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1
Introduction
1.1 General Ideal of Cooperative CommunicationsThe study of cooperative systems goes back to the work of Van der Meulen [1] andCover and El Gamal [2]. In cooperative networks, a set of single-antenna nodes worktogether to achieve their individual goals or ful�ll a common goal. These networks utilizethe broadcast nature of wireless signals by observing that a source signal intended fora particular destination can be overheard at neighboring nodes. These nodes, calledrelays, process the signals they overhear and transmit towards the destination. In thisway, the destination receives multiple versions of the message from the source and oneor more relays and combines them to obtain a more reliable estimate of the transmittedsignal. In other words, in these networks, the nodes share their resources using short-range communications and interact to form a distributed multi-antenna system andachieve spatial diversity. [3, 4, 5].The basic network studied in [1, 2] consists of a source, a destination, and a relaynode, where the channels are characterized by constant links and additive white Gaus-sian noise, i.e. other channel e�ects are not taken into account. In the late 1990s, thecooperative wireless communication came to the center of attention and since then, ithas been developed in many directions to battle fading, pathloss and shadowing.User cooperation is a key method to realize the potential throughput and coverageof wireless networks [4, 6]. Owing to its signi�cant advantages, cooperative communi-
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1. INTRODUCTIONcations has proved itself as a strong candidate for the underlying technology for mostfuture wireless applications, including 4G cellular networks, wireless sensor networks(IEEE 802.15.4), and �xed broadband wireless systems (WiMax, IEEE 802.16j).The contents of this chapter are as follows. First, in Section 1.2, we describe thedestructive e�ects in the wireless communication channels and then, in Section 1.3, webrie�y review the main research issues in cooperative networks. Section 1.4 describesdi�erent relay assignment criteria which covers almost all of this dissertation. Theremaining section brie�y describe network coding, fairness in cooperative networks andcross-layer design.1.2 Destructive E�ects in Wireless Fading Channels1.2.1 FadingThe study of any topic related to wireless channels, is strictly related to the e�ectsof fading as being one of the most important performance-limiting phenomena thatoccur in wireless radio channels. This e�ect was �rst observed and analyzed in tro-poscatter systems. In any wireless communication channel, there could be more thanone path over which the signal propagates between the transmitter and receiver. Thepresence of multiple paths is due to atmospheric scattering and refraction, or re�ectionsfrom surrounding objects such as hills, buildings and other facilities. At the receiver,these multipath waves with randomly distributed amplitudes and phases are combinedtogether to give a resultant signal that continuously changes in time and space. There-fore, a receiver at one location may have a signal that is totally di�erent from the signalat another location, only a short distance away, because of the change in the phaserelationship among the incoming radio waves. This causes signi�cant �uctuations inthe signal amplitude. This phenomenon of random �uctuations in the received signallevel is termed as fading. The short-term variation in the signal amplitude caused bythe local multipath is called small-scale fading, and is observed over distances of abouthalf a wavelength. On the other hand, long-term variation in the mean signal level iscalled large-scale fading. This e�ect is a result of movement over distances large enoughto cause gross variations in the overall path between the transmitter and the receiver.Large-scale fading is also known as shadowing, because these �uctuations in the mean
2



1.2 Destructive E�ects in Wireless Fading Channelssignal level are caused by the mobile terminal moving into the shadow of surroundingobjects. Due to the e�ect of multipath, a moving receiver terminal can experience sev-eral fades in a very short distance, or the vehicle may stop at a location where the signalis in deep fade. In such a situation, maintaining good communication becomes an issueof great importance.1.2.2 PathlossPathloss normally includes propagation losses caused by the natural expansion ofthe radio wave in free space, absorption losses, and losses caused by other phenomena.This loss is calculated by averaging the received power at a particular distance over asu�ciently large area. It is usually expressed in dB and can be represented by the pathloss exponent, whose value is normally in the range of 2 to 4

L = 10n log10(d) + CHere, L is the path loss in decibels, n represents the path loss exponent and d is thedistance between the transmitter and the receiver. Hence, it behaves linearly in decibels.From one point of view, pathloss is a useful phenomenon, because it limits interferenceand makes frequency reuse possible, but it rapidly diminishes the useful signal power.Hence it is an important component in the design and analysis of the link budget.1.2.3 ShadowingShadowing is one kind of deviation of the attenuation that a signal experiencesover certain propagation media and it is due to shadowing from obstacles. Shadowingis calculated by averaging the received power at a particular distance over an area ofradius of approximately shadowing coherence distance. This yields a variation in thereceived power around the pathloss. Shadowing is normally modeled as Gaussian indecibels, that is log-normal in linear scale. Since shadowing cannot be absorbed bysuitable channel codes, other techniques should be employed to combat its e�ect.
3



1. INTRODUCTION1.3 Research Issues in Cooperative Networks1.3.1 Cellular Wireless NetworksIn a very rough classi�cation, we can consider the cooperation scenarios for cellularwireless networks in three di�erent contexts [7].� Base-station cooperation� Dedicated wireless relays� Mobile relaysOne de�ning element of a cellular system is the base station that is connected to aninfrastructure known as the backhaul. This backhaul has a much higher capacity andbetter reliability than the wireless links. Other elements of the system are mobiles thatoperate subject to energy constraints (battery) as well as constraints on computationalcomplexity and the number of antennas. In each cell, there are multiple mobiles aswell as frequency reuse, which leads to intracell interference. The path-loss leads tosigni�cant variations in signal power at various points in the cell. The cooperativeradio communication may engage one or more of these de�ning elements. Within thecontext of cellular radio, cooperative communication may be used to enhance capacity,improve reliability, or increase coverage. It is usually used in the downlink.In the communication between a base station and a mobile, there are three forms forthe cooperating entity: 1) another base station; 2) another mobile; 3) a dedicated (oftenstationary) wireless relay node. This cooperating entity may have various amounts ofinformation about the source data and channel state information.Base station cooperation: Among di�erent forms of base station cooperation, thesimplest way involves the exchange of information among neighboring cells regardingtheir cell-edge nodes. It means that each of the base stations can change the frequencyof the nodes that generate and/or are harmed by the most cochannel interference. Thiskind of cooperation and its similar scenarios are in the realm of interference manage-ment.Dedicated wireless relays: In the traditional cellular networks, usually a basicvoice service is provided for all of the subscribers. Unlike such networks, broadbandwireless cellular networks promise a high data rate throughout the coverage area. Theful�llment of this promise is di�cult for the subscribers at the cell-edge. One wayto satisfy the required data rate is to decrease the cell-size; however, it requires the
4



1.4 Di�erent Approaches to Relay Assignmentinstallation of additional base stations and hence, it is a costly solution. A relay stationcan be used to improve throughput and capacity, to extend the coverage area of abase station, or to provide coverage in so-called holes. Due to above issues, the IEEE802.16 Working Group has developed the IEEE 802.16j standard with techniques thatare compatible with the WiMAX standard.Mobile relays: Mobile relays have been a hot topic for research in the last fewyears, however, compared to base station cooperation and dedicated relays, their imple-mentation is much more di�cult. Here, we try to list the distinguishing characteristicsof mobile relays. Maybe the most important di�erence between mobile relays and �xedrelays is the limitation on the power and energy of mobile relays. Usually, �xed relayscan be connected to the power network, while mobile relays rely on battery power.Considering the present day technologies, this factor is a severe limitation. This limita-tion seems to be a stable one, because on the technological horizon, no energy storagedevice with much higher energy densities is visible. Another distinguishing factor ofmost mobile nodes is the size limitation. Usually, this factor limits the number of an-tennas. Another distinguishing factor which is fairly related to size and energy, is thecomputational complexity. Considering the above issues, we can assume that the futuretechnologies in mobiles will become more computationally complex, while the poweravailable to them will grow at a much slower pace. The limited resources of a mobilestation brings forward a fundamental question on the tradeo� between the needs of thenode itself and the relaying for the other nodes.1.4 Di�erent Approaches to Relay AssignmentThe classical relay channel is usually modeled as a single-source multiple-relay single-destination network. The majority of previous literature on relay networks focuses onthis scenario. However, more general cases with multiple sources and multiple relays stilllack consideration. In these networks, when the number of relays is large, it becomes achallenge to design the network architecture. In other words, which nodes should playthe role of relays for each transmitting node? To this end, several relay assignment ap-proaches have been developed in the literature. These techniques can be classi�ed basedon their optimization criteria. Each approach has its own pros and cons. Normally, thebest criterion for one speci�c network con�guration is not necessarily the best for other
5



1. INTRODUCTIONnetwork con�gurations. In the following subsections, we give an overview of the existingrelay assignment techniques. Some of these techniques are further explored throughoutthis thesis.1.4.1 Relay Assignment Based on Max-min CriterionThe max-min criterion is an interesting criterion where the minimum signal-to-noise(SNR) of all possible permutations are compared, and the one whose minimum SNRis the maximum is selected [8]. This method achieves full diversity for all nodes in anetwork consisting of N source-destination pairs and N relays [9, 10, 11]. However, itfails to achieve diversity for a network consisting of N source nodes, N relay nodes anda single destination. This result stems from the fact that, in the second hop (relay-destination), there are only N available channels. Hence, when one of those channelsis in deep fade, the corresponding source experiences deep fading and there is no wayto escape from this situation. This fact dominates the performance of this scheme andresults in an overall diversity of one.1.4.2 Relay Assignment Based on Sum-SNR or Sum-rate CriteriaThe authors in [12, 13, 14, 15] select the relay-assignment permutation that has themaximum sum of the SNR/rate values or the maximum weighted sum of SNR/ratevalues among all permutations. The mentioned weights can impose some practicalconstraints, such as limitation on the average and maximum consumed power in therelay nodes. The optimum permutation can be found through an exhaustive searchover all possible relay-assignment permutations. However, by formulating the problemin a canonical form, it can be solved by using linear programming methods. For example,Jianwei et al. [12] propose a solution based on graph theory and simplex algorithm. Li etal. [13] and Danhua et al. [14] propose a solution based on Binary Integer Programming(BIP). Also, Yi et al. [15] provide a heuristic search algorithm to �nd a close-to-optimalsolution. However, in these papers, there is no analysis of the diversity order or theend-to-end (E2E) bit error rate (BER) in the face of relay assignment.
6



1.4 Di�erent Approaches to Relay Assignment1.4.3 Sequential RelayingIn this method, for each realization of the channels, the sources sequentially choosetheir relays from the available relay nodes [16]. The priority of the source-nodes for relayselection is according to a prede�ned order. For instance, the priority can be given tothe source that has the weakest direct channel to the destination. The diversity orderachieved by the i-th source through cooperation is M − i+ 1, where M is the numberof relays. Since each source bene�ts from both its direct channel to the destination andcooperation, this method brings a balance among di�erent sources and o�ers the samediversity to all of the sources.1.4.4 Geographical ApproachOther techniques involve using the geographical information of the nodes ratherthan the quality of the channels between di�erent nodes in the assignment process.This approach, which is related to routing techniques in ad-hoc networks and cross-layer optimization, is well studied in the literature [17, 18, 19, 20]. In these papers, itis assumed that the channels do not change fast and the resulting relay assignment isvalid for a relatively long time. In [20], Global Positioning System (GPS) informationis employed to select the closest decoding relay to the destination for forwarding parityinformation.1.4.5 Space-Time RelayingSpace-time code design criteria for relaying channels are presented in [21, 22, 23]. Inthis approach, there is no need to know the channel state information for relay assign-ment. It is shown in [24] that this system achieves full diversity. However the drawbackhere is that all of the relay nodes need to simultaneously receive and retransmit theinformation of all the sources in parallel channels. Hence this approach needs morecomplex hardware. Furthermore a strict synchronization among all nodes is requiredin order to simultaneously receive the corresponding signals of various nodes at thedestination.
7



1. INTRODUCTION1.5 Network CodingNetwork coding is a relatively young �eld of study. It goes back to the paper ofAhlswede, Cai, Li, and Yeung [25] in 2000. This �eld is a relevant topic which dealswith the quality improvement of wired and wireless communication networks in multipleways [25, 26, 27]. In classical relay networks, each relay node transmits a copy of itsreceived message. In contrast, in network coding each node is allowed to perform somecomputations. From another point of view, the classical cooperative communicationprotocols keep information of di�erent users in separate orthogonal channels, whereas,network coding, combines the information of di�erent sources in a very smart way.The classical example of network coding is the butter�y network (Fig. 1.1). In thisnetwork there are two source nodes (S1 and S2 at the top of the Fig. 1.1), where eachone has one bit of information denoted by A and B. There are two destination nodes(D1 and D2). The goal is to send A and B to both destinations. Each edge in Fig.1.1 can carry only a single bit. In classical networks, the central link is able to carry
A or B, but not both. Suppose we send A through the central link; then D1 wouldreceive A twice and not know B. Sending B poses a similar problem for D2. In thiscase, it is said that routing is insu�cient because no routing scheme can transmit both
A and B simultaneously to both destinations. By sending the sum of the bits throughthe center, we can send both A and B to both destinations simultaneously. In otherwords, we encode A and B using the formula "A + B". D1 receives A and A + B,and extracts B from these two values. This is a linear code because the encoding anddecoding schemes are linear operations.Various theoretical studies suggest that signi�cant gains can be obtained by us-ing network coding, specially in multi-hop wireless networks and for serving multicastsessions, which are examples of fast-emerging technologies and services. The mainadvantages of network coding are the smart use of resources, robustness and energye�ciency.1.6 Fairness in Cooperative NetworksWireless communications is facing the scarcity of radio resources, such as time slots,subcarriers, codes, energy or power, and so on. Due to this reason, optimal use of the
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1.6 Fairness in Cooperative Networks

Figure 1.1: Butter�y Networkresources becomes mandatory. In this context, many questions rise about the man-agement of resources. One common objective is to achieve fairness among nodes. Fortransmitting nodes, fairness is usually measured by achieving the same quality of ser-vice among all nodes. For relaying nodes, fairness is normally measured by equallydistributing the load among them.The above questions imply that, any mobile relay must balance its own needs withrelaying for other nodes. In [28], this fundamental tradeo� is addressed and it is shownthat it does not constitute a zero-sum game. This includes not only the power con-sumption and the computational burden, but also the total spectral e�ciency availableto a node. Hence, there are fundamental questions of the motivation of a relay node touse local resources for other nodes. In addition some nodes may have more chances toact as relays, or consume more power in cooperative transmissions so that their energymay be used up rapidly [29]. In this scenario, not only will the heavily-used nodessu�er from a short lifetime, but also the other nodes will not be able to achieve theexpected cooperative gain due to the lack of available relays. Besides, sel�sh users orheavily-loaded terminals may refuse to cooperate in order to save their energy.From another point of view, the same question rises about resource allocation strate-gies (Section 1.4): an important group of relay assignment strategies in the literature arethe opportunistic strategies. The term �opportunistic� means that the resources will bedynamically allocated based on users' instantaneous channel state information (CSI).
9
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1. INTRODUCTIONThe key idea here is to allocate more resources to the nodes with better conditions,which in turn leads to more e�cient resource utilization. However, an opportunisticstrategy bene�ts those users with better conditions, it can cause starvation of userswith worse channel conditions. This unfair resource allocation can severely degradethe quality of service for some users. On the other hand, those schemes that provideabsolute fairness penalize users with better conditions and reduce overall network e�-ciency. From a network operator perspective, the �rst choice (more e�cient resourceutilization) is preferable, but from the users' point of view, it is important to have aminimum guaranteed quality of service. The question is, how can the network operatormanage this trade-o�?1.7 Cross-Layer DesignRelay assignment in cooperative networks is inherently a network problem, as shownin [3, 5]. Therefore, there are some e�orts towards considering additional higher layernetwork issues in the relay assignment such as combining node cooperation with auto-matic repeat request (ARQ) in the link layer [30] or resource allocation in the MAClayer [31]. The key idea behind this approach is that the optimization across di�erentlayers can be incorporated into a uni�ed framework. The authors in [32] present a goodsurvey of the literature in this area. Consideration of the instantaneous channel qualityin the routing protocols can also optimize system performance [33]. Dynamic routingprotocols avoid links in deep fades and propose alternative reliable routes from sourceto destination. The relay assignment problem discussed in this work lies in the categoryof cross-layer optimization since it tries to �nd the best E2E route for all of the nodesin a network.
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2
Simple Two-Hop Relaying Channel
2.1 IntroductionThis Chapter introduces the basic models for user cooperation and achieves someresults which are used in the remaining parts of this thesis. Basically, there are threedi�erent relaying modes in the literature [34]: amplify-and-forward (AF), decode-and-forward (DF), and compress-and-forward (CF).� In amplify-and-forward strategy, the relay station ampli�es the received signalfrom the source node and forwards it to the destination� In decode-and-forward strategy, the relay station decodes the received signal fromthe source node, re-encodes it and forwards it to the destination� In compress-and-forward strategy, the relay station compresses the received signalfrom the source node and forwards it to the destination without decoding thesignal where Wyner-Ziv coding can be used for optimal compression.2.2 Analysis of Two-Hop Networks with AF RelayingIn this section, we revisit a two-hop network with AF relaying. Through this study,we derive some results that will be used in the following chapters to analyze the perfor-mance of some more complex relaying schemes.
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2. SIMPLE TWO-HOP RELAYING CHANNEL
Figure 2.1: Simple two-hop cooperative networkThe network under consideration comprises a single source S, a single relay R and asingle destination D (see Fig. 2.1). The objective here is to derive an exact expressionfor the probability density function (PDF) for the E2E SNR. Assume that terminal Sis transmitting a signal x(t), with an average power normalized to one. The receivedsignal at terminal R can be written as

rR(t) = hS,Rx(t) + nS,R(t) (2.1)where hS,R is the fading amplitude of the channel between terminals S and R, and
nS,R(t) is additive white Gaussian noise (AWGN) with one sided power spectral density(PSD) N0. The received signal at the relay is then multiplied by the gain G of therelay and then retransmitted to terminal D. The received signal at terminal D can bewritten as

rD(t) = hR,DG(hS,Rx(t) + nS,R(t)) + nR,D(t) (2.2)where hR,D is the fading amplitude of the channel between terminals R and D, and
nR,D(t) is an AWGN with one sided PSD N0.The overall SNR at the receiving end can then be written as

ΓS,R,D =
|hR,DGhS,R|2

[|hR,DG|2 + 1]N0
=

|hS,R|2
N0

|hR,D|2
N0

|hR,D|2
N0

+ 1
G2N0

(2.3)The equivalent SNR of the two channels is a function of the relay gain. One choice forthe gain was given in [5] to be
G2 =

1

|hS,R|2 +N0
(2.4)In this case, substituting (2.4) in (2.3) leads to an equivalent SNR, ΓS,R,D given by

ΓS,R,D =
ΓS,RΓR,D

ΓS,R + ΓR,D + 1
, (2.5)
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2.2 Analysis of Two-Hop Networks with AF Relayingwhere ΓS,R and ΓR,D are the per-hop SNRs de�ned as ΓS,R , |hS,R|2 /N0 and ΓR,D ,

|hR,D|2 /N0. We assume the channels are subject to Rayleigh fading and the averagesof ΓS,R and ΓR,D are 1/(kλ) and 1/λ, respectively. Therefore ΓS,R and ΓR,D followexponential distribution, that is ΓS,R ∼ kλe−kλγ and ΓR,D ∼ λe−λγ .This network is well studied in the literature [35, 36] however, previous works onthis subject normally neglect the 1 in the denominator of (2.5) in calculating the PDFof ΓS,R,D. Here, we give the exact cumulative density function (CDF), which is neededin the analysis in Chapter 3.Theorem 1. The CDF of the E2E SNR for a two-hop Rayleigh channel with AF relayingis
FS,R,D(γ) = 1− 2λe−(1+k)λγ

√

k (γ2 + γ)K1

(

2λ
√

k (γ2 + γ)
)

, (2.6)where Ki(x) is the ith order modi�ed Bessel function of the second kind and γdenotes the instantaneous SNR value. 1Proof. See appendix 2.4.1.Reviewing the proof of (2.6) leads us to a simple and useful result which is usedlater in this thesis. In this proof, (2.6) is achieved by integrating the PDFs of the SNRsof the two channels (S → R and R → S) over the region speci�ed by ΓS,R,D ≤ γ

FS,R,D(γ) =

∫∫

D
fX(x)fY (y)dxdy,where X and Y are used for ΓSR and ΓRD, respectively. The integration surface D(shown in Fig. 2.2), can be divided into two regions, namely, D1 and D2, where D1denotes the region {X < γ} ∪ {Y < γ} and the remaining region is denoted by D2.Denoting the result of the integral over D1 and D2 by F1(γ) and F2(γ), respectively,the following theorem results.Theorem 2. At high SNR, the CDF in (2.6) can be well approximated by the integrationover only D1. Thus, we have

FS,R,D(γ) ≈ F1(γ) = 1− exp(−(1 + k)λγ), (2.7)1. We found that this result is also calculated in a parallel work by Louie et al.[37].
13



2. SIMPLE TWO-HOP RELAYING CHANNEL

Figure 2.2: Integration surface ΓS,R,D ≤ γbecause the contribution of F2(γ) to the average error probability and diversity order isnegligible compared to that of F1(γ).Proof. See appendix 2.4.2.2.3 Introducing the Basic Model for DF RelayingDF relaying uses relays that demodulate and decode the transmitted signal fromthe source before re-encoding and retransmitting it toward the destination. In thisthesis, we follow the decode and forward relaying model proposed in [38, 39]. In thismodel, similar to AF scheme, there are two time-slots. In the �rst time-slot, the sourcebroadcasts its signal to the relay node and the destination node. During the followingtime slot, if the channel between the source and the relay node is su�ciently goodto allow for successful decoding, the relay �rst decodes and then forwards the sourceinformation to the destination, otherwise, it stays silent. In this case, the PDF of SNRfor the equivalent channel between source and the destination is
feq(γ) = f(2,D)|link down(γ)Pr[link down] + f(2,D)|link active(γ)Pr[link active], (2.8)where f(2,D)(γ) represents the PDF of the channel SNR between the second terminaland the destination. If the channel between the source and the relay is not su�cientlygood to allow for successful decoding, the conditional PDF f(2,D)|link down(γ) is δ(γ).
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2.4 AppendicesWe denote Pr[link down] by α. So, (2.8) becomes
feq(γ) = αδ(γ) + (1− α)f(2,D)|link active(γ). (2.9)

2.4 Appendices2.4.1 Proof of Theorem 1The CDF of ΓS,R,D can be calculated by the following integral over the two-dimensional region ΓS,R,D ≤ γ

FS,R,D(γ) =

∫∫

D
fX(x)fY (y)dxdy. (2.10)The integration region D in (2.10) can be divided into two regions, namely, D1 and

D2, where D1 denotes the region {X < γ} ∪ {Y < γ} and the remaining region isdenoted by D2. We denote the result of the integral over D1 and D2 by F1(γ) and
F2(γ), respectively. Since Pr{X ≤ γ} = 1 − e−kλγ and Pr{Y ≤ γ} = 1− e−λγ for D1,we have

F1(γ) = Pr{X ≤ γ}+ Pr{Y ≤ γ} − Pr{X ≤ γ, Y ≤ γ}

= 1− e−kλγ + 1− e−λγ − (1− e−kλγ)(1− e−λγ)

= 1− e−(k+1)λγ .We now introduce two new variables X1 , X − γ and Y1 , Y − γ. First let us �nd theboundary of D2 in terms of X1 and Y1. From (2.5) we have
γ =

XY

X + Y + 1
=

(γ +X1)(γ + Y1)

(γ +X1) + (γ + Y1) + 1
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2. SIMPLE TWO-HOP RELAYING CHANNELwhich yields X1Y1 = γ2 + γ. Then,
F2(γ) =

∫ ∞

0

∫ γ2+γ
y1

0
λe−λ(γ+x1)kλe−kλ(γ+y1)dx1dy1

= e−(1+k)λγ

∫ ∞

0

∫ γ2+γ
y1

0
λe−λx1kλe−kλy1dx1dy1

= e−(1+k)λγ

∫ ∞

0

(

−e
−λ γ2+γ

y1 + 1

)

kλe−kλy1dy1

= e−(1+k)λγ

∫ ∞

0
−e

−λ γ2+γ
y1 kλe−kλy1dy1 + e−(1+k)λγ

[

−e−kλy1
]∞

0

= −e−(1+k)λγ

∫ ∞

0
kλe

−λ γ2+γ
y1

−kλy1dy1 + e−(1+k)λγThe remaining integral has the following form.
Υ(a, b) =

∫ ∞

0
exp

(

− a

y1
− by1

)

dy1 =

√
a

b

∫ ∞

0
exp

(

−
√
ab

(
1

z
+ z

))

dz.By assuming z = et, we have
Υ(a, b) =

∫ ∞

−∞
e−

√
ab2 cosh tetdt.After some manipulations, we obtain

Υ(a, b) =

∫ ∞

0
e−2

√
ab cosh t2 cosh tdt.This result is the integral form of K1(x) ([40], Chapter 6.22 , Eq. (5)). Therefore,

Υ(a, b) =

∫ ∞

0
e

(

− a
y1

−by1
)

dy1 =

√

4a

b
K1

(√
4ab
)

,where a = λ
(
γ2 + γ

) and b = kλ. By using this result, we can rewrite F2(γ) as
F2(γ) = −2λe−(1+k)λγ

√

k (γ2 + γ)K1

(

2λ
√

k (γ2 + γ)
)

+ e−(1+k)λγ . (2.11)Then F (γ) = F1(γ) + F2(γ) = 1− 2λe−(1+k)λγ
√

k (γ2 + γ)K1

(

2λ
√

k (γ2 + γ)
), whichproves (2.6).2.4.2 Proof of Theorem 2In Appendix 2.4.1, F1(γ) and F2(γ) are calculated. Let us denote the average errorprobability resulting from Fi(γ) by Pi. We start with the de�nition of average error
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2.4 Appendicesprobability, that is,
PE =

∫ ∞

0
cQ(

√

Mγ)f(γ)dγ

=

∫ ∞

0

∫ ∞

√
Mγ

c√
2π

e−x2/2f(γ)dxdγwhere c and M are scalars that depend on the modulation scheme employed. Bychanging the order of integration, we have
PE =

∫ ∞

0

∫ x2/M

0

c√
2π

e−x2/2f(γ)dγdx

=

∫ ∞

0

c√
2π

e−x2/2F (x2/M)dx. (2.12)By replacing F (γ) with F1(γ), we have
P1 =

∫ ∞

0

c√
2π

e−x2/2
(

1− e−(k+1)λx2/M
)

dx

=
c

2
−
∫ ∞

0

c√
2π

e
−x2

2

(

1+
2(k+1)λ

M

)

dx

=
c

2
− c

2

√

1 + 2(k+1)λ
M

. (2.13)For high average SNR values (λ → 0) the �rst term in the Taylor expansion of (3.30)is c(k+1)λ
2M . By using Proposition 1 in [41], this result implies that the system hasa diversity order of 1. For F2(γ), since the �rst order terms cancel each other in itsTaylor expansion, the �rst term in the Taylor expansion of (2.11) in terms of λ is at least

2. Therefore, at high SNR, the contribution of F2(γ) to the average error probability isnegligible compared to c(k+1)λ
2M .

