UNIVERSITE DE LIMOGES

Ecole Doctorale Sciences et Ingénierie pour l'Information

Faculté des Sciences et Techniques de Limoges Institut de Recherche XLIM

N $^{\circ}$ d'ordre : 89-2011

THESE

Pour obtenir le grade de Docteur de l'Université de Limoges Spécialité : « Electronique des Hautes Fréquences, Photonique et Systèmes » Présentée et soutenue par :

Khaled KHODER

Le 16 Décembre 2011

Optimisation de composants hyperfréquences par la technique des plans à surfaces de réponses

Thèse dirigée par Annie Bessaudou, Françoise Cosset et Christophe Durousseau

JURY :	
Rapporteurs	
Michelle SERGENT	Professeur des Universités au LMRE
	Université Paul Cézanne, Marseille
Gaëtan PRIGENT	Maitre de Conférences HDR
	LAPLACE, Toulouse
Examinateurs	
Annie BESSAUDOU	Professeur des Universités, Limoges
Françoise COSSET	Maitre de Conférences, Université de Limoges
Christophe DUROUSSEAU	Enseignant chercheur, Université de Limoges
Bruno SAUVIAC	Professeur des Universités, Université Jean Monnet
Invité	
Stéphane BILA	Chargé de Recherche CNRS, Université de Limoges

SOMMAIRE

Introduction générale	1
Partie I : Théorie sur les plans à surfaces de réponses	3
I. Introduction	4
II. Définition des facteurs et des niveaux	4
III. Définition d'une réponse	5
IV. Définition du domaine expérimental	5
V. Modèle empirique	7
VI. Les plans de Doelhert	8
VI.1. Introduction	8
VI.2. Principe de construction d'un réseau uniforme de Doelhert	9
VI.3. Extension du réseau1	1
VI.4. Réseau de Doelhert pour k = 3 facteurs1	2
VI.5. Augmentation du nombre de facteurs en cours d'étude1	3
VII. Les plans composites centrés1	4
VII.1. Plan composite centré ordinaire : circumscribed central composite (CCC)1	5
VII.2. Plan composite centré inscrit : central composite inscribed (CCI)2	1
VII.3. Plan composite à faces centrées : central composite face-centered (CCF)2	2
VII.4. Passage d'un domaine sphérique à un domaine cubique2	3
VIII. Analyse des résultats2	5
VIII.1. Analyse mathématique des résultats2	5
VIII.2. Analyse statistique des résultats2	7
VIII.3. Analyse graphique des résultats	2
VIII.4. Points tests internes	3

IX. Désirabilité et optimisation	34
IX.1. Désirabilité individuelle	34
IX.2. Désirabilité globale	37
IX.3. Recherche d'un optimum	37
X. Conclusion	41
XI. Bibliographie	42
Partie II : Analyse de la méthode	44
Chapitre 1 : Optimisation d'un filtre OMUX	45
I. Les filtres OMUX	46
I.1. Introduction	46
I.2. Structure de référence	46
I.3. Réponse en fréquence	47
I.4. Utilisation des méthodes d'optimisation de forme sur le résonateur OMUX	48
II. Optimisation des dimensions de la cavité par la méthode des plans d'expériences .	49
II.1. Formalisation du problème	49
II.2. Plan d'expériences	49
II.3. Analyse des résultats	51
II.4. Optimisation multicritère : fonctions de désirabilités	58
II.5. Etude dans un domaine expérimental cubique	62
III. Application de la méthode BFGS	71
IV. Conclusion	75
V. Références	75
Chapitre 2 : Optimisation d'un résonateur diélectrique	77
I. Résonateur diélectrique	78
II. Application de la méthode des plans d'expériences pour quatre facteurs d'entrée	79

III. Optimisation des dimensions du résonateur	81
III.1. Plan d'expériences	81
III.2. Analyse des modèles et optimisation à l'aide du logiciel Nemrodw	82
III.3. Analyse des modèles et optimisation à l'aide du logiciel Modde	86
III.4. Conclusion	
IV. Diminution du domaine expérimental (plan CCF)	89
IV.1. Optimisation par Nemrodw	89
IV.2. Optimisation par Modde	91
V. Application de la méthode BFGS pour minimiser le volume du résonateur.	92
V.1. Application de la méthode BFGS sans contrainte sur le volume	93
V.2. Application de la méthode BFGS avec contrainte sur le volume	94
VI. Conclusion	97
VII. Références	97
Partie III : Couplage des plans d'expériences et des courbes de n	iveaux 98
I. Introduction	99
II. Méthodologie proposée	99
II.1. Optimisation par la méthode des courbes de niveaux	99
II.2. Facteurs d'entrée et réponses	101
II.3. Utilisation d'un plan composite centré	101
II.4. Optimisation multicritère	108
II.5. Utilisation d'un plan composite centré CCF	110
III. Application de la méthode BFGS	113
IV. Conclusion	114
V. Références	115
Partie IV : Plans d'expériences optimaux	

Chapitre 1 : Théorie sur les plans optimaux	117
I. Introduction	118
II. Contraintes relationnelles entre facteurs d'entrée	118
III. Utilité des plans optimaux	119
IV. Critères d'optimalité	
IV.1. Critère D : optimisation de la qualité de l'information	
IV.2. Critère A : optimisation de la qualité des coefficients du modèle	121
IV.3. Critère G : optimisation de la qualité de prévision du modèle	121
IV.4. Critère Condition Number	
IV.5. Choix d'un plan D-optimal par l'exemple	
V. Elaboration d'une matrice d'expériences optimale	
V.1. Algorithme d'échange de Fedorov	
VI. Conclusion	127
VII. Références	
Chapitre 2 : Optimisation de forme du VO ₂ dans un rés	onateur en
alumine	
I. Introduction	
II. Démarche expérimentale	130
III. Utilisation de la méthode des plans d'expériences	131
III.1. Formalisation du problème	131
III.2. Contraintes	
III.3. Plan d'expériences	
III.4. Plan optimal avec le logiciel Nemrodw	134
III.5. Analyse et optimisation	137
III.6. Etude pour différentes valeurs de conductivité	144

IV. Conclusion	145
V. Références	146
Chapitre 3 : Optimisation d'un résonateur planaire de Hairpin	147
I. Introduction	148
II. Structure de référence	148
III. Utilisation de la méthode des plans d'expériences	149
III.1. Utilisation d'un plan d'expériences optimal	149
III.2. Analyse à l'aide du logiciel Nemrodw	154
III.3. Analyse du plan D-optimal à l'aide du logiciel Modde	158
III.4. Optimisation sur plusieurs valeurs de fréquence	168
III.5. Conclusion	169
IV. Références	170
Conclusion générale et perspectives	171
ANNEXE : Algorithme BFGS	174

Table des matières

Introduction générale

Introduction générale

Introduction générale

Introduction générale

Depuis une vingtaine d'années, les statistiques ont évolué dans différentes directions, parmi lesquelles les plans d'expériences.

Les plans d'expériences sont issus de méthodes mathématiques et statistiques appliquées à l'expérimentation. Les premiers scientifiques à s'être posés le problème de l'organisation des essais sont des agronomes. Ils avaient en effet beaucoup de paramètres à étudier et n'avaient pas la possibilité de multiplier les expériences. De plus, la durée de ces dernières constituait une contrainte supplémentaire forte.

Ainsi, dans toutes les disciplines, il est fréquent de souhaiter analyser un phénomène dépendant de différents paramètres. La méthode élémentaire (méthode des essais et des erreurs) n'est pas toujours la meilleure : elle consiste à faire varier un seul paramètre à la fois et à bloquer tous les autres. La variation de la réponse mesurée dépend uniquement de l'influence du changement de ce facteur. Si plusieurs paramètres doivent être étudiés, il faut répéter cette technique pour chacun d'eux. Avec cette méthode, on remarque que les valeurs prises par chaque paramètre n'apparaissent pas le même nombre de fois, donc on n'obtient pas la même incertitude sur l'information relative à chaque valeur prise par chaque facteur, ce qui constitue un premier problème. De plus, le domaine expérimental n'est pas entièrement exploré.

La méthode des plans d'expériences va donc aider l'expérimentateur à structurer sa recherche de manière différente, à confronter et à valider ses propres hypothèses et à mieux comprendre les phénomènes étudiés.

Les plans d'expériences appliqués à l'étude des surfaces de réponses permettent de résoudre des problèmes d'optimisation. Cette méthode permet à partir d'un modèle polynomial, de déterminer à quelles valeurs les facteurs d'entrée d'un dispositif doivent être ajustés pour obtenir la ou les réponses souhaitées.

Ce manuscrit se compose de quatre grandes parties.

- La première partie traite de la théorie sur les plans à surfaces de réponses. Dans cette partie, après avoir expliqué la marche à suivre pour générer un plan à surfaces de réponses, nous décrivons les plans les plus classiquement utilisés : les plans de Doelhert et les plans composites centrés. Puis, nous présentons les analyses nécessaires pour valider les modèles polynomiaux utilisés, ainsi que l'optimisation multicritère qui consiste à transformer toutes les réponses en fonctions de désirabilité individuelle dont la nature dépend des objectifs de l'étude : la recherche d'un minimum, d'un maximum ou encore d'une valeur cible. Enfin, nous présentons les différentes étapes qui conduisent à trouver un optimum multicritère à l'aide des optimiseurs des logiciels Nemrodw et Modde.
- La deuxième partie est consacrée au développement d'exemples associés à la méthode des plans d'expériences.

Le premier exemple (chapitre 1) porte sur l'optimisation d'un filtre OMUX. A travers cet exemple, nous expliquons la construction d'un plan composite centré ainsi que les étapes d'analyse et d'optimisation multicritère à l'aide des deux logiciels. Un algorithme de minimisation (BFGS) est couplé avec les modèles issus des plans d'expériences afin d'améliorer la qualité des solutions obtenues. L'optimisation d'un résonateur diélectrique situé dans une cavité cylindrique, constitue le deuxième exemple (chapitre 2). Après l'analyse des modèles mathématiques, nous décrivons les étapes de la recherche d'un optimum multicritère. L'algorithme de minimisation (BFGS) est utilisé dans un premier temps sans contrainte sur le volume du résonateur. Dans un second temps, cet algorithme est utilisé afin de trouver des solutions de bonne qualité tout en essayant de diminuer le volume du résonateur.

- La troisième partie porte sur le couplage entre la méthode des plans d'expériences et une méthode d'optimisation de forme (courbes de niveaux) pour optimiser un filtre OMUX tout en essayant de diminuer les dimensions de la cavité. Nous présentons de façon générale, le principe de fonctionnement de la méthode des courbes de niveaux. Puis, nous détaillons la méthodologie de couplage entre cette méthode et les plans d'expériences.
- La quatrième partie de ce manuscrit traite de la théorie des plans d'expériences avec contraintes (plans optimaux). Après avoir montré l'intérêt des plans d'expériences optimaux (chapitre 1), nous développons deux exemples associés à ce type de plans.

Le premier exemple (chapitre 2) porte sur l'optimisation de la forme du dioxyde de vanadium déposé sur une plaque de saphir. Les contraintes entre les facteurs sont choisies de façon que le dépôt de VO₂ ne sorte pas de la plaque de saphir. Un plan optimal est généré avec les deux logiciels. Puis, nous expliquons les critères d'optimalité sur lesquels les deux logiciels s'appuient pour générer le plan optimal.

L'optimisation d'un résonateur planaire de Hairpin, constitue le deuxième exemple (chapitre 3). La présence des contraintes d'encombrement sur ce résonateur conduit à choisir un plan optimal. Nous expliquons dans cet exemple, différentes techniques pour améliorer les qualités des modèles et nous terminons par la recherche d'une solution respectant le cahier des charges.

Enfin nous terminons le manuscrit par des conclusions et quelques perspectives.

Partie I : Théorie sur les plans à surfaces de réponses

I. Introduction

Les plans d'expériences pour l'étude des surfaces de réponses sont apparus dans la seconde moitié du XX^{ème} siècle en 1951 [1]. Ils sont développés dans différents domaines scientifiques, citons en particulier : la biologie, la chimie, les sciences humaines et l'agronomie [2 - 4].

L'objectif de cette méthodologie est, plus que de hiérarchiser les effets des différents facteurs, de décrire le plus précisément possible le comportement de la réponse en fonction des variations des facteurs. Le but de ce type d'étude est donc de parvenir à une modélisation du phénomène étudié basée sur l'expérimentation [5]. Ces plans permettent de déterminer à quelles valeurs les facteurs d'entrée d'un dispositif doivent être ajustés pour obtenir une ou plusieurs réponses souhaitées ; ils s'appuient sur l'usage de modèles de nature polynomiale.

Le nombre d'essais d'un plan d'expériences pour l'étude des surfaces de réponses croît rapidement en fonction du nombre de facteurs. Pour qu'un plan d'expériences constitue une stratégie efficace et économique, il convient donc de limiter le nombre de facteurs mis en œuvre. C'est pourquoi, les plans pour l'étude des surfaces de réponses succèdent généralement à une première étape de criblage des facteurs, sauf si les paramètres influents du dispositif à optimiser sont connus. De nombreuses références existent sur le sujet [6 - 12].

La construction d'un plan pour l'étude de surfaces de réponses nécessite la connaissance des facteurs d'entrée qui sont influents sur les réponses qu'on souhaite optimiser.

II. <u>Définition des facteurs et des niveaux</u>

Les paramètres de réglage d'un processus sur lesquels on décide d'agir pour rechercher un optimum sont appelés, d'un point de vue méthodologique, des facteurs. Les facteurs dans un plan à surfaces de réponses doivent être quantitatifs et continus. Les niveaux de ces facteurs sont fixés par la méthode de construction du plan, au sein d'un intervalle de variation dont les limites sont précisées par l'utilisateur. Les facteurs d'entrée d'un processus traduisent le plus souvent des grandeurs différentes et/ou s'expriment dans des unités différentes. Il convient donc de standardiser les variations de ces variables pour les rendre comparables et sans unité. Il s'agit d'une relation de codage (centrage et réduction) des facteurs, donnée par la formule suivante :

$$X_{i} = \frac{u_{i} - \left(\frac{u_{\max} + u_{\min}}{2}\right)}{\left(\frac{u_{\max} - u_{\min}}{2}\right)}$$
(1)

Dans la relation (1), u_i est un facteur quantitatif continu et X_i est sa valeur codée (centrée et réduite), u_{min} et u_{max} représentent les limites du facteur qui sont précisées par l'utilisateur.

Les bornes de variations des facteurs u_{min} et u_{max} doivent être définies en tenant compte, si nécessaire, de l'existence de contraintes (contraintes de simulation ou de fabrication).

Les valeurs des facteurs X_i (sans unité) appartiennent en général à l'intervalle borné [-1, +1]. Les valeurs codées des facteurs X_i sont utilisées pour construire la matrice d'expériences qui permet, après recodage à l'aide de la relation (2), d'obtenir un plan d'expérimentations à réaliser.

$$u_{i} = X_{i} \left(\frac{u_{\max} - u_{\min}}{2}\right) + \left(\frac{u_{\max} + u_{\min}}{2}\right)$$
(2)

Nous allons illustrer ci-dessous la notion de matrice d'expériences avec un exemple simple.

Prenons deux facteurs quantitatifs u_1 et u_2 . Le facteur u_1 peut varier par exemple entre 0,5 et 2 ; le facteur u_2 peut varier entre 100 et 200. Supposons que la matrice d'expériences choisie soit celle reportée dans le tableau 1.

Numéro d'essai	X_1	X_2
1	-1	-1
2	-1	1
3	1	-1
4	1	1

 Tableau 1 : matrice d'expériences

Ainsi on recode le tableau 1 (matrice d'expériences) à l'aide de la relation (2) pour obtenir le plan d'expériences à réaliser (tableau 2).

Numéro d'essai	u ₁	u ₂
1	0,5	100
2	0,5	200
3	2	100
4	2	200

Tableau 2 : plan d'expériences

III. <u>Définition d'une réponse</u>

Une réponse Y correspond à un paramètre de sortie du système étudié. Elle doit être représentative et le moins dispersée possible pour des variables d'entrées constantes. La réponse Y peut être exprimée sous la forme $Y = f(X_1, X_2, X_3, ..., X_n)$ où f est la relation fonctionnelle qui lie la réponse aux n facteurs $X_1, X_2, X_3, ..., X_n$. Dans le cadre des processus d'optimisation, la grandeur étudiée dont on recherche les meilleures valeurs est généralement appelée fonction objectif. Les fonctions objectifs peuvent être une réponse particulière ou une combinaison de plusieurs réponses du système étudié [13].

IV. Définition du domaine expérimental

Un domaine expérimental continu est délimité par des facteurs quantitatifs. La figure 1 illustre le domaine expérimental de deux facteurs u_1 et u_2 . En utilisant la relation de codage (1), les facteurs u_1 et u_2 sont transformés en facteurs codés X_1 et X_2 qui varient entre -1 et +1.

Lorsqu'il n'existe pas de contraintes relationnelles définies entre tout ou partie des k facteurs indépendants, le domaine expérimental est limité par un hyper-cube, chacun des facteurs variant dans l'intervalle [-1, +1] d'après la relation de codage. On parle alors d'un domaine expérimental isotrope. La géométrie régulière d'un tel domaine facilitera la distribution uniforme des expériences en son sein.

Figure 1 : domaine expérimental continu avec contraintes

Lorsqu'il existe une ou plusieurs contraintes relationnelles définies entre tout ou partie des k facteurs, la géométrie du domaine expérimental perd sa régularité. On dit alors que le domaine expérimental est anisotrope. En présence d'une telle géométrie, il n'est plus possible d'établir une méthode généraliste produisant une distribution uniforme des expériences au sein du domaine (les plans d'expériences avec contraintes sont traités dans la partie IV). Notons que les contraintes peuvent être dues à des expériences impossibles à mettre en œuvre ou encore à des combinaisons de facteurs improbables.

Les valeurs considérées des facteurs sont centrées et réduites (relation (1)). Les dimensions caractérisant le domaine expérimental d'un plan d'expériences sont obligatoirement liées à la disposition des points d'expériences dans ce domaine, et également, de façon implicite, à la qualité du modèle dans ce même domaine. On définit ainsi deux géométries [12] :

- le domaine expérimental cubique,
- le domaine expérimental sphérique.

Dans le premier cas, tous les points du plan sont disposés sur la surface d'un hyper cube. Dans le cas de deux facteurs d'entrée, les points expérimentaux se situent au bord d'un carré (voir figure 2) sauf un seul point qui se situe au centre du domaine.

La figure 2 montre le domaine expérimental cubique pour deux facteurs centrés et réduits X_1 et X_2 . Un plan à surfaces de réponses dans un domaine cubique est utilisé en l'absence d'un point de fonctionnement particulier. La surface est alors limitée par un carré (l'optimum peut être trouvé sur des valeurs extrêmes des facteurs d'entrée), et dans ce cas, chaque facteur nécessite trois niveaux qui sont -1, 0, et 1.

Figure 2 : domaine expérimental cubique

Lorsque les points expérimentaux sont placés à une même distance d'un point donné (qui est en général le centre du domaine), le plan est dit d'influence sphérique. On introduit alors la grandeur R désignant le rayon d'un cercle dans le cas de deux facteurs d'entrée (voir figure 3).

Figure 3 : domaine expérimental sphérique

La géométrie sphérique est utilisée lorsqu'on dispose d'un point de fonctionnement qui est en général le centre du domaine. Dans ce cas, et compte tenu de la relation de codage des facteurs, le domaine expérimental est en général limité par un cercle de rayon unitaire, le nombre de niveaux des facteurs d'entrée dans ce domaine est différent d'un plan à un autre.

V. Modèle empirique

Le modèle sous-jacent à la construction de tout plan pour l'étude des surfaces de réponses est un modèle polynomial (modèle continu, à dérivées continues). Plus le degré de ce polynôme est élevé, plus on approche finement le phénomène observé, mais le nombre d'expériences devient plus important, ce qui nous a conduit à adopter un compromis dans le cadre de la recherche expérimentale : il s'agit d'un polynôme de degré 2 qui s'écrit sous la forme suivante :

$$Y = b_0 + \sum_{i=1}^k b_i X_i + \sum_{i=1}^k b_{ii} X_i^2 + \sum_{i=1}^{k-1} \sum_{j=i+1}^k b_{ij} X_i X_j$$
(3)

Dans cette expression, Y représente la réponse à modéliser, b_0 représente la constante du modèle qui sert à estimer la réponse Y lorsque les valeurs de tous les facteurs sont fixées à zéro en variable codée (centre du domaine). De même b_i , b_{ij} sont les coefficients du polynôme à estimer. Le signe et l'amplitude des coefficients b_{ij} traduisent l'orientation des axes principaux de la surface de réponse par rapport aux axes du repère initial. Le nombre d'inconnues d'un modèle de second degré est donné par la formule suivante :

$$p = \frac{(k+2)!}{k!2!} = \frac{(k+2)(k+1)}{2}$$
(4)

Il sera nécessaire de réaliser un nombre d'expériences supérieur ou égal au nombre p d'inconnues pour les estimer. Il apparaît aussi qu'il va falloir limiter le nombre de facteurs étudiés, le nombre d'essais nécessaires augmentant de façon factorielle avec celui-ci.

L'écriture du modèle permet de définir le nombre d'inconnues à estimer à partir de l'analyse des résultats d'essais, suite aux résultats du plan d'expérimentation.

Il existe dans la littérature différents types de plans d'expériences qui font appel à la méthodologie des surfaces de réponses [14]. Le choix d'un plan nécessite une connaissance des facteurs étudiés et du type d'expériences. Dans le cas d'expériences longues, on s'intéressera plutôt à des plans économiques qui présentent un nombre d'expériences peu élevé. Dans le cas où les expériences sont moins coûteuses en temps, on travaillera avec des plans assez "gourmands" en termes de nombre d'expériences mais plus précis au niveau des résultats.

Parmi les nombreux types de plans permettant de construire des surfaces de réponses, nous ne présenterons ici que les plans les plus classiquement utilisés : les plans de Doelhert et les plans composites centrés.

VI. <u>Les plans de Doelhert</u>

VI.1. Introduction

Le plan d'expériences illustré dans cette partie a été proposé par David Hallam Doelhert en 1970 [15]. Cette famille de plans d'expériences permet, lorsque cela est industriellement possible, une exploration séquentielle du domaine expérimental qui est toujours sphérique. La construction de ce type de plan est basée sur des considérations uniquement géométriques, ce qui en fait l'originalité. Ces plans sont aussi appelés réseaux uniformes de Doelhert. Ils possèdent plusieurs propriétés présentées ci-dessous [12, 16, 17, 18].

Distribution uniforme des points expérimentaux

Les points expérimentaux sont distribués de façon uniforme dans le domaine expérimental. Les réseaux uniformes sont utiles pour explorer la totalité du domaine : frontière et intérieur.

• Extension des facteurs étudiés

Il est toujours possible d'ajouter de nouveaux facteurs à étudier sans que la matrice d'expériences ne perde de sa qualité. La qualité de la matrice d'expériences est discutée dans la partie IV.

• Nombre d'expériences peu élevé

Le nombre d'expériences N d'un réseau uniforme pour un nombre de facteurs k donné est :

$$N = k^2 + k + n_0 \tag{5}$$

où n_0 est le nombre de points expérimentaux au centre du domaine. Dans le cas où l'expérience est une simulation par ordinateur, on utilise un seul point au centre du domaine (pas d'erreur en simulations). Le nombre d'expériences d'un réseau uniforme de Doelhert, N, est considéré comme faible en comparaison avec les autres plans à surfaces de réponses.

• Nombre différent de niveaux des facteurs

Un facteur dans un plan à surfaces de réponses est quantitatif, il prend des valeurs continues appelées niveaux. Le choix du nombre de niveaux et la valeur prise par chaque facteur à chacun des niveaux sont définis par le plan d'expériences. Une propriété intéressante des plans de Doelhert est le nombre de niveaux distincts pris par les facteurs d'entrée (plan d'expériences asymétrique). En considérant k = n facteurs (n nombre entier), le premier facteur comporte 5 niveaux, le n^{ème} 3 niveaux et tous les autres facteurs (sauf pour k = 2) 7 niveaux. Cette propriété est très utile si le changement du niveau d'un facteur est coûteux en temps, on lui attribuera alors seulement 3 niveaux.

VI.2. Principe de construction d'un réseau uniforme de Doelhert

Les réseaux uniformes de Doelhert sont générés à partir d'un simplexe [12]. Le simplexe est une figure géométrique qui possède un sommet de plus que la dimension de l'espace dans lequel il est représenté. Dans le cas de deux facteurs, le simplexe est constitué à partir de trois sommets. Le domaine expérimental et les points expérimentaux sont reportés sur la figure 4.

Les essais sont disposés sur un cercle de rayon unitaire, à l'exception du centre du domaine qui représente le réglage ou la formule de référence, sur lequel on s'appuie pour construire le simplexe initial. Le nombre d'expériences à réaliser dans ce cas est : $N = 2^2 + 2 + 1 = 7$.

Un réseau uniforme de Doelhert pour deux facteurs, nécessite donc 7 expériences en considérant un seul point au centre du domaine expérimental.

Figure 4 : réseau uniforme de Doelhert pour deux facteurs

Le simplexe initial est composé de trois expériences décrites dans le tableau 3.

Numéro d'expérience	Variables codées		
	X_1	X_2	
1	0	0	
2	1	0	
3	0,5	0,866	

Tableau 3 : coordonnées du simplexe initial

Pour construire la matrice d'expériences du réseau uniforme de Doelhert, il faut, pour chaque variable, soustraire successivement les coordonnées de chaque point à tous les autres. La matrice d'expériences de Doelhert pour deux facteurs X_1 et X_2 est donnée dans le tableau 4.

Cette matrice d'expériences permet le calcul des coefficients d'un modèle de surface de réponse de degré 2.

N	Variables codées			
Numero d'experience	X_1	X2		
1	0	0	Obtenu par	
2	1	0		
3	0,5	0,866		
4	-1	0	1-2	
5	-0,5	-0,866	1-3	
6	0,5	-0,866	2-3	
7	-0,5	0,866	3-2	

Tableau 4 : matrice d'expériences d'un réseau uniforme de Doelhert pour deux facteurs

Comme on peut le remarquer dans le tableau 4, les valeurs de X_1 appartiennent à l'intervalle [-1, 1], ce qui n'est pas le cas pour le deuxième facteur X_2 dont les valeurs appartiennent à l'intervalle [-0,866, 0,866], les bornes de cet intervalle dépendent fortement du simplexe initial construit géométriquement (figure 4).

VI.3. Extension du réseau

Une des caractéristiques importantes des réseaux de Doelhert est de permettre une démarche séquentielle dans l'étude d'une surface de réponses du deuxième degré. Il est donc facile de construire autour d'un des points du réseau, un nouveau réseau qui utilise une partie des points déjà effectués [12]. Cette caractéristique est utile si, par exemple, les résultats d'un plan d'expériences montrent que l'optimum peut être situé à l'extérieur du domaine expérimental initial. Il convient alors de déplacer le domaine expérimental dans la direction d'optimisation proposée par l'analyse du premier plan utilisé.

Supposons que l'optimum que nous cherchions soit autour du point expérimental numéro 3 (voir figure 4). Nous allons alors construire un réseau de Doelhert autour de ce point, considéré maintenant comme l'origine ou comme le centre du nouveau domaine expérimental. La matrice d'expériences initiale (tableau 4) est alors remplacée par une nouvelle matrice reportée dans le tableau 5.

Numéro d'expérience	Variables codées		
	X_1	X_2	
3	0,5	0,866	
7	-0,5	0,866	
8	0	1,732	
9	1	1,732	
2	1	0	
1	0	0	
10	1,5	0,866	

Tableau 5 : nouvelle matrice d'expériences

Les coordonnées des nouveaux points expérimentaux sont calculées par rapport à l'origine du domaine expérimental initial (figure 5). Les points signalés en gras sont communs à l'ancienne et à la nouvelle matrice. Il est donc nécessaire d'ajouter seulement 3 nouveaux points.

La nouvelle matrice d'expériences est toujours asymétrique, le facteur X_1 possède 5 niveaux et le facteur X_2 , 3 niveaux. Les répartitions des points expérimentaux de l'ancienne et de la nouvelle matrice d'expériences sont données sur la figure 5.

Figure 5 : extension du réseau de Doelhert en un autre réseau autour du point 3

Le point (1) représente l'origine du domaine expérimental qui correspond à l'ancienne matrice, le point (3) représente l'origine du domaine expérimental qui correspond à la nouvelle matrice d'expériences.

La construction d'un plan d'expériences à partir d'un réseau uniforme de Doelhert permet de bénéficier, dans le nouveau domaine, de résultats d'essais déjà disponibles ; dans notre cas (figure 5), pour passer à un nouveau réseau de Doelhert il suffit de réaliser les expériences (8), (9), et (10). Il est aussi possible d'appliquer cette démarche dans un domaine expérimental défini par un nombre plus important de facteurs.

VI.4. <u>Réseau de Doelhert pour k = 3 facteurs</u>

Dans le cas de trois facteurs, le réseau uniforme de Doelhert nécessite 13 expériences $(N = 3^2 + 3 + 1)$, le premier facteur prend 5 niveaux, le deuxième 7 et le troisième, 3 niveaux. Dans ce cas, les coordonnées du simplexe initial sont données dans le tableau 6.

Nousée diamérican	Variables codées			
Numero d experience	X_1	X_2	X3	
1	0	0	0	
2	1	0	0	
3	0,5	0,866	0	
4	0,5	0,289	0,816	

Tableau 6 : coordonnées du simplexe initial pour k = 3 facteurs

Le simplexe initial est un tétraèdre régulier formé de 4 points expérimentaux. La distribution des points expérimentaux dans le domaine est reportée sur la figure 6 (l'axe X_2 est orthogonal aux axes X_1 et X_3).

Figure 6 : réseau uniforme de Doelhert pour k = 3 facteurs

Comme on peut le remarquer, la figure géométrique engendrée par les 12 sommets est un cuboctaèdre qui peut être obtenu en joignant les milieux des arêtes d'un cube.

La matrice d'expériences dans ce cas est donnée dans le tableau 7 ; les quatre premières lignes représentent les coordonnées du simplexe initial.

	V	ariables codé				
Numero d'experience	X_1	X2	X3			
1	0	0	0	Obtenu par		
2	1	0	0	Obtenu par		
3	0,5	0,866	0]		
4	0,5	0,289	0,816			
5	-1	0	0	1-2		
6	-0,5	-0,866	0	1-3		
7	-0,5	-0,289	-0,816	1-4		
8	0,5	-0,866	0	2-3		
9	0,5	-0,289	-0,816	2-4		
10	0	0,577	-0,816	3-4		
11	-0,5	0,866	0	3-2		
12	-0,5	0,289	0,816	4-2		
13	0	-0,577	0,816	4-3		

Tableau 7 : matrice d'expériences associée à un réseau de Doelhert pour k = 3 facteurs

Le domaine expérimental est une sphère de rayon unitaire. Le plan de projection est porté par les axes représentant les trois facteurs à partir des variables codées. On observe immédiatement, d'après le tableau 7, les 5 niveaux associés à l'étude du facteur X_1 , les 7 niveaux associés à l'étude du facteur X_2 et les 3 niveaux du facteur X_3 .

VI.5. Augmentation du nombre de facteurs en cours d'étude

Un autre avantage des réseaux de Doelhert est que l'on peut augmenter le nombre de facteurs d'entrée en cours d'étude de façon à utiliser au mieux les informations déjà obtenues [12]. Considérons la matrice d'expériences pour k = 2 facteurs, elle présente 7 expériences à réaliser. Si on suppose qu'un autre facteur peut exister, sa valeur moyenne sera égale à zéro en variable codée. Cette nouvelle variable prend la valeur zéro au cours des 7 premières expériences. Pour passer de 2 à 3 facteurs il faut 6 expériences de plus pour compléter la matrice de 3 facteurs (13 expériences). Les 7 expériences qui sont communes aux deux matrices sont : (1), (2), (3), (5), (6), (8) et (11) puisque la valeur de la troisième variable est égale à zéro. Les 6 expériences à ajouter sont alors : (4), (7), (9), (10), (12) et (13). La nouvelle matrice est donnée dans le tableau 8.

Nous remarquons que les 7 premiers points sont ceux de la matrice pour k = 2. Il n'y a donc que 6 points à ajouter pour passer de 2 à 3 facteurs. En effet, sur la figure représentant la répartition des points pour k = 3, les 7 points de la matrice pour k = 2 sont les sommets et le centre de l'hexagone : (1), (2), (3), (5), (6), (8) et (11) qui se trouvent dans le plan (X₁, X₂); il

suffit d'a	jouter 6 autres	points : (4),	(7), (9),	(10), (12)	et (13),	les val	leurs p	prises]	par le	facteur	X_3
sur ces 6	points sont -0,	816 et 0,816	(voir fig	gure 6).							

	Variables codées					
Numero d experience	X1	X2	X3			
1	0	0	0			
2	1	0	0			
3	0,5	0,866	0			
5	-1	0	0			
6	-0,5	-0,866	0			
8	0,5	-0,866	0			
11	-0,5	0,866	0			
4	0,5	0,289	0,816			
7	-0,5	-0,289	-0,816			
9	0,5	-0,289	-0,816			
10	0	0,577	-0,816			
12	-0,5	0,289	0,816			
13	0	-0,577	0,816			

Tableau 8 : matrice d'expériences pour k = 3 facteurs (un facteur ajouté en cours d'étude)

Un autre plan qui fait appel à la méthodologie des surfaces de réponses et que nous allons présenter ci-après, est le plan composite centré. Ce plan présente un nombre d'expériences plus élevé qu'un plan de Doelhert avec la possibilité de travailler dans les deux domaines : sphérique et cubique. Dans ces plans, les facteurs d'entrée présentent le même nombre de niveaux ; aucun d'entre eux n'est donc privilégié.

VII. Les plans composites centrés

Les plans composites centrés [7, 19, 20] font appel à la méthodologie des surfaces de réponses, leur construction consiste à ajouter des points en étoile à partir d'un plan factoriel complet [21]. Ils sont cependant assez "gourmands" en termes de nombre d'essais par rapport à d'autres types de plans [20] mais ce nombre reste raisonnable lorsque le nombre de facteurs étudiés est faible (entre 2 et 4). Le nombre d'expériences dans un plan composite centré est donné par la relation suivante :

$$N = 2^{k} + 2k + n_0 \tag{6}$$

où k est le nombre de facteurs d'entrée. Un plan composite centré se décompose en somme de trois quantités [20] :

- un plan factoriel complet 2^k;
- deux points en étoile par facteur qui sont positionnés sur les axes de chacun de ceux-ci à une distance α du centre du domaine, nous verrons par la suite que $\alpha = \sqrt[4]{2^k}$. Ces points contribuent à l'évaluation des termes quadratiques du modèle polynomial, c'est-à-dire qu'ils donnent des informations sur la courbure de la surface de réponse ;

 n₀ répétitions au centre du domaine expérimental, dédiées à l'analyse statistique. Dans le cas où les expériences sont des simulations numériques, le nombre de répétitions au centre du domaine expérimental est égal à 1 (pas d'erreur expérimentale).

Trois types de plans composites centrés existent dans la littérature ; ils sont décrits dans les paragraphes suivants.

VII.1. <u>Plan composite centré ordinaire : circumscribed central</u> <u>composite (CCC)</u>

Dans ce type de plan, chaque facteur prend 5 niveaux [20] et le domaine expérimental est un domaine sphérique. Dans ce cas, et compte tenu de la relation de codage des facteurs, le domaine expérimental est donc inscrit dans un cercle de rayon α (voir figure 7). Les deux axes de la figure représentent la variation de deux facteurs codés. Ce plan est composé de trois familles de combinaisons entre les niveaux des facteurs :

- les sommets du domaine, définis à partir des combinaisons des niveaux -1 et +1 des facteurs. Ces points représentent les traitements expérimentaux d'un plan factoriel complet. Lorsque le nombre de facteurs devient important (k > 4), pour que le nombre d'expériences n'augmente pas rapidement, il est possible de ne réaliser qu'une fraction régulière ou irrégulière de cet ensemble de sommets. Pour k = 5 à 7 facteurs, on réalise 2^{k-1} sommets ; pour k = 8 et 9 facteurs, on réalise 2^{k-2} sommets [20] ;
- les points en étoile qui se situent sur chacun des axes (deux points par axe). L'objectif ici est d'estimer les courbures de la surface de réponse. Ils sont situés à une distance α à déterminer ;
- le centre du domaine (0, 0) qui fait l'objet de répétitions dont le nombre est noté n₀.

Figure 7 : points expérimentaux d'un plan CCC pour k = 2 facteurs

Dans le cas de deux facteurs (k = 2), la matrice d'expériences est alors donnée dans le tableau 9. Les quatre premières expériences représentent le plan factoriel complet (combinaisons possibles des niveaux -1 et +1 de chaque facteur). Les expériences 5 à 8 représentent les points en étoile, chaque facteur prend sa valeur la plus grande du plan. Le dernier point de la matrice représente le centre du domaine (0, 0).

Plan CCC	Numéro d'expériences	X1	X ₂
	1	-1	-1
Plan factoriel complet	2	1	-1
	3	-1	1
	4	1	1
	5	α	0
Doints átoilas	6	-α	0
Politis etolies	7	0	α
	8	0	-α
Point au centre du domaine	9	0	0

Après avoir construit la matrice d'expériences en variables codées, l'étape suivante consiste à construire le plan d'expériences. On doit donc établir la correspondance entre les variables codées (X_i) et les facteurs (u_i) . Pour transformer linéairement un facteur en variable (et vice versa), on doit connaitre deux informations.

- La valeur du facteur correspondant à la valeur au centre du domaine (0) de la variable codée ; cette grandeur est désignée par le terme "centre u₀".
- L'étendue de la variation du facteur lorsque la variable codée varie d'une unité, cette grandeur est souvent désignée par le terme "pas de variation Δu".

La valeur minimale prise par chaque facteur u_{min} est égal à u_0 - Δu (-1 dans la matrice d'expériences), sa valeur maximale u_{max} est égale à $u_0+\Delta u$ (+1 dans la matrice d'expériences); si la valeur de α est plus grande que 1, on remarque que chaque facteur varie dans un nouveau domaine plus grand que l'ancien (deux nouvelles valeurs). Si ces nouvelles valeurs ne nous conviennent pas, on ajuste la valeur de Δu pour que les valeurs $-\alpha$ et $+\alpha$ représentent les bornes des facteurs choisis par l'utilisateur.

VII.1.1. <u>Détermination de la valeur de α</u>

Pour déterminer la valeur de α , il est nécessaire de définir la matrice du modèle, la matrice d'information et la matrice de dispersion, ainsi que des critères d'optimalité comme l'isovariance par rotation et la pseudo-orthogonalité.

VII.1.1.a. <u>Matrice du modèle, matrice d'information et matrice de</u> <u>dispersion</u>

Dans le cas de deux facteurs, en tenant compte de l'écart (e) entre la réponse calculée et la réponse expérimentale, l'équation du modèle polynomial s'écrit de la façon suivante :

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_{11} X_1^2 + b_{22} X_2^2 + b_{12} X_1 X_2 + e$$
(7)

Pour calculer les coefficients par la méthode des moindres carrés, la matrice du modèle, notée X, va être utilisée ; elle traduit sous forme mathématique l'application de l'équation (7) à chacune des combinaisons définies à partir de la matrice d'expériences (tableau 9). Celle-ci étend la matrice d'expériences en définissant dans chaque colonne les niveaux de chacun des coefficients de l'équation du modèle pour chaque essai. De manière générale, la matrice du modèle est définie à partir de N lignes et de p colonnes. Le nombre de colonnes correspond au nombre de coefficients à estimer dans le modèle. Le nombre de lignes est égal au nombre de lignes de la matrice d'expériences. Le système à résoudre possède donc N équations à p inconnues. Ce système s'écrit d'une manière simple en notation matricielle :

$$(Y) = (X) \times (B) + (E) \tag{8}$$

avec Y la matrice des résultats d'essais pour une réponse donnée, X la matrice du modèle, B le vecteur des estimateurs des coefficients et E la matrice des résidus. Dans le cas présent, on obtient :

$$X = \begin{bmatrix} +1 & -1 & -1 & +1 & +1 & +1 \\ +1 & +1 & -1 & +1 & +1 & -1 \\ +1 & -1 & +1 & +1 & +1 & -1 \\ +1 & +1 & +1 & +1 & +1 & +1 \\ +1 & +\alpha & 0 & +\alpha^2 & 0 & 0 \\ +1 & -\alpha & 0 & +\alpha^2 & 0 & 0 \\ +1 & 0 & +\alpha & 0 & +\alpha^2 & 0 \\ +1 & 0 & -\alpha & 0 & +\alpha^2 & 0 \\ +1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(9)

La matrice d'information est obtenue à partir du produit matriciel entre la transposée de la matrice du modèle (^{t}X) et la matrice du modèle (X) elle-même. Il s'agit d'une matrice carrée de rang p qui définit les propriétés et qualités du plan d'expériences. En présence d'un arrangement orthogonal, la matrice d'information est diagonale, uniquement lorsqu'on affecte deux niveaux aux facteurs.

Dans le cas présent, on obtient [12] :

$$(^{t}XX) = \begin{bmatrix} 11 & 0 & 0 & 4+2\alpha^{2} & 4+2\alpha^{2} & 0 \\ 0 & 4+2\alpha^{2} & 0 & 0 & 0 \\ 0 & 0 & 4+2\alpha^{2} & 0 & 0 \\ 4+2\alpha^{2} & 0 & 0 & 4+2\alpha^{2} & 4 & 0 \\ 4+2\alpha^{2} & 0 & 0 & 4+2\alpha^{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$
 (10)

Afin de pouvoir établir les conditions de pseudo-orthogonalité et d'isovariance par rotation pour déterminer la valeur de α , il convient de définir maintenant la matrice d'information dans le cas général, lorsque la matrice d'expériences provient de la construction d'un plan composite centré. On obtient dans le cas général :

	$\lceil N \rceil$	0		0	a	a		a	0		0		
	0	а			0	0		0	0		0		
			а		0	0		0	0		0		
	0			а	0	0		0	0		0		
	a	0	0	0	с	b	b	b	0	•••	0		
$(^{t}XX) =$	a	0	0	0	b	С	b	b	0		0	(11	.)
					b	b	С	b	0		0		
	a	0	0	0	b	b	b	С	0		0		
	0	0	0	0	0	0	0	0	b	0	0		
					•••				0	b	0		
	0	0	0	0	0	0	0	0	0	0	b		

On distingue différents blocs au sein de la matrice d'information dont il est possible de préciser les valeurs à partir du nombre k de facteurs et des relations génériques suivantes :

$$\begin{cases} N = 2^{k} + 2k + n_{0} \\ a = 2^{k} + 2\alpha^{2} \\ b = 2^{k} \\ c = 2^{k} + 2\alpha^{4} \end{cases}$$
(12)

L'inversion de la matrice d'information conduit à la matrice de dispersion $({}^{t}XX)^{-1}$ utilisée dans la méthode des moindres carrés pour estimer les coefficients du modèle (les termes diagonaux de cette matrice sont proportionnels à l'incertitude associée à l'estimation des coefficients du modèle).

Dans le cas de deux facteurs, la matrice de dispersion s'écrit de la façon suivante [12] :

$$({}^{t}XX)^{-1} = \begin{bmatrix} D & 0 & 0 & M & M & 0 \\ 0 & Q & 0 & 0 & 0 & 0 \\ 0 & 0 & Q & 0 & 0 & 0 \\ M & 0 & 0 & K & L & 0 \\ M & 0 & 0 & L & K & 0 \\ 0 & 0 & 0 & 0 & 0 & P \end{bmatrix}$$
 (13)

Pour déterminer les valeurs de K, L, M, D, P et Q, il faut rappeler que la matrice de dispersion permet de vérifier la relation suivante, dans laquelle (I) représente la matrice d'unité :

$$(^{t}XX)^{-1}(^{t}XX) = (I)$$
 (14)

Ce qui nous permet d'obtenir :

$$\begin{cases} K = \frac{-a^2 + N \times c}{N \times c^2 - N \times b^2 - 2 \times a^2 \times c + 2 \times a^2 \times b} \\ L = \frac{-N \times b + a^2}{(c - b) \left(N (c + b) - 2 \times a^2 \right)} \\ M = \frac{-a}{-2 \times a^2 + N \times b + N \times c} \\ D = \frac{b + c}{-2a^2 + N \times b + N \times c} \\ P = \frac{1}{b} \\ Q = \frac{1}{a} \end{cases}$$
(15)

VII.1.1.b. <u>Définition des notions de pseudo-orthogonalité et</u> <u>d'isovariance par rotation</u>

Dans le cas des plans factoriels fractionnaires, la condition d'orthogonalité [20] est recherchée pour améliorer la précision des effets des facteurs d'entrée sur les réponses d'un système. Pour les plans composites centrés, il ne va pas être possible d'assurer cette propriété, les termes diagonaux de la matrice d'information (correspondant aux points supplémentaires donnant des informations sur la courbure de la surface) ne pouvant être annulés. D'autres conditions sur les paramètres α et n₀ vont alors être recherchées pour assurer certaines propriétés comme la pseudo-orthogonalité et l'isovariance par rotation.

La matrice d'information (10) n'étant pas diagonale, la matrice de dispersion (13) ne peut pas être diagonale. La propriété de pseudo-orthogonalité consiste à rapprocher la matrice de dispersion d'une matrice diagonale en annulant les termes notés L. Ces termes sont proportionnels à la covariance entre les estimateurs des coefficients traduisant les effets quadratiques purs. Les termes notés M ne peuvent pas être annulés d'après les deux équations (12) et (15).

Il est possible de montrer [20] que pour annuler ces coefficients, il faut choisir α et n₀ tels que :

$$\alpha = \left(\frac{2^{k} \left(\sqrt{2^{k} + 2k + n_{0}} - \sqrt{2^{k}}\right)^{2}}{4}\right)^{1/4}$$
(16)

Une deuxième propriété intéressante est l'isovariance par rotation. La norme FDX 06-080, [22], la définit ainsi : "un dispositif expérimental présente des propriétés d'isovariance par rotation quand la fonction de variance ne dépend que de la distance au centre du domaine expérimental. Ainsi, aucune direction n'est privilégiée."

La condition d'isovariance par rotation est donnée par l'équation suivante [20] :

$$\alpha = \sqrt[4]{2^k} \tag{17}$$

La condition d'isovariance par rotation s'exprime donc de manière simple et elle est indépendante du nombre n_0 de répétitions au centre du domaine expérimental. Il est courant d'associer les notions de pseudo-orthogonalité et d'isovariance par rotation, ce qui donne la relation suivante :

$$\sqrt{2^{k} + 2k + n_{0}} - \sqrt{2^{k}} = 2$$
(18)

Pour traduire le nombre de répétitions au centre du domaine, compte tenu du fait que n_0 doit rester un entier naturel, on obtient :

$$n_0 \approx (2 + \sqrt{2^k})^2 - 2^k - 2k$$
 (19)

Les conditions de pseudo-orthogonalité et d'isovariance par rotation s'écrivent donc :

$$\begin{cases} n_0 \approx (2 + \sqrt{2^k})^2 - 2^k - 2k \\ \alpha = \sqrt[4]{2^k} \end{cases}$$
(20)

On donne dans le tableau 10 la valeur de α et le nombre N de traitements expérimentaux définis par un plan composite centré permettant de vérifier simultanément les propriétés de pseudo-orthogonalité et d'isovariance par rotation.

	Nombre de facteurs k						
	k = 2	k = 3	k = 4	k = 5			
n ₀	8	9	12	17			
α	1,414	1,682	2	2,378			
$N=2^k\!\!+\!2k\!\!+\!\!n_0$	16	23	36	59			

Tableau 10 : pseudo-orthogonalité et isovariance par rotation

VII.2. Plan composite centré inscrit : central composite inscribed (CCI)

Le domaine expérimental occupé par un plan composite centré inscrit est un domaine sphérique (voir figure 8), la valeur de α est égale à 1, les valeurs codées extrêmes sont alors -1 et 1.

Ce plan est composé d'un point au centre du domaine (0, 0), des sommets du domaine qui sont des combinaisons entre les niveaux -a et a de chaque facteur et des points en étoile qui sont situés à la distance unité du centre du domaine.

Figure 8 : points expérimentaux d'un plan CCI pour k = 2 facteurs

Les plans CCI ont le même fonctionnement que les plans CCC décrits précédemment, l'avantage ici provient du fait que les valeurs extrêmes des facteurs codés sont -1 et +1, ce qui facilite le passage de la matrice d'expériences au plan d'expériences. Il suffit d'utiliser :

- $u_{min} = u_0 \Delta u$, valeur minimale prise par le facteur u (-1 dans la matrice d'expériences).
- $u_{max} = u_0 + \Delta u$, valeur maximale prise par le facteur u (+1 dans la matrice d'expériences).

La valeur de a est donnée par [20] :

$$a = \frac{\sqrt{k}}{k} \tag{21}$$

Dans le cas de deux facteurs, a est égal à 0,7071, les sommets du plan correspondent aux quatre premières expériences de la matrice (tableau 11), les expériences 5 à 8 représentent les points axiaux ou points en étoile, en considérant un seul point au centre du domaine (expérience 9). Dans ce cas, il n'est pas nécessaire de recalculer le pas de variation Δu de chaque facteur puisque la valeur de α est égale à 1.

Plan CCI	Numéro d'expériences	X_1	X2
	1	-0,7071	-0,7071
Plan factorial complet	2	0,7071	-0,7071
Plan lactorier complet	3	-0,7071	0,7071
	4	0,7071	0,7071
	5	1	0
Dointe on átoile	6	-1	0
Points en étoile	7	0	1
	8	0	-1
Point au centre du domaine	9	0	0

Tableau 11 : matrice d'expériences d'un plan composite centré CCI pour k = 2 facteurs

VII.3. <u>Plan composite à faces centrées : central composite face-</u> <u>centered (CCF)</u>

Dans ce type de plans, le domaine expérimental est un domaine cubique, chaque facteur nécessite 3 niveaux qui sont -1, 0, et 1 (voir figure 9). Ces plans sont utilisés dans le cas où l'on ne connait aucun point de fonctionnement du dispositif, le domaine expérimental est limité par un carré, ce qui donne la possibilité de trouver les optima qui se situent à côté des valeurs extrêmes des facteurs (ce qui n'est pas possible dans un domaine sphérique). La valeur de α est égale à 1, les sommets du domaine sont des combinaisons avec les valeurs -1 et 1 des facteurs d'entrée, ce qui explique le nombre de niveaux de chaque facteur qui est limité à 3.

Figure 9 : points expérimentaux d'un plan CCF pour k = 2 facteurs

La matrice d'expériences pour un plan CCF est constituée aussi de 3 parties comme le montre le tableau 12.

Plan CCC	Numéro d'expériences	X_1	X ₂
	1	-1	-1
Plan factoriel complet	2	1	-1
i an actorier compet	3	-1	1
	4	1	1
	5	1	0
Pointe an átaila	6	-1	0
Points en étone	7	0	1
	8	0	-1
Point au centre du domaine	9	0	0

Tableau 12 : matrice d'expériences pour un plan CCF pour k = 2 facteurs

L'utilisation d'un plan dans un domaine sphérique est recommandée puisque chaque facteur nécessite 5 niveaux, ce qui donne une haute précision pour le modèle mathématique. Un domaine sphérique est utilisable en général dans le cas où l'on connait un point de fonctionnement du dispositif, c'est-à-dire là où l'optimum cherché peut-être trouvé, ce point est en général le centre du domaine sphérique.

Dans le cas où l'on n'a aucune idée sur la localisation des optima cherchés, un plan dans un domaine cubique est recommandé. Les optima peuvent alors se trouver pour des niveaux extrêmes des facteurs d'entrée. L'idée est donc d'appliquer la méthode des plans d'expériences dans un domaine sphérique ; si l'optimum ne se situe pas dans ce domaine, un passage à un domaine cubique sera effectué avec un minimum d'expériences, ce qui est le sujet du paragraphe suivant.

VII.4. Passage d'un domaine sphérique à un domaine cubique

VII.4.1. Conservation du domaine expérimental

Il est toujours possible de passer d'un domaine sphérique à un domaine cubique sans faire un nouveau plan et en conservant les mêmes plages de variations de chaque facteur d'entrée. Il suffit de faire 4 expériences qui caractérisent les sommets du carré, dans le cas de deux facteurs (figure 10).

On remarque d'après la figure 10 que le passage d'un domaine sphérique à un domaine cubique nécessite 4 points expérimentaux supplémentaires, de coordonnées : $(+\alpha, +\alpha)$, $(+\alpha, -\alpha)$, $(-\alpha, -\alpha)$ et $(-\alpha, +\alpha)$ en conservant le point (0, 0) qui devient le centre du domaine cubique. Ce passage nécessite la conservation du point au centre du domaine et des points qui se situent sur les axes de chaque facteur. Cette technique est utilisable pour un nombre plus grand de facteurs.

Figure 10 : passage d'un domaine sphérique à un domaine cubique

VII.4.2. Diminution du domaine expérimental

Dans le cas où l'on trouve un optimum qui se situe sur la frontière du domaine sphérique, on peut créer un domaine cubique sur une partie du domaine expérimental (figure 11).

Figure 11 : passage d'un domaine sphérique à un domaine cubique en diminuant le domaine expérimental

On remarque d'après la figure 11 que l'optimum se situe sur le cercle pour $X_1 > 0$ et $X_2 > 0$. Il est possible de faire une autre étude sur la région qui contient l'optimum tout en conservant des expériences déjà effectuées. Dans ce cas, on peut faire un autre plan dans un domaine cubique en conservant les expériences : $(0, 0), (+\alpha, 0), (0, +\alpha), il$ suffit alors de faire seulement 6 expériences : $(+\alpha, +\alpha), (+\alpha, +\alpha/2), (+\alpha/2, 0), (0, +\alpha/2), (+\alpha/2, +\alpha)$ et le point $(+\alpha/2, +\alpha/2)$ qui est maintenant le centre du nouveau domaine.

Cette technique permet de localiser finement l'optimum avec une haute précision puisque le domaine expérimental est maintenant réduit.

VIII. <u>Analyse des résultats</u> VIII.1. <u>Analyse mathématique des résultats</u>

L'analyse mathématique consiste à estimer, grâce à la méthode des moindres carrés, les p coefficients du modèle et les N résidus, à savoir les écarts entre les valeurs mesurées (ou simulées) et les valeurs prévues par le modèle pour chacun des traitements du plan d'expériences.

Rappelons que le modèle polynomial du second degré dans le cas de deux facteurs d'entrée pour le traitement i du plan d'expériences, s'écrit de la façon suivante :

$$Y_{i} = b_{0} + b_{1}X_{i,1} + b_{2}X_{i,2} + b_{11}X_{i,1}^{2} + b_{22}X_{i,2}^{2} + b_{12}X_{i,1}X_{i,2} + e_{i}$$
(22)

Dans cette expression :

- Y_i représente la valeur observée de la réponse Y pour le i^{ème} traitement,
- b_i, b_{ii} représentent les coefficients du modèle décrit précédemment,
- X_{i,j} représente la valeur lue dans la matrice d'expériences pour le i^{ème} traitement et pour le j^{ème} facteur,
- e_i représente l'écart entre la valeur observée et la valeur calculée de la réponse Y.

Il est donc possible de construire le système suivant à partir des observations expérimentales :

$$\begin{cases} Y_{1} = b_{0} + b_{1}X_{1,1} + b_{2}X_{1,2} + b_{11}X_{1,1}^{2} + b_{22}X_{1,2}^{2} + b_{12}X_{1,1}X_{1,2} + e_{1} \\ Y_{2} = b_{0} + b_{1}X_{2,1} + b_{2}X_{2,2} + b_{11}X_{2,1}^{2} + b_{22}X_{2,2}^{2} + b_{12}X_{2,1}x_{2,2} + e_{2} \\ \vdots \\ Y_{i} = b_{0} + b_{1}X_{i,1} + b_{2}X_{i,2} + b_{11}X_{i,1}^{2} + b_{22}X_{i,2}^{2} + b_{12}X_{i,1}X_{i,2} + e_{i} \\ \vdots \\ Y_{N} = b_{0} + b_{1}X_{N,1} + b_{2}X_{N,2} + b_{11}X_{N,1}^{2} + b_{22}X_{N,2}^{2} + b_{12}X_{N,1}X_{N,2} + e_{N} \end{cases}$$

$$(23)$$
Le système précédent peut être écrit sous forme matricielle :

$$(Y) = (X) \times (B) + (E) \tag{24}$$

Dans cette expression, (X) représente la matrice du modèle, (E) la matrice des résidus et (B) le vecteur des estimateurs des coefficients.

Ce qui donne :

$$\begin{bmatrix} Y_{1} \\ Y_{2} \\ \dots \\ Y_{i} \\ \dots \\ Y_{N} \end{bmatrix} = \begin{bmatrix} 1 & X_{1,1} & X_{1,2} & X_{1,1}^{2} & X_{1,2}^{2} & X_{1,1}X_{1,2} \\ 1 & X_{2,1} & X_{2,2} & X_{2,1}^{2} & X_{2,2}^{2} & X_{2,1}X_{2,2} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & X_{i,1} & X_{i,2} & X_{i,1}^{2} & X_{i,2}^{2} & X_{i,1}X_{i,2} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & X_{N,1} & X_{N,2} & X_{N,1}^{2} & X_{N,2}^{2} & X_{N,1}X_{N,2} \end{bmatrix} \times \begin{bmatrix} b_{0} \\ b_{1} \\ b_{2} \\ b_{11} \\ b_{22} \\ b_{12} \end{bmatrix} + \begin{bmatrix} e_{1} \\ e_{2} \\ \dots \\ e_{i} \\ \dots \\ e_{N} \end{bmatrix}$$
(25)

L'estimation des coefficients à partir de la méthode de moindres carrés fait appel à l'équation matricielle suivante :

$$(B) = ({}^{t}XX)^{-1} \times ({}^{t}X) \times (Y)$$
(26)

Les réponses sont calculées à partir de la relation suivante :

$$(\hat{Y}) = (X) \times (B) \tag{27}$$

Le résidu pour le traitement i est enfin défini à partir de la relation :

$$e_i = Y_i - \hat{Y}_i \tag{28}$$

où \hat{Y} représente la réponse calculée par le modèle au point i.

Les résultats obtenus peuvent alors être représentés graphiquement afin de comparer dans un premier temps les réponses mesurées et les réponses estimées par le modèle. Pour cela, il est nécessaire de tracer le graphe d'adéquation du modèle. Les réponses mesurées (expérimentales) sont placées en abscisse et les réponses estimées (calculées par le modèle) en ordonnée.

La figure 12 donne un exemple de graphe d'adéquation, le nuage de points représente les valeurs d'une réponse Y pour chaque ligne du plan d'expériences.

Si le nuage de points est aligné sur la droite d'équation y = x, la qualité descriptive du modèle sera excellente (on considère que les valeurs calculées par le modèle sont très proches des valeurs mesurées).

Figure 12 : exemple de graphe d'adéquation du modèle

Cette représentation graphique permet de conclure à une bonne qualité descriptive du modèle. L'analyse statistique confirmera ce résultat.

VIII.2. Analyse statistique des résultats

L'équation du modèle empirique n'est qu'une approximation de la réalité. L'estimation des coefficients du modèle polynomial du second degré s'appuie sur des résultats d'essais qui sont, pour chacun des traitements du plan d'expériences, des valeurs particulières d'une variable aléatoire. Une série de tests statistiques va maintenant être menée pour juger de la qualité du modèle [23, 24]. Cette étude peut être décomposée en trois étapes :

- l'analyse globale du modèle,
- l'analyse statistique des coefficients du modèle,
- l'analyse statistique des résidus.

VIII.2.1. Analyse globale du modèle

L'objectif de l'analyse globale des résultats est de définir la qualité descriptive du modèle au moyen d'un tableau d'analyse de la variance (ANOVA : ANalysis Of VAriance). Pour cela, nous allons définir plusieurs grandeurs.

Soit SCT la somme des carrés totale, c'est-à-dire la somme des carrés des écarts entre les résultats d'essais (expériences) et leur moyenne :

$$SCT = \sum_{i=1}^{N} (Y_i - \overline{Y})^2$$
⁽²⁹⁾

Cette quantité est indépendante du modèle utilisé. On décompose ensuite cette somme de carrés en une somme de deux termes SCM et SCE. Le premier terme traduit la variation des réponses calculées autour de leur moyenne, soit encore :

$$SCM = \sum_{i=1}^{N} (\hat{Y}_i - \overline{Y})^2$$
(30)

On rappelle que l'application de la méthode des moindres carrés utilisée pour l'estimation des coefficients du modèle, induit la relation suivante [23] :

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i = \frac{1}{N} \sum_{i=1}^{N} \hat{Y}_i$$
(31)

Le second terme traduit la somme des carrés des résidus :

$$SCE = \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$
 (32)

La somme des carrés totale (SCT) peut être donnée par la relation suivante, encore appelée équation d'analyse de variance ou équation d'analyse de régression :

$$SCT = SCM + SCE$$
 (33)

Un test statistique visant à rejeter l'hypothèse (H₀) selon laquelle le modèle ne permet pas de décrire la variation des essais va maintenant être réalisé. Lorsque cette hypothèse est vérifiée, il est possible de montrer [23] que la statistique F_c suit une loi de Fisher avec respectivement (p-1) et (N-p) degrés de liberté.

$$F_c = \frac{SCM/(p-1)}{SCE/(N-p)}$$
(34)

Ainsi, l'hypothèse (H₀) est rejetée avec une probabilité α si :

$$F_c > F_{(\alpha, p-1, N-p)} \tag{35}$$

Dans cette équation, $F_{(\alpha,p-1,N-p)}$ est le (1- α) quantile d'une loi de Fisher avec (p-1) et (N-p) degrés de liberté.

Le modèle permet de décrire la variation des résultats d'essais si la probabilité $ProbF_c$ est faible (< 5 %) (Probabilité de rejeter l'hypothèse nulle « le modèle ne permet pas de décrire la variation des résultats d'essais »).

Ces données conduisent à la construction du tableau ANOVA (tableau 13), récapitulant les différents résultats.

Pour qu'il existe le moins de résidus possible, il faut que le rapport F_c de deux variances (cinquième colonne dans le tableau de régression) soit le plus grand possible. On pourra alors dire que le modèle "apporte de l'information".

Source variatio	de Son	Somme des carrés	Degrés de liberté	Carré moyen	Fc	Probabilité
Régress	sion	SCM	p-1	SCM/(p-1)	[SCM/(p-1)]/[SCE/(N-p)]	ProbF _c
Résidu	JS	SCE	N-p	SCE/(N-p)		
Tot	al	SCT	N-1			

Tableau 13 : tableau ANOVA (analyse de régression)

Le tableau d'analyse de régression permet d'établir le coefficient de détermination R^2 à partir de la relation suivante :

$$R^2 = \frac{SCM}{SCT} = 1 - \frac{SCE}{SCT}$$
(36)

Ce coefficient traduit la contribution du modèle dans la restitution de la variation de la réponse observée. Par définition, le coefficient de détermination appartient à l'intervalle [0, 1].

En présence de plusieurs variables explicatives, ce qui est généralement le cas dans l'analyse des résultats d'essais, il faut impérativement éviter d'utiliser le coefficient de détermination R^2 pour estimer la qualité descriptive du modèle. Il faut recourir à l'utilisation du coefficient de détermination ajusté $R^2_{ajusté}$:

$$R_{ajust\acute{e}}^{2} = 1 - \frac{\frac{SCE}{N-p}}{\frac{SCT}{N-1}}$$
(37)

Si le nombre d'expériences est égal au nombre d'inconnues du système, le coefficient R^2 sera toujours égal à 1. C'est pour éviter cela que le coefficient de détermination $R^2_{ajusté}$ a été introduit. Ce coefficient est défini comme la différence à 1 du rapport entre le carré moyen des écarts des résidus et le carré moyen des écarts expérimentaux.

Plus les valeurs de R^2 et $R^2_{ajusté}$ sont proches de 100%, plus la qualité descriptive du modèle est satisfaisante.

Un autre coefficient permet de décrire la capacité prédictive du modèle, appelé R^2_{pred} donné par la formule suivante :

$$R_{pred}^2 = 1 - \frac{PRESS}{SCT}$$
(38)

où PRESS (Prediction Residual Error Sum of Squares [25]), la somme des carrés des résidus, est donnée par la formule suivante :

$$PRESS = \sum_{i=1}^{N} e(i)^2$$
(39)

La régression est faite sans l'expérience i et en chacun des (N-1) points on calcule \hat{Y}_i au point i : $e(i) = Y_i - \hat{Y}_i$, la procédure est répétée pour chaque point (i = 1, 2, ..., N).

La valeur de R^2_{pred} est toujours comprise entre 0 et 1, plus cette valeur est proche de 1, plus la capacité prédictive du modèle est bonne.

VIII.2.2. Analyse statistique des coefficients du modèle

Les différents coefficients du modèle peuvent aussi être analysés statistiquement. L'hypothèse nulle (H₀) est alors étudiée pour chacun des coefficients, selon laquelle ceux-ci sont nuls. La probabilité associée à cette hypothèse notée Signif est obtenue à partir d'un test statistique de comparaison d'une moyenne à la valeur zéro. Pour ce faire, la statistique t_{exp} qui dépend de l'estimation de l'écart type de b_i est alors calculée :

$$t_{\exp} = \frac{b_i}{S(b_i)}$$
(40)

L'écart type $S(b_i)$ est estimé à partir des termes diagonaux c_{ii} de la matrice de dispersion $({}^{t}XX)^{-1}$ dans la méthode des moindres carrés :

$$S(b_i) = \sigma \sqrt{c_{ii}} \tag{41}$$

avec σ , la variance expérimentale.

Dans les logiciels, on adopte comme estimation de la variance expérimentale, la variance résiduelle σ_r définie à partir de la relation générale :

$$\sigma_r^2 = \frac{SCE}{N-p} = \frac{\sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2}{N-p}$$
(42)

La variance résiduelle est utilisée pour calculer l'écart-type résiduel S_r qui s'écrit de la façon suivante :

$$S_r = \sqrt{\sigma_r^2} \tag{43}$$

La statistique t_{exp} peut alors être exprimée sous la forme :

$$t_{\exp} = \frac{(b_i)}{S_r \sqrt{c_{ii}}}$$
(44)

De faibles valeurs de Signif (souvent inférieure à 5 %) indiquent la bonne significativité du coefficient du modèle. Il est alors possible de déterminer quels sont les coefficients à conserver. On présente dans le tableau 14 un exemple d'analyse des coefficients d'un modèle du second degré pour deux facteurs.

En regardant les valeurs de Signif pour chaque coefficient, on remarque que les coefficients b_{22} et b_{12} ont une probabilité d'être nul élevée (0,311 pour b_{22} et 0,492 pour b_{12}). Ces coefficients doivent être supprimés pour améliorer la qualité prédictive du modèle.

Nom	Coefficient	Facteur d'Inflation	Ecart-Type	t.exp.	Signif. %
b ₀	13,326		0,6271279	21,25	0,0228 ***
b ₁	-5,323	1	0,22069054	-24,12	0,0156 ***
b ₂	-0,726	1	0,22069054	-3,29	4,61 *
b ₁₋₁	2,071	1,7	0,36332456	5,7	1,07 *
b ₂₂	0,442	1,7	0,36332456	1,22	31,1
b ₁₂	-0,245	1	0,31369188	-0,78	49,2

Partie I : Théorie sur les plans à surfaces de réponses

Tableau 14 : tableau d'analyse des coefficients

La troisième colonne du tableau d'analyse des coefficients donne le facteur d'inflation qui constitue une mesure en absolu de l'indépendance des coefficients [26, 27], c'est-à-dire qu'il mesure le degré d'orthogonalité de la matrice d'expériences. Le facteur d'inflation varie de 1 dans le cas orthogonal à l'infini pour les facteurs fortement corrélés. La qualité de l'information diminue avec l'augmentation du facteur d'inflation. On peut dire qu'une matrice d'expériences apporte l'information désirée si le facteur d'inflation reste le plus proche de 1 [27].

VIII.2.3. Analyse statistique des résidus

Pour confirmer que le modèle décrit bien les variations des réponses, il faut s'assurer que localement, les résidus ne sont pas anormalement élevés. La normalité de la distribution des résidus est une hypothèse importante de la méthode des moindres carrés. Compte tenu du nombre N d'essais présents dans un plan d'expériences, on utilise généralement la méthode graphique de Henry (figure 13).

Figure 13 : droite de Henry

Chaque point de la figure 13 représente la valeur du résidu en un point du plan d'expériences. Si les résidus suivent une distribution normale, les points sont presque alignés dans un graphe "gausso-arithmétique". L'échelle horizontale de ce graphe est linéaire (résidus), l'axe des ordonnées est gradué de sorte que la fonction de répartition d'une variable aléatoire qui suit une loi de Gauss (une loi normale), soit représentée par une droite. Si des points s'écartent de cette droite hypothétique, ils doivent être vérifiés. Une disposition particulière des points peut indiquer la nécessité d'une transformation des données pour rendre leur distribution normale [12].

VIII.3. Analyse graphique des résultats

Un des principaux avantages des plans d'expériences est la présentation des résultats sous forme graphique. De nombreux graphiques sont disponibles pour interpréter l'équation du modèle empirique. Dans le cas des plans à surfaces de réponses, cette restitution s'effectue essentiellement sous deux formes différentes : les surfaces de réponses et les courbes iso-réponses.

VIII.3.1. Surfaces de réponses

La surface de réponse matérialise la surface de régression à partir d'un graphique dans un espace à trois dimensions. La figure 14 représente la surface de réponse d'une réponse Y en fonction de deux variables X_1 et X_2 .

La restitution sous forme graphique de l'équation du modèle permet d'illustrer les variations de la réponse et d'identifier une zone du domaine expérimental dans laquelle la réponse est intéressante.

Figure 14 : surface de réponse

Sur l'exemple de la figure 14, si on cherche à avoir une valeur maximale de la réponse Y, il suffit de prendre la valeur minimale du facteur X_2 , le facteur X_1 n'a aucune influence sur la réponse Y.

VIII.3.2. <u>Courbes iso-réponses</u>

Les courbes iso-réponses constituent une projection de la surface de réponse dans le plan horizontal (figure 15). Elles s'interprètent comme des courbes de niveaux sur lesquelles est projetée la valeur de la réponse. La figure 15 représente les courbes iso-réponses d'une réponse Y (en bleu) en fonction de deux facteurs d'entrée X_1 et X_2 . On voit également sur cette figure que la réponse Y est maximale pour une valeur minimale du facteur X_2 , et le facteur X_1 n'a aucune influence sur cette réponse.

Figure 15 : courbes iso-réponses

VIII.4. <u>Points tests internes</u>

Pour valider le modèle en n'importe quel point du domaine expérimental d'intérêt, il existe une technique qui s'appelle la validation du modèle aux points tests. Cette technique n'existe qu'avec le logiciel des plans d'expériences Nemrodw [28], développé par la société LPRAI pour la conception et l'analyse de plans d'expériences. Ce logiciel propose k+1 points tests qui n'appartiennent pas à la matrice d'expériences et qui se trouvent très éloignés des points de la matrice tout en restant dans le domaine expérimental d'intérêt. Les points tests permettent de vérifier que le modèle polynomial représente bien la variation d'une réponse en tout point du domaine. Pour valider le modèle en n'importe quel point du domaine expérimental d'intérêt, la stratégie est la suivante :

- désactivation des points tests à l'aide du logiciel,
- calcul des estimations des coefficients du modèle avec les réponses obtenues à partir des points de la matrice d'expériences,
- comparaison des résultats expérimentaux obtenus aux points tests avec ceux calculés à
 partir du modèle en ces mêmes points. Si on obtient une grande différence entre les
 réponses calculées et les réponses expérimentales aux points tests, le modèle ne représente
 pas bien la variation des réponses en tout point du domaine.

La figure 16 présente les 9 points expérimentaux d'un plan composite centré CCF pour deux facteurs, ainsi que les trois points tests internes proposés par le logiciel.

Figure 16 : visualisation des points tests

IX. <u>Désirabilité et optimisation</u>

Lorsque plusieurs réponses sont évaluées par un plan d'expériences, il est peu probable que les coordonnées des optima obtenues pour chaque réponse soient identiques. Dans cette situation, il est nécessaire de trouver un compromis afin que toutes les réponses expérimentales valident le cahier des charges ou les restrictions imposées par l'utilisateur, afin de répondre aux objectifs fixés. Quand il y a plusieurs réponses à évaluer, la notion de désirabilité qui permet d'agréger en un unique critère composite plusieurs autres critères, va être utilisée.

Cette notion a été introduite par E.C. Harrington [29] en 1965 puis a été développée par la suite, notamment par G. Derringer [30].

Elle est basée sur la transformation de toutes les réponses obtenues à partir de différentes échelles de mesure en une échelle identique de désirabilité sans dimension (désirabilité individuelle). Les valeurs des fonctions de désirabilité (d_i) sont comprises entre 0 et 1.

Ensuite, l'ensemble des désirabilités individuelles est rassemblé en une seule désirabilité globale D [31] qui est leur moyenne géométrique. La particularité de la moyenne géométrique est que la nullité de l'une au moins des désirabilités individuelles entraine celle de la désirabilité globale. Par suite, la moyenne géométrique conduit à rejeter un produit pour lequel l'un des objectifs n'est pas du tout réalisé, même si tous les autres le sont parfaitement.

La valeur de D la plus élevée est obtenue dans les conditions où la combinaison des différentes réponses est globalement optimale.

IX.1. Désirabilité individuelle

IX.1.1. <u>Désirabilité d'une réponse à maximiser</u>

Un exemple de fonction de désirabilité individuelle (d_i) dans le cas d'une réponse à maximiser, est représenté sur la figure 17. La valeur de 0 (une désirabilité individuelle prenant la valeur nulle) est attribuée lorsque les facteurs conduisent à une réponse inacceptable (non désirée) et celle de 1 lorsque la réponse représente la performance maximale désirée pour les facteurs considérés.

Figure 17 : désirabilité individuelle d_i d'une réponse Y_i

L'équation permettant de calculer les valeurs de désirabilités individuelles peut être ainsi présentée [30] :

$$d_{i} = \begin{cases} 0 \quad \Leftrightarrow Y_{i} \leq Y_{i,\min} \\ \left[\frac{Y_{i} - Y_{i,\min}}{Y_{i,\max} - Y_{i,\min}}\right]^{r_{i}} \Leftrightarrow Y_{i,\min} \leq Y_{i} \leq Y_{i,\max} \\ 1 \quad \Leftrightarrow Y_{i} \geq Y_{i,\max} \end{cases}$$
(45)

avec :

 $Y_{i,min}$: la valeur en dessous de laquelle la réponse Y_i ne convient pas (d_i = 0),

 $Y_{i,max}$: la valeur cible au-dessus de laquelle la réponse Y_i est très satisfaisante ($d_i = 1$),

 r_i : le facteur modifiant l'importance d'une augmentation de la réponse Y_i pour la désirabilité individuelle considérée. Cela correspond à la pondération de la réponse dépendant de l'utilisateur en fonction du degré de désirabilité que l'on voudrait avoir pour une réponse donnée entre $Y_{i,max}$.

IX.1.2. Désirabilité d'une réponse à minimiser

Lorsque l'on cherche à minimiser une réponse, la fonction de désirabilité peut être tracée comme le montre la figure 18.

Figure 18 : fonction de désirabilité d'une réponse à minimiser

Dans ce cas, la fonction de désirabilité est nulle quand la réponse dépasse la valeur limite $(Y_{i,max})$, elle vaut 1 lorsque la réponse est inférieure ou égale à la valeur cible $(Y_{i,min})$.

L'équation permettant de calculer les valeurs de désirabilités individuelles peut être ainsi présentée [30] :

$$d_{i} = \begin{cases} 1 \quad \Leftrightarrow Y_{i} \leq Y_{i,\min} \\ \left[\frac{Y_{i} - Y_{i,\max}}{Y_{i,\min} - Y_{i,\max}}\right]^{r_{i}} \Leftrightarrow Y_{i,\min} \leq Y_{i} \leq Y_{i,\max} \\ 0 \quad \Leftrightarrow Y_{i} \geq Y_{i,\max} \end{cases}$$
(46)

avec : $Y_{i,min}$, la valeur cible en dessous de laquelle la réponse Y_i est très satisfaisante $(d_i = 1)$, $Y_{i,max}$: la valeur au-dessus de laquelle la réponse Y_i ne convient pas $(d_i = 0)$.

IX.1.3. Désirabilité d'une réponse à cibler

ſ

Dans le cas où l'on souhaite avoir une valeur cible d'une réponse, la fonction de désirabilité individuelle est représentée sur la figure 19.

Figure 19 : fonction de désirabilité d'une réponse à cibler

Si on cherche par exemple une valeur cible Y_c de la réponse Y_i , l'équation permettant de calculer les valeurs de désirabilités individuelles peut être présentée de la façon suivante [30] :

$$d_{i} = \begin{cases} 0 \quad \Leftrightarrow Y_{i} \leq Y_{i,\min}, Y_{i} \geq Y_{i,\max} \\ \left[\frac{Y_{i} - Y_{i,\min}}{Y_{c} - Y_{i,\min}}\right]^{r_{i}} \Leftrightarrow Y_{i,\min} \leq Y_{i} \leq Y_{c} \\ \left[\frac{Y_{i} - Y_{i,\max}}{Y_{c} - Y_{i,\max}}\right]^{r_{i}} \Leftrightarrow Y_{c} \leq Y_{i} \leq Y_{i,\max} \\ 1 \quad \Leftrightarrow Y_{i} = Y_{c} \end{cases}$$

$$(47)$$

La fonction de désirabilité vaut 1 lorsque la réponse est égale à la valeur cible cherchée. Elle vaut zéro si la réponse est en dessous ou au-dessus des valeurs $Y_{i,min}$ et $Y_{i,max}$ précisées.

IX.2. Désirabilité globale

Après transformation des réponses en fonctions de désirabilité individuelle, l'étape suivante consiste à rassembler ces fonctions en une seule désirabilité globale D obtenue à partir de la moyenne géométrique des fonctions de désirabilité individuelle [30, 31] :

$$D = \left[\prod d_i^{wi} \right]^{1/\sum wi} \tag{48}$$

Les paramètres wi permettent de pondérer l'importance relative des différentes désirabilités élémentaires dans le critère global, c'est-à-dire de moduler l'importance que l'on accorde à chacune des réponses.

Après avoir défini les fonctions de désirabilité individuelle et la fonction de désirabilité globale, l'étape suivante consiste à rechercher un optimum multicritère, c'est-à-dire à rechercher les valeurs des facteurs d'entrée qui conduisent aux réponses souhaitées.

IX.3. <u>Recherche d'un optimum</u>

Le but est de maximiser la fonction de désirabilité globale D, autrement dit de rechercher l'optimum qui consiste à déterminer les valeurs des facteurs dans le domaine expérimental étudié.

Au cours de ce travail, deux logiciels de plans d'expériences ont été utilisés, MODDE de la société UMETRICS [32] et Nemrodw de la société LPRAI [28]. Chaque logiciel utilise son propre algorithme pour rechercher le maximum de la fonction de désirabilité globale.

IX.3.1. Optimiseur Modde

L'optimiseur du logiciel MODDE utilise la méthode du simplexe de Nelder et Mead [33] pour déterminer le maximum de la fonction de désirabilité globale. Il commence la recherche à partir de 8 simplexes donc 8 points de départ, choisis de la façon suivante :

- quatre sont situés aux coins de la région expérimentale,
- un au centre du domaine,
- les 3 derniers correspondent aux meilleurs points du plan d'expériences (points pour lesquels la fonction de désirabilité globale est la meilleure).

Après le calcul, le logiciel donne les 8 optima trouvés et sélectionne le meilleur (tableau 15) ; ces 8 solutions peuvent être les points de départ pour un nouveau calcul qui sera réitéré jusqu'à l'obtention d'un optimum dit "global".

Il est possible avec ce logiciel de pondérer les réponses en attribuant des poids sur celles-ci. On peut aussi maintenir constant un ou plusieurs facteurs.

Pour chaque optimum trouvé, le logiciel donne :

• les valeurs optimales des facteurs d'entrée,

- les valeurs des réponses prédites par le modèle,
- le nombre d'itérations jusqu'à l'obtention de l'optimum,
- $log(D_G)$, le logarithme de la distance globale à la cible.

Facteurs d'entrée		Réponse		
u	v	Y	Iter	Log(D _G)
u _{1opt}	v _{1 opt}	Y1	23	-0,02
u _{2opt}	v _{2opt}	Y ₂	45	-0,22
u _{3opt}	v _{3opt}	Y ₃	32	-0,09
u _{8opt}	v _{8opt}	Y ₈	42	-0,14

Tableau 15 : optimiseur MODDE

Le logiciel Modde n'affiche pas la valeur de la désirabilité globale, il affiche le critère $log(D_G)$ donné par :

$$\log(D_G) = \log\left[\frac{\sum w_i \left(\frac{Y_i - Y_c}{Y_c - Y_w}\right)^2}{M}\right]$$
(49)

avec :

 Y_c la valeur ciblée de la réponse (d_i =1), Y_w la valeur de la réponse lorsque la fonction de désirabilité individuelle est égale à zéro et M le nombre de réponses. Y_w est égal à $Y_{i,min}$ ou $Y_{i,max}$ lorsque la réponse est à minimiser ou à maximiser.

Un maximum de la fonction de désirabilité globale est traduit par un minimum de la fonction $log(D_G)$.

La meilleure solution trouvée d'après le tableau 15 correspond à l'itération 45, puisque la fonction $\log(D_G)$ est la plus petite. Nous allons illustrer ci-dessous la notion de $\log(D_G)$ avec un exemple simple.

Supposons que l'on cherche à maximiser 3 réponses Y_1 , Y_2 et Y_3 avec les valeurs reportées dans le tableau 16.

	Critère	Min	Cible	Poids
Y ₁	Max	4	6	1
Y ₂	Max	6	7	1
Y ₃	Max	10000	15000	1

Tableau 16 : fonctions de désirabilités individuelles

Pour simplifier le problème, nous avons reporté dans le tableau 17 uniquement trois solutions trouvées par l'optimiseur.

|--|

	Y ₁	Y ₂	Y ₃	Iter	Log(D _G)
Solution 1	4,1	6,1	11000	25	-0,105
Solution 2	5,9	6,9	14000	32	-1,27
Solution 3	4	6	10000	41	0

Tableau 17 : solutions trouvées par l'optimiseur

En utilisant la relation (49), on peut calculer la valeur de $\log(D_G)$ pour les trois solutions trouvées. On peut constater d'après le tableau 17 que la meilleure solution trouvée correspond à l'itération 32 puisque la valeur de $\log(D_G)$ est la plus petite et que les valeurs des réponses sont très proches des valeurs cibles (tableau 16).

IX.3.2. Optimiseur Nemrodw

Le logiciel Nemrodw utilise la méthode du recuit simulé [34] pour la recherche de l'optimum. Il affiche les coordonnées du point de départ de la recherche. Par défaut, ce point se situe au centre du domaine lors de la première recherche. En relançant le calcul, on obtient (s'il existe) les coordonnées du meilleur point trouvé par le logiciel.

Comme le résultat final dépend du point initial, il est possible d'affiner le résultat en recommençant une recherche à partir de ce meilleur point.

Pour chaque optimum, on obtient :

- les valeurs optimales des facteurs d'entrée,
- les valeurs prédites de toutes les réponses,
- le poids associé à chaque réponse est rappelé,
- les valeurs prises par les fonctions de désirabilités individuelles,
- la valeur prise par la fonction de désirabilité globale.

Reprenons l'exemple traité au paragraphe IX.3.1. Lors de la première recherche d'un optimum multicritère, les valeurs des facteurs u et v sont fixées au centre du domaine expérimental. Après quelques calculs, on peut constater que l'optimiseur converge vers une solution unique (tableau 18).

Facteurs	d'entrée			
u	v			
u _{opt}	v _{opt}			
Réponses		Valeur	d _i (%)	Poids
Y ₁		5,9	95	1
Y ₂		6,9	90	1
Y_3		14000	80	1
Désirabilité globale			88,1	

Tableau 18 : solution optimale trouvée par Nemrodw

Les valeurs optimales des facteurs d'entrée sont notée u_{opt} pour le facteur u et v_{opt} pour le facteur v. Pour chaque réponse, l'optimiseur calcule une valeur optimale trouvée ainsi que la

valeur de la fonction de désirabilité individuelle associée. D'après le tableau 18, la valeur de la fonction de désirabilité individuelle pour la réponse Y_1 est égale à 95 %, 90 % pour la réponse Y_2 et 80 % pour la réponse Y_3 . Ces valeurs sont calculées à partie de l'équation (44) dans le cas d'une réponse à maximiser. Dans le cas présent, la valeur de désirabilité globale D est calculée par la formule suivante :

$$D = (d_1^{w1} \times d_2^{w2} \times d_3^{w3})^{1/(w1+w2+w3)}$$
(50)

Nous avons associé le même poids aux trois réponses (w1 = w2 = w3 = 1), ce qui donne une désirabilité globale de 88,1 %.

Les résultats d'optimisation dépendent fortement des points initiaux. L'optimiseur du logiciel Nemrodw démarre la recherche d'un optimum à partir d'un seul point de départ (le centre du domaine), qui risque de se bloquer dans un optimum local si le point de départ n'est pas bien défini. On peut cependant modifier le point de départ afin d'obtenir un optimum "global ", ce qui est le cas de l'exemple précédent.

Par contre, l'optimiseur du logiciel Modde cherche l'optimum en partant de 8 points de départ, ce qui donne une forte possibilité de trouver l'optimum "global" en un seul calcul. On peut aussi affiner la recherche autour de la meilleure solution trouvée par ce logiciel (cette notion sera expliquée dans les parties suivantes).

IX.3.3. Optimum local et optimum global

D'autres méthodes d'optimisation existent dans la littérature [35], elles peuvent être regroupées en deux catégories : les méthodes locales et les méthodes globales. Pour expliquer ce contexte, il faut rappeler la différence entre un minimum local et un minimum global.

Un point x^* de l'espace de recherche R^n représente un minimum local, s'il existe un voisinage de x^* noté $V(x^*)$ tel que :

$$\forall x \in V(x^*) \Rightarrow f(x) \ge f(x^*), \ f(x) \in R$$
(51)

Cette relation signifie qu'il existe un voisinage de x^* ne contenant aucun point x telle que f(x) soit inférieure à $f(x^*)$.

Un point x*de l'espace de recherche Rⁿ est un minimum global si :

$$\forall x \in \mathbb{R}^n \Longrightarrow f(x) \ge f(x^*) \tag{52}$$

Nous pouvons dire aussi que le minimum global est le plus petit minimum local de l'espace de recherche, comme le montre la figure 20. Lorsqu'une fonction ne possède qu'un minimum local, elle est dite uni-modale. Dans le cas contraire, elle est multimodale.

Figure 20 : représentation des minimums locaux et du minimum global d'une fonction

X. Conclusion

Dans ce chapitre, un rappel théorique détaillé sur les plans d'expériences a été présenté. Les plans constituent une méthodologie efficace pour mener une étude paramétrique avec un nombre réduit d'expériences.

La méthodologie des plans d'expériences a été présentée dans ce premier chapitre en mettant l'accent sur les plans plus spécifiques qui ont été utilisés pendant ces travaux de doctorat (les plans de Doelhert et les plans composites centrés).

Les plans de Doelhert présentent une démarche séquentielle, au même titre que les possibilités d'extension du domaine expérimental et d'augmentation du nombre de facteurs en cours de l'étude. Ces possibilités sont intéressantes en cas d'oubli d'un facteur influent sur une des réponses et dans le cas où la solution souhaitée se trouve hors du domaine expérimental choisi initialement.

Ensuite nous avons abordé les plans composites centrés qui complètent un plan factoriel complet (qui sert à étudier les effets des facteurs sur les réponses). Ces plans sont applicables dans des domaines expérimentaux cubique et sphérique et nécessitent un même nombre de niveaux pour chaque facteur d'entrée, ce qui sera intéressant dans ce travail puisque tous les facteurs d'entrée présenteront la même importance. Dans le cas où l'expérience est une simulation par ordinateur, le fait de changer le niveau d'un facteur reste facile.

Une étude détaillée sur l'analyse des modèles mathématiques est abordée ensuite afin de lancer l'optimisation multicritère. Pour les rendre comparables, les réponses sont transformées en fonctions de désirabilités individuelles qui nous servent à calculer la fonction de désirabilité globale que l'on cherche à maximiser. Ces différents éléments seront utilisés dans les chapitres suivants afin de mettre en œuvre la méthode des plans d'expériences et son application pour l'optimisation de composants hyperfréquences.

XI. <u>Bibliographie</u>

[1] G.E.P. Box and K.B. Wilson. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society, Series B 13(1):1 - 45, 1951.

[2] J.P. Muzeau and M. Lemaire. Reliability analysis with implicit formulations. Probabilistic Methods for Structural Design, 56, 141 - 160, 1997.

[3] W.L. Stevens. Asymptotic regression. Biometrics 7 (3), 247 - 267, 1951.

[4] J. Wishart. Statistical treatment of animal experiment. Journal of the Royal Statistical Society, Volume 6, 1 - 22, 1939.

[5] A. Khuri and M. Conlon. Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions. Technometrics, 23, 363 - 375, 1981.

[6] D. M. Osborne. State Of The Art In Multiple Response Surface Methodology. Systems Man and Cybernetics. IEEE International Conference (4), 3833 - 3838, 1997.

[7] X. K. Gao, T. S. Low, Z. J. Liu, and S. X. Chen. Robust design for torque optimization using response surface methodology, IEEE Trans. Magn., vol. 38, no. 2, 1141 - 1144, 2002.

[8] J.J Droesbeke, G. Saporta, and J. Fine. Plans d'expériences, Application à l'entreprise, Editions TECHNIP, n° ISBN: 2710807335, 211 - 277, 1997.

[9] M. Uy and J.K. Telford. Optimization by Design of Experiment Techniques, Johns Hopkins University Applied Physics Laboratory, Aerospace conference, 1-10, IEEE, 2009.

[10] E. Nakano and A. Jutan. Application of response surface methodology in controller finetuning, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Canada, vol 33, 353 - 366, 1994.

[11] N.R. Draper, D.K.J. Lin. Small response-surface designs. Technometrics 32 (2), 187 - 194, 1990.

[12] F. Louvet et L. Delplanque, Design of Experiments : the frensh touch, Témoignage de l'association Expérimentique (partie III), n° ISBN : 2-952512-60-4, 2005.

[13] S. Vivier. Stratégies d'optimisation par la méthode des plans d'expériences et application aux dispositifs électrotechniques modélisés par éléments finis. Thèse de doctorat, Génie électrique, Ecole Centrale de Lille et Université des Sciences et Technologies de Lille, 11 juillet 2002 (n° 3151).

[14] R. Myers and D. Montgomery. Response Surface Methodology, Process and Product Optimization Using Designed Experiments, n° ISBN: 0471581003, Wiley, 303 - 429, 1995.

[15] D.H. Doehlert, Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 19, No. 3, 232 - 239, 1970.

[16] J. Goupy, Revue de Statistique Appliquée. Tome 38, n° 4, 5 - 44, 1990.

[17] M. Nechar, M. F. Molina and J. M. Bosque-Sendra. Application of Doehlert Optimization and Factorial Designs in Developing and Validating a Solid-Phase Spectrophotometric Determination of Trace Levels of Cadmium. Analytica Chimica Acta, Vol. 382, 117 - 130, 1999.

[18] G. Dumenil, G. Mattei, M. Sergent, J.C. Bertrand, M. Laget et R. Phan-Tan-Luu. Application of a Doehlert experimental design to the optimization of microbial degradation of crude oil in sea water by continuous culture, Appl. Microbiol Biotechnol., 27, 405 - 409, 1988.

[19] G.E.P. Box, J.S. Hunter, Annals of Mathematical Statistics 28, 195 - 241, 1957.

[20] F. Louvet et L. Delplanque, Les Plans d'Expériences par la méthode Taguchi, Ouvrage collectif de l'association Expérimentique, 2005.

[21] T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, A. Nystrom, J. Pettersen, R. Bergman, Experimental Design and Optimization, Chemometrics and Intelligent Laboratory Systems, Vol. 42, 3 - 40, 1998.

[22] AFNOR. FDX 06-080, application de la statistique, plan d'expériences, vocabulaire et indications générales, 1989.

[23] Y. Dodge et V. Rousson, Analyse de régression appliquée, Dunod, n° ISBN : 2-10-048659-4, 2004.

[24] N. Draper and H. Smith. Applied regression analysis (Wiley Series in Probability and Statistics), Wiley, Ed. New-York, n° ISBN : 0471170828, 1981.

[25] S. Weisberg. Applied Linear Regression, 2nd ed., John Wiley, New York, page 217, n° ISBN 0471879576, 1985.

[26] A.E. Hoerl, R.W. Kennard. Ridge regression: biased estimation for nonorthogonal problems, Technometrics 12, 55 - 67, 1970.

[27] D.M. Hawkins, W.J.R. Eplett. The Cholesky factorization of the inverse correlation or covariance matrix in multiple regression, Technometrics 24,191 - 198, 1982.

[28] Logiciel Nemrodw. Sociéte LPRAI, 13010 Marseille, www.Nemrodw.com.

[29] E. Harrington. The desirability function, Industrial Quality Control, 21, 494 - 498, 1965.

[30] G. Derringer and R. Suich. Simultaneous optimization of several response variables, Journal of Quality Technology, vol. 12, 214 - 219, 1980.

[31] Z. He, P. F. Zhu. A Note on Multi-response Robust Parameter Optimization Based on RSM.
Management of Innovation and Technology, IEEE International Conference. 1120 - 1123, 2008.
[32] Logiciel MODDE. Société UMETRICS, www.umetrics.com.

[33] J. Nelder and R. Mead. A simplex method for function minimization, Computer Journal, vol 7, n° 4, 308 - 313, 1965.

[34] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087 - 1091, 1953.

[35] H. Khalil, Développement des techniques d'optimisation de forme pour la conception de composants hyperfréquences, Thèse de l'Université de Limoges, 2009 (n° 26-2009).

Partie II : Analyse de la méthode

Chapitre 1 : Optimisation d'un filtre OMUX

Le principal objectif de l'utilisation des plans d'expériences dans ce chapitre, est d'optimiser les caractéristiques d'un filtre OMUX. La première partie de ce chapitre est consacrée à la définition des filtres OMUX et leurs caractéristiques. Ensuite, on aborde les principales étapes pour l'optimisation de ce filtre par la méthode des plans d'expériences. Enfin, les modèles mathématiques donnés par les plans d'expériences sont couplés à un algorithme d'optimisation (BFGS) afin d'améliorer les résultats. Ces travaux ont été menés en collaboration avec N. Mahdi doctorant au sein du département MINACOM du laboratoire XLIM.

I. <u>Les filtres OMUX</u>

I.1. Introduction

Dans une chaîne de transmission, un filtre OMUX [1, 2] se situe à la sortie de chaque canal après le module amplificateur de puissance. Il a pour rôle de sélectionner le signal bande étroite du canal et donc d'éliminer les fréquences parasites créées par les amplificateurs.

Ce filtre est caractérisé par des faibles pertes et un fort facteur de qualité à vide de par sa situation entre l'amplificateur de puissance et l'antenne d'émission. D'autre part, la sélectivité doit être bonne car les différents canaux destinés à être multiplexés peuvent posséder des bandes très proches. L'OMUX assure la recombinaison des canaux après l'amplification de puissance.

Les caractéristiques des filtres OMUX sont donc :

- une bande étroite (plusieurs dizaines de MHz),
- des pertes très faibles (< 0,5 dB),
- une bonne sélectivité (fort facteur de qualité à vide).

I.2. <u>Structure de référence</u>

Pour répondre aux exigences données dans le paragraphe précédent, les filtres OMUX doivent présenter une réponse pseudo-elliptique [3] (couplages croisés entre plusieurs résonateurs). Ils sont réalisés grâce à des cavités bi-modes cylindriques et remplies d'air [1, 2]. Le système étudié est composé d'un résonateur de forme parallélépipédique (figure 1) tronqué aux 4 coins et court-circuité dans une cavité cylindrique. Il possède 4 contacts avec les parois métalliques, ce qui assure son maintien. Ce résonateur a été étudié lors de la thèse de Sophie Moraud [4] à l'IRCOM (actuellement XLIM) et est aujourd'hui couramment utilisé par Thalès Alénia Space pour la réalisation de filtres OMUX et IMUX.

La structure a été analysée par la méthode des éléments finis. Les dimensions de références sont les suivantes :

- une cavité de diamètre Dc = 39,86 mm et de hauteur Hc = 28 mm,
- un résonateur d'épaisseur E = 3 mm,
- un matériau diélectrique de permittivité relative $\varepsilon_r = 12,6$ dont la tangente de pertes tan δ vaut 5,5.10⁻⁵,

• une conductivité métallique σ de la cavité égale à 4,76 10⁷ S.m⁻¹.

Figure 1 : structure du filtre de référence

Nous nous intéressons au mode TE_1 (TE_{100}) car il possède 2 polarisations et une bonne isolation ; la fréquence de ce mode est appelée F_0 .

I.3. <u>Réponse en fréquence</u>

La simulation électromagnétique est effectuée en oscillations libres (sans excitation) pour calculer le facteur de qualité à vide et les fréquences des modes qui sont non excités. Une simulation en oscillations forcées (avec excitation) est nécessaire pour visualiser le mode TE_1 (premier mode excité à la fréquence F_0) et les modes supérieurs [4]. La figure 2 montre la réponse en fréquence de ce filtre dans la bande C (4 à 8 GHz).

Figure 2 : réponse en fréquence d'un filtre OMUX

La simulation électromagnétique du résonateur de référence donne les réponses suivantes :

- une fréquence F_0 du premier mode excité (TE₁) à 3,8 GHz,
- une fréquence F₁ du mode non excité à 5,04 GHz,
- une fréquence F₂ du mode supérieur (deuxième mode excité) à 6,4 GHz,

un facteur de qualité à vide à la fréquence F₀ de 10145 ; le facteur de qualité à vide noté Q₀ permet de quantifier la qualité d'un filtre (plus Q₀ est élevé, plus le filtre est sélectif et présente moins de pertes).

Le but de l'optimisation de ce filtre est d'éloigner les deux fréquences F_1 et F_2 ($F_1 \ge 4,5$ GHz et $F_2 \ge 6$ GHz) de la fréquence F_0 et d'avoir un facteur de qualité à vide le plus grand possible.

I.4. <u>Utilisation des méthodes d'optimisation de forme sur le résonateur</u> <u>OMUX</u>

Le résonateur a été optimisé par les méthodes d'optimisation de forme lors de la thèse d'Hassan Khalil [5] à XLIM. Plusieurs études ont été faites pour étudier les effets des dimensions du résonateur et de la cavité sur les différentes réponses. Le tableau 1 montre par exemple l'évolution de la fréquence de résonance F_0 , du facteur de qualité à vide Q_0 et la fréquence F_1 en fonction de l'épaisseur du résonateur E.

Épaisseur E (mm)	F ₀ (GHz)	Q_0	F ₁ (GHz)
2,5	4,235	10248	5,34
3	4,016	10145	5,04
3,5	3,837	10037	4,81
4	3,685	9632	4,61
4,5	3,556	9564	4,45

Tableau 1: évolution de la fréquence de résonance, du facteur de qualité à vide et de la fréquence du premier mode non excité en fonction de l'épaisseur

On peut remarquer d'après le tableau 1 que la fréquence F_0 , le facteur de qualité à vide et la fréquence F_1 diminuent lorsqu'on augmente l'épaisseur du résonateur E.

Ce résonateur est en cours d'étude durant la thèse de N. Mahdi, l'évolution du facteur de qualité à vide et l'isolation fréquentielle sont étudiées en fonction des différentes variables avec une stratégie traditionnelle (variation d'un seul facteur à la fois). Cette stratégie consiste à faire varier successivement chacun des paramètres lors de chaque simulation, tous les autres étant maintenus constants. Avec cette stratégie, l'effet de chacun des facteurs est calculé pour une combinaison particulière des autres facteurs et rien ne permet de dire si cet effet est également valable dans les autres cas. On parle alors d'effet conditionnel. Il existe en fait autant d'effets conditionnels possibles qu'il y a de combinaisons envisageables pour les autres facteurs et le choix de la combinaison testée est tout à fait arbitraire : l'effet mesuré est donc peu représentatif de l'effet réel recherché, ce qui peut conduire à des aberrations dans l'exploitation des résultats.

Le but est d'avoir une idée précise sur le fonctionnement de ce filtre avec le moins de simulations possible, d'où l'utilisation des plans d'expériences. Les effets des facteurs d'entrée (dimensions géométriques) sur les réponses (fréquences et facteur de qualité à vide) sont étudiés

afin de rechercher les niveaux optimaux des facteurs d'entrée pour atteindre la ou les réponses désirées.

II. <u>Optimisation des dimensions de la cavité par la méthode des</u> <u>plans d'expériences</u>

II.1. Formalisation du problème

Dans le but d'optimiser les caractéristiques du filtre OMUX, une première étude a été faite en fonction des paramètres qui décrivent la cavité cylindrique (figure 1).

Les deux paramètres qui représentent la cavité sont sa hauteur notée Hc et son diamètre noté Dc. Dans un premier temps l'épaisseur du résonateur E n'intervient pas au cours de l'optimisation, elle est calculée pour avoir toujours une fréquence du premier mode excité F_0 égale à 4 GHz.

Les facteurs d'entrée choisis dans cette étude sont donc :

- la hauteur de la cavité qui varie entre 21 et 35 mm,
- le diamètre de la cavité qui varie entre 30 et 50 mm.

Les réponses qu'on souhaite optimiser sont :

- la fréquence du premier mode non excité notée F₁,
- la fréquence du deuxième mode excité notée F₂,
- le facteur de qualité à vide noté Q₀.

II.2. Plan d'expériences

Nous nous intéressons dans cette partie à un plan d'expériences dont les facteurs d'entrée présentent un grand nombre de niveaux, il n'y a aucune difficulté à régler un de ces deux facteurs à une valeur donnée ; nous avons donc choisi un plan composite centré dans un domaine sphérique CCC qui autorise 5 niveaux par facteur.

Le nombre d'expériences d'un plan composite centré CCC est établi selon la relation suivante : $N = k^2+2\times k+1$. Dans notre cas le nombre de facteurs k est égal à 2, ce qui donne 9 expériences à réaliser. On rappelle que l'étude des surfaces de réponses est associée à l'utilisation des polynômes de degré 2. Dans le cas présent, le modèle polynomial s'écrit de la façon suivante :

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_{11} X_1^2 + b_{22} X_2^2 + b_{12} X_1 X_2$$
(1)

Le nombre d'inconnues dans le modèle est donc égal à 6.

L'écriture du modèle permet de définir le nombre d'inconnues à estimer à partir de l'analyse des résultats d'essais, suite aux résultats du plan d'expérimentations. L'analyse mathématique des résultats d'essais s'appuie sur la méthode des moindres carrés pour l'estimation des inconnus du modèle que nous avons déjà expliquée dans la partie I (paragraphe VIII.1).

Le plan d'expériences est construit à partir de la matrice d'expériences qui contient les valeurs codées des facteurs d'entrée. Dans le cas présent, la matrice d'expériences est donnée dans le tableau 2.

Numéro d'expérience	X1	X_2
1	-1.00000	-1.00000
2	1.00000	-1.00000
3	-1.00000	1.00000
4	1.00000	1.00000
5	-1.41421	0.00000
6	1.41421	0.00000
7	0.00000	-1.41421
8	0.00000	1.41421
9	0.00000	0.00000

Tableau 2 : matrice d'expériences d'un plan CCC

 X_1 représente la valeur codée du facteur Dc et X_2 , celle du facteur Hc. Le passage des variables codées aux variables réelles, se fait en appliquant la relation de codage (voir partie I, relation (1)). Le plan d'expériences correspondant est alors donné dans le tableau 3.

Numéro d'expérience	Dc (mm)	Hc (mm)
1	30.0	21.0
2	50.0	21.0
3	30.0	35.0
4	50.0	35.0
5	25.9	28.0
6	54.1	28.0
7	40.0	18.1
8	40.0	37.9
9	40.0	28.0

Tableau 3 : plan d'expériences CCC choisi pour notre problème

On remarque d'après le tableau 3 que le facteur Dc varie maintenant entre 25,9 mm et 54,1 mm; le facteur Hc varie entre 18,1 mm et 37,9 mm (la représentation des points expérimentaux du plan utilisé est donnée dans la figure 3). Ce changement de domaines expérimentaux est dû aux valeurs -1,41421 et 1,41421 dans la matrice d'expériences (tableau 2). Ces valeurs correspondent aux valeurs des points en étoile (voir partie I, paragraphe VII). Nous avons vérifié que les nouvelles valeurs obtenues dans le plan d'expériences ne sont pas gênantes (pas de contrainte de simulations), on peut donc réaliser les expériences données dans le tableau 3.

Dans notre étude, l'expérience est une simulation qui se fait à l'aide du logiciel EMXD qui est basé sur la méthode des éléments finis, conçu à l'IRCOM par Michel Aubourg [6]. Ce logiciel

s'applique de façon générale à l'étude de circuits planaires ou volumiques actifs ou passifs (bornés par des murs électriques (CCE) ou magnétiques (CCM)).

Figure 3 : points expérimentaux du plan d'expériences choisi

Le plan d'expériences (facteurs d'entrée et réponses) est donné dans le tableau 4 ; on regroupe dans ce tableau les valeurs des différentes réponses du plan à surfaces de réponses, on calcule pour chaque ligne du plan la valeur de l'épaisseur du résonateur qui nous assure une fréquence du premier mode excité F_0 égale à 4 GHz.

Numéro	Facteurs	s d'entrée	Réponses			épaisseur calculée
In ullielo	Dc	Hc	F ₁	F ₂	Q_0	Е
d experiences	mm	mm	GHz	GHz	Sans unité	mm
1	30.0	21.0	4.996	6.483	7756	5.6
2	50.0	21.0	4.192	5.39	9124	3.5
3	30.0	35.0	5.347	7.112	8873	4.075
4	50.0	35.0	4.482	6.722	12291	1.67
5	25.9	28.0	5.320	7.175	7660	5.7
6	54.1	28.0	4.082	5.945	11160	2.15
7	40.0	18.1	4.511	5.53	7785	5.07
8	40.0	37.9	5.329	7.009	11187	2.3
9	40.0	28.0	5.017	6.4	10155	3.05

Tableau 4 : plan d'expériences choisi (facteurs d'entrée et réponses)

Après avoir construit le plan d'expériences et réalisé les simulations, l'étape suivante consiste à valider les modèles mathématiques pour chaque réponse.

II.3. Analyse des résultats

La méthodologie d'analyse des résultats d'essais consiste à établir un modèle mathématique pour chacune des réponses observées. L'analyse mathématique consiste à estimer, grâce à la méthode des moindres carrés, les p (ici 6) coefficients du modèle et les N résidus (écart entre les valeurs simulées et les valeurs prévues par le modèle) pour chacun des traitements du plan d'expériences. La méthode des moindres carrés nécessite un outil informatique adapté ; nous utiliserons dans la suite les résultats obtenus à partir de deux logiciels de plans d'expériences : Nemrodw et Modde.

Les données dans un plan à surfaces de réponses sont utilisées pour estimer les coefficients du modèle mathématique qui représente la relation entre une réponse Y et des facteurs X_i . Il existe deux méthodes pour estimer les coefficients du modèle : PLS (Partial Least Squares) [7, 8] et MLR (Multiple Linear Regression) [9].

II.3.1. <u>Multiple linear regression (MLR)</u>

Avec la régression linéaire multiple, les coefficients du modèle sont calculés pour minimiser la somme des carrés des résidus. La méthode MLR traite une réponse à la fois et suppose qu'elles soient indépendantes les unes des autres. C'est la méthode la plus simple pour estimer un modèle reliant des variables explicatives à une réponse. Mais elle souffre de graves défauts :

- incapacité à prendre en compte les données manquantes, ce qui conduit souvent à rejeter beaucoup d'observations incomplètes et pourtant contenant de l'information utile dans les champs renseignés. Nous allons voir dans la suite que parfois on est amené à supprimer une ligne considérée atypique du plan d'expériences afin d'améliorer les qualités des modèles mathématiques. Il existe des techniques pour estimer les données manquantes, mais elles sont, soit lourdes à mettre en œuvre, soit arbitraires et inefficaces ;
- grande sensibilité à la colinéarité entre les variables explicatives. La colinéarité exacte rend la méthode MLR impossible, et la colinéarité approchée la rend numériquement instable et fait perdre l'interprétation des coefficients ;
- indétermination lorsque le nombre d'observations est inférieur au nombre des variables explicatives, situation pourtant fréquemment rencontrée en pratique.

II.3.2. Partial least square (PLS)

La régression PLS (Partial Least Square) peut être perçue comme une généralisation de la méthode MLR, elle permet de contourner les inconvénients vus dans le paragraphe précédent.

La régression PLS remplace l'espace initial des nombreuses variables explicatives par un espace de faible dimension, sous tendu par un petit nombre de variables appelées variables latentes qui sont construites l'une après l'autre de façon itérative. Ces dernières seront les nouvelles variables explicatives d'un modèle de régression linéaire classique. Les nouvelles variables sont orthogonales (non corrélées), et sont des combinaisons linéaires des variables explicatives initiales.

Les variables de la régression PLS sont pris en compte individuellement pour prédire une réponse Y en maximisant leurs corrélations successives avec cette réponse, tout en maintenant la contrainte d'orthogonalité avec les facteurs déjà construits.

Lorsque plusieurs réponses ont été étudiées (3 ou plus), il est utile d'adopter un modèle qui représente la variation de toutes les réponses en fonction des facteurs. La méthode PLS traite beaucoup de réponses simultanément en prenant en considération leur covariance. Ceci fournit une vue d'ensemble du rapport entre les réponses et la façon dont tous les facteurs affectent toutes les réponses. Cette méthode permet donc d'estimer les coefficients du modèle pour toutes les réponses simultanément.

Le logiciel Modde utilise MLR ou PLS. Modde recommande la méthode PLS lorsque le plan présente plus de trois réponses. Par contre, le logiciel Nemrodw n'utilise que la régression linéaire multiple pour estimer les coefficients du modèle.

Le nombre de réponses dans le cas présent est égal à 3. La régression linéaire multiple est alors utilisée par les deux logiciels, on doit donc avoir les mêmes estimations des coefficients du modèle mathématique.

II.3.3. Analyse mathématique des résultats

Dans le cas présent, le modèle présente 6 coefficients à estimer pour chacune des réponses. Le tableau 5 présente les valeurs de ces coefficients estimées pour les réponses F_1 , F_2 et Q_0 . Rappelons que les deux logiciels donnent les mêmes coefficients puisqu'ils utilisent la régression linéaire multiple pour les calculer.

Coefficient	F ₁	F ₂	Q_0
b_0	5.0170	6.4000	10155.0
b_1	-0.4275	-0.4028	1217.0
b ₂	0.2247	0.5066	1136.9
b ₁₁	-0.1721	0.0830	-356.8
b ₂₂	-0.0626	-0.0623	-318.8
b ₁₂	-0.0152	0.1758	512.5

Tableau 5 : coefficients estimés par le modèle

Afin de tirer des conclusions sur la qualité du modèle, il est nécessaire de comparer les réponses simulées (X_i) et les réponses calculées par le modèle (\hat{X}_i) sur chaque point du plan. C'est dans ce but que nous allons dans un premier temps étudier le tableau 6.

Numáro	Ré	nonse E. (GI	(J 7)	Ré	nonse E ₂ (GI	Hz)	Réponse O _o			
Numero			12)	I.C.		12)	Reporte Q ₀			
d'expérience	F1 simulée	F1 calculée	Différence	F ₂ simulée	F2 calculée	Différence	Q ₀ simulé	Q0 calculé	Différence	
1	4.9960	4.9699	0.0261	6.4830	6.4927	-0.0097	7756.0	7638.1	117.9	
2	4.1920	4.1454	0.0466	5.3900	5.3356	0.0544	9124.0	9047.1	76.9	
3	5.3470	5.4498	-0.1028	7.1120	7.1544	-0.0424	8873.0	8886.9	-13.9	
4	4.4820	4.5644	-0.0824	6.7220	6.7003	0.0217	12291.0	12345.9	-54.9	
5	5.3200	5.2774	0.0426	7.1750	7.1357	0.0393	7660.0	7720.5	-60.5	
6	4.0820	4.0683	0.0137	5.9450	5.9963	-0.0513	11160.0	11162.6	-2.6	
7	4.5110	4.5741	-0.0631	5.5300	5.5591	-0.0291	7785.0	7909.7	-124.7	
8	5.3290	5.2097	0.1193	7.0090	6.9919	0.0171	11187.0	11125.3	61.7	
9	5.0170	5.0170	-0.0000	6.4000	6.4000	0.0000	10155.0	10155.0	0.0	

Partie II – chapitre 1 : optimisation d'un filtre OMUX

Tableau 6 : différences entre les réponses expérimentales et les réponses calculées

Il suffit de regarder la colonne Différence dans ce tableau : on constate que les modèles bénéficient d'une bonne qualité descriptive, les différences entre les valeurs calculées et les valeurs mesurées pour chaque réponse sont très petites. Pour les expériences 1 et 7, sur la réponse Q_0 , on observe des différences plus importantes, on peut cependant noter que ces valeurs n'excèdent pas 1,5 % de Q_0 .

II.3.4. Analyse statistique des résultats

L'équation du modèle empirique n'est qu'une approximation de la réalité. La mise en œuvre de tests statistiques doit nous permettre de porter un jugement sur les résultats obtenus :

- connaitre la qualité des estimations des coefficients,
- estimer la validité du modèle avec les résidus traduisant les écarts entre les valeurs mesurées et les valeurs calculées (tableau d'analyse de la régression),
- exprimer la qualité descriptive du modèle dans le domaine expérimental.

II.3.4.a. Validité du modèle pour la réponse F₁

Nous avons étudié la validité des modèles mathématiques par les deux logiciels de plans d'expériences : Nemrodw et Modde. On présente dans le tableau 7 le tableau d'analyse de régression pour la réponse F_1 (voir partie I, paragraphe VIII.2.1).

D'après la dernière colonne du tableau 7, on constate que la valeur de la probabilité Fc est inférieure à 5% (voir partie I, paragraphe VIII.2.1), on peut donc dire que le modèle permet de décrire correctement la variation des résultats d'essais pour la réponse F_1 (fréquence du premier mode non excité).

Réponse F ₁										
Source de variation	Somme des carrés	Degrés de liberté	Carré moyen	Fc	Probabilité Fc					
Régression	SCM = 1.9637	p - 1 = 5	SCM/(p-1) = 0.3927	29.1467	0.955 **					
Résidus	SCE = 0.0404	N- p = 3	SCE/(N-p) = 0.0135							
Total	SCT = 2.0041	N - 1 = 8								

Tableau 7 : tableau d'analyse de régression pour la réponse F1

Le tableau d'analyse de régression est donné pour chaque réponse ainsi que les valeurs des coefficients de détermination R^2 et $R^2_{ajusté}$. On regroupe dans le tableau 8 les différentes valeurs de ces coefficients :

		Réponse								
	F_1	F_2	Q_0							
R^2	0,98	0,997	0,998							
R ² ajusté	0,946	0,992	0,995							
Prob (Fc)	0,96%	0,06%	0,03%							

Tableau 8 : validations des modèles pour toutes les réponses

D'après les résultats du test statistique, on constate que les modèles mathématiques pour toutes les réponses sont validés : prob(Fc) < 5 % et R², R²_{aiusté} proches de 1.

II.3.4.b. Analyse statistique des coefficients du modèle

Le but de ce test statistique est de savoir s'il existe des coefficients qui ne sont pas influents, c'est-à-dire qui ne présentent aucun effet sur chacune des réponses. Dans le cas où il existe un ou plusieurs coefficients non influents sur toutes les réponses, on peut les supprimer du modèle mathématique afin de le simplifier et améliorer sa qualité.

Les valeurs estimées des coefficients du modèle ainsi que la significativité sont données dans le tableau 9 (logiciel Nemrodw). On constate d'après ce tableau que les coefficients b_{11} , b_{22} et b_{12} ne sont pas influents sur la réponse F_1 puisque la valeur de la significativité pour ces coefficients est supérieure à 5% (voir partie I, paragraphe VIII.2.2). De même, les coefficients b_{11} et b_{22} ne sont pas influents sur la réponse F_2 . En revanche, on peut voir que tous les coefficients sont influents sur la réponse F_2 .

]	Réponse F ₁]	Réponse F ₂		Réponse Q ₀			
Coeffic	eient	Signif. %	Coefficient		Signif. %	Coefficient		Signif. %	
b ₀	5,017	< 0,01 ***	b_0	6,4	< 0,01 ***	b_0	10155	< 0,01 ***	
b ₁ (D _c)	-0,4275	0,189 **	b ₁ (D _c)	-0,4028	0,0312 ***	$b_1 (D_c)$	1217	0,0102 ***	
b ₂ (Hc)	0,2247	1,20 *	b ₂ (Hc)	0,5066	0,0157 ***	b ₂ (Hc)	1136,9	0,0125 ***	
b ₁₁ (Dc*Dc)	-0,1721	8,6	b ₁₁ (Dc*Dc)	0,083	9,8	b ₁₁ (Dc*Dc)	-356,8	1,62 *	
b ₂₂ (Hc*Hc)	-0,0626	42,6	b ₂₂ (Hc*Hc)	-0,0623	17,3	b ₂₂ (Hc*Hc)	-318,8	2,19 *	
b_{12} (Dc*Hc)	-0,0152	81	b_{12} (Dc*Hc)	0,1758	0,972 **	b_{12} (Dc*Hc)	512,5	0,370 **	

Tableau 9 : tableau d'analyse des coefficients (Nemrodw)

Dans le logiciel Modde, la significativité des coefficients peut être tracée sous forme d'un diagramme en baton (figure 4), un coefficient est considéré influent lorsque son intervalle de confiance ne coupe pas l'axe des abscisses.

Figure 4 : significativité des coefficients (Modde)

D'après la figure 4 on constate que tous les coefficients sont influents sur la réponse Q_0 (ces résultats sont confirmés par le logiciel Nemrodw), cela confirme qu'on ne peut donc pas améliorer les modèles mathématiques en éliminant des coefficients. Avant de passer à l'étude graphique des effets des facteurs d'entrée sur toutes les réponses, nous allons valider les modèles sur des points tests internes.

II.3.5. Validation du modèle sur des points tests internes

Le but ici est de valider le modèle sur des points qui sont loin des points de la matrice d'expériences (voir partie I, paragraphe VIII.4). Les points tests permettent de vérifier que le modèle polynomial représente bien la variation d'une réponse en tous points du domaine. Les trois points proposés par le logiciel Nemrodw ainsi que les valeurs calculées et simulées des trois réponses sur ces trois points sont donnés dans le tableau 10.

	Points tests		F_1 (GHz)	F ₁ (GHz)	F ₁ (GHz)		F ₂ (GHz)		Q_0	Q ₀		
Numéro	D _c (mm)	H _c (mm)	Modèle	Simulation	écart(%)	Modèle	Simulation	écart(%)	Modèle	Simulation	écart(%)	
1	33,9	25,5	5,122	5,061	1,19	6,526	6,5	0,40	8943	9022	0,88	
2	46,1	25,5	4,606	4,68	1,61	5,957	5,97	0,22	10206	10180	0,25	
3	40	33	5,144	5,188	0,86	6,724	6,71	0,21	10794	10773	0,19	

[ab]	leau	10	:	points	tests	internes	proposés	par	le	logiciel	N	emrod	łw
------	------	----	---	--------	-------	----------	----------	-----	----	----------	---	-------	----

On peut remarquer que le modèle permet de représenter correctement la variation des réponses en tous points du domaine puisque les écarts entre les valeurs simulées et les valeurs calculées sont considérés comme faibles.

II.3.6. Analyse graphique des résultats

Le domaine expérimental étant défini à partir de la variation de deux facteurs, l'analyse graphique peut nous servir à étudier les effets de ces deux facteurs sur chaque réponse.

Les effets des facteurs d'entrée Dc et Hc sur toutes les réponses sont donnés par des graphiques en trois dimensions appelées surfaces de réponses (figure 5). Le plan horizontal de la figure matérialise le domaine de variation des deux facteurs Dc et Hc ; l'axe vertical matérialise la variation des réponses F_1 , F_2 et Q_0 . En observant ces figures on constate que :

- la fréquence du premier mode non excité F₁ augmente quand Hc augmente et Dc diminue,
- la fréquence du deuxième mode excité F₂ augmente quand Hc augmente et Dc diminue,
- le facteur de qualité à vide Q₀ augmente quand Hc et Dc augmentent.

Figure 5 : surfaces de réponses pour les réponses F1, F2 et Q0

Dans le logiciel Modde, les effets des facteurs d'entrée sur les réponses peuvent être donnés par un diagramme appelé diagramme des effets (figure 6), on note qu'un facteur est influent lorsque son intervalle de confiance ne coupe pas l'axe des abscisses.

Figure 6 : diagrammes d'effets des facteurs d'entrée sur toutes les réponses

D'après la figure 6, on peut constater les mêmes conclusions tirées des graphes des surfaces de réponses donnés par le logiciel Nemrodw.

L'analyse de l'ensemble des résultats obtenus à partir des surfaces de réponses et les diagrammes des effets montrent que les trois réponses évoluent dans le même sens que la hauteur de la cavité. Par contre, si on augmente le diamètre de la cavité Dc, les deux réponses F_1 et F_2 diminuent et le facteur de qualité augmente, il faut donc chercher un compromis pour obtenir les réponses souhaitées.

II.4. Optimisation multicritère : fonctions de désirabilités

Il s'agit ici de trouver une méthode de recherche d'un compromis entre les différents facteurs pour obtenir les valeurs des réponses souhaitées. L'utilisation du modèle pour la recherche d'une solution nécessite une transformation des réponses afin de les rendre comparables (voir partie I, paragraphe IX.1).

La recherche d'un optimum multicritère se fait en deux phases :

- transformation de chacune des réponses en une fonction de désirabilité individuelle dont la nature dépend des objectifs de l'étude,
- recherche du niveau des facteurs qui permet d'atteindre le maximum de la fonction de désirabilité globale (voir partie I, paragraphe IX.2).

II.4.1. Détermination des fonctions de désirabilité individuelle

La transformation d'une valeur particulière d'une réponse modélisée en un indice de satisfaction est illustrée de manière graphique sur la figure 7.

La figure 7 représente les fonctions de désirabilités d1, d2 et d3 des réponses F_1 , F_2 et Q_0 . Ici nous cherchons une valeur maximale pour toutes ces réponses. Nous avons précisé la valeur 4,5 GHz comme valeur minimale acceptée pour la réponse F_1 . Nous cherchons à nouveau une valeur de F_2 supérieure à 6 GHz et une valeur maximale de la réponse Q_0 (au-delà de 10000), nous avons accordé le même poids pour toutes les réponses.

Dans le logiciel Modde, les fonctions de désirabilités individuelles sont données par un tableau (tableau 11). Il est également possible d'accorder un poids aux différentes réponses (weight).

Response	Criteria	Weight	Min	Target	Max
F ₁	Maximize	1	4,5	4,51	
F ₂	Maximize	1	6	6,1	
Q_0	Maximize	1	10000	30000	

Tableau 11 : tableau des fonctions de désirabilités individuelles

Les valeurs données dans le tableau 11 représentent sous une forme différente les valeurs données sur la figure 7 (désirabilités individuelles).

II.4.2. Fonction de désirabilité globale

Après avoir transformé toutes les réponses en fonctions de désirabilité individuelle, il est nécessaire de définir un critère objectif que l'on va ensuite chercher à optimiser. La valeur de la fonction de désirabilité globale est définie à partir de la moyenne géométrique des valeurs des fonctions de désirabilité individuelle. Il est également possible d'accorder un poids aux différentes réponses. Dans le cas présent, on obtient :

$$D = (d1^{\text{poids 1}} \times d2^{\text{poids 2}} \times d3^{\text{poids 3}})^{1/(\text{poids 1+poids 2+poids 3})}$$
(2)

Nous avons attribué dans un premier cas le même poids aux trois réponses (poids 1 = poids 2 = poids 3 = 1), ce qui donne une fonction de désirabilité globale :

$$D = (d1 \times d2 \times d3)^{1/3} \tag{3}$$

Le but est de rechercher un optimum multicritère qui est obtenu par une valeur maximale de la fonction de désirabilité globale D.

II.4.3. <u>Recherche de l'optimum multicritère</u>

La recherche d'un optimum multicritère consiste à trouver le niveau des facteurs qui maximise la valeur de la fonction de désirabilité globale. Deux logiciels de plans d'expériences sont utilisés pour la recherche de l'optimum multicritère.

II.4.3.a. Logiciel Nemrodw

Comme nous l'avons vu dans la partie I, le logiciel Nemrodw utilise un point de départ pour la recherche de l'optimum multicritère. Par défaut, ce point est le centre du domaine (Dc = 40 mm, Hc = 28 mm).

Après plusieurs calculs, le logiciel affiche les coordonnées de l'optimum trouvé et pour chaque réponse, on obtient :

- sa valeur calculée au point optimum,
- la valeur de la fonction désirabilité associée di,
- le poids de la réponse,
- la valeur prise par la fonction de désirabilité globale.

Toutes ces informations et les résultats de l'optimisation multicritère sont donnés dans le tableau 12.
Variable	Valeur	Facteur	Valeur (mm)	
X_1	0,998874	Dc	50	
X_2	1,0000704	Hc	35	
Réponse	Nom de la réponse	Valeur	di (%)	Poids
Y_1	F ₁ (GHz)	4,57	100	1
Y ₂	F ₂ (GHz)	6,7	100	1
Y ₃	Q ₀	12341	11,7	1
DESIRA	ABILITE (D)		48,91	

Tableau 12 : résultat de la recherche de l'optimum

Nous obtenons un fort pourcentage de désirabilité pour les deux réponses F_1 (d1 = 100 %) et F_2 (d2 = 100 %). Les valeurs de ces deux réponses calculées par le modèle sont 4,57 GHz pour F_1 et 6,7 GHz pour F_2 .

La valeur de la fonction de désirabilité individuelle pour la réponse Q_0 est égale à 11,7 %, cette valeur est considérée faible puisque la valeur cherchée pour Q_0 est 30000 et le modèle trouve 12341. Toutes ces valeurs des fonctions de désirabilités individuelles conduisent à une désirabilité globale de 48,91 % (relation (3)).

Nous avons simulé le filtre OMUX avec les valeurs optimales de Dc (50 mm) et Hc (35 mm), l'épaisseur du résonateur E étant calculée pour avoir une fréquence du premier mode excité F_0 égale à 4 GHz. Les réponses calculées par le modèle et obtenues par simulations sont données dans le tableau 13.

Nemrodw	Dc (mm)	Hc (mm)	F_1 (GHz)	F ₂ (GHz)	Q_0
1 CHILOG W	50	35	4,57	6,7	12341
Simulation	50	35	4,48	6,72	12291
	écart (%)		1,9	0,2	0,4

Tableau 13 : solution trouvée par le logiciel Nemrodw

La simulation à l'aide du logiciel EMXD du filtre avec Dc = 50 mm et Hc = 35 mm a conduit à des valeurs des réponses F_1 , F_2 et Q_0 très proches de celles prédites par le plan d'expériences (écart de l'ordre de 1,9 % pour F_1 , 0,2 % pour F_2 et 0,4 % pour Q_0). Les résultats montrent l'efficacité des plans d'expériences puisque l'on obtient bien un facteur de qualité à vide Q_0 assez élevé (12291) en assurant une isolation fréquentielle ($F_1 \approx 4,5 \text{ GHz}, F_2 \ge 6 \text{ GHz}$). L'épaisseur du résonateur E est égale à 1,67 mm pour une fréquence de résonance du premier mode excité F_0 égale à 4 GHz.

II.4.3.b. Logiciel Modde

Comme nous l'avons vu dans la partie I (paragraphe IX.3.1), le logiciel Modde commence la recherche à partir de 8 points de départ. Le résultat d'optimisation comporte donc 8 solutions, le logiciel Modde sélectionne la solution dont la fonction de désirabilité globale est maximale.

Après plusieurs itérations de calcul, l'optimiseur du logiciel converge vers une solution optimale, qui est la même que celle trouvée par le logiciel Nemrodw. Les valeurs optimales des facteurs d'entrée ainsi que les réponses prédites par le modèle et obtenues par simulations sont données dans le tableau 14.

Modde	Dc (mm)	Hc (mm)	F ₁ (GHz)	F ₂ (GHz)	Q_0
Wiodde	50	35	4,56	6,69	12345
Simulation	50	35	4,48	6,72	12291
	écart (%)		1,6	0,4	0,4

Tableau 14 : solution trouvée par le logiciel Modde

La simulation à l'aide du logiciel EMXD du filtre avec Dc = 50 mm et Hc = 35 mm a conduit à des valeurs des réponses F_1 , F_2 et Q_0 très proches de celles prédites par le plan d'expériences (écart de l'ordre de 1,6 % pour F_1 , 0,4 % pour F_2 et 0,4% pour Q_0). On peut constater aussi d'après le tableau 14 que la valeur simulée de la fréquence F_1 est égale à 4,48 GHz, cette valeur est légèrement inférieure à la valeur attendue (4,5 GHz). Nous allons dans la suite, essayer de trouver une solution dont la fréquence F_1 est bien supérieure ou égale à 4,5 GHz. L'optimum trouvé par les deux logiciels est reporté sur la figure 8.

On remarque que l'optimum se situe à la limite du domaine expérimental sphérique. Pour ce faire, nous allons maintenant choisir un domaine cubique pour faire en sorte que les optima se situent dans ou à la limite du domaine expérimental limité par un carré (pointillé sur la figure 8).

Figure 8 : localisation des optima dans le domaine expérimental

Le passage du domaine sphérique à un domaine cubique nécessite 4 points expérimentaux supplémentaires qui sont les quatre coins du carré.

II.5. Etude dans un domaine expérimental cubique

L'intérêt de travailler dans un domaine cubique est de couvrir la totalité du domaine expérimental. Le plan utilisé est un plan composite centré (CCF), les valeurs extrêmes des facteurs d'entrée varient entre -1 et 1 dans la matrice d'expériences (tableau 15).

Numéro d'expérience	X1	X ₂
1	-1.00000	-1.00000
2	1.00000	-1.00000
3	-1.00000	1.00000
4	1.00000	1.00000
5	-1.00000	0.00000
6	1.00000	0.00000
7	0.00000	-1.00000
8	0.00000	1.00000
9	0.00000	0.00000

Tableau 15 : matrice d'expériences d'un plan composite centré CCF

Les facteurs X_1 et X_2 prennent 3 niveaux dans ce type de matrices (-1, 0 et 1), le plan d'expériences, les facteurs d'entrée et les réponses, sont reportés dans le tableau 16.

Numáro	Facteurs d'entrée Réponses				épaisseur calculée	
d'expériences	Dc	Hc	F ₁	F_2	Q_0	E
u experiences	mm	mm	GHz	GHz	Sans unité	mm
1	25.9	18.1	5.000	6.470	6535	8.15
2	54.1	18.1	4.207	4.990	8205	4.15
3	25.9	37.9	5.440	6.900	7802	5.2
4	54.1	37.9	4.158	6.630	13112	1.38
5	25.9	28.0	5.320	7.175	7660	5.7
6	54.1	28.0	4.082	5.945	11160	2.15
7	40.0	18.1	4.511	5.530	7785	5.07
8	40.0	37.9	5.329	7.009	11187	2.3
9	40.0	28.0	5.017	6.400	10155	3.05

Tableau 16 : plan composite centré CCF (facteurs d'entrée et réponses)

Les points expérimentaux dans ce type de plans se situent sur les côtés d'un carré (voir figure 9).

Les quatre nouveaux points sont représentés par les quatre premières expériences du plan d'expériences (tableau 16).

Figure 9 : passage d'un domaine sphérique à un domaine cubique

II.5.1. Analyse mathématique des résultats

On rappelle que l'utilisation d'un modèle mathématique doit conduire à la valeur de la réponse étudiée en n'importe quel point du domaine expérimental. Cette valeur que nous appelons prévision, n'est pas égale à la véritable valeur mais à une estimation de cette dernière $(Y_i = \hat{Y}_i - e_i)$. La différence entre les réponses calculées par le modèle et les réponses simulées est donnée dans le tableau 17.

Numéro	Ré	éponse F1 (Gl	Hz)	Ré	éponse F2 (Gl	Hz)		Réponse Q ₀	
d'expérience	F1 simulée	F1 calculée	Différence	F ₂ simulée	F2 calculée	Différence	Q ₀ simulé	Q0 calculé	Différence
1	5.0000	4.9189	0.0811	6.4700	6.4754	-0.0054	6535.0	6461.7	73.3
2	4.2070	4.0590	0.1480	4.9900	4.8771	0.1129	8205.0	8135.0	70.0
3	5.4400	5.5664	-0.1264	6.9000	7.0534	-0.1534	7802.0	7833.7	-31.7
4	4.1580	4.2175	-0.0595	6.6300	6.6651	-0.0351	13112.0	13147.0	-35.0
5	5.3200	5.2748	0.0452	7.1750	7.0162	0.1588	7660.0	7701.7	-41.7
6	4.0820	4.1704	-0.0884	5.9450	6.0229	-0.0779	11160.0	11195.0	-35.0
7	4.5110	4.7401	-0.2291	5.5300	5.6376	-0.1076	7785.0	7928.3	-143.3
8	5.3290	5.1431	0.1859	7.0090	6.8206	0.1884	11187.0	11120.3	66.7
9	5.0170	4.9738	0.0432	6.4000	6.4809	-0.0809	10155.0	10078.3	76.7

Tableau 17 : réponses expérimentales/ réponses calculées

A partir de la colonne Différence du tableau 17, nous constatons que les modèles de toutes les réponses bénéficient d'une bonne qualité descriptive puisque la différence entre les réponses calculées et les réponses simulées est faible.

On peut aussi remarquer que la plus grande valeur de la différence est obtenue pour la réponse Q_0 (-143,3) lors de l'expérience 7. Nous allons vérifier à l'aide des tests statistiques si cette expérience peut être considérée comme une expérience atypique.

II.5.2. <u>Analyse statistique du modèle</u> II.5.2.a. <u>Analyse globale du modèle</u>

L'analyse globale consiste à déterminer les valeurs des coefficients de détermination R^2 , $R^2_{ajusté}$ et $R^2_{prédictif}$ (voir partie I, paragraphe VIII.2.1). Les valeurs de ces coefficients ainsi que la valeur de Prob (Fc) sont données dans le tableau 18. D'après ce tableau, on peut dire que les modèles présentent une qualité descriptive satisfaisante puisque les valeurs de R^2 et $R^2_{ajusté}$ sont proches de 1. Comme on l'a vu dans la partie I, le coefficient R^2_{pred} (Q²), décrit la capacité prédictive du modèle. On peut constater que la qualité prédictive du modèle n'est pas très bonne pour la réponse F₁ puisque la valeur de R^2_{pred} est égale à 0,265.

		Réponse	
	F_1	F_2	Q ₀
R^2	0,939	0,97	0,99
R ² _{ajusté}	0,837	0,922	0,996
$R^2_{prédictif} = Q^2$	0,265	0,661	0,986
Prob (Fc)	4,83%	1,65%	0,01%

Tableau 18 : qualité descriptive et prédictive du modèle

La valeur de prob (Fc) pour cette réponse est proche de 5 % (valeur où l'on peut dire que le modèle décrit mal la variation de la réponse).

Pour essayer d'améliorer le modèle pour la réponse F_1 , nous allons vérifier tout d'abord s'il existe des expériences atypiques (erreur de saisie, simulation fausse), un modèle incorrect ou une discontinuité de la réponse.

II.5.2.b. Analyse statistique des résidus

Il existe plusieurs techniques pour savoir s'il existe des expériences atypiques qui résultent d'une erreur de saisie ou d'une erreur de simulation. La détection d'une ou plusieurs expériences atypiques, nécessite une vérification de ces expériences. Dans ce cas, une désactivation de ces expériences est nécessaire. Nous allons vérifier dans les deux paragraphes suivants s'il existe des expériences atypiques en utilisant les deux logiciels Nemrodw et Modde.

Détection des expériences atypiques à l'aide du logiciel Modde

Dans le logiciel Modde, les résidus sont reportés sur une échelle de probabilité cumulative normale. Cette représentation (figure 10) permet de détecter :

• la normalité des résidus : lorsque les résidus sont normalement distribués, les points décrivent une droite,

• des valeurs aberrantes (expériences atypiques) : ce sont des points de déviation de la ligne de probabilité normale, et ayant de grandes valeurs absolues des résidus studentisés [10] (écart-type indiqué par des lignes rouges sur la figure 10). Dans le logiciel Modde, la valeur 4 est précisée comme limite où l'on peut considérer que l'expérience associée est atypique.

L'échelle horizontale de ce graphe est linéaire (résidus studentisés), l'axe des ordonnées (N-Probability) est gradué de sorte que la fonction de répartition d'une variable aléatoire qui suit une loi normale, soit représentée par une droite.

Un résidu studentisé r_i est le résidu brut e_i divisé par son écart-type S_i , où S_i est calculé pour l'expérience numéro i.

Le résidu studentisé est alors donné par la formule suivante :

$$r_i = e_i / (S_i \sqrt{1 - h_i}) \tag{4}$$

où :

- S_i est une estimation de l'écart-type résiduel pour l'expérience i,
- h_i est le i^{ème} élément diagonal de la matrice $X(^{t}XX)^{-1}(^{t}X)$.

La figure 10 donne les informations suivantes :

- aucune expérience atypique pour la réponse F₁,
- l'expérience numéro 3 est atypique pour la réponse F₂,
- l'expérience numéro 7 est atypique pour la réponse Q₀.

Les deux expériences 3 et 7 sont ensuite vérifiées et simulées à nouveau avec le logiciel EMXD ; on ne constate aucune erreur de mesure ou de saisie. Ces deux expériences vont ensuite être désactivées dans le plan d'expériences afin d'obtenir des expériences normalement distribuées. Nous allons maintenant vérifier la discontinuité de ces deux expériences pour les réponses F_2 et Q_0 à l'aide du logiciel Nemrodw.

Détection des expériences atypiques à l'aide du logiciel Nemrodw

Les résidus studentisés sont tracés en fonction de la valeur de la réponse calculée : cela permet de vérifier que la variance expérimentale reste constante quelles que soient les valeurs de

la réponse. La variance expérimentale provient souvent de plusieurs sources comme les erreurs de mesures et la variabilité des résultats quand une expérience identique est reproduite.

Les résidus doivent être distribués aléatoirement autour de zéro, et ne pas dépendre de la valeur de la réponse. Si une tendance apparaît, comme par exemple une augmentation de la valeur absolue des résidus avec la réponse, une vérification de l'expérience est nécessaire.

On représente sur la figure 11 les valeurs des résidus studentisés en fonction des deux réponses F_2 et Q_0 calculées.

Figure 11 : normalité des résidus (logiciel Nemrodw)

D'après la figure 11, on peut tirer les mêmes conclusions que celles obtenues avec le logiciel Modde : les deux expériences 3 et 7 semblent être atypiques pour les réponses F_2 et Q_0 . En regardant les mêmes graphiques pour la réponse F_1 (figure 12), on remarque la normalité de toutes les expériences du plan.

Figure 12 : normalité des résidus pour la réponse F₁

Les valeurs des résidus studentisés pour la réponse F_1 varient entre -2,87 et 2,56. Cette marge de variation apparaît petite par rapport à celles des réponses F_2 (-12,96) et Q_0 (-29), ce qui explique pourquoi il n'y a pas d'expérience atypique pour la réponse F_1 .

II.5.2.c. Désactivation des expériences 3 et 7

Nous avons désactivé les deux expériences 3 et 7 du plan d'expériences pour essayer d'améliorer la capacité prédictive du modèle. Pour étudier les qualités descriptive et prédictive du modèle après la désactivation des expériences 3 et 7, nous avons regroupé dans le tableau 19 les valeurs des coefficients R^2 , $R^2_{ajusté}$, $R^2_{prédictif}$ et Prob(Fc) avant et après la désactivation des expériences atypiques.

		Plan complet		Sans les expériences 3 et 7			
Coefficients F ₁		F_2	Q_0	F ₁	F_2	Q ₀	
R^2	0,939	0,9708	0,9987	0,99	0,99	1	
R ² _{aj}	0,8374	0,9222	0,9967	0,99	0,99	0,99	
R ² _{pred}	0,265	0,661	0,9869	0,99	0,98	0,99	
Prob (Fc)	4,83%	1,65%	0,01%	0,60%	1,89%	0,06%	

Tableau 19 : qualité des modèles avant et après désactivation des expériences 3 et 7

On constate d'après le tableau 19 que la désactivation des deux expériences atypiques permet donc d'améliorer le modèle mathématique des trois réponses F_1 , F_2 et Q_0 . Il est alors intéressant de tracer le graphe d'adéquation (figure 13) du modèle pour bien vérifier les résultats obtenus dans le tableau 19.

Figure 13 : graphes d'adéquation des modèles

On peut constater que les expériences (sauf les expériences 3 et 7), sont placées parfaitement sur la droite y = x, ce qui montre la qualité parfaite du modèle mathématique.

Nous allons maintenant faire un test statistique des coefficients du modèle afin de savoir s'il existe des coefficients qui ne sont pas influents.

II.5.2.d. Analyse des coefficients

Pour savoir si on peut décrire le phénomène avec un modèle de degré 1, nous allons regarder la signification des coefficients du modèle de degré 2 pour chaque réponse. La figure 14 représente le diagramme des effets des coefficients du modèle sur toutes les réponses.

Figure 14 : significativité des coefficients après désactivation des expériences 3 et 7

On peut constater que tous les coefficients sont influents sur la réponse Q_0 . On ne peut donc éliminer aucun coefficient et ceci quelle que soit la réponse. Le modèle mathématique présente maintenant une bonne qualité prédictive, nous allons à l'aide des points tests proposés par le logiciel Nemrodw, vérifier si le modèle permet de prévoir les valeurs des réponses en n'importe quel point du domaine expérimental.

II.5.2.e. Points tests après désactivation

Avant de commencer l'étape d'optimisation, il est nécessaire d'étudier l'écart entre les réponses calculées par les nouveaux modèles et les réponses obtenues par simulation sur les trois points tests proposés par le logiciel Nemrodw. Les différentes valeurs sont données dans le tableau 20.

	Point	s tests	F ₁ (GHz)	F ₁ (GHz)		F ₂ (GHz)	F ₂ (GHz)		Q ₀	Q ₀	
Numéro	D _c (mm)	H _c (mm)	Modèle	Simulation	écart(%)	Modèle	Simulation	écart(%)	Modèle	Simulation	écart(%)
1	33,9	25,5	5,16	5,061	1,91	6,533	6,5	0,5	8940	9022	0,9
2	46,1	25,5	4,671	4,68	0,19	5,969	5,97	0,01	10257	10180	0,75
3	40	33	5,147	5,188	0,79	6,734	6,71	0,35	10796	10773	0,21

Tableau 20 : points tests proposés par le logiciel Nemrodw

D'après le tableau 20, on observe des écarts inférieurs à 1% pour toutes les réponses et sur tous les points sauf le premier point pour F_1 (le modèle de la réponse F_1 est moins bon sur le point test numéro 1). Ces résultats confirment l'excellente qualité du modèle mathématique.

Après validation des modèles mathématiques dans le domaine expérimental, l'étape suivante consiste à déterminer les valeurs optimales des facteurs d'entrée qui assurent une isolation fréquentielle et un grand facteur de qualité à vide.

II.5.3. Optimisation multicritère

Les deux paramètres d'entrée Dc et Hc vont être réglés pour avoir les réponses souhaitées. Comme précédemment, les réponses sont transformées en fonctions de désirabilités individuelles. On cherche toujours à maximiser les deux fréquences F_1 et F_2 , les deux valeurs minimales acceptables sont respectivement 4,5 et 6 GHz, les deux valeurs cibles sont respectivement 4,6 et 6,1 GHz ; le but n'étant pas de chercher une valeur maximale pour F_1 et F_2 mais d'assurer une isolation fréquentielle.

Comme on l'a vu dans la première partie de ce chapitre, on souhaite avoir la plus grande valeur possible du facteur de qualité à vide. D'où, dans cet exemple, la valeur cible de la réponse Q_0 a été précisée à 20000. Nous sommes passés de 30000 à 20000, en effet, nous avons montré que la valeur simulée de cette réponse ne doit pas dépasser 20000. Dans ce cas nous allons voir que la valeur de désirabilité globale est plus grande que celle trouvée dans le paragraphe II.4.3.b de ce chapitre où la valeur cible de la réponse Q_0 est 30000.

II.5.3.a. Optimisation à l'aide du logiciel Modde

Le logiciel Modde commence la recherche de l'optimum multicritère à partir de 5 points initiaux. Un premier calcul donne donc les 5 solutions trouvées par ce logiciel. La meilleure solution est celle qui présente le minimum de la distance normalisée à la cible log (D_G) signalé en gras (tableau 21), la notion de log (D_G) a été expliquée dans le paragraphe IX.3.1 de la partie I.

D _c (mm)	H _c (mm)	F ₁ (GHz)	F ₂ (GHz)	Q_0	Iteration	log(D _G)
50,1442	37,8001	4,5493	6,7045	12709,6	150	-0,5802
50,187	37,831	4,5461	6,7053	12718,2	148	-0,5629
50,257	37,7681	4,538	6,7003	12718,4	157	-0,516
50,0858	37,5936	4,5495	6,694	12677,9	140	-0,579
50,1902	37,8595	4,5465	6,7068	12722	132	-0,5655

Tableau 21 : solutions trouvées par le logiciel Modde

On peut relancer le calcul en prenant les 5 solutions trouvées comme points initiaux, plusieurs calculs sont effectués jusqu'à l'obtention de résultats identiques lors de deux calculs consécutifs (voir tableau 22). La meilleure solution est la dernière du tableau 22, la valeur de $\log (D_G)$ de cette solution est la plus petite (-0,6367).

D _c (mm)	H _c (mm)	F ₁ (GHz)	F ₂ (GHz)	Q_0	Iteration	log(D _G)
50,34	37,88	4,53	6,7	12742,5	217	-0,484
50,02	37,78	4,55	6,7	12694,3	140	-0,6333
50,27	37,88	4,53	6,7	12735	140	-0,5234
50,25	37,88	4,54	6,7	12731,7	69	-0,5367
50	37,74	4,56	6,7	12687,2	94	-0,6367

Partie II – chapitre 1 : optimisation d'un filtre OMU

Tableau 22 : meilleure solution trouvée

Plusieurs solutions sont proposées par l'optimiseur de Modde, nous avons choisi les deux solutions qui présentent la meilleure valeur du facteur de qualité à vide. Les deux solutions choisies sont données dans le tableau 23, ainsi que les valeurs des réponses calculées par le modèle et obtenues par simulation.

		Logiciel Modde					
	Facteurs d'entrée Réponses			Epaisseur			
Solution 1	Dc (mm)	Hc (mm)	F ₁ (GHz)	E (mm)			
Modèle	50	37,74	4,56	6,7	12687		
Simulation	50	37,74	4,49	6,83	12680	1,56	
	Ecart (%)		1,5	1,9	0,05		
Solution 2	Dc (mm)	Hc (mm)	F ₁ (GHz)	F ₂ (GHz)	Q_0		
Modèle	50,1	37,8	4,54	6,7	12709		
Simulation	50,1	37,8	4,49	6,84	12718	1,5	
	Ecar	t (%)	1,1	2	0,07		

Tableau 23 : résultats de simulations des deux solutions trouvées par le logiciel Modde

D'après le tableau 23, on peut remarquer une très bonne amélioration du facteur de qualité à vide (12680 pour la première solution et 12718 pour la deuxième) en assurant toujours une isolation fréquentielle ($F_1 \approx 4,5$ GHz et $F_2 > 6$ GHz). L'épaisseur du résonateur E est calculée pour chaque solution pour avoir toujours une fréquence de résonance F_0 égale à 4 GHz. Nous allons maintenant chercher une solution à l'aide du logiciel Nemrodw.

II.5.3.b. Optimisation à l'aide du logiciel Nemrodw

Après plusieurs calculs, l'optimiseur du logiciel Nemrodw converge vers une solution optimale. Les valeurs optimales des facteurs d'entrée ainsi que les valeurs calculées et simulées des réponses sont reportées dans le tableau 24.

Name des	Facteurs	d'entrée		Réponses		Epaisseur
Nemrodw	Dc (mm)	Hc (mm)	F ₁ (GHz)	F_2 (GHz)	Q_0	E (mm)
Modèle	49,1	37,9	4,6	6,71	12578	
Simulation	49,1	37,9	4,57	6,87	12595	1,55
	Ecart (%)		0,5	2,3	0,1	

Tableau 24 : résultat de simulation de la meilleure solution trouvée par le logiciel Nemrodw

Les optima trouvés par les deux logiciels (plan CCC et CCF) sont donnés sur la figure 15.

Figure 15 : solutions trouvées par les deux logiciels pour les plans CCC et CCF

On peut constater d'après la figure 15 que les optima trouvés par les deux logiciels se situent à la limite du domaine expérimental cubique (plan CCF). Le passage d'un plan CCC (domaine sphérique) à un plan CCF (domaine cubique) permet donc de trouver de meilleures solutions qui conduisent à des forts facteurs de qualité à vide. Pour un plan CCC, le facteur de qualité à vide trouvé est de 12291, ce qui conduit à une amélioration de 21,1 % par rapport au facteur de qualité à vide de référence (10145). Pour un plan CCF, le meilleur facteur de qualité à vide trouvé est de 12718, ce qui conduit à une amélioration de 25,3 %. On ne peut pas, dans cet exemple, élargir le domaine de variation de la hauteur de la cavité (supérieure à 37,9 mm) pour augmenter le facteur de qualité à vide, puisque l'épaisseur du résonateur est inversement proportionnelle à la valeur de Hc. Pour Hc supérieure à 37,9 mm, l'épaisseur du résonateur devient petite (inférieure à 1,5 mm), ce qui rend ce filtre difficile à fabriquer.

Pour essayer d'atteindre la limite du modèle mathématique, et trouver la meilleure solution pour cet exemple, un algorithme de minimisation (BFGS) (voir annexe A) est utilisé pour trouver un optimum multicritère. L'algorithme de minimisation BFGS va être couplé avec les modèles issus des logiciels des plans d'expériences afin de trouver tous les minima possibles d'une fonction F à déterminer, ce qui est le but du paragraphe suivant.

III. <u>Application de la méthode BFGS</u>

En mathématiques, la méthode de **Broyden-Fletcher-Goldfarb-Shanno** (**BFGS**) est une méthode permettant de résoudre un problème d'optimisation non linéaire sans contrainte [11]. La méthode BFGS est souvent implémentée comme un algorithme à directions de descente (elle prend implicitement en compte les dérivées secondes pour trouver le minimum d'une fonction F).

Le but ici est d'utiliser la méthode BFGS pour minimiser une fonction F définie à partir des modèles mathématiques donnés par les logiciels des plans d'expériences. Considérons un modèle polynomial de second ordre associé à une réponse Y dans le cas de deux facteurs d'entrée, ce modèle possède 6 coefficients. La réponse Y peut s'écrire de la façon suivante :

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_{11} X_1^2 + b_{22} X_2^2 + b_{12} X_1 X_2$$
(5)

Dans le cas où l'on cherche une valeur cible de cette réponse, la méthode BFGS est utilisée pour minimiser la fonction F définie par :

$$F = \left[(b_0 + b_1 X_1 + b_2 X_2 + b_{11} X_1^2 + b_{22} X_2^2 + b_{12} X_1 X_2) - cible (Y) \right]^2$$
(6)

Les seuls termes inconnus dans cette équation sont les deux facteurs X_1 et X_2 qui sont déterminés par la méthode BFGS afin d'obtenir le minimum de la fonction F. Les paramètres d'entrée nécessaires pour cette méthode sont :

- les valeurs initiales (points de départ) pour les deux variables X₁ et X₂: la méthode BFGS recherche les valeurs optimales des variables X₁ et X₂ à partir d'un point de départ précisé par l'utilisateur (X_{1i} et X_{2i}),
- le vecteur $\overrightarrow{Grad}(F)$: la dérivée de la fonction F par rapport aux deux variables X₁ et X₂ est nécessaire pour établir l'optimisation.

Les paramètres de sortie de la méthode BFGS sont les valeurs optimales X_1 opt et X_2 opt ainsi que le minimum de la fonction F comme le montre la figure 16 qui donne le principe de fonctionnement de la méthode BFGS.

Figure 16 : paramètres d'entrée et de sortie de la méthode BFGS

Dans le cas présent, le but est de minimiser une fonction F (F₁, Q_0) qui est composée de deux parties et définie par :

$$F(F_1, Q_0) = 10^7 [Y(F_1) - 4,5]^2 - Y(Q_0)$$
⁽⁷⁾

La première partie de cette équation $(10^7[Y(F_1) - 4,5]^2)$ est utilisée pour assurer une fréquence du premier mode non excité F_1 très proche ou égale à 4,5 GHz. La deuxième partie (-Y(Q₀)) est utilisée pour avoir le maximum du facteur de qualité à vide. Nous avons multiplié la première partie par 10⁷ parce que l'ordre de grandeur de la fréquence F_1 est très petit devant le facteur de qualité à vide.

Le minimum de la fonction F (F₁, Q₀) est obtenu lorsque la première partie est proche de zéro (F₁ \approx 4,5 GHz) et la deuxième partie est la plus grande possible (fort facteur de qualité à

vide). Supposons que le facteur de qualité maximal trouvé soit de 12000, dans ce cas le minimum de la fonction F (F_1 , Q_0) est -12000.

On a choisi dans cet exemple de travailler à partir de plusieurs points de départ des deux variables en respectant les domaines de variations donnés par la matrice d'expériences : $X_1, X_2 \in [-1;+1]$ en s'appuyant sur une discrétisation du domaine.

L'organigramme décrivant l'application de la méthode BFGS sur cet exemple est donné sur la figure 17.

Figure 17 : organigramme d'exécution de la méthode BFGS

Comme on peut voir sur la figure 17, les valeurs optimales de X_1 et X_2 dépendent des valeurs initiales. L'algorithme est exécuté sur chaque couple de valeurs X_{1i} et X_{2i} afin de trouver une meilleure solution. La valeur cible de la fréquence F_1 est fixée à 4,5 GHz, cette valeur peut être changée si on constate que le facteur de qualité à vide est maximum pour une valeur de F_1 plus grande que 4,5 GHz. Rappelons que la fonction de désirabilité de la réponse F_1 est sous la forme suivante (figure 18).

Figure 18 : valeurs cibles prises pour la réponse F₁

L'optimiseur des logiciels des plans d'expériences cherche une valeur pour la réponse F_1 où la fonction de désirabilité est supérieure à 0. N'importe quelle valeur de la réponse F_1 supérieure à 4,5 GHz est donc acceptée (si le facteur de qualité à vide est meilleur). Pour ce faire, nous avons utilisé différentes valeurs cibles pour la réponse F_1 supérieures à 4,5 GHz.

Plusieurs solutions sont trouvées par cet algorithme, nous nous intéressons aux solutions dont le facteur de qualité est le plus grand possible en assurant une bonne isolation fréquentielle.

		Logiciel Modde				
	Facteurs	d'entrée		Réponses		Epaisseur
Solution 1	Dc (mm)	Hc (mm)	F ₁ (GHz)	F ₂ (GHz)	Q ₀	E (mm)
Modèle	50	37,74	4,56	6,7	12687	
Simulation	50	37,74	4,49	6,83	12680	1,56
	Ecar	t (%)	1,5	1,9	0,05	
Solution 2	Dc (mm)	Hc (mm)	F ₁ (GHz)	F ₂ (GHz)	Q ₀	
Modèle	50,1	37,8	4,54	6,7	12709	
Simulation	50,1	37,8	4,49	6,84	12718	1,5
	Ecart (%)		1,1	2	0,07	
		Lo	ogiciel Nemrodw			
	Dc (mm)	Hc (mm)	F ₁ (GHz)	F ₂ (GHz)	Q ₀	
Modèle	49,1	37,9	4,6	6,71	12578	
Simulation	49,1	37,9	4,57	6,87	12595	1,55
	Ecar	Ecart (%)		2,3	0,1	
		Plans + 1				
	Dc (mm)	Hc (mm)	F ₁ (GHz)	F ₂ (GHz)	Q ₀	
Modèle	50	37,53	4,54	6,69	12671	
Simulation	50	37,53	4,5	6,91	12680	1,5
	Ecar	t (%)	0,8	3,2	0,07	

La meilleure solution trouvée par la méthode BFGS ainsi que les solutions trouvées par les plans d'expériences sont regroupées dans le tableau 25.

 Tableau 25 : solutions trouvées par Modde, Nemrodw et la méthode BFGS

On peut constater qu'avec les plans d'expériences, nous avons trouvé un fort facteur de qualité à vide (12718 pour la deuxième solution de Modde), la fréquence du premier mode non excité pour cette solution est de 4,49 GHz, ce qui est légèrement inférieur à 4,5 GHz. Avec le logiciel Nemrodw, on a réussi à trouver une bonne isolation fréquentielle puisque la fréquence F_1 est égale à 4,57 GHz, le facteur de qualité à vide pour cette solution est de 12595. En couplant les modèles issus des logiciels des plans d'expériences avec la méthode BFGS, nous réussissons à trouver le bon compromis entre le facteur de qualité à vide Q_0 et la fréquence du premier mode non excité F_1 et on a atteint la limite de l'épaisseur du résonateur (1,5 mm) avec une fréquence du premier mode non excité F_1 égale à 4,5 GHz.

IV. Conclusion

Dans cette étude, deux plans composites centrés sont utilisés. Le premier est un plan CCC dans un domaine sphérique, la localisation de l'optimum sur la limite de ce domaine nous a conduit à passer à un plan composite centré dans un domaine cubique (CCF) qui nécessite 4 simulations supplémentaires. Ce passage permet d'améliorer le facteur de qualité à vide de 25,3 % par rapport à la valeur de référence 10145. L'isolation fréquentielle n'est pas très bonne pour cette valeur du facteur de qualité à vide parce que la valeur de la fréquence du premier mode non excité F_1 est de 4,49 GHz, cette valeur reste acceptable car proche de 4,5 GHz. Nous avons montré précédemment que si on cherche à augmenter le facteur de qualité à vide, les deux fréquences F_1 et F_2 diminuent.

L'application de la méthode BFGS avec les modèles issus des logiciels des plans d'expériences, permet d'explorer le domaine d'étude pour trouver un meilleur compromis entre le facteur de qualité à vide et l'isolation fréquentielle. À l'aide de cette méthode, nous avons obtenu une isolation fréquentielle bien respectée ($F_1 = 4,5$ GHz), et un facteur de qualité à vide de 12680 (amélioration de 24,9 % par rapport au facteur de qualité de référence).

Lors de l'optimisation multicritère, la fonction de désirabilité globale est la moyenne géométrique pondérée des fonctions de désirabilité individuelle des différentes réponses. Dans notre cas, plusieurs réponses doivent être optimisées en même temps. Il est d'usage de prendre des poids égaux si toutes les réponses présentent la même importance. Le choix des poids des différentes réponses est déterminant dans l'optimisation multicritère, la position de l'optimum dépend des poids attribués sur chaque réponse. L'application de la méthode BFGS a permis de résoudre ce problème. En effet, à l'aide de cette méthode, nous avons obtenu tous les minima de la fonction à minimiser sans privilégier une des réponses.

La méthode BFGS peut ensuite s'utiliser en appliquant des contraintes sur les dimensions du dispositif à optimiser, c'est l'objectif du chapitre suivant.

V. <u>Références</u>

[1] A. E. Williams. A four cavity elliptic waveguide filter. IEEE Transactions on MIT, vol. 18; $n^{\circ}12,1109 - 1114$, December 1970.

[2] A. E. Atia, Albert E. WILLIAMS. Narrow bandpass waveguide filters. IEEE Transactions on MTT, vol. 20, n°4, 258 - 265, April 1972.

[3] O. Roquebrun. Filtres microondes rectangulaires bimodes utilisant les modes supérieurs. Thèse de l'Université de Bordeaux 1, n° : 2417, Octobre 2001.

[4] S. Moraud. Etude et conception de nouvelles topologies de filtres destinés à être intégrés aux différents niveaux de la charge utile d'un satellite de télécommunication. Thèse de l'Université de limoges, n° 27-1998, 1998.

[5] H. Khalil. Développement des techniques d'optimisation de forme pour la conception de composants hyperfréquences. Thèse de l'Université de Limoges, n°: 26-2009, 2009.

[6] M. Aubourg, P. Guillon, S. Verdeyme, V. Madrangeas. Modellig microwave boxed structures by 2D and 3D finite element method. International Journal for Computation and Mathematics in Electrical and Electronic Engineering, No. 13, 335 - 340, 1994.

[7] N.K. Wold. Analysis of mixture data with partial least square. Chemometrics and Intelligent laboratory Systems, 14, 57 - 69, 1992.

[8] H. Wold. Soft Modelling by latent variables; the nonlinear iterative partial least squares approach. Perspectives in Probability and Statistics, Gani, J. (Ed), (Papers in honour of M. S. Bartlett). London : Academic Press, 1975.

[9] S. Weisberg, Applied Linear Regression, 2nd edition, John Wiley, New York, 324, 1985.

[10] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying influential data and sources of collinearity (chapter 2). New York: John Wiley, 1980.

[11] G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms, Journal of the Institute of Mathematics and Its Applications 6, 76 - 90, 1970.

Chapitre 2 : Optimisation d'un résonateur diélectrique

Ces travaux ont été menés en collaboration avec Ludovic Carpentier, doctorant au sein du département MINACOM du laboratoire XLIM. Ce chapitre présente l'utilisation des plans d'expériences pour optimiser les dimensions d'un résonateur situé dans une cavité cylindrique.

Le résonateur doit fonctionner à la fréquence 11,7 GHz en assurant une isolation fréquentielle de 1 GHz (+/- 0,5 GHz) autour de la fréquence de résonance. De plus, le facteur de qualité à cette fréquence doit être le plus grand possible.

Le paragraphe suivant présente en détail le cadre du problème posé.

I. <u>Résonateur diélectrique</u>

L'insertion d'un résonateur diélectrique dans une cavité cylindrique possédant une forte permittivité permet de diminuer l'encombrement d'un filtre composé uniquement d'une cavité résonante remplie d'air mais entraîne une diminution du facteur de qualité à vide [1].

Les résonateurs sont réalisés par le centre de transfert de technologies céramiques (CTTC) de Limoges en utilisant la technique de stéréolithographie 3D [2] à l'aide de poudre céramique $Ba_3MgTa_2O_9$ (BMT) [3]. La forte permittivité de cette poudre $\varepsilon_r = 24,6$ et sa faible tangente de pertes tan $\delta = 9,8.10^{-5}$ permettent d'obtenir des filtres compacts à forts facteurs de qualité à vide. La cavité contenant ce résonateur est remplie d'air et sa paroi est en argent ($\sigma = 6,17.10^7$ S/m). Nous montrons sur la figure 1 les différents paramètres à optimiser au cours de cette étude.

Figure 1 : structure du résonateur

La réponse fréquentielle attendue de ce résonateur comporte deux modes (aux fréquences notées F_1 et F_2) encadrant la fréquence de fonctionnement ($F_0 = 11,7$ GHz). Les caractéristiques de l'isolation fréquentielle désirée sont données sur la figure 2.

Figure 2 : caractéristiques fréquentielles du résonateur

Dans le cadre de sa thèse, Ludovic Carpentier a réalisé une première étude en fixant le diamètre du résonateur Dr à 5 mm et en faisant varier la hauteur Hr pour obtenir une fréquence du mode fondamental à 11,7 GHz. Ensuite, le diamètre de la cavité est fixé à 37,5 mm et sa hauteur est ajustée pour assurer l'isolation fréquentielle. Après plusieurs simulations, le mode fondamental est obtenu à 11,7 GHz pour un diamètre de résonateur égal à 5 mm et une hauteur de 2,65 mm. L'isolation fréquentielle est assurée pour un diamètre de cavité de 22089,3 mm³. Le facteur de qualité à vide simulé pour ces dimensions est de l'ordre de 15000.

L'application de la méthode des plans d'expériences devrait permettre d'optimiser le résonateur en limitant le nombre d'expériences. Des contraintes sur le volume du résonateur seront appliquées dans la suite pour essayer d'avoir les bonnes réponses avec un volume minimal, permettant ainsi de réduire le coût de fabrication.

II. <u>Application de la méthode des plans d'expériences pour</u> <u>quatre facteurs d'entrée</u>

Dans un premier temps, nous avons appliqué la méthode des plans d'expériences pour l'optimisation des dimensions de la cavité et du résonateur en BMT. Nous ne détaillerons pas cette partie de l'étude puisque l'on s'intéresse à des dimensions de cavité petites et fixes (Dc = Hc = 20 mm), ce qui est le but de la deuxième partie de ce chapitre. Nous allons présenter dans la suite les grandes étapes d'optimisation ainsi que l'optimum trouvé pour quatre facteurs d'entrée.

Le plan d'expériences choisi pour cette partie est un plan composite centré. Le nombre de simulations à réaliser est égal à 25 $(2^4+2\times4+1)$. Le modèle mathématique utilisé est d'ordre 2. Il s'écrit de la façon suivante :

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_{11} X_1^2 + b_{22} X_2^2 + b_{33} X_3^2 + b_{44} X_4^2 + b_{12} X_1 X_2 + b_{13} X_1 X_3 + b_{14} X_1 X_4 + b_{23} X_2 X_3 + b_{24} X_2 X_4 + b_{34} X_3 X_4$$
(1)

Les domaines de variations des facteurs d'entrée sont donnés dans le tableau 1.

	Min (mm)	Max (mm)
Dc	10	35
Hc	10	30
Dr	1	6
Hr	1	6

Tableau 1 : domaines de variations des facteurs d'entrée

Après analyse des modèles pour chaque réponse (F_0 , F_1 , F_2 et Q_0), nous avons étudié les effets des quatre facteurs d'entrée sur toutes les réponses, ce qui permet de connaitre le comportement d'une réponse en fonction du sens de variation d'un facteur d'entrée.

Les effets des quatre facteurs sur les réponses (tableau 2) peuvent être étudiés à l'aide des surfaces de réponses ou les diagrammes d'effet.

Effets	F ₀	F ₁	F ₂	\mathbf{Q}_{0}
Dc	Pas d'effet	Pas d'effet	Pas d'effet	+
Hc	-	-	-	+
Dr	-	-	-	-
Hr	-	-	-	-

 Tableau 2 : effets des facteurs d'entrée sur toutes les réponses

Le signe "+" signifie que la réponse varie dans le même sens que le facteur d'entrée correspondant. De même, un signe "-" signifie que la réponse et le facteur d'entrée varient en sens opposé. Nous déduisons du tableau 2 les conclusions suivantes :

- pour augmenter le facteur de qualité à vide il faut chercher à diminuer les dimensions du résonateur (Dr et Hr) et/ou maximiser les dimensions de la cavité; il existe donc un compromis à chercher;
- les fréquences F₀, F₁ et F₂ diminuent avec Hc, Dr et Hr. Le compromis qu'il faut chercher ici consiste à trouver les combinaisons entre ces trois facteurs pour obtenir une fréquence de résonance à 11,7 GHz en assurant une isolation fréquentielle (F₁ ≤ 11,2 GHz et F₂ ≥ 12,2 GHz).

Comme on l'a vu dans le chapitre 1 de cette partie, il existe différentes étapes à suivre pour valider les modèles mathématiques utilisés. Dans certains cas, on utilise plusieurs techniques pour améliorer les qualités prédictives des modèles (élimination des expériences atypiques et élimination des coefficients non significatifs). Dans le cas présent, nous ne détaillerons pas cette partie et nous n'allons présenter que les résultats d'optimisation.

La meilleure solution donnée par les plans d'expériences est trouvée pour Dc = 33,82 mm, Hc = 24,34 mm, Dr = 4,4 mm et Hr = 4 mm. Les valeurs des réponses prédites par le modèle ainsi que les valeurs obtenues par simulation sont reportées dans le tableau 3.

	F ₀ (GHz)	F ₁ (GHz)	F ₂ (GHz)	Q_0
Modèle	11,71	11,1	12	15500
Simulation	11,7	10,85	12,46	15000
Ecart (%)	0,08	2,25	3,8	3,2

On remarque d'après le tableau 3 que l'on obtient bien une fréquence de résonance à 11,7 GHz en assurant l'isolation fréquentielle ($F_1 = 10,85$ GHz et $F_2 = 12,46$ GHz). Le facteur de qualité à vide pour cette solution est égal à 15000. On peut remarquer aussi que le modèle mathématique de la réponse F_1 est le meilleur puisque l'écart entre la valeur calculée et la valeur simulée est très petit (0,08 %).

Nous avons montré qu'en utilisant la méthode des plans d'expériences (25 simulations), nous avons étudié les effets de tous les facteurs d'entrée sur toutes les réponses et nous avons cherché une solution qui conduit aux réponses souhaitées, ce qui est l'avantage par rapport à l'utilisation de la stratégie traditionnelle (variation d'un seul facteur à la fois) qui nécessite un grand nombre de simulations avec le minimum d'informations sur le comportement des réponses en fonction des facteurs d'entrée. De plus, nous constatons que l'on obtient une cavité avec un volume plus petit par rapport à la solution trouvée par Luvodic Carpentier (diminution de l'encombrement de 223,9 mm³).

Dans le but de diminuer l'encombrement de ce résonateur, nous allons travailler avec une cavité de dimensions fixées (Dc = Hc = 20 mm). Le but des paragraphes suivants est donc d'optimiser les dimensions Dr et Hr du résonateur en veillant à respecter les contraintes du problème.

III. Optimisation des dimensions du résonateur

Les deux paramètres d'entrée utilisés dans cette partie sont le diamètre et la hauteur du résonateur. Dans le plan précédent, la valeur minimale prise par chacune de ces deux variables était 1 mm, nous avons rencontré des problèmes de simulations (impossibilité d'identifier les modes) dans le cas où Dr = 1 mm et Hr = 6 mm ou l'inverse (rapport entre les deux variables très grand). C'est pourquoi, dans cette partie, chacun de ces deux facteurs varie entre 2 et 6 mm.

III.1. Plan d'expériences

Le plan d'expériences choisi est un plan composite centré dans un domaine sphérique, chaque facteur nécessite 5 niveaux, le nombre de simulations est égal à 9. Le plan d'expériences total (facteurs d'entrée et réponses) est donné dans le tableau 4.

Numéro	Dr	Hr	F ₀	F ₁	F ₂	Q ₀
d'expérience	mm	mm	GHz	GHz	GHz	Sans unité
1	2,6	2,6	21,85	21,63	23,51	12514
2	5,4	2,6	11,56	11,18	13,82	10498
3	2,6	5,4	21,27	21,02	21,53	14910
4	5,4	5,4	10	9,96	10,14	10278
5	2	4	24,74	24,7	24,83	11240
6	6	4	9,72	9,23	10,21	10233
7	4	2	15,21	13,83	16,51	11117
8	4	6	12,6	11,96	13,75	10656
9	4	4	13,3	13,24	13,81	10729

Tableau 4 : plan d'expériences (facteurs d'entrée et réponses)

Comme on peut le voir dans le tableau 4, les grandes valeurs du facteur de qualité à vide sont obtenues pour des grandes valeurs de la fréquence F_0 . Le but est donc de chercher un compromis entre les deux facteurs qui nous assure une fréquence F_0 à 11,7 GHz et un maximum du facteur de qualité à vide.

L'analyse du modèle mathématique est faite à l'aide des deux logiciels, Nemrodw et Modde. Dans cet exemple, le nombre de réponses étudiées est égal à 4 ; dans ce cas, le logiciel

Modde utilise la méthode PLS pour estimer les coefficients, alors que le logiciel Nemrodw utilise MLR (voir paragraphes II.3.1 et II.3.2 du chapitre 1).

III.2. Analyse des modèles et optimisation à l'aide du logiciel Nemrodw

Le nombre de coefficients à estimer par la méthode des moindres carrés est égal à 6. Pour chaque ligne du plan d'expériences, le modèle calcule une valeur pour chacune des réponses. Dans un premier temps, nous allons regarder les différences entre les réponses calculées et les réponses obtenues par simulation (tableau 5).

	F	Réponse F ₀	(GHz)	F	Réponse F ₁	(GHz)	
Numéro d'expérience	Simulée	Calculée	Différence (%)	Simulée	Calculée	Différence (%)	
1	21,85	21,644	0,94	21,63	21,212	1,93	
2	11,56	11,488	0,62	11,18	10,725	4,07	
3	21,27	20,681	2,77	21,01	20,403	2,89	
4	10	9,546	4,54	9,96	9,306	6,57	
5	24,74	25,158	1,69	24,7	25,199	2,02	
6	9,72	9,95	2,37	9,23	9,781	5,97	
7	15,21	15,266	0,37	13,83	14,216	2,79	
8	12,6	13,191	4,69	11,96	12,624	5,55	
9	13,3	13,326	0,20	13,24	13,283	0,32	
	F	Réponse F ₂ (GHz)			Réponse Q ₀		
Numéro d'expérience	Simulée	Calculée	Différence (%)	Simulé	Calculé	Différence (%)	
1	23,51	22,709	3,41	12514	11576,8	7,5	
2	13,82	13,173	4,68	10498	10883,5	3,7	
3	21,53	21,182	1,62	14910	13260,3	11,1	
4	10,14	9,947	1,90	10278	9951,1	3,2	
5	24,83	25,425	2,40	11240	12785,4	13,7	
6	10,21	10,589	3,71	10233	9926,5	3,0	
7	16,51	17,315	4,88	11117	11237,7	1,1	
8	13,75	13,92	1,24	10656	11774,2	10,5	
9	13,81	13,85	0,29	10729	10779,6	0,5	

Tableau 5 : réponses calculées/réponses simulées

D'après le tableau 5, on peut constater que les modèles mathématiques n'ont pas une qualité satisfaisante pour la réponse Q_0 . En fait, on peut remarquer de grands écarts pour les expériences 3 (11,1 %), 5 (13,7 %) et 8 (10,5 %). Ces expériences ont été vérifiées pour savoir si elles doivent être conservées.

Les modèles des réponses F_0 , F_1 et F_2 restent bons, puisque le plus grand écart trouvé pour la réponse F_0 est 4,69 % (expérience 8), 6,57 % (expérience 4) pour la réponse F_1 et 4,88 % (expérience 7) pour la réponse F_2 .

Les conclusions obtenues après l'étude du tableau 5 peuvent être vérifiées par le calcul des coefficients R^2 et $R^2_{ajusté}$ ainsi que par la valeur de la significativité de la table ANOVA (voir tableau 6).

	Réponse F ₀	Réponse F ₁	Réponse F ₂	Réponse Q ₀
R^2	0,995	0,991	0,99	0,579
R ² ajusté	0,987	0,976	0,974	N.D
Signif(%)	0,109	0,285	0,323	60,3

rattle II - chapture 2. Optimisation u un resonateur uterecuriqu	Partie	e II –	- chapitre 2	: optimisation	d'un	résonateur	diélectric	lue
--	--------	--------	--------------	----------------	------	------------	------------	-----

Tableau 6 : qualité descriptive des modèles

D'après ce tableau, on peut constater la mauvaise qualité du modèle pour la réponse Q_0 (Signif = 60,3 %), le modèle permet de décrire la variation des résultats d'essais si la valeur de Signif est faible (< 5 %) ; les valeurs de R² et R²_{ajusté} sont aussi très faibles (R² = 0,579 et R²_{ajusté} est non déterminé). En se référant à la première partie (paragraphe VIII.2.1) et en analysant le tableau ANOVA pour la réponse Q₀ (tableau 7), on peut déduire les valeurs suivantes :

- la somme des carrés des résidus, $SCE = 7,6050.10^6$,
- la somme des carrés totale (somme des carrés des écarts entre les résultats d'essais (expériences) et leur moyenne), SCT = 1,8084.10⁷.

Source de variation	Somme des carrés	Degrés de liberté	Carré moyen	Rapport (F _c)	Prob(F _c) ou Signif (%)
Régression	$SCM = 1,0479.10^7$	p-1 = 5	$SCM/(p-1) = 2,0959.10^6$	0,8268	60,3
Résidus	$SCE = 7,6050.10^{6}$	N-p = 3	$SCE/(N-p) = 2,5350.10^{6}$		
Total	$SCT = 1,8084.10^7$	N-1 = 8			

Tableau 7 : tableau ANOVA pour la réponse Q₀

Le coefficient de détermination R² est calculé par la relation suivante :

$$R^{2} = 1 - \frac{SCE}{SCT}, R^{2} \in [0; 1]$$
(2)

Il traduit la contribution du modèle dans la restitution de la variation de la réponse observée, dans le cas présent $R^2 = 0,579$. La valeur du coefficient $R^2_{aiusté}$ est calculée par la relation suivante :

$$R_{ajust\acute{e}}^{2} = 1 - \frac{\frac{SCE}{N-p}}{\frac{SCT}{N-1}}, R_{ajust\acute{e}}^{2} \in [0;1]$$
(3)

N est le nombre d'expériences et p est le nombre de coefficients à estimer dans le modèle.

Pour qu'il existe le moins de résidus possible, il faut que la valeur de SCE (somme des carrés des résidus) soit la plus petite possible. Dans le cas présent, en utilisant la formule (3), $R^2_{ajusté}$ est égal à -0,125 (valeur non déterminée par le logiciel Nemrodw).

Les valeurs de SCE et SCT pour les autres réponses $(F_0, F_1 \text{ et } F_2)$ sont données dans le tableau 8.

	Réponse F ₀	Réponse F ₁	Réponse F ₂
SCE	1,18	2,33	2,39
SCT	251,44	260,9	245,8

Tableau 8 : valeurs de SCE et SCT pour les réponses F_0 , F_1 et F_2

Les faibles valeurs prises par SCE et SCT pour les réponses F_0 , F_1 et F_2 expliquent les bonnes valeurs prises par R^2 et $R^2_{ajusté}$ pour ces réponses par rapport à la réponse Q_0 .

III.2.1. Points tests internes

Les points tests proposés par le logiciel Nemrodw, permettent de vérifier que le modèle polynomial représente bien la variation d'une réponse en tout point du domaine (paragraphe VIII.4 de la partie I). Dans le cas présent, le logiciel Nemrodw propose 3 points tests qui sont représentés sur la figure 3.

Figure 3 : points tests internes proposés par le logiciel Nemrodw

Les réponses calculées et simulées sur les points tests sont reportées dans le tableau 9.

La valeur cherchée pour la réponse F_0 est 11,7 GHz, on remarque d'après le tableau 9 que l'optimum cherché doit se situer dans la région qui contient le point test 2 (4 mm \leq Dr \leq 6 mm et 2 mm \leq Hr \leq 4 mm), où la fréquence F_0 est la plus proche de 11,7 GHz parmi les deux autres points tests.

	Réponse F ₀ (GHz)			F	Réponse F ₁	(GHz)
Point test	Simulée	Calculée	Différence (%)	Simulée	Calculée	Différence (%)
(1)	16,55	17,864	7,94	16,53	17,77	7,50
(2)	11,48	11,133	3,02	10,85	10,908	0,53
(3)	12,71	13,03	2,52	12,29	12,919	5,12
	F	Réponse F ₂	(GHz)		Réponse	\mathbf{Q}_{0}
Point test	F Simulée	Réponse F ₂ Calculée	(GHz) Différence (%)	Simulé	Réponse Calculé	Q ₀ Différence (%)
Point test (1)	F Simulée 17,75	téponse F ₂ Calculée 18,467	(GHz) Différence (%) 4,04	Simulé 11600	Réponse Calculé 11367,7	e Q ₀ Différence (%) 2
Point test (1) (2)	F Simulée 17,75 12,39	téponse F_2 Calculée 18,467 11,98	(GHz) Différence (%) 4,04 3,31	Simulé 11600 10491	Réponse Calculé 11367,7 10381,5	2 Différence (%) 2 1
Point test (1) (2) (3)	F Simulée 17,75 12,39 13,54	téponse F ₂ Calculée 18,467 11,98 13,443	(GHz) Différence (%) 4,04 3,31 0,72	Simulé 11600 10491 10681	Réponse Calculé 11367,7 10381,5 11095,3	$ \frac{\text{Différence (\%)}}{2} \\ \frac{1}{3,9} $

Tableau 9 : réponses calculées/réponses simulées aux points tests

L'étape suivante consiste à rechercher l'optimum multicritère. Nous allons vérifier que l'optimum obtenu est tel que le diamètre du résonateur Dr soit supérieur à 4 mm et la hauteur inférieure à 4 mm.

III.2.2. Optimisation multicritère à l'aide du logiciel Nemrodw

Les fonctions de désirabilité individuelle qui correspondent à chaque réponse sont données sur la figure 4.

Figure 4 : fonctions de désirabilité individuelle

Le but est de cibler la fréquence F_0 à la valeur 11,7 GHz, minimiser F_1 (la valeur maximale acceptée est égale à 11,2 GHz), maximiser F_2 (la valeur minimale acceptée est égale à 12,2 GHz) et maximiser Q_0 ; en effet, nous avons précisé la valeur 13000 comme valeur maximale souhaitée parce que pour un tel résonateur et de telles dimensions (Dc = Hc = 20 mm), il est difficile en pratique d'avoir un facteur de qualité à vide supérieur à 13000.

D'après l'optimiseur de Nemrodw, le maximum de la fonction de désirabilité globale est trouvé pour Dr = 5,3 mm et Hr = 2,5 mm (voir figure 5). Les valeurs prédites des réponses ainsi que les valeurs simulées sont reportées dans le tableau 10.

Name des	Réponses							
Nemrodw	F ₀ (GHz)	F ₁ (GHz)	F ₂ (GHz)	Q_0				
Modèle	11,7	10,88	13,47	10947				
Simulation	11,82	11,22	13,82	10533				
Ecart (%)	1,02	3,1	2,59	3,7				

Tableau	10	:	optimum	multicritère
---------	----	---	---------	--------------

On peut remarquer d'après ce tableau que pour Dr = 5,3 mm et Hr = 2,5 mm, le plus grand écart est obtenu pour la réponse Q₀ par rapport aux réponses F₀, F₁ et F₂.

Figure 5 : optimum trouvé par le logiciel Nemrodw

L'objectif est atteint pour la réponse F_2 puisqu'elle est supérieure à 12,2 GHz, ainsi que pour la réponse F_1 , puisqu'elle est très proche de 11,2 GHz. Nous allons par la suite améliorer cette solution pour assurer la contrainte : $F_1 \leq 11,2$ GHz. Il nous faut également améliorer cette solution pour obtenir une valeur de la réponse F_0 plus proche de la valeur ciblée (11,7 GHz). Pour essayer de diminuer ces écarts, nous appliquerons un plan CCF dans la région 4 mm \leq Dr \leq 6 mm et 2 mm \leq Hr \leq 4 mm, ce qui est le sujet du paragraphe IV de ce chapitre. Dans l'immédiat, nous allons faire la même analyse avec le logiciel Modde.

III.3. Analyse des modèles et optimisation à l'aide du logiciel Modde

Les 6 coefficients du modèle mathématique sont estimés par la méthode PLS. Pour étudier la qualité du modèle, nous allons dans un premier temps regarder les valeurs des paramètres R^2 et Q^2 pour chaque réponse (figure 6).

D'après ces résultats, la qualité prédictive du modèle pour la réponse Q_0 est mauvaise, la valeur de Q^2 pour cette réponse étant égale à 0,1. La qualité descriptive du modèle est également faible puisque la valeur de R^2 est égale à 0,57.

Nous allons maintenant confirmer ces résultats par l'étude des graphes d'adéquation du modèle. Comme les modèles des réponses F_0 , F_1 et F_2 bénéficient des mêmes qualités descriptive ($R^2 = 0.98$ pour ces trois réponses) et prédictive ($Q^2 = 0.74$ pour la réponse F_0 , 0.65 pour F_1 et 0.75 pour la réponse F_2), nous ne présentons ici que les graphes d'adéquation pour les modèles de F_1 (figure 7) et Q_0 (figure 8).

Les graphes d'adéquation du modèle confirment la petite valeur de Q^2 pour la réponse Q_0 . En fait, les points expérimentaux ne sont pas alignés sur la droite d'équation y = x. Si on prend l'expérience numéro 3 par exemple, sa valeur simulée est presque égale à 15000, alors que sa valeur prédite est de 13200, donnant un écart de 1800. Cette expérience est vérifiée à l'aide du test statistique des résidus (voir paragraphe II.5.2.b du chapitre 1) et nous avons conclu qu'elle n'est pas atypique. Pour ces raisons, le modèle ne permet pas de prévoir une valeur de Q_0 en tout point du domaine, sauf si la valeur souhaitable de Q_0 est inférieure à 11500 (on remarque que les points expérimentaux sont très proches de la droite d'équation y = x).

III.3.1. Optimisation multicritère à l'aide du logiciel Modde

La recherche d'un optimum multicritère conduit à une solution pour Dr = 5,5 mm et Hr = 2,03 mm. Si on représente les coordonnées de cet optimum dans le domaine expérimental (figure 9), on remarque que la solution trouvée est hors du domaine expérimental.

Contrairement au logiciel Nemrodw, Modde peut trouver une solution hors domaine, mais la qualité de cette solution est plus mauvaise qu'une solution trouvée dans le domaine. Ce résultat sera confirmé dans le paragraphe IV.2 de ce chapitre.

Les valeurs prédites par le modèle sur le point optimum ainsi que les valeurs trouvées par simulation sont reportées dans le tableau 11.

M- 11-	Réponses							
Modde	F ₀ (GHz)	F ₁ (GHz)	F ₂ (GHz)	Q ₀				
Modèle	11,72	11,06	12,89	11186				
Simulation	12,09	11,31	13,82	10601				
Ecart (%)	3	2,19	6,7	5,49				

	rubicuu II · Solution mou
--	---------------------------

Les résultats de simulation conduisent à de grands écarts entre les réponses prédites et les réponses obtenues par simulation. Ces écarts étaient attendus puisque la solution trouvée ne se situe pas dans le domaine expérimental où le modèle mathématique est valable.

III.4. Conclusion

Les résultats d'optimisation obtenus à l'aide des deux logiciels montrent que l'optimum se situe hors du domaine expérimental choisi. Le logiciel Nemrodw donne une solution qui est à la limite du domaine pour Dr supérieur à 6mm et Hr inférieur à 4 mm. De son côté, le logiciel Modde calcule une solution hors domaine dans la même région. Nous avons donc décidé d'affiner la recherche dans la région $4mm \le Dr \le 6mm$ et $2mm \le Hr \le 4mm$ dans le but de trouver une bonne solution avec un écart le plus faible possible entre les réponses prédites et les réponses simulées.

IV. Diminution du domaine expérimental (plan CCF)

Dans le but d'améliorer la qualité prédictive du modèle mathématique pour toutes les réponses, nous allons travailler dans un domaine plus petit. C'est le domaine où nos solutions peuvent être trouvées. Le nouveau domaine expérimental est représenté en gris sur la figure 10. Il comporte 9 simulations dont 3 déjà faites lors de l'étude précédente. Il ne reste donc à faire que 6 simulations pour compléter cette étude.

Figure 10 : diminution du domaine expérimental (plan CCF)

Nous allons comparer la qualité des modèles mathématiques lors du passage d'un plan CCC à un plan CCF par les deux logiciels.

IV.1. Optimisation par Nemrodw

Nous allons comparer dans un premier temps les valeurs de R^2 , $R^2_{ajusté}$ et la significativité (appelée ProbFc dans le paragraphe VIII.2.1 de la partie I) obtenues précédemment avec les nouveaux coefficients. Le tableau 12 donne ces coefficients obtenus par le logiciel Nemrodw.

Le passage d'un plan CCC à un plan CCF permet d'améliorer considérablement la qualité descriptive du modèle de la réponse Q_0 . La valeur de R^2 est passée de 0,579 à 0,998 ; la valeur de $R^2_{ajusté}$ est passée d'une valeur négative à 0,995. Cette amélioration se traduit aussi par la valeur de la significativité qui est passée de 60,3 % à 0,02 %, ce qui signifie qu'il n'y a que 0,02 % de la réalité qui n'est pas représentée par le modèle pour la réponse Q_0 .

	Plan CCC							
	Réponse F ₀	Réponse F ₁	Réponse F ₂	Réponse Q ₀				
R^2	0,995	0,991	0,99	0,579				
R ² ajusté	0,987	0,976	0,974	N.D				
Signif (%)	0,109	0,285	0,323	60,3				
	Plan CCF							
	Réponse F ₀	Réponse F ₁	Réponse F ₂	Réponse Q ₀				
R^2	1	0,989	0,939	0,998				
R ² _{ajusté}	1	0,971	0,838	0,995				
Signif (%)	< 0,01	0,37	4,8	0,02				

Partie II – chapitre 2 : optimisation d'un résonateur diélectrique

Pour toutes les réponses, nous allons vérifier les qualités prédictives sur des points tests.

Tableau 12 : comparaison de la qualité descriptive des modèles pour les plan CCC et CCF

IV.1.1. Points tests internes

Pour valider le modèle mathématique en tout point du domaine expérimental, nous allons étudier sa capacité prédictive sur les trois points tests proposés et pour les quatre réponses. Les valeurs des réponses prédites par le modèle sur ces trois points ainsi que les valeurs obtenues par simulation sont données dans le tableau 13.

On peut constater d'après ce tableau, une excellente qualité prédictive du modèle pour les réponses F_0 et Q_0 . Les valeurs obtenues dans la colonne "Différence" pour ces réponses sont considérées très petites sur tous les points tests : le maximum de cette différence est 0,38 % pour la réponse F_0 sur le point (1) et 0,2 % pour la réponse Q_0 sur les deux points (1) et (3).

	Réponse F ₀ (GHz)		Réponse F ₁ (GHz)			
Point test	Simulée	Calculée	Différence (%)	Simulée	Calculée	Différence (%)
(1)	12,77	12,818	0,38	11,22	12,062	7,50
(2)	11,36	11,36	0,00	11,13	10,785	3,10
(3)	11,46	11,44	0,17	10,96	10,882	0,71
	Réponse F ₂ (GHz)			Réponse Q ₀		
Point test	Simulée	Calculée	Différence (%)	Simulé	Calculé	Différence (%)
(1)	13,82	13,688	0,96	10646	10670,1	0,2
(2)	13,51	12,3	8,96	10466	10454,9	0,1
(3)	12,39	12,055	2,70	10470	10451,8	0,2

Tableau 13 : points tests internes proposés par le logiciel Nemrodw

On constate que le modèle est de qualité suffisante sauf pour la réponse F_2 calculée au deuxième point (8,96 %). La valeur de la significativité pour cette réponse est égale à 4,8 % (tableau 12) : on peut donc dire que presque 5 % de la réalité n'est pas représentée par le modèle pour la réponse F_2 .

Cette qualité prédictive du modèle pour la réponse F_2 est cependant suffisante puisqu'on ne cherche pas une valeur cible. On s'attend donc à obtenir un écart important entre la valeur prédite et simulée pour cette réponse lors de la recherche d'un optimum.

IV.1.2. Optimisation multicritère à l'aide du logiciel Nemrodw

Les fonctions de désirabilité individuelle sont les mêmes que celles utilisées dans le plan CCC de la partie précédente. La solution est trouvée pour Dr = 5,7 mm et Hr = 2,2 mm. Nous présentons dans le tableau 14 les réponses prédites ainsi que les réponses obtenues par simulation.

Namus dari	Réponses						
Nemrodw	F ₀ (GHz)	F ₁ (GHz)	F ₂ (GHz)	Q_0			
Modèle	11,7	11,1	13,41	10551			
Simulation	11,66	11,25	13,81	10549			
Ecart (%)	0,3	1,3	2,9	0,01			

Tableau 14 : solution obtenue par le logiciel Nemrodw

Le plus grand écart est obtenu pour la réponse F_2 (2,9 %), la valeur obtenue par simulation est bien supérieure à 12,2 GHz. La valeur simulée de la réponse F_1 est égale à 11,25 GHz ce qui est supérieur de 0,05 GHz à la valeur cherchée (11,2 GHz). Nous allons dans la suite chercher une solution en assurant une bonne isolation fréquentielle ($F_1 \le 11,2$ GHz).

IV.2. Optimisation par Modde

La même analyse est faite avec le logiciel Modde. Nous représentons dans un seul tableau les coefficients R^2 , $R^2_{ajusté}$ et Q^2 (tableau 15) pour le plan CCC et CCF.

	Plan CCC							
	Réponse F ₀	Réponse F ₁	Réponse F ₂	Réponse Q ₀				
R^2	0,988	0,984	0,979	0,572				
R ² _{ajusté}	0,968	0,957	0,944	-0,14				
Q^2	0,744	0,65	0,751	0,09				
		Plan CCF						
	Réponse F ₀	Réponse F ₁	Réponse F ₂	Réponse Q ₀				
R^2	0,994	0,988	0,927	0,992				
R ² _{ajusté}	0,985	0,969	0,806	0,98				
Q^2	0,632	0,881	0,548	0,743				

Tableau 15 : comparaisons des qualités prédictive et descriptive des modèles pour les plans CCC et CCF

On peut remarquer d'après le tableau 15 que la diminution du domaine expérimental permet d'améliorer considérablement la qualité prédictive du modèle pour la réponse Q_0 (la valeur de Q^2 est passée de 0,09 à 0,743).

La recherche de l'optimum multicritère a permis d'obtenir une solution pour Dr = 5,54 mm et Hr = 2,32 mm. Les valeurs prédites des réponses ainsi que les valeurs obtenues par simulation sont reportées dans le tableau 16.

MODDE	Réponses						
MODDE	F ₀ (GHz)	F ₁ (GHz)	F ₂ (GHz)	Q ₀			
Modèle	11,75	10,92	12,79	10548			
Simulation	11,67	11,24	13,82	10523			
Ecart (%)	0,6	2,9	8	0,23			

Partie II – chapitre 2 : optimisation d'un résonateur diélectrique

Tableau 16 : solution obtenue par le logiciel Modde

On constate d'après le tableau 16 le grand écart obtenu pour la réponse F_2 (même conclusion que la partie précédente). Cependant, ce qui nous intéresse dans la recherche d'un optimum c'est d'avoir une fréquence F_2 supérieure à 12,2 GHz, ce qui est le cas. Les deux optima trouvés par les deux logiciels sont représentés sur la figure 11.

Figure 11 : localisation des optima de Nemrodw et Modde

Les deux solutions représentées dans la figure 12 ne sont pas les seules données par les deux logiciels. Il existe de nombreux couples de Dr et Hr qui conduisent aux réponses souhaitées. Le but est maintenant de rechercher le couple qui conduit au résonateur le moins volumineux. La méthode BFGS est alors appliquée pour intégrer ce nouveau critère dans notre étude.

V. <u>Application de la méthode BFGS pour minimiser le volume du</u> <u>résonateur</u>

Le but de cette partie est d'avoir une solution respectant le cahier des charges et limitant le volume du résonateur. La méthode BFGS est appliquée dans un premier temps sans contrainte sur le volume, l'étape suivante consistera à rechercher les solutions qui conduisent à un volume du résonateur inférieur à un seuil fixé. Notons que la solution trouvée par Nemrodw conduit à un résonateur de volume 56,13 mm³ et celle de Modde conduit à un résonateur de volume 55,92 mm³. Lors de la thèse de L. Carpentier, plusieurs simulations sont faites pour trouver une solution en respectant les spécifications demandées. La meilleure solution trouvée est pour Dr = 5 mm et Hr = 3,15 mm ; le volume du résonateur est alors égal à 61,8 mm³.

V.1. Application de la méthode BFGS sans contrainte sur le volume

La méthode BFGS est appliquée dans un premier temps pour trouver toutes les solutions possibles qui conduisent à une fréquence $F_0 = 11,7$ GHz et un facteur de qualité à vide le plus grand possible en assurant l'isolation fréquentielle ($F_1 \le 11,2$ GHz et $F_2 \ge 12,2$ GHz). La fonction F (F_0 , Q_0) à minimiser par la méthode BFGS s'écrit de la façon suivante :

$$F(F_0, Q_0) = 10^7 [(Y(F_0) - 11, 7)]^2 - Y(Q_0)$$
(4)

Le minimum de la fonction F (F₀, Q₀) est trouvé lorsque $(10^7[Y(F_0) - 11,7]^2)$ est proche de zéro (F₀ proche de 11,7 GHz) et Y(Q₀) est le plus grand possible (maximum du facteur de qualité à vide).

L'organigramme utilisé pour la recherche des solutions est donné dans la figure 12. La méthode BFGS recherche les valeurs optimales des variables X_1 et X_2 à partir d'un point de départ précisé par l'utilisateur (X_{1i} et X_{2i}). Dans le cas présent, l'algorithme est lancé à partir de plusieurs points de départ des deux variables en respectant les domaines de variations donnés par la matrice d'expériences : [-1, +1].

Figure 12 : application de la méthode BFGS

Plusieurs minima de la fonction F (F_0 , Q_0) sont trouvés par la méthode BFGS ; pour chaque minimum les paramètres de sortie sont :
- le minimum de la fonction F (F₀, Q₀) qui assure $F_0 = 11,7$ GHz et Q₀ le plus grand possible,
- les valeurs de Dr et Hr qui sont obtenues à partir des valeurs de X₁ et X₂,
- les valeurs des fréquences F₁ et F₂,
- le volume du résonateur.

Parmi plusieurs solutions trouvées, nous n'avons choisi que la solution qui présente le maximum du facteur de qualité à vide (tableau 17).

BFGS	I	V. L.			
	F ₀ (GHz)	F ₁ (GHz)	F ₂ (GHz)	Q_0	volume
Modèle	11,7	11,09	12,43	10493	
Simulation	11,7	11,07	13,04	10501	$61,9 \text{ mm}^3$
Ecart (%)	0	0,1	4,9	0,07	

Tableau 17 : solution obtenue par la méthode BFGS

On peut constater l'excellente qualité de la solution trouvée puisque l'on obtient une fréquence F_0 égale à 11,7 GHz en assurant une bonne isolation fréquentielle. Concernant la réponse F_2 , on peut toujours constater le grand écart entre la valeur calculée et la valeur simulée (4,9 %), mais ce qui nous intéresse c'est la valeur simulée qui est toujours plus grande que 12,2 GHz. Nous avons calculé un volume de 61,9 mm³ du résonateur pour cette solution. Nous allons appliquer la méthode BFGS en limitant le volume du résonateur, ce qui est le but du paragraphe suivant.

V.2. Application de la méthode BFGS avec contrainte sur le volume

Les deux solutions trouvées par les logiciels des plans d'expériences conduisent à un volume de 56,13 mm³ par le logiciel Nemrodw et 55,92 mm³ par Modde. La méthode BFGS est maintenant appliquée afin de trouver une solution de bonne qualité tout en essayant de diminuer le volume du résonateur. L'application de cette méthode suit l'organigramme de la figure 13.

L'exécution de cet algorithme conduit à des solutions dont le volume est inférieur à 60 mm³ (cette valeur peut être changée en fonction des résultats obtenus).

Figure 13 : application de la méthode BFGS avec contrainte sur le volume du résonateur

Le minimum du volume est obtenu pour un diamètre du résonateur Dr égal à 5,851 mm et une hauteur Hr égale à 2 mm. Les réponses calculées par le modèle ainsi que les valeurs obtenues par simulations sont reportées dans le tableau 18.

BFGS	Ι	Values			
	F ₀ (GHz)	F ₁ (GHz)	F ₂ (GHz)	Q ₀	volume
Modèle	11,7	11,09	13,41	10551	
Simulation	11,7	11,3	13,82	10553	53,77 mm ³
Ecart (%)	0	1,9	3	0,01	

Tableau 18 : solution obtenue par la méthode BFGS avec contrainte sur le volume

On remarque d'après le tableau 18 qu'on a obtenu une solution dont le volume du résonateur est égal à 53,77 mm³, ce qui conduit à une diminution de 8,13 mm³ (13,1 %) par rapport à la solution trouvée par Ludovic Carpentier (61,9 mm³) et de l'ordre de 2,11 mm³ (3,7 %) par rapport aux solutions trouvées par les plans d'expériences. La valeur simulée de la réponse F₁ est 11,3 GHz, ce qui est supérieur de 0,1 GHz à la valeur limite (11,2 GHz). Nous allons dans la suite chercher une solution avec un volume le plus petit possible, en respectant le cahier des charges surtout pour la fréquence F₁ qui doit être inférieure ou égale à 11,2 GHz puisque dans toutes les solutions trouvées précédemment, la valeur de F₁ ne respectait pas parfaitement les conditions souhaitées. Pour essayer d'améliorer la qualité prédictive du modèle de la réponse F₁, nous allons suivre la démarche suivante : si par exemple la désactivation d'une

expérience x améliore la qualité prédictive pour une réponse Y mais dégrade cette qualité pour les autres réponses, on modifie uniquement le modèle de la réponse Y en utilisant les nouveaux coefficients calculés sans l'expérience x.

Dans le cas présent, nous allons regarder les résidus studentisés en fonction des valeurs calculées (chapitre 1 paragraphe II.5.2.b (b) de cette partie).

R-Student	⊙Expérience 8
2.29	
1.15	•
0.00	Y Calculé 9.34 10.22 11.11 11.99 12.87
-1.15	•
-2.29	•

Figure 14 : résidus studentisés en fonction de la réponse F1 calculée

On peut remarquer d'après la figure 14 que la plus grande valeur de résidus est obtenue pour l'expérience 8. Le but est donc d'éliminer cette expérience du plan et de recalculer à nouveau les coefficients du modèle pour la réponse F_1 en conservant les coefficients des autres réponses. Nous allons dans un premier temps comparer les qualités du modèle de la réponse F_1 avant et après la désactivation de l'expérience numéro 8 (tableau 19).

	Réponse F ₁ (GHz)					
	Avant désactivation Après désactivati					
R^2	0,989	0,998				
R ² ajusté	0,971	0,994				
R ² _{predictif}	0,872	0,965				

Tableau 19 : comparaison de la qualité du modèle avant et après la désactivation de l'expérience 8

On peut constater que la désactivation de l'expérience numéro 8 permet d'améliorer la qualité prédictive du modèle ($R^2_{predictif}$ est passé de 0,872 à 0,965). Nous allons donc appliquer la méthode BFGS en utilisant les nouveaux coefficients obtenus après désactivation de l'expérience 8 pour la réponse F₁.

Les solutions trouvées par la méthode BFGS conduisent à un résonateur de volume inférieur à 60 mm³, nous avons choisi la solution dont le volume est le plus petit (tableau 20).

BFGS	Dr	N7 - h			
	F ₀ (GHz)	F ₁ (GHz)	F ₂ (GHz)	Q_0	volume
Modèle	11,7	11,11	12,79	10513	
Simulation	11,69	11,19	13,82	10514	57,65 mm ³
Ecart (%)	0,08	0,7	8	< 0,05	

Tableau 20 : solution obtenue par la méthode BFGS en diminuant le volume

La meilleure solution obtenue conduit à un volume du résonateur de 57,65 mm³. On remarque que le résonateur respecte le cahier des charges demandé. Le volume du résonateur est diminué de 4,25 mm³ par rapport au volume du résonateur initial (61,9 mm³), ce nouveau volume est légèrement supérieur à celui obtenu par les plans d'expériences, l'avantage ici c'est qu'on a obtenu une isolation fréquentielle très bonne, ce qui n'est pas le cas pour les solutions obtenues par les plans d'expériences.

VI. Conclusion

Dans cette étude, deux plans composites centrés sont utilisés. Le premier plan est utilisé dans un domaine sphérique, la localisation de l'optimum sur la limite du domaine sphérique, permet de construire un nouveau plan en diminuant les domaines expérimentaux des deux facteurs d'entrée. Ce passage a permis d'améliorer les qualités des modèles mathématiques de toutes les réponses.

La recherche d'un optimum multicritère est faite à l'aide des deux logiciels des plans d'expériences ; les solutions trouvées conduisent à des grands facteurs de qualité à vide en assurant une isolation fréquentielle (exceptée la fréquence F_1 qui était toujours légèrement supérieure à 11,2 GHz).

La méthode BFGS est couplée aux modèles issus des logiciels des plans d'expériences afin de trouver un grand nombre de solutions qui conduisent aux réponses souhaitées. Cette méthode est ensuite utilisée en limitant le volume de résonateur, nous avons réussi à diminuer le volume de 13,1 % mais avec une fréquence F_1 de 11,3 GHz.

Pour essayer de trouver une meilleure solution et en respectant parfaitement l'isolation fréquentielle ($F_1 \le 11,2$ GHz et $F_2 \ge 12,2$ GHz), nous avons amélioré la qualité prédictive du modèle de la réponse F_1 en désactivant l'expérience 8. Les nouveaux coefficients de la réponse F_1 ont été utilisés avec les anciens coefficients des réponses F_0 , F_2 et Q_0 . Les résultats obtenus ont montré l'efficacité de coupler l'algorithme de minimisation BFGS aux modèles donnés par les logiciels de plans d'expériences en utilisant des modèles qui bénéficient d'une bonne qualité prédictive.

VII. <u>Références</u>

[1] D. Kajfez and P. Guillon, Dielectric resonators, Artech House Inc, Norwood 1986.

[2] F. Doreau, C. Chaput and T. Chartier. Stereolithography for manufacturing ceramic parts, Advanced Engineering Materials, vol 2, Issue 8, 493 - 496, 2000.

[3] F. Rousseau, S. Awamat, D. Morvan, J. Amouroux, R. Mévrel. Surface & Coatings Technology 202 (2007), 714 - 718, 2007.

Partie III : Couplage des plans d'expériences et des courbes de niveaux

Partie III : Couplage des plans d'expériences et des courbes de niveaux

I. Introduction

Dans le but d'optimiser les caractéristiques du filtre OMUX (voir partie II, chapitre 1) afin d'obtenir un grand facteur de qualité à vide et une isolation fréquentielle ($F_1 \ge 4,5$ GHz et $F_2 \ge 6$ GHz)) avec une cavité cylindrique moins volumineuse, la méthode des courbes de niveaux (Level Set [1]) est utilisée pour optimiser le contour du résonateur situé dans une cavité cylindrique de diamètre Dc et de hauteur Hc.

Avec cette méthode, les variables sont définies par le contour du résonateur. Pratiquement le contour est approché sur les frontières par des éléments du maillage (éléments finis). Le gradient est alors calculé par rapport à une déformation du contour de l'objet dans le domaine d'optimisation.

Nous avons vu dans le chapitre 1 de la deuxième partie, qu'avec la méthode des plans d'expériences, nous avons amélioré le facteur de qualité à vide de 25,3 % (12718) par rapport au facteur de qualité de référence (10145). Le volume de la cavité était égal à 74517,3 mm³ (diamètre de la cavité Dc = 50,1 mm et hauteur Hc = 37,8 mm).

Nous allons expliquer dans le paragraphe suivant, la méthodologie proposée afin d'améliorer les caractéristiques du filtre avec un volume de la cavité plus petit.

II. <u>Méthodologie proposée</u>

Dans le chapitre 1 de la deuxième partie, nous avons appliqué la méthode des plans d'expériences pour optimiser les dimensions de la cavité (Dc et Hc). La méthodologie proposée dans cette partie consiste à coupler la méthode des courbes de niveaux avec la méthode des plans d'expériences. Pour ce faire, la forme obtenue par la méthode des courbes de niveaux doit être approchée par une autre forme plus simple contenant peu de paramètres pour être utilisée avec la méthode des plans d'expériences (figure 1).

Figure 1 : méthodologie proposée

II.1. Optimisation par la méthode des courbes de niveaux

L'optimisation par la méthode des courbes de niveaux consiste à définir une fonction de coût à minimiser. La fonction de coût est formulée par rapport à l'amplitude du paramètre d'insertion (S_{21}). Le but est donc de minimiser la fonction de coût jusqu'à l'obtention d'une

réponse proche de celle améliorée (réponse obtenue en diminuant la valeur de la tangente de pertes).

L'évolution de la fonction de coût en fonction du nombre d'itérations est donnée sur la figure 2.

Figure 2 : évolution de la fonction de coût en fonction du nombre d'itérations

On remarque d'après la figure 2 que la fonction de coût décroit en fonction du nombre d'itérations. L'algorithme converge vers une solution après 80 itérations.

La forme optimisée du résonateur par la méthode des courbes de niveaux, présentée sur la figure 3, concentre le matériau diélectrique au centre de la cavité pour limiter les pertes.

Figure 3 : forme optimisée par la méthode des courbes de niveaux

Le facteur de qualité à vide de référence (défini dans la partie II, chapitre 1, paragraphe I.3) est égal à 10145. L'optimisation par la méthode des courbes de niveaux conduit à un facteur de qualité à vide de 12325 en assurant une isolation fréquentielle (fréquence du premier mode non excité $F_1 \ge 4,5$ GHz et fréquence du deuxième mode excité $F_2 \ge 6$ GHz). Les dimensions de la cavité dans ce cas sont : Dc = 44 mm et Hc = 27 mm ; ces deux paramètres ainsi qu'un troisième à déterminer dans le paragraphe suivant, vont ensuite être utilisés comme facteurs d'entrée pour le plan d'expériences.

II.2. Facteurs d'entrée et réponses

La forme obtenue par la méthode des courbes de niveaux est approchée par un cylindre diélectrique traversant une plaque du même matériau pour réduire le nombre de paramètres géométriques comme le montre la figure 4.

Figure 4 : forme approchée pour l'utilisation de la méthode des plans d'expériences

Le tableau 1 résume les différentes caractéristiques des facteurs d'entrée choisis.

Facteur d'entrée	Notation	Unité	Nature	Valeur min	Valeur max
Diametre de la cavité	Dc	mm	Quantitatif	30	50
Hauteur de la cavité	Hc	mm	Quantitatif	21	35
Rayon du cylindre	R	mm	Quantitatif	9	14,8

Tableau 1 : facteurs d'entrée choisis au cours de cette étude

Comme précisé dans le chapitre 1 de la deuxième partie, l'optimisation de ce filtre consiste à fixer la fréquence du mode fondamental F_0 à 4 GHz en assurant une isolation fréquentielle et avec un facteur de qualité à vide à la fréquence F_0 le plus grand possible.

Nous allons utiliser la méthode des plans d'expériences en tenant compte de trois facteurs d'entrée, les dimensions de la cavité (Dc et Hc) et le rayon de la plaque R.

II.3. Utilisation d'un plan composite centré

Nous nous intéressons dans cette partie à un plan d'expériences dont les facteurs d'entrée présentent un grand nombre de niveaux, il s'agit d'un plan composite centré. Il est recommandé (voir partie II, chapitre 1) de commencer l'étude dans un domaine sphérique puisqu'on s'intéresse à un nombre de niveaux par facteur élevé, ce qui est le cas d'un plan composite centré CCC qui nécessite 5 niveaux par facteur.

Pour k = 3 facteurs d'entrée, le nombre d'expériences à réaliser est égal à 15. On rappelle que l'étude des surfaces de réponses est associée à l'utilisation de polynômes de degré 2, dans le cas présent, le modèle polynomial s'écrit de la façon suivante :

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_{11} X_1^2 + b_{22} X_2^2 + b_{33} X_3^2 + b_{12} X_1 X_2 + b_{13} X_1 X_3 + b_{23} X_2 X_3$$
(1)

Le plan d'expériences est construit à partir de la matrice d'expériences qui contient les valeurs codées des facteurs d'entrée. Dans le cas présent, la matrice d'expériences est donnée dans le tableau 2.

Numéro d'expérience	X_1	X_2	X ₃
1	-1.00000	-1.00000	-1.00000
2	1.00000	-1.00000	-1.00000
3	-1.00000	1.00000	-1.00000
4	1.00000	1.00000	-1.00000
5	-1.00000	-1.00000	1.00000
6	1.00000	-1.00000	1.00000
7	-1.00000	1.00000	1.00000
8	1.00000	1.00000	1.00000
9	-1.68179	0.00000	0.00000
10	1.68179	0.00000	0.00000
11	0.00000	-1.68179	0.00000
12	0.00000	1.68179	0.00000
13	0.00000	0.00000	-1.68179
14	0.00000	0.00000	1.68179
15	0.00000	0.00000	0.00000

Tableau 2 : matrice d'expériences du plan CCC pour k = 3 facteurs

Les paramètres X_1 , X_2 et X_3 sont respectivement les variables codées des facteurs Dc, Hc et R (le passage des facteurs aux paramètres a été présenté dans la partie I, relation (2)).

On remarque d'après le tableau 2 que chaque facteur varie entre -1,68179 et 1,68179 en variable codée. Les expériences 9 à 14 sont les points en étoile pour un plan composite centré qui sont situés à une distance α du centre du domaine (voir paragraphe VII.1 de la partie I). Dans le cas présent, la valeur de α est calculée par la formule suivante : $\alpha = \sqrt[4]{2^k}$.

Pour k = 3, nous obtenons α = 1,68179. Le plan d'expériences correspondant est alors donné dans le tableau 3.

La fréquence du mode fondamental F_0 est toujours égale à 4 GHz grâce à la valeur calculée de l'épaisseur E du résonateur. Notre objectif est donc d'assurer une isolation fréquentielle en éloignant les deux modes aux fréquences F_1 et F_2 et d'avoir un facteur de qualité à vide le plus grand possible.

	Facteurs d'entrée				Réponses			T
Numéro d'expérience	Dc	Нс	R	F ₁	F ₂	Q ₀	E	F ₀
	mm	mm	mm	GHz	GHz		mm	GHz
1	34	23,8	10,2	4,01	4,479	11124	14,9	4
2	46	23,8	10,2	4,123	4,766	11750	11,7	4
3	34	32,2	10,2	4,666	6,296	11880	7,6	4
4	46	32,2	10,2	4,765	6,613	12508	3,5	4
5	34	23,8	13,6	4,63	5,995	10190	5,7	4
6	46	23,8	13,6	4,334	5,589	11417	5,2	4
7	34	32,2	13,6	5,12	6,558	10680	4	4
8	46	32,2	13,6	4,79	6,527	12247	2,65	4
9	29,9	28	11,9	4,7	6,437	10180	6,35	4
10	50,1	28	11,9	4,307	6,039	12245	4	4
11	40	20,9	11,9	4,032	4,88	12400	10,8	4
12	40	35,1	11,9	5,2	6,7	12162	3,5	4
13	40	28	9	4,448	5,143	12410	11,25	4
14	40	28	14,8	4,712	6,034	11200	4	4
15	40	28	11,9	4,671	6,11	11915	5,1	4

Partie III : Couplage des plans d'expériences et des courbes de niveaux

Tableau 3 : valeurs des facteurs d'entrée et des réponses

Dans le cas présent, les deux logiciels de plans d'expériences utilisent la régression linéaire multiple (MLR) pour estimer les coefficients du modèle (voir partie II, chapitre 1, paragraphe II.3.1). Les coefficients estimés ainsi que les qualités descriptive et prédictive des modèles sont les mêmes pour les deux logiciels. Nous allons dans la suite utiliser les résultats d'analyses issus des deux logiciels Nemrodw et Modde.

II.3.1. Qualités descriptive et prédictive des modèles

Dans un premier temps, nous allons analyser les coefficients indiquant les qualités descriptive (R^2 et $R^2_{ajusté}$) et prédictive ($R^2_{prédictif}$) du modèle pour chacune des réponses. Pour calculer ces coefficients, nous avons besoin d'étudier les tableaux ANOVA (voir paragraphe VIII.2.1 de la première partie). Nous ne présentons ici que le tableau ANOVA de la réponse Q_0 (tableau 4) dont le modèle ne bénéficie pas d'une bonne qualité prédictive.

Source de variation	Somme des carrés	Degrés de liberté	Carré moyen	Rapport (F _c)	Prob(F _c)
Régression	$SCM = 7,83055.10^6$	p-1 = 9	$SCM/(p-1) = 8,70061.10^5$	4,8056	4,93
Résidus	$SCE = 9,05257.10^5$	N-p = 5	$SCE/(N-p) = 1,81051.10^5$		
Total	$SCT = 8,73581.10^{6}$	N-1 = 14			

Tableau 4 : table ANOVA pour la réponse Q₀

Le modèle permet de décrire la variation des résultats d'essais si la probabilité Prob(Fc) est faible (< 5 %) (Probabilité de rejeter l'hypothèse nulle « le modèle ne permet pas de décrire la

variation des résultats d'essais »). La valeur de cette probabilité est égale à 4,93 % pour la réponse Q_0 . Nous allons vérifier dans la suite que la qualité prédictive du modèle de cette réponse n'est pas bonne.

En se référant à la partie I (paragraphe VIII.2.1), on peut calculer les valeurs des coefficients R^2 , $R^2_{ajusté}$ et $R^2_{prédictif}$ à partir des tableaux ANOVA. Ces trois coefficients sont donnés dans le tableau 5 pour les trois réponses F₁, F₂ et Q₀.

	Réponse F ₁	Réponse F ₂	Réponse Q ₀
R^2	0,97	0,98	0,89
R ² _{ajusté}	0,91	0,95	0,7
$R^2_{prédictif} = Q^2$	0,76	0,86	N.D

Tableau 5 : qualités descritive et predictive des modèles

Le coefficient $R^2_{prédictif}$ est appelé Q^2 dans le logiciel Modde. On remarque d'après le tableau 5, la mauvaise qualité prédictive du modèle pour la réponse Q_0 (la valeur de $R^2_{prédictif}$ est non déterminée). Ce coefficient peut être calculé par la relation (38) donnée dans la partie I.

Nous avons reporté dans le tableau 6, pour la réponse Q_0 , les coefficients R^2 , $R^2_{ajusté}$ et $R^2_{predictif}$, ainsi que la valeur de PRESS (Prediction Residual Error Sum of Squares : grandeur présenté dans la page 29), le nombre de degrés de liberté et l'écart type.

Réponse Q ₀					
Ecart type	425,50123				
\mathbb{R}^2	0,896				
R ² _{ajusté}	0,71				
R ² _{prédictif}	N.D				
PRESS	28601835				
Nombre de degrés de liberté	5				

Tableau 6 : coefficients donnés par le logiciel Nemrodw pour la réponse Q₀

On remarque que la valeur de PRESS est égale à 28601835, ce qui donne $R^2_{predictif} = -2,27$ (valeur négative, non déterminée par le logiciel Nemrodw).

Les modèles des deux autres réponses bénéficient d'une bonne qualité prédictive puisque $Q^2 = 0,76$ pour la réponse F_1 et 0,86 pour la réponse F_2 , mais ces modèles sont aussi à améliorer. Tous les modèles bénéficient d'une bonne qualité descriptive ($\mathbb{R}^2 > 0,8$). Nous allons maintenant comparer les réponses calculées par les modèles et les réponses obtenues par simulation pour chaque ligne du plan d'expériences (tableau 7). Les différences entre les réponses calculées et les réponses simulées sont données en pourcentage.

Numéro	F	Réponse F ₁ (GHz)	F	Réponse F ₂ (GHz)			Réponse Q ₀		
d'expérience	simulée	calculée	Différence (%)	simulée	calculée	Différence (%)	simulée	calculée	Différence (%)	
1	4,010	4,044	0,85	4,479	4,645	3,71	11124	11417	2,63	
2	4,123	4,108	0,36	4,766	4,730	0,76	11750	12047	2,53	
3	4,666	4,760	2,01	6,296	6,289	0,11	11880	11736	1,21	
4	4,765	4,800	0,73	6,613	6,577	0,54	12508	12538	0,24	
5	4,630	4,598	0,69	5,995	6,034	0,65	10190	10383	1,89	
6	4,334	4,243	2,10	5,589	5,599	0,18	11417	11783	3,21	
7	5,120	5,138	0,35	6,558	6,596	0,58	10680	10605	0,70	
8	4,790	4,760	0,63	6,527	6,364	2,50	12247	12177	0,57	
9	4,700	4,632	1,45	6,437	6,297	2,17	10180	10128	0,51	
10	4,307	4,368	1,42	6,039	6,173	2,22	12245	11980	2,16	
11	4,032	4,094	1,54	4,880	4,774	2,17	12400	11823	4,65	
12	5,200	5,131	1,33	6,700	6,800	1,49	12162	12422	2,14	
13	4,448	4,361	1,96	5,143	5,091	1,01	12410	12233	1,43	
14	4,712	4,793	1,72	6,034	6,080	0,76	11200	11060	1,25	
15	4,671	4,672	0,02	6,110	6,110	0,00	11915	11969	0,45	

Partie III : Couplage des plans d'expériences et des courbes de niveaux

Tableau 7 : comparaison des réponses calculées et simulées

On constate que toutes les différences sont inférieures à 5 %. La plus grande valeur de cette différence peut atteindre 4,65 % pour la réponse Q_0 . Nous allons dans la suite, essayer d'améliorer la qualité du modèle pour la réponse Q_0 sans dégrader les qualités des autres réponses F_0 et F_1 . Pour ce faire, nous avons vérifié s'il existe des expériences atypiques pour toutes les réponses (voir partie II, chapitre 1, paragraphe II.3.4.b). Les résultats ne montrent aucune expérience atypique pour les réponses F_1 et F_2 , par contre l'expérience numéro 11 est atypique pour la réponse Q_0 . Nous allons donc analyser à nouveau les modèles sans l'expérience numéro 11.

II.3.2. Désactivation des expériences atypiques

L'expérience numéro 11 étant désactivée du plan d'expériences, nous allons comparer dans le tableau 8, pour toutes les réponses, les qualités des modèles avant et après sa désactivation.

Avant désactivation	Réponse F ₁	Réponse F ₂	Réponse Q ₀
\mathbf{R}^2	0,97	0,98	0,89
$R^2_{prédictif} = Q^2$	0,76	0,86	< 0
Après désactivation	Réponse F ₁	Réponse F ₂	Réponse Q ₀
\mathbf{R}^2	0,97	0,98	0,99
$R^2_{prédictif} = Q^2$	0,06	0,64	0,86

Tableau 8 : qualité des modèles avant et après désactivation de l'expérience 11

Nous constatons (d'après le tableau 8) que la désactivation de l'expérience numéro 11 améliore la qualité prédictive du modèle pour la réponse Q_0 ($Q^2 = 0,86$) mais détruit fortement la qualité prédictive du modèle pour la réponse F_1 ($Q^2 = 0,06$). Nous allons cependant dans la suite maintenir l'expérience numéro 11 désactivée et analyser les coefficients des modèles mathématiques.

II.3.3. Analyse des coefficients

Après désactivation de l'expérience numéro 11, nous avons vérifié qu'aucune expérience n'est atypique. L'étape suivante consiste à analyser les coefficients des modèles et éliminer ceux qui ne sont pas influents sur toutes les réponses. Les effets des coefficients sont tracés sous forme de diagrammes appelés diagrammes des effets des coefficients (figure 5), un coefficient est influent lorsque son intervalle de confiance ne coupe pas l'axe des abscisses.

La figure 5 représente le diagramme des effets des coefficients sur la réponse F_1 . On remarque que les coefficients Dc×Dc, Hc×Hc, R×R, Dc×Hc, Dc×R et Hc×R ne sont pas influents sur la fréquence du premier mode non excité F_1 .

Figure 5 : diagrammes des effets des coefficients pour la réponse F₁

Pour pouvoir désactiver ces coefficients, il faut impérativement qu'ils soient non influents sur la totalité des réponses. Pour cela, nous allons observer les effets des coefficients sur les réponses F_2 (figure 6-a) et Q_0 (figure 6-b).

Figure 6 : diagrammes des effets des coefficients pour la réponse F_2 (a) et pour la réponse Q_0 (b)

On remarque que les coefficients Dc, Dc×Dc, Hc×Hc, R×R, Dc×Hc et Dc×R ne sont pas influents sur la fréquence du deuxième mode excité F_2 .

Les coefficients qui ne sont pas influents sur le facteur de qualité à vide sont : $Hc \times Hc$, $R \times R$, $Dc \times Hc$ et $Hc \times R$. Ce constat nous conduit à éliminer les coefficients qui ne sont pas influents sur les trois réponses simultanément : $Hc \times Hc$, $R \times R$ et $Dc \times Hc$.

II.3.4. Elimination des coefficients non influents

Parmi tous les coefficients du modèle, nous avons éliminé les trois qui ne sont pas influents et recalculé les valeurs des coefficients conservés par une régression linéaire multiple. Nous allons maintenant comparer les qualités du modèle de départ au nouveau modèle obtenu après désactivation de l'expérience 11 et après l'élimination des coefficients non influents (tableau 9).

Modèle initial	Réponse F ₁	Réponse F ₂	Réponse Q ₀
\mathbb{R}^2	0,97	0,98	0,89
Q^2	0,76	0,86	< 0
-			
Modèle optimisé	Réponse F ₁	Réponse F ₂	Réponse Q ₀
Modèle optimisé R ²	Réponse F ₁ 0,96	Réponse F ₂ 0,95	Réponse Q ₀ 0,97

Tableau 9 : qualité des modèles après élimination des coefficients non influents

On constate une amélioration sur les modèles mathématiques pour toutes les réponses. Pour être sûr que les coefficients restants sont tous influents, nous allons étudier à nouveau les diagrammes des effets des coefficients sur chacune des réponses (figure 7).

Figure 7 : diagrammes des effets des coefficients pour toutes les réponses

On peut remarquer d'après la figure 7 que tous les coefficients sont à conserver puisqu'il n'existe pas de coefficient non influent simultanément sur les trois réponses.

Les trois modèles semblent maintenant excellents : on peut les utiliser pour sélectionner les meilleures conditions pour l'objectif fixé, c'est-à-dire augmenter au maximum le facteur de qualité à vide en assurant une isolation fréquentielle ($F_1 \ge 4,5$ GHz et $F_2 \ge 6$ GHz).

II.4. Optimisation multicritère

Nous allons dans cette partie chercher un optimum multicritère avec les deux logiciels de plans d'expériences. Les valeurs optimales des facteurs d'entrée ainsi que les réponses calculées et simulées sont données dans le tableau 10.

L'optimisation par le logiciel Nemrodw est faite sans l'élimination des coefficients non influents. Bien que nous utilisons ici le modèle non optimisé, l'écart entre les réponses calculées et les réponses simulées est plus petit que celui obtenu à l'aide du logiciel Modde avec un modèle optimisé.

	Modde						
Facteurs	Dc = 47,49 mm	Hc = 35,06 mm	R = 9,04 mm				
Réponses	F ₁ (GHz)	F ₂ (GHz)	Q ₀ (GHz)				
Modèle	5,07	7,54	12895				
Simulation	4,69	6,82	12590				
Ecart (%)	7,49	9,5	2,3				
	Nemrodw						
Facteurs	Dc = 43,5 mm	Hc = 32,2 mm	R = 9,7 mm				
Réponses	F ₁ (GHz)	F ₂ (GHz)	Q ₀ (GHz)				
Modèle	4,8	6,41	12662				
Simulation	4,98	6,65	12495				
Ecart (%)	3,7	3,7	1,3				

Tableau 10 : solutions obtenues par les deux logiciels de plans d'expériences

Les grands écarts entre les réponses calculées et les réponses simulées pour la solution du logiciel Modde, sont dues au fait que ce logiciel cherche l'optimum hors domaine expérimental, là où le modèle est validé, pour trouver les réponses souhaitées. L'optimum obtenu par le logiciel Modde est représenté sur la figure 8. Les deux axes de cette figure représentent les facteurs Hc et R, le facteur Dc étant fixé à la valeur optimale 47,49 mm. Nous avons tracé sur la figure 9 les courbes iso-réponses de la réponse Q₀. Le cercle représente la limite du domaine expérimental. On remarque que l'optimum trouvé par ce logiciel est hors domaine, expliquant l'écart significatif entre les réponses prédites et les réponses simulées.

Figure 8 : optimum trouvé par le logiciel Modde

Nous allons maintenant représenter sur la figure 9, l'optimum trouvé par le logiciel Nemrodw. Les deux axes représentent les deux facteurs Hc et R, le facteur Dc étant fixé à la valeur optimale 43,5 mm.

Figure 9 : optimum trouvé par le logiciel Nemrodw

On remarque d'après la figure 9 que l'optimum trouvé par le logiciel Nemrodw se situe à la limite du domaine expérimental. Chacun des deux logiciels de plans d'expériences utilise sa propre méthode pour chercher un optimum multicritère. L'optimiseur du logiciel Nemrodw limite sa recherche dans le domaine expérimental précisé, alors que le logiciel Modde cherche les réponses souhaitées même si leurs coordonnées se situent hors du domaine expérimental. En effet, le facteur Hc varie entre 21 et 25 mm, la valeur optimale trouvée pour ce facteur est égale à 35,06 mm (voir tableau 10).

Nous allons dans la suite utiliser un plan composite centré CCF, le domaine expérimental est cubique de façon que les optima soient toujours dans le domaine expérimental.

II.5. Utilisation d'un plan composite centré CCF

Nous avons démontré que le facteur de qualité à vide augmente avec les dimensions de la cavité Dc et Hc. Nous avons donc réduit les domaines expérimentaux de ces deux facteurs, là où le facteur de qualité à vide est maximal. Les nouveaux domaines expérimentaux sont donnés dans le tableau 11.

Facteurs d'entrée	Notation	Unité	Nature	Valeur min	Valeur max
Diametre de la cavité	Dc	mm	Quantitatif	40	48
Hauteur de la cavité	Hc	mm	Quantitatif	28	36
Rayon du cylindre	R	mm	Quantitatif	8	14,8

	Facteurs d'entrée			Réponses			
Numéro d'expériences	Dc	Hc	R	F_1	F_2	Q ₀	
	mm	mm	mm	GHz	GHz	Sans unité	
1	40.0	28.0	8.0	3.51	4.49	12640	
2	48.0	28.0	8.0	3.95	5.18	12615	
3	40.0	36.0	8.0	5.19	6.88	12688	
4	48.0	36.0	8.0	4.65	6.84	12659	
5	40.0	28.0	14.8	4.71	6.03	11200	
6	48.0	28.0	14.8	4.52	6.06	11845	
7	40.0	36.0	14.8	5.29	6.71	11776	
8	48.0	36.0	14.8	4.66	6.83	12483	
9	40.0	32.0	11.4	4.99	6.51	12153	
10	48.0	32.0	11.4	4.60	6.58	12388	
11	44.0	28.0	11.4	4.69	6.13	12186	
12	44.0	36.0	11.4	5.03	7.52	12445	
13	44.0	32.0	8.0	4.78	6.89	12761	
14	44.0	32.0	14.8	4.99	6.44	12004	
15	44.0	32.0	11.4	4.96	6.58	12334	

2. Lep

1 ableau 12 : plan d'experiences, facteurs d'entree et rép

Dans le cas présent, les deux logiciels des plans d'expériences utilisent la méthode MLR pour estimer les coefficients du modèle. Les résultats de validation des modèles sont alors les mêmes pour les deux logiciels. Nous présentons dans le paragraphe suivant les qualités des modèles issus des deux logiciels.

II.5.1. Validation des modèles mathématiques

Dans un premier temps, nous allons étudier les coefficients R^2 , $R^2_{ajusté}$ et $R^2_{predictif}$ (ou Q^2) donnés par les deux logiciels (tableau 13).

	Réponse					
	F_1	F_2	Q_0			
R^2	0,949	0,923	0,997			
R ² _{ajusté}	0,858	0,783	0,991			
R ² _{predictif}	0,361	0,215	0,97			

Partie III : Couplage des plans d'expériences et des courbes de niveaux

Tableau 13 : qualité descriptive et prédictive des modèles

On peut constater que le modèle de la réponse Q_0 bénéficie d'une bonne qualité puisque les valeurs de R², R²_{ajusté} et R²_{predictif} sont proches de 1. Au contraire, la qualité prédictive des modèles mathématiques des réponses F₁ et F₂ est mauvaise (R²_{predictif} = 0,361 pour la réponse F₁ et 0,215 pour la réponse F₂). Nous allons vérifier ces résultats en estimant l'écart entre les réponses calculées et les réponses simulées sur les k+1 points tests proposés par le logiciel Nemrodw. Dans le cas présent, 4 points tests sont nécessaires pour valider le modèle en n'importe quel point du domaine. Les réponses calculées sur ces points ainsi que les valeurs obtenues par simulations sont données dans le tableau 14.

	Point	s tests	F ₁ (0	GHz)		F ₂ (C	iHz)		(Q 0	
Numéro du point test	D _c (mm)	H _c (mm)	Modèle	Simulation	écart (%)	Modèle	Simulation	écart (%)	Modèle	Simulation	écart (%)
(1)	42,4	31,1	4,849	4,96	2,29	6,529	6,48	0,75	12333,5	12341	0,06
(2)	45,6	31,1	4,788	4,78	0,17	6,622	6,51	1,69	12430	12406	0,19
(3)	44	33,9	5,093	5	1,83	7,141	7,54	5,59	12480,5	12440	0,32
(4)	44	32	5,06	4,98	1,58	6,873	6,53	4,99	12158,6	12147	0,10

Tableau 14 : validation des modèles mathématiques sur les 4 points tests

On peut constater d'après le tableau 14 l'excellente qualité du modèle mathématique de la réponse Q_0 puisque l'écart entre les valeurs calculées et les valeurs simulées est très petit. Par contre, l'écart entre les valeurs calculées et les valeurs simulées pour la réponse F_2 peut être de 5,6 % (0,4 GHz). La qualité du modèle de la réponse F_1 semble satisfaisante puisque le plus grand écart est de 2,3 %.

Dans le cas présent, on ne s'intéresse qu'à la qualité du modèle de la réponse Q_0 . En effet, d'après le tableau 12, on remarque que sur toutes les expériences, l'isolation fréquentielle est assurée sauf pour les deux premières où Dc = 40 ou 48 mm, Hc = 28 mm et R = 8 mm. Sachant que l'optimum doit être trouvé pour Hc supérieur à 28 mm (paragraphe II.3) et Dc autour de 43 mm, on est donc sûr que pour toutes les solutions trouvées, l'isolation fréquentielle est assurée. Le but est alors de chercher le maximum du facteur de qualité à vide Q_0 .

II.5.2. Optimisation multicritère

La recherche d'un optimum multicritère est faite à l'aide des deux logiciels. Nous allons présenter dans le tableau 15 les deux solutions trouvées.

Nemrodw					
Facteurs	Dc = 43,6 mm	Hc = 32,7 mm	R = 8 mm		
Réponses	F ₁ (GHz)	F ₂ (GHz)	Q ₀ (GHz)		
Modèle	4,77	6,58	12785		
Simulation	4,87	6,68	12760		
Ecart (%)	2	1,4	0,1		
	Ν	Aodde			
Facteurs	Dc = 43,32 mm	Hc = 35,88 mm	R = 8 mm		
Réponses	F ₁ (GHz)	F ₂ (GHz)	Q ₀ (GHz)		
Modèle	4,92	6,7	12750		
Simulation	5,05	6,91	12710		
Ecart (%)	2,5	3	0,3		

Partie III : Couplage des plans d'expériences et des courbes de niveaux

Tableau 15 : solutions trouvées par les deux logiciels

D'après le logiciel Nemrodw, la meilleure solution est trouvée pour un rayon R de 8 mm, un diamètre Dc de 43,6 mm et une hauteur Hc de 32,7 mm. Le logiciel Modde trouve la même valeur du facteur R, un diamètre de 43,32 mm et une hauteur de 35,88 mm. On peut constater que dans les deux solutions, l'isolation fréquentielle est assurée ; le meilleur facteur de qualité à vide est égal à 12760 (logiciel Nemrodw). Les deux solutions trouvées sont données sur la figure 10.

Figure 10 : localisation de l'optimum trouvé par les deux logiciels

Les deux axes de la figure 10 représentent les deux facteurs Hc et R, dans notre cas le facteur R est égal à la valeur optimale (8 mm). On constate que les deux solutions trouvées se situent à la limite du domaine expérimental cubique sur la limite inférieure du rayon R. L'épaisseur du résonateur est égale à 4,64 mm pour une fréquence de résonance de 4 GHz. On remarque d'après les résultats obtenus précédemment, qu'on pourrait obtenir une grande valeur du facteur de qualité à vide en diminuant le rayon du cylindre métallique. Mais alors, l'épaisseur du résonateur augmenterait pour fixer la fréquence de résonance à 4 GHz. Pour R inférieur à 8 mm, l'épaisseur du résonateur devient importante et il est impossible de régler la fréquence de résonance à 4 GHz. Pour cette raison, R est limité à 8 mm.

Pour essayer de trouver une meilleure solution dans cet exemple, l'algorithme BFGS va être couplé avec les modèles issus des logiciels des plans d'expériences afin de trouver tous les minima possibles d'une fonction F à minimiser.

III. <u>Application de la méthode BFGS</u>

Comme on l'a dit dans le premier chapitre de la partie II, la méthode BFGS est utilisée pour minimiser une fonction F (F_1 , Q_0) définie par :

$$F(F_1, Q_0) = 10^7 [Y(F_1) - 4,5]^2 - Y(Q_0)$$
⁽²⁾

Le premier terme de cette équation $(10^7[Y(F_1) - 4,5]^2)$ est utilisé pour assurer une fréquence du premier mode non excité F_1 très proche ou égale à 4,5 GHz. Le deuxième (-Y(Q_0)) est utilisé pour avoir le maximum du facteur de qualité à vide. La valeur cible de la réponse F_1 peut être changée si on constate que le facteur de qualité à vide est maximum pour une valeur de F_1 supérieure à 4,5 GHz (voir partie II, chapitre 1, paragraphe III). L'organigramme décrivant l'application de la méthode BFGS sur cet exemple est donné sur la figure 11. L'algorithme est exécuté sur chaque couple de valeurs X_{1i} , X_{2i} et X_{3i} qui sont les valeurs initiales prises par chaque variable. Ces valeurs sont définies à partir de la matrice d'expériences et varient dans l'intervalle [-1, +1].

Figure 11 : organigramme d'application de la méthode BFGS

Cet algorithme conduit à identifier un grand nombre de solutions qui assurent toutes, l'isolation fréquentielle. Il nous est alors possible de choisir une solution qui satisfait à d'autres

	Solutions qui minimisent le volume de la cavité					olutions qui maxin	nisent le facteur de	e qualité à vi	de
Solution 1	Dc = 40,83 mm	Hc = 29,4 mm	R = 14,6 mm	Volume	Solution 4	Dc = 43,6 mm	Hc = 32,7 mm	R = 8 mm	Volume
Réponse	F ₁ (GHz)	F ₂ (GHz)	Q_0		Réponse	F ₁ (GHz)	F ₂ (GHz)	Q_0	
Modèle	5	6,21	11474	38494 mm ³	Modèle	4,77	6,58	12785	48821 mm^3
Simulation	4,89	6,65	11560		Simulation	4,87	6,68	12760	
Ecart (%)	2,2	7	0,7		Ecart (%)	2	1,4	0,1	
Solution 2	Dc = 40,16 mm	Hc = 29,68 mm	R = 14,7 mm	Volume	Solution 5	Dc = 43,37 mm	Hc = 31,51 mm	R = 8 mm	Volume
Réponse	F ₁ (GHz)	F ₂ (GHz)	Q_0		Réponse	F ₁ (GHz)	F ₂ (GHz)	Q_0	
Modèle	4,9	6,13	11398	37560 mm ³	Modèle	4,6	6,26	12781	46550 mm ³
Simulation	4,91	6,54	11500		Simulation	4,77	6,76	12746	
Ecart (%)	0,2	6,6	0,9		Ecart (%)	3,7	8	0,3	
Solution 3	Dc = 40,74 mm	Hc = 28,03 mm	R = 14,37 mm	Volume	Solution 6	Dc = 46,06 mm	Hc = 35,1 mm	R = 9 mm	Volume
Réponse	F ₁ (GHz)	F ₂ (GHz)	Q_0		Réponse	F ₁ (GHz)	F ₂ (GHz)	Q_0	
Modèle	4,7	6	11389	36539 mm ³	Modèle	4,71	6,39	12773	58485 mm ³
Simulation	4.75	6,23	11520		Simulation	4,81	6,86	12620	
Ecart (%)	1	3,8	1,1		Ecart (%)	2,1	7,3	1,1	

critères qui étaient initialement secondaires et donc non intégrés à l'étude, comme par exemple le volume de la cavité. Le tableau 16 en présente des exemples.

Tableau 16 : solutions obtenues par la méthode BFGS sans et avec contrainte sur le volume

Les critères de choix pour retenir ces exemples sont ici arbitraires (volume et facteur de qualité à vide) et il appartient au concepteur du composant d'identifier ceux qui sont pour lui les plus pertinents.

La meilleure solution donnée dans le tableau 16 est la solution 4 (le facteur de qualité à vide est le plus grand parmi toutes les autres solutions), cette solution correspond parfaitement à la solution trouvée par le logiciel Nemrodw (tableau 15).

Nous constatons dans cette étude que notre optimisation basée sur l'utilisation de la méthode BFGS ne conduit pas à une solution meilleure que celle trouvée à l'aide des logiciels des plans d'expériences, contrairement à ce qui a été constaté dans d'autres analyses. En effet, notre démarche nous a conduit à restreindre sensiblement le domaine de l'étude, permettant à l'algorithme d'optimisation du logiciel Nemrodw de montrer son efficacité dans ce cadre de travail.

Dans les parties précédentes, nous avons toujours obtenu de meilleurs résultats en couplant les modèles issus des logiciels des plans d'expériences à la méthode BFGS, plusieurs minima locaux sont obtenus par cette méthode.

Le fait de réduire les domaines de variations des facteurs d'entrée a limité la recherche de la méthode BFGS. Nous n'avons pas donc beaucoup de possibilités pour trouver une solution de meilleure qualité.

IV. <u>Conclusion</u>

Les résultats obtenus dans cette partie permettent de montrer la pertinence du couplage d'outils d'analyse d'horizons différents, comme ici, la méthode des courbes de niveaux et les plans d'expériences. En effet, bien que l'utilisation indépendante de chacune de ces deux méthodes permette d'améliorer les caractéristiques de notre dispositif (respectivement de 21,48 % et de 25,36 % par rapport à la valeur de référence du facteur de qualité à vide), leur couplage tel que décrit dans ce travail conduit à une amélioration de 25,77 %.

Non seulement, nous avons augmenté le facteur de qualité à vide au-delà du seuil minimal imposé tout en assurant une parfaite isolation fréquentielle mais en plus, nous avons mis en évidence une solution dont le volume est 34,5 % plus faible que celui identifié par l'utilisation des seuls plans d'expériences, donc plus économique à fabriquer.

Cette dernière remarque justifie notre mise en œuvre (figure 12) de la méthode d'optimisation BFGS. En effet, non seulement, elle peut nous conduire à une meilleure valeur du critère que celle identifiée par les logiciels Nemrodw ou Modde, mais en plus, la multiplicité des solutions trouvées nous permet d'envisager de nouveaux critères d'optimisation qui n'étaient pas pris en compte initialement (comme le coût par exemple).

Le couplage de la méthode des plans d'expériences avec d'autres méthodes d'optimisation de forme comme le gradient topologique peut être intéressant. La méthode du gradient topologique consiste à remplir ou vider le domaine avec un matériau pour trouver une forme optimale de l'objet qui peut être approchée par une forme simple afin d'utiliser ensuite la méthode des plans d'expériences.

V. <u>Références</u>

[1] J.A. Sethian, A. Wiegmann. Structural boundary design via Level Set and immersed interface methods. Journal of Computational Physics, Vol. 163, No. 2, 489 - 528, 2000.

Partie IV : Plans d'expériences optimaux

Chapitre 1 : Théorie sur les plans optimaux

I. Introduction

Dans la première partie de ce manuscrit, nous avons étudié les plans d'expériences classiques (plans de Doelhert et plans composites centrés). Le nombre d'essais dépendait du plan choisi et du nombre de facteurs d'entrée. Dans un plan de Doelhert, le domaine expérimental est toujours sphérique alors que dans le cas d'un plan composite centré, on peut choisir parmi deux domaines : cubique et sphérique. On parle alors d'un domaine expérimental isotrope. La géométrie régulière de ces deux domaines facilite la distribution uniforme des expériences.

Lorsqu'il existe une ou plusieurs contraintes relationnelles définies entre tout ou partie des facteurs d'entrée, la géométrie du domaine expérimental perd sa régularité. On dit alors que le domaine expérimental est anisotrope. En présence d'une telle géométrie, il n'est plus possible d'établir une méthode généraliste produisant une distribution uniforme des expériences au sein du domaine. Le nombre d'expériences dans ce cas, dépend du nombre de facteurs et de critères d'optimalité.

Dans un premier temps, nous allons expliquer les différences entre un plan classique et un plan avec contraintes ainsi que les différents types de contraintes.

II. <u>Contraintes relationnelles entre facteurs d'entrée</u>

Supposons que l'on cherche à optimiser un dispositif possédant deux paramètres d'entrée $(X_1 \text{ et } X_2)$. Ne disposant pas de modèle théorique pour cette étude, on postule un modèle polynomial de degré 2. Si l'on utilise un plan composite centré dans un domaine cubique (voir figure 1), la région expérimentale est limitée par un carré et comporte 9 expériences.

Les contraintes expérimentales peuvent être de plusieurs types. Par exemple, certaines expériences peuvent ne pas être réalisables ; dans ce cas, le domaine expérimental est un domaine sous contraintes comme le montre la figure 2.

Figure 1 : domaine expérimental cubique d'un plan composite centré

Parfois, les contraintes peuvent être dues à une limitation d'encombrement. Dans ce cas, les contraintes entre les facteurs sont choisies de telle sorte que, par exemple, la longueur totale du composant à optimiser ne dépasse pas une limite à préciser.

Dans l'exemple de la figure 2, 3 expériences n'étant pas réalisables, le plan ne contient plus que six expériences pour estimer six paramètres (aucun degré de liberté). La qualité du plan est dégradée. Il faut donc trouver d'autres expériences dans ce domaine sous contrainte pour améliorer la qualité du plan d'expériences.

Figure 2 : contraintes entre les deux facteurs d'entrée

Nous allons maintenant préciser les cas où un plan optimal est utilisé.

III. <u>Utilité des plans optimaux</u>

Lorsqu'il est impossible d'appliquer un plan classique pour résoudre un problème d'optimisation, les plans optimaux sont préférés [1 - 6]. Ils permettent à l'expérimentateur d'avoir le plan sur mesure qui s'adapte parfaitement aux contraintes de l'étude. Les plans optimaux permettent également de traiter des situations difficiles et sont parfois la seule solution aux problèmes posés. Ces plans sont utilisables lorsqu'il faut :

- tenir compte des contraintes linéaires sur les facteurs d'entrée. La région expérimentale est réduite à un polyèdre irrégulier. Un plan d'expériences classique ne permet pas de résoudre un problème avec contraintes sur les facteurs d'entrée ;
- diminuer le nombre d'essais d'un plan classique pour s'adapter au budget et aux délais imposés. Nous allons voir dans la suite que le nombre d'expériences pour un plan optimal est inférieur à celui d'un plan classique ;
- obtenir une surface de réponses en présence de facteurs discrets ;

- compléter par quelques essais supplémentaires une expérimentation mal conduite afin d'en tirer des conclusions valides ;
- tenir compte des facteurs de mélange. Les facteurs d'étude des plans de mélanges sont les proportions des constituants du mélange [7]. Or, ces constituants ne sont pas indépendants les uns des autres. Les plans avec des facteurs de mélanges sont aussi caractérisés par de nombreuses contraintes qui peuvent peser sur le choix des proportions des constituants. Par exemple, la concentration d'un produit doit être au moins de x pourcent ou cette concentration ne peut excéder une valeur donnée. En fonction de ces contraintes, la planification de l'étude est modifiée et elle doit être adaptée à chaque cas.

Dans notre cas, les plans optimaux sont utilisés pour optimiser des composants hyperfréquences en respectant l'encombrement occupé par le composant. La construction d'une matrice d'expériences d'un plan avec contraintes doit répondre à des critères qui permettent d'estimer sa qualité, et de déterminer le nombre d'expériences nécessaires. Dans le paragraphe suivant, nous présentons plusieurs critères d'optimalité qui permettent de choisir un plan optimal de qualité.

IV. Critères d'optimalité

Pour obtenir un plan optimal capable de donner le maximum d'informations, nous allons définir les critères sur lesquels nous nous sommes appuyés pour obtenir un nombre réaliste d'expériences, en tenant compte des contraintes qui peuvent exister entre les facteurs d'entrée. Parmi plusieurs critères de qualité, nous avons testé les 3 principaux [8, 9] : les critères D, A et G.

IV.1. Critère D : optimisation de la qualité de l'information

Le critère D est celui qui permet d'optimiser le nombre d'expériences à réaliser. Une matrice d'expériences est dite optimale D si le déterminant de la matrice de dispersion $({}^{t}XX)^{-1}$ avec (X) la matrice du modèle, est minimal ce qui veut dire que le déterminant de la matrice d'information ${}^{t}XX$ est maximal puisque :

$$Det(^{t}XX) = \frac{1}{Det(^{t}XX)^{-1}}$$
(1)

On dira qu'un plan d'expériences est D-optimal si la position des points d'expériences maximise la valeur du déterminant de la matrice d'information. Le D de D-optimal vient donc de déterminant et on parle de D-optimalité.

Plus le nombre d'expériences est élevé plus la matrice d'expériences comporte de points, et plus le déterminant de la matrice d'information est grand. La matrice qui apporte le maximum d'informations selon le critère D est celle qui est constituée de la totalité des points expérimentaux. Il faut donc chercher un nombre réaliste d'expériences (N) qui maximise le déterminant de la matrice d'information, en d'autre termes, il faut chercher le nombre N d'expériences qui couvrent le plus grand volume (ou surface dans le cas de deux facteurs) possible dans la région expérimentale [1].

Si le déterminant est nul, son inverse n'existe pas et il est impossible de mettre en œuvre la méthode des moindres carrés qui conduit à l'estimation des coefficients du modèle. La valeur du déterminant peut être très grande. La plupart des logiciels indique le logarithme décimal de ce déterminant.

Plus le déterminant est grand, plus la qualité d'estimation des coefficients du modèle est grande car les incertitudes qui affectent les coefficients du modèle et les effets moyens des facteurs sont faibles.

IV.2. Critère A : optimisation de la qualité des coefficients du modèle

La matrice d'expériences est dite optimale si la trace de la matrice de dispersion (^tXX)⁻¹ est minimale, ce qui veut dire que la somme des variances des coefficients du modèle est minimale.

L'incertitude associée à chacun des coefficients du modèle s'appelle l'erreur-type ; on montre [10] que cette erreur est proportionnelle aux termes diagonaux de la matrice de dispersion appelés coefficients de variance et notés C_{ii}.

La construction d'un plan optimal consiste à extraire les traitements qui minimisent la trace de la matrice de dispersion c'est-à-dire la somme des termes diagonaux :

$$Trace(^{t}XX)^{-1} = \sum_{i=1}^{p} C_{ii}$$
 (2)

Il existe un lien entre le critère D et le critère A : l'augmentation du premier se traduit par une diminution du second. Pour cette raison, on s'intéresse essentiellement au critère du déterminant.

IV.3. Critère G : optimisation de la qualité de prévision du modèle

Les coefficients du modèle étant affectés d'une incertitude, il en est de même pour les prévisions faites à partir du modèle, pour toute combinaison des modalités des facteurs notée symboliquement x_0 .

La variance de prévision de la réponse s'écrit :

$$Var(\hat{Y}(x_0)) = \sigma^2 \left\{ {}^t f(x_0) ({}^t X X)^{-1} f(x_0) \right\}$$
(3)

avec σ^2 la variance expérimentale, $f(x_0)$ la fonction du modèle pour la combinaison des modalités considérées.

La matrice de dispersion étant définie à partir d'une matrice d'expériences donnée, pour une variance expérimentale supposée constante, la variance de prévision de la réponse ne dépend que de la nature de la combinaison des modalités des facteurs. On pourra donc détecter la combinaison pour laquelle la variance de prévision est la plus grande et introduire cette combinaison, comme expérience complémentaire dans la matrice d'expériences. Pour cela, on introduit la fonction de variance standardisée :

$$d(\xi_N, x_0) = \frac{N \times Var(\hat{Y}(x_0))}{\sigma^2}$$
(4)

Cette fonction est calculée systématiquement, pour chacune des combinaisons non retenue, on identifie la combinaison pour laquelle $d(\xi_N, x_0)$ est maximale. S'il en existe plusieurs, on en retient une au hasard et on l'introduit dans la matrice d'expériences. Le déterminant de la matrice d'information de taille N+1, s'écrit :

$$\det({}^{t}X_{N+1}X_{N+1}) = \det({}^{t}X_{N}X_{N}) \times \left\{1 + \frac{d(\xi_{N}, x_{0})}{N}\right\}$$
(5)

Lorsqu'une matrice d'expériences est optimale, le maximum de la fonction de variance standardisée est égal au nombre d'inconnues p associées à la forme générale du modèle. On peut donc calculer un nouveau critère :

$$G - efficacit\acute{e} = \frac{p}{\max\{d(\xi_N, x_0)\}}$$
(6)

En conclusion, la construction d'un plan optimal nécessite donc :

- un déterminant de la matrice d'information maximal,
- une trace de la matrice de dispersion minimale,
- un coefficient G-efficacité maximal.

Dans les chapitres suivants, nous utiliserons les plans D-optimaux issus des logiciels Nemrodw et Modde. Ils permettent une bonne adaptabilité aux problèmes rencontrés. Ils sont particulièrement utiles quand il existe une contrainte dans le domaine expérimental, ce qui n'est pas le cas pour un plan classique (Doelhert, Composite Centré, ...).

IV.4. Critère Condition Number

Désignons par ^tXX la matrice d'information normalisée de telle sorte que les éléments diagonaux soient respectivement égaux à 1. Soient $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge ... \ge \lambda_n$ les n valeurs propres de la matrice ^tXX. Le critère CN est la racine carrée du rapport de la plus grande valeur sur la plus petite valeur propre de la matrice ^tXX.

Le critère Condition Number (CN) est une mesure de l'orthogonalité du plan et nous rappelons qu'il est calculé par la relation suivante : $CN = \sqrt{\frac{\lambda_1}{\lambda}}$.

En effet, dans le cas idéal où il n'existe aucune relation linéaire entre les variables, toutes les valeurs propres de la matrice ^tXX sont égales et on a alors CN = 1. Comme l'influence de ce coefficient est mal connue, on définit un seuil limite de façon empirique en considérant qu'une valeur de CN supérieure à 100, mettrait en évidence une matrice d'expériences insatisfaisante.

Nous allons, dans le paragraphe suivant, élaborer un exemple simple sur le choix d'un plan d'expériences D-optimal.

IV.5. Choix d'un plan D-optimal par l'exemple

Nous allons décrire dans ce paragraphe l'exemple traité par Erikson [1]. Dans cet exemple, deux facteurs d'entrée sont étudiés, chacun d'eux prend 3 niveaux : -1, 0 et 1. La matrice d'expériences classique pour deux facteurs à trois niveaux comporte 9 expériences et elle est donnée dans le tableau 1.

Numéro d'expérience	X1	X2
1	-1	-1
2	-1	0
3	-1	1
4	0	-1
5	0	0
6	0	1
7	1	-1
8	1	0
9	1	1

Tableau 1 : matrice d'expérience classique (2 facteurs, 3 niveaux)

Cette matrice d'expériences correspond à la matrice d'un plan classique, plus précisément un plan composite centré dans un domaine cubique (voir figure 3).

Figure 3 : points expérimentaux d'une matrice d'expériences pour un plan composite centré

On peut remarquer d'après la figure 3 que pour un plan classique, les points d'expériences sont générés automatiquement et le nombre d'expériences est connu.

Si on extrait 3 expériences parmi les 9 expériences du tableau 1, nous avons : $C_9^3 = \frac{9!}{3!(9-3)!} = 84$ matrices d'expériences possibles. Pour illustrer la démarche, nous allons chercher à évaluer quatre d'entre elles et les comparer selon le critère D-optimalité. Les quatre matrices d'expériences choisies ainsi que leurs points expérimentaux dans le domaine expérimental sont donnés sur la figure 4.

Pour calculer le déterminant des 4 matrices d'informations, nous avons besoin de définir le modèle utilisé. Pour simplifier le problème, nous avons choisi un modèle de degré 1 :

$$Y = b_0 + b_1 X_1 + b_2 X_2 + e (7)$$

Dans cette expression, Y est une réponse donnée, b_0 , b_1 et b_2 sont les inconnus du modèle de degré 1 et e est le résidu.

Figure 4 : domaines expérimentaux de quatre matrices d'expériences

Pour comparer les qualités des quatre matrices d'expériences, il faut calculer le déterminant de chaque matrice d'information ^tXX, avec (X) la matrice du modèle. A titre d'exemple, nous avons calculé le déterminant de la matrice (B). Puisque le modèle utilisé est du premier degré, la matrice du modèle notée X_B s'écrit de la façon suivante (voir paragraphe VII.1.1 de la première partie) :

$$X_{B} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
(8)

On rappelle que la matrice d'information est obtenue à partir du produit matriciel entre la transposée de la matrice du modèle ${}^{t}X_{B}$ et la matrice du modèle X_{B} elle-même, dans le cas présent, la matrice d'information s'écrit de la façon suivante :

$${}^{t}X_{B}X_{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
(9)

L'étape suivante consiste à calculer le déterminant de cette matrice.

Le déterminant de la matrice d'information de la matrice (B) est égal à 4. Les mêmes étapes sont faites pour les trois autres matrices. On donne dans le tableau 2 les déterminants des matrices d'informations correspondant aux matrices (A), (B), (C) et (D).

Matrice	Déterminant
(A)	0
(B)	4
(C)	9
(D)	16

Tableau 2 : determinants des 4 matrices d'expériences choisies

On peut constater d'après le tableau 2 que la matrice (D) est la matrice optimale parmi les trois autres matrices ; le plan correspondant à cette matrice est donc appelé un plan D-optimal. En se référant à la figure 4, on constate que les points expérimentaux de la matrice (D) occupent la plus grande surface dans la région expérimentale par rapport aux 3 autres matrices d'expériences. La matrice (D) est donc la meilleure matrice parmi les trois matrices de la figure 4 mais elle n'est pas la seule matrice qui est D-optimale ; il existe d'autres solutions qui conduisent à une valeur de déterminant égale à 16. C'est pour cela que la génération d'un plan D-optimal avec deux logiciels différents conduit à deux plans différents qui possèdent la même qualité. Nous allons voir dans la suite comment les logiciels calculent le nombre optimal d'expériences N (3 points dans l'exemple précédent) parmi N_c points candidats (9 points dans l'exemple précédent) et nous allons expliquer comment les plans D-optimaux sont générés par les logiciels des plans d'expériences.

V. Elaboration d'une matrice d'expériences optimale

Il existe beaucoup d'algorithmes pour la construction de plans d'expériences optimaux [11, 12, 13]. L'une des méthodes la plus efficace pour calculer un plan optimal est l'algorithme d'échange qui est probablement le plus utilisé et le plus facile à implémenter.

Nous présentons cet algorithme dans le cas de la construction d'un plan D-optimal mais on peut l'utiliser pour satisfaire d'autres critères comme, par exemple, ceux de la A ou la G-optimalité.
V.1. Algorithme d'échange de Fedorov

Nous allons décrire dans cette partie l'algorithme d'échange de Fedorov [14] pour la construction d'un plan D-optimal.

Parmi tous les N_C (l'ensemble des expériences possibles) points candidats de la matrice qui sont les nœuds d'une grille résultat de la discrétisation du domaine d'étude, on choisit un sousensemble de N expériences, il existe donc N(N_C-N) déterminants possibles si l'on n'autorise pas les répétitions. Cette sélection de départ est choisie aléatoirement, le nombre N doit être égal ou supérieur au nombre de coefficients du modèle polynomial utilisé. Il faut trouver, parmi tous les plans possibles, le plan N expériences pour lequel le déterminant de la matrice d'information est le plus élevé.

Grâce à l'algorithme d'échange, on va échanger successivement certains points (ou expériences) de façon à améliorer le critère D de la matrice construite avec la sélection de points. Lorsque plus aucun échange de points n'améliore ce critère, la matrice obtenue est considérée comme la solution optimale. Cette procédure est répétée avec d'autres sélections de départ, et la matrice optimale D finale est celle qui conduit au déterminant de la matrice d'information maximal.

Pour chaque valeur de N (nombre d'expériences) on obtient donc une matrice optimale D. Le choix de N va ensuite dépendre des critères A et G. Pratiquement, pour déterminer le nombre d'expériences de la solution optimale, nous répétons l'algorithme d'échange en partant d'une valeur de N égale au nombre des coefficients du modèle polynomial jusqu'à obtenir une valeur N où tous les critères sont satisfaits. Ainsi nous obtenons un compromis entre les critères de qualité et le nombre d'expériences à réaliser. L'algorithme d'échange peut être écrit sous forme d'un organigramme [10] (figure 5).

Le fonctionnement d'un algorithme d'échange se fait en 3 grandes étapes.

- Etape 1 : on choisit aléatoirement N expériences parmi les N_C pour constituer un N-plan d'expériences initial.
- Etape 2 : on remplace l'expérience i du plan de N expériences par l'expérience j de l'ensemble des expériences candidates N_C. On veut trouver le couple (i, j) qui permet d'obtenir un déterminant maximal de la matrice d'information ; pour cela, on calcule les N(N_C-1) déterminants possibles si l'on autorise les répétitions d'expériences, ou les N(N_C-N) déterminants possibles si l'on n'autorise pas les répétitions, cette dernière situation se présente dans le cas des expériences numériques, où deux expériences identiques conduisent aux mêmes résultats. Si plusieurs couples distincts provoquent des augmentations comparables du déterminant (à un écart ε près, fixé au préalable) on choisit l'un de ces couples aléatoirement. On note (i_{max}, j_{max}) le meilleur couple.
- Etape 3 : on introduit l'expérience j_{max} dans le plan d'expériences et l'on en retire l'expérience i_{max}. On retourne ensuite à l'étape 2 jusqu'à ce que le critère d'arrêt soit vérifié. Il n'y a pas de preuve formelle de convergence, mais l'algorithme converge très souvent vers le maximum global [2].

Figure 5 : organigramme d'application de l'algorithme d'échange

Nous allons présenter dans les deux chapitres suivants des exemples d'application des plans optimaux ainsi que les critères d'optimalités issus des deux logiciels Nemrodw et Modde.

VI. <u>Conclusion</u>

Dans le domaine d'optimisation de composants hyperfréquences, il est toujours possible de rencontrer des problèmes d'optimisation avec contraintes. Les contraintes peuvent être liées à des limitations des dimensions, diminution d'encombrement ou une limitation dans un domaine de recherche. Les plans optimaux pour l'étude des surfaces de réponses peuvent se présenter comme une solution à ce type de problème.

Ce chapitre a été consacré à la présentation des plans optimaux ainsi que des critères d'optimalité les plus utilisés. Nous avons décrit l'algorithme d'échange de Fedorov, qui permet de construire des plans optimaux pour des modèles linéaires à partir de ces critères d'optimalité.

En fonction des contraintes imposées, du nombre des facteurs d'entrée et de critères d'optimalité, un plan optimal est généré à l'aide des logiciels des plans d'expériences. Dans ces travaux, nous allons utiliser les plans optimaux issus des logiciels Nemrodw et Modde dans le but d'optimiser les caractéristiques de composants hyperfréquences. La raison d'utiliser les plans optimaux dans les chapitres suivants est l'existence de contraintes entre les facteurs afin de limiter l'encombrement du composant.

Pour chaque logiciel nous allons étudier l'évolution des critères d'optimalité en fonction du nombre d'expériences ainsi que la convergence vers un plan optimal.

VII. <u>Références</u>

[1] L. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wikstrom and S. Wold. Design of Experiments: Principles and Applications, Learnways AB, Umea, 2000.

[2] J.P. Gauchi. Plans d'expériences optimaux pour modèles linéaires, Chap. 7 et 8, In Plans d'Expériences - Applications à l'Entreprise, Editeur TECHNIP, (Editeurs scientifiques : JJ. Droesbeke, J. Fine et G. Saporta), Paris 1997.

[3] A.C. Atkinson, A.N. Donev. Optimum experimental designs. Oxford : Clarendon Press, 1992.
[4] J. Goupy, L. Creighton. Introduction aux plans d'expériences, DUNOD Paris, troisième édition, 221-248, n° ISBN 2 10 004218, 2006.

[5] J. Kiefer. Optimum experimental designs. J.R. Statist. Soc. B., 21, 272 - 319, 1959.

[6] J. Kiefer. Optimum designs in regression problems II. Ann. of Math. Stat., 32, 298 - 325, 1961.

[7] J. Goupy. Plans d'expériences : les mélanges. Dunod. Paris. 285 pages, n° ISBN 2100042181, 2000.

[8] J. Kiefer. General equivalence theory for optimum designs (approximate theory). Ann. of Statist., 2, 849 - 879, 1974.

[9] J. Kiefer, J. Wolfowitz. The equivalence of two extremum problems. Canad. J. Math., 12, 363 - 366, 1960.

[10] P.F de Aguiar, B. Bourguignon, M.S. Khots, D.L. Massart, R. Phan-Than-Luu. Tutorial D-optimal designs, Chemometrics and Intelligent Laboratory Systems 30, 199 - 210, 1995.

[11] H. Wynn. The sequential Generation of D-optimum Experimental Designs, Annals of Mathematical Statistics, 41, 1655 - 1664, 1970.

[12] T. Mitchell. An algorithm for the construction of D-optimal experimental designs, Technometrics, 16, 203 - 210, 1974.

[13] A. Atkinson and A. Donev. The construction of exact D-optimal designs with application in blocking response surface designs, Biometrika, 76, 1989.

[14] V.V. Fedorov. Theory of Optimal Experiments. Academic Press, New York, 1972.

Chapitre 2 : Optimisation de forme du VO₂ dans un résonateur en alumine

I. Introduction

Ce travail a été mené en collaboration avec J. Gonzalez doctorant au sein du département MINACOM du laboratoire XLIM. Le but de ce travail est d'optimiser les caractéristiques d'un résonateur situé dans une cavité cylindrique (figure 1). Le diamètre du résonateur est de 8 mm, sa hauteur est de 4 mm. Le résonateur est en alumine de permittivité relative $\varepsilon_r = 9.6$.

L'idée générale est d'insérer dans le résonateur un matériau dont la conductivité électrique évolue en fonction de la température. L'insertion de ce matériau dans le résonateur va provoquer une variation de la fréquence du mode fondamental $TE_{01\delta}$ liée à la température.

Le matériau doit être déposé sur un substrat qui présente une permittivité relative proche de celle de l'alumine et de faibles pertes ; le substrat qui a été choisi est le saphir (permittivité de l'ordre de 10). La plaque de saphir fait 8 mm de longueur (L) et 4 mm de hauteur (H). Elle est placée au milieu du résonateur (figure 1).

Figure 1 : résonateur en alumine placé dans une cavité cylindrique

Le matériau déposé sur le substrat en saphir est du dioxyde de vanadium (VO₂) [1]. Ce matériau présente une transition de phase réversible métal/semi-conducteur (SMT) qui s'accompagne d'une modification importante de ses propriétés électriques. Le VO₂ passe de l'état isolant (température inférieure à 68 °C) à celui de conducteur (température supérieure à 68 °C) avec une conductivité électrique qui peut augmenter de plusieurs ordres de grandeurs [2, 3, 4]. Dans ce travail, nous supposerons que la conductivité du VO₂ évolue entre les valeurs notées σ_1 et σ_2 avec un rapport σ_1/σ_2 égal à 100.

La forme du VO_2 doit être régulière afin de faciliter la fabrication : nous avons choisi une forme carrée ou rectangulaire.

II. <u>Démarche expérimentale</u>

Pour chaque structure donnée, deux simulations sont nécessaires pour les deux états de conductivité σ_1 et σ_2 du VO₂. Pour chaque simulation, on calcule le facteur de qualité à vide Q₀ et

la fréquence de résonance F_r . Le but de l'optimisation est d'obtenir des valeurs des facteurs de qualité à vide Q_{01} et Q_{02} correspondant respectivement à σ_1 et σ_2 , les plus grands possible (on fixera la valeur 800 comme seuil accepté) ainsi qu'une différence entre les deux fréquences de résonance $\Delta F = F_{r1} - F_{r2}$ la plus grande possible (on précisera la valeur 50 MHz comme seuil accepté). Lors des travaux de thèse de J. Gonzalez, plusieurs formes de VO₂ ont été utilisées afin d'obtenir les objectifs souhaités. La figure 2 montre deux structures différentes, le VO₂ est déposé sous forme de deux rectangles parallèles soit en hauteur (a), soit en longueur (b).

Figure 2 : formes de VO2 sur la plaque de saphir

Les résultats de ces deux structures et des autres structures traitées par J. Gonzalez ont montré qu'il existe un compromis entre la valeur de ΔF et les valeurs des facteurs de qualité à vide Q_{01} et Q_{02} : en cherchant à les augmenter, on observe une diminution de la valeur de ΔF et vice versa.

Les deux valeurs de conductivités σ_1 et σ_2 choisies sont respectivement 10^2 S/m et 10^4 S/m, la différence entre les fréquences de résonnance est alors appelée ΔF_{2-4} .

Dans le but d'obtenir la meilleure solution avec le moins de simulations possible, nous allons utiliser la méthode des plans d'expériences en supposant que la forme du VO_2 soit un rectangle.

III. Utilisation de la méthode des plans d'expériences

Dans un premier temps, la méthode des plans d'expériences est utilisée pour trouver les dimensions et la position d'un rectangle de VO₂ qui conduit à une valeur de $\Delta F_{2.4}$ supérieure à 50 MHz et des facteurs de qualité à vide Q₀₂ et Q₀₄ supérieurs à 800.

III.1. Formalisation du problème

Les facteurs d'entrée choisis sont représentés sur la figure 3.

Figure 3 : facteurs d'entrée choisis au cours de cette étude

Partie IV – chapitre 2 : optimisation de forme du VO₂ dans un résonateur en alumine

La présence de deux plans de symétrie dans la structure (vertical et horizontal), nous permet de réduire le domaine d'étude à un quart de la plaque de saphir (figure 3).

Les deux facteurs qui caractérisent les dimensions du rectangle de VO2 sont :

- la longueur L qui varie entre 0,5 et 4 mm,
- la hauteur H varie entre 0,5 et 2 mm.

Les deux facteurs qui caractérisent le positionnement du VO2 sont :

- l'abscisse x qui varie entre 0 et 3,5 mm,
- l'ordonnée y qui varie entre 0,5 et 2 mm.

III.2. <u>Contraintes</u>

Afin de s'assurer que le dépôt de VO_2 soit intégralement sur la plaque de saphir, nous avons appliqué les deux contraintes suivantes entre les différents facteurs :

- $L + x \leq 4$,
- $y H \ge 0$.

III.3. Plan d'expériences

Le modèle polynomial choisi est un modèle de degré 2 comportant 15 coefficients à estimer. Le plan d'expériences choisi dans cette étude est un plan D-optimal car il permet d'imposer des contraintes entre les facteurs. La recherche d'un plan optimal a été réalisée à l'aide du logiciel Modde et a conduit aux 5 plans reportés dans le tableau 1.

Numéro plan	Nombre d'expériences	Degrés de liberté	G-efficacité	Log (Det(^t XX))	Norm.Log $(Det(^{t}XX))$	Condition Number
1	19	5	45,38	8,85	-0,68848	28,6689
2	20	6	56,23	9,29	-0,68158	27,5928
3	21	7	54,35	9,6	-0,682032	30,7003
4	22	8	56,5	9,92	-0,680871	26,1052
5	23	9	58,9	10,28	-0,675957	25,0295

Tableau 1 : critères d'optimalités obtenus par le logiciel Modde

Pour chaque plan, le logiciel donne :

- le nombre d'expériences correspondant (N),
- le nombre de degrés de liberté (N-p),
- le critère G-efficacité,
- le logarithme du déterminant de la matrice d'information Log(Det(^tXX)),
- le critère Condition Number (voir paragraphe V.3 du chapitre 1).
- le déterminant de la matrice d'information normalisé par rapport au nombre d'expériences N et du nombre d'inconnus du modèle p ; il est calculé par la relation (1).

$$NormLog(Det(^{t}XX)) = Log(Det(^{t}XX)^{1/p} / N)$$
(1)

On remarque d'après le tableau 1 que le déterminant de la matrice d'information et le critère G-efficacité (sauf pour le plan numéro 3) augmentent avec le nombre d'expériences. Comme on l'a vu dans le chapitre 1 de cette partie, on cherche à maximiser le déterminant de la matrice d'information et le critère G-efficacité, ainsi qu'à minimiser le critère Condition Number (CN). D'après le tableau 1, on remarque que le plan numéro 5 est le meilleur puisqu'il possède un déterminant de la matrice d'information et un critère G-efficacité les plus grands parmi les autres plans et un critère Condition Number le plus petit.

Les plans 1 et 3 ne peuvent pas être optimaux puisque la valeur du critère G-efficacité est la plus petite par rapport aux autres plans. De plus, la valeur de CN est la plus grande.

Parmi les plans 2, 4 et 5, le logiciel cherche un compromis entre les différents critères qui conduit à un plan optimal avec le minimum d'expériences possible. Parmi ces plans, le logiciel sélectionne le plan qui satisfait au mieux les critères d'optimalité avec un petit nombre d'expériences (plan numéro 2).

Pour ce plan, le logarithme du déterminant de la matrice d'information est égal à 9,29, le critère CN est égal à 27,59 et le critère G-efficacité est égal à 56,23. On peut à chaque fois choisir un plan parmi les 5 selon le critère que l'on souhaite favoriser.

Le plan optimal (tableau 2) choisi par le logiciel Modde comporte en fait 21 simulations : 20 expériences auxquelles s'ajoute le centre de gravité du domaine (voir paragraphe suivant), en respectant les contraintes imposées.

Numéro		Facteurs d'	entrée (mm)	Numéro	Facteurs d'entrée (mm))
d'expérience	Longueur	Hauteur	Abscisse	Ordonnée	d'expérience	Longueur	Hauteur	Abscisse	Ordonnée
1	0,5	0,5	0	2	11	0,5	1	0	1
2	4	0,5	0	2	12	0,5	1	3,5	2
3	0,5	2	0	2	13	0,5	2	2,3	2
4	4	2	0	2	14	0,5	1,5	3,5	1,5
5	0,5	0,5	3,5	2	15	2,8	0,5	0	2
6	0,5	2	3,5	2	16	1,7	0,5	0	0,5
7	4	0,5	0	0,5	17	1,7	0,5	2,3	2
8	0,5	0,5	3,5	0,5	18	4	1,5	0	2
9	0,5	0,5	0	1	19	4	1	0	1
10	0,5	0,5	1,2	0,5	20	2,8	2	1,2	2
					21	1,7	0,5	1,2	1,3

Tableau 2 : plan d'expériences D-optimal obtenu par le logiciel Modde

Afin de diminuer le nombre de simulations et d'analyser les modèles mathématiques de ce plan par les deux logiciels, le plan optimal sera importé dans le logiciel Nemrodw. Mais, tout d'abord, nous allons montrer que le plan D-optimal généré par le logiciel Nemrodw est diffèrent de celui issu du logiciel Modde.

III.4. Plan optimal avec le logiciel Nemrodw

Rappelons que, parmi Nc expériences candidates (voir paragraphe V.1 du chapitre 1), le logiciel Nemrodw utilise l'algorithme d'échange pour élaborer la matrice d'expériences optimale.

Pour un plan à 4 facteurs, le domaine d'étude est un espace à 4 dimensions. Les points candidats pour le calcul du modèle et la détermination de la matrice d'expériences forment ce qu'on appelle un hyperpolyèdre de dimension 4.

Les points de la matrice sont situés sur les sommets, les milieux des arêtes, les milieux des faces de dimension 2 et 3 et enfin, le centre de gravité. Le nombre et l'emplacement des points candidats pour constituer la matrice d'expériences sont regroupés dans le tableau 3.

Points	Nombre de points candidats
Nombre de sommets	11
Nombre d'arêtes	24
Nombre de faces de dimension 2	25
Nombre de faces de dimension 3	8
Centre de Gravité	1
Points tests internes	0
Total	69

Tableau 3 : points candidats pour la constitution de la matrice d'expériences

On remarque qu'il existe 69 expériences candidates pour la construction de la matrice d'expériences optimale. Comme nous l'avons rappelé précédemment, le logiciel Nemrodw utilise la procédure de l'algorithme d'échange (voir paragraphe V du chapitre 1) pour construire cette matrice. Le nombre d'expériences initial est égal à 15 (égal au nombre d'inconnus du modèle) et nous avons choisi arbitrairement $N_{max} = 35$ pour le nombre d'expériences final. Le logiciel cherche donc le nombre d'expériences N optimal qui est compris entre 15 et 35.

Le déterminant de la matrice d'information croît en fonction du nombre d'expériences. Afin de comparer des matrices d'expériences de tailles différentes, il est nécessaire de définir un nouvel indicateur algébrique : le déterminant de la matrice des moments [5]. Cette dernière matrice est définie de la façon suivante :

$$M = \frac{1}{N} (X)$$
(2)

Le logiciel Nemrodw adopte la définition d'un déterminant normé, en prenant le déterminant de la matrice des moments élevé à la puissance 1/p, p étant le nombre d'inconnues associées à la forme générale du modèle (Det(M)^{1/p}). Si l'ajout d'une nouvelle ligne à une matrice

d'expériences optimale de taille N se traduit par un déséquilibre dans la distribution des traitements au sein du domaine expérimental, on constatera une diminution du déterminant de la matrice des moments.

Le logiciel Nemrodw représente en fonction du nombre d'expériences, l'évolution graphique des trois critères de qualité (figure 4) :

- le déterminant de la matrice des moments élevé à la puissance 1/p (a),
- la trace de la matrice de dispersion (b),
- la fonction de variance maximale notée d_{max}, calculée dans tout le domaine expérimental d'intérêt (c).

Figure 4 : critères d'optimalités obtenus par le logiciel Nemrodw

Nous avons reporté dans le tableau 4 les valeurs de ces critères ainsi que le déterminant de la matrice d'information et le critère G-efficacité pour un nombre d'expériences variant de 19 à 23.

Nombre d'expériences	$\text{Det}(M)^{1/p}$	Trace $(^{t}XX)^{-1}$	d _{max}	Log(Det(^t XX))	G-efficacité
19	0,2272	14,130	1,26	4,316	63
20	0,2314	13,475	1,14	4,628	66
21	0,2334	13,100	0,96	4,901	74
22	0,2322	12,741	0,93	5,108	74
23	0,2323	11,769	0,91	5,343	72

Tableau 4 : critères d'optimalité obtenus par le logiciel Nemrodw

Comme on peut le remarquer, en augmentant le nombre d'expériences, la trace de la matrice de dispersion et la fonction de variance maximale d_{max} diminuent alors que le déterminant de la matrice d'information, le déterminant de la matrice des moments et le critère G-efficacité augmentent (sauf pour N = 23 expériences).

La solution optimale de 21 expériences a été retenue car ce nombre conduit à un bon compromis entre un déterminant de la matrice d'information maximal, une trace de la matrice de dispersion minimale avec d_{max} égal à 0,96. En effet, d'après la figure 4-c, on remarque que le nombre d'expériences optimal trouvé est 21 (comme pour Modde), ce qui correspond à un coefficient G-efficacité maximal puisque :

$$G - efficacit\acute{e} = \frac{p}{\max\{d(\xi_N, x_0)\}}$$
(3)

où p est le nombre d'inconnus dans le modèle et d(ξ_N , x_0) la fonction de variance standardisée.

Selon F. Louvet et L. Delplanque [5] : «La matrice de dispersion étant définie à partir d'une matrice d'expériences donnée, et pour une variance expérimentale supposée constante au sein du domaine expérimental, la variance de prévision de la réponse ne dépend que de la nature de la combinaison des modalités des facteurs.

On peut ainsi détecter la combinaison pour laquelle la variance de prévision est la plus grande et c'est cette combinaison que l'on va introduire, comme expérience supplémentaire, dans la matrice d'expériences. Pour ce faire, on définit la fonction de variance standardisée à partir de la relation suivante :

$$d(\xi_N, x_0) = N[{}^t f(x_0)({}^t X X)^{-1} f(x_0)]$$
(4)

Cette fonction est calculée systématiquement pour chacune des combinaisons du domaine expérimental, afin d'identifier celle pour laquelle cette fonction présente un maximum. Quand plusieurs combinaisons présentent une valeur maximale pour la fonction de variance standardisée, on en retient une au hasard, pour l'introduire dans la matrice d'expériences». Le critère G-efficacité s'écrit alors de la façon suivante :

$$G - efficacit\acute{e} = \frac{p}{N \times d_{\max}}$$
(5)

On démontre que lorsqu'une matrice d'expériences est optimale, le maximum de la fonction de variance standardisée est égal à p. La valeur du critère G-efficacité est donc égale à 1 (ou 100%). Dans le cas présent, la valeur de d_{max} est égale à 0,96, le nombre d'expériences est égal à 21 avec p égal à 15 inconnus, ce qui conduit à une valeur de G-efficacité de 74,4 %.

On pourrait choisir une matrice optimale avec un nombre N plus grand et des critères de qualités meilleurs, mais notre objectif était d'associer une bonne qualité de la matrice d'expériences avec un faible nombre de simulations.

Le plan D-optimal trouvé par le logiciel Nemrodw (tableau 5) est différent de celui trouvé par le logiciel Modde (tableau 2) car les deux logiciels génèrent un plan optimal selon des critères différents et ils utilisent des algorithmes d'échange différents.

Deux plans différents auraient conduit à un trop grand nombre de simulations. C'est la raison pour laquelle, nous avons choisi arbitrairement d'utiliser le plan d'expériences généré par le logiciel Modde et de l'importer ensuite dans le logiciel Nemrodw afin d'exploiter les résultats du plan avec les deux logiciels.

Partie IV – chapitre 2 : optimisation de forme du VO₂ dans un résonateur en alumine

Numáro		Facteurs d'e	entrée (mm)		Numéro	Facteurs d'entrée (mm)			
d'expérience	Longueur	Hauteur	Abscisse	Ordonnée	d'expérience	Longueur	Hauteur	Abscisse	Ordonnée
1	0,5	0,5	0	0,5	11	0,5	1,25	0	1,25
2	4	0,5	0	0,5	12	0,5	0,5	3,5	1,25
3	0,5	0,5	3,5	0,5	13	4	1,25	0	2
4	0,5	0,5	0	2	14	2,25	0,5	1,75	2
5	4	0,5	0	2	15	2,25	2	0	2
6	0,5	2	0	2	16	2,25	1,25	1,75	1,25
7	4	2	0	2	17	2,25	1,25	1,75	2
8	0,5	0,5	3,5	2	18	2,6	1,25	0	1,25
9	0,5	2	3,5	2	19	0,5	0,5	1,75	1,25
10	0,5	0,5	1,75	0,5	20	0,5	1,25	1,75	2
					21	2,25	0,5	0	1,25

Tableau 5 : plan optimal obtenu par le logiciel Nemrodw

Dans le tableau 6, nous avons reporté les valeurs des facteurs d'entrée et les réponses associées correspondantes au plan choisi.

Nerradara		Facteurs d'	entrée (mm)	Réponses			
d'expérience	Longueur	Hauteur	Abscisse	Ordonnée	ΔF ₂₋₄ (MHz)	Q ₀₂	Q ₀₄	
1	0,5	0,5	0	2	0,010	12829	13187	
2	4	0,5	0	2	47,600	524	471	
3	0,5	2	0	2	0,020	12673	13120	
4	4	2	0	2	91,594	217	332	
5	0,5	0,5	3,5	2	0,100	9534	13224	
6	0,5	2	3,5	2	0,185	9189	12247	
7	4	0,5	0	0,5	23,166	1088	907	
8	0,5	0,5	3,5	0,5	0,051	11495	12886	
9	0,5	0,5	0	1	0,008	12911	11713	
10	0,5	0,5	1,2	0,5	0,023	12339	13073	
11	0,5	1	0	1	0,011	12901	13149	
12	0,5	1	3,5	2	0,132	9122	12703	
13	0,5	2	2,3	2	0,143	9788	12479	
14	0,5	1,5	3,5	1,5	0,146	9883	12384	
15	2,8	0,5	0	2	40,217	1203	124	
16	1,7	0,5	0	0,5	0,575	3756	10996	
17	1,7	0,5	2,3	2	17,175	606	2373	
18	4	1,5	0	2	81,057	250	355	
19	4	1	0	1	43,138	510	596	
20	2,8	2	1,2	2	281,421	243	1560	
21	1.7	0.5	1.2	1.3	9,769	1080	3565	

Tableau 6 : plan d'expériences facteurs et réponses

III.5. Analyse et optimisation

Le but de ce travail est d'optimiser la forme du VO₂ pour avoir une différence de fréquence de résonance $\Delta F_{2-4} = |F_{r2} - F_{r4}|$ supérieure à 50 MHz avec des valeurs des facteurs de qualité à vide supérieures ou égales à 800.

Nous allons dans un premier temps analyser les qualités descriptive et prédictive des modèles mathématiques.

III.5.1. Qualités descriptive et prédictive des modèles

Avec le logiciel Modde, nous avons le choix d'utiliser la méthode d'estimation des coefficients du modèle (MLR ou PLS). Ici, le nombre de réponses étant égal à 3, on peut utiliser la méthode MLR (voir partie II, chapitre 1, paragraphe II.3.1).

Le logiciel Nemrodw utilise toujours la méthode MLR pour estimer les coefficients du modèle. Nous allons donc obtenir les mêmes résultats d'analyse des modèles avec les deux logiciels et ne présenter que les résultats issus du logiciel Nemrodw.

Comme pour les plans précédents, nous allons juger de la qualité descriptive et prédictive des modèles mathématiques à partir des valeurs des coefficients R^2 , $R^2_{ajusté}$ et $R^2_{predictif}$. Nous étudions aussi la valeur de la significativité donnée dans le tableau ANOVA. Tous ces coefficients sont reportés dans le tableau 7.

Coefficients	ΔF_{2-4}	Q ₀₂	Q ₀₄
R^2	0,754	0,991	0,978
R ² _{ajusté}	0,18	0,97	0,925
R ² _{predictif}	N.D	0,845	0,537
Significativité (%)	38,8	< 0,01	0,085

Tableau 7 : qualités descriptive et prédictive du modèle

On peut remarquer d'après le tableau 7 que le modèle correspondant à la réponse ΔF_{2-4} possède de mauvaises qualités descriptive et prédictive. Ces mauvaises qualités sont confirmées par la valeur de la significativité pour cette réponse. On constate que 38,8 % de la réalité n'est pas représentée par le plan. Les résultats seront à prendre avec beaucoup de précaution concernant cette réponse. Concernant les deux autres réponses, on peut dire que les modèles ont des qualités descriptive et prédictive satisfaisantes.

Afin d'améliorer le modèle pour la réponse ΔF_{2-4} , nous allons analyser les résidus pour savoir s'il existe des expériences atypiques.

III.5.2. <u>Analyse des résidus pour toutes les réponses</u>

Nous allons dans un premier temps analyser les résidus de la réponse $\Delta F_{2.4}$. La figure 5-a représente les valeurs des résidus studentisés en fonction de la réponse calculée (voir partie II, chapitre 2, paragraphe II.5.2). Il est attendu que les résidus doivent être distribués aléatoirement autour de zéro. Si une tendance apparaît, comme par exemple une augmentation de la valeur absolue des résidus avec la réponse, une vérification de l'expérience est nécessaire.

Partie IV – chapitre 2 : optimisation de forme du VO₂ dans un résonateur en alumine

Figure 5 : détection des expériences atypiques pour la réponse $\Delta F_{2.4}$ (a), Q_{02} (b) et Q_{04} (c)

On remarque que les expériences 17 et 20 sont atypiques pour la réponse ΔF_{2-4} . Il en est de même pour les expériences 2, 4 et 5 qui possèdent aussi des valeurs de résidus non négligeables. Avant de choisir les expériences à désactiver du plan, nous allons analyser les résidus pour les deux autres réponses Q₀₂ et Q₀₄ (figures 5-b et 5-c).

Parmi les expériences 2, 4, 5, 17 et 20, identifiées comme atypiques pour la réponse ΔF_{2-4} , nous allons choisir celles qui possèdent aussi des résidus importants pour les réponses Q_{02} et Q_{04} . Parmi ces cinq expériences, nous avons remarqué que les expériences 2, 17 et 20 possèdent des résidus importants soit pour la réponse Q_{02} , soit pour la réponse Q_{04} , nous allons donc les désactiver du plan.

Parmi les deux expériences 4 et 5, nous allons choisir une seule expérience à désactiver afin de ne pas trop dégrader la qualité de la matrice d'expériences (diminution du nombre de degrés de liberté). Pour cela, nous allons observer la statistique «Distance de Cook (D_i) » qui est une mesure de la modification des valeurs des réponses calculées si le calcul des coefficients est effectué sans l'expérience i. Une valeur élevée de D_i traduit une erreur de saisie, un modèle incorrect ou une discontinuité de la réponse. Pour juger si la distance D_i est élevée, Cook [6, 7] propose le seuil 0,5 comme préoccupant.

Une expérience influente est donc une expérience qui, désactivée, conduit à une grande variation dans l'estimation des coefficients, c'est-à-dire à une distance de Cook élevée.

$$D_{i} = \frac{h_{i}(\hat{Y}_{i} - \hat{Y}_{(-i)})^{2}}{(k+1)\hat{\sigma}^{2}}$$
(6)

où h_i est le i^{ème} élément diagonal de la matrice $X(^{t}XX)^{-1}(^{t}X)$, k le nombre de facteurs et $\hat{\sigma}^{2}$ l'écarttype des résidus.

Nous avons reporté dans le tableau 8, les valeurs de la distance de Cook obtenues pour les deux expériences 4 et 5 pour toutes les réponses.

D-cook	Réponse ΔF_{2-4}	Réponse Q ₀₂	Réponse Q ₀₄
Expérience 4	0,3877	0,3	0,1
Expérience 5	0,5057	0,3	0,2

Partie IV – cha	pitre 2 : o	ptimisation d	le forme du	VO_2 dans	un résonateur e	n alumine

Compte tenu des résultats obtenus, nous avons désactivé l'expérience numéro 5.

III.5.3. <u>Résultats obtenus après désactivation des expériences atypiques</u>

Nous avons donc désactivé les expériences 2, 5, 17 et 20 du plan d'expériences. Nous allons dans un premier temps comparer les qualités des modèles mathématiques pour toutes les réponses avant et après la désactivation. Les valeurs de R^2 , $R^2_{ajusté}$, $R^2_{predictif}$ et la significativité sont reportées dans le tableau 9.

Coefficients	Ava	nt désactiv	ation	Après désactivation			
Coefficients	ΔF_{2-4}	Q ₀₂	Q ₀₄	ΔF_{2-4}	Q ₀₂	Q ₀₄	
\mathbf{R}^2	0,754	0,991	0,978	1	1	1	
R ² ajusté	0,18	0,97	0,925	0,999	0,999	1	
R ² predictif	N.D	0,845	0,537	1	1	1	
Significativité (%)	38,8	< 0,01	0,085	0,119	0,0506	< 0,01	

Tableau 9 : qualités des modèles avant et après désactivation des expériences atypiques

On peut remarquer l'excellente qualité des modèles mathématiques après la désactivation des 4 expériences. Nous allons, pour confirmer ces résultats, comparer les valeurs calculées et simulées de toutes les réponses (tableau 10).

	Réponse ΔF_{2-4} (MHz)			Réponse Q ₀₂			Réponse Q ₀₄		
Numero d'expérience	ΔF_{2-4} simulé	ΔF_{2-4} calculé	Différence (%)	Q ₀₂ simulé	Q ₀₂ calculé	Différence (%)	Q ₀₄ simulé	Q ₀₄ calculé	Différence (%)
1	0,010	0,010	0	13187	13187	0,00	13187	13187	0,00
3	0,020	0,191	> 100	13120	13123	0,02	13120	13123	0,02
4	91,594	91,256	0,37	332	326,8	1,57	332	326,8	1,57
6	0,185	0,860	> 100	12247	12257,5	0,09	12247	12257,5	0,09
7	23,166	22,491	2,91	907	896,5	1,16	907	896,5	1,16
8	0,051	0,218	> 100	12886	12888,2	0,02	12886	12888,2	0,02
9	0,008	0,008	0	11713	11713	0,00	11713	11713	0,00
10	0,023	0,277	> 100	13073	13077,5	0,03	13073	13077,5	0,03
11	0,011	-0,240	> 100	13149	13144,5	0,03	13149	13144,5	0,03
12	0,132	0,132	0	12703	12703	0,00	12703	12703	0,00
13	0,143	-0,111	> 100	12479	12474,5	0,04	12479	12474,5	0,04
14	0,146	-0,616	> 100	12384	12372,8	0,09	12384	12372,8	0,09
15	40,217	40,217	0	124	124	0,00	124	124	0,00
16	0,575	0,575	0	10996	10996	0,00	10996	10996	0,00
18	81,057	81,057	0	355	355	0,00	355	355	0,00
19	43,138	44,151	2,35	596	611,7	2,63	596	611,7	2,63
21	9,769	9,769	0	3565	3565	0,00	3565	3565	0,00

Tableau 10 : différences entre les valeurs simulées et les valeurs calculées pour toutes les réponses

Tableau 8 : distance de Cook pour les deux expériences 4 et 5

L'excellente qualité des modèles pour les réponses Q_{02} et Q_{04} est confirmée à l'aide du tableau 10, on peut remarquer les faibles différences entre les réponses calculées et simulées. Concernant la réponse ΔF_{2-4} , nous avons remarqué de grands écarts entre les valeurs simulées et calculées pour des petites valeurs de cette réponse ($\Delta F_{2-4} < 0,146$ MHz). Notre but est de chercher une valeur de cette réponse supérieure à 50 MHz. D'après le tableau 10, tant que ΔF_{2-4} est supérieure à 9 MHz, les résidus de cette réponse sont très faibles.

Nous allons maintenant analyser graphiquement les modèles afin de voir l'évolution des réponses en fonction des facteurs d'entrée.

III.5.4. Analyse graphique des résultats

Pour étudier les effets des facteurs d'entrée sur toutes les réponses, nous allons observer les surfaces de réponses. La figure 6 représente les surfaces de réponse pour la réponse Q_{02} .

Figure 6 : surfaces de réponses pour la réponse Q₀₂ ; (a) facteurs d'entrée H et L, (b) facteurs d'entrée x et y.

Nous n'avons pas représenté les surfaces de réponses pour les autres réponses, mais nous donnons brièvement les effets des facteurs sur la totalité des réponses :

- la réponse ΔF_{2-4} augmente quand L, H, x et y augmentent ;
- la réponse Q₀₂ augmente quand L et x diminuent ; pas d'effet de H et y sur le facteur de qualité à vide Q₀₂ ;
- la réponse Q_{04} augmente quand L et x diminuent ; pas d'effet de H et y sur le facteur de qualité à vide Q_{04} .

D'après les analyses graphiques on peut dire que la différence de fréquence de résonance $\Delta F_{2.4}$ augmente avec la surface du rectangle de VO₂. Par contre, les facteurs de qualité Q₀₂ et Q₀₄ augmentent quand la surface du rectangle diminue. Le but est de chercher la surface optimale du rectangle caractérisé par sa hauteur H et sa longueur L. On peut aussi remarquer que la réponse $\Delta F_{2.4}$ augmente quand l'abscisse x augmente mais dans ce cas, les facteurs de qualité diminuent.

Avant d'aborder l'étape de la recherche multicritère, nous allons proposer un point test pour savoir si le modèle mathématique permet de prévoir les valeurs des réponses en n'importe quel point du domaine expérimental.

III.5.5. Point test interne

Prenons par exemple une surface caractérisée par : L = 1,46 mm, H = 1,54 mm, x = 1,36 mm et y = 2 mm (voir figure 7).

Figure 7 : position et surface du VO₂ au point test

Nous avons utilisé les modèles mathématiques pour calculer les trois réponses, ensuite, nous avons simulé la structure caractérisée par les valeurs des facteurs d'entrée données précédemment. Dans le tableau 11, nous avons reporté les valeurs des trois réponses obtenues à partir des modèles mathématiques et après simulation de la structure représentée sur la figure 7.

Réponses	ΔF_{2-4} (MHz)	Q ₀₂	Q ₀₄
Modèles	47,1	841	10403
Simulations	3,16	543	5146
écart (%)	93	35	50

Tableau 11 : réponses calculées et simulées sur un point test

Les excellentes qualités prédictives obtenues montrent que les modèles prévoient effectivement les réponses aux points expérimentaux mais pas dans la totalité du domaine. En effet, d'après le tableau 11, on remarque que les modèles ne permettent pas de prévoir les valeurs des réponses en n'importe quel point du domaine d'intérêt

Nous allons maintenant rechercher un optimum multicritère sachant que l'on n'a pas l'assurance à ce stade d'obtenir des résultats validés par la simulation.

III.5.6. Optimisation multicritère

Les fonctions de désirabilité individuelle sont des fonctions unilatérales gauches puisque l'on cherche à maximiser les trois réponses. Nous avons simulé plusieurs structures données à partir des solutions trouvées par le logiciel. Parmi cinq solutions choisies, une seule est proche du but recherché. Les valeurs optimales des facteurs d'entrée pour cette solution sont : L = 2,5 mm, H = 1,5 mm, x = 0 et y = 2.

Les valeurs des réponses calculées pour cette solution ainsi que les valeurs obtenues par simulation sont données dans le tableau 12.

Partie IV – chapitre 2 : optimisation de forme du VO ₂ dans un résonateur en alur	nine
--	------

Réponses	ΔF_{2-4} (MHz)	Q ₀₂	Q ₀₄
Modèles	55	707	9772
Simulations	47	500	532
écart (%)	14,5	29	94

Tableau 12 : résultats de l'optimisation multicritère

A nouveau, on constate une grande différence entre les réponses calculées et les réponses simulées pour cette structure (voir figure 8).

Figure 8 : position et surface du VO₂

Afin de comprendre pourquoi les modèles ne décrivent pas correctement les variations des réponses sachant que les qualités prédictives semblent excellentes, nous avons regardé l'évolution des réponses Q_{02} et Q_{04} en fonction de la réponse ΔF_{2-4} (figures 9 et 10).

Figure 9 : évolution de la réponse Q_{02} en fonction de la réponse ΔF_{2-4}

Figure 10 : évolution de la réponse Q_{04} en fonction de la réponse $\Delta F_{2.4}$

D'après les figures 9 et 10, on peut remarquer que les expériences peuvent être regroupées en deux familles :

- celles qui permettent d'obtenir des facteurs de qualité élevés avec un écart fréquentiel très faible (de l'ordre de 0,01 MHz),
- celles qui conduisent à un grand écart fréquentiel mais avec de faibles facteurs de qualité (de l'ordre de 200).

Nous avons aussi remarqué que le passage d'une famille à l'autre, se fait brutalement par une petite variation d'un des facteurs d'entrée. Par exemple, pour la structure de la figure 9, caractérisée par : L = 2,5 mm, H = 1,5 mm, x = 0 et y = 2, les réponses obtenues par simulation sont : $\Delta F_{2-4} = 47$ MHz, $Q_{02} = 500$ et $Q_{04} = 532$. Si on simule cette structure en diminuant la longueur L de 2,5 mm à 2 mm, on obtient : $\Delta F_{2-4} = 9$ MHz, $Q_{02} = 600$ et $Q_{04} = 3400$.

Dans la littérature, le VO_2 en couches minces présente des transitions de phase pouvant atteindre des valeurs bien supérieures à celles que nous avons utilisées dans le plan précédent (100) [8]. Nous allons dans la suite voir si la structure de la figure 8 simulée avec un rapport de conductivité qui varie entre 10 et 10^4 , conduit à de meilleurs résultats.

III.6. Etude pour différentes valeurs de conductivité

Nous avons étudié la structure de la figure 8 pour différentes valeurs de la conductivité entre 10 S/m et 10⁵ S/m. Nous avons reporté dans le tableau 13, les valeurs des réponses obtenues par simulations.

$\Delta F_{1-2} = 4,3 \text{ MHz}$	$Q_{01} = 1566$	$Q_{02} = 505$
$\Delta F_{1-3} = 17 \text{ MHz}$	$Q_{01} = 1566$	$Q_{03} = 138$
$\Delta F_{1-4} = 46,8 \text{ MHz}$	$Q_{01} = 1566$	$Q_{04} = 532$
$\Delta F_{1-5} = 42 \text{ MHz}$	$Q_{01} = 1566$	$Q_{05} = 1584$
$\Delta F_{2-3} = 42 \text{ MHz}$	$Q_{02} = 505$	$Q_{03} = 138$
$\Delta F_{2-4} = 47 \text{ MHz}$	$Q_{02} = 505$	$Q_{04} = 532$
$\Delta F_{2-5} = 45,5 \text{ MHz}$	$Q_{02} = 505$	$Q_{05} = 1584$
$\Delta F_{3-4} = 29 \text{ MHz}$	$Q_{03} = 138$	$Q_{04} = 532$
$\Delta F_{3-5} = 23.9 \text{ MHz}$	$Q_{03} = 138$	$Q_{05} = 1584$
$\Delta F_{4-5} = 5,6 \text{ MHz}$	$Q_{04} = 532$	$Q_{05} = 1584$

Tableau 13 : valeurs des réponses pour plusieurs valeurs de conductivité

On peut remarquer que les réponses sont meilleures si la différence entre les deux valeurs de conductivité est grande. Pour une conductivité variant de 10 S/m à 10^5 S/m, nous avons obtenu un écart fréquentiel $\Delta F_{1.5}$ de 42 MHz. Le facteur de qualité correspondant à la conductivité $\sigma_1 = 10$ S/m, est égal à 1566 ; celui de la conductivité $\sigma_2 = 10^5$ S/m, est égal à 1584.

Ayant montré auparavant que ΔF_{i-j} augmente avec la surface de VO₂, nous avons doublé la surface de VO₂ en exploitant les symétries (figure 11) sachant que les valeurs élevées des facteurs de qualité pourront supporter la détérioration attendue.

Figure 11 : structures simulées en exploitant les symétries

Cette analyse est confirmée par les résultats de simulations des structures (a), (b) et (c) reportés dans le tableau 14.

	ΔF_{1-5} (MHz)	Q ₀₁	Q ₀₅
(a)	83	834	835
(b)	78	830	971
(c)	68	815	1271

Tableau 14 : résultats de simulations

IV. <u>Conclusion</u>

Un plan optimal a été utilisé dans ce chapitre, la construction de ce plan consiste à extraire du domaine expérimental un certain nombre de combinaisons permettant de satisfaire différents critères algébriques. Le processus d'extraction est effectué à partir d'un algorithme d'échange à l'aide des deux logiciels Nemrodw et Modde. Chacun de ces deux logiciels permet d'obtenir un plan optimal qui satisfait aux critères d'optimalité.

Un plan optimal a été utilisé dans ce chapitre, la construction de ce plan consiste à extraire du domaine expérimental un certain nombre de combinaisons permettant de satisfaire différents critères algébriques. Le processus d'extraction est effectué à partir d'un algorithme d'échange à l'aide des deux logiciels Nemrodw et Modde. Chacun de ces deux logiciels permet d'obtenir un plan optimal qui satisfait aux critères d'optimalité.

Après analyse des modèles mathématiques, nous avons identifié les expériences atypiques et nous les avons éliminées du plan d'expériences. Cette étape a conduit à des modèles qui bénéficient d'une excellente qualité, ce qui traduit des faibles résidus sur tous les points du plan.

Afin d'étudier la qualité des modèles dans la totalité du domaine expérimental, nous avons choisi un point test et nous avons calculé les réponses en ce point. Nous avons noté les grandes différences obtenues entre les réponses simulées et calculées en ce point, ce qui signifie que les modèles prévoient effectivement les réponses aux points expérimentaux mais pas dans la totalité du domaine. Nous avons tout de même cherché un optimum multicritère sachant que l'on n'a pas l'assurance à ce stade d'obtenir des résultats validés par la simulation.

Partie IV – chapitre 2 : optimisation de forme du VO₂ dans un résonateur en alumine

La recherche multicritère a conduit à plusieurs solutions. Malgré les grandes différences entre les réponses calculées et simulées, nous avons trouvé une solution proche de celle recherchée.

Afin de comprendre pourquoi les modèles ne décrivent pas correctement les variations des réponses sachant que leur qualité prédictive semble excellente, nous avons tracé les valeurs des facteurs de qualité à vide en fonction de la réponse $\Delta F_{2.4}$, nous avons remarqué que les réponses se regroupent en deux familles : pour une grande différence de fréquences de résonance, les facteurs de qualité sont presque nuls et inversement. Il n'existe pas de points expérimentaux entre ces deux familles, ce qui traduit l'incapacité des modèles à prévoir les réponses dans le domaine expérimental.

Sachant que le VO₂ en couches minces présente des transitions de phase pouvant atteindre des valeurs bien supérieures à celle que nous avons utilisée, nous avons étudié la structure optimale pour une conductivité variant de 10 et 10^5 S/m. les résultats obtenus montrent des valeurs élevées des facteurs de qualité à vide et des écarts fréquentiels inferieurs à 50 MHz. Du fait que cet écart augmente avec l'augmentation de la surface occupée par le VO₂, nous avons doublé cette surface en exploitant les symétries. L'écart fréquentiel augmente et les facteurs de qualité à vide diminuent mais restent au-dessus des valeurs cherchées.

V. <u>Références</u>

[1] F.J. Morin. Oxides which show a metal-to insulator transition at the Neel temperature. Physical Review Letters, vol 3, 34 - 36, 1959.

[2] S. Gevorgian. Tuneable materials for agile microwave devices, an overview. 38th European Microwave Conference Workshop WWE-6, 2008.

[3] N.F. Mott. Metal-insulator transition. Review of Modern Physics, 40, 677 - 683, 1968.

[4] G. Stefanovich, A. Pergament, D. Stefanovich. Electrical switching and Mott transition in VO₂. Journal of Physics : Condensed Matter, 12, 8837 - 8845.

[5] F. Louvet et L. Delplanque, Design of Experiments : the Frensh touch, Témoignage de l'association Expérimentique. Plan optimal pour l'etude des effets moyens des facteurs. Page 20. n° ISBN : 2-952512-60-4, [1996-2005].

[6] R.D. Cook. Detection of inauential observations in linear regression. Technometrics 19, 15 - 18, 1977.

[7] J. A. Diaz-Garcia, G. Gonzalez-Farias. A note on the Cook's distance. Journal of Statistical Planning and Inference 120, 119 - 136, 2004.

[8] Y. Shin, J. Moon and H. Ju. Growth and Electrical Properties of Vanadium-Dioxide Thin Films Fabricated by Magnetron Sputtering. Journal of the Korean Physical Society, Vol. 52, No. 6, 1828-1831, 2008.

Chapitre 3 : Optimisation d'un résonateur planaire de Hairpin

I. Introduction

Le but de ce chapitre est d'appliquer la méthode des plans d'expériences afin d'optimiser un filtre planaire de Hairpin [1 - 4]. Ces travaux sont menés en collaboration avec N. Mahdi, doctorant au sein du département MINACOM du laboratoire XLIM. Cette optimisation comporte quatre facteurs d'entrée liés par des contraintes. Ce filtre présente deux fréquences de résonance. Dans cette étude, on cherche à fixer la fréquence de résonance du premier mode et à éloigner le plus possible la fréquence de résonance du deuxième mode, ceci tout en maximisant le facteur de qualité à vide sans augmenter l'encombrement du résonateur. En présence de contraintes entre les facteurs d'entrée, un plan optimal est utilisé.

II. Structure de référence

La structure de référence du résonateur est composée d'une ligne en technologie microruban [2] et de deux accès entrée/sortie comme le montre la figure 1.

Figure 1: résonateur de réference

Les longueurs L₁ et L₂ de la ligne sont respectivement égales à 4280 μ m et 900 μ m ; sa largeur w est de 80 μ m. Le substrat utilisé est l'alumine de permittivité relative $\epsilon_r = 9,9$ et de tangente de pertes tang $\delta = 2.10^{-3}$. La réponse en fréquence de ce résonateur est donnée sur la figure 2.

Figure 2 : réponse en fréquence du résonateur de référence

Cette structure de référence conduit à une fréquence de résonance $F_0 = 6,44$ GHz, un deuxième mode à la fréquence $F_1 = 12,36$ GHz et un facteur de qualité à vide $Q_0 = 106$.

III. Utilisation de la méthode des plans d'expériences

Les quatre facteurs d'entrée choisis pour cette étude, donnés dans la figure 3, sont :

Figure 3 : facteurs d'entrée utilisés

- la longueur des lignes verticales L_1 qui varie entre 2500 et 4280 μ m,
- la largeur des lignes verticales W_1 qui varie entre 60 et 280 μ m,
- la longueur de la ligne horizontale L_2 qui varie entre 500 et 900 μ m,
- la largeur de la ligne horizontale W_2 qui varie entre 60 et 300 μ m.

Afin de ne pas augmenter la surface occupée par le résonateur, nous avons appliqué deux contraintes relationnelles entre les facteurs :

- $L_1 + W_2 \le 4360 \ \mu m$ pour limiter verticalement la longueur du résonateur à 4360 μm .
- $2 \times W_1 + L_2 \le 1060 \ \mu m$ pour limiter horizontalement la largeur du résonateur à 1060 μm .

III.1. Utilisation d'un plan d'expériences optimal

Le modèle polynomial choisi est un modèle de degré 2 comportant 15 coefficients à estimer. Le plan d'expériences choisi dans cette étude est un plan D-optimal car il permet d'imposer des contraintes entre les facteurs. La génération de ce plan est faite par les deux logiciels Modde et Nemrodw.

III.1.1. Génération d'un plan optimal à l'aide du logiciel Modde

Dans un premier temps, la recherche d'un plan optimal a été réalisée à l'aide du logiciel Modde et conduit aux 5 plans reportés dans le tableau 1.

Numéro plan	Nombre d'expériences	degrés de liberté	G-efficacité	Log (Det(^t XX)	Norm.Log (Det(^t XX)	Condition Number
1	19	5	53,5791	11,017	-0,54429	23,4142
2	20	6	49,6085	11,1021	-0,560888	22,2237
3	21	7	54,8722	11,6462	-0,545807	24,9073
4	22	8	60,5318	11,9643	-0,544801	24,0089
5	23	9	58,3373	12,2067	-0,547951	20,3344

Partie IV – chapitre 3 : optimisation d'un résonateur planaire de Hairpin

Tableau 1 : critères d'optimalités obtenus par le logiciel Modde

Parmi les plans proposés (tableau 1), le logiciel cherche un compromis entre les différents critères d'optimalité et sélectionne le plan optimal (plan numéro 4). Le logiciel n'a pas sélectionné les trois premiers plans parce que les valeurs de G-efficacité et du déterminant de la matrice d'informations sont les plus petites parmi les 5 plans. Parmi les deux derniers plans, le logiciel choisit le quatrième qui correspond à une G-efficacité maximale. Nous pouvons choisir le plan optimal selon le critère d'optimalité qu'on favorise (on peut par exemple choisir le dernier plan qui possède le meilleur critère Condition Number).

Le plan optimal choisi par le logiciel Modde (tableau 2) comporte en fait 23 simulations : 22 expériences plus le centre de gravité du domaine, en respectant les contraintes imposées.

Numéro		Facteurs	d'entrée		Numéro		Facteurs	d'entrée	
d'expérience	L ₁ (µm)	L ₂ (µm)	W ₁ (μm)	W ₂ (μm)	d'expérience	L1 (µm)	L ₂ (µm)	W ₁ (μm)	W ₂ (μm)
1	2500	500	60	60	13	2500	633	60	60
2	4280	500	60	60	14	2500	767	60	300
3	4280	900	60	60	15	2500	767	147	60
4	4060	500	60	300	16	2500	633	213	300
5	2500	500	280	60	17	4280	767	147	80
6	4280	500	280	60	18	3020	500	60	300
7	2500	500	280	300	19	3687	900	80	60
8	4060	500	280	300	20	3020	900	80	300
9	4060	900	80	300	21	3524	500	170	160
10	2500	500	60	220	22	3524	700	60	160
11	2500	500	133	300	23	3524	700	120	160
12	2500	000	60	140					

Tableau 2 : plan optimal proposé par le logiciel Modde

Afin d'éviter de réaliser un grand nombre de simulations et faire l'analyse des modèles du même plan par les deux logiciels, le plan optimal est importé dans le logiciel Nemrodw. Nous allons dans la suite générer un plan D-optimal par le logiciel Nemrodw et nous allons voir que le plan trouvé n'est pas le même que celui du logiciel Modde.

III.1.2. Génération d'un plan optimal à l'aide du logiciel Nemrodw

Pour un plan à 4 facteurs, le domaine d'étude est un espace à 4 dimensions. Les points candidats pour le calcul du modèle et la détermination de la matrice d'expériences forment un hyperpolyèdre de dimension 4 (voir paragraphe III.4 du chapitre 2). Le nombre et l'emplacement des points candidats pour constituer la matrice d'expériences sont regroupés dans le tableau 3.

Partie IV – cł	hapitre 3 :	optimisation d	'un résonateur	planaire	de Hairpin
	1	1		1	1

Points	Nombre de points candidats
Nombre de sommets	20
Nombre d'arêtes	45
Nombre de faces de dimension 2	31
Nombre de faces de dimension 3	10
Centre de Gravité	1
Points tests internes	0
Total	107

Tableau 3 : expériences candidates pour la construction d'un plan optimal par Nemrodw

On remarque d'après le tableau 3 qu'il existe 107 expériences candidates pour la construction de la matrice d'expériences optimale. Grâce au logiciel Nemrodw, nous avons démarré la procédure de l'algorithme d'échange (voir paragraphe V du chapitre 1), avec un nombre d'expériences initial égal à 15 (nombre d'inconnus du modèle) et nous avons précisé $N_{max} = 35$ pour le nombre d'expériences final. Le logiciel cherche donc le nombre N optimal qui est compris entre 15 et 35.

Le logiciel Nemrodw représente en fonction du nombre d'expériences, l'évolution graphique des trois critères de qualité (voir paragraphe III.4 du chapitre 2) :

- le déterminant de la matrice des moments élevé à la puissance 1/p,
- la trace de la matrice de dispersion,
- la fonction de variance maximale dmax, calculée dans tout le domaine expérimental d'intérêt.

Nombre d'expériences	Det (M) ^{1/p}	Trace (X'X) ⁻¹	d _{max}
15	0,28	14,41	2,77
16	0,293	10,49	2,07
23	0,32	5,47	0,84
35	0,33	3,57	0,61

Nous avons reporté dans le tableau 4, ces critères pour N = 15,16,23 et 35 expériences.

Tableau 4 : évolution des critères d'optimalité en fonction du nombre d'expériences

Le déterminant de la matrice des moments augmente avec le nombre d'expériences, la trace de la matrice de dispersion ainsi que la fonction de variance maximale diminuent. Comme on l'a vu dans le chapitre 2 de cette partie, la solution optimale est trouvée pour une fonction de variance maximale inférieure à 1 (G-efficacité maximale).

Le plan optimal obtenu par le logiciel Nemrodw comporte 23 expériences (comme le logiciel Modde). Nous allons maintenant regrouper dans le tableau 5 tous les critères d'optimalité obtenus par les deux logiciels Nemrodw et Modde pour N = 23 expériences.

N = 23 expériences						
	Logiciel Modde					
Log [Det (^t XX)] Condition Number G-efficacité (%						
11,96	24,0089	60,53				
	Logiciel Nemrodw					
Log [Det (^t XX)]	G-efficacité (%)					
7,59	5,47	78				

Tableau 5 : comparaison des critères d'optimalité obtenus par les deux logiciels

On remarque qu'avec le logiciel Modde, la valeur du déterminant de la matrice d'information est plus grande que celle obtenue par le logiciel Nemrodw. Par contre, le critère G-efficacité obtenu par le logiciel Modde est plus petit que celui obtenu par Nemrodw. En effet, les solutions optimales d'après le logiciel Nemrodw sont celles où la fonction de variance est inférieure à 1 donc un critère G-efficacité maximale (voir relation (5), chapitre 2). En revanche, pour le logiciel Modde, si on ne favorise pas un critère parmi les autres, le logiciel cherche un compromis entre ces critères et le nombre d'expériences.

Pour N = 23 expériences, le logiciel Nemrodw donne la trace de la matrice de dispersion qui est égale à 5,47. Cette valeur diminue avec l'augmentation du nombre d'expériences. Pour N = 15 expériences (nombre d'expériences initial) la valeur de la trace est égale à 14,41, pour N = 35 expériences (nombre d'expériences final), la valeur de la trace est égale à 3,57. Ainsi, pour la solution optimale (N = 23), la trace de la matrice de dispersion est faible et proche de la valeur minimale (3,57).

Pour un plan classique, la valeur du critère Condition Number reste inférieure à 10 ; pour un plan avec contraintes, une valeur de ce critère inférieure à 100 est acceptable.

Le plan optimal obtenu par le logiciel Nemrodw est donné dans le tableau 6. On remarque que le plan optimal trouvé par le logiciel Nemrodw est différent de celui trouvé par le logiciel Modde (à l'exception de quelques expériences qui sont communes).

Numéro		Facteurs	d'entrée		Numéro	o Facteurs d'entrée			
d'expérience	L1 (µm)	L ₂ (µm)	W1 (μm)	W ₂ (μm)	d'expérience	L1 (µm)	L ₂ (µm)	W ₁ (μm)	W ₂ (μm)
1	2500	500	60	60	13	4280	700	60	60
2	4280	500	60	60	14	3280	500	280	180
3	2500	900	60	60	15	2500	500	170	300
4	2500	500	280	60	16	4060	700	180	300
5	4280	500	280	60	17	4170	500	170	190
6	2500	500	60	300	18	2500	700	180	180
7	2500	500	280	300	19	3524	900	80	160
8	4060	500	60	300	20	3390	700	180	60
9	4060	900	60	300	21	2500	700	60	180
10	4060	500	280	300	22	3390	500	170	60
11	4280	900	80	60	23	3280	700	60	300
12	2500	900	80	300					

Tableau 6 : plan optimal proposé par le logiciel Nemrodw

Nous avons choisi arbitrairement d'utiliser le plan d'expériences généré par le logiciel Modde et de l'importer ensuite dans le logiciel Nemrodw afin d'exploiter les résultats du plan avec les deux logiciels. Deux plans différents auraient conduit à un trop grand nombre de simulations, ce qui n'est pas l'objectif recherché.

Le plan d'expériences, les facteurs d'entrée et les réponses sont donnés dans le tableau 7.

Numéro	Facteurs d'entrée			Réponses			
d'expérience	L ₁ (µm)	L ₂ (µm)	W1 (μm)	W ₂ (μm)	F ₀ (GHz)	F ₁ (GHz)	Q_0
1	2500	500	60	60	11,28	20,89	109
2	4280	500	60	60	6,84	12,80	90
3	4280	900	60	60	6,47	12,45	91
4	4060	500	60	300	7,28	12,45	97
5	2500	500	280	60	9,81	19,98	154
6	4280	500	280	60	6,21	12,30	138
7	2500	500	280	300	10,30	18,53	207
8	4060	500	280	300	6,73	12,31	174
9	4060	900	80	300	6,93	11,92	117
10	2500	500	60	220	11,44	19,21	120
11	2500	500	133	300	11,04	18,69	168
12	2500	900	60	140	10,64	18,80	125
13	2500	633	60	60	10,88	20,34	108
14	2500	767	60	300	11,03	17,77	128
15	2500	767	147	60	9,92	20,04	141
16	2500	633	213	300	10,33	18,34	201
17	4280	767	147	80	6,31	12,39	126
18	3020	500	60	300	9,61	15,93	111
19	3687	900	80	60	7,30	14,23	108
20	3020	900	80	300	9,02	15,08	131
21	3524	500	170	160	7,88	14,56	150
22	3524	700	60	160	8,07	14,39	105
23	3524	700	120	160	7,81	14,42	138

Tableau 7: plan d'expériences, facteurs d'entrée et réponses

Avant la réalisation des simulations, nous avons vérifié que toutes les expériences respectaient les deux contraintes appliquées.

Dans un premier temps, nous avons cherché les valeurs optimales des facteurs d'entrée qui conduisent à une fréquence F_0 de 6,4 GHz, une fréquence F_1 supérieure à 12 GHz avec un facteur de qualité le plus grand possible à la fréquence F_0 . Les analyses des modèles mathématiques ont été réalisées à partir des deux logiciels Nemrodw et Modde.

III.2. Analyse à l'aide du logiciel Nemrodw

Nous avons dans un premier temps analysé les modèles mathématiques issus du logiciel Nemrodw qui utilise la régression multilinéaire (MLR) pour estimer les inconnues des modèles mathématiques (voir partie II, chapitre 1, paragraphe II.3.1).

III.2.1. Qualités descriptive et prédictive des modèles

Pour savoir si les modèles mathématiques bénéficient des bonnes qualités descriptive et prédictive, nous allons observer les valeurs des coefficients R^2 , $R^2_{ajusté}$ et $R^2_{predictive}$. Pour savoir si les modèles permettent de décrire la variation des résultats d'essais nous allons observer la valeur de la significativité pour toutes les réponses. Tous ces coefficients sont regroupés dans le tableau 8.

	Réponses			
	F ₀	F_1	Q_0	
R^2	1	1	0,996	
R ² _{ajusté}	0,999	0,999	0,99	
R ² _{predictive}	0,997	0,996	0,962	
Significativité (%)	< 0,01 ***	< 0,01 ***	< 0,01 ***	

Tableau 8 : qualités descriptive et prédictive des modèles

On peut remarquer que les modèles bénéficient d'une excellente qualité descriptive puisque les valeurs de R^2 et $R^2_{ajusté}$ sont égales à 1. En observant la valeur de $R^2_{predictive}$ pour les trois réponses, on peut aussi dire que les modèles bénéficient d'une bonne qualité prédictive.

Dans le logiciel Nemrodw, les étoiles figurant à côté de la valeur de la significativité (appelée aussi prob(Fc)) indiquent la qualité du pourcentage obtenu avec le test de Ficher (voir paragraphe VIII.2.1 de la partie I). Trois étoiles correspondent à une valeur de prob (Fc) inférieure à 0,1 % alors que deux et une étoile correspondent respectivement à une valeur de prob(Fc) inférieure à 1 et à 5 %.

Pour une valeur inférieure à 0,1 % le logiciel donne 3 étoiles, ce qui signifie l'excellente qualité des modèles (100 % de la réalité sont représentés par le plan). Pour vérifier l'excellente

qualité des modèles mathématiques, nous allons étudier dans le paragraphe suivant, les valeurs des résidus sur tous les points expérimentaux.

III.2.2. Analyse des résidus

Les résidus (écarts entre les réponses calculées et les réponses simulées) peuvent être observés à l'aide d'un tableau ; on peut aussi faire cette étude à l'aide de graphiques qui donnent les résidus en fonction des réponses calculées (figure 4).

Figure 4 : résidus en fonction des réponses calculées

Les résultats reportés sur la figure 4 montrent l'excellente qualité des modèles pour toutes les réponses. Pour chacune des réponses nous avons tracé les résidus (axe vertical) en fonction des valeurs calculées (axe horizontal) en mettant en évidence les plus grandes valeurs de résidus pour chaque réponse en pourcentage. En fait, on peut noter que pour la réponse F_0 , la plus grande valeur des résidus est de 1,06 %. Pour la réponse F_1 , la plus grande valeur des résidus est de 0,49 % et 2,08 % pour la réponse Q_0 . On peut donc dire que les résidus sur tous les points expérimentaux sont faibles, on peut passer à l'analyse graphique pour étudier les effets des facteurs d'entrée sur les réponses (surfaces de réponses).

III.2.3. <u>Surfaces de réponses</u>

Les surfaces de réponses sont reportées sur la figure 5.

En observant ces figures, on peut tirer les conclusions suivantes :

- la fréquence de résonance F₀ du résonateur augmente quand L₁, w₁ et L₂ diminuent (faible effet). Il n'y a pas d'effet de la largeur w₂ sur la fréquence F₀;
- la fréquence du deuxième mode F₁ augmente quand la longueur L₁ diminue, la largeur w₂ et la longueur L₂ diminuent (faible effet) ; pas d'effet de la largeur w₁ sur la fréquence F₁ ;
- le facteur de qualité à vide Q₀ augmente quand la largeur w₁ augmente, la largeur w₂ augmente (faible effet) et la longueur L₁ diminue (faible effet) ; pas d'effet de L₂ sur le facteur de qualité à vide.

Figure 5 : surfaces de réponses pour toutes les réponses

En conclusion, les facteurs d'entrée L_1 et w_1 sont ceux qui ont le plus d'effet sur les trois réponses. Mais, compte tenu des contraintes relationnelles entre les facteurs, même si w_2 et L_2 ont peu d'effet sur les trois réponses, il ne nous est pas possible de les éliminer dans l'optimisation multicritère qui va suivre.

III.2.4. Optimisation multicritère

Les réponses modélisées ont été transformées en trois fonctions de désirabilité variant de 0 à 100% (figure 6). Dans un premier temps, nous allons cibler une valeur de 6,4 GHz pour la fréquence F_0 , rechercher une valeur de la fréquence F_1 supérieure à 12 GHz et un facteur de qualité à vide le plus grand possible (on choisira la valeur 300 comme valeur cible).

La recherche de l'optimum multicritère conduit à une solution présentée dans le tableau 9.

Facteur	Valeur		
L ₁ (μm)	4240		
L ₂ (µm)	525	D = 63,07 %	
w ₁ (μm)	261		
w ₂ (μm)	120		
Réponse	Valeur	Poids	di %
F ₀ (GHz)	6,4	1	99,98
F ₁ (GHz)	12,211	1	100
Q ₀	150	1	25,09

Partie IV – chapitre 3 : optimisation d'un résonateur planaire de Hairpin

Tableau 9 : résultats de l'optimisation multicritère

La valeur de la désirabilité globale, D, est calculée par la relation suivante :

$$D = (d1^{Poids1} \times d2^{Poids2} \times d3^{Poids3})^{1/(Poids1+Poids2+Poids3)}$$
(1)

où d1, d2 et d3 sont les fonctions de désirabilité individuelle respectives des réponses F_0 , F_1 et Q_0 .

Dans un premier temps nous avons attribué le même poids aux trois réponses, la désirabilité globale est donc calculée par la relation suivante :

$$D = (d1 \times d2 \times d3)^{1/3}$$
 (2)

La recherche de l'optimum multicritère conduit à des valeurs de désirabilités individuelles d1 = 99,98 %, d2 = 100% et d3 = 25,09%, ce qui conduit à une valeur de désirabilité globale égale à 63,07 %.

La simulation du résonateur avec les valeurs optimales des facteurs d'entrée conduit aux valeurs reportées dans le tableau 10.

	Réponses			
Réponses	F ₀ (GHz)	F ₁ (GHz)	Q_0	
Modèle	6,4	12,211	150	
Simulation	6,41	12,33	160	
Ecart (%)	0,1	0,9	6,6	

Tableau 10 : résultats de simulation

On constate d'après le tableau 10, que la valeur du facteur de qualité à vide a augmenté de 51% par rapport à la valeur de référence (106). La fréquence de résonance est très proche de la valeur cherchée (6,4 GHz) et la fréquence du deuxième mode F_1 est supérieure à 12 GHz.

Pour essayer d'améliorer encore le facteur de qualité à vide, nous avons cherché une solution en attribuant un poids plus important au facteur de qualité à vide. Les coordonnées de l'optimum déterminé avec un poids de 5 sur Q_0 sont données dans le tableau 11.
Facteur	Valeur					
L ₁ (µm)	4231	D = 37,30 %				
L ₂ (µm)	561					
w ₁ (μm)	244					
w ₂ (μm)	126	1				
Réponse	Valeur	Poids	di %			
F ₀ (GHz)	6,404	1	92,41			
F ₁ (GHz)	12,271	1	100			
Q ₀	151	5	25,54			

Partie IV – chapitre 3 : optimisation d'un résonateur planaire de Hairpin

Tableau 11 : résultats de l'optimisation multicritère avec un poids égal à 5 pour la réponse Q_{θ}

La recherche de l'optimum multicritère avec un poids de 5 sur la réponse Q_0 ne permet pas d'améliorer sa valeur. On remarque que la valeur de la désirabilité globale a chuté de 63 à 37 % à cause du poids attribué à cette réponse. Nous avons quand même réalisé la simulation avec les valeurs obtenues dans le tableau 10 ; les résultats sont reportés dans le tableau 12.

	Réponses					
Réponses	F ₀ (GHz)	F ₁ (GHz)	Q_0			
Modèle	6,404	12,27	151			
Simulation	6,418	12,39	168			
Ecart (%)	0,21	0,9	11,2			

Tableau 12 : résultats de simulation pour la solution trouvée

On peut noter une amélioration du facteur de qualité à vide qui passe de 160 à 168. En effet, la valeur obtenue par simulation est plus grande que celle calculée par le modèle, ce qui est conforme à la valeur correspondante de la désirabilité individuelle (25,54 %). Nous allons maintenant analyser le plan D-optimal donné dans le tableau 2 à partir du logiciel Modde.

III.3. Analyse du plan D-optimal à l'aide du logiciel Modde

La méthode PLS est utilisée par le logiciel Modde pour estimer les coefficients du modèle (voir partie II, chapitre 1, paragraphe II.3.2). Dans un premier temps nous allons regarder les coefficients R^2 et Q^2 qui sont des indicateurs sur les qualités descriptive et prédictive des modèles (tableau 13).

Réponse	F ₀	F ₁	Q_0
R^2	0,99	0,99	0,96
Q^2	0,82	0,85	0,63

Tableau 13 : qualités descriptive et prédictive des modèles

Les modèles mathématiques des réponses F_0 et F_1 bénéficient de bonnes qualités descriptive et prédictive puisque les coefficients R^2 et Q^2 sont proches de 1. Par contre, le modèle

de la réponse Q_0 n'a pas une bonne qualité prédictