O1, O2 and O3 are entirely visible from x y z. P1,P2 and P3 are fragments of the hemi spher e(x y z,δ),
which correspond to coherent sets of view rays intersecting the occluders. The three fragments subtend
the same solid angles as the three occluders. Thus they produce the same ambient occlusion. δ is the
maximum occlusion distance, beyond which the visible geometry no longer influences the ambient occlusion
computation. This extra condition allows to completely reject O1 and to determine the part of O3 which can be
taken into account.

illustration):

• Oi is in front of Pi , with respect to x yz. Thus, the visible fragment of Oi lies completely within

the hemi spher e(x yz,δ) and contributes to the ambient occlusion for x yz. Equation 3.12 can

be applied to Pi .

• Oi is behind Pi , with respect to x yz. Thus, the visible fragment of Oi lies completely outside

the hemi spher e(x yz,δ) and has no contribution to the ambient occlusion for x yz.

• Oi intersects Pi . Thus, the visible fragment of Oi intersects the hemi spher e(x yz,δ) and it

partially contributes to the ambient occlusion for x yz. In this case, Pi is clipped against Oi and

Equation 3.12 is applied to the resulting fragment.

The above discussion was made under the assumption that locating Oi with respect to

hemi spher e(x yz,δ) is equivalent to calculating the position of Oi with respect to P . This point is

further discussed in Section 3.4.3.

The next section focuses on the practical aspects of our method.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 128

3.4 Implementation

The from-polygon visibility algorithm represents an evolution of our from-polygon occlusion

method. Our new algorithm calculates and represents a more complex information than the previous

occlusion version. The main guidelines and some of the operations performed by our two methods

are similar. However, since we compute a different information, in a different context, the algorithm

needs to evolve. In this section, we build upon the from-polygon occlusion implementation to

describe our new visibility algorithm. We highlight the main differences and point to various

fragments of the previous chapter for the operations which are analogous.

3.4.1 Overview

Our new algorithm retains the lazy implementation of the from-polygon occlusion calculation: the

data structure is built on-demand at run time, as directed by the visibility queries. Thus, we need

the notion of temporarily undefined classes, in order to designate those leaves which, at some point

during execution, may not yet represent a free / hit class.

We work with these types of classes:

• A hit class: Any visibility class representing a set of rays stabbing the same first occluder.

• A free class: Any visibility class representing a set of rays which miss all the occluders.

• An undefined class: Any visibility class that has not yet been needed by a visibility query. Thus,

it is neither marked as free nor as hit.

Following the same approach as in the description of our occlusion algorithm, we first summarize the

main operations performed by the method, and then provide further details.

• At first, all the occluders for the surface S are selected. Although the selection step serves the

same purposes as for the soft shadows algorithm, the selection process is different.

• For an occluder O, the lines stabbing both S and O are contained in the 5-dimensional minimal

polytope pol y(S → O). This polytope is then calculated for each occluder. This procedure is

identical to the one described in Chapter 2, Section 2.3.1 and illustrated by the pseudo-code in

Algorithm 1.

• A root node is created and associated with all the occluders. The node structure is different for

the visibility algorithm, since we need to take into account a depth information.

• The tree is grown by inserting the occluders, which is equivalent to adding the visibility classes

generated by an occluder to the tree. Each newly added subtree replaces a leaf representing a

previously undefined class. In the context of our new algorithm, the insertion of the subtree

must take into account the visibility information contained in the replaced leaf.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 129

• An undefined leaf has one or several occluders associated with it. Before replacing it, its

associated occluders need to be depth culled. This represents a new step with respect to our

previous implementation.

• After replacing an undefined leaf, its occluders are located into the newly added subtree. This

is achieved by a conservative insertion process, as described for the soft shadows algorithm,

in Chapter 2, Section 2.3.1 and illustrated by Figure 2.15. However, contrary to this previous

implementation, the occluders can be located in all the leaves, including the right ones.

Selecting occluders

When calculating the ambient occlusion for a point x yz on S, we need to take into account the

geometry located above S, with respect to its upper normal, and within a δ radius. More exactly, we

are interested in the polygons which are either intersect or are contained in the upper hemisphere

centered at x yz and having a δ radius, hemi spher e(x yz,δ).

Since our algorithm calculates the visibility from the entire surface S, we need to consider all

the potential occluders for all the points of S. Therefore in order to select all the necessary geometry

for each point on S, we compute the bounding sphere of S and increase its radius by δ. We then

select the occluders using a hierarchical sphere culling process over the scene[Hub93]. Any geometry

intersecting the sphere is considered as potentially visible. At this point, a second test eliminates all

the geometry located below S, with respect to its upper normal.

The result is an overly conservative set, which is further refined by another test, which eliminates the

geometry located above a plane parallel to S and situated at a δ distance. Figure 3.16 provides an

illustration of the these selection processes.

If the definition of the scene allows it, a back-face culling selection is also applied to the occluders, in

order to avoid dealing with useless geometry.

BSP representation of an occluder

The BSP representation of an occluder O, noted BSP (O), has been described in Section 3.3.2 and

illustrated by Figure 3.12. The only difference is that the right leaf corresponds to a hit class, and that

O is associated with this leaf. The left leaves correspond to coherent sets of lines missing the occluder,

and thus to free classes.

Creating the root node

The root node corresponds to all the view rays originating from S. These rays will be partitioned

according to the first occluder in O(S) they intersect.

For each one of these occluders, a Plücker polytope is created, using the procedure described

in Algorithm 1. The structure of a node, presented in Algorithm 7, is slightly different from the

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 130

δ

T1

T2

T3

T4

T5

T6

T7
S

T1

T2

T3

T4

T7
S

pl ane(S) T1

T2

T3

T4

S

pl ane(δ)

δ

Figure 3.16: The selection of the potential occluders for the polygon S is divided into three steps. Left: First of
all, we compute the bounding sphere of S and increase its radius by δ. We then select all the geometry which
intersects or it is contained into this second sphere. Thus, T1,T2,T3,T4 and T7 are selected while T5 and T6

are discarded. Center: Then, we discard all the occluders located below S, with respect to its upper normal.
This eliminates T7. Right: The first step yields an overly conservative set, which can be further simplified by
eliminating the occluders located completely above a plane parallel to S and situated at aδdistance (pl ane(δ)).
This third test discards T4. Note that T3 is kept, because it intersects the pl ane(δ), and thus is partially located
within a δ radius from S.

one presented in the previous chapter (see Algorithm 2), in order to handle the additional depth

information. More exactly, each inner node contains one hyperplane, whereas each leaf may contain

two types of information:

• The occluder intersected by all the rays located in the leaf, stored in node.hi t (Algorithm 7,

line 4).

• A list of potential occluders, stored in node.occluder s (Algorithm 7, line 5).

The initialization of the root node is similar to the one described for the from-polygon occlusion

algorithm (see Algorithm 3). We build one polytope for each occluder Oi ∈ O(S) and the surface S,

and we deal with the degenerate cases by splitting S, as explained in Section 2.3.1 and illustrated in

Figure 2.13. We also take into account the case when an occluder O intersects S and clip it with respect

to the support plane of S, in order to avoid false visibility.

Growing the data structure: Inserting an occluder

This step is similar to the one described in Chapter 2, Section 2.3.1. The tree is grown by inserting

the occluders, which is equivalent to replacing a leaf with the root of the BSP representation of an

occluder. In the case of the from-polygon occlusion algorithm, this insertion was not conditioned

in any way. However, when calculating visibility, the depth factor must be taken into account before

each insertion.

An undefined leaf is a leaf which has one or more potential occluders. If the leaf also has an

associated hit occluder, then all the coherent set of rays located into the leaf intersect it. More exactly,

this occluder is the farthest intersected geometry (maximal depth) by the rays reaching the leaf, and

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 131

Algorithm 7 The structure of a node

1: Structure Node
2: {
3: hyperplane : Plücker hyperplane
4: hit : Polygon
5: occluders : list of Polytope
6: leftChild : Node
7: rightChild : Node
8: }
9:

10: /*

11: If occluder s =∅ then the class is either f r ee or hi t

12: If occluder s =∅ and hi t =∅ then the class is f r ee

13: If occluder s =∅ and hi t = Oi then the class is hi t and Oi is the first intersection for the rays located in
the leaf

14: If occluder s 6=∅ then the class is unde f i ned , whatever the value of hi t

15: */

with respect to S. All the potential occluders in the leaf which are located in front of the hit occluder

may be intersected before it. And all those located behind it cannot be intersected by the rays in the

leaf, since they are beyond the farthest possible intersection.

Another difference with respect to our from-polygon occlusion algorithm is that each new insertion

must preserve the depth information. Thus, the newly added subtree is modified to take into account

this information. Figure 3.17 gives an illustration.

Depth Culling

Let O be an occluder and BSP (O) its BSP representation. The right leaf of BSP (O) corresponds to

the view rays which intersect O. This leaf also has a list of occluders. As mentioned before, O is the

farthest possible intersection for the rays located into the right leaf. Thus, we can discard all the

potential occluders which are located behind the support plane of O, with respect to S. Figure 3.18

provides an illustration.

This depth culling is valid for all cases under the assumption that the support plane of O does

not intersect S. Since our algorithm deals with this case properly, the depth culling can always be

applied accurately.

Locating an occluder

The process of locating an occluder into a sub-tree is similar to the one described in Chapter 1,

Section 2.3.1, except for one difference. In the case of from-polygon occlusion, we never locate

occluders in the right leaves, because they represent occluded lines, so we are no longer interested if

other geometry blocks the same coherent set of lines. However, in the case of from-polygon visibility,

during the execution of the algorithm, right leaves represent sets of view rays which intersect one or

more occluders and which need to be distinguished into sub-sets according to the first intersected

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 132

P

Q

S

PQ

P

P

P Q

h1

h2

h3

Inser t
BSP (Q)

Figure 3.17: When an undefined leaf is replaced by the BSP tree corresponding to an occluder, the depth
information needs to be inherited in the newly added structure. Let S be the source surface from which we are
calculating visibility, and P and Q be two triangles in the configuration given in the left part of the figure. We
suppose that the current data structure contains the BSP representation of the classes generated by P (center).
Thus, the right leaf contains P (hit occluder) and has Q as potential occluder. More exactly, all the coherent set
of rays located into this leaf intersect P . This leaf is replaced by BSP (Q) (right). All the sets of rays which will be
located into this new sub-tree intersect P . Moreover, all the sets of rays located in the left leaves of this sub-tree
intersect P , and miss Q. Therefore, all the left leaves contain P as hit occluder and the right leaf reports Q as the
first intersected geometry. It is important to note that this corresponds to a depth information: all the coherent
sets of rays located into the right leaf intersect both Q and P , in this specific order. Thus, Q is the first geometry
intersected by the rays located in the right leaf, and P is the first geometry intersected by the rays located in the
left leaves.

S

O

O1

O2

O3
O4

O O1 O2

O3 O4

Figure 3.18: Illustration of the depth culling process for the occluders associated with a leaf. Left: Five
polygons (O,O1,O2,O3,O4) in various configurations. Right: The BSP representation of the occluder O. All
the view rays originating from S and which are located in the right leaf of BSP (O) intersect O. The occluders
O1,O2,O3,O4 are also associated with this leaf. Thus, they may or may not be intersected by the view rays
reaching the leaf. However, we are only interested in those occluder which are intersected before O. Thus,
we can discard the geometry located behind the support plane of O, with respect to S, which in this case is
represented by O2,O3,O4. It is important to note that although both O3 and O4 are visible from S, they are
discarded. This is because we are only taking into account the set of rays located into this particular leaf (the
boundaries of the set are represented in this 2-dimensional illustration by the four arrows). And these rays
intersect O3 after intersecting O, and never intersect O4.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 133

geometry. Therefore, the occluders are located in all the leaves of the tree, and not only into the left

leaves, as it was the case of our occlusion algorithm.

The pseudo-code for this procedure is summarized in Algorithm 8.

Algorithm 8 Location of an occluder

1: Procedure locateOccluder (Node n, Polytope O)
2:

3: if n is a leaf then
4: n.occluder s ← n.occluder s ∪O

5: else
6: pos ← or i ent ati on(O.V Rep, n.hy per pl ane)
7: if pos > 0 then
8: locateOccluder(n.r i g htC hi ld , O)
9: else if pos < 0 then

10: locateOccluder(n.le f tC hi ld , O)
11: else
12: locateOccluder(n.r i g htC hi ld , O)
13: locateOccluder(n.le f tC hi ld , O)
14: end if

15: end if

3.4.2 Core Algorithm

The visibility algorithm finds the visibility classes describing the geometry which is directly visible

from a point x yz on S, through a set of occluders O(S). It starts with a list of polygons representing

the upper hemisphere centered at x yz and having a δ radius, hemi spher e(x yz,δ), and subdivides

them into several convex fragments. Each fragment represents a coherent set of rays belonging to

a single visibility class. More exactly, each fragment corresponds to an analytical description of a

continuous set of rays which intersect the same first triangle.

A visibility query can be summarized as follows: Given a point x yz on a surface S, and a polygon P

from the polygonal representation of the hemi spher e(x yz,δ), we want to find the visible triangles

from x yz in direction of P . We also want the exact fragments of P corresponding to each coherent

set of view directions. Algorithm 9 details such a query and Figures 3.19, 3.20 and 3.21 apply it to a

given configuration.

As previously mentioned, the algorithm is lazy, meaning that it combines the visibility query

(lines 6 – 28) and the growing of the data structure (lines 31 – 38) in a single step.

In the beginning, all the occluders are associated with a single undefined leaf, the root node.

For each inner node, the algorithm tests the orientation of the rays stabbing P with respect to

the hyperplane stored in the node, using the procedure described in Chapter 2, Section 2.2.3 and

illustrated in Figure 2.11 (lines 9 – 14). The makePlane procedure calculates the plane defined by

x yz and the hyperplane (line 9). If P lies in the positive (resp. negative) half-space, then all the lines

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 134

Algorithm 9 Core algorithm: Given a point x yz on a surface S and a polygon P , the visibility
query finds the exact fragments of P corresponding to coherent set of rays intersecting the same
first triangle. P is used to drive the data structure construction and may be split into several
fragments representing coherent sets of rays from x yz. The fragments reaching visible triangle classes
correspond to geometry elements which are direcly visible from S."

1: Function mainQuery (Node n, Polygon P , Point x y z)
2: Return Polygons
3:

4: loop
5:

6: // Querying the data structure

7:

8: while n is not a leaf do
9: Plane pl ← makePl ane(x y z, n.hy per pl ane)

10: pos ← posi t i on(pl , P)
11: if pos > 0 then
12: n ← n.r i g htC hi ld

13: else if pos < 0 then
14: n ← n.le f tC hi ld

15: else
16: // Split the polygon (P) and work recursively

17: return mainQuery(n.r i g htC hi ld , P ∩pl+, x y z) ∪ mainQuery(n.le f tC hi ld , P ∩pl−, x y z)
18: end if
19: end while
20:

21: // A leaf has been reached

22:

23: if n.occluder s 6=∅ and n.hi t 6=∅ then
24: depthCulling(n.occluder s, n.hi t)
25: end if
26: if n.occluder s =∅ then
27: return visibleFragment(n.hi t ,P)
28: end if
29:

30:

31: // Building the data structure

32:

33: RO ← random occluder from n.occluder s

34: n ← root of BSP (RO)
35: for each O in n.occluder s, O 6= RO do
36: locateOccluder(n,O)
37: end for

38: end loop

stabbing it have a positive (resp. negative) orientation, and the algorithm continues in the right

(resp. left) subtree (lines 12 – 14). Otherwise, P is split against the plane and the algorithm continues

recursively in both subtrees with the relevant parts of P (lines 16 – 17).

When a fragment reaches a leaf, several alternatives can occur:

• The leaf corresponds to a free class (n.occluder s = ∅ and n.hi t = ∅). Thus, the fragment

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 135

represents a set of coherent rays missing all the triangles and is discarded.

• The leaf corresponds to a hit class (n.occluder s = ∅ and n.hi t = Oi). Thus, the fragment

represents a coherent set of rays which intersect the hit occluder associated with the leaf.

Before returning or discarding the fragment, its position with respect to the hit occluder needs

to be determined according to the procedure explained in Section 3.3.3 (see Figure 3.15)

and represented by the visibleFragment procedure. It is important to note that this query is

answered without developing the tree and thus taking advantage of previous queries.

• The leaf corresponds to an undefined class (n.occluder s 6=∅). Thus, the fragment represents

a set of rays which may intersect the potentially visible geometry associated with the leaf. If the

leaf also contains a hit occluder (line 23), the set of rays intersect it. Therefore, the associated

geometry can be culled with respect to the support plane of this occluder (line 24, depthCulling

procedure). This eliminates all geometry located behind the hit occluder, with respect to S and

independently of x yz. If some geometry remains, we cannot answer the query without further

developing the tree.

The development of the data structure is similar to the one described for our from-polygon

algorithm: a random occluder is chosen among the occluders of the current leaf (line 33) and its BSP

representation is inserted into the tree (line 34), by replacing the undefined leaf. Then, the remaining

occluders are located in the new sub-tree. Two differences exist with respect to the occlusion

algorithm: the inheritance of the depth information and the fact that occluders can be located in

both the left and the right leaves.

Note that the depth culling is necessary only in the right leaves. Applying it in the left ones

also is redundant, since they contain the depth information inherited from the replaced leaf.

Although Algorithm 3.21 does not take into account this optimization, our actual implementation

does.

3.4.3 Key Points

Hemisphere representation. The algorithm extracts the exact visibility from a point. However,

the occlusions are only considered in a limited environment. Thus, if a visible triangle intersects

the upper hemisphere, only a fragment must be taken into account. This fragment is obtained by

clipping the corresponding patch against the triangle. This is the only operation dependent on the

chosen tessellation. Clipping a polygon against a sphere yields a non polygonal object. Therefore,

an approximation needs to be done, in order to use Equation 3.12. In order to minimize its error

one might choose a fine tessellation. However, in practice, various choices produce the same visual

effect. The explanation comes from the fact that each hemisphere patch is subdivided several times.

This becomes equivalent to having a sufficiently fine initial subdivision.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 136

A, B , C , D

∅

P

A

B

C

D

S
x yz

Figure 3.19: Illustration of Algorithm 9 for calculating the visibility from a point x y z ∈ S, using a fragment P

from the polygonal representation of hemi spher e(x y z,δ) and the set of occluders O(S) = {A, B , C , D}. Left:
The algorithm starts with an undefined leaf node, associated with the entire set of occluders. Right: The initial
view beam contains all the rays originating from x y z and stabbing P .

A

B

C

D

hA1

hA2

hA3

P1

P2

∅

∅

∅ A

D

B B , C

P1P2

S
x yz

Figure 3.20: Left: One occluder is chosen randomly (A in this case) and the root leaf is replaced by BSP (A).
The inner nodes contain the hyperplanes corresponding to A’s edges (hA1, hA2, hA3). The left leaves represent
sets of rays missing the triangle, while the right leaf represents all the rays stabbing A. A is considered to
be the farthest possible intersection (maximal depth) for these rays. The remaining geometry (B , C and D)
is then located into the tree, using the technique described by the procedure locateTriangle (Algorithm 9).
Since pol y(S → B) is found to intersect hA3, the triangle is sent in both left and right leaves. Right: Next,
the continuous set of rays stabbing P are located into the tree. An intersection occurs in the first inner node
(P → P1,P2), identifying thus the rays missing the triangle (P1). These are rays which have an infinite maximal
depth and do not intersect any geometry. Thus, the fragment P1 can be discarded. On the other hand, P2 is
located in the right leaf. This leaf has an associated triangle (A) and some potentially visible geometry (B , C).
Therefore, the rays stabbing P2 intersect A (maximal depth) and may also intersect B and/or C . The positions
of B and C are tested against the support plane of A. Since C is located behind A (with respect to S), it can be
discarded. Thus, B will be used to further develop the tree.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 137

A

B

C

D

P1P2P3

S
x yz

hB1

hB2

hB3

A

A

A

P1

P2

P3

D

B

B

Figure 3.21: Left: BSP (B) replaces the right leaf. Note that the intersection information is inherited in the
newly added tree. The new left leaves correspond to classes of rays intersecting A (maximal depth), but missing
B . The new right leaf represents the class of rays intersecting both B and A, in this particular order. Right: P2 is
analytically split into P2 and P3, which are located according to the triangles they intersect. Thus, in the end, P1

represents a continuous set of rays which miss all the occluders, P2 represents a continuous set of rays which
intersect A (first intersection) and P3 represents a continuous set of rays which intersect B (first intersection).

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 138

Random selection of geometry. This point is similar to the one described in Chapter 2, Section 2.3.3.

Once again, the algorithm’s efficiency is related to the balance of the tree, and some choices may lead

to a more balanced tree than others. However this is not predictable. Moreover, in the case of our new

from-polygon visibility algorithm, an optimal choice may not even exist. As noted in Section 3.3.1,

each visibility class contains both a directional and a depth information. Inserting a triangle into the

BSP tree is equivalent to determine its position with respect to the hyperplanes in the node, which

represent the support lines of the previously inserted triangles. Moreover, the same triangles are also

used to depth sort the potentially visible geometry. Choosing the best triangle for the depth sort does

not ensure an optimal choice for the directional sort and vice-versa.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 139

3.5 Falloff Function

When calculating obscurances instead of ambient occlusion, the visibility function in Equation 3.5

is replaced with a falloff function. The latter attenuates the contribution of a triangle depending on

its distance with respect to the point for which the computations are being made. However, this

replacement results in a new integral for which a closed form solution may not even exist. Therefore,

in our implementation, we chose a falloff function which weights the ambient occlusion value for a

visible polygon using an average distance between the point and the visible polygon (see Equation

3.14). This distance is calculated using the barycenter of the visible geometry (see Equation 3.15). If

the area of this triangle is too important, it can be divided, in order to have a better approximation.

AO′(x yz,T) = F (x yz,T)AO(x yz,T) (3.14)

Where

F (x yz,T) =

√

di st (x yz,bar ycenter (T))

δ
(3.15)

Our tests showed that this solution provides high quality results at a negligible cost.

Attempting to find an analytic solution to the obscurances integral

We would like to mention that we studied the obscurances integral in order to find an analytic

solution. We considered a fixed falloff function and started our analysis by considering the 2-

dimensional case, when the visible polygon is reduced to a single line. Although we obtained a

primitive, its form was too complex compared to what we need, both in terms of computational time

and robustness. Thus, it was clear that the 3-dimensional case would either results in a even more

complex expression, or simply not exist.

Since our result was far from the analytic form we had hoped for, we decided to use the falloff

function previously described. Although we did not demonstrate that an analytic solution cannot

exist, attempting to find it proved to be a very complex task. Our analysis is detailed in the Annex of

the this work.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 140

3.6 Ambient Occlusion Framework

In order to illustrate the efficiency and the reliability of our exact visibility algorithm, we plug it

into the ray-tracing rendering software described in Chapter 2, Section 2.4. Algorithm 10 provides

a pseudo-code of our ambient occlusion framework, and its main operations are described below.

Algorithm 10 The following pseudocode illustrates how our visibility algorithm is plugged in a ray
tracer software to analytically compute ambient occlusion.

1: build visible_triangles, the triangle list visible from the camera
2: // the following loop parallelization is straightforward

3: while vi si ble_tr i ang les is not empty do
4: remove a triangle S from the vi si ble_tr i ang les list
5: select the occluders O(S) of S

6: initialize a BSP tree root node n associated with O(S)
7: for each image point x yz on S do
8: build the hemi spher e_pol yg onal_r epr esent ati on, list of polygons
9: for each polygon P ∈ hemi spher e_pol yg onal_r epr esent ati on do

10: vi si ble_ f r ag ment s ← mainQuery(n,P, x yz)
11: end for
12: compute the ambient occlusion of x yz by applying Equation 3.12 or 3.14 on

vi si ble_ f r ag ment s

13: end for
14: end while

The main idea was to use the same framework, in order to retain the same advantages from which

benefits the implementation of our from-polygon occlusion algorithm (see Chapter 2, Section 2.4).

Local complexity. For each triangle visible from the camera, we are only taking into account

its local environment. The data structures are built successively and independently per triangle. This

treatment ensures that the global size of the scene has little impact on the computations. The only

important factor is the local complexity specific to each visible triangle. In addition, computing the

visibility per triangle limits the memory consumption since each data structure is deleted as soon as

all the related image points have been shaded. This is true for the from-polygon occlusion algorithm

also. However, it becomes even more important in the context of the from-polygon visibility method,

because we are computing a much more complex information, and thus we need to pay special

attention to the memory footprint.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 141

3.7 Results

All tests were run on the 4 cores of a 2.67 GHz Intel Core i7 920 processor with 6GB of memory.

The images were rendered at 1280 × 960 pixels. We compared the performance of our method

against the Mental Ray® rendering software (abbreviated MR through the rest of this chapter).

Our choice was motivated by the fact that MR is a well known, high quality ray tracing production

application. Although MR is not the fastest solution available it represents a rendering standard

which is widely used. Comparing our approach directly to previous works based on Pellegrini’s

approach is not conceivable. They compute occlusion instead of visibility, except in [Bit02]. For all

the previous methods, robustness issues restrict their application to environments of moderate size

and complexity. In contrast, comparing to MR, we want to show that even if our algorithm may not

be as fast as other implementations, our approach is robust, scalable and competitive with respect

to a standard production solution. By doing so, we answer one of our initial goals, which was to

demonstrate that a solution based on the Plücker parametrization can be as robust and competitive

as a production algorithm.

Since we aim to achieve high quality ambient occlusion through analytical computations, we also

include a visual comparison with the Ambient Occlusion Volumes [McG10] technique (abbreviated

AOV through the rest of this chapter). To our knowledge, AOV is currently the most accomplished

analytic technique. Our intention is to show that our method does not exhibit any visual artifact

contrary to AOV. The AOV algorithm was executed on a GeForce GTX 285 GPU with 1GB of memory.

Four scenes were chosen to illustrate the behavior of our method. The first one, House, is a

moderate architectural model combining large and simple areas with some detailed features. Apples

and StBasil are two models with regular meshes, but completely different visual complexities. And

finally, Sibenik is a complex model, which is often used to illustrate different ambient occlusion

techniques.

Ambient occlusion is a local property, usually applied in the final composition as a complement

to a direct illumination model. Thus, we chose a δ value sufficient for obtaining visually pleasant

results on which all the details are visible. We also include an analysis of the impact of δ’s variation,

illustrated using our most complex scene (Sibenik).

3.7.1 Mental Ray® Comparison on Quality and Time

Quality. MR has been configured to produce images which are visually comparable to the results

obtained using our method. We sampled the entire hemisphere, using 1024 samples. This value

represents the minimum required to remove all the noise in the final images. Figure 3.22 shows the

results of both methods.

Time. Since the images obtained using MR are visually comparable to the results achieved by

our method, it is pertinent to compare the computation times required for both methods. The

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 142

Our Method Mental Ray®

Memory Time Time Comparison

Max Size Time / Point Init Queries Total MR Total Acceleration
1th (4th) [MB] [ms] [%] [%] [s] [s] Factor

House 9.02 (36) 0.0488 3.95 96.05 27 221 × 8.18
Apples 3.33 (13) 0.0586 3.54 96.46 26 325 × 12.5
StBasil 4.43 (18) 0.0606 6.78 93.22 17 145 × 8.52
Sibenik 8.87 (36) 0.0476 3.03 96.97 49 547 × 11.16

Table 3.1: Memory and time consumptions for our algorithm, as well as the time obtained using MR. The
first column represents the maximum memory load reached during the process. The first value corresponds to
the memory load for a single thread. The second value is the maximum obtained by summing the maximum
values reported for the 4 threads during an execution. The Time/Point column shows the average time spent
on calculating the ambient occlusion of an image point, using our data structure. The Init column gives the
time percentage spent on initializing the trees, while the Queries column gives the percentage spent building
and querying the trees. The Total column gives the time for the whole process. The MR Total column indicates
the time achieved by MR, while the last column (Acceleration Factor) provides the acceleration ratio between
our method and MR.

last three columns of Table 3.1 illustrate this comparison. The considered MR execution times

correspond to the ambient occlusion calculations only. It can be noticed that our algorithm is faster

on all models. Moreover, as shown in Table 3.3, our method remains competitive for larger δ values.

3.7.2 Time Analysis

The total time required by our method can be divided into two steps. The first one concerns the

preliminary set-up for each surface: selecting geometry and calculating the necessary hyperplanes,

computing a polygonal representation of the upper-hemisphere, and initializing the data structure.

The second step involves the visibility queries which compute the needed ambient occlusion values

while developing the tree. These values can be found in Table 3.1 (Init and Queries columns). We

notice that the computation time is dominated by the visibility queries, which represent the core of

our method.

Our method calculates ambient occlusion for each image point belonging to a visible triangle.

Thus, in order to better understand the behavior of our method, we indicate the total time spent

on each image (Table 3.1, Total column), as well as the average time spent on each image point for

which a data structure has been queried (Table 3.1, Time (ms) / Point column). This column shows

that although the chosen scenes have different complexities, the variation of the average time spent

per image point is moderate. As previously explained, the algorithm handles the surfaces one after

another. Therefore, the computations are local to each visible source triangle and limited to its close

neighborhood, restricted within a δ radius. As a result, our approach escapes the global complexity

of the scene.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 143

Mental Ray® Our method
H

o
u

se

(1
9K

tr
ia

n
gl

es
)

221 seconds 27 seconds

A
p

p
le

s

(3
2K

tr
ia

n
gl

es
)

325 seconds 26 seconds

S
tB

a
si

l

(1
00

K
tr

ia
n

gl
es

)

145 seconds 17 seconds

S
ib

en
ik

(1
50

K
tr

ia
n

gl
es

)

547 seconds 49 seconds

Figure 3.22: The first row presents the results obtained using MR with 1024 occlusion rays per pixel. The second
row contains the images achieved using our method. At comparable quality, our method yields better rendering
times than MR.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 144

3.7.3 Memory Analysis

Since the algorithm builds one data structure in Plücker space for each visible triangle from the

camera, the memory consumption varies during the rendering process. Therefore, we report the

maximum memory load that was reached for each scene (see Table 3.1, column Max Size), for a

single thread. However, since we ran our tests on 4 threads, we are also indicating the maximum

memory footprint reported for four simultaneously built data structures.

Figure 3.23 illustrates the memory consumption reported for a single thread. Each vertical bar

corresponds to a data structure built for a visible polygon from the camera. The differences between

the data structures are due to the different geometric configurations, the number of occluders and

the number of queries considered for each visible polygon. The peaks correspond to large BSP trees

which encode a complex environment. Although several of these peaks are present, most of the

memory footprint remains low.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

M
e
m

o
ry

 O
c
c
u
p
a
ti
o
n
 [
M

B
]

Visibility Algo Executions (1 thread)

Figure 3.23: Memory consumption for our algorithm, during an execution, measured for a single thread. The
scene is Sibenik. Each vertical bar corresponds to a data structure built for a visible polygon from the camera.
The peaks represent large data structures, corresponding to polygons having a complex environment. However,
the majority of the data structures have a low memory footprint.

As shown in Table 3.1 (Max Size column), the memory consumption is significantly different between

the considered scenes. Both House and Sibenik have more important memory consumptions than

Apples and StBasil. These last two models have regular meshes, while the first two are irregular. For

each visible triangle, our algorithm attempts to take advantage of the visibility coherence between

the points on the triangle. Thus, if a large area surface "views" an increased amount of geometry, a

loss of the visibility coherence may occur. This is the case with House and Sibenik.

3.7.4 Visibility Coherence

As for our from-polygon occlusion technique, we tested the ability of our visibility algorithm to take

advantage of the visual coherence between the image points. Between each visibility query, the data

structure is reset to it root node, associated with the initial set of occluders. In this context, we have

defined a visibility query as a call to the mainQuery function.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 145

Figure 3.2 provides a comparison between the times required for both versions of the algorithm.

Although a direct comparison between our occlusion and visibility algorithms is not straightforward,

we can outline an important difference concerning the visual coherence. The acceleration factor is

between 16 and 48 for the occlusion method, and between 4.17 and 5.15 for our visibility technique,

with an exception of 9 for the House model. This decrease can be explained by the fact that we

are building a representation of a much more complex information. Let us consider the case of

a coherent set of lines belonging to an occluded class, in the case of out from-polygon occlusion

algorithm. These lines can be blocked by one or several occluders. If we consider the same lines in

the context of our visibility algorithm, they are no longer coherent and need to be further grouped

according to the first occluders they intersect. Thus, they have a weaker coherence.

In order to explain the exception encountered for the House model, we also calculated the average

number of queries executed on the data structures, for each scene. This results are presented in the

last column of Table 3.2. On the House model, the average number of queries is at least three times

higher than for all the other models. A low number of queries implies that we are building trees for

a small number of points, and thus the majority of queries are used to develop the tree rather than

taking advantage of the already calculated information.

Time Comparison

Standard Modified Acceleration AVG queries /
Version [s] Version [s] Factor BSP tree

House 27 243 × 9.00 157
Apples 26 134 × 5.15 56
StBasil 17 71 × 4.17 16
Sibenik 49 215 × 4.38 65

Table 3.2: Comparison between the time required for our standard from-polygon visibility algorithm (Standard

Version column) and a modified version (Modified Version column) for which the BSP tree is reset to the initial
root node between each query. The Acceleration Factor column indicates the performance drop factor between
the two executions. The last column indicates the average number of queries for a BSP tree.

3.7.5 The δ Parameter

Time. The computation time according to the δ parameter is illustrated by the first graph of

Figure 3.24. When δ increases, our algorithm needs to consider more potentially visible geometry.

This leads to an over-cost required for computing a larger data structure. As a result, the algorithm

performance decreases compared to MR. This is illustrated by the last column of Table 3.3. The

last row reports the crossing point between our method and MR. The image corresponding to this

crossing point is presented in Figure 3.25 (right image).

Although our method can handle larger δ values, the interest of performing exact ambient occlusion

calculations is diminished when the distance becomes too important. As explained by Laine and

Karras [LK10], distant geometry has a very low contribution to the ambient occlusion and can be

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 146

Our Method Mental Ray®

Memory Time Time Comparison

Max Occ / Max Size Time / Point Total MR Total Acceleration
δ Surface 1th (4th) [MB] [ms] [s] [s] Factor
2 455 2.43 (10) 0.014 13 459 × 35.31
5 777 5.71 (23) 0.037 38 531 × 13.97
9 1270 21.7 (87) 0.092 101 592 × 5.86
13 2136 36.85 (147) 0.146 169 643 × 3.80
17 2738 51.66 (206) 0.288 342 683 × 2.00
21 3246 64.42 (258) 0.438 527 727 × 1.38
25 3836 80.87 (323) 0.639 776 744 × 0.96

Table 3.3: The variation of the parameters in Table 3.1 with respect to the δ value. The Max Occ / Surface

represents the maximum number of potentially visible polygons for a surface. All the other columns retain
their previous definitions provided in Figure 3.1. Although both memory and time consumption increase, our
method remains competitive for all the considered δ values.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25

T
im

e
 [
s
e
c
o
n
d
s
]

Max occlusion distance (δ)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25

M
A

X
 M

e
m

o
ry

 [
1
th

,
M

B
]

Max occlusion distance (δ)

Figure 3.24: Increasing the maximum occlusion distance (δ). The two graphs illustrate the time consumption
(left) and the maximum memory load (right) with respect to the variation of δ. The data corresponds to the
values from Table 3.3, Time Total and Max Size. Both graphs show that our method remains practicable, despite
the increase with respect to the δ radius.

calculated using simplified geometry, without introducing artifacts or perturb the quality of the

result. This relies on the decomposition of illumination into far- and near-field illumination, and it

has been formalized by Arikan et al. [AFO05].

Therefore, we believe that an exact and analytical method should not be applied on the raw

data in the far-field. In Section 3.8 we analyze how the far field occlusion can be taken into account

as a possible development of our algorithm.

Memory. As previously stated, an increase in δ is equivalent to an increase in the potentially

visible geometry. The second graph in Figure 3.24 illustrates the memory footprint with respect to

δ variation. Although the memory consumption increases with the distance, it is far from being a

limitation even for the largest radius.

According to Pellegrini [Pel91, Pel04], the complexity of an arrangement of hyperplanes in Plücker

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 147

δ= 2 δ= 13 δ= 25

Figure 3.25: A visual comparison between three images corresponding to different δ values (2, 13, 25). The
first row presents the results obtained using our base version (ambient occlusion), and the secons row presents
the results obtained using our enhanced version (ambient occlusion using our falloff function).

space is O(n4+ǫ) in memory, where n is the number of triangles. Such a complexity may let one think

that no practicable application can be build on this theoretical framework. However, our results

prove the contrary. A least square fitting analysis using our experiments indicates a practical memory

complexity of our application of O(n1.82). Note that this practical complexity concerns the ambient

occlusion application, where the visibility computations are restricted within a δ radius.

Local complexity of the arrangement. The practical complexity achieved by our method can

be explained by the local character of the computations involved. While the arrangement from the

theoretical framework concerns all the lines in Plücker space, we are limiting our computations to

the arrangement of rays originating from a surface. Thus, we are only constructing a local partition

of rays, with respect to the considered surface. Moreover, the lazy evaluation of the visibility avoids

computing useless parts of this arrangement.

3.7.6 Ambient Occlusion Volumes Comparison

We have performed a quality comparison between our method and the Ambient Occlusion

Volumes [McG10]. Although both AOV and our algorithm are analytic solutions, we need to underline

the fact that its context is different from our own. The Ambient Occlusion Volumes algorithm targets

near-field ambient occlusion and makes approximations in the visibility calculations is order to

achieve interactive frame rates. In contrast, we target off-line high quality rendering, and we aim to

provide a robust solution based on accurate visibility computations.

For our tests, we used the House model, mainly because this model is used in the original AOV

paper [McG10] to highlight the artifacts of the results. It is also used for comparison purpose in other

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 148

A
O

V
O

u
r

m
et

h
o

d
C

o
m

p
a

ri
so

n

Figure 3.26: The first row presents the results obtained using the Ambient Occlusion Volumes[McG10]
technique. The main artifact is over-occlusion which results in a loss of details, especially in the corners of
windows or doors. The second row contains the images achieved using our method. The color variations from
gray to white are smooth and all the details are present. The third row presents a comparison, which further
underlines the visual imperfections of AOV and how they are avoided in our results.

papers (Laine and Karras [LK10]).

We have also tested the performance of both techniques with respect to the δ parameter, using

the Sibenik model.

For these comparison tests we have used the AOV application available for academic use on

the author’s web page [AOV12]. Note that this is the same application used for the tests and the

results presented in the Ambient Occlusion Volumes [McG10] article.

Figure 3.26 provides a visual comparison between AOV and our method. Although both methods

produce noise free results, the images obtained using AOV suffer from artifacts resulting from the

approximated visibility. The main problem is over-occlusion, which has a negative impact especially

in the areas where details are present, such as the windows or the doors. Since our method computes

the exact visible fragments of the surrounding geometry, all the details are rendered correctly.

As an indication, the main image took 221 seconds using MR, 27 seconds using our method

and 0.074 seconds using AOV. As underlined before, AOV and our own algorithm target different

applications and have different objectives. AOV is certainly faster than our technique. However, from

a quality point of view, our method provides results that cannot be matched by AOV. But this quality

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 149

Figure 3.27: Maximum supported δ radius for the Ambient Occlusion Volumes (McGuire) technique, on the
computer used for testing our algorithm (left image) and on a second computer equipped with a more powerful
GPU, and disposing of more dedicated graphics memory (right image). Using the same unit measure as for our
own tests, the δ value present in the right image corresponds to approximately δ= 10.

δ= 25 δ= 50 δ= 70
max occluder s : 3836 max occluder s : 11772 max occluder s : 19886

Figure 3.28: Applying our algorithm for the following δ values: 25 (crossing point with Mental Ray), 50, 70.

is not free of charge. Contrary to other methods that may sacrifice quality in order to gain speed, our

approach favors quality over speed.

The second series of tests were designed discover the limits of both methods, with respect to

the δ parameter. For the AOV renderings, we used two test computers: a Core i7 920 processor

equipped with a GeForce GTX 285 GPU with 1GB of memory (also used for the first series of tests)

and a Core i7 2600 processor with a GeForce GTX 580 with 1.5GB of memory. Both computers have

6GB of RAM. The maximum δ radius supported by the AOV implementation is visually equivalent

(AOV artifacts aside) to our δ = 10 value. For larger values, the algorithm reaches the limits of the

graphical card, and the application crashes because it runs out of memory. The results obtained are

presented in Figure 3.27.

In contrast, using our method, we present results until δ = 25 which corresponds to the crossing

point with MR. However, in terms of robustness, our method can handle larger values. Figure 3.28

presents three images corresponding to the following δ values: 25 (the crossing point with MR), 50

and 70 (as a visual indication: a sphere having a 70 radius and which is placed in the center of Sibenik

will contain all its interior, from floor to ceiling). The maximum number of occluders is 3836, 11772

and 19886, respectively. It is important to underline that the visual difference between the last two

images is almost imperceptible to the naked eye.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 150

The AOV technique is analytic and fast, but comes with artifacts and focuses on near-field occlusion.

Our approach is analytic and based on an exact visibility algorithm. Moreover, it can handle more

significant δ values while remaining competitive to MR. Beyond the crossing point, our method

keeps the advantage of remaining noise-free, while for a ray-traced solution it may be necessary to

increase the number of samples. However, when large δ values need to be considered, we do not

think that the far geometry should be handled the same way as the close one. This point is further

developed in Section 3.8.

3.7.7 Falloff Function

This section presents the results we obtained using the falloff function detailed in Section 3.5.

Figure 3.29 shows a visual comparison between the results obtained using the base (ambient

occlusion) version of our method and the enhanced one (including falloff). As indicated by the

rendering times, the extra computational cost is negligible. The reason for this is that the majority

of the required information is already present in the data structure, and the additional calculations

consist of basic operations.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 151

Enhanced Version Base Version Comparison

H
o

u
se

77.39 seconds 76.3 seconds Difference: 1.09

A
p

p
le

s

85.31 seconds 83.49 seconds Difference: 1.82

S
tB

a
si

l

60.42 seconds 59.82 seconds Difference: 0.6

S
ib

en
ik

38.69 seconds 37.65 seconds Difference: 1.04

Figure 3.29: Visual comparison between the results obtained using the enhanced version (ambient occlusion
with our falloff function) (first column) and the base version of our algorithm (center column). The third
column offers a more detailed comparison. The rendering times, as well as the difference between the two
versions, are indicated below each image. The extra computational time required to apply the falloff function
represents a negligible cost with respect to the total rendering time.

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 152

3.8 Discussions and Future Work

This section outlines some of the limitations of our method, as well as some possible solutions which

are to be addressed in the future.

If the considered local environment goes beyond a very important δ radius, the algorithm reports an

increased memory load. More precisely, a visible polygon for which a large set of geometry needs to

be analyzed will result in an expensive data structure, both in terms of memory consumption and

execution time. An interesting solution would be to deal with sequential layers of geometry, instead

of considering at once all the potential occluders for a surface. For a chosen δ value, we can start

with the geometry contained into a δ/k radius. If some queries require further development, the

geometry contained between δ/k and 2×δ/k is added and so forth (k can be a constant or not). The

advantage of such an approach is that if we decide to calculate the ambient occlusion for a radius of

∆> δ, we can reuse the previous computations.

This leads us to another possible development of our ambient occlusion algorithm. The current

algorithm treats all the potentially visible geometry within a δ radius equally. No distinction is being

made between the near and the far field. Therefore, it may construct a complex tree in order to add a

very small occlusion effect from a far away object. Moreover, as outlined by Laine and Karras [LK10],

such distant geometry may be used in a simplified form without altering the visual results. Since

only the near geometry needs to be exact and thus processed accurately, we could adapt our current

exact method to handle far field occlusion using an approximation of the actual geometry. Therefore,

our algorithm would be building complete data structures only for close and relevant geometry, and

approximate the occlusion from far away objects. Thus, we could improve the memory footprint and

the time consumption without modifying the visual quality of the result.

Our tests showed that the we could further improve the ability of the algorithm to take advantage of

the visual coherence between the image points. As detailed in Section 3.7.4, we often build BSP trees

for a small number of points, and thus we are spending more time developing the data structures

than exploiting the already calculated information. This problem can also arise in the context of

our soft shadow algorithm. In the context of our ambient occlusion implementation, the simplest

solution would be to increase the image resolution, and thus have more points for each visible

surface from the camera. We have tested this solution and observed a slow growth in the acceleration

factor between our standard algorithm and its modified version. However, this is in fact a false

solution because increasing resolution only delays the problem. Also, new surfaces can become

visible at higher resolutions, and raise the same issue.

A solution would be to group the surfaces which compose a partial fragment of an object, and

their occluders. The simplest example is that of a lot of buildings. Each side of a block of flats

is composed of several small polygons which represent the walls and the windows. Instead of

computing the ambient occlusion for each one of these surfaces, we can consider a side as an

independent surface and query its environment for occlusions. The auto-occlusions (the details on

Chapter 3 : From-Polygon Visibility. Application to Ambient Occlusion Page 153

the windows or on the walls) can be handled in a second step. This is somehow similar to handling

the level of detail, but this is time the simplification concerns the source surfaces instead of the

distant geometry.

The last issue we want to address concerns the balance between the visual coherence and the

size of the source polygon. Our algorithm is based on the idea of taking advantage of the visual

coherence which exists between neighbor points. If the geometric resolution is very high with respect

to the image resolution, it can lead to very few image points per triangle and thus, a loss of efficiency.

In this case, the data structure is built for a few points only and dropped before being re-used. This

problem also concerned our soft shadows algorithm. However, in the case of from-polygon visibility,

we have to deal with a second issue. If the source polygon is very large with respect to its occluders,

the coherence is further diminished. Thus, in order to answer all the queries, the algorithm needs to

build a large data structure, and will eventually spend more time building it than actually reusing the

calculated information. Therefore, we are faced with two problems: not enough points on the source

polygon to efficiently exploit the encoded information, and much more information that is efficient

to encode. The interesting fact is that by trying to solve one issue, we may create another. We believe

that a balance must be found between the size of the source polygon and its considered environment.

Grouping the occluders according to a certain criterion may provide a potential solution. Grouping

the points on the polygon and building one data structure for each group is another idea that needs

to be investigated.

This chapter has presented our from-polygon visibility algorithm, as well as it application in the

context of ambient occlusion calculation generation. With respect to our initial goals, described in the

first chapter of this thesis, we have demonstrated that we can successfully encode the visibility from

a surface and achieve a robust and efficient solution in a given applicative context. The next and final

chapter of this thesis summarizes our contributions and provide further insight on the limitations of

our two algorithms.

Conclusion Page 154

Conclusion Page 155

Conclusion

Conclusion Page 156

HIS chapter summarizes the context of this thesis and our contributions with respect

to the initial goals. We then provide an analysis of the limitations of our from-polygon

occlusion and from-polygon visibility algorithms.

In the first chapter of this work we have distinguished and presented two main types of visibility

problems: from-point and from-polygon visibility. Various solutions concerning the first category

were proposed over the years. In contrast, from-polygon visibility received limited attention because

of its inherent complexity. Few algorithms exist and they either have incomplete implementations,

or limited practical applications because of their lack of robustness and numerical issues.

As explained in the first chapter of this work, we dispose of a solid and elegant theoretical framework

which can be used to address from-polygon visibility problems. The first element of this framework is

the Plücker parametrization, which maps any real line to a point or a hyperplane in a 5-dimensional

oriented projective space. Its main advantage is that it allows describing continuous sets of lines

using convex volumes, which are more intuitive to manipulate. The second element is represented

by the equivalence classes of lines, described by Pellegrini, which allow grouping oriented lines

according to the geometry they intersect. This motivated a series of theoretical results which concern

various problems involving oriented lines [Pel97].

In practice, however, there is a big gap between the current implementations and the theoretical

framework. It is exactly this void that we aimed to fill, by proposing a robust and accurate solution,

which can be successfully used in a specific applicative context. More exactly, our objective was

to encode the visibility from a polygon into a data structure and use this information to optimize

from-point independent queries by taking advantage of the visual coherence which exists between

neighbor points. Besides accuracy and robustness, we intended to design an algorithm which

does not require any pre-process operations. Moreover, its applications needed to escape the

upper-bound complexities announced by Pellegrini.

Summary of Results

Our study of Pellegrini’s theoretical framework and of the existing visibility algorithms, allowed us to

conclude the following:

• Both the equivalence classes described by Pellegrini and the current from-polygon

implementations based on the Plücker parametrization [MP99, NBG02, HMN05, MAM05]

calculate an information of occlusion. A single exception exists [Bit02], but its practical

applications are severely limited. In this context, our main concern was if we could propose

a true from-polygon visibility algorithm, which is robust and can successfully handle arbitrary

scene configurations.

• The lack of robustness and the numerical issues from which suffer the current from-polygon

implementations are caused by the complex 5D CSG operations. Also, these operations add an

Conclusion Page 157

additional cost that restricts the application of these methods to pre-process steps only. Thus,

one of our main objectives was to avoid all 5D CSG operations, and thus gain both in robustness

and performance.

• Concerning from-point visibility, the majority of existing methods do not take advantage of

the visual coherence which exists between the points belonging to the same surface. During

rendering, all visibility queries are actually from-point queries, since in the end we need to

calculate the value of each point visible from the camera. Thus, we wanted to allow these

individual queries to take advantage of from-polygon visibility.

From-polygon Occlusion

The starting point of our works are the equivalence classes described by Pellegini. His definition

concerns the complete arrangement of lines induced by a set of convex polygons. Each cell of

this arrangement corresponds to a coherent set of lines which intersect the same polygons, in no

particular order.

Our first applicative context was the generation of soft shadows. Thus, having a light source,

its occluders and a group of points to shade, we needed to know which parts of the light are visible

from the points to shade. The first step was to restrain the definition of equivalence classes to the

lines stabbing the light, and consider the arrangement induced by the light’s occluders. We further

simplified Pellegrini’s approach, by only distinguishing between occluded and unoccluded lines. Our

occlusion algorithm starts with the complete set of lines stabbing the light source and divides it into

coherent sets, each one corresponding to a convex fragment of the light source which is either visible

of invisible as seen from the points to shade. This information is encoded in a BSP tree in Plücker

space, lazily and at run time, as directed by the individual visibility queries.

Our data structure encodes a from-polygon occlusion information. However, the individual

queries which help build it are from-point visibility queries with respect to the light source. By

combining from-point queries with a conservative distribution of 5-dimensional occluders into the

BSP tree, we manage to avoid all 5D CSG operations, thus achieving the desired robustness and

accuracy.

If one or more points share the same occlusion information, only the first query develops the

data structure. The other ones benefit from the already existing information, thus improving the

global performance. Our tests showed that if we prevent all queries from taking advantage of the

previous ones, the loss of efficiency is considerable. Thus, our occlusion algorithm exploits the visual

coherence between neighbor points successfully, and optimizes the individual from-point queries

using the global from-polygon occlusion information.

Our algorithm is practicable and can handle scenes of various size and configuration. Compared to

an optimized ray traced implementation, our method is faster, and its results are exact and noise free.

Conclusion Page 158

Therefore, we have successfully proposed an algorithm which encodes the analytic and conservative

from-polygon occlusion information. The individual from-point queries direct the construction

of the data structure and use it to exploit the visual coherence and take advantage of previous

computations. Our algorithm is robust and numerically stable and can handle scenes of different

sizes and complexities. The results we achieve are exact, hight quality and noise free.

From-polygon Visibility

Our from-polygon occlusion algorithm demonstrates that we can successfully use the theoretical

framework and the Plücker parametrization and provide a robust implementation in the context of

a practical application. The next step was to build upon this first method and add the missing depth

information, in order to calculate from-polygon visibility instead of simple occlusion.

The applicative context was the generation of ambient occlusion, which requires calculating

all the directly visible fragments located withing a given radius from the points to shade. If we

consider the entire polygon which contains these points, we need to compute its exact visibility

over the surrounding geometry. Similarly to the from-polygon occlusion method, we restricted the

computations to all the view rays originating from the polygon. However, in this new context, we

needed to group these rays according to the first geometry they intersect. In order to do that we

introduced a depth test in the construction of the data structure and an inheritance system allowing

us to maintain a coherent visibility information at each development.

The main characteristics of the method remain similar to the from-polygon occlusion algorithm:

analytic representation, avoid all 5D CSG operations thanks to a conservative representation and

from-point queries, lazy construction directed by the independent queries, robustness and accuracy.

Our method is competitive with respect to a production solution such as Mental Ray®, and yields

high quality, noise and artifact free results. Also, it achieves better quality results that the best analytic

ambient occlusion solution currently available.

A final remark needs to be done before analyzing the limitations of our two algorithms. Although our

from-polygon visibility algorithm is exact, its application to ambient occlusion makes a negligible

approximation. Since we needed to use only the geometry located within a given radius from the

points, we must clip the visible fragments with respect to a polygonal representation of the upper

hemisphere. Thus, the data structure encodes the exact from-polygon visibility, but this information

is slightly approximated when the ambient occlusion calculation is performed. However, as our tests

showed, this approximation is not visible in the ambient occlusion results.

Conclusion Page 159

Limitations and Future Work

The second and the third chapters concluded with a summary of the limitation of the soft shadow

and ambient occlusion applications, respectively. In this section, we want to outline some limitation

of the occlusion and visibility algorithms. Thus, we only consider the from-polygon occlusion and

from-polygon visibility implementations, independent of the possible applicative contexts.

In our current implementations, the occlusion/visibility data is dropped as soon as it is not

needed any more. Based on the tests we made, we believe that this data could be saved in order to

be used again. Our data structure can be seen as a representation of the visibility function from a

surface. For a given source polygon and its environment of occluders, the visibility queries develop

and use the BSP tree until a certain point is reached. From this point, the encoded information

is stable and the queries only exploit it. The first question which arises is how we can define

this balance point. When does the data structure become representative for the from-polygon

visibility ? The BSP tree stops growing when all the equivalence classes have been found. This data

can be saved and reused in order to render the same geometric configuration at different resolutions.

This leads us to another important point. Both our algorithms use a conservative process which

locates the 5-dimensional occluding volumes into the leaves they may affect. This may lead to the

development of unnecessary and redundant information. An extreme example is the case when all

the occluders are conservatively duplicated in both children of a node. In this case, we would be

building two identical sub-trees, instead of a single one. Therefore, in addition to saving the BSP

trees for further renderings, we could also simplify them to remove the redundancy created by the

conservative insertion process. Smaller data structures would require less space and querying a more

compact tree would speed up the rendering process.

Both these points (saving and simplifying the data structures) are limited to static environments only.

However, we believe it would be interesting to study the possibility of integrating dynamic objects,

and what are the exact limitations in such a context. For example, if we have a static environment

which contains some moving geometry, how much of the data structure could we reuse in order to

take into account the dynamic component ? Analyzing the possibility of a non-static context raises

the question of render time and performance.

Since our algorithms are designed to run on several threads, they would benefit from an

implementation on a parallel computing architecture such as CUDA or OpenCL, which offer a

higher number of threads on the graphic hardware. However, our algorithms are based on a

lazy evaluation which builds the data structures during render time. Thus, they rely on dynamic

allocations of memory. Although this could be implemented using nVidia CUDA, the dynamic

memory allocations from the graphical device are not always possible, or they are made from the

global memory, which could lead to a loss of efficiency. Thus, in its current design, the algorithm

is better suited for a CPU implementation. Which brings us back to the saving and reusing of the

data structures. Indeed, it would be interesting to develop a CUDA implementation which relies on

Conclusion Page 160

using the data structures which were already developed. This would eliminate the need for massive

dynamic allocations of memory. Moreover, if we also simplify our saved structures, we could store

even more data on the graphic device, and increase the number of threads.

We would like to conclude by saying that we hope to have reached a milestone in from-polygon

visibility. We also hope that this research represents a proof that solutions can be found in order

to fill the existing void between the theoretical framework based on the Plücker parametrization and

the practical implementations in from-polygon visibility.

Annex Page 161

Annex

Annex Page 162

Attempting to find an analytic solution to the obscurances integral

First of all, we choose a fixed falloff function, ρ(d) =
√

d
dmax

. The main integral becomes:

Obs(M0) =
1

π

∫

ω∈Ω
ρ(d(M0,ω))(N ·ω)dω

=
1

π

∫

ω∈Ω

√

d(M0,ω)

dmax
(N ·ω)dω

This can be translated as a sum of integrals over the visible polygons:

Obs(M0) =
1

π

n
∑

i=1

∫

p∈Pi

√

d(M0,ω)

dmax
(N ·ω)dω

Where

• n is the total number of exact fragments of polygons which are directly visible from M0

• {P1, ...,Pn} are these fragments

Thus, we needed to find an analytical solution to the following integral:

Obs(M0,Pi) =
1

π

∫

p∈Pi

√

d(M0,ω)

dmax
(N ·ω)dω

=
1

π

∫

p∈Pi

√

d(M0,ω(θ))

dmax
cosθdθ

where p is a point on Pi , in direction ω(θ).

We started our analysis by considering the 2-dimensional case, when the polygon Pi is reduced

to a single line segment, [M1M2]. Figure 3.30 provides an illustration.

In 2D the integral becomes:

Obs(M0, [M1M2]) =
1

π

∫

M(θ)∈[M1M2]

√

d(θ)

dmax
cosθdθ

=
1

π

∫θ2

θ1

√

d(θ)

dmax
cosθdθ

=
1

π

∫θ2

θ1

1
p

dmax

√

d(θ)cosθdθ

Let l (θ) be the line passing through M0(x0, y0) and M(θ), and let ax + by + c = 0 be the line

passing through M1(x1, y1) and M2(x2, y2). These two lines intersect in an unique point: M(θ).

Annex Page 163

N

M0(x0, y0)

M1

M2

d1 d2

θ1

θ2

ax +by + c = 0

θ

d(θ)

M(θ)

Figure 3.30: 2-dimensional illustration for the obscurances integral. Instead of integrating over a polygon, we
integrate over a segment, [M1M2]. M(θ) is the point on the segment in direction ω(θ). This is the direction
which forms a θ angle with the surface normal.

We can express M(θ) with respect to the first line, l (θ):

M(θ) = M0(x0, y0)+d(θ)

(

sinθ

cosθ

)

=
(

x0 +d(θ)sinθ

y0 +d(θ)cosθ

)

Figure 3.31 provides an illustration.

Since l (θ) intersects ax +by + c = 0 in M(θ), we obtain the following relation:

a(x0 +d(θ)sinθ)+b(y0 +d(θ)cosθ)+ c = 0 ⇒

⇒ d(θ) =
−(ax0 +by0 + c)

a sinθ+b cosθ

Annex Page 164

N

θ

α

M(θ)

si
n

(α
)

cos(α)M0(x0, y0)

d(θ)

M(θ) =

= M0(x0, y0)+
(

d(θ)cosα
d(θ)sinα

)

= M0(x0, y0)+
(

d(θ)cos(π2 −θ)
d(θ)sin(π2 −θ)

)

= M0(x0, y0)+
(

d(θ)sinθ

d(θ)cosθ

)

=
(

x0 +d(θ)sinθ

y0 +d(θ)cosθ

)

Figure 3.31: Calculating the coordinates of M(θ).

If we replace this in the initial integral, we obtain the following:

Obs(M0, [M1M2]) =
1

π

∫θ2

θ1

1
p

dmax

√

−(ax0 +by0 + c)

a sinθ+b cosθ
cosθdθ

=
1

π

∫θ2

θ1

√

−(ax0 +by0 + c)

dmax

cosθ
p

a sinθ+b cosθ
dθ

Since the first term is a constant, we would like to find a primitive of the function:

f (θ) =
cosθ

p
a sinθ+b cosθ

In order to do this, we have used the M apleT M software for our calculations.

We note I0 our initial integral:

I0 =
∫

cosθ
p

a sinθ+b cosθ
dθ

We perform the following change of variable:

θ = 2φ+α

Annex Page 165

and the following substitution:

α= ar ct an(
a

b
)

I0 becomes:

I1 =
2

b
√

a2+b2

b2

∫(

2b cos2φ−b −2a sinφcosφ
√

(a2+b2)(2cos2 φ−1)

b
√

a2+b2

b2

)

dφ

After further simplification we obtain:

I2 =
2si g num(b)

(a2 +b2)3/4

∫(

2b cos2φ−b −2a sinφcosφ
√

(2cos2φ−1)si g num(b)

)

dφ

At this point we assume b > 0. The integral becomes:

I3 =
2b

(a2 +b2)3/4

∫(

2b cos2φ−b −2a sinφcosφ
√

(2cos2φ−1)b

)

dφ

=
2b

(a2 +b2)3/4

∫(

2b
cos2φ

√

(2cos2φ−1)b
−b

1
√

(2cos2φ−1)b
−2a

sinφcosφ
√

(2cos2φ−1)b

)

dφ

=
2b

(a2 +b2)3/4
∗

∗
(

2b

∫

cos2φ
√

(2cos2φ−1)b
dφ−b

∫

1
√

(2cos2φ−1)b
dφ−2a

∫

sinφcosφ
√

(2cos2φ−1)b
dφ

)

=
2b

(a2 +b2)3/4

(

2b ∗ I31 −b ∗ I32 −2a ∗ I33

)

Next, we search for the closed form expressions for the integrals I31, I32 and I33.

I31 =
∫

cos2φ
√

(2cos2φ)−1)b
dφ

=
1

2
csg n(cosφ)(Ell i pti cF (sinφ,

p
2)+Ell i pti cE (sinφ,

p
2))

I32 =
∫

1
√

(2cos2φ−1)b
dφ

= csg n(cosφ)Ell i pti cF (sinφ,
p

2)

I33 =
∫

sinφcosφ
√

(2cos2φ−1)b
dφ

= −
1

2

√

2cos2φ−1

= −
1

2

√

cos(2φ)

Annex Page 166

After substituting I31, I32 and I33 in I3 and further simplification, we obtain the following primitive:

I4 =
2(b ∗ csg n(cosφ))Ell i pti cE (sinφ,

p
2)+a

√

cos(2φ)

(a2 +b2)3/4

The csg n function yields 1 or −1. For simplification, we can remove it.

I5 =
2(b ∗Ell i pti cE (sinφ,

p
2)+a

√

cos(2φ)

(a2 +b2)3/4

For the initial integral, Obs(M0, [M1M2]), we obtain the following primitive:

I5 = k1
2(b ∗Ell i pti cE (sinφ,

p
2)+a

√

cos(2φ)

(a2 +b2)3/4
+k2

where:

k1 =
1

π

√

−(ax0 +by0 + c)

dmax

and:

k2 ∈R
3

Ell i pti cF [mat12b, map12b] is the incomplete elliptic integral of the first kind, and it is defined as

E (φ,k) =
∫sinφ

0

√

1

(1−k2t 2)(1− t 2)
d t

El l i pti cE [mat12a, map12a] is the incomplete elliptic integral of the second kind, and it is defined

as

E (φ,k) =
∫sinφ

0

√

1−k2t 2

1− t 2
d t

Bibliography Page 167

Bibliography

Bibliography Page 168

[AAM03] Ulf Assarsson and Tomas Akenine-Möller. A geometry-based soft shadow volume algorithm using

graphics hardware. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 511–520, New York, NY,

USA, 2003. ACM.

[ACFM11] Lilian Aveneau, Sylvain Charneau, Laurent Fuchs, and Frederic Mora. A Framework for n-

Dimensional Visibility Computations. In Leo Dorst and Joan Lasenby, editors, Guide to Geometric

Algebra in Practice, pages 273–296. Springer, 2011.

[AF93] David Avis and Komei Fukuda. Reverse Search for Enumeration. Discrete Applied Mathematics,

65:21–46, 1993.

[AFO05] Okan Arikan, David A. Forsyth, and James F. O’Brien. Fast and detailed approximate global

illumination by irradiance decomposition. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages

1108–1114, New York, NY, USA, 2005. ACM.

[Ama84] John Amanatides. Ray tracing with cones. In Proceedings of the 11th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’84, pages 129–135, New York, NY, USA,

1984. ACM.

[AMA02] Tomas Akenine-Möller and Ulf Assarsson. Approximate soft shadows on arbitrary surfaces using

penumbra wedges. In Proceedings of the 13th Eurographics workshop on Rendering, EGRW ’02,

pages 297–306, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

[AOV12] Ambient Occlusion Volumes application.

http://graphi
s.
s.williams.edu/papers/AOVHPG10/index.html, 2012. Accessed:

23/05/2012.

[APS91] Boris Aronov, Marco Pellegrini, and Micha Sharir. On the Zone of a Surface in a Hyperplane

Arrangement. DISCRETE COMPUT. GEOM, 9:177–186, 1991.

[BHS98] J. Bittner, V. Havran, and P. Slavik. Hierarchical Visibility Culling with Occlusion Trees. In

Proceedings of the Computer Graphics International 1998, CGI ’98, pages 207–, Washington, DC,

USA, 1998. IEEE Computer Society.

[Bir98] Stan Birchfield. An Introduction to Projective Geometry (for computer vision), April 1998.

[Bit02] J. Bittner. Hierarchical Techniques for Visibility Computations. PhD thesis, Czech Technical

University in Prague, October 2002.

[BP96] Chandrajit L. Bajaj and Valerio Pascucci. Splitting a complex of convex polytopes in any dimension.

In Proceedings of the twelfth annual symposium on Computational geometry, SCG ’96, pages 88–97,

New York, NY, USA, 1996. ACM.

[BP01] Jiří Bittner and Jan Prikryl. Exact Regional Visibility using Line Space Partitioning. Technical

Report TR-186-2-01-06, Institute of Computer Graphics and Algorithms, Vienna University of

Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, March 2001. human contact:

technical-report@cg.tuwien.ac.at.

[Bre02] Rob Bredow. Renderman on film. SIGGRAPH 2002 Course Notes Course, 16(6):7, 2002.

[BS09] Louis Bavoil and Miguel Sainz. Multi-layer dual-resolution screen-space ambient occlusion. In

SIGGRAPH 2009: Talks, SIGGRAPH ’09, pages 45:1–45:1, New York, NY, USA, 2009. ACM.

[Bun05] Michael Bunnell. Dynamic Ambient Occlusion and Indirect Lighting. In Matt Pharr and Randima

Fernando, editors, GPU Gems 2, pages 223–233. Addison-Wesley Professional, 2005.

http://graphics.cs.williams.edu/papers/AOVHPG10/index.html

Bibliography Page 169

[BW03] Jiri Bittner and Peter Wonka. Visibility in Computer Graphics. JOURNAL OF ENVIRONMENTAL

PLANNING, 30:729–756, 2003.

[BWW05] Jiří Bittner, Peter Wonka, and Michael Wimmer. Fast Exact From-Region Visibility in Urban Scenes.

In Kavita Bala and Philip DutrÃ©, editors, Rendering Techniques 2005 (Proceedings Eurographics

Symposium on Rendering), pages 223–230. Eurographics, Eurographics Association, June 2005.

[CEG+96] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and Jorge Stolfi. Lines

in Space: Combinatorics and Algorithms. Algorithmica, 15:428–447, 1996.

[Cha07] Sylvain Charneau. Study and application of geometric algebras to the global visibility computation

in a projective space of dimension n >= 2. PhD thesis, Université de Poitiers, December 2007.

[Chr08] Per H. Christensen. Point-Based Approximate Color Bleeding. Technical report, Pixar, 2008.

[CNS00] Francesc Castro Castro, László Neumann, and Mateu Sbert. Extended Ambient Term. journal of

graphics, gpu, and game tools, 5(4):1–7, 2000.

[Cro77] Franklin C. Crow. Shadow algorithms for computer graphics. In Proceedings of the 4th annual

conference on Computer graphics and interactive techniques, SIGGRAPH ’77, pages 242–248, New

York, NY, USA, 1977. ACM.

[CWH93] Michael F. Cohen, John Wallace, and Pat Hanrahan. Radiosity and realistic image synthesis.

Academic Press Professional, Inc., San Diego, CA, USA, 1993.

[DD02] Florent Duguet and George Drettakis. Robust epsilon visibility. ACM Trans. Graph., 21:567–575,

July 2002.

[DDP96] Frédo Durand, George Drettakis, and Claude Puech. The 3D visibility complex: a new approach

to the problems of accurate visibility. In Proceedings of the eurographics workshop on Rendering

techniques 1996, pages 245–256, London, UK, 1996. Springer-Verlag.

[DDP97] Frédo Durand, George Drettakis, and Claude Puech. The visibility skeleton: a powerful and efficient

multi-purpose global visibility tool. In Proceedings of the 24th annual conference on Computer

graphics and interactive techniques, SIGGRAPH ’97, pages 89–100, New York, NY, USA, 1997. ACM

Press/Addison-Wesley Publishing Co.

[DDP98] Fredo Durand, George Drettakis, and Claude Puech. Visibility driven hierarchical radiosity. In

ACM SIGGRAPH 98 Conference abstracts and applications, SIGGRAPH ’98, pages 263–, New York,

NY, USA, 1998. ACM.

[DDP99] Frédo Durand, George Drettakis, and Claude Puech. Fast and accurate hierarchical radiosity using

global visibility. ACM Trans. Graph., 18:128–170, April 1999.

[DDP02] Frédo Durand, George Drettakis, and Claude Puech. The 3D visibility complex. ACM Trans. Graph.,

21:176–206, April 2002.

[DHS+05] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X. Sillion. A frequency

analysis of light transport. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 1115–1126, New

York, NY, USA, 2005. ACM.

[DKW85] Norm Dadoun, David G. Kirkpatrick, and John P. Walsh. The geometry of beam tracing. In

Proceedings of the first annual symposium on Computational geometry, SCG ’85, pages 55–61, New

York, NY, USA, 1985. ACM.

Bibliography Page 170

[DORP96] Frédo Durand, Rachel Orti, Stéphane Rivière, and Claude Puech. Radiosity in flatland made

visibly simple: using the visibility complex for lighting simulation of dynamic scenes in flatland.

In Proceedings of the twelfth annual symposium on Computational geometry, SCG ’96, pages 511–

512, New York, NY, USA, 1996. ACM.

[Dug04] Florent Duguet. Shadow Computations using Robust Epsilon Visibility. Technical Report RR-5167,

INRIA, REVES/INRIA Sophia-Antipolis, 2004.

[Dur99] Frédo Durand. 3D Visibility: analytical study and applications. PhD thesis, Université Joseph

Fourier, Grenoble I, July 1999. http://www-imagis.imag.fr.

[EASW09] Elmar Eisemann, Ulf Assarsson, Michael Schwarz, and Michael Wimmer. Casting Shadows in Real

Time. In ACM SIGGRAPH ASIA 2009 Courses, SIGGRAPH ASIA ’09, New York, NY, USA, 2009. ACM.

[EBD92] D. Eggert, K. Bowyer, and C. Dyer. Aspect Graphs: State-of-the-Art and Applications in

Digital Photogrammetry. In Proceedings of the 17th Congress of the International Society for

Photogrammetry and Remote Sensing, Part B5, pages 633–645, 1992.

[ED07] Elmar Eisemann and Xavier Décoret. Visibility Sampling on GPU and Applications. Computer

Graphics Forum (Proceedings of Eurographics 2007), 26(3), 2007.

[EHDR11] Kevin Egan, Florian Hecht, Frédo Durand, and Ravi Ramamoorthi. Frequency analysis and sheared

filtering for shadow light fields of complex occluders. ACM Trans. Graph., 30(2):9:1–9:13, April 2011.

[EOS86] H Edelsbrunner, J O’Rouke, and R Seidel. Constructing arrangements of lines and hyperplanes with

applications. SIAM J. Comput., 15:341–363, May 1986.

[ESAW11] Elmar Eisemann, Michael Schwarz, Ulf Assarsson, and Michael Wimmer. Real-Time Shadows. A.K.

Peters, 2011.

[FBP08] Vincent Forest, LoÃ¯c Barthe, and Mathias Paulin. Accurate Shadows by Depth Complexity

Sampling. Computer Graphics Forum, 27(2):663–674, 2008.

[GCS91] Ziv Gigus, John Canny, and Raimund Seidel. Efficiently Computing and Representing Aspect Graphs

of Polyhedral Objects. IEEE Trans. Pattern Anal. Mach. Intell., 13:542–551, June 1991.

[GH98] Djamchid Ghazanfarpour and Jean-Marc Hasenfratz. A Beam Tracing with Precise Antialiasing for

Polyhedral Scenes. Computer Graphics, 22(1):103–115, 1998.

[GMM90] Ziv Gigus, Student Member, and Jitendra Malik. Computing the Aspect Graph for Line Drawings

Polyhedral Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:113–122,

1990.

[GSSK05] Ismael Garcia, Mateu Sbert, and L. Szirmay-Kalos. Tree Rendering with Billboard Clouds. In

Proceedings of Third Hungarian Conference on Computer Graphics and Geometry, pages 9–15,

Budapest, 2005.

[Hai00] Eric Haines. A shaft culling tool. Journal of Graphic Tools

(http://jgt.akpeters.com/papers/Haines00/), 5(1):23–26, 2000.

[HG98] Jean-Marc Hasenfratz and Djamchid Ghazanfarpour. Une synthèse des variantes du lancer de

rayons et du lancer de faisceaux. Revue Internationale de CFAO et d’informatique graphique et

d’informatique graphique, 13(3):235–264, 1998.

[HH84] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. In Proceedings of the 11th

annual conference on Computer graphics and interactive techniques, SIGGRAPH ’84, pages 119–

127, New York, NY, USA, 1984. ACM.

Bibliography Page 171

[HJ07] Jared Hoberock and Yuntao Jia. High-Quality Ambient Occlusion. In Hubert Nguyen, editor, GPU

Gems 3, pages 257–274. Addison-Wesley Professional, 2007.

[HK85] Martial Hebert and Takeo Kanade. The 3-D Profile Method for Object Recognition. In Proceedings

of the 1985 Computer Vision and Pattern Recognition Conference (CVPR ’85), pages 458–464, 1985.

[HLHS03] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François Sillion. A survey of Real-

Time Soft Shadows Algorithms. Computer Graphics Forum, 22(4):753–774, dec 2003.

[HMN05] Denis Haumont, Otso Makinen, and Shaun Nirenstein. A Low Dimensional Framework for Exact

Polygon-to-Polygon Occlusion Queries. In Eurographics Workshop on Rendering, pages 211–222,

2005.

[HPAD06] Kyle Hegeman, Simon Premoze, Michael Ashikhmin, and George Drettakis. Approximate Ambient

Occlusion For Trees. In C. Sequin and M. Olano, editors, Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games. ACM SIGGRAPH, March 2006.

[HRGZ97] M. Henk, J. Richter-Gebert, and G.M. Ziegler. Basic Properties of Convex Polytopes. In Jacob E.

Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry - 2nd

edition, pages 243–270. CRC Press, 1997.

[Hub93] Philip M. Hubbard. Interactive Collision Detection. In In Proceedings of IEEE Symposium on

Research Frontiers in Virtual Reality, pages 24–31, 1993.

[IKSZ03] A. Iones, A. Krupkin, M. Sbert, and S. Zhukov. Fast, realistic lighting for video games. Computer

Graphics and Applications, IEEE, 23(3):54 – 64, may-june 2003.

[KA06] Janne Kontkanen and Timo Aila. Ambient Occlusion for Animated Characters. In Thomas

Akenine-Möller Wolfgang Heidrich, editor, Rendering Techniques 2006 (Eurographics Symposium

on Rendering). Eurographics, jun 2006.

[KA07] Adam G. Kirk and Okan Arikan. Real-time ambient occlusion for dynamic character skins. In

Proceedings of the 2007 symposium on Interactive 3D graphics and games, I3D ’07, pages 47–52,

New York, NY, USA, 2007. ACM.

[Kaj86] James T. Kajiya. The rendering equation. In Proceedings of the 13th annual conference on Computer

graphics and interactive techniques, SIGGRAPH ’86, pages 143–150, New York, NY, USA, 1986. ACM.

[KD76] J. J. Koenderink and A. J. Doorn. The singularities of the visual mapping. Biological Cybernetics,

24:51–59, 1976. 10.1007/BF00365595.

[KD79] J. J. Koenderink and A. J. Doorn. The internal representation of solid shape with respect to vision.

Biological Cybernetics, 32:211–216, 1979. 10.1007/BF00337644.

[KH01] Alexander Keller and Wolfgang Heidrich. Interleaved Sampling. In Proceedings of the Eurographics

Workshop on Rendering, 25–27 June 2001. To appear.

[KL05] Janne Kontkanen and Samuli Laine. Ambient Occlusion Fields. In Proceedings of ACM SIGGRAPH

2005 Symposium on Interactive 3D Graphics and Games, pages 41–48. ACM Press, 2005.

[KLA04] Jan Kautz, Jaakko Lehtinen, and Timo Aila. Hemispherical Rasterization for Self-Shadowing of

Dynamic Objects. In Proceedings of Eurographics Symposium on Rendering 2004, pages 179–184.

Eurographics Association, 2004.

[LA05] Samuli Laine and Timo Aila. Hierarchical Penumbra Casting. Computer Graphics Forum,

24(3):313–322, 2005.

Bibliography Page 172

[LAA+05] Samuli Laine, Timo Aila, Ulf Assarsson, Jaakko Lehtinen, and Tomas Akenine-Möller. Soft shadow

volumes for ray tracing. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 1156–1165, New

York, NY, USA, 2005. ACM.

[Lam60] Johann Heinrich Lambert. I.H. Lambert Photometria, sive, De mensura et gradibus luminis,

colorum et umbrae [microform]. V.E. Klett, Augustae Vindelicorum :, 1760.

[Lan02] Hayden Landis. Production-Ready Global Illumination. In Siggraph Course Notes, volume 16, 2002.

[LK10] Samuli Laine and Tero Karras. Two Methods for Fast Ray-Cast Ambient Occlusion. Computer

Graphics Forum, 29(4):1325–1333, 2010.

[LLA06] Jaakko Lehtinen, Samuli Laine, and Timo Aila. An Improved Physically-Based Soft Shadow Volume

Algorithm. Computer Graphics Forum, 25(3):303–312, 2006.

[MA05] F. Mora and L. Aveneau. Fast and Exact Direct Illumination. June 2005. Proceedings of CGI’2005,

New York, Stony Brooks.

[MAM05] F. Mora, L. Aveneau, and M. Mériaux. Coherent and Exact Polygon-to-Polygon Visibility. In

Proceedings of WSCG’05, 2005.

[map12a] EllipticE - Maple Help.

http://www.maplesoft.
om/support/help/Maple/view.aspx?path=Ellipti
E, 2012.

Accessed: 27/06/2012.

[map12b] EllipticF - Maple Help.

http://www.maplesoft.
om/support/help/Maple/view.aspx?path=Ellipti
F, 2012.

Accessed: 27/06/2012.

[mat12a] EllipticE.

http://mathworld.wolfram.
om/Ellipti
IntegraloftheSe
ondKind.html, 2012.

Accessed: 27/06/2012.

[mat12b] EllipticF.

http://mathworld.wolfram.
om/Ellipti
IntegraloftheFirstKind.html, 2012.

Accessed: 27/06/2012.

[McG10] Morgan McGuire. Ambient Occlusion Volumes. In Proceedings of High Performance Graphics 2010,

June 2010.

[MFS09] A. Méndez-Feliu and Mateu Sbert. From obscurances to ambient occlusion: A survey. The Visual

Computer, 25:181–196, 2009. 10.1007/s00371-008-0213-4.

[MFSC+06] Alex Méndez Feliu, Mateu Sbert, Jordi Catà, Nicolau Sunyer, and Sergi Funtané. Real-Time

Obscurances with Color Bleeding (GPU Obscurances with Depth Peeling). In Wolfgang Engel, editor,

ShaderX4: Advanced Rendering Techniques, chapter 2.6. Charles River Media, 2006.

[Mil94] Gavin Miller. Efficient algorithms for local and global accessibility shading. In Proceedings of the

21st annual conference on Computer graphics and interactive techniques, SIGGRAPH ’94, pages

319–326, New York, NY, USA, 1994. ACM.

[Mit07] Martin Mittring. Finding next gen: CryEngine 2. In ACM SIGGRAPH 2007 courses, SIGGRAPH ’07,

pages 97–121, New York, NY, USA, 2007. ACM.

[Mor06] Frédéric Mora. Visibilité polygone à polygone : calcul, représentation, applications. PhD thesis,

Université de Poitiers, July 2006.

http://www.maplesoft.com/support/help/Maple/view.aspx?path=EllipticE
http://www.maplesoft.com/support/help/Maple/view.aspx?path=EllipticF
http://mathworld.wolfram.com/EllipticIntegraloftheSecondKind.html
http://mathworld.wolfram.com/EllipticIntegraloftheFirstKind.html

Bibliography Page 173

[MP99] David M. Mount and Fan-Tao Pu. Binary Space Partitions in Plücker Space. In ALENEX ’99: Selected

papers from the International Workshop on Algorithm Engineering and Experimentation, pages 94–

113, London, UK, 1999. Springer-Verlag.

[MS04] A. Méndez and Mateu Sbert. Comparing hemisphere sampling techniques for obscurances

computation. In Proceedings of the International Conference on Computer Graphics and Artificial

Intelligence (3IA 2004), 2004.

[MS06] A. Méndez and Mateu Sbert. Obscurances in general environments. In Proceedings of Graphicon

2006, 2006.

[MSC03] A. Méndez, Mateu Sbert, and Jordi Catá. Real-time obscurances with color bleeding. In Proceedings

of the 19th spring conference on Computer graphics, SCCG ’03, pages 171–176, New York, NY, USA,

2003. ACM.

[MSN03] A. Méndez, Mateu Sbert, and L Neumann. Obscurances for ray-tracing. EUROGRAPHICS 2003

Poster Presentation, 2003.

[NBG02] S. Nirenstein, E. Blake, and J. Gain. Exact from-region visibility culling. In Proceedings of the

13th Eurographics workshop on Rendering, EGRW ’02, pages 191–202, Aire-la-Ville, Switzerland,

Switzerland, 2002. Eurographics Association.

[Nie92] Harald Niederreiter. Random number generation and quasi-Monte Carlo methods. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.

[Nir03] Shaun Nirenstein. Fast and accurate visibility preprocessing. PhD thesis, University of Cape Town,

October 2003. http://www.nirenstein.com.

[NN85] Tomoyuki Nishita and Eihachiro Nakamae. Continuous tone representation of three-dimensional

objects taking account of shadows and interreflection. In SIGGRAPH, pages 23–30. ACM, 1985.

[ORDP96] Rachel Orti, Stéphane Rivière, Frédo Durand, and Claude Puech. Radiosity for dynamic scenes in

flatland with the visibility complex. In Jarek Rossignac and François Sillion, editors, Computer

Graphics Forum (Proc. of Eurographics ’96), volume 16, pages 237–249, Poitiers, France, Sep 1996.

[ORM07] Ryan Overbeck, Ravi Ramamoorthi, and William R. Mark. A Real-time Beam Tracer with

Application to Exact Soft Shadows. In Eurographics Symposium on Rendering, Jun 2007.

[PD90] Harry Plantinga and Charles R. Dyer. Visibility, occlusion, and the aspect graph. International

Journal of Computer Vision, 5:137–160, 1990. 10.1007/BF00054919.

[Pel91] Marco Pellegrini. Ray-shooting and isotopy classes of lines in 3-dimensional space. In Frank

Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors, Algorithms and Data Structures, volume

519 of Lecture Notes in Computer Science, pages 20–31. Springer Berlin / Heidelberg, 1991.

10.1007/BFb0028246.

[Pel93] M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9:471–494, 1993.

[Pel97] Marco Pellegrini. Ray shooting and lines in space. In Jacob E. Goodman and Joseph O’Rourke,

editors, Handbook of Discrete and Computational Geometry, pages 599–614. CRC Press, Boca

Raton-New York, 1997.

[Pel04] M. Pellegrini. Handbook of Discrete and Computanional Geometry - second edition, pages 839–856.

2004. Ray shooting and lines in space.

Bibliography Page 174

[PSD90] Harry Plantinga, W. Brent Seales, and Charles R. Dyer. Real-time hidden-line elimination for a

rotating polyhedral scene using the aspect representation. In In Proceedings of Graphics Interface

1990, pages 9–16, 1990.

[PV93] Michel Pocchiola and Gert Vegter. The visibility complex. In Proceedings of the ninth annual

symposium on Computational geometry, SCG ’93, pages 328–337, New York, NY, USA, 1993. ACM.

[PV96] Michel Pocchiola and Gert Vegter. Topologically sweeping visibility complexes via

pseudotriangulations. Discrete Computational Geometry, 16(4):419–453, December 1996. Special

issue devoted to the proceedings of the 11th Annu. ACM Sympos. Comput. Geom. (SCG’95).

[RAMN12] Ravi Ramamoorthi, John Anderson, Mark Meyer, and Derek Nowrouzezahrai. A Theory of Monte

Carlo Visibility Sampling. ACM Transactions on Graphics, 2012.

[RB85] William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms for shading and

rendering structured particle systems. SIGGRAPH Comput. Graph., 19:313–322, July 1985.

[RGS09] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approximating dynamic global

illumination in image space. In Proceedings of the 2009 symposium on Interactive 3D graphics

and games, I3D ’09, pages 75–82, New York, NY, USA, 2009. ACM.

[Riv95] Stéphane Rivière. Topologically sweeping the visibility complex of polygonal scenes. In Proceedings

of the eleventh annual symposium on Computational geometry, SCG ’95, pages 436–437, New York,

NY, USA, 1995. ACM.

[Riv97a] Stéphane Rivière. Dynamic visibility in polygonal scenes with the visibility complex. In Proceedings

of the thirteenth annual symposium on Computational geometry, SCG ’97, pages 421–423, New

York, NY, USA, 1997. ACM.

[Riv97b] Stéphane Rivière. Walking in the visibility complex with applications to visibility polygons and

dynamic visibility. In 9th Canadian Conference on Computational Geometry, CCCG97,, Kingston,

Canada, 1997.

[RSH05] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing algorithm. In ACM

SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 1176–1185, New York, NY, USA, 2005. ACM.

[SA07] Perumaal Shanmugam and Okan Arikan. Hardware accelerated ambient occlusion techniques on

GPUs. In Proceedings of the 2007 symposium on Interactive 3D graphics and games, I3D ’07, pages

73–80, New York, NY, USA, 2007. ACM.

[SCLR99] Michael M. Stark, Elaine Cohen, Tom Lyche, and Richard F. Riesenfeld. Computing exact shadow

irradiance using splines. In Proceedings of the 26th annual conference on Computer graphics

and interactive techniques, SIGGRAPH ’99, pages 155–164, New York, NY, USA, 1999. ACM

Press/Addison-Wesley Publishing Co.

[SEA08] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson. Sample-based Visibility for Soft Shadows Using

Alias-free Shadow Maps. Computer Graphics Forum (Proceedings of the Eurographics Symposium

on Rendering 2008), 27(4):1285–1292, June 2008.

[SP94] Francois X. Sillion and Claude Puech. Radiosity and Global Illumination. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1994.

[SR00] Michael M. Stark and Richard F. Reisenfield. Exact Illumination in Polygonal Environments using

Vertex Tracing. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, pages

149–160, London, UK, UK, 2000. Springer-Verlag.

Bibliography Page 175

[SR01] Michael M. Stark and Richard F. Riesenfeld. Reflected and Transmitted Irradiance from Area Sources

Using Vertex Tracing. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques,

pages 13–24, London, UK, UK, 2001. Springer-Verlag.

[SSS74] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A Characterization of Ten Hidden-

Surface Algorithms. ACM Comput. Surv., 6:1–55, March 1974.

[SSSK04] László Szécsi, Mateu Sbert, and László Szirmay-Kalos. Combined Correlated and Importance

Sampling in Direct Light Source Computation and Environment Mapping. Comput. Graph. Forum,

23(3):585–594, 2004.

[SSZK04] M. Sattler, R. Sarlette, G. Zachmann, and R. Klein. Hardware-Accelerated Ambient Occlusion

Computation. In 9th Int’l Fall Workshop VISION, MODELING, AND VISUALIZATION (VMV), pages

119–135, Stanford (California), USA, November16–18 2004.

[Sta02] Michael M. Stark. Analytic Illumination in Polyhedral Environments (extended version). PhD

thesis, The University in Utah, May 2002.

[STN87] Mikio Shinya, T. Takahashi, and Seiichiro Naito. Principles and applications of pencil tracing.

In Proceedings of the 14th annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’87, pages 45–54, New York, NY, USA, 1987. ACM.

[Sto87] Jorge Stolfi. Oriented Projective Geometry. In Proceedings of the 3rd Symposium on Computational

Geometry (SOCG), pages 76–85, June 1987.

[Sto91] Jorge Stolfi. Oriented Projective Geometry: A Framework for Geometric Computations. Academic

Press, 1991.

[SWZ96] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte Carlo techniques for direct lighting

calculations. ACM Trans. Graph., 15(1):1–36, January 1996.

[TCM06] Marco Tarini, Paolo Cignoni, and Claudio Montani. Ambient occlusion and edge cueing to enhance

real time molecular visualization. IEEE Transaction on Visualization and Computer Graphics,

12(6), sep/oct 2006.

[Tel92] Seth Jared Teller. Visibility Computations in Densely Occluded Polyhedral Environments. PhD

thesis, University of California at Berkeley, October 1992.

[TH92] Seth J. Teller and Michael E. Hohmeyer. Stabbing Oriented Convex Polygons in Randomized O(n2)

Time. Technical Report UCB/CSD-92-669, EECS Department, University of California, Berkeley,

Jan 1992.

[TH93] Seth Teller and Pat Hanrahan. Global visibility algorithms for illumination computations. In

Proceedings of the 20th annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’93, pages 239–246, New York, NY, USA, 1993. ACM.

[TH99] Seth Teller and Michael Hohmeyer. Determining the lines through four lines. J. Graph. Tools, 4:11–

22, November 1999.

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walkthroughs. In

Proceedings of the 18th annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’91, pages 61–70, New York, NY, USA, 1991. ACM.

[Wal07] Ingo Wald. On fast Construction of SAH-based Bounding Volume Hierarchies. In Proceedings of the

2007 IEEE Symposium on Interactive Ray Tracing, RT ’07, pages 33–40, Washington, DC, USA, 2007.

IEEE Computer Society.

Bibliography Page 176

[WBWS01] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek. Interactive Rendering with

Coherent Ray Tracing. In A. Chalmers and T. Rhyne, editors, Computer Graphics Forum, volume 20,

pages 153–164. Blackwell, 2001.

[WIK+06] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G. Parker. Ray tracing animated

scenes using coherent grid traversal. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 485–

493, New York, NY, USA, 2006. ACM.

[wik12a] Degrees of Freedom. http://www.beam-wiki.org/wiki/Degrees_of_Freedom, 2012. Accessed:

29/02/2012.

[wik12b] Importance Sampling. http://en.wikipedia.org/wiki/Importan
e_sampling, 2012.

Accessed: 20/03/2012.

[wik12c] Polytope. http://en.wikipedia.org/wiki/Polytope, 2012. Accessed: 20/02/2012.

[WK06] Carsten Wächter and Alexander Keller. Instant Ray Tracing: The Bounding Interval Hierarchy. In In

Rendering Techniques 2006 - Proceedings of the 17th Eurographics Symposium on Rendering, pages

139–149, 2006.

[WSBW01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive Rendering with

Coherent Ray Tracing. In Computer Graphics Forum, pages 153–164, 2001.

[ZIK98] Sergey Zhukov, Andrei Iones, and Grigorij Kronin. An Ambient Light Illumination Model. In

Eurographics Symposium on Rendering/Eurographics Workshop on Rendering Techniques, pages

45–56, 1998.

http://www.beam-wiki.org/wiki/Degrees_of_Freedom
http://en.wikipedia.org/wiki/Importance_sampling
http://en.wikipedia.org/wiki/Polytope

Visibilité analytique dans l’espace de Plücker: De la théorie aux applications pratiques

Résumé

Cette thèse aborde le problème du calcul analytique de la visibilité depuis un polygone, dans un contexte
applicatif. Premièrement, nous mettons en évidence le fossé existant entre la théorie qui permet une élégante
description du problème, et la pratique qui peine à proposer des implémentations robustes. Par la suite, nous
nous appuyons sur le concept de classes d’équivalence de droites orientées afin de proposer deux nouveaux
algorithmes qui encodent l’occlusion et la visibilité depuis un polygone dans l’espace de Plücker. Les deux
algorithmes utilisent cette information pour exploiter la cohérence visuelle qui existe entre des points voisins
sur un même polygone et accélérer les calculs de visibilité depuis ces points. Contrairement aux méthodes
existantes, notre approche est très robuste, et l’information est encodée de manière paresseuse à l’exécution.
Les deux contextes applicatifs sont le calcul des ombres douces et de l’occlusion ambiante en synthèse
d’images. Notre algorithme d’occlusion distingue les droites occultées et non occultées. Il est utilisé pour
calculer les fragments exacts d’une source surfacique visibles depuis les points à ombrer. Notre algorithme de
visibilité enrichit cette définition et regroupe de manière analytique les rayons issus d’une surface selon les
premiers objets intersectés. Les deux algorithmes obtiennent des résultats de haute qualité sans bruit ou autre
artéfact, contrairement aux méthodes stochastiques ou basées sur une approximation de la visibilité. De plus,
nos algorithmes sont compétitifs par rapport à une solution de production standard.

Mots clés : visibilité analytique depuis un polygone, espace de Plücker, ombres douces, occlusion ambiante

Analytic visibility in Plücker space: From theory to practical applications

Abstract

This thesis addresses the from-polygon visibility problem in an applicative context. First of all, we underline
the void which exists between the theory which allows an elegant description of this problem and the practice
which struggles to provide efficient implementations. Then, we build on the theoretical concept of equivalence
classes of oriented lines in order to propose two new algorithms which analytically encode from-polygon
occlusion and from-polygon visibility in Plücker space. Both algorithms use this information to take advantage
of the visual coherence which exists between neighbor points on the same polygon and speed up individual
from-point queries. Contrary to previous methods, our approach is very robust, and the information is
encoded lazily at run time, as directed by the visibility queries. The two applicative contexts are the generation
of soft shadows and the calculation of ambient occlusion in image synthesis. Our from-polygon occlusion
algorithm distinguishes between occluded and unoccluded lines and it is used to calculate the exact fragments
of a light source which are visible from the points to shade. Our from-polygon visibility algorithm improves
this definition and analytically groups the view rays issued from a surface according to the first geometry
they intersect. Both our algorithms achieve high quality results that are not sensitive to noise or other visual
imperfections, contrary to other methods based on either sampling or visibility approximations. Moreover, our
algorithms are competitive with respect to a standard production solution.

Keywords : analytic from-polygon visibility, Plücker space, soft shadows, ambient occlusion

XLIM - UMR CNRS no 7252
123, avenue Albert Thomas - 87060 LIMOGES CEDEX