17



2. SIMPLE TWO-HOP RELAYING CHANNEL

18



3
Order-Statistical AF Relaying
3.1 introductionIn statistics, the rth order statistic of a statistical sample is equal to its rth smallestvalue. In this chapter, we address the analysis of order statistical relaying channels, i,e,we consider di�erent scenarios where order statistics appear in the PDF of the relayingchannel. Those scenarios involve: order statistical one-hop relaying channel; two-hoprelaying channel where the PDF in one hop follows order statistics; two-hop relayingchannel where the PDF in both hops follow di�erent order statistics; two-hop relayingchannel where the E2E SNR follows order statistics. These scenarios are generalizationsof the best-relay selection scheme and correspond to the case when the best relay isunavailable due to some reasons (for example, the best relay is used by other users).We derive a closed form expression for the PDF and the BER in each scenario. Wepresent several numerical results that validate the analytical results.3.1.1 General AssumptionsIn this chapter, we make the following assumptions.� Throughout this chapter, we will frequently refer to the clustering concept, i.e. weassume some terminals are clustered relatively close to each other (location-basedclustering) such that the channels between each of them and a terminal out of thecluster have the same average SNRs. This clustered structure is a common model
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3. ORDER-STATISTICAL AF RELAYINGin the literature and has been selected by a long-term routing process [42]. Thementioned routing scheme can track and take into account variations in path-lossand shadowing, hence guarantees equivalent average SNRs for the terminals inone cluster. Therefore, our cooperative scheme should combat the e�ects of smallscale fading.� All of the channels in one cluster are assumed to be independent and identicallydistributed (i.i.d.) Rayleigh-fading channels. We also assume that the channelsin di�erent clusters are independent.� The channels are slow fading and remain constant during the resource allocationprocess.� For cooperation, the traditional relay mode is employed (as in [5]). In the �rsttime slot, the source nodes transmit and the relays and the destination receive.In the second time slot, the relay nodes transmit and the destination receives.Simultaneous transmitting nodes use orthogonal channels.� All nodes are assumed to work in half-duplex mode, i.e. they cannot transmitand receive at the same time.Throughout the chapter, the PDF and the CDF of a random variable Γ are denoted by
fΓ(γ) and FΓ(γ), respectively.3.1.2 Outline and Contributions of This ChapterThe main contributions of this chapter are as follows.1. A two-hop Rayleigh channel is considered where the PDF of SNR in one of thehops follows order statistics. The PDF and BER of the equivalent E2E channelin AF mode are calculated.2. A two-hop Rayleigh channel is considered where the PDF of SNR in both hopsfollows di�erent order statistics. Again, the PDF and BER of the equivalent E2Echannel in AF mode are calculated. This scenario and the scenario in Step 1represent generalizations of the work in [43].3. A new approximation for the modi�ed Bessel function of the second hop is pro-posed. This approximation is more accurate compared to the classical approxi-mation and it is easy to handle. It can have several applications in the statisticalexpressions of AF relaying links.

20



3.1 introduction4. A two-hop Rayleigh channel is considered where the E2E PDF of SNR in AF modefollows order statistics. The BER of the equivalent E2E channel is calculated. Weremark that a similar expression was derived in [44]. However, the expressionderived in [44] is based on some approximations, and thus is accurate only at highSNRs, whereas our approach is exact and valid for all range of SNRs.5. The results of Step 4 are useful for the analysis of other relaying schemes. As anexample, they are necessary to analyze the performance of max-min relay assign-ment [11]. We discuss the application of the proposed formula in the correspondingsections.The rest of this chapter is organized as follows. Section 3.1.3 presents a short reviewof order statistics. Section 3.1.4 reviews a proposition by Zhengdao and Giannakis whichquanti�es the diversity order and the coding gain in fading channels. The performanceof the rth weakest channel among a set of N i.i.d. Rayleigh fading channels is studied inSection 3.2. The performance of the two-hop relaying channel where the PDF in one hopor both hops follow order statistics are analyzed in Sections 3.3 and 3.4, respectively.Finally, the performance of the rth weakest E2E two-hop relaying channel is analyzedin Section 3.4. Fig. 3.1 shows a comprehensive overview of di�erent scenarios analyzedin this chapter.3.1.3 Preliminary: Order StatisticsIf random variables X1,X2, ...,XN are sorted and then written as X1:N ≤ X2:N ≤
... ≤ XN :N , then Xr:N is called the rth order statistic (r = 1, ..., N). Although randomvariables Xi are assumed to be i.i.d., Xr:N are necessarily dependent because of theinequality relations among them. If Fr:N (x) denotes the CDF of the rth order statistic,then we have

Fr:N (x) = Pr{Xr:N ≤ x}

= Pr{at least r of the Xi are less than or equal to x}

=

N∑

i=r

(
N

i

)

[FX(x)]i[1− FX(x)]N−i. (3.1)
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3. ORDER-STATISTICAL AF RELAYING

Figure 3.1: Chapter outline: a) rth weakest channel among a set of i.i.d. Rayleigh fadingchannels, studied in Section 3.2; b) Simple two-hop AF cooperation studied in [35] andrevisited in Chapter 2; c) Channel in one of the hops is the maximum among N i.i.d.Rayleigh fading channels, studied in [43]; d) Channel in one of the hops follows the rthorder-statistics of the Rayleigh fading, studied in Section 3.3; e) Channels in both hopsfollow di�erent order-statistics of the Rayleigh fading, studied in Section 3.4; f) The E2Echannel is the rth order-statistics of N two-hop cooperation channels where each individualchannel is Rayleigh, studied in Section 3.5.
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3.1 introductionLet us replace FX(x) in (3.1) by the exponential PDF (which is the distribution of SNRfor a Rayleigh fading channel) to derive the CDF of the rth order statistic.
Fr:N (x) =

N∑

i=r

(
N

i

)

(1− e−λx)i(e−λx)N−i. (3.2)A useful formula to calculate the order statistics comes from the well-known relationbetween binomial sums and the incomplete beta function [45]:
Fr:N (x) = IF (x)(r,N − r + 1). (3.3)where Ip(a, b) is the incomplete beta function. By expanding and calculating the deriva-tive of (3.3) we have the following simpler formula:

fr:N (x) =
(1− e−λx)r−1(e−λx)N−rλe−λx

β(r,N − r + 1)

=
(1− e−λx)r−1e−λx(N−r+1)λ

β

=
r−1∑

i=0

1

B

(
r − 1

i

)

(−1)iλe−λx(N−r+1+i)

=

r−1∑

i=0

Λie
−λix. (3.4)where the constant β(r,N − r + 1) is the beta function which is replaced by B forsimplicity. Also 1

B

(
r−1
i

)
(−1)iλ is denoted by Λi and (N − r+ 1 + i)λ is denoted by λi.3.1.4 Preliminary: Relation Between Diversity Order and The PDFAt high SNR, the average probability of error of a transmission system in a fadingchannel is usually represented by

PE ≈ (Gcγ)
−Gd (3.5)where Gc is termed the coding gain, Gd is referred to as the diversity order, and γ denotesthe average SNR value. Throughout this dissertation, we will widely use proposition 1in [41]. According to this proposition when all the derivatives up to order (t− 1) of thePDF of SNR are null at zero, but the tth order derivative is not zero, the system has a
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3. ORDER-STATISTICAL AF RELAYINGdiversity order of (t+ 1) and the coding gain can be approximated with:
PE(γ) =

2t+
1
2aΓ(t+ 3

2 )√
2π(t+ 1)

k−(t+1)where t is the smallest power of γ in the Taylor expansion of fΓ(γ) and a is a constant:
fΓ(γ) = aγt +O(γt+ε).3.2 Order Statistical One-hop ChannelIn this section, the rth weakest channel among a set of i.i.d. Rayleigh fading channelsis studied to �nd the average probability of error. The results are necessary to analyzethe performance of various relay assignment methods in the remaining parts of thisdissertation. By using the PDF of the equivalent SNR in 3.2, we can calculate thesymbol error rate of the transmission.Theorem 1. The diversity order o�ered by Γr:N , 1 ≤ r ≤ N is equal to r and theaverage BER is

PE =

∫ ∞

0
cQ(

√

Mγ)fr:N (γ)dγ

= c

r−1∑

i=0

Λi
1

2
√

(1 + λi
2
M )

, (3.6)where c and M are constants specifying the type of modulation. For example, for BPSKtransmission c = 1 and M = 2. Here Λi and λi are de�ned the same as in (3.4).Proof. See appendix 3.6.1.Theorem 2. At high SNR, (3.6) simpli�es to
PE ≈

N∑

i=r

(
N

i

)
λi

2i+1

(2i− 1)(2i − 3)...(1)

[(N − i)λ+ 1]i+
1
2

. (3.7)Proof. See appendix 3.6.2.
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3.3 Order-Statistics in One Hop
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Figure 3.2: BER analysis of di�erent order-statistical one-hop channels when N = 4The advantage of equation (3.7) over (3.6) is that the diversity order can be evaluatedmore easily from this equation. At high SNR the diversity order is r, because jλ in
(jλ+ 1) is small compared to one. Fig. 3.2 shows this result compared with the Monte-Carlo simulation for N = 4 and r = 1, 2, 3. As we see in this �gure, (3.6) is always aperfect match for the performance of the link, and (3.7) has a good match at high SNR.3.3 Order-Statistics in One HopAssume a simple relay con�guration of one source S, one destination D and N relays
Ri, i = 1, ..., N (Fig. 3.3). The source has no direct link to the destination and thetransmission is performed only via relays. We assume that the relays are clustered closeto each other and the channels in each cluster are assumed to be i.i.d Rayleigh fading.The considered links have an average SNR equal to 1/δ for the links S → Ri and 1/λfor the links Ri → D.The resource allocator continuously monitors the quality of relay-destinations chan-nels. Due to this information, the best available relay link among Ri → D (i = 1, ..., N)
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3. ORDER-STATISTICAL AF RELAYING

Figure 3.3: A set of one source, N relays and one destination.is assigned to the source node. Without any loss of generality, we assume that the relaysare sorted in order of their SNR magnitude and Ri represents the relay with the ithsmallest received SNR at the destination. We denote the index of the best availablerelay by r, i.e. the PDF of the SNR in the second hop follows rth order-statistic ofexponential distribution (Fr:N (x)). This scenario is interesting in practical mobile andad-hoc systems where only neighboring (1 hop) channel information is available to thenodes [46]. Another application for this scenario is the analysis of relay assignmentbased on max-min criterion (Chapter 5).3.3.1 Statistical expressionsTheorem 3. The CDF of the equivalent E2E SNR received at the destination for therelaying link under consideration (S → Rr → D) can be approximated as
FX(x) ≈ 1−

r−1∑

i=0

2xΛi

√

δ

λi
e−x(δ+λi)K1

(

2x
√

δλi

)

U(x) (3.8)where, same as before 1
B

(r−1
i

)
(−1)iλ and (N − r+ i+1)λ are respectively denoted by Λiand λi and U(·) is the unit step function. Ki(x) denotes the ith order modi�ed Besselfunction of the second kind.Proof. See appendix 3.6.3.
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3.3 Order-Statistics in One HopTheorem 4. The PDF of the equivalent E2E SNR for the relaying link under consid-eration (S → Rr → D) can be approximated as
fX(x) ≈

r−1∑

i=0

2xδΛie
−x(δ+λi)

[
(δ + λi)√

δλi
K1

(

2x
√

δλi

)

+ 2K0

(

2x
√

δλi

)]

U(x). (3.9)Proof. See appendix 3.6.4.3.3.2 Average probability of errorTheorem 5. The average probability of error for the relaying link under consideration(S → Rr → D) can be approximated as
PE ≈ c

2
−

r−1∑

i=0

c

B

(
r − 1

i

)
(−1)i

(N − r + 1 + i)

1

2
√

1 + 2(δ + λi)/M
(3.10)Again, c and M are constants specifying the type of modulation, and Q(

√
Mγ) representsthe bit error probability of this modulation for Gaussian channel.Proof. See appendix 3.6.5.Although equation (3.10) does not reveal the diversity order explicitly, the diversityorder of the equivalent link is one. We will express the diversity order o�ered by (3.10)in theorem 9 in the next section.3.3.3 Simulations and discussionsComputer simulations are performed in order to validate the proposed analyticalexpressions. Fig. (3.4) compares (3.8) with Monte-Carlo simulation. The perfect matchbetween our result and the Monte-Carlo simulation is obvious from this �gure. In thissimulation, we have assumed SNR= 20 dB, N = 4, and r = 4. Fig. (3.5) showsthe average probability of error for this scenario. It is assumed that N = 7 and bothhops have the same average SNR value 1/δ = 1/λ. The simulation results refer toBPSK modulation and to di�erent values of r. This shows that for high SNRs, thereis a signi�cant di�erence between r = 1 and r = 2. This is because the �rst hopfor r = 2 achieves diversity 2, however this diversity is dumped since the second hop
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Eq. (3.8)Figure 3.4: Comparison of Equation (3.8) with Monte-Carlo simulation for N = 4 and

r = 2.(presenting a �rst order diversity) plays the role of a bottleneck, but still shows itselfas an improvement in coding gain (a horizontal shift in the BER curve). Anotherinteresting observation is that for good signal to noise ratios, the performance of therelaying link for r = 2 converges to that of r = N . It means that for high averageSNR values, we can choose the best between two randomly selected relays and theperformance will be almost the same as selection of the best relay among all the availablerelays.3.4 Order-Statistics in Both HopsIn Section 3.3, we have assumed the SNR of the channel in the �rst hop to be ex-ponentially distributed, because the relay selection was only for the second hop. In thissection, we assume that there are N orthogonal channels available for the �rst hop andeach source has the possibility of using the best available channel to its correspondingrelay. We assume that the SNR distribution for this channel (S → Rr) follows the qth
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3.4 Order-Statistics in Both Hops
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Figure 3.5: PE results generated by (3.10) compared to Monte-Carlo simulations for
N = 7 and di�erent values of r.
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3. ORDER-STATISTICAL AF RELAYINGorder-statistic of exponential distribution (Fq:N (x)). The statistical expressions (PDFand CDF), the average error probability and the diversity order for this scenario arecalculated in this section.3.4.1 Statistical expressionsTheorem 6. The CDF of the equivalent E2E SNR received at the destination for therelaying link under consideration (S → Rr → D) can be approximated as
FX(x) ≈ 1−

q−1
∑

i=0

r−1∑

j=0

2x∆iΛj
1

√
δiλj

e−x(δi+λj)K1

(

2x
√

δiλj

)

U(x) (3.11)where the constants 1
B(q,N−q+1)

(q−1
i

)
(−1)iδ and (N − q+1+ i)δ are respectively denotedby ∆i and δi.Proof. See appendix 3.6.6.Theorem 7. The PDF of the equivalent E2E SNR received at the destination for therelaying link under consideration (S → Rr → D) can be approximated as

fX(x) ≈
q−1
∑

i=0

r−1∑

j=0

2x∆iΛje
−x(δi+λj)

[

(δi + λj)
√

δiλj

K1

(

2x
√

δiλj

)

+ 2K0

(

2x
√

δiλj

)
]

U(x).(3.12)Proof. The proof is straightforwardly similar to that of Theorem 4.3.4.2 Average probability of errorTheorem 8. The average probability of error for the relaying link under consideration(S → Rr → D) can be approximated as
PE ≈ c

2
−

q−1
∑

i=0

r−1∑

j=0

c

B1B2

(
q − 1

i

)(
r − 1

j

)

(−1)i+j 1

δiλj

1

2
√

1 + δi + λj

(3.13)where the constants B(q,N − q + 1) and B(r,N − r + 1) are denoted by B1 and B2respectively.
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3.5 Order Statistical E2E Two-hop ChannelProof. See appendix 3.6.7.Theorem 9. The diversity order for the relaying link under consideration is min{q, r}Proof. See appendix 3.6.8.3.4.3 Simulations and discussionsComputer simulations are performed in order to validate the proposed analyticalexpressions. Fig. (3.6) compares (3.11) with Monte-Carlo simulation. The perfectmatch between this curve and the Monte-Carlo simulation is obvious from this �gure.Fig. (3.7) shows the average probability of error when SNR information is availablefor both hops. Again it is assumed that 1/δ = 1/λ, N = 7, q = 4 and the simulationis performed by using BPSK modulation. From this �gure, it can be inferred that byincreasing r, as far as r ≤ q there is an increase in the diversity order. The amountof this diversity order is exactly what we expected by theorem 7. We can not increasethe diversity order by increasing r beyond r = q, but this produces an improvementin the coding gain. Another interesting observation is that at high SNR values, when
r = q + 1, the performance of the relaying link converges to that of r = N . This resultshows that, when there is a bottleneck in one of the hops, (q is �xed), it is almostenough to have r = q + 1 in order to achieve the best possible performance.3.5 Order Statistical E2E Two-hop ChannelAgain we consider a network comprising a single source, a cluster ofN relays denotedby Ri, 1 ≤ i ≤ N and a single destination. We assume that the SNR information ofall links (source-relay and relay-destination) are available to the resource allocator,which can be centralized or semi distributed. We derive the PDF of the E2E SNRcorresponding to the rth weakest link, and then use that result to derive the E2E BER.The approach adopted here is di�erent from what has been presented in the literaturein the sense that it is based on the exact expression for the PDF of the two hop channels(obtained in Chapter 2).Since the N relay terminals are clustered relatively neat to each other, the source-relay channels are assumed to have the same average SNR. The same assumption holds
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Eq. (3.11)Figure 3.6: Comparison of Equation (3.11) with Monte-Carlo simulation for N = 4, r = 3and q = 2.true for the relay-destination channels. The channels are assumed to be i.i.d. Rayleighdistributed. The work in [44] is also devoted to the same problem where the authorsapproximate each two-hop SNR (S → Ri → D) by min(ΓSRi

,ΓRiD) for simplicity.Throughout our simulations, we will show that the approximation in [44] fails to achieveaccurate results for low average SNR values; furthermore its error increases by augment-ing the number of nodes in the system. Here, we use the exact SNR expression givenin (2.6), which results in more accurate formulas for all range of SNR values.Note that the PDF of the E2E SNR through each relay (source-relay-destination)follows the distribution in (2.6). Therefore, the powers of the modi�ed Bessel function
K1(x) appear in the order statistics. Because of the di�culty in dealing with the powersof the modi�ed Bessel function K1(x), we need to have a good approximation for thisfunction.
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3.5 Order Statistical E2E Two-hop Channel
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Figure 3.7: PE of equation (3.13) compared to Monte-Carlo simulations for N = 7, q = 4and di�erent values of r.
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3. ORDER-STATISTICAL AF RELAYING3.5.1 A New Approximation For K1(x)Bessel functions widely appear in statistical analysis of many applications relatedto AF cooperative networks. In order to achieve closed form expressions or simplify thestatistical expressions of these applications, some approximations for Bessel functionare required. Specially that, there is no closed form answer for the integrals containingthe powers of Bessel functions. This approximation comes with the price of inaccuracyin the results, specially at low SNR values. For example, the classic approximation forthe �rst order modi�ed Bessel function of the second kind (MBFSK) is K1(x) ≈ 1/x([47], Eq. (17.7.2.1.2)), which fails to achieve good results at low average SNR values(big argument values for MBFSK). In this part, we propose a new approximation forthe �rst order MBFSK in order to decrease the drawback of the classical approximation.The proposed approximation is
K1(x) ≈

1

x
exp

(

−x2

2

) (3.14)Fig. 3.8 compares the classic approximation with the proposed one. As it is evidentfrom this �gure, the proposed approximation is always a better approximation whereits advantage over the classical one is signi�cant for large values of its argument.3.5.2 Average Probability of ErrorPlugging (3.14) into (2.6) and then plugging the result into (3.1), the order statisticfor the two-hop channel is achieved. Therefore, the E2E BER for this system can beobtained, as follows.Theorem 10. For Γr:N , 1 ≤ r ≤ N , the E2E BER for binary phase shift keying(BPSK) transmission can be approximated as
PE ≈ 1

4
√
π

N∑

i=r

(
N

i

) i∑

j=0

(
i

j

)

(−1)j
Ai,j

Bi,j
exp

(

A4
i,j

2B2
i,j

)

k 1
4

(

A4
i,j

2B2
i,j

)

, (3.15)where
B2

i,j = λ2k (N − i+ j − u) ,

2A2
i,j =

1

2
+ (1 + k)λ

1

2
(N − i+ j) − 2λ2k(N − i+ j − u).
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3.5 Order Statistical E2E Two-hop Channel
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Figure 3.8: The common approximation of K1(x) compared with the proposed approxi-mationand k 1
4
(.) is the 1

4

th order modi�ed Bessel function of the second kind.Proof. See appendix 3.6.9. The proof for other modulation types is similar.When the average SNRs for both hops is the same, Ai,j and Bi,j simplify to A2
i,j =

1
4 + 1

2λ(1 + λ)(N − i+ j) and B2
i,j =

1
2λ

2 (N − i+ j).For very high average SNRs, the numerical calculation of (3.15) can become cumber-some, because the argument of K1/4(·) grows and the exponential term becomes verysmall. Therefore the whole expression becomes indeterminate. To avoid this problem,we propose to use the classical approximation (K1(x) ≈ 1/x) instead of that in (3.14),which is accurate enough for very high SNRs. By plugging this expression into (2.6)and plugging the result into (3.1) we obtain
fr:N(γ) ≈ (k + 1)λ

(
1− e−γ(k+1)λ

)r−1 (
e−γ(k+1)λ

)N−r+1

β(r,N − r + 1)
. (3.16)
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3. ORDER-STATISTICAL AF RELAYINGUsing this result, the E2E BER for this link turns out to be
PE ≈

r−1∑

v=0

(−1)v
(
r − 1

v

)
1

β(r,N − r + 1)(v +N − r + 1)

×
(

1− 1
√

(k + 1)λ(v +N − r + 1) + 1

)

. (3.17)Proof. See appendix 3.6.10.In order to have a simpler expression that reveals the diversity order, we obtain theE2E BER by just integrating the �rst term in the Taylor expansion of (3.16) in whichthe power of (1 − e−(k+1)λγ) is (r − 1). This term exists in all of the derivatives up toorder (r − 2). Noting that this term is null at zero, its Taylor expansion becomes
fr:N(γ) ≈ ((k + 1)λ)r

β(r,N − r + 1)
γr−1 +O(γr+ε). (3.18)Using this result, the E2E BER can be approximated as

PE ≈ ((k + 1)λ)rΓ(r + 0.5)

2
√
πrβ(N − r + 1, r)

. (3.19)Proof. See appendix 3.6.11.At high SNR, it is easily inferred from from (3.19) that the diversity order is r.Fig. 3.9 compares PE for r = 3, 4 for di�erent values of the energy-per-bit to thenoise power spectral density ratio, i.e. Eb/N0, using Monte-Carlo simulations and theexpressions in (3.15) and (3.17) where N = 4. As shown in this �gure, there is a perfectmatch between (3.15) and simulation results. Furthermore, (3.17) matches very wellthe simulation curves for high average SNRs.To emphasize the importance of obtaining the exact PDF of the E2E SNR (given in(3.15)), we compare in Fig. 3.10 the E2E BER performance in (3.15) with the solutionin [44] in which the E2E SNR is approximated by min(ΓSR,ΓRD), (please note thatin [44], this PDF is combined with the PDF of the direct source-destination channelin order to �nd the overall PDF and the E2E BER is not o�ered for the relay linkexplicitly). In this simulation, we assumed r = N and N = 1, 3, 7. We also plot inthe same �gure the Monte-Carlo simulations. As shown in the �gure, there is a perfectmatch between (3.15) and the simulations for all range of SNR and for all values of N .Whereas there is a large gap between the approximation and the simulations for low to
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Figure 3.9: Comparison of Monte-Carlo simulation with equations (3.15) and (3.17)medium SNRs when N is large. This gap, however, becomes smaller for smaller valuesof N and for higher values of SNR.3.6 Appendices3.6.1 Proof of Theorem 1: Average probability of errorLet us start with the de�nition of the average error probability:
PE =

∫ ∞

0
cQ(

√
Mx)fr:N (x)dx

= c

∫ ∞

0

∫ ∞
√
Mx

1√
2π

e−y2/2fr:N(x)dydxwhere c and M are constants determined by the type of modulation. By changing theorder of integration, we have
PE = c

∫ ∞

0

∫ y2/M

0

1√
2π

e−y2/2fr:N(x)dxdy

= c

∫ ∞

0

1√
2π

e−y2/2Fr:N (y2/M)dy. (3.20)
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3. ORDER-STATISTICAL AF RELAYING
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3.6 AppendicesBy plugging from (3.4), we have
PE = c

∫ ∞

0

1√
2π

e−
y2

2

r−1∑

i=0

Λie
−λi

y2

M dy

= c

r−1∑

i=0

Λi

∫ ∞

0

1√
2π

e−
y2

2
(1+λi

2
M

)dy

= c

r−1∑

i=0

Λi
1

√

2(1 + λi
2
M )and the proof is complete.3.6.2 Proof of Theorem 2: Average probability of errorWe start by plugging (3.2) to (3.20)

PE =

∞∫

0

1√
2π

e−
x2

2

N∑

i=r

(
N

i

)

(1− e−λx2

2 )i(e−λx2

2 )N−idx

=

N∑

i=r

1√
2π

(
N

i

) ∞∫

0

e−
x2

2 (1− e−λx2

2 )i(e−λx2

2 )N−idx. (3.21)First let us handle the internal integral, let us assume
∆(λ) =

∫ ∞

0
e−

x2

2 (1− e−λx2

2 )i(e−λx2

2 )N−idx. (3.22)By assuming high SNR (small λ), e−λx2

2 in the �rst parentheses can be approximatedby the �rst two terms in its Taylor expansion 1− λx2

2 , because the term e−
x2

2 for highvalues of x tends to zero, so we have
∆(λ) =

∫ ∞

0
e−

x2

2 (λ
x2

2
)i(e−λx2

2 )N−idx.Using integration by parts, ∫ αdβ = αβ −
∫
βdα and de�ning dβ = xe−

x2

2
[(N−i)λ+1],the �rst term (αβ) becomes

αβ =



(
λ

2
)ix2i−1 e−

x2

2
[(N−i)λ+1]

−[(N − i)λ+ 1]





∞

0

= 0,
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3. ORDER-STATISTICAL AF RELAYINGand the second term (−
∫
βdα) becomes

−
∫

βdα =

∫ ∞

0
(
λ

2
)i

2i− 1

[(N − i)λ+ 1]
x2i−2e−

x2

2
[(N−i)λ+1]dx.Thus, after integration by parts, only one term remains. We repeat the integration byparts for i times. Each time the �rst term (αβ) becomes null and �nally we have

∆(λ) =
λi(2i − 1)(2i − 3)...(1)

2i[(N − i)λ+ 1]i

∫ ∞

0
e−

x2

2
[(N−i)λ+1]dx.This integral is the integral of a Gaussian function, then we have

∆(λ) = (
λ

2
)i
(2i− 1)(2i − 3)...(1)

[(N − i)λ+ 1]i
1

2

√

2π

(N − i)λ+ 1

= (
λ

2
)i
(2i− 1)(2i − 3)...(1)

[(N − i)λ+ 1]i+
1
2

√
2π

2
.After substituting the expressions for ∆(λ) and α, (3.7) results.3.6.3 Proof of Theorem 3: CDFLet the RV s X1 and X2 denote the instantaneous SNR s of the links S → R and

R → D, respectively. Their PDFs are given by






X1 ∼ δe−δxU(x)

X2 ∼
r−1∑

i=0
Λie

−λixU(x)
(3.23)Then we have







1
X1

∼ δ
x2 e

−δ/xU(x)

1
X2

∼ 1
x2

r−1∑

i=0
Λie

−λi/xU(x)
(3.24)Similarly as [35], the moment generating function (MGF) of the variables 1/X1 and

1/X2 can be evaluated by the help of [48] (eq. (3.471.9)) and using the symmetry prop-erty of the modi�ed Bessel function (i.e., K−ν(z) = Kν(z)) given in [48](eq. 8.486.16):






M1(s) = 2
√
δsK1(2

√
δs)

M2(s) = 2
r−1∑

i=0
Λi

√
s
λi
K1(2

√
λis)

(3.25)
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3.6 AppendicesTherefore the MGF of X = (1/X1) + (1/X2) is given by
M(s) =

r−1∑

i=0

2
√
δsK1(2

√
δs)2Λi

√
s

λi
K1(2

√

λis)

=

r−1∑

i=0

4Λi

√

δ

λi
sK1(2

√
δs)K1(2

√

λis).By using [49] Eq. (13.2.20) and the di�erentiation property of the Laplace transform,we can write the CDF of X as
FX(x) = L

−1{M(s)

s
}

= 1−
r−1∑

i=0

2xΛi

√

δ

λi
e−x(λi+δ)K1

(

2x
√

λiδ
)

U(x). (3.26)3.6.4 Proof of Theorem 4: PDFWe di�erentiate the CDF in (3.8) with respect to x. For this purpose we need thederivative of the modi�ed Bessel function. This is given in [48], eq. (8.486.12):
u
d

du
K1 (u) +K1 (u) = −uK0 (u)

⇒ d

d(2x
√
λiδ)

K1

(

2x
√

λiδ
)

+
1

2x
√
λiδ

K1

(

2x
√

λiδ
)

= −K0

(

2x
√

λiδ
)

⇒ 1

2
√
λiδ

d

dx
K1

(

2x
√

λiδ
)

+
1

2x
√
λiδ

K1

(

2x
√

λiδ
)

= −K0

(

2x
√

λiδ
)

⇒ d

dx
K1

(

2x
√

δλi

)

+
1

x
K1

(

2x
√

δλi

)

= −2
√

δλiK0

(

2x
√

δλi

)

.Substituting the last result in the derivative of FX(x) we have:
fX(x) =

r−1∑

i=0

2xΛi

√

δ

λi
(δ + λi)e

−x(δ+λi)K1

(

2x
√

δλi

)

U(x) +

r−1∑

i=0

4xΛiδe
−x(δ+λi)K0

(

2x
√

δλi

)

U(x)

=

r−1∑

i=0

2xΛiδe
−x(δ+λi)

[
(δ + λi)√

δλi
K1

(

2x
√

δλi

)

U(x) + 2K0

(

2x
√

δλi

)]

U(x).
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3. ORDER-STATISTICAL AF RELAYING3.6.5 Proof of Theorem 5: Average probability of errorWe start with (3.20)
PE = c

∫ ∞

0

1√
2π

e−y2/2Fr:N (y2/M)dy. (3.27)Before plugging the expression for Fr:N (y2/M) in the above formula, we can simplifyit for high average SNR values, where K1(x) can be approximated by 1/x, (see [50],Eq. (9.6.9)). Substituting in (3.8), the CDF of the considered link can be simpli�ed asfollows
Fr:N (x) = 1−

r−1∑

i=0

2xΛi

√

δ

λi
e−x(λi+δ)K1

(

2x
√

λiδ
)

U(x)

= 1−
r−1∑

i=0

Λi
1

λi
e−x(λi+δ)U(x)

= 1−
r−1∑

i=0

1

B

(
r − 1

i

)

(−1)i
e−x(λi+δ)

(N − r + 1 + i)
U(x). (3.28)Hence, by using the last result, the average error probability PE can be evaluated as:

PE = c

∫ ∞

0

1√
2π

e−y2/2Fr:N (y2/M)dy

= c

∫ ∞

0

1√
2π

e−
y2

2



1−
r−1∑

i=0

1

B

(
r − 1

i

)

(−1)i
e−

y2

M
(λi+δ)

(N − r + 1 + i)



 dy.This result leads to:
PE =

c

2
−

r−1∑

i=0

c

B

(
r − 1

i

)

(−1)i
1

(N − r + 1 + i)

∞∫

0

1√
2π

e−(y2/2)(1+2(λi+δ)/M)dy

=
c

2
−

r−1∑

i=0

c

B

(
r − 1

i

)

(−1)i
1

(N − r + 1 + i)

1

2
√

1 + 2(λi + δ)/M
.
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3.6 Appendices3.6.6 Proof of Theorem 6: CDFThe proof of this theorem is straightforwardly similar to that of theorem 3. TheMGF of X = (1/X1) + (1/X2) is
M(s) =

q−1
∑

i=0

2∆i

√
s

δi
K1(2

√

δis)
r−1∑

j=0

2Λj

√
s

λj
K1(2

√

λjs)

=

q−1
∑

i=0

r−1∑

j=0

4∆iΛj
1

√
δiλj

sK1(2
√

δis)K1(2
√

λjs).Again by using the di�erentiation property of the Laplace transform, similar to (3.26)we have
FX(x) = 1−

q−1
∑

i=0

r−1∑

j=0

2x∆iΛj
1

√
δiλj

e−x(δi+λj)K1

(

2x
√

δiλj)

)

U(x).3.6.7 Proof of Theorem 8: Average probability of errorLet us start from equation (3.20), then we have:
PE = c

∞∫

0

1√
2π

e−y2/2Fq,r:N (y2/M)dy.Using the same simpli�cation as in (3.28) for Fq,r:N (y2/M) we have
PE = c

∞∫

0

1√
2π

e−y2/2



1−
q−1
∑

i=0

r−1∑

j=0

∆iΛj

δiλj
e−y2(δi+λj)/2



 dy

=
c
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− c

∞∫
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2π
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i=0

r−1∑

j=0

1
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(
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i

)

(−1)i
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B2

(
q − 1

j
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(−1)j
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λiδj
dy

=
c

2
− c
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1

B1B2

(
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i
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j
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δiλj

∞∫

0

1√
2π

e−(y2/2)(1+δi+λj)dy

=
c

2
−

q−1
∑

i=0

r−1∑

j=0

c

B1B2

(
q − 1

i

)(
r − 1

j

)

(−1)i+j 1

δiλj

1

2
√

1 + δi + λj

.
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3. ORDER-STATISTICAL AF RELAYING3.6.8 Proof of Theorem 9: Diversity order analysisWe introduce a new random variable Υ for the SNR of this link. Then, from (2.5)we have
Υ =

XSRXRD

XSR +XRD + 1
=

X1X2

X1 +X2 + 1where XSR and XRD are respectively replaced by X1 and X2 for simplicity. CDF of Υcan be calculated by the following integral over the region Υ ≤ x

FΥ(x) =

∫∫

D
fX1(x1)fX2(x2)dx1dx2. (3.29)Similar to Section 2.2, the integration surface D in (3.29) can be divided into tworegions, namely D1 and D2, where D1 shows the region {x1 < x} ∪ {x2 < x} and theremaining is denoted by D2 (Fig. (2.2)). Let us denote the result of integral in (3.29)over D1 and D2 by FΥ1(x) and FΥ2(x), respectively. Then for D1 we have:

FΥ1(x) = Pr{X1 ≤ x}+ Pr{X2 ≤ x} − Pr{X1 ≤ x,X2 ≤ x} (3.30)where Pr{X1 ≤ x} = Fr:N (x) and Pr{X2 ≤ x} = Fq:N (x). Di�erentiating (3.30) givesthe PDF of Υ1 around zero. Then, we can write the Taylor expansion of FΥ1(x) aroundzero. Using proposition 1 in [41] (Section 3.1.4), this result implies that the systemachieves diversity min(r, q). For D2 we have:
Pr{Υ2 ≤ x} =

∫ ∞

x

∫ x(x2+1)
x2−x

x
fX1(x1)fX2(x2)dx1dx2

=

∫ ∞

x
fX2(x2)

N∑

i=q

(
N

i

)[(

1− exp

(

−λx
(x2 + 1)

x2 − x

))i

×
(

exp

(

−λx
(x2 + 1)

x2 − x

))N−i

− (1− exp(−λx))i (exp(−λx))N−i

]

dx2.Now, let us consider the average error probability for Υ2. From (3.20) we have:
PE2 =c

∫ ∞

0

1√
2π

e−y2/2FΥ2(y
2/2)dy

=c

∫ ∞

0

1√
2π

e−y2/2

∫ ∞

y2/2
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(
N

i

)




(

1− exp

(

−λ
y2
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2

))i

(

exp

(

−λ
y2

2
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2

))N−i

−
(

1− exp

(

−λ
y2

2

))i(

exp

(

−λ
y2

2

))N−i
]

dx2dy.
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3.6 AppendicesIn the above expression, the Taylor expansion of fX2(x2) in terms of λ is of order r(because X2 is the rth order statistic). The Taylor expansion of the terms in bracketsin terms of λ is of order q. Hence the whole result of the integral (which is a numberbetween zero and one) is of order r + q at least. Hence, for large average SNR value,this term is negligible compared to the PE1 = kλmin{r,q} (resulting from (3.30)).3.6.9 Proof of Theorem 10For high SNR values, substituting K1(x) =
1
xe

−x2/2 in (2.6), yields
F (γ) = 1− exp

(
−(1 + k)λγ − 2λ2k

(
γ2 + γ

))
.Substituting this result in (3.1), gives the CDF

Fr:N (γ) =
N∑

i=r

(
N

i

)

F i(γ) (1− F (γ))N−i

=

N∑

i=r

(
N

i

) i∑

j=0

(
i

j

)

(−1)j
(

e−(1+k)λγ−2λ2k(γ2+γ)
)j (

e−(1+k)λγ−2λ2k(γ2+γ)
)N−i

=

N∑

i=r

(
N

i

) i∑

j=0

(
i

j

)

(−1)j exp
(
−(1 + k)λγ(N − i+ j)− 2λ2k

(
γ2 + γ

)
(N − i+ j)

)
.For the average error probability, we substitute this result in (3.20). This produces

PE =

∫ ∞

0

1√
2π

e−x2/2Fr:N (x2/2)dx

=

∫ ∞

0

1√
2π

e−
x2

2

N∑

i=r

(
N

i

) i∑

j=0

(
i

j

)

(−1)j

× exp

(

−(1 + k)λ
x2

2
(N − i+ j)− 2λ2k

(
x4

4
+

x2

2

)

(N − i+ j)

)

dx.This last integral has the following form.
Φ(Ai,j, Bi,j) =

∫ ∞

0
exp

(
−B2

i,jx
4 − 2A2

i,jx
2
)
dx. (3.31)Since the modi�ed Bessel function of the second kind widely appears in AF relaying[51] and by invoking Equation (2.6) which involves the modi�ed Bessel function of thesecond kind, we try to express the result of the last integral in terms of the modi�edBessel function of the second kind. By calculating the �rst and the second derivatives
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3. ORDER-STATISTICAL AF RELAYINGof (3.31), it is not so di�cult to write their linear combination such that the resultswould be zero. This results in the following di�erential equation
x2y′′ + xy′ −

(
1

16
+ x2

)

y = 0, (3.32)where y(−Z4

2 ) = 2
√
2z−1 exp (−Z4

2 )Φ(Ai,j, Bi,j). This is the general form of the modi-�ed Bessel's di�erential equation, therefore the answer turns out to be
∫ ∞

0
e(−B2

i,jx
4−2A2

i,jx
2)dx = 2−3/2Ai,j

Bi,j
exp

(

A4
i,j

2B2
i,j

)

k 1
4

(

A4
i,j

2B2
i,j

)

,where A2
i,j =

1
4 +

1
4(1 + k)λ(N − i+ j) + 1

2λ
2k(N − i+ j) and B2

i,j =
1
2λ

2k (N − i+ j).Substituting this result in PE yields (3.15).3.6.10 Proof of Equation (3.17)We have
fr:N(γ) ≈ (k + 1)λ

(
1− e−γ(k+1)λ

)r−1 (
e−γ(k+1)λ

)N−r+1

β(r,N − r + 1)

=
(k + 1)λ

β(r,N − r + 1)

r−1∑

v=0

(
r − 1

v

)

(−1)ve−γ(k+1)λ(v+N−r+1).In order to use (3.20), Fr:N (γ) is needed. For this purpose, the inner integral in
Fr:N (x2/2) =

∫ x2/2
0 fr:N(γ)dγ becomes

∆(x) =

∫ x2/2

0
e−γ(k+1)λ(v+N−r+1)dγ = − 1

(k + 1)λ(v +N − r + 1)

(

e−
x2

2
(k+1)λ(v+N−r+1) − 1

)

.Substituting this result in (3.20) and integrating over x yields (3.17).3.6.11 Proof of Equation (3.19)In order to use (3.20), we need to calculate Fr:N (x
2

2 ) =
∫ x2/2
0 f(r)(γ)dγ

Fr:N (
x2

2
) =

∫ x2/2

0

((k + 1)λ)r

β(r,N − r + 1)
γr−1dγ

=
((k + 1)λ)r

β(r,N − r + 1)r

(
x2

2

)r

.If we change the integration variable w = x2/2 and express the result of integration interms of Gamma function, (3.19) is obtained.
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4
Sequential Relaying
4.1 IntroductionIn this chapter, we propose a relay assignment scheme for a network comprising acluster of N source nodes, a cluster of N relay nodes and a single destination. Thisnetwork con�guration falls under the framework of uplink transmission in cellular net-works. As for the destination node, it could be thought of as a base-station and the
N transmitting nodes as cellular users. This was motivated by the fact that the exist-ing relay assignment schemes fail to achieve diversity for all transmitting nodes in thisnetwork con�guration.To address this issue, we propose a new and simple relay assignment scheme where,for each set of channel realizations, the sources sequentially choose their relays amongthe remaining relays. In the relay assignment process, the priority of the source nodesfor relay-selection is based on the quality of the source-destination links, i.e. the sourcenodes that have weaker source-destination channels, have higher priority in gettingassigned relays with stronger relay-destination links. It is assumed that only one relaynode is assigned to a single transmitting node, which has been shown to have thecapability to maximize the network throughput [8], [52]. As such, the number of relayscould be more than N . Since each source bene�ts from both its direct channel to thedestination and that through the assigned relay, the proposed scheme achieves balanceamong di�erent sources, and therefore all sources achieve the same diversity, as it will
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4. SEQUENTIAL RELAYINGbe shown. We propose two di�erent versions of the proposed scheme: one for AFrelaying and one for DF relaying. We statistically analyze the proposed scheme wherewe invoke important results that we derived for simple two-hop networks in Chapter 2.Speci�cally, we derive an exact expression for the PDF of the E2E SNR.4.1.1 System ModelThe relay network under consideration is shown in Fig. 4.1 where there are Nterminals in each cluster and a single destination. Without loss of generality, for eachrealization of the channels, Sr and Rr denote the terminal with the rth weakest source-destination channel (Sr → D) and the relay with the rth weakest relay-destinationchannel (Rr → D), respectively. Γi,j,D denotes the equivalent E2E SNR of the Si →
Rj → D link.We also make the following assumptions. All of the channels in one cluster areassumed to be independent and identically distributed (i.i.d.) Rayleigh-fading channels.The channels in two clusters are also independent. The channels are slow fading andremain constant during the resource allocation process. For cooperation, a two-slotrelay mode is employed (similar to Chapter 2). In the �rst time slot, the source nodestransmit and the relays and destination receive. In the second time slot, the relay nodestransmit and the destination receives. Simultaneous transmitting nodes use orthogonalchannels. All nodes are assumed to work in the half-duplex mode, i.e. they cannottransmit and receive at the same time. We assume that the SNR information of all links(ΓSi,D, ΓRj ,D and Γi,j) are available to the resource allocator, which can be centralizedor semi distributed.Throughout the chapter, the PDF and the CDF of random variable Γ are denotedby fΓ(γ) and FΓ(γ), respectively. For the joint statistics of multiple random variables,the joint PDF of Γ1,Γ2, ...,ΓN is denoted by P1,2,...,N(γ1, γ2, ..., γN ). If we integratethis function with respect to Γ1 in order to calculate the CDF, the result is denoted by
P1,2,...,N(γ1 ≤ γ, γ2, ..., γN ).4.1.2 Contributions of this Chapter1. We propose a simple relay assignment technique for the mentioned network con-�guration where it is shown that all transmitting nodes achieve space diversity.
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4.2 Proposed Sequential AF Relaying

Figure 4.1: System model. ΓSi,D: direct link to the destination; Γi,j : link betweenterminalsThe proposed technique applies to both AF and DF relaying.2. We provide rigorous performance analysis of the proposed scheme for AF and DFmodes where we derive a closed-form expression for the E2E BER performance.3. In deriving the E2E BER expression in Step 2, we invoke intermediate resultsthat we derived for a simple two-hop network comprising a source, a relay and adestination (see Chapter 2).4.2 Proposed Sequential AF RelayingIn this section, we propose a sequential relay-assignment algorithm for AF relayingand analyze its performance while invoking the results obtained in previous sections.4.2.1 Algorithm Outline1. By using the SNR information of both ΓS1,j and ΓRj ,D, terminal S1 is assignedthe best relay among Rj , for j = 1, 2, . . . , N . That is, the relay that maximizesthe E2E SNR for the weakest user is selected.2. Then S2 is assigned the best relay among the remaining relays. In general Sr isassigned the best relay among the N − r + 1 remaining relays.3. The above steps repeat until all source nodes are assigned relays.
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4. SEQUENTIAL RELAYING4.2.2 Performance AnalysisFor Sr, we assume that the best r − 1 relays have already been assigned to sources
S1, S2, . . . , Sr−1 (this assumption is not necessarily true because the best relays for twodi�erent sources are not necessarily the same). Hence in the worst case, Sr can selectthe (N − r + 1)-th best relay.Theorem 1. The CDF of the E2E SNR and the BER of the rth weakest source (Sr)are given by (4.2) and (4.3), respectively.
Feq(r)(γ) =

L∑

s=1

N∑

t=s

(
N

t

)(

1− e−λγ
)t (

e−λγ
)N−t

e−kλγ(1− e−kλγ)L−s + (1− e−kλγ)L(4.1)
=

L∑

s=1

N∑

t=s

t∑

u=0

L−s∑

v=0

(
N

t

)(
t

u

)(
L− s

v

)

(−1)u+ve−λγ
(
u+N−t+k(1+v)

)

+ (1− e−kλγ)L (4.2)
PE =

L∑

s=1

N∑

t=s

t∑

u=0

L−s∑

v=0

(
N

t

)(
t

u

)(
L− s

v

)
(−1)u+v

2
√

1 + 2
M λ
(
u+N − t+ k (1 + v)

)

+
L∑

v=0

(
L

v

)
(−1)v

2
√

1 + 2
M λv

. (4.3)where L = N − r + 1. When k = 1, i.e., the two clusters have the same average SNR,(4.2) and (4.3) simplify to
Feq(r)(γ) =

L∑

s=1

N∑

t=s

(
N

t

)(

1− e−λγ
)t+L−s (

e−λγ
)N−t+1

+ (1− e−λγ)L (4.4)
PE =

L∑

s=1

N∑

t=s

t+L−s∑

u=0

(
N

t

)(
t+ L− s

u

)
(−1)u

2
√

1 + 2
M λ(u+N − t+ 1)

+
L∑

v=0

(
L

v

)
(−1)v

2
√

1 + 2
M λv

.(4.5)respectively.Proof. See appendix 4.4.
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4.3 Proposed Sequential DF RelayingUsing this relay assignment algorithm, Sr achieves a diversity order of N−r+1. Thisresult can be easily con�rmed by considering the Taylor series expansion of (4.1) andusing Proposition 1 in [41]. According to this proposition, when the PDF of the SNRis approximated by a single polynomial term when γ → 0+ (fΓ(γ) = aγt + O(γt+ε)),the system has a diversity order of t+ 1, where ε > 0 and a is a positive constant (seeSection 3.1.4).On the other hand, the direct link Sr → D provides a diversity order equal to r[16]. Thus, using maximum ratio combining, we can conclude that the diversity orderof each terminal Sr is increased to N + 1 (because r + (N − r + 1) = N + 1 ). Thismeans that by using this relay assignment technique we can achieve full fairness amongall sources.Fig. 4.2 shows some Monte-Carlo results for the E2E BER referring to the proposedrelay assignment method when N = 4. The analytical results based on (4.5) are alsoshown for comparison. A good match is observed for high SNRs. It is also observedthat for example, the second weakest user (corresponding to r = 2), achieves diversitythree and the strongest one achieves diversity one. We remark that the direct channelbetween each source and the destination is not considered in these simulations, whichwould otherwise achieve diversity �ve for all the users. Fig. 4.3 shows some Monte-Carlosimulations for the E2E BER referring to the proposed method along with other relayassignment criteria when N = 4. In the �gure, the direct channel between each sourceand the destination is also considered. Therefore, all users achieve the same diversityorder, which is N + 1 = 5. As it is obvious from this �gure, this method outperformsother methods of relay assignment in terms of diversity order.4.3 Proposed Sequential DF RelayingIn this section, we propose a sequential relay-assignment algorithm for DF relayingand analyze its performance while invoking the results obtained in previous sections.4.3.1 Algorithm Outline1. First, S1, the source with the weakest direct channel to the destination, selectsits relay. For this purpose, if RN can successfully decode the message, it will be
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4. SEQUENTIAL RELAYING
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Figure 4.2: Monte-carlo simulation results of PE referring to di�erent users Ur, r = 2, 3, 4through the indirect link when 2N = 8 compared with equation (4.5)selected as the relay. If RN cannot successfully decode the message, we should lookat the next terminal (RN−1). If this terminal can successfully decode the message,it will be selected as the relay, otherwise, we continue in the same manner.2. After S1 selected its relay, S2 selects its relay among the remaining relays by usingthe same algorithm.3. The above steps are repeated until all source nodes are assigned relays.4.3.2 Performance AnalysisIn order to �nd an expression for PE of Sr, again we assume that the best r − 1relays have already been assigned to the previous sources. Hence, the following linksare available to Sr: Sr → Rj → D where 1 ≤ j ≤ (N − r + 1). Now we are ready toformulate the result:If RN−r+1 can successfully decode the message, this terminal will be selected asthe relay. From (2.9), it is inferred the probability of this event is 1 − α. The averageprobability of error PE for the link RN−r+1 → D is given by (3.6) or (3.7). Therefore
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4.3 Proposed Sequential DF Relaying
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Figure 4.3: Comparison of PE for di�erent relay-assignment methods for N=4 usingMonte-carlo simulationthe total probability of error for this case is (1 − α)Pe(N−r+1:N). If RN−r+1 cannotsuccessfully decode the message, we should look at the next terminal (RN−r). If thisterminal can successfully decode the message, it will be selected as the relay, the prob-ability of this event is α(1 − α), so the total probability of error for this second case is
α(1 − α)Pe(N−r+1:N). By the same reasoning, when RN−r+1−i is selected as the relay,the total probability of error is αi(1− α)Pe(N−r+1−i:N). Hence the total probability oferror is

PE =
1

2
αN−r+1 +

N−r∑

i=0

αi(1− α)Pe(N−r+1−i:N) (4.6)The �rst term 1
2α

N−r+1 represents the case when none of the relays can successfullydecode the message, because in this case, the probability of error is 1
2 . If we replace(3.7) in (4.6), we have
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4. SEQUENTIAL RELAYING

Figure 4.4: Block diagram of DF with complete SNR information showing the selectionprobability of each relay
PE =

1

2

(

1− e−kλγth
)N−r+1

+
N−r∑

i=0

(

1− e−kλγth
)i

e−kλγth

×
N∑

j=N−r+1−i

(
N

j

)
λj

2j+1

(2j − 1)(2j − 3)...(1)

[(N − j)λ+ 1]j+
1
2

(4.7)After some manipulations, it is found that the smallest power of λ in the Taylor seriesexpansion of (4.7) is N − r+1. This result implies that the system has a diversity orderof N − r + 1. On the other hand, similar to the AF mode, Sr bene�ts from its directchannel to the destination. Since the direct link Sr → D achieves diversity r, its totaldiversity order is N +1. Figure (4.5) shows the probability of error for the indirect linkin a system with 2N = 8 and r = 2. In this simulation, similar to [38], we have assumed
γth = 0dB. The diversity order 3 is obvious from this picture. This �gure also showsthat by increasing the SNR, equation (4.7) becomes a better approximation for PE .4.4 Appendix: Proof of Equation (4.2)Let us sort the elements of Γj,D and form their order statistics. Without loss ofgenerality, let us assume that Rj has the jth weakest SNR in the second hop. For the
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4.4 Appendix: Proof of Equation (4.2)

6 8 10 12 14 16 18
10

−4

10
−3

10
−2

10
−1

E
b
 / N

0
 (dB)

P E

 

 

Monte−Carlo
Equation (4.7)

Figure 4.5: Probability of error for two-hop link with DF and complete SNR information(2N = 8 and r = 2)sake of abbreviation we denote the SNR of the link Rj → D by Yj (i.e. Y1 denotes theweakest SNR in the second hop). For the proposed method of relay-assignment, theequivalent CDF of the SNR for Sr is
Feq(r)(γ) = Pr{max Γr,i,D

1≤i≤N−r+1

≤ γ}

= Pr{Γr,1,D ≤ γ,Γr,2,D ≤ γ, ...,Γr,N−r+1,D ≤ γ}.The distributions of the SNR for the second channel of the considered links are depen-dent (Yj 's are order statistics). In order to �nd Feq(r)(γ) we should integrate the jointPDF over all of the contributing channels in the space speci�ed by
Γr,1,D ≤ γ,Γr,2,D ≤ γ, ...,Γr,N−r+1,D ≤ γ.
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4. SEQUENTIAL RELAYINGIn the �rst step we calculate the probability of Γr,1,D ≤ γ by using the approximationin Theorem 2. For brevity, let L = N − r + 1. Then,
Pr{Γr,1,D ≤ γ}

= P1,2,...,L:N (y1 ≤ γ, y2, ..., yL) Pr{Γr,1 ≥ γ}+ P1,2,...,L:N (y1 ≤ y2, y2, ..., yL) Pr{Γr,1 ≤ γ}

= P1,2,...,L:N (y1 ≤ γ, y2, ..., yL) e
−kλγ + P1,2,...,L:N (y1 ≤ y2, y2, ..., yL) (1− e−kλγ),where each term is the integral over one of the strips in D1. For simplicity,let us denote this result by a1,2(y2, ..., yL, γ) and denote ∫ γ

0 a1,2 (y2, ..., yL, γ) dy2 by
A1,2 (y2 ≤ γ, ..., yL, γ). In the second step we calculate the CDF of Γr,2,D ≤ γ again byusing the approximation in Theorem 2. That is,
Pr{Γr,1,D ≤ γ,Γr,2,D ≤ γ} = A1,2 (y2 ≤ γ, y3, ..., yL) e

−kλγ +A1,2 (y2 ≤ y3, y3, ..., yL) (1− e−kλγ).By replacing for A1,2 we have
Pr{Γr,1,D ≤ γ,Γr,2,D ≤ γ} = P1,2,...,L:N (y1 ≤ γ, y2 ≤ γ, y3, ..., yL) e

−kλγ+

+ P1,2,...,L:N (y1 ≤ γ, y2 ≤ y3, ..., yL) e
−kλγ(1− e−kλγ)

+ P1,2,...,L:N (y1 ≤ y3, y2 ≤ y3, y3, ..., yL) (1− e−kλγ)2.For simplicity, let us denote this result by a1,2,3 (y3, ..., yL, γ) and denote
∫ γ
0 a1,2,3 (y3, ..., yL, γ) dy3 by A1,2,3 (y3 ≤ γ, ..., yL, γ). In the third step we calculate theCDF of Γr,3,D ≤ γ by using the approximation in Theorem 2
Pr{Γr,1,D ≤ γ,Γr,2,D ≤ γ,Γr,3,D ≤ γ}

= A1,2,3 (y3 ≤ γ, y4, ..., yL, γ) e
−kλγ +A1,2,3 (y3 ≤ y4, y4, ..., yL, γ) (1− e−kλγ).Substituting for A1,2,3, we have

Pr{Γr,1,D ≤ γ,Γr,2,D ≤ γ,Γr,3,D ≤ γ}

=P1,2,...,L:N (y1 ≤ γ, y2 ≤ γ, y3 ≤ γ, y4, ..., yL) e
−kλγ

+ P1,2,...,L:N (y1 ≤ γ, y2 ≤ γ, y3 ≤ y4, y4, ..., yL) e
−kλγ(1− e−kλγ)

+ P1,2,...,L:N (y1 ≤ γ, y2 ≤ y4, y3 ≤ y4, y4, ..., yL) e
−kλγ(1− e−kλγ)2

+ P1,2,...,L:N (y1 ≤ y4, y2 ≤ y4, y3 ≤ y4, y4, ..., yL) e
−kλγ(1− e−kλγ)3.
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4.4 Appendix: Proof of Equation (4.2)We should proceed in the same manner, but the results can be simpli�ed in each stepusing
Pi,j:N (yi ≤ γ, yj ≤ γ) = Pj:N (yj ≤ γ) (4.8)

Pi,j:N (yi ≤ γ, yj → ∞) = Pi:N (yi ≤ γ) . (4.9)Hence if yN−r+2 tends to in�nity, for the last step we have
Feq(r)(γ) = PL:N (yL ≤ γ) e−kλγ + PL−1:N (yL−1 ≤ γ) e−kλγ

(

1− e−kλγ
)

+

+ PL−2:N (yL−2 ≤ γ) e−kλγ(1− e−kλγ)2 + · · ·

+ P1:N (y1 ≤ γ) e−kλγ(1− e−kλγ)L−1 + (1− e−kλγ)L.This result can be written in the following shortened form
Feq(r)(γ) =

L∑

s=1

Fs:N (γ) e−kλγ(1− e−kλγ)L−s + (1 − e−kλγ)L

=

L∑

s=1

N∑

t=s

(
N

t

)(

1− e−λγ
)t (

e−λγ
)N−t

e−kλγ(1− e−kλγ)L−s + (1− e−kλγ)L

=
L∑

s=1

N∑

t=s

t∑

u=0

L−s∑

v=0

(
N

t

)(
t

u

)(
L− s

v

)

(−1)u+ve

(

−λγ
(
u+N−t+k(1+v)

))

+ (1− e−kλγ)L.Based on this result, we can easily calculate the average error probability. For the lastterm, we can proceed by using integration by parts. Finally we have
PE =

L∑

s=1

N∑

t=s

t∑

u=0

L−s∑

v=0

(
N

t

)(
t

u

)(
L− s

v

)
(−1)u+v

2
√

1 + 2
M λ
(
u+N − t+ k (1 + v)

)

+

L∑

v=0

(
L

v

)
(−1)v

2
√

1 + 2
M λvThe proof for k = 1 follows the same lines.
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4. SEQUENTIAL RELAYING
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5
Relaying Based on Max-minCriterion
5.1 IntroductionThis chapter deals with relay assignment in cooperative networks based on themax-min criterion. First, we consider this problem in a network comprising multiplesource-destination pairs and multiple relays. We need each pair of the nodes to beassigned a relay and each relay serves only one pair. Instead of comparing all possiblesource-relay combinations, a simple algorithm is proposed in order to �nd the optimumrelay assignment permutation based on the max-min criterion. The simplicity of theproposed algorithm stems from the fact that it involves simple matrix manipulations,as opposed to examining all possible permutations, which can be prohibitively complexfor large networks. Then it is proved that the optimum permutation based on thiscriterion achieves maximum diversity. Di�erent adaptations of the proposed algorithmare developed to solve the relay assignment problem in di�erent network con�gurations,i.e. clustered two-hop networks and clustered multi-hop networks. In carrying outthe analysis, we show that the PDF of the E2E SNR after relay assignment can beexpressed as a weighted sum of the order statistics of the PDF of the individual E2Elinks. Since the analytical calculation of the weighting coe�cients in the mentioned
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5. RELAYING BASED ON MAX-MIN CRITERIONweighting average becomes di�cult, we propose an approximation in order to calculatethe mentioned weighting coe�cients. The validity of the analytical results is con�rmedby computer simulations.5.1.1 Motivation and Contributions of This ChapterAmong all of the relay-assignment approaches (described in Section 1.4), the max-min criterion is an interesting choice because it can achieve full diversity in many scenar-ios, but �nding the optimal permutation based on this criterion is prohibitively complex.Consider a clustered network where there are N source-destination pairs and M relaysin the network where N ≤ M . The problem is how to assign a relay to each source-destination pair in order to achieve the highest possible diversity order. We assumethat each relay can serve only one pair, so that the network achieves fairness amongdi�erent relays. Finding this optimal permutation through exhaustive search can bevery di�cult. 1 For example, for a set of 20 source-destination pairs and 20 relay nodes,about 2.4×1018 di�erent permutations should be compared in order to �nd the optimalpermutation. Another challenge here is that the statistical analysis of the optimal per-mutation, which is known to be untractable because of the correlation among di�erentpermutations.In this chapter, we address this problem by proposing a simple approach thatachieves the optimal solution without going through all permutations, the traditionalway. The proposed algorithm is presented in the context of a network which consists ofmultiple source-destination pairs and multiple relays. This network con�guration hasseveral applications in ad-hoc networks and wireless sensor networks. For instance, insensor networks, there are various spatially distributed sensors to monitor environmen-tal and physical conditions, such as temperature, sound, vibration, and so on. Eachsensor needs to send its information to its corresponding destination. The same conceptapplies to ad-hoc networks and similar network con�gurations.The contributions of the chapter are summarized as follows.1. We consider a clustered two-hop network in which the number of relays is greaterthan or equal to the number of transmitting pairs. We propose an algorithm to1. Later in this chapter, we will prove that the optimal permutation based on max-min criterionbrings full diversity.
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5.2 The Max-min Criterion�nd the optimal permutation based on the max-min criterion whereby a singlerelay is assigned to a pair.2. We show that the proposed algorithm achieves full spatial diversity, i.e., the num-ber of available relays for all pairs.3. We provide a framework for analyzing the proposed algorithm, which is based onthe so-called weighting functions. With this framework, we are able to obtain veryaccurate expressions for the bit error rate performance.4. We adapt the proposed algorithm to clustered three-hop and multi-hop networkswith favorable results, i.e., we show that the maximum spatial diversity is achievedby all pairs.5. The proposed algorithm achieves the optimal solution at a lower complexity. Itcan also be adapted to other network structures.The rest of this chapter is organized as follows. Section 5.2 describes some pre-liminaries. The proposed algorithm for di�erent network con�gurations is studied inSections 5.3-5.5. Each section includes the diversity analysis of the corresponding pro-posed algorithm. Section 5.3 also includes the bit-error-rate (BER) analysis of theproposed algorithm.5.2 The Max-min CriterionThe detailed description of the max-min criterion is as follows.� For each channel realization, the E2E SNR of all the links is calculated.� We refer to each set of the one-to-one assignments of relays to the source-destination pairs as a �permutation�. The minimum E2E SNR for each permuta-tion is calculated.� Among all the permutations, the one with the largest minimum SNR is selected.If two permutations satisfy the above condition, the permutation which maximizesthe second minimum SNR for the selected links is selected.
61



5. RELAYING BASED ON MAX-MIN CRITERION

Figure 5.1: System model consisting of N source-destination pairs and M relays5.3 Clustered Two-hop Network5.3.1 System ModelConsider the network illustrated in Fig. 5.1, which consists of N source-destinationpairs and M relays where N ≤ M . Each source-destination pair should communicatethrough one relay node using orthogonal channels and each relay can serve only onepair. We assume that there is no direct path between the sources and destinations.However, the relay assignment algorithm proposed here can also be applied to the casewhen there is a direct path. Each of the nodes is equipped with a single antenna andoperates in a half-duplex mode. We assume that a two-hop relay mode is employed. Inthe �rst hop, the source terminals transmit using orthogonal channels and the relaysreceive. In the second hop, the relay terminals transmit and the destinations receive(again by using orthogonal channels). We assume that a centralized or semi distributedresource allocation is employed and the SNR values of all of the channels are known tothe resource allocator. We admit that this assumption requires adding some overheadand the amount of this overhead increases with the size of the network. Thereforedi�culty of the implementation of this scheme grows with the number of the nodes,which is a known problem for such networks.Each relay node retransmits the received signal to the corresponding destinationusing either amplify-and-forward (AF) or decode-and-forward (DF) relaying. The pro-
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5.3 Clustered Two-hop Networkposed relay assignment algorithm can be applied to AF or DF cooperation scheme.However, in this chapter, we consider the AF case. Furthermore, the relays transmittheir signal using orthogonal channels (either in time or frequency).There are NM elements in each realization of the channels which can be written ina matrix form as
Γ =









Γ1,1 Γ1,2 . . . Γ1,M

Γ2,1 Γ2,2
. . . ...... ... . . . ...

ΓN,1 . . . . . . ΓN,M









,where Γi,j represents the equivalent SNR of the link Si → Rj → Di. Assignment ofrelay j to source-destination pair i corresponds to the selection of Γi,j from the abovematrix.5.3.2 Proposed Algorithm For N = MSince each relay should be assigned to one and only one source-destination pair, weshould select only one element from each row and from each column of this matrix.There are N ! di�erent permutations. Let us sort the elements of Γ and denote thesorted elements by Γi:N2 , where Γ1:N2 and ΓN2:N2 denote the smallest element and thelargest element of the matrix, respectively. Here is a rough description of the proposedalgorithm to select the optimal permutation based on the max-min criterion.I) Starting from the smallest element Γ1:N2 , in each step one element is labeled in Γ.II) At any moment, if there is only one remaining element in any row or column of thematrix (which is not labeled), this element is selected for the optimal permutation.In this case we delete the corresponding row and column of the matrixIII) At any moment, if the number of rows or columns with at least one unlabeledelement is less than the number of needed elements, we should go back to thestate when the last element was labeled. We should select this last element forthe optimal permutation and continue from that step.In the following, we give a pseudocode for the proposed algorithm.1. Ω = {} % The set of the elements of the optimal permutation2. Set nΩ = 0 % Number of the elements in Ω
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5. RELAYING BASED ON MAX-MIN CRITERION3. Set mrow = N % Number of rows in Γ that have unlabeled elements4. Set mcol = N % Number of columns in Γ that have unlabeled elements5. Find the smallest element of Γ which is not labeled before (Γr:N2), and label it6. Save the present state of the variables (Ω, r, and the labeled elements in Γ) asstate r7. While {there is only one remaining (unlabeled) element in any row and columnof Γ}(a) Ω = Ω
⋃ {the mentioned remaining element}(b) Delete the row and column corresponding to the selected element(c) Recalculate nΩ, mrow, and mcol(d) If mrow < N − nΩ or mcol < N − nΩ� Restore the last saved state (Γ, Ω, and r from Step 6)� Delete the last saved state (the total number of the saved states is decreasedby one)� Ω = Ω
⋃ {the last labeled element}� Recalculate nΩ8. r = r + 19. If r < N2 go to step 5Example 1: Consider the matrix Γ in Fig. 5.2. Di�erent steps resulting from theapplication of the above algorithm to this matrix are shown in this �gure. The �rst rowor column which satis�es the condition in Step 7 is the second row. So Γ2,4 is selectedfor the optimal permutation. This means relay 4 is assigned to pair 2. After deletingthe second row and the forth column, the 3-by-3 matrix in Fig. 5.2 results. The Secondrow or column which satis�es the condition in Step 7 is the last row and Γ4,3 = 28 isselected. This means that relay 3 is assigned to pair 4. By deleting the correspondingrow and column, a 2-by-2 matrix results, from which, Γ1,2 = 19 and Γ3,1 = 29 areselected. This implies that relays 2 and 1 are assigned to pairs 1 and 3, respectively.Example 2: Now consider the matrix Γ in Fig. 5.3. The �rst row or column whichsatis�es the condition in Step 7 is the �fth column. So Γ4,5 = 18 is selected for theoptimal permutation. After deleting the fourth row and the �fth column, a new 4-by-4matrix results where two elements (Γ2,2 = 33 and Γ2,3 = 34) satisfy the condition in
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5.3 Clustered Two-hop Network
Figure 5.2: Example of relay assignment algorithm for N = 4 and M = 4. The labeledelements are highlighted and the selected elements are shown by solid line circles. The �rstrow that has only one unlabeled element is the second row, and the �rst selected elementis Γ2,4 = 14Step 7. By selecting any of them (for example Γ2,3 = 34) and deleting the correspondingrow and column, the new 3-by-3 matrix in Fig. 5.3 results. As suggested by this �gure,all of the elements in the second column are already labeled, but we need three otherelements for the optimal permutation. It means that the remaining elements are notenough for the selection process. In this case, we should go back and restore the lastsaved state. The mentioned state was saved when we labeled Γ5,5 = 17 in the matrix.By starting from that step, we also select this element (Γ5,5 = 17) for the optimalpermutation (the right side matrix in Fig. 5.3). From this point, the remaining stepsof applying the algorithm is straightforward.Optimality analysis of the algorithm: At the end of the algorithm, let us denotethe r-th selected element for the optimal permutation by Γsr:N2 where r = 1, 2, 3, · · · , N .On the other hand, there are some elements that are labeled in the matrix (in Step 5),but are not selected for the optimal permutation. Let us assume that whenever anelement Γt:N2 is labeled in the matrix, it is labeled at time instant t. We denote the setof the elements which are selected for the optimal permutation after time instant t by

Ft. Then for all Γi,j ε Ft we have Γi,j > Γt:N2 . (5.1)Because in each step of the above algorithm, the elements for the optimal permutationare selected among the remaining (unlabeled) elements of Γ.Theorm 1. The proposed algorithm leads to picking the optimal permutation based onthe max-min criterion, which guarantees the maximum diversity for all pairs.
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5. RELAYING BASED ON MAX-MIN CRITERION

Figure 5.3: Example of relay assignment algorithm for N = 5 and M = 5. After selecting
Γ4,5 = 18 and Γ2,3 = 34 and deleting the corresponding rows and columns of the matrix,we cannot select three elements form remaining unlabeled elements (the middle matrix). Inthis case, we need to restore the last saved state and select Γ5,5 = 17 instead of Γ4,5 = 18.Proof. We know that each permutation has one element in each row and each column.The event in Step 7-d checks if there are enough unlabeled elements in the matrix toselect relays for all of the remaining pairs. Let us denote this event by H. First we willprove that Γs1 belongs to the optimal permutation. One of the following events is true.(A) Γs1 was the last remaining element in its row or column. In this case, this elementis the maximum in its row or column. We denote the last labeled element in thisrow or column by Γt1 . From (5.1), we know thatFor all Γi,j ε Ω we have Γi,j > Γt1 .This clearly means that by selecting Γt1 or any other element in this row, theselected permutation has a smaller minimum and it is not optimal.(B) Γs1 was not the last remaining element in its row or column, but it was the largestelement in its row or column that makes event H possible. According to the
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5.3 Clustered Two-hop Networkargument in (A), the smaller elements of this row cannot be selected for theoptimal permutation. On the other hand, according to the validation of the event
H (Step 7-d in the proposed algorithm), by selecting any larger element fromthe mentioned row or column, we cannot select Γsr , r = 2, 3, · · · , N from theremaining elements of the matrix, i.e. at least one element will be selected from
Γi:N2 , i < s1. Hence, in this row, only Γs1 satis�es the necessary conditions forthe optimal permutation.Similarly, we can prove that other Γsi , i = 2, 3, · · · , N belong to the optimal permuta-tion.5.3.3 Proposed Algorithm For N < MWhen the number of relays is larger than that of source-destination pairs, some ofthe relays do not contribute to the optimal permutation, which means that no elementswill be selected from M − N columns of the matrix. Based on this observation, weextend the algorithm in Section 5.3.1 as follows.1. Ω = {} % The set of the elements of the optimal permutation2. Set nΩ = 0 % Number of the elements in Ω3. Set mrow = N % Number of rows in Γ that have unlabeled elements4. Set mcol = M % Number of columns in Γ that have unlabeled elements5. Find the smallest element of Γ which is not labeled before (Γr:N2), and label it6. Save the present state of the variables (Ω, r, and the labeled elements in Γ) asstate r7. Check if� {A: There is any row with only one remaining element}� {B: There is any column with only one remaining element}8. While A or B(a) If Ai. Ω = Ω

⋃ {the mentioned remaining element}
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5. RELAYING BASED ON MAX-MIN CRITERIONii. Delete the row and column corresponding to the selected elementiii. Recalculate nΩ, mrow, and mcoliv. If mrow < N − nΩ or mcol < N − nΩ� Restore the last saved state (Γ, Ω, and r from Step 7)� Delete the last saved state� Ω = Ω
⋃ {the last labeled element}� Recalculate nΩv. Recalculate A and B(b) If B� If {there are already N −M columns with all elements labeled}i. Ω = Ω
⋃ {the mentioned remaining element}ii. Delete the row and column corresponding to the selected elementiii. Delete the mentioned N −M columns of Γ, this deletion happens onlyonce.iv. Recalculate nΩ, mrow, and mcolv. If mrow < N − nΩ or mcol < N − nΩ� Restore the last saved state similar to the steps in 9a-ivvi. Recalculate A and B9. r = r + 110. If r < N2 go to Step 5In the above algorithm, whenever there is one remaining element in any row of thematrix, it is selected for the optimal permutation, but we do not select any elementfrom the �rst M −N completely labeled columns of the matrix (those columns havingall their elements labeled). Because the last labeled element from any other column ofthe matrix is larger than all of the elements of the �rst M −N labeled columns.Example 3: Fig. 5.4 shows an example for this case. In this �gure, the �rst labeledcolumn is the �rst column and we do not select any element from this column. Afterthe deletion of this column, the �rst row or column that is going to be labeled, is the�rst row and Γ1,2 = 21 is selected.
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5.3 Clustered Two-hop Network
Figure 5.4: Example of relay assignment for N = 3 and M = 4. The �rst labeled columnis the �rst column and the �rst selected element is Γ1,2 = 21 which is Γ12:125.3.4 Weighting Coe�cientsThe proposed relay assignment algorithm in the last section suggests a new way tocalculate the PDF and average probability of error when the max-min criterion is used.Let us start with an example. Consider a network consisting of 2 source destinationpairs and 2 relays. There are totally 4 E2E SNR value which form the 2-by-2 matrix

Γ. We know that there are totally 4! = 24 possible orderings to put Γi:4, i = 1, · · · , 4in Γ (see Fig. 5.5). In each ordering, two elements out of four are selected based onmax-min criterion. Γ1:4 and the element which is in the same diagonal with Γ1:4 arenever selected. By averaging over all orderings, the possibility of the presence of each
Γi:4, i = 2, 3, 4 in the optimal max-min permutation is 2/3 where Γ1:4 is never selectedfor the optimal permutation. Therefore, we have foptimal(γ) =

1
2

4∑

r=2

2
3fr:4(γ). Becauseof the symmetry property of the network, the PDF of the SNR of the source-destinationpair Si → Rx → Di will be independent of i. Generally speaking, we have the followinglemma which is the basis for our analysis.Lemma 1. After ordering the E2E SNRs, the optimal permutation is comprised ofsome of those ordered SNRs, which are picked according to the proposed algorithm. Theindices of those selected elements are only a function of the ordering of the elements in

Γ.Proof. Assume that we change the value of the variables Γi,j , but we keep their ordering,i.e. if Γi,j was greater than Γk,l, it would still be greater. Obviously, nothing changes inthe algorithm of Section 5.3.3. Hence, if Γi,j was selected for the optimal permutation,it would still be selected. In other words, as far as the ordering of the elements in the
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5. RELAYING BASED ON MAX-MIN CRITERION

Figure 5.5: Di�erent orderings of 4 SNR values in a 2-by-2 matrixmatrix is preserved, the same elements will be in the optimal permutation.Lemma 1 means that for an in�nitely large number of channel realizations, the SNRof Si → Rx → Di will be Γr:NM for a �xed percentage of channel realizations. Thismeans that the PDF of the SNR for the E2E channel assigned to Si can be expressedin terms of the order-statistical PDFs, i.e. foptimal(γ) is a weighted sum of the PDFs of
Γr:NM , 1 ≤ r ≤ NM . Let us denote these weighting coe�cients by wN,M (r). Then wehave

foptimal(γ) =

N2
∑

r=1

wN,M (r)fr:NM(γ), (5.2)where foptimal(γ) is the PDF of the E2E SNR of each pair which is a result of relay-assignment based on max-min criterion. The same conditions hold true for the averageprobability of error, that is
PE(optimal) =

N2
∑

r=1

wN,M (r)PE(r:NM), (5.3)where PE(r:NM) is given by (3.15). Here, we assume k = 1 for simplicity (that is thechannels in both hops have the same average SNR values).
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5.3 Clustered Two-hop Network
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Figure 5.6: Monte-Carlo simulation of the average error probability compared with theMonte-Carlo simulation of equation (5.3)Example 3: Consider a network with N = M = 3. For this network w3,3(r) iscalculated by counting all possible combinations of 9 elements in a 3×3matrix: w3,3 = [0

0 0.0238 0.0952 0.1540 0.1762 0.1836 0.1836 0.1836]. Using AF cooperationscheme, the results of Monte-Carlo simulation of the average error probability for thisnetwork are shown in Fig. 5.6. The results are compared with (5.3). This �gureshows an example of the validity of this analysis. This �gure also illustrates PE(r:9)for r = 3, 4, ..., 9. Obviously there is a very good match between the Monte-Carlosimulation and PE(optimal) in (5.3). The small di�erence between the two curves risesfrom the approximation error in (3.15).5.3.5 Performance Analysis: Diversity Order and BERLemma 2. By using the max-min criterion for relay assignment, the diversity orderfor all users equals M .
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5. RELAYING BASED ON MAX-MIN CRITERIONProof. The algorithm proposed in Section 5.3.3 shows that the �rst M − 1 smallestelements are never selected for the optimal permutation. On the other hand, the diver-sity order o�ered by Γr:NM is r [16]. Since in the summation formula (5.3), the lowestdiversity order is dominant, it is concluded that the overall diversity order of the systemwill be equal to M .Equation (5.3) and Lemma (2) constitute a new simple way to estimate the BER ofthe network. It is enough to calculate the NM weights for any given N and M . Thiscalculation is independent of the average SNR values and can be done only once. Then,by using (5.3), the overall BER rate is calculated.Fig. 5.7 shows the average probability of error for the proposed method and that ofmax-sum-SNR relaying and sequential relaying. In sequential relaying, the priority ofrelay selection is given to the source that has the weakest direct channel to the desti-nation. However, this �gure only shows the performance achieved through cooperation.In this �gure, N = M = 3. From the �gure it can be inferred that, for sequential re-laying, the user that gets assigned its relay �rst enjoys the maximum diversity, whereasthe diversity degrades for other users. As for the max-sum-SNR criterion, the diversityachieved is one, as expected. Contrary to those schemes, the proposed scheme achievesmaximum diversity for all pairs. On the other hand, compared to using the max-mincriterion with suboptimal relay selection [9], an improvement of about 1.5 dB is observedin this example.5.3.6 Calculation of wN,N(r)In order to complete the analytical study of the PDF and BER for the optimalpermutation, we need to �nd wN,M (r). Fig. 5.8 shows wN,N for di�erent values of N .These values are achieved by Monte-Carlo simulation. Since the analytical calculationof wN,M (r) is very di�cult for general values of N and M , we propose a general �t inorder to approximate wN,M(r) for N = M . According to the algorithm in Section 5.3,the M − 1 smallest elements are never selected, i.e. wN,N (r) = 0 for r ≤ N − 1. For
N ≤ r ≤ 2N − 3 we have

wN,N (r) =

(
r − 1

N − 1

)

PN
N , (5.4)
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5.3 Clustered Two-hop Network
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Sequential, 3rd sourceFigure 5.7: Comparison of BER for di�erent relay assignment scenarioswhere
PN
N = N2(2N − 2)(N − 2)!/

(
N2!

(N2 −N)!

)

. (5.5)To elaborate on (5.4), note that wN,N (r) represents the possibility of having Γr:N2in the optimal permutation. The only possibility of selecting Γr:N2 , N ≤ r ≤ (2N − 3)for the optimal permutation is when it is in the same row or column with N−1 elements(Γi:N2 , i ≤ (2N − 4)). There are ( r−1
N−1

) combinations of the elements for this purpose.Let PN
N represent the probability of N speci�c elements being in the same row or columnin an N×N matrix. As for (5.5), suppose that N elements (Γr:N2 plus (N−1) elementsamongst N ≤ r ≤ (2N − 4)) are speci�ed and we are looking for the number of ways toput them in the same row or column. The �rst element in the set can be put anywherein the matrix (a total of N2 places). Suppose that this element is placed in row i andcolumn j. Since the second element must be in the same row or column with the �rstone, there are only 2N −2 remaining places for the second element (N −1 places in row

i and N − 1 places in column j). Putting the second element in the matrix, the rowor column is speci�ed; hence there are only N − 2 remaining places for the remaining
N − 2 elements. Therefore the total number of ways is basically the numerator of (5.5).
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Figure 5.8: Monte-Carlo simulation of wN,M for di�erent values of N
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5.4 Extension to Clustered Three-hop NetworksAs for the denominator in (5.5), it shows the number of di�erent possibilities for Nelements to be placed in the matrix.For larger values of r, the analytical calculation of wN,N (r) becomes more di�cult.In this part we propose an approximation in order to �nd wN,N (r) for general values of
N . For N ≤ r ≤ 2N − 3, we have wN,N (r + 1) − wN,N (r) =

( r
N−2

), i.e., the di�erencebetween two successive weighting coe�cients is a binomial coe�cient. It means that thebehavior of wN,N (r) in this interval is like the integral of a Gaussian function (binomialcoe�cients can be well approximated by a Gaussian function). This property does nothold true for other values of r (2N − 2 ≤ r ≤ N2), however Monte-Carlo simulationsshow that the integral of the Gaussian function is a very good approximation for wN,N (r)for all r, i.e.,
wN,N (r) = αN

∑N2

i=N
exp(−(r − µ(N))2/σ(N)2). (5.6)Fig. 5.9 shows the Monte-Carlo simulations of the backward di�erence of wN,N fordi�erent values of N . Based on this approximation (Gaussianity of the backward dif-ference of wN,N (r)), a general approximation for wN (r) for any r and N = 3, 4, 5, 6 isfound. This approximation is as follows.

µ(N) = 0.9297N2 − 2.148N + 2.488,

σ(N) = (−818.2N2 + 18640N − 37940)/(N + 8618),

α(N) = 1/
∑N2

r=N
exp(−(r − µ(N))2/σ(N)2).The Monte-Carlo simulations in Fig. 5.10 con�rm the validity of the proposed approx-imation for other values of N = 7, 8, 9.5.4 Extension to Clustered Three-hop NetworksIn this section we extend the proposed algorithm to three-hop clustered networks.We capitalize on the results presented in the previous section, but with less detail.5.4.1 System ModelConsider the network shown in Fig. 5.11, which consists of N source-destinationpairs, M1 relays in the �rst hop and M2 relays in the second hop, where N ≤ M1, M2.
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Figure 5.9: Monte-Carlo simulation of wN,N(r) − wN,N(r − 1) for di�erent values of N
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5.4 Extension to Clustered Three-hop Networks

Figure 5.11: System model consisting of N source-destination pairs and M1 relays in the�rst cluster and M2 relays in the second clusterThere is no constraint on the values of M1 and M2. This model is a generalization of themodel in Section 5.3.3. Again each source-destination pair communicates through onerelay node in each hop using orthogonal sub-channels. Since there are M1 relays in the�rst hop and M2 relays in the second hop, there are totally N ×M1×M2 di�erent E2Echannels in the network and there are M1!M2!/|M1 − M2|! di�erent relay assignmentpermutations.5.4.2 Proposed AlgorithmSince there are N × M1 × M2 distinct E2E channels in total, their SNRs can bewritten in a three dimensional matrix Γ, where Γi,j,k represents the equivalent SNRof the link Si → R1,j → R2,k → Di. Assignment of the relays R1,j and R2,k to thesource-destination pair i corresponds to the selection of Γi,j,k from the above matrix.The relay assignment algorithm is as follows.For N = M1 = M2: We propose a modi�ed adaptation of the algorithm in Section5.3.2. Again we sort the elements of Γ and �nd Γr:NM1M2 . By starting from thesmallest element Γ1:NM1M2 , each element is labeled in Γ. Since every relay is presentin every permutation, the optimal permutation has one element in any plane of thematrix. Therefore, at any moment, if there is only one remaining element in any planeof Γ, this last element belongs to the optimal permutation. In this case, we delete thecorresponding planes of this element from the matrix and start from the beginning.Hence, the size of each dimension of the matrix Γ is reduced by one (See Fig. 5.12).
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5. RELAYING BASED ON MAX-MIN CRITERION

Figure 5.12: Example of relay assignment algorithm for N = M1 = M2 = 4. Eachelement shows the SNR of one end-to-end link Si → R1,j → R2,k → Di. Here the selectedelement is Γ2,2,2 and the corresponding planes are shown by solid cubes.For N ≤ M1,M2: When the number of relays is larger than that of source-destination pairs, some of the relays do not contribute to the optimal permutation.The number of those relays is M1 −N in the �rst hop and M2 −N in the second hop.This means that no elements should be selected from the �rst K columns of Γ that haveall elements labeled, where K = M1M2 −N2. In other words, when all of the elementsof a column are labeled and this column is among the �rst K columns that have allelements labeled, we delete this column without selecting any element, because thereare still better choices.5.4.3 Performance AnalysisEach channel in the second hop R1,j → R2,k contributes to N E2E channels. So theelements of the matrix Γ are not independent. This means that we cannot use (5.2)and (5.3) in order to express the statistical behavior of the optimal answer. However,we can still calculate the diversity order o�ered by the optimal permutation.Lemma 3. The diversity order o�ered by the optimal permutation is min{M1,M2}.
78

5/figures/N_M1_M2_3D.eps


5.5 Extension to Clustered Multi-hop NetworksProof. The �rst selected element of the optimal permutation is the largest element inits plane. If this plane is a horizontal plane (denoted by Γi,:,:), the selected elementwill be larger than M1M2 independent elements in this plane. If this plane is a ver-tical one shown by Γ:,j,: (or Γ:,:,k), its elements can be partitioned into M1 (or M2)non-overlapping sets where each set contains N dependent subchannels, which are in-dependent from the subchannels in other sets. In this case, the selected SNR is largerthan M1 (or M2) independent SNRs. We can conclude that the selected element isat least larger than min{M1,M2} independent elements. Hence its diversity order is
min{M1,M2}.Fig. 5.13 shows some Monte-Carlo simulation results for the average error proba-bility referred to this scenario. The simulations are performed by using BPSK mod-ulation and contain the results for four di�erent values of M1 and M2. By assuming
N = M1 = M2 = 2, diversity two is achieved. By increasing the number of relays inthe second hop to M2 = 3, still the diversity order is two, but there is a signi�cantimprovement in the coding gain. This is because the second relay-cluster provides adiversity order of three. However, this diversity order is dominated by that of the �rstrelay-cluster, which plays the role of a bottleneck, but still provides some coding gains.Another increase in the number of the relays in the second relay-cluster (M2 = 4) willnot bring a signi�cant improvement in the performance of the network. Besides that,in high SNR region, when M2 = M1 +2, the performance of the relaying link convergesto that of M2 = M1 + 1. This result shows that, when there is a bottleneck in one ofthe hops (M1 is �xed), it is almost enough to have M2 = M1+1 in order to achieve thebest possible performance. An increase in the diversity order occurs when we increasethe number of relays in both relay-clusters.5.5 Extension to Clustered Multi-hop NetworksThe proposed algorithm of Section 5.4 can be easily generalized in order to �nd theoptimal permutation for multi-hop clustered network. Consider an L+1-hop clusterednetwork consisting of N source-destination pairs andMi relays in the relay-cluster i, 1 ≤
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Figure 5.13: BER for a three-hop network with di�erent number of relays in each relay-cluster
i ≤ L. Again each source-destination pair communicates through one relay node in eachrelay-cluster using orthogonal sub-channels. There are totally N ×M1×M2× . . .×MLdi�erent E2E subchannels in the network. In this case we have an (L+ 1)-dimensionalmatrix Γ.5.5.1 Proposed AlgorithmAgain we sort the elements of Γ and form Γr:NM1...ML

. By starting from the smallestelement Γ1:NM1...ML
, each element is labeled in the matrix Γ.For N = M1 = M2 = ... = ML: At any moment, if there is only one remainingelement in any L-dimensional sub-matrix of Γ, this last element belongs to the optimalpermutation. In this case we delete the corresponding sub-matrices of this element from

Γ and start from the beginning. Hence the size of each dimension of the matrix Γ isreduced by one.For N ≤ M1, ...,ML: When the number of relays is larger than the number ofsource-destination pairs, some of the relays do not contribute to the optimal permuta-
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5.5 Extension to Clustered Multi-hop Networkstion. The number of those relays is Mi−N relays in relay-cluster i. This means that noelements should be selected from the �rst K (L− 1)-dimensional sub-matrices Γi,:,:,...,:that have all elements labeled where K = M1 . . .ML − NL. In other words, when allof the elements of a sub-matrix Γi,:,:,...,: are labeled and this sub-matrix is among the�rst K sub-matrices that have all elements labeled, we delete this sub-matrices withoutselecting any element, because there are still better choices.5.5.2 Performance AnalysisSimilar to Section 5.4.3, the dependency among di�erent permutations makes thestatistical analysis very di�cult. However, generalizing the proof for Lemma 3, we canconclude that the proposed algorithm achieves the diversity min{M1,M2, . . . ,ML}.
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6
Relaying Based on Max-SumCriterion
6.1 IntroductionIn this chapter, we consider relay the assignment problem in cooperative networksbased on maximizing the sum of rate values (sum-rate) and maximizing the sum ofSNR values (sum-SNR). We aim to analyze the performance of these schemes. Thesecriteria are interesting in the sense that they aim the maximal use of the resources. Ouranalysis in this chapter is also motivated by the fact that there are many formulationsin the literature to �nd the optimum answer based on the above criteria. We also aim topropose a new method to �nd the optimal permutation based on the above mentionedcriteria.6.1.1 Contributions of This ChapterThe contributions of this chapter are summarized as follows.1. We show that the scheme based on sum-rate achieves full diversity, assuming thatall of the E2E channels are independent, but the scheme based on sum-SNR doesnot achieve diversity, however, it achieves a good coding gain at low average SNRvalues.
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6. RELAYING BASED ON MAX-SUM CRITERION2. In order to perform this analysis, �rst we propose a new method to calculate thediversity order of fading channels at high SNR values. In the previous method,the diversity order was expressed in terms of the Taylor expansion of the randomSNR′ s PDF only at the origin [41] (see Section 3.1.4). However that method failsto calculate the diversity when the PDF is not well behaved at the origin. Ourproposed method does not su�er from the same problem.3. We propose a new method to �nd the optimal permutation based on sum-SNRor sum-rate criteria. We introduce a Vehicle Routing Problem (VRP) formula-tion for the problem at hand which can be e�ciently solved with Binary IntegerProgramming (BIP). The proposed formulation can solve many clustering andrelay assignment problems in a uni�ed framework. Two di�erent scenarios aredescribed to show this �exibility. In the �rst scenario, only one of the nodes ineach cooperating set bene�ts from the cooperation whereas in the other scenarioboth nodes bene�t.The rest of this chapter is organized as follows. Section 6.2 proposes a new methodto calculate diversity order in fading channels. Section 6.3 analyzes the performance ofrelay assignment when sum-rate is the optimization criterion. Section 6.4 performs thesame analysis when max-sum-SNR is used as optimization criterion. Some simulationresults are provided in these two sections to show the validity of the analysis. Section6.5.1 reviews the vehicle routing problem. Section 6.5.2 describes how to formulate theclustering and relay assignment as a VRP problem. Some simulation results are providedin Section 6.5.3 where a complementary discussion about this method is presented.6.2 A New Method To Calculate Diversity OrderIn this section, we propose a new method to calculate the diversity order of fadingchannels at high SNR values. The average error probability of a fading channel is de�nedas
PE =

∫ ∞

0
Q(
√

kϕ)fΦ(ϕ)dϕ. (6.1)where fΦ(ϕ) is the PDF of SNR and the Q-function represents the instantaneous errorprobability. Here, k is a �xed value which is determined by the modulation format.
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6.2 A New Method To Calculate Diversity OrderThere are some cases that the average error probability cannot be found in closed form.In these cases, one solution is to evaluate the integral numerically. Although in thisway we have the numerical evaluation of the system performance, in general it does noto�er clear insights to the behavior of the system. Zhengdao and Giannakis [41] triedto �ll this gap between analytical results and intuition with approximate (yet accurate)parameterizations. Their method quanti�es average error probability and outage, bothin terms of diversity gain (diversity order) and coding gain. This analysis is motivatedby the fact that the outage probability pattern behaves similarly to that of the averageerror rate and they have the same slope. Their analysis allows us to gain insights tothe factors determining the performance in the presence of fading. In [41], the Taylorseries of the PDF of the SNR around origin is used to determine the diversity order,however, when the PDF is not well behaved at the origin, this method fails to analyzethe performance.To solve this problem, we propose a simple method to calculate diversity order overfading channels. The proposed method works anywhere the method of [41] works (codedor uncoded, coherent or noncoherent; and over di�erent types of fading channels suchas Rayleigh, Nakagami-m, Nakagami-n, and Nakagami-q types). It also works in somecases where (or when) the PDF of SNR is not well behaved or its Taylor expansion doesnot exist.Throughout this section, the instantaneous and the average SNR at the receiver aredenoted by ϕ and 1/λ, respectively. Here, 1
λ is the average SNR which is a deterministicpositive quantity, and ϕ is a channel-dependent nonnegative random variable (E[ϕ] =

1
λ). We are interested in large SNR performance, which is equivalent to λ → 0+ (λ tendsto 0 from above). The instantaneous error probability is given by PE(ϕ) = Q

(√
kϕ
),where k is a positive �xed constant and speci�es the type of modulation.Lemma 1. Consider single-user uncoded communication over a random fading chan-nel. We assume that the PDF of SNR for λ → 0+ can be approximated by a single"polynomial" term as

fΦ(ϕ, λ) = a(ϕ)λt + b(ϕ, λ)
︸ ︷︷ ︸

O(λt+ε)
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6. RELAYING BASED ON MAX-SUM CRITERIONwhere ε > 0. The parameter t quanti�es the order of smoothness of fΦ(ϕ, λ) in termsof λ at the origin. In this case, the achieved diversity order is t.Proof. We have
PE(λ) =

∫ ∞

0
Q(
√

kϕ)fΦ(ϕ)dϕ

=

∫ ∞

0
Q(
√

kϕ)
(
a(ϕ)λt + b(ϕ, λ)

)
dϕ

=Aλt + B(λ)
︸ ︷︷ ︸

O(λt+ε)This result obviously shows that the systems achieves diversity t.The problem is that, both proposition 1 in [41] and also the above Lemma sometimesfail to determine the diversity order of the system under consideration. This is because
fΦ(ϕ, λ) is not well behaved at λ → 0+. Moreover, let us assume that the �rst nonzeroterm in the Taylor expansion of fΦ(ϕ) in terms of λ is in�nite. In this case, the followingproposition can be useful.Proposition 1. Consider a single-user uncoded communication over a random fadingchannel. The system achieves diversity t, if and only if

lim
λ→0+

fΦ(ϕ, λ)

fΦ(ϕ, kλ)
= kt (6.2)Proof. Diversity order is the slope of BER curve in the logarithmic scale.

Gd = lim
λ→0+

log
(

PE(λ)
PE(kλ)

)

log(k)
. (6.3)We can multiply both numerator and the denominator of (6.2) by Q(

√
kϕ) and integratethem in the same interval without changing the result. This is because both operationsare linear. Then we have

lim
λ→0+

∫∞
0 Q(

√
2ϕ)fΦ (ϕ, λ) dϕ

∫∞
0 Q(

√
2ϕ)fΦ (ϕ, kλ) dϕ

= kt
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6.3 Diversity Analysis of the Sum-rate Criterionor equivaently
lim

λ→0+

PE(λ)

PE(kλ)
= ktPlugging this result into (6.3) yields Gd = t. On the other hand, the inverse is obvious,because it is the de�nition of the diversity order.6.3 Diversity Analysis of the Sum-rate CriterionWireless communication is facing the scarcity of radio resources, such as time slotsand subcarriers. Due to this reason, optimal use of the resources becomes mandatory. Inthe context of relay-assignment, this issue leads us to one widely accepted and commonlyused criterion which is sum-rate (see Section 1.4.2). According to this criterion, theresources should be assigned in a way that that the overall rate of information exchangedin the network is maximized. Nowadays, there are many formulations in the literatureto implement this criterion. In this section, we aim to statistically analyze the diversityorder achieved by this criterion. In our analysis, the PDF turns out not to be wellbehaved at the origin. Consequently, the proposition in [41] cannot be used to calculatethe diversity order, but our proposed method in Section 6.2 shows that full diversity isachieved.6.3.1 Problem FormulationConsider the network shown in Fig. 6.1-a. There are N source-destination pairsand N relays where each source-destination pair can use only one relay to transmit itsdata to the destination. Suppose that general assumptions are similar to the generalassumptions in previous sections (i.i.d. Rayleigh fading channels in each cluster andtwo-hop AF relaying mode). We know that at high average SNR values, each E2Echannel can be well approximated by another Rayleigh fading channel (see Eq. (2.7)).For the E2E channels in Fig. 6.1-b, the same statement can be true if the channelsin the second hop do not experience fading. In the network in Fig. 6.1-b, there are

N source nodes, N relay nodes and a single destination. This scenario corresponds to�xed relays that have very good direct channels to the destination. The problem is to
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6. RELAYING BASED ON MAX-SUM CRITERION

Figure 6.1: Network modelcalculate the diversity achieved by each source through the use of sum-rate criterion.Our analysis holds true for both networks in Fig. 6.1, but to be more speci�c, weconsider the network of Fig. 6.1-b.The source node set and relay node set are respectively denoted by S = {S1, ..., SN}and R = {R1, ..., RN}. We denote the SNR of the channel Si → Rj by Γi,j . In this way,all SNR values of the channels in the �rst hop form the matrix Γ = [Γi,j]. Since eachrelay should be assigned to one and only one source, we should select one Γi,j in eachrow and column of matrix Γ.6.3.2 Diversity Order AnalysisTheorem 1. The relay-selection based on the sum-rate criterion achieves full diversity,assuming that all entries of the matrix Γ are independent:Proof. The proof is based on induction. First we show that the statement is true for
N = 2. For this case, consider the matrix of SNR values Γ

Γ =






Γ1,1 Γ1,2

Γ2,1 Γ2,2





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6.3 Diversity Analysis of the Sum-rate CriterionThe maximum information exchange rate for this network is
I =






log (1 + Γ1,1) log (1 + Γ1,2)

log (1 + Γ2,1) log (1 + Γ2,2)




Using sum-rate criterion, we should compare

log (1 + Γ1,1) + log (1 + Γ2,2) ≷ log (1 + Γ1,2) + log (1 + Γ2,1) (6.4)Simplifying (6.4) yields
(1 + Γ1,1) (1 + Γ2,2) ≷ (1 + Γ1,2) (1 + Γ2,1)Let us denote the SNR of the channel which is assigned to S1 by Γ1, i.e. the goalof this analysis is to �nd the diversity order achieved by Γ1. According to the sum-rate criterion, Γ1,1 is assigned to S1 if (1 + Γ1,1) (1 + Γ2,2) > (1 + Γ1,2) (1 + Γ2,1) andotherwise, Γ1,2 is assigned to S1. For the sake of abbreviation, let us denote 1 + Γ1 by

Φ1. We also assume that 1 + Γ equals to the following matrix.
1 + Γ =






X W

Z Y




Hence, the CDF of SNR for Φ1 can be written as follows:

Pr {Φ1 < ϕ} = Pr {X < ϕ,XY > WZ}+Pr {Y < ϕ,XY < WZ}The symmetric nature of the problem implies that
Pr {Φ1 < ϕ} = 2Pr {X < ϕ,XY > WZ} (6.5)In order to calculate (6.5), we should integrate the joint PDF over a four-dimensionalspace speci�ed by X < ϕ and XY > WZ. This space is shown in Fig. 6.2 assumingthat X is �xed. The upper limits of integration are speci�ed by:

XY > WZ ⇒ w < xy/z

XY > Z ⇒ z < xy
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Figure 6.2: Integration space for Eq. 6.6Now, we can write Pr {X < ϕ,XY > WZ} as follows
Pr(X < ϕ,XY > WZ) =

∫ ϕ

1

∫ ∞

1

∫ xy

1

∫ xy/z

1
fW (w)fZ(z)fY (y)fX(x)dwdzdydx(6.6)Di�erentiating (6.6) with respect to ϕ yields the PDF:

fΦ(ϕ) =
dPr(X < ϕ,XY > WZ)

dϕ
= ϕe−λ(ϕ−1)

∫ ∞

1

2nd integral
︷ ︸︸ ︷
∫ ϕy

1

∫ ϕy/z

1
fW (w)fZ(z)fY (y)dw

︸ ︷︷ ︸

1st integral dz dy

︸ ︷︷ ︸

3rd integral (6.7)The integration space is shown in Fig. 6.2. We do the integration step-by-step. For the�rst integral, we have:
∫ ϕy/z

1
fw(w)dw =

∫ ϕy/z

1
λe−λ(w−1)dw = − exp

(

−λ
(ϕy

z
− 1
))

+ 1
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6.3 Diversity Analysis of the Sum-rate Criterionand for the the second integral we have
∫ ϕy

1

∫ ϕy/z

1
fz(z)fw(w)dwdz

=

∫ ϕy

1

(

− exp
(

−λ
(ϕy

z
− 1
))

+ 1
)

λ exp (−λ (z − 1)) dz

= −
∫ ϕy

1
λ exp

(

−λ
(

z +
ϕy

z
− 2
))

dz

︸ ︷︷ ︸

A(ϕ,y)

+

∫ ϕy

1
λ exp (−λ (z − 1)) dz

= A (ϕ, y)− exp (−λ (ϕy − 1)) + 1To the best of our knowledge, a closed form solution for the third step of integrationis not known. Therefore, in order to proceed, we divide the integration interval of thethird integral into two intervals
∫ ∞

1

∫ ϕy

1

∫ ϕy/z

1
fy(y)fz(z)fw(w)dwdzdy

=− 1

ϕ+ 1
e−λ(ϕ−1) + 1 +

∫ ∞

1/ϕ
Aλe−λ(y−1)dy −

∫ 1

1/ϕ
Aλe−λ(y−1)dy

=− 1

ϕ+ 1
e−λ(ϕ−1) + 1

−
∫ ∞

1/ϕ

∫ ϕy

1
λ exp

(

−λ
(

z +
ϕy

z
− 2
))

λe−λ(y−1)dzdy

+

∫ 1

1/ϕ

∫ ϕy

1
λ exp

(

−λ
(

z +
ϕy

z
− 2
))

λe−λ(y−1)dzdyLet us denote the last two integrals by B(ϕ). Then by changing the order of integrations,we have:
B (ϕ) =−

∫ ∞

1

∫ ∞

z/ϕ
λ exp

(

−λ
(

z +
ϕy

z
− 2
))

λe−λ(y−1)dydz

+

∫ x

1

∫ 1

z/ϕ
λ exp

(

−λ
(

z +
ϕy

z
− 2
))

λe−λ(y−1)dydz

=−
∫ ∞

1
λ2e−λ(z−3)

∫ ∞

z/ϕ
exp

(

−λ
(ϕy

z
+ y
))

dydz

+

∫ ϕ

1
λ2e−λ(z−3)

∫ 1

z/ϕ
exp

(

−λ
(ϕy

z
+ y
))

dydz
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=−

∫ ∞

1
λe−λ(z−3)

[

−exp
(
−λy

(ϕ
z + 1

))

ϕ
z + 1

]∞

z/ϕ

dz

+

∫ ϕ

1
λe−λ(z−3)

[

−exp
(
−λy

(ϕ
z + 1

))

ϕ
z + 1

]1

z/ϕ

dz

=−
∫ ∞

1
λe−λ(z−3)

exp
(

−λ
(

1 + z
ϕ

))

ϕ
z + 1

dz

+

∫ ϕ

1
λe−λ(z−3)

− exp
(
−λ
(ϕ
z + 1

))
+ exp

(

−λ
(

1 + z
ϕ

))

ϕ
z + 1

dz

=−
∫ ∞

ϕ
λ

(
z

ϕ+ z

)

exp

(

−λ

(

z +
z

ϕ
− 2

))

dz

︸ ︷︷ ︸

C(ϕ)

−
∫ ϕ

1
λ

(
z

ϕ+ z

)

exp
(

−λ
(

z +
ϕ

z
− 2
))

dz

where
C(ϕ) = −

∫ ∞

ϕ
λ

(

1− ϕ

ϕ+ z

)

exp

(

−λz

(

1 +
1

ϕ

))

e2λdz

= −



−
exp

(

−λz
(

1 + 1
ϕ

))

1 + 1
ϕ





∞

x

e2λ +

∫ ∞

x
λ

(
ϕ

ϕ+ z

)

exp

(

−λz

(

1 +
1

ϕ

))

e2λdz

= − ϕ

ϕ+ 1
exp (−λ (ϕ+ 1)) e2λ +

∫ ∞

x
λ

(
ϕ

ϕ+ z

)

exp

(

−λz

(

1 +
1

ϕ

))

e2λdz

Now, substituting B(ϕ) and C(ϕ) in fΦ(ϕ) yields
fΦ(ϕ) =2ϕe−λ(ϕ−1)

(

− 1

ϕ+ 1
e−λ(ϕ−1) + 1− ϕ

ϕ+ 1
e−λ(ϕ+1)e2λ

)

+ 2ϕe−λ(ϕ−1)

(∫ ∞

x
λ

(
ϕ

ϕ+ z

)

exp

(

−λz

(

1 +
1

ϕ

))

e2λdz −
∫ ϕ

1
λ

(
z

ϕ+ z

)

exp
(

−λ
(

z +
ϕ

z
− 2
))

dz

)
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6.3 Diversity Analysis of the Sum-rate Criterion
=2ϕe−λ(ϕ−1)

(

1− e−λ(ϕ−1)
)

︸ ︷︷ ︸

D1(ϕ)

+ 2ϕe−λ(ϕ−1)

(∫ ∞

ϕ
λ

(
ϕ

ϕ+ z

)

exp

(

−λz

(

1 +
1

ϕ

))

e2λdz

)

︸ ︷︷ ︸

D2(ϕ)

+ 2ϕe−λ(ϕ−1)

(

−
∫ ϕ

1
λ

(
z

ϕ+ z

)

exp
(

−λ
(

z +
ϕ

z
− 2
))

dz

)

︸ ︷︷ ︸

D3(ϕ)

(6.8)In this result, there is no Taylor series in terms of λ for D2(ϕ) and D3(ϕ), but Propo-sition 1 applies and for each of them, we have
lim

λ→0+

Di(ϕ, λ)

Di(ϕ, kλ)
= k2, i = 1, 2, 3 (6.9)Now, let us assume that the statement is true for a network of (N−1) source-destinationpairs and (N − 1) relays. We want to prove the statement for a system consisting of Nsource-destination pairs and N relays. In this case, Γ is a N -by-N matrix and there are

N ! di�erent permutations (denoted by Yi). We de�ne X = 1 + Γ. Again, let us denotethe SNR of the channel which is assigned to S1 as Γ1, i.e. the goal of this analysis is to�nd the diversity order achieved by Γ1. We denote 1 + Γ1 by Φ1. Hence, similarly as(6.5), we have
Pr {Φ1 < ϕ} = N ! Pr {X1,1 < ϕ, Y1 > Yi, (i = 2, · · · , N !)} (6.10)where Y1 is one of the permutations involving X1,1. For instance, we assume that (SeeFig. 6.3)

Y1 ,
N∏

i=1

Xi,i

Y2 , X1,2X2,1

N∏

i=3

Xi,i
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6. RELAYING BASED ON MAX-SUM CRITERION

Figure 6.3: Permutations Y1This time, as a generalization of (6.7), we have a N2-dimensional integral. Let usdenote the space speci�ed by the inequality Y1 ≥ Yi as D1i. Hence, (6.10) becomes.
FΦ1 (ϕ) = N ! Pr {X1,1 ≤ ϕ, Y1 > Yi, (i = 2, · · · , N !)}

= N !

∫

· · ·
∫

⋂N!
i=2 D1i

fX11,X12,··· ,XNN
(X1,1,X1,2, · · · ,XN,N ) dX1,1 dX1,2 · · · dXN,NNow, let us consider ΓN−1. In this matrix, Y =

∏N
i=2 Xi,i is larger than the product ofelements in any other permutation. We denote by D the space speci�ed by this event.Then we have

∫

· · ·
∫

⋂N!
i=2 D1i

fX1,1,X1,2,··· ,XNN
(X1,1,X1,2, · · · ,XN,N ) dX1,1 dX1,2 · · · dXN,N

≤
∫

· · ·
∫

D1,2
⋂

D

fX1,1,X1,2,··· ,XN,N
(X1,1,X1,2, · · · ,XN,N ) dX1,1 dX1,2 · · · dXN,NThe above inequality means that by increasing the integration space, the result ofintegration becomes larger. It is enough to prove that the expression in the right-handside achieves diversity N .Expanding D12 and D, it is found that the integration space does not put anylimits on the variables X1,i, i = 2, · · · , N and Xi,1, i = 2, · · · , N , which means thatthe integration interval over these variables is [1,∞). In other words, the result of
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6.3 Diversity Analysis of the Sum-rate Criterionintegration does not depend on these variables.
FΦ1(ϕ) =

∫ ϕ

0
λ exp (−λX1,1)

∫

· · ·
∫

D1,2

∫

· · ·
∫

D

fX1,1,X1,2,··· ,X3,3 (X1,1,X1,2, · · · ,XN,N )

dX1,1 dX1,2 · · · dXN,N

=

∫ ϕ

0
λ exp (−λX11)

∫

· · ·
∫

︸ ︷︷ ︸

D1,2≡X1,1 X2,2≥X1,2 X2,1

∫

· · ·
∫

︸ ︷︷ ︸

D

∫ ∞

1
· · ·
∫ ∞

1
︸ ︷︷ ︸

X1,i,i=2,··· ,N

∫ ∞

1
· · ·
∫ ∞

1
︸ ︷︷ ︸

Xi,1,i=2,··· ,N

fX1,1,X1,2,··· ,XN,N
(X1,1,X1,2, · · · ,XN,N ) dX1,1 dX1,2 · · · dXN,NUsing (6.8), for the integration over D1,2, we have

∫

· · ·
∫

︸ ︷︷ ︸

D1,2≡X1,1 X2,2≥X1,2 X2,1

fX1,2,X2,1,X2,2 (X1,2,X2,1,X2,2) dX1,2 dX2,1 dX2,2

=1− e−λ(X1,1−1) +

∫ ∞

x
λ

(
X1,1

X1,1 + z

)

exp

(

−λz

(

1 +
1

X1,1

))

e2λdz

−
∫ X1,1

1
λ

(
z

X1,1 + z

)

exp

(

−λ

(

z +
X1,1

z
− 2

))

dz. (6.11)Let us denote this result as fD1,2 . For the integration over D, we have
lim

λ→0+

fN−1(X1,1, λ)

fN−1(X1,1, kλ)
= kN−2 (6.12)which is the assumption of the induction. Then using (6.11) and (6.12), after somemanipulations, we obtain

lim
λ→0+

fΦ1(ϕ, λ)

fΦ1(ϕ, kλ)
= lim

λ→0+

fN−1(ϕ, λ)fD1,2(ϕ, λ)

fN−1(ϕ, kλ)fD1,2(ϕ, kλ)
= kN (6.13)Since Φ1 = 1 + Γ1, it can be inferred that S1 achieves full diversity. The symmetricityof the problem implies that all source nodes achieve full diversity.Figures 6.4 and 6.5 show the Monte-Carlo simulation results of BER for the di�erentscenarios shown in Fig. 6.1. From these �gures, it can be inferred that network achievesfull diversity.
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N=2
N=3
N=4Figure 6.4: BER curves for relay-assignment based on sum-rate criterion in the networkof Fig. 6.1-a6.4 Diversity Analysis of Sum-SNR CriterionAmong di�erent criteria for relay-assignment in cooperative networks, the maxi-mization of the overall network SNR values is very e�ective in a wide range of SNRvalues. This section deals with the statistical analysis of relay-assignment based on thiscriterion, i.e. we analyze the distribution of some random variables when their sum-mation is maximized. Each random variable follows exponential distribution, becausechannels are assumed to be Rayleigh �at fading channels. It is assumed that the systemmodel is similar to the system model in Section 6.3. We will show that the improvemento�ered by this approach lies in the coding gain and the diversity order is one. Thenthrough some simulations we will show that this approach o�ers the best performanceamong other approaches for a wide range of SNR values (less than about 15 dB).
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6.4 Diversity Analysis of Sum-SNR Criterion
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N=2
N=3
N=4Figure 6.5: BER curves for relay-assignment based on sum-rate criterion in the networkof Fig. 6.1-b6.4.1 Problem FormulationAgain consider the networks shown in Fig. 6.1. This time we consider the diversityanalysis of the system when max-sum-SNR criterion is used for relay selection. Wedenote the SNR of the channel Si → Rj as Γi,j . In order to solve this problem, �rst weconsider the simplest case where N = 2 and then we generalize the analysis to othervalues of N .6.4.2 Diversity Order Analysis For N = 2We start with the matrix of SNR values

Γ =

[
Γ1,1 Γ1,2

Γ2,1 Γ2,2

]In this case there are two possibilities for relay-assignment. For each possibility, wedenote the sum of SNR values by Yi:
{

Y1 = Γ1,1 + Γ2,2

Y2 = Γ1,2 + Γ2,1
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6. RELAYING BASED ON MAX-SUM CRITERION

Figure 6.6: Integration space for Pr(Γ1,1 < γ, Y1 > Y2)We choose Z = max{Y1, Y2}. We denote the channel assigned to the node Si by Γi.Our �nal goal in this analysis is to �nd the diversity order o�ered to Si. Because of thesymmetrical nature of the problem, the distribution of all Γis are identical. The CDFof the random variable Γ1 can be expressed as
Pr(Γ1 < γ) = Pr(Γ1,1 < γ, Y1 > Y2) + Pr(Γ1,2 < γ, Y1 < Y2) (6.14)In order to calculate the Pr(Γ1,1 < γ, Y1 > Y2), we should integrate the joint PDF overa four-dimensional space speci�ed by Γ1,1 < γ and Y1 > Y2. This space is shown in Fig.6.6 assuming that Γ1,1 is �xed. The upper limits of integration are speci�ed by:

Γ1,1 + Γ2,2 > Γ1,2 + Γ2,1 ⇒ Γ1,2 < γ1,1 + γ2,2 − γ2,1

Γ1,1 + Γ2,2 > Γ2,1 ⇒ Γ2,1 < γ1,1 + γ2,2Now, we can write Pr(Γ1,1 < γ, Y1 > Y2) as follows
Pr(Γ1,1 < γ, Y1 > Y2)

=

γ∫

0

∞∫

0

γ1,1+γ2,2∫

0

γ1,1+γ2,2−γ2,1∫

0

fΓ1,1(γ1,1)fΓ2,2(γ2,2)fΓ2,1(γ2,1)fΓ1,2(γ1,2)dγ1,2dγ2,1dγ2,2dγ1,1(6.15)
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6.4 Diversity Analysis of Sum-SNR CriterionHere 1/λ denotes the average SNR value and i.i.d Rayleigh fading channels are assumed.Then, we obtain
Pr(Γ1,1 < γ, Y1 > Y2) =

1

4
((λγ + 2)e−2λγ − 4e−λγ + 2)Same calculation holds true for the second term in (6.14), i.e. Pr(Γ1,2 < γ|Y1 < Y2) =

1
4 ((λγ + 2)e−2λγ − 4e−λγ + 2). Plugging the result into (6.14) yields

Pr(Γ1 < γ) =
1

2
(λγe−2λγ + 2e−2λγ − 4e−λγ + 2)The �rst two terms in the Taylor expansion of the above expression are

Pr(Γ1 < γ) ∼= 1

2
λγ − 1

12
λ4γ4 (6.16)According to proposition 1 in [41], when the PDF of SNR can be approximated by asingle polynomial term for γ → 0+ (pΓ(γ) = aγt +O(γt+ε)), the system has a diversityorder of (t + 1). Here, ε > 0 and a is a positive constant. Using this proposition, theresult in (6.16) implies that the diversity order o�ered by Γ1 is one.The integral in (6.15) is the core expression to calculate the distribution of Γi. As wesaw for N = 2, the Taylor expansion of the result of this integral involves the �rst orderterm γ. The Taylor expansion of the integrand in terms of γ starts with the �xed term(γ0). On the other hand, the maximum value for the upper limit of the �rst integral in(6.15) is γ. For the remaining three integrals in (6.15) the maximum value of the upperlimit is in�nity. This property holds true for any other value of N . In the next sectionwe will see this property in detail.6.4.3 Diversity Order Analysis for General Values of NFor the general case of N sources and N relays, there are N ! possibilities for relayassignment. After the process of relay-assignment based on max-sum-SNR criterion, wedenote the SNR of the channel assigned to S1 by Γ1. Similar to (6.14), the CDF of Γ1can be written as FΓ1(γ) =

∑

i Pr(Γ1,i < γ, Yi > Yj) where j = 1, ..., N !, j 6= i. Becauseof the symmetricity of the problem in terms of each Γ1,i, all of the terms participatingin the above expression have the same form. Hence, the result can be simpli�ed as
Pr(Γ1 < γ) = N Pr(Γ1,1 < γ, Y1 > Yj, j = 2, 3, ..., N !)
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6. RELAYING BASED ON MAX-SUM CRITERIONIn order to evaluate the above expression we need to solve an N2-dimensional integral.The integrand is the product of all probability density functions fi,j(γi,j) and the inte-gration space is an N2 dimensional space speci�ed by Y1 > Yj, j = 2, 3, ..., N !. Hencethe upper limit of each integral is a linear combination of di�erent Γi,j (similar to (6.15))and we have:1) The Taylor expansion of the integrand in terms of γ starts with the �xed term(γ0), because the Taylor expansion of each terms fi,j(γi,j) = λ exp(λγi,j) starts withthe �xed term γ0.2) The maximum value for the upper limit of the integral over Γ1,1 is γ. In thisstep of integration, the lowest degree in Taylor expansion of the integrand is increasedby one.3) For the remaining steps of integration, the upper limit is a linear combination ofthe other Γi,js and the maximum value of these upper limits is in�nity, because when
Γ1,1 is upper bounded with γ, other Γi,js can be increased up to in�nity and still theinequality Y1 > Yj, j = 2, 3, ..., N ! holds true. This means that the lowest degree inTaylor expansion of the integrand is not increased in this step.Hence, the smallest power in Taylor expansion of Pr(Γ1 < γ) is one, because theonly increase in the power of integrand occurs in the integration over Γ1,1. Again, usingthe proposition 1 in [41], this result implies that the diversity order o�ered by Γ1 is one.6.4.4 Simulations and DiscussionFig. 6.7 shows the Monte-Carlo simulation result of BER for max-sum-SNR crite-rion compared with other relay-assignment criteria when N = 4. This �gure shows thatfor low average SNR values, using max-sum-SNR criterion brings the best performanceamong all other relay-assignment techniques through cooperation. However in sequen-tial relaying, those sources who have the right to select their relays �rst, achieve higherperformance.In Fig. 6.8 shows an estimate of have calculated the average number of users whoexperience an outage through cooperation. This �gure shows that the mentioned relay-assignment approach o�ers the best performance for SNR values less than 15 db and avery good performance for all SNR values.
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6. RELAYING BASED ON MAX-SUM CRITERIONforget some nodes in order to assign an acceptable channel for some other nodes. Dueto the low average SNR value, we cannot assign good channels to all of the nodes at thesame time. This is what happens in relay assignment based on max-sum-SNR criterion.In this method, some low SNR channels may be assigned to some nodes in order tomaximize the overall network SNR which consequently involves some good conditionednodes.6.5 A New Formulation to Find Max-sum-SNRExhaustive search is the last solution for many optimization problems in wirelesscommunications such as resource allocation, channel assignment (or subcarrier assign-ment for OFDMA) and relay assignment. However, for large networks, �nding the opti-mum answer through exhaustive search becomes impractical. For example for N = 20,there are more than 1018 di�erent permutations in Fig. 6.1. Howeve if the problemcould be described in canonical form, the solution could be easily found by using dif-ferent LP methods. We will give a simple formulation to �nd this permutation in thissection.In mathematics, linear programming (LP) is a technique for optimization of a linearobjective function, subject to linear equality and linear inequality constraints. Binaryinteger programming is the special case of linear programming where variables are re-quired to be 0 or 1. In order to use LP, the problem of relay assignment should beexpressed in terms of maximization of one objective function. One widely accepted andcommonly used objective function is the sum of SNR/rate values for all of the links. Re-cently many interesting formulations have been proposed for this purpose [13, 53, 54, 55].Also authors in [15] have provided a heuristic to �nd a close-to-optimal relay assign-ment. Authors in [56] have provided bounds for multiple-sources single-relay scenario.More recently, [57] has investigated the fairness issues in an orthogonal frequency di-vision multiple-access (OFDMA) uplink scenario with multiple sources, multiple relaysand a single destination.The main contributions of this section are as follows.1. We present a �exible Vehicle Routing Problem (VRP) model for the problem ofrelay assignment in cooperative networks. The proposed model incorporates the
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6.5 A New Formulation to Find Max-sum-SNRproblems of clustering and relay assignment into a uni�ed problem and can besolved e�ciently by using binary integer programming (BIP).2. The �exibility of the proposed approach allows us to solve many relay assignmentproblems by using the same algorithm. Two di�erent scenarios are described toshow this �exibility. In the �rst scenario, only one of the nodes in each cooperatingset bene�ts from the cooperation, whereas in the other scenario both nodes bene�t.3. The proposed approach achieves fairness by providing the same average perfor-mance to all the source nodes. It also distributes the load equally among the relaynodes.4. The proposed algorithm is also applicable to other network con�gurations. As anexample we can consider a clustered network with N source-destination pairs and
M relays.For compliance, we assume that a centralized resource allocation is employed and thatthe SNR information of all the nodes is known to the resource allocator. The channelsare assumed to be slow fading and remain constant during resource allocation process.All the wireless nodes work in half-duplex mode, i.e. cannot transmit and receive atthe same time.6.5.1 Vehicle Routing ProblemA rough description of the VRP is as follows. Suppose that a number of goods needto be moved from a speci�c pickup location to some drop-o� locations. The goal isto �nd optimal (shortest) routes for a �eet of vehicles to visit the pickup and deliverylocations. This problem is called the Vehicle Routing Problem.The VRP is a combinatorial problem whose ground set is the edges of a graph

G(V,A) where V = {v0, v1, ..., vN} is a vertex set and vis form a set of n nodes (citiesor clients). A = {(vi, vj)|vi, vj ∈ V, i 6= j} is an arc set and a depot is located at v0.Also it's assumed that� C denotes a matrix of non-negative costs (or gains) ci,j between customers vi and
vj� d is a vector of the customer demands� Ri is the route for vehicle i
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6. RELAYING BASED ON MAX-SUM CRITERION� m is the number of vehicles (all identical) where one route is assigned to eachvehicle.When ci,j = cj,i for all i and j, the problem is said to be symmetric. With eachclient vi is associated a quantity qi of some goods to be delivered by a vehicle. TheVRP thus consists of determining a set of m vehicle routes of minimal total cost (ormaximal total gain), starting and/or ending at a depot, such that every vertex in Vis visited exactly once by one vehicle. It is required that the total cost of any vehicleroute may not surpass a given bound D. A feasible solution is composed of:� A partition {R0, R1, ..., RN} of V .� A permutation σi of Ri ∪ 0 specifying the order of the customers on route i.There is a class of VRP problems called capacitated vehicle routing problem(CVRP). In the CVRP, the number of the nodes in each route is limited to Q.6.5.2 The Proposed FormulationIn this section, we introduce our formulation for clustering and relay assignmentbased on VRP. Assuming the same formulation given above, let V = {v0, v1, ..., vN+1}be the set of wireless nodes in the network where node v0 and vN+1 corresponds to thedestination and nodes {v1, ..., vN} correspond to communication nodes. The destinationhas been split into two nodes to make modeling easier: node v0 corresponds to the startof the routes and vN+1 corresponds to the end of the routes. We assume that the SNRsor the rates are organized as a matrix {cij |1 ≤ i, j ≤ N + 1}. This assumption impliesthat the objective function should be maximized (whereas in the �rst de�nition, theobjective function was to be minimized).A legal route r̄ must be a simple path (that is, no node is visited twice) from node v0to node vN+1. We can write such a path as r̄ = {v0, vg, ..., vh, vN+1} where 1 ≤ g ≤ h.The nodes vi, g ≤ i ≤ h are the nodes visited on the route. The number of the nodesvisited on the route is h− g + 1. We can also assume a legal route r̄ as a simple pathfrom node v0 to node vh, i.e. no return to the depot.The route should satisfy the capacity requirement, i.e. the number of the nodes ineach set of cooperating nodes should be less than Q. The cost cr̄ of a route r̄ is
cr̄ =

∑

iεr̄

cvi,vi+1 . (6.17)
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6.5 A New Formulation to Find Max-sum-SNRLet R be the set of all feasible routes and let Ar̄ = [air̄]N×|R| be a Boolean matrix.Let air̄ = 1 if and only if route r̄ serves customer i. As an example consider a networkwhich consists of a destination and 4 nodes. Suppose that our feasible routes are theroutes consisting of only one or two nodes. In this case, Ar̄ takes the following form:(the last row speci�es the destination)
Ar̄ =









1 1 1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 1 0 0
0 1 0 1 0 1 0 0 1 0
0 0 1 0 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1







Then the CVRP can be formulated as

min
∑

r̄∈R
cr̄xr̄ (6.18)subject to

∑

r̄∈R
air̄xr̄ = 1,∀i ∈ {1, 2, ..., N} (6.19)

∑

xr̄ = m (6.20)where m shows the maximum number of sets of cooperating nodes in our formulationand
xr̄ ∈ {0, 1}, r̄ ∈ R (6.21)speci�es if the route r̄ is selected through solving the VRP. The objective function (6.18)selects a set of feasible routes that minimizes the sum of the route costs while equation(6.19) ensures that all customers are served exactly once and (6.20) ensures that exactly

m vehicles are used. In some variants of the CVRP, equation (6.20) is relaxed such thatat most m vehicles are used or such that there are no restrictions on the number ofvehicles used.A variant of the CVRP that is often studied in the heuristic literature is the distanceconstrained CVRP, where a distance measure {di,j} (possibly di�erent from {ci,j}) isassigned to each arc. An upper bound on distance D is also given and no routes mustbe longer than D. This constraint is easily added to our model: we simply require thatthe nodes {vg, ..., vh, vN+1} in our feasible path r̄ should satisfy the equation
∑

iεr̄

dvi,vi+1 ≤ D. (6.22)
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6. RELAYING BASED ON MAX-SUM CRITERION

Figure 6.9: An example for a solution of VRP problemIn the context of our wireless network, this constraint can be very useful and it canbe assumed as a condition on minimum SNR achieved through each set of cooperatingnodes. In this way, we can avoid some bad conditioned nodes to waste their energy.Now consider the framework of cooperation between pairs of users as shown in Fig.6.9. In order to comply with CVRP formulation, �rst of all we need to have a cost-function or bene�t-function: we can use SNR, bit-rate, BER and SER. For instance wechoose SNR, but to completely comply with the above formulations, we need to makea little bit modi�cation. We denote the SNR between node i and the destination by
γi = |hi|2 /Ni and the SNR between node i and node j by γi,j = |hi,j |2 /Ni,j . We needto specify the elements of the bene�t matrix such that the route gain for each set ofthe cooperating nodes equals the true amount of SNR for the corresponding nodes. Forthis purpose, we assume the elements of the bene�t-matrix as follows:

ci =
1

2
γi

ci,j =
γi,jγj

γi,j + γj + 1
+

γj,iγi
γj,i + γi + 1

+
1

2
γi +

1

2
γjTo illustrate the usefulness of this formulation, we need to distinguish the followingtwo cases:Case 1: User i cooperates with user j and both of them bene�t from the cooperation
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6.5 A New Formulation to Find Max-sum-SNR

Figure 6.10: Time division channel allocations for (a) Only one user enjoys cooperation,(b) Both users cooperate with each other(Fig. 6.10-b). If we write the route gain (SNR) for the route {v0, vi, vj , vN+1}, we have:
SNRv0,vi,vj ,vN+1

= c1 + c1,2 + c2

= γi +
γi,jγj

γi,j + γj + 1
+

γj,iγi
γj,i + γi + 1

+ γj (6.23)On the other hand it is well known that in a two-user cooperation scenario the totalSNR for the �rst user Ui is:
SNRi = γi +

γi,jγj
γi,j + γj + 1

(6.24)and for the second user Uj

SNRj = γj +
γj,iγi

γj,i + γi + 1
(6.25)Therefore, the total SNR of the both users i and j is the same as the route gain in(6.23).Case 2 : User i does not cooperate with any other user, in this case, Ui is only themember of route {v0, vi, vn+1} which corresponds to the following SNR

ci + ci =
1

2
γi +

1

2
γi = γi (6.26)This result is also consistent with the assumption of absence of cooperation.Generally speaking, vehicle routing problems belong to a class of problems thatis proved to be di�cult to solve and only moderately sized problems can be solvedconsistently. The above problem formulation enables us to use BIP to solve the problem.
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6. RELAYING BASED ON MAX-SUM CRITERIONThe proposed algorithm can be also used to solve the relay assignment problem inclustered networks. In a clustered network, the nodes are divided into two clusters (asource cluster and a relay cluster) by using a long term routing process. In order touse the proposed relay assignment method, it is enough to change Ar̄ to re�ect thedi�erent relay assignment permutations in the clustered networks, i.e. each column of
Ar̄ speci�es a set of cooperating nodes with one node in each cluster.6.5.3 Simulations and DiscussionIn this section, �rst some simulations are presented in order to graphically showhow the clustering and relay assignment are achieved by the proposed algorithm. Weconsidered 40 terminals located randomly in the X-Y plane where each coordinate isa uniformly distributed random variable. In order to have a convenient demonstration,it is assumed that the SNR of the link between each pair of nodes is proportional tothe inverse square of their distance. The type of cooperation is type (a) in Fig. 6.10,i.e. only one user in each set of cooperating nodes bene�ts from the cooperation. Theterminals are not forced to contribute to cooperation. This condition is applied throughwriting the routes with 1 and 2 terminals in each columns of matrix A. The result isshown in Fig. 6.11. As it is shown in this picture, two of the terminals do not contributeto the cooperation. In the second simulation, again we considered 40 terminals, but thetype of cooperation is type (b) in Fig. 6.10, i.e. both users of each set of cooperatingnodes bene�t from the cooperation. The result is shown in Fig. 6.12.In the next simulation, we apply the proposed algorithm to a clustered networkwhich consists of 4 source-nodes, 4 relay-nodes and one destination. It is assumedthat only one user in each set of cooperating nodes bene�ts from the cooperation (Fig.6.10-a) and all terminals are forced to contribute to cooperation. In this case, eachset of cooperating nodes has one node in the source cluster and one node in the relaycluster. In addition it is assumed that each source node uses its direct channel to thedestination, however the average SNR of this channel is assumed to be one fourth of thesource-relay channels. The BER performance of each source node through the usageof the proposed algorithm is compared with other relay assignment algorithms. Thetype of modulation is BPSK and the channels in each hop are i.i.d. Rayleigh fadingchannels. We assume complex AWGN with PSD N0/2 per dimension. Fig. 6.13 shows
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Figure 6.11: Result of the proposed method when only one user bene�ts from the coop-eration in each set of cooperating nodessome BER results. One interesting result of this simulation is the superior performanceof the proposed algorithm for low SNR values. This is because at low average SNR,normally, we cannot have acceptable SNR for all of the selected channels in the sametime. This means that selecting some channels with acceptable SNR comes at the priceof neglecting some other nodes. This is exactly what is happening in the max-sum-SNRcriterion. However, in max-min criterion, the objective of the algorithm is to maximizethe minimum SNR for the selected permutation. At low average SNR, normally, thisminimum SNR is not large enough, but its maximization may result in relatively lowSNR values for all of the selected links.
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6. RELAYING BASED ON MAX-SUM CRITERION
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Figure 6.12: Result of the proposed method when both users bene�t from the cooperationand all nodes contribute to the cooperation
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6.5 A New Formulation to Find Max-sum-SNR

2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average E
b
 / N

0
 dB

P
E

 

 

Maximum sum of SNR
Max−Min criterion
Sequential relaying, second userFigure 6.13: BER comparison of the proposed method (maximum sum of SNR values)with other methods for relay assignment

111

6/figures/comparison_plus_SD.eps


6. RELAYING BASED ON MAX-SUM CRITERION

112



7
Cooperative Relaying Based onDistributed Implementation ofLinear Channel Codes
7.1 IntroductionIn this chapter, a novel scheme is proposed in order to achieve diversity in a net-work which consists of multiple sources, multiple relays, and a single destination. Theproposed scheme is based on a distributed implementation of linear block codes or convo-lutional codes. In this scheme, each relay node implements one column of the generatormatrix of the code, i.e. di�erent symbols of the codeword are sent to the destinationby di�erent relays. Each relay receives the symbols from one or more source nodes andperforms a modulo-q addition on the decoded symbols and retransmits the result to thedestination. In order to achieve the maximum diversity order, an appropriate sourcerelay pairing has to be employed. For this relay assignment process, we assume thatonly the channel state information (CSI) of the source-relay channels is available. Themain advantage of this scheme is that it achieves diversity without using the CSI ofthe relay-destination channels for relay assignment. We propose an algorithm based onthe max-min criterion for the resulting relay assignment problem. The result of this
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODESalgorithm is not the optimal solution based on the max-min criterion, but still achievesfull diversity in the relay nodes. Finally, soft decoding is employed at the destination toretrieve the transmitted information. We prove that the proposed scheme achieves di-versity dmin or dfree for the E2E performance, where, dmin and dfree are the minimumdistance and the free distance of the corresponding implemented codes, respectively.The proposed scheme achieves complete fairness among all of the source nodes.7.1.1 Aims of the Proposed SchemeA basic challenge in the design of cooperative networks is how to assign the relaynodes to the source nodes (relay assignment problem). This is a part of a bigger problemwhich concerns the architecture of the network. The answer to this problem depends onthe amount of available CSI. Many authors have assumed that perfect CSI is availableat the resource allocator, although this perfect CSI is di�cult to achieve in practice.This is because unavoidable errors happen in the estimation of the channel coe�cientsat the receiver [58] and also errors happen when feeding back the estimated CSI to thetransmitter [59]. In some applications such as resource-constrained ad-hoc and sensornetworks, those errors are more likely to happen. On the other hand, monitoring theconnectivity among all nodes consumes a considerable amount of network resources.Motivated by the mentioned reasons, some authors have analyzed the e�ects of suchCSI imperfections on the overall performance of the cooperative network, where theyhave shown that diversity drops to one for many network schemes [60, 61, 62]. In thischapter, we are seeking a model to deploy network coding to achieve diversity at thedestination, but we intend the scheme to be less dependent on the CSI. More speci�cally,we intend not to use the CSI of the second hop (relay destination channels).7.1.2 Contributions of the Proposed Scheme1. We will introduce a new scheme which is built in the intersection of two activeareas of research; i.e. cooperative networks and network coding. We considera network which consists of multiple sources (say k), multiple relays (say nt),and a single destination, where the number of the source nodes is less than thenumber of the relays (k < nt). Each source node has some information to besent to the common destination. We assume that only the CSI of the source-relay
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7.1 Introductionchannels are available for the design of the cooperation strategy. The goal is toachieve diversity at the destination (See Fig. 7.1). The proposed scheme usesa combination of network coding and relay assignment in order to transmit theinformation of each source node on several channels which results in diversity. Weuse a distributed implementation of linear block codes or convolutional codes asa pattern for this purpose.2. For any utilization of network coding in our network, we need to avoid the weakerchannels in the �rst hop (those channels that are assumed to be known). This issueis very crucial for the proposed scheme in this chapter, because it can stronglya�ect the diversity achieved at the destination. This relay assignment should beoptimum in the sense that it maximizes the diversity achieved in the relay nodes.As it was described in Section 1.4, max-min is a very promising criterion becauseit can achieve the maximin possible diversity in some network con�gurations suchas a network consisting of k source-destination pairs and nt relays where nt ≥ k[9, 63]. However it fails to achieve diversity in a network consisting of k sources, ntrelays, and one destination. This result stems from the fact that the informationfrom each source passes through only one channel in the second hop. Hence, ifthis channel is in deep fading, the corresponding signal is faded at the destination.This fact dominates the performance of this scheme, because in the long term,each of the source nodes experiences this fading. We use this criterion for relayassignment in our scheme. To avoid an exhaustive search, we propose an algorithmfor the mentioned relay assignment which �nds a sub-optimal permutation basedon the max-min criterion and achieves the maximum possible diversity for all ofthe received signals at the relays.3. The proposed scheme in this section achieves fairness among source nodes by pro-viding the same diversity order for all of them. It also achieves fairness amongrelay nodes by distributing the load equally among them (each relay node trans-mits only signal). This means that we do not need to put extra conditions on theservice-time or power consumption of the relays to achieve fairness.4. In the classical literature, to obtain diversity using linear block codes or the con-volutional codes, di�erent coded symbols should undergo di�erent channel fades.Therefore, the use of an interleaver, whose role is to scramble the coded symbols
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODES

Figure 7.1: System model consisting of k source nodes and nt relaysbefore transmission, is necessary. the proposed scheme is free of this limitation,because di�erent coded symbols are transmitted over completely separate chan-nels. Hence, the system will not su�er the corresponding delay.7.1.3 Chapter OutlineThe rest of this chapter is organized as follows: Section 7.2 describes the systemmodel. Section 7.3 reviews some preliminaries concerning the diversity analysis of linearblock codes and convolutional codes. The proposed scheme is introduced in Section 7.4and the corresponding algorithms for relay assignment are described in Section 7.5.Section 7.6 presents the performance analysis of the proposed algorithm.7.2 System ModelConsider the network shown in Fig. 7.1 consisting of k source nodes, nt relay nodes,and a single destination. The set of the source nodes, the set of the relay nodes, andthe destination are respectively denoted by S = {S1, S2, ..., Sk}, R = {R1, R2, ..., Rnt},and D. All relays operate in the half-duplex mode. The fading in all source-relay andrelay-destination channels is assumed to be independent but not identically distributed(i.n.d.) according to the Rayleigh distribution. The complex channel gain between thesource i and relay j is denoted by gi,j and the complex channel gain between the relay
j and the common destination is denoted by hj . We assume there is no direct link
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7.3 Preliminary: Diversity Analysis of Channel Codesbetween the sources and the destination. A two-phase relay mode is employed. In the�rst time slot, the source nodes broadcast their messages using k orthogonal channelsand the relays receive. The symbol transmitted by the i-th source node is denoted by
ai, 1 ≤ i ≤ k and the result of decoding ai at j-th relay is denoted by bi,j . Some relaynodes decode the message from one or more source nodes and perform an exclusive-OR operation on the decoded bits before retransmitting them to the destination. Theresult of exclusive-OR operation at the j-th relay node is denoted by cj , 1 ≤ j ≤ n. Inthe second time slot, the relay terminals transmit using orthogonal channels and thedestination receives. We assume that a centralized resource allocation is employed andthe signal-to-noise ratio (SNR) information of the channels in the �rst hop is known tothe resource allocator. As a practical example, currently, the 802.16j Mobile MultihopRelay (MMR) working group is focused on integrating relay schemes into 802.16-basednetworks with centralized or semi-distributed resource allocation [64].Throughout this section, the vectors and matrices are respectively denoted by lower-case bold and uppercase bold letters. [·]T denotes transposition of a matrix. The PDFand the CDF of a random variable Γ are denoted by fΓ(γ) and FΓ(γ), respectively.We recall that if the random variables Γ1,Γ2, ...,ΓN are arranged in increasing orderand written as Γ1:N ≤ Γ2:N ≤ ... ≤ ΓN :N , then Γr:N is called the r-th order statistic.Although random variables Γi are assumed to be independent, the Γr:N are dependentbecause of the ordering.7.3 Preliminary: Diversity Analysis of Channel CodesIn this part, �rst we review the diversity analysis of a linear block code, employedin a fully interleaved Rayleigh fading channel. We assume that soft decision decodingis employed at the receiver. The proof can be found in [65].7.3.1 Diversity Analysis of Linear Block CodesSince the code is linear, without any loss of generality, we can assume that the all-zero codeword (0) is transmitted and then we have PE = Pr(Error|0 is transmitted),where PE is the probability of decoding a wrong codeword at the destination. Usingthe union bound, we can upper bound this expression by a simpler expression PE ≤
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODES
∑

c6=0

Pr(0 → c) [65, 66], while Pr(0 → c) is the pairwise error probability (PEP) ofreceiving a codeword �closer� to the incorrect codeword c when the all-zero codeword istransmitted. Let us denote the received signal at the destination by y = [y1, y2, . . . , yn].We have yi = hiui + ni, where hi, ui, and ni denote the channel fading coe�cient,the transmitted symbol, and additive white Gaussian noise, respectively. Assumingthat the channel coe�cients are perfectly known at the receiver, the optimal maximumlikelihood (ML) decoder decodes the codeword which is closest to the received signalin the Euclidean distance sense, i.e., the ML decoder minimizes the Euclidean distancebetween y and the vector [h1u1, h2u2, . . . , hnun] over all the codewords u. Hence, thePEP is a function of the squared Euclidean distance between the all-zero codeword andthe codeword c which is given by 4
(

|hj1 |2 + |hj2 |2 + . . .+ |hjd |2
) where d is the weightof c and jis are the positions with the component of c being 1. Then

Pr(0 → c) = E

[

Q

(√

2ρc

(

|hj1 |2 + |hj2 |2 + . . .+ |hjd |2
)
)]where ρc is the average SNR per coded bit and the expectation is over the fadingcoe�cients. Let us denote by ρc the average SNR per coded bit. By plugging the PDFof the instantaneous SNR (γi = ρc |hi|2), this can be written explicitly as:

Pr(0 → c) =

∫∫∫

Q

(√

2
(

γ2j1 + γ2j2 + . . .+ γ2jd

)
)

×
d∏

i=1

1

ρc
exp(−γi)dγ1dγ2 · · · dγdBy upper bounding the Q-function using Q(x) ≤ 1

2 exp(−x2

2 ), we obtain
Pr(0 → c) =

d∏

i=1

(
1

2ρc

∫

exp(−γi) exp(−
γi
ρc

)dγi

)

=
1

(1 + ρc)d
.Substituting this upper bound on the PEP expression in PE ≤ ∑

c6=0

Pr(0 → c), an upperbound on the codeword error rate is achieved:
PE ≤

∑

c6=0

1

(1 + ρc)d
≤
(

2k − 1
) 1

(1 + ρc)dmin
.where k is the number of the message bits. This result clearly shows that a diversityorder of dmin is achieved.
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7.4 Proposed Scheme7.3.2 Diversity Analysis of Convolutional CodesNext, we brie�y review the diversity analysis of the convolutional codes over fullyinterleaved Rayleigh �at fading channels. As a simple and intuitive approach, if theconvolutional code is terminated by adding some bits at the end to make sure that the�nal state and the initial state of the code are the same, we obtain a linear block code.For this linear block code, the minimum distance is the free distance of the convolutionalcode dfree. Thus, for large block lengths, we can conclude that the diversity order withsoft decision decoding is dfree. We neglect the detailed proof which is normally basedon the transfer function of the code [65].7.4 Proposed SchemeIn this section, we introduce the proposed relaying scheme which is based on adistributed implementation of the various linear codes. We start with the binary sys-tematic linear block code. Then the proposed scheme is extended to the distributedReed-Solomon code relaying (non-binary codes). Finally, we introduce the distributedconvolutional code relaying where the codes are generally non-systematic.7.4.1 Distributed Linear Block Code RelayingConsider a network which consists of k source nodes, nt relay nodes and a singledestination. In this network, we want to implement a (n, k) systematic linear block code[67] in a distributed manner. We assume n ≤ nt and also we assume that the mentionedcode is a systematic binary code. Let us denote the generator matrix of the mentionedcode by G = [P, Ik]k×n where P is a k-by-(n− k) matrix and Ik is the identity matrix.Fig. 7.2 shows how the relays form a linear block code in a distributed manner. In this�gure, there are seven relays selected for the cooperation (n = 7).In general, since we have k source nodes and nt relay nodes, there are totally k×ntdi�erent source-relay channels. We can collect the SNR values of these channels in a
k-by-nt matrix Γ where Γi,j represents the equivalent SNR of the link Si → Rj . As an
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODES

Figure 7.2: An example of the proposed distributed linear block code relaying. Fourrelays only decode and forward the received signal while the other three relays transmitthe XOR of the received signal from the three sourcesexample consider the Hamming code (7, 4) with generator matrix
G =







1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1






. (7.1)Assignment of relay j to the source i corresponds to the selection of Γi,j from Γ. In otherwords, each relay corresponds to one column of the generator matrix Gk×n. When Gi,jis 1, relay j has to decode the message of source i. Since there are multiple 1s in n− kcolumns ofG, the corresponding relays are responsible for multiple sources. These relaysshould perform an exclusive-OR operation on the decoded bits from the correspondingsources and then retransmit the result to the destination. Each relay corresponding toone of the k remaining columns of G, only decodes and forwards the information of onesource. The proper selection of the relays for each set is the subject of Section 7.5.

120

7/figures/System_model_4_by_7.eps


7.4 Proposed Scheme7.4.2 Distributed Reed-Solomon Code RelayingReed-Solomon codes are non-binary cyclic codes where the input symbols and thegenerator matrix elements are selected from GF (q) [67]. The Reed-Solomon code isoptimal in the sense that its minimum distance has the maximum possible value fora linear code of the same size; this is known as the Singleton bound. On the otherhand, Koetter et al. presented a polynomial-time soft decision algebraic list-decodingalgorithm for RS codes [68]. These two properties makes the RS code a promisingcandidate for the distributed code relaying. As an example, let us consider the RS codewith the following generator matrix:
G =





1 3 6 3 1 0 0
4 6 6 4 0 1 0
3 6 3 1 0 0 1



 . (7.2)The structure of the scheme will be similar to Fig. 7.2 where the number of the sourcenodes is 3. The only di�erence is that instead of exclusive-OR operation in the relays,we need to perform summation in the Galois �eld GF (q). We will show that usingthese codes, we can achieve a more bandwidth e�cient coded scheme compared to thedistributed Hamming code relaying.7.4.3 Distributed Convolutional Code RelayingIn this section, we introduce distributed convolutional code relaying scheme. Con-volutional codes are one subset of linear codes where their encoding operation can beviewed as convolution operation. Fig. 7.3 shows how the relays form a convolutionalcode in a distributed manner. The structure of this scheme is similar to that of the dis-tributed linear block coding relaying, except the fact that each element of the generatormatrix is a polynomial and hence, its implementation requires the delayed (bu�ered)copies of the input signal. Again, each column of the generator matrix is assigned arelay. The corresponding relay receives the signal from some or all the source nodes andbu�ers them in order to calculate their convolution. Fig. 7.3 shows a nonsystematicconvolutional code with the Generator matrix
G =

[
1 + x2 x x+ x2

1 x2 1 + x+ x2

]

. (7.3)
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Figure 7.3: System model for distributed convolutional code relaying7.5 Proposed Relay-Assignment AlgorithmThe proposed scheme (Fig. 7.2 and Fig. 7.3) requires a proper assignment of therelays to the source nodes in order to achieve the highest performance at the relays.In this section we propose a sub-optimal algorithm for this relay assignment problembased on the max-min criterion. The algorithm is described in Section 7.5.1. Section7.5.2 involves the performance analysis of the received signal at the relays. Although theproposed algorithm does not necessarily �nds the optimal permutation (based on themax-min criterion), it guarantees a minimum diversity of nt−n+k for all of the selectedchannels, which equals the diversity achieved by the optimal max-min permutation. Inthe analysis of Section 7.6, we will show that the E2E diversity achieved by this schemeis strictly dependent on the diversity achieved at the relay nodes. Selection of the max-min criterion for this application is based on the fact that it achieves the maximumpossible diversity at the relays.7.5.1 Proposed AlgorithmFirst, let us consider the proposed scheme for the systematic codes. By acceptingthe matrix representation of the SNR values (introduced in Section 7.4.1), the problemof relay assignment turns into the selection of some elements from Γ.
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7.5 Proposed Relay-Assignment AlgorithmAs it was mentioned before, each relay implements one column of the generatormatrix. On the other hand, each relay corresponds to one column of Γ. Hence, the relayassignment problem translates to �nding the correspondence between the columns of Gand the columns of Γ. The proposed relay assignment algorithm consists of two stages.In the �rst stage, we select some columns of Γ corresponding to the nonsystematic partof G. In the second stage, we have the remaining part of Γ which is a (nt − n + k)-by-k matrix and we need to select k elements from this matrix based on the max-mincriterion, in a way that:� No couple of elements are selected from the same row� No couple of elements are selected from the same column� The selected elements are the optimal selection based on the max-min criterionChapter 5 describes an algorithm to select this optimal permutation based on the max-min criterion.First stage: A rough description of the proposed algorithm to select the elementscorresponding to the nonsystematic part of G is given below:1. In the source-relay SNR matrix Γ, label the smallest element2. Label the next smallest element of Γ3. If {there are only n− k columns without any labeled elements}(a) Denote the union of the mentioned n− k columns by ∆(b) ∆ has the same dimensions as Pk. Select all elements of ∆ correspondingto 1s in Pk for the suboptimal permutationElse: Go to Step 24. Denote the other nt − n+ k columns of Γ by Φ. Use the next algorithm in orderto select k elements from Φ based on the max-min criterionSecond stage: Φ is a k-by-(nt − n+ k) matrix. Let us denote nt − n+ k by N . Arough description of the proposed algorithm to select k elements from Φ based on themax-min criterion is as follows:1. By starting from the smallest element Φ1:kN , each element is labeled in the matrix.
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODES2. At any moment, if there is only one remaining element in any row or column ofthe matrix, this element is selected for the optimal permutation. In this case wedelete the corresponding row and column of the matrix3. In each step, we denote the number of the elements selected for the optimalpermutation by nM . At any moment, if the number of the remaining rows orcolumns with at least one empty space is less than nM , it means that we cannotselect the required elements from the remaining rows or columns. In this case,we should go back to the state when the last element was labeled in the matrix.We should select this last element for the optimal permutation and continue fromthat point.4. When the number of relays is more than the number of source nodes, some ofthe relays do not contribute to the optimal permutation, which means that noelements will be selected from the �rst nt − n completely labeled columns of thematrix.In this algorithm, whenever there is one remaining element in any row of the matrix,it is selected for the optimal permutation, but we do not select any element from the�rst nt −n completely labeled columns of the matrix. Because the last labeled elementfrom any other column of the matrix is bigger than all of the elements of the �rst nt−nlabeled columns. The detailed algorithm is as follows:1. M = {} % The set of the elements of the optimal permutation2. Set nM = 0 %Number of the elements in M3. Set mrow = k % Number of rows that have unlabeled elements in Φ4. Set mcol = N % Number of columns that have unlabeled elements in Φ5. Find the smallest element (Φi,j = Φ1:kN ) and label it6. Find the next smallest element and label it7. Save the present state of the variables (Φ, M , and r) as state r8. Check if� A: There is any row with only one remaining unlabeled element in Φ� B: There is any column with only one remaining unlabeled element in Φ
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7.5 Proposed Relay-Assignment Algorithm9. While A or B(a) If Ai. Select this remaining element for the optimal permutation, i.e. M =

M
⋃ {the mentioned remaining element}ii. Delete the row and column of Φ corresponding to the selected elementiii. Recalculate nM , mrow, and mcoliv. If mrow < nt − n− nM or mcol < nt − n− nM� Restore the last saved state (Φ, M , and r from Step 7)� Delete the last saved state (the total number of the saved states isdecreased by one)� M = M

⋃ {the last labeled element}� Recalculate nMv. Recalculate A and B(b) If B� If {There are already nt − n completely labeled columns}i. M = M
⋃ {the mentioned remaining element}ii. Delete the row and column of Φ corresponding to the selected elementiii. Delete the mentioned nt−n columns of Φ, this deletion happens onlyonce.iv. Recalculate nM , mrow, and mcolv. If mrow < nt − n− nM or mcol < nt − n− nM� Restore the last saved state similar to the steps in 9a-ivvi. Recalculate A and B10. r = r + 111. If r < kN go to step 6Example 1: Consider Γ in Fig. 7.4-a. The labeled elements are highlighted and theselected elements for the optimal permutation are speci�ed by solid circles. Di�erentsteps of applying the above algorithm are shown in this �gure. By starting from thesmallest element, we label the elements one-by-one in the matrix until there are onlythree (which is n − k) columns without any labeled element (the �rst stage). In this
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODES

Figure 7.4: Example of relay assignment algorithm for n = 7 and k = 4case, we have ∆ = Γ(:, [2, 3, 7]) which is illustrated in Fig. 7.4-b. We select all of theelements of ∆ corresponding to 1s in Pk for the optimal permutation. The selectedelements are shown by solid circles in Fig. 7.4-b. Matrix Φ is illustrated in Fig. 7.4-cand the remaining steps are obvious from Fig. 7.4-d,e.For the relaying based on the distributed non-systematic codes, the relay assignmentalgorithm is exactly the �rst algorithm in this section.7.5.2 Performance Analysis of the Received Signal at the RelaysWe analyze the performance of the proposed algorithm in two steps. To avoid thedi�culty of dealing with i.n.d. channels, we assume that the channels in each hop areindependent and identically distributed (i.i.d.) fading channels. Obviously, the resultsof diversity order analysis holds true for i.n.d. channels (assuming that they are stillRayleigh fading channels with di�erent average SNR values). This analysis is mainlybased on the fact that when the distribution of SNR for a Rayleigh fading channelfollows the rth order-statistics, it achieves diversity r [16].First, let us consider the elements selected from ∆. Obviously, these elements arenot among the nt−n+k smallest elements of the matrix. This means that the diversityorder corresponding to the contribution of these elements to the selected permutation is
126

7/figures/Example_2.eps


7.6 Diversity Order Analysisat least nt−n+ k+1. This is because when the distribution of the SNR for a Rayleighfading channel follows the rth order-statistics, it achieves diversity r [16].Now, let us consider the elements selected from Φ. These elements constitute theoptimal permutation from Φ [63]. Without loss of generality, let us sort the elementsof Φ in increasing order and denote the result by Φ1:kN ,Φ2:kN , ..., ΦkN :kN where Φr:kNis the r-th order statistic. In [63], the average error probability of relay assignmentbased on max-min criterion is calculated and it is shown that the PDF of the SNRof each selected source-relay pair Si → Rj is a �weighted� sum of the PDFs of Φr:kN ,
r = k, · · · , kN , i.e.

foptimal(γ) =

kN∑

r=k

wk,N (r)fr:kN(γ) (7.4)where wk,N (r) are the mentioned weighting coe�cients. Each weighting is the proba-bility that the corresponding entry belongs to the selected optimal permutation. Thesame conditions hold true for the average error probability.
PE(optimal) =

kN∑

r=k

wk,N (r)PE(r:kN) (7.5)We know that PE(r:kN) achieves diversity r [16]. Since in the right-hand side of (7.5),the minimum diversity belongs to r = k and this minimum diversity is dominant, wecan conclude that PE(optimal) achieves diversity k,7.6 Diversity Order AnalysisIn this section, we analyze the E2E diversity of the proposed scheme. For thispurpose, let us de�ne the following events.
A0 :No detection error in the 1st hop
A1 :One detection error in the 1st hop
A2 :Two or more detection errors in the 1st hop
B :Decoding error at the destination
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODESThe E2E average error probability can be expressed in terms of the conditional proba-bilities Pr{B|A0}, Pr{B|A1}, and Pr{B|A2}, that is
PE = Pr{A0}Pr{B|A0}+ Pr{A1}Pr{B|A1}+ Pr{A2}Pr{B|A2}. (7.6)where Pr{B|Ai} is the conditional probability of B given Ai. In (7.6), we have distin-guished between two di�erent error scenarios at the destination. In the �rst scenario, allof the information symbols are correctly decoded at the relays, but a wrong codewordis decoded at the destination (Pr{B|A0}). The analysis of this scenario is a part ofthe present literature about channel coding schemes which is shortly described in thepreliminaries in Sections 7.3. In the second scenario, detection error happens at oneor more relays. This scenario is analyzed in the sequel (Section 7.6.1). The conclusionabout the overall E2E diversity is expressed in Section 7.6.2.7.6.1 E�ect of Detection Errors at the RelaysTheorem 1. Detection error at one of the relays, creates a �xed irreducible error termat the destination for both distributed linear block code relaying and distributed convolu-tional code relaying, i.e. the diversity order achieved by the second hop in this scenariois zero.Proof. First let us consider the distributed linear block code relaying. We assume thatthere is one bit error among n bits at the relays. This error may be the result ofexclusive-OR operation at relays. However, we know that two errors cancel each otherin the exclusive-OR operation. We assume BPSK modulation where coded bits aretransmitted equivalently as −1 (for 0) and as 1 (for 1). This assumption normalizes theenergy per coded bit to unity. Without loss of generality, we assume that the codewordwithout error was

c0 = [−1,−1, · · · ,−1, cdmin+1, · · · , cn] ,
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7.6 Diversity Order Analysisand the decoded signal at the relays is
ĉ0 = [+1,−1,−1, · · · ,−1, cdmin+1, · · · , cn]where the �rst bit is in error. We want to show that even in a noiseless system, detec-tion errors at the relays results in a �xed irreducible decoding error probability at thedestination. The received codeword at the destination in the absence of noise is

r = [+h1,−h2,−h3, · · · ,−hdmin
, cdmin+1hdmin+1, · · · , cnhn] .Here, without loss of generality, we have denoted the index of the selected relaysby j where 1 ≤ j ≤ n and hence, h = [h1, h2, · · · , hn] denotes the complexgains of the selected relay-destination channels. The ML-decoder at the destina-tion minimizes the Euclidean distance between the received signal r and the vector

ci = [h1u1, h2u2, · · · , hnun] over all the codewords u. Let us assume that the codeword
c1 = [+1,+1, · · · ,+1, cdmin+1, · · · , cn] is a valid codeword. The following condition is acase for error

Distance (r, c0 ◦ h) ≥ Distance (r, c1 ◦ h) (7.7)where ◦ denotes the elementwise multiplication. This means that the Euclidean distancebetween the received signal r and c0 is larger than the distance between r and c1. (7.7)implies that
2 |h1|2 ≥ 2 |h2|2 + · · ·+ 2 |hdmin

|2 (7.8)This probability of decoding error is not reduced by increasing the average SNR value.This result shows that one bit error at the relays produces a �xed error probability atthe destination which makes an error surface for soft decision decoding in the mentionedscenario and the diversity equals zero.A similar analysis holds true for the distributed convolutional code relaying. For arate R = k/n code with k > 1, there are k transmitted bit sequences (coming from k
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODESsource nodes). Let us denote the set of the transmitted bits from k source nodes at time
t by mt = [mt(1),mt(2), · · · ,mt(k)] where mt(i) denotes the transmitted bit by source
i. The block of L sets of input bits is denoted by m = [m0,m1, · · · ,mL−1]. At time t,the corresponding decoded bits at the relays are denoted by ct = [ct(1), ct(2), · · · , ct(n)].The entire decoded output block is c = [c0, c1, · · · , cL−1]. The set of bits in ct passthrough the relay-destination channels, resulting in the received set rt. In the decodingprocess, we deal with negative log likelihood functions ‖rt − ct‖2.In the trellis of the encoder, the state at time t is denoted as Ψt. States are repre-sented with integer values in the range 0 ≤ Ψt < 2ν , where ν is the constraint lengthfor the encoder. (We use 2ν since we are assuming binary encoders for convenience. Fora q-ary code, the number of states is qν .) It is always assumed that the initial state is
Ψt = 0. Quantities associated with the transition from state p to state q are denotedwith (p, q) . The dependency among inputs means that optimal decisions are basedupon an entire received block of symbols. The likelihood function to be maximized isthus f (r|c), where by assuming memoryless channels we have

f (r|c) =
L−1∏

t=0

f (rt|ct) (7.9)It is convenient to deal with the log likelihood function,
log f (r|c) =

L−1∑

t=0

log f (rt|ct) (7.10)Let us assume that at time t there is one bit error among n decoded bits at the relays.We know that two errors cancel each other in the exclusive-OR operation in each relay.Again, we assume BPSK modulation where coded bits are transmitted (equivalently)as −1 (for 0) and as 1 (for 1).Similar to distributed linear block codes, we can assume that the codeword without
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7.6 Diversity Order Analysiserror, the decoded signal at the relays, and the received codeword at the destination are
c0 = [−1,−1, · · · ,−1, c0(dfree + 1), · · · , c0(n)]

ĉ0 = [+1,−1,−1, · · · ,−1, c0(dfree + 1), · · · , c0(n)]

r = [+h(1),−h(2),−h(3), · · · ,−h(dfree), c0(dfree + 1)h(dfree + 1), · · · , c0(n)h(n)], respectively. Here, the system is assumed to be noise free and the �rst bit in ĉ0 is inerror. From this point forward, the proof is similar to that of linear block codes, i.e.the following condition is a case for error in the branch metric
Distance (r, c0 ◦ h) ≥ Distance (r, c1 ◦ h)where c1 = [+1,+1, · · · ,+1, c0(dfree + 1), · · · , c0(n)] is a valid codeword. Even for anoiseless system, there is a �xed possibility for this event, which means a deviation inthe survival path in the Viterbi algorithm which does not reduce by increasing SNRvalue.7.6.2 End-to-end Diversity AnalysisUsing Theorem 1, we are ready to analyze the diversity order achieved by the pro-posed scheme at the destination. We perform this analysis by assessing the diversityorder o�ered by each term in (7.6). Since in the analysis of the diversity order only thepowers of the average SNR are important, we can neglect the �xed coe�cients in thisanalysis. Here, we assume binary codes are used. The analysis for RS codes is straight-forwardly similar. In the sequel, the probability of one error in one of the selectedsource-relay channels is denoted by p1. We have

Pr{A0} = (1− p1)
m +

∑

i

αip1
2i(1− p1)

m−2i (7.11)where m denotes the total number of 1s in G and αis are �xed values to be determined.In here, (1− p1)
m speci�es the probability of only one error in the selected source-relay
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODESchannels and the second term speci�es the probability of 2i errors where those errorscancel each other. Similarly, we have:
Pr{A1} = mp1(1− p1)

m−1 +
∑

i

βip1
2i+1(1− p1)

m−2i (7.12)
Pr{A2} =

m∑

i=2

γip1
i(1− p1)

m−i, (7.13)where βis and γis are �xed values to be determined. According to (7.5), the diversityorder corresponding to p1 is k, equivalently, from (7.11), (7.12) and (7.13) we canconclude that
Pr{A0} ∝ 1

ρ0c
, Pr{A1} ∝ 1

ρkc
, Pr{A2} ∝ 1

ρ2kcwhere ρc is the energy per coded bit. In other words, the diversity corresponding to
Pr{Ai} is i. Now we can rewrite the expression for PE in the following form. Thecontribution of each term to the diversity order is already calculated in this section. Wewrite the corresponding results below each term.

PE ≈ Pr{A0}
︸ ︷︷ ︸

0

Pr{B|A0}
︸ ︷︷ ︸

dfree or dfree+Pr{A1}
︸ ︷︷ ︸

k

Pr{B|A1}
︸ ︷︷ ︸

0

+Pr{A2}
︸ ︷︷ ︸

2k

Pr{B|A2}
︸ ︷︷ ︸

0

(7.14)The minimum diversity in the above terms is dominant. This minimum diversity is dminand belongs to the �rst term, because dmin < k. On the other hand, we can see thatif the �rst hop does not achieve diversity (k = 1), the diversity order corresponding tothe second term will be one and the overall achieved diversity becomes one.In order to e�ciently utilize the resources in the proposed scheme, we need to achievethe same diversity at the relay nodes and at the destination. Otherwise, according to(7.14), the extra diversity is dumped. It means that the total number of relays shouldbe selected according to
nt =

{

dmin + n− k for systematic codes
dmin + n− k − 1 for non-systematic codeswhere, for convolutional codes we should replace dmin with dfree.
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7.7 Simulations and Discussion7.7 Simulations and DiscussionIn this section, we illustrate the Monte-Carlo simulation results for the proposedscheme and compare them with the results of some other schemes. First, consider thenetwork con�guration of Fig. 7.2 and the (7, 4) Hamming code corresponding to G in(7.1). We assume that the channels in each hop (source-relay and the relay-destination)are i.i.d. Rayleigh fading channels. We compare the performance of the proposed schemewith the sequential relaying when the relay assignment is based on the �outdated� CSIfor the second hop [62]. The so called �outdated� CSI means that the decision regardingthe best relay does not correspond to the current time instance because of, e.g., feedbackdelay. This is motivated by the fact that our proposed scheme does not need the CSI ofthe relay-destination channels. Therefore, in order to have a relatively fair comparison,we assume that in the rival scenario (sequential relaying) relay assignment is based onthe outdated CSI in the second hop. We denote by hRi,D the circularly symmetriccomplex Gaussian channel gain between the relay Ri and D and we denote by ĥRi,Dthe partially known channel corresponding to hRi,D at the time of relay assignment.The outdated CSI for relay assignment is modeled as [69, 70]
ĥRi,D = ρhRi,D +

√

1− ρ2wRi,Dwhere wRi,D is a circularly symmetric complex Gaussian RV having the same varianceas hRi,D and ρ is a �xed parameter specifying the correlation coe�cient between hRi,Dand wRi,D.Fig. 7.5 shows some simulated BER results for the proposed scheme versus Eb/N0(the energy per bit to noise power spectral density ratio) compared to that of sequentialrelaying for di�erent correlation coe�cients ρ. As evidenced by this �gure, our proposedscheme achieves diversity dmin = 3 for the Hamming codes. This �gure obviously showsthat the outdated CSI signi�cantly a�ects the performance of sequential relaying. Thisdegradation in the performance is both in the diversity order and the coding gain, i.e.,by selecting any value for ρ other than one, the achieved diversity order drops to one.For low average SNR values, our proposed scheme has a lower performance comparedto sequential relaying, which is a result of employing the channel code in our scheme.In the next simulation, we check the sensitivity of the proposed scheme (same net-work as the last simulation) against di�erent average SNR values at the source-relay
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODES
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Figure 7.5: Monte-Carlo simulation of the average error probability of the proposeddistributed linear block code relaying (DLBCR) versus the normalized average SNR of the
S −R and R−D links
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7.7 Simulations and Discussion
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1Figure 7.6: Monte-Carlo simulation of the average error probability when the source-relayand the relay-destination channels have di�erent average SNR valuesand the relay-destination links. Fig. 7.6 shows the results. Since Rayleigh �at fading isassumed for all of the underlying links, the SNR follows exponential distribution, i.e.,
fΓ(γ) = λ exp(−λγ) where 1/λ is the average SNR value. Let us denote the averageSNR value for the �rst and the second hop by 1/λ1 and 1/λ2, respectively. This simula-tion shows that the di�erent average SNR values in the �rst and the second hop resultsin a degradation of the performance. However, the proposed scheme retains the samediversity order.Next, we consider the performance of (7, 3) distributed Reed-Solomon code relayingcorresponding to G in (7.2). We compare the performance of the proposed schemewith the rival sequential relaying when the relay assignment is based on the �outdated�CSI for the second hop. For both scenarios, the transmitted symbols are selected from
GF (8). Fig. 7.7 shows some simulation results for the average symbol-error-rate (SER)of the proposed scheme versus Es/N0 (the energy per symbol to noise power spectraldensity ratio) compared to that of sequential relaying for di�erent correlation coe�cients
ρ. As it is evidenced by this �gure, our proposed scheme nearly achieves diversity 5,
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7. COOPERATIVE RELAYING BASED ON DISTRIBUTEDIMPLEMENTATION OF LINEAR CHANNEL CODES
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Sequential, ρ = 0.95Figure 7.7: Monte-Carlo simulation of the average error probability of the distributedReed-Solomon codes compared to sequential relaying with outdated CSI of the second hopwhere all of the other curves fail to achieve diversity. Another interesting observationfrom this �gure is the superiority of the proposed scheme, even for low average SNRvalues. This superiority goes back to the inherent performance of the RS codes.In the last �gure, we simulate the performance of the proposed distributed convolu-tional code relaying corresponding to G in (7.3) and also we check its sensitivity againstdi�erent average SNR values at the source-relay and the relay-destination links. Fig.7.8 shows the results. Again we can see that the di�erent average SNR values in the �rstand the second hop results in a degradation of the performance. However, the proposedscheme retains the same diversity order. In addition, it is learnt that the coding gainfor λ2 = 0.5λ1 is better than the coding gain for λ2 = 0.5λ1. This fact shows that thesensitivity of this scheme to the SNR values in the �rst hop is more than the that ofthe second hop. This result can be explained based on the discussion in Section 7.6.1.
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8
Conclusions and PerspectivesIn this thesis, we have explored the problem of relay assignment in cooperative net-works. The performance of di�erent relay assignment schemes is statistically analyzed,new schemes are proposed to achieve diversity and some algorithms are proposed to�nd the optimum permutation based on some existing criteria.As a means for our analysis, �rst we considered di�erent scenarios where the PDF ofthe relaying channels' SNR involves order statistics. These scenarios are generalizationsof the best-relay selection scheme and correspond to the case where the best relay is un-available due to some reasons. The results have several applications in the performanceanalysis of various relay assignment schemes and are used in the remaining chapters ofthis thesis. In order to perform our analysis, we proposed a new approximation for the�rst order modi�ed Bessel function of the second kind. This function widely appears inthe Rayleigh fading and Nakagami-m fading AF relay channels. Our proposed approx-imation which is more accurate than the classical approximation, is still easy to handleand enables us to �nd much more accurate expressions for the performance of the rthweakest E2E relay channel in a set of N two-hop channels.In the following three sections, we have considered the problem of relay assignmentin cooperative networks based on di�erent criteria. Each criterion has its own prosand cons, and some are suitable for some network con�gurations but not for othercon�gurations. We considered each criterion in a suitable network con�guration andanalyzed its performance. As the performance metric, we calculated the PDF of theend-to-end SNR, the diversity order and the BER. The mentioned criteria are sequential
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8. CONCLUSIONS AND PERSPECTIVESrelay assignment (Chapter 4), relay assignment based on max-min criterion (Chapter5), and relay assignment based on max-sum criterion (Chapter 6). It is assumed thatonly one relay node is assigned to a single transmitting node, which has been shown tohave the capability to maximize the network throughput.Chapter 4 proposes a simple sequential relay assignment scheme for the networksconsisting of multiple sources, multiple relays, and a single destination. In this scheme,for each set of channel realizations, the sources sequentially choose their relays amongthe remaining relays. In the relay assignment process, the priority of the source nodesfor relay-selection is based on the quality of the source-destination links, i.e. the sourcenodes that have weaker source-destination channels, have higher priority in getting as-signed relays with stronger relay-destination links. As such, the number of relays couldbe more than N. Since each source bene�ts from both its direct channel to the destina-tion and that through the assigned relay, the proposed scheme achieves balance amongdi�erent sources, and therefore all sources achieve the same diversity. We calculated thePDF of the E2E SNR and BER for the proposed scheme. The proposed scheme o�ersthe highest performance among our known relay assignment schemes in the literature.Chapter 5 deals with relay assignment based on max-min criterion. According tothis criterion, the minimum SNR of all possible permutations are compared, and thepermutation whose minimum SNR is the maximum, is selected. There were two ba-sic questions about this criterion: First, there was no algorithm to �nd the optimumpermutation based on this criterion (the only solution was exhaustive search). Second,statistical analysis of the optimum permutation was unknown and it was assumed to bevery di�cult (because of the dependency among di�erent permutations). In this chap-ter, we answered both questions, i.e. we o�ered a simple algorithm to �nd the optimumpermutation based on this criterion and also we statistically analyzed the performanceof this optimum answer. The simplicity of the proposed algorithm stems from the factthat it involves simple matrix manipulations. We proved that this scheme achieves fulldiversity.In Chapter 6, we considered relay assignment based on maximizing the sum of rateor SNR values. Both schemes are statistically analyzed and their diversity order is cal-culated. Sum-rate is a widely accepted criterion in the literature, because it maximizesthe amount of information exchanged in the network. Our analysis proved that sumrate criterion achieves full diversity; however, using this criterion, the achieved BER
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for each user is larger than that of using max-min criterion. We also proved that max-imizing the sum of SNR values does not achieve diversity; however, it has a relativelygood performance for a wide range of low average SNR values. In the remaining ofthis chapter, we proposed a new �exible formulation to �nd the optimum permutationbased on the mentioned criteria. The proposed scheme is based on the vehicle routingproblem.In the last chapter of this thesis, we have moved forward to a relay assignment schemewhich is less dependent on CSI to achieve diversity. This issue is motivated by the factthat we should go through di�erent di�culties to provide CSI. These di�culties involve1) errors in the estimation of CSI; 2) round-o� error due the limited feedback; 3) errorshappening in the reporting process; and 4) variations of the channel during the reportingprocess. To address this problem, we have proposed a new scheme to achieve diversityin relay channels where we only used the CSI of the source-relay channels. The proposedscheme is based on a distributed implementation of linear block codes or convolutionalcodes. In this scheme, each relay node implements one column of the generator matrixof the code, i.e. di�erent symbols of the codeword are sent to the destination by di�erentrelays. Each relay receives the symbols from one or more source nodes and performs amodulo-q addition on the decoded symbols and retransmits the result to the destination.In order to achieve the maximum diversity order, an appropriate source-relay pairinghas to be employed. For this relay assignment process, we assumed that only the CSI ofthe source-relay channels is available. We proposed an algorithm based on the max-mincriterion for the resulting relay assignment problem. The result of this algorithm is notthe optimal solution based on the max-min criterion, but still achieves full diversity inthe relay nodes. Finally, soft decoding is employed at the destination to retrieve thetransmitted information. We proved that the proposed scheme achieves diversity dminor dfree for the E2E performance, where, dmin or dfree are the minimum distance andthe free distance of the corresponding implemented codes, respectively.The contents of Chapter 7 re�ect a new trend in the design and analysis of cooper-ative networks where the e�ects of limited CSI are taken into account. New researchesconducted by di�erent scholars show that limited CSI can strongly degrade the perfor-mance of di�erent relay assignment schemes. This issue can be analyzed from di�erentpoints of view. On one hand, the e�ects of limited CSI should be carefully analyzed in
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8. CONCLUSIONS AND PERSPECTIVESthe performance of di�erent relay assignment schemes. On the other hand, new schemesshould be proposed to increase the robustness against limited CSI.One relevant interesting scheme is the distributed space-time-coded cooperative net-work [5]. This scheme is not given recognition it should have got, because it achievesdiversity without using CSI at all, however, it needs careful synchronization among alltransmitting nodes. It also needs simultaneous transmitting and receiving by all relaynodes. We think improvements can be achieved by a proper combination of this schemeand max-min or sum-rate criteria.As the last point, we want to mention the power problem which is still a challengefor the implementation of cooperative networks. The importance of this issue stemsfrom the fact that the relay nodes in many applications have limited energy. Fromthis point of view, it seems that the design of relaying schemes should be much moreinvestigated. Recently, the idea of energy harvesting nodes is proposed to tackle thisproblem. In fact, solving this issue can promise a big share for the cooperative networksin the future wireless technology.
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A�ectation de relais dans les réseaux coopératifs sans �lRésumé : Dans cette thèse, nous explorons le problème de l'a�ectation des relaisdans les réseaux coopératifs. La performance des di�érents schémas d'a�ectation derelais est analysée statistiquement. De nouveaux schémas sont proposés pour atteindrela diversité maximale, et certains algorithmes sont proposés pour trouver la permuta-tion optimale basée sur certains critères existants. Dans notre analyse, tout d'abordnous avons considéré di�érents scénarios où le SNR équivalent source-relais-destinationest considéré comme une variable aléatoire. Dans les trois sections suivantes, nousavons considéré le problème de l'a�ectation de relais dans les réseaux coopératif baséssur di�érents critères. Nous avons considéré chaque critère dans une con�guration deréseau appropriée et analysé sa performance. Comme indicateur de performance, nousavons calculé la PDF du SNR équivalent total, l'ordre de la diversité et le TEB (Tauxd'Erreur Binaire). Les critères utilisés sont l'a�ectation de relais séquentiel (chapitre4), l'a�ectation de relais sur la base du critère max-min (chapitre 5), et l'a�ectation derelais sur la base du critère max-somme (chapitre 6). Dans le dernier chapitre de cettethèse, nous avons proposé un nouveau schéma pour réaliser la diversité dans les canauxde relais où nous avons seulement utilisé la CSI des canaux source-relais. Le schémaproposé est basé sur l'implémentation distribuée de codes linéaires en bloc ou des codesconvolutifs.Mots clés : A�ectation de relais, réseaux coopératifs, max-min, sum-rate.Relay Assignment in Cooperative NetworksAbstract: In this thesis, we have explored the problem of relay assignment incooperative networks. The performance of di�erent relay assignment schemes is statis-tically analyzed, new schemes are proposed to achieve diversity and some algorithmsare proposed to �nd the optimum permutation based on some existing criteria. As ameans for our analysis, �rst we considered di�erent scenarios where the PDF of therelaying channels' SNR involves order statistics. In the following three sections, wehave considered the problem of relay assignment in cooperative networks based on dif-ferent criteria. Each criterion has its own pros and cons, and some are suitable for somenetwork con�gurations but not for other con�gurations. We considered each criterionin a suitable network con�guration and analyzed its performance. As the performancemetric, we calculated the PDF of the end-to-end SNR, the diversity order and the BER.The mentioned criteria are sequential relay assignment (Chapter 4), relay assignmentbased on max-min criterion (Chapter 5), and relay assignment based on max-sum cri-terion (Chapter 6). In the last chapter of this thesis, we have proposed a new schemeto achieve diversity in relay channels where we only used the CSI of the source-relaychannels. The proposed scheme is based on a distributed implementation of linear blockcodes or convolutional codes.Keywords: Relay Assignment, Cooperative Networks, Amplify-and-Forward, max-min, sum-rate. C2S2/XLIM, University of Limoges123, avenue Albert Thomas - 87060 LIMOGES
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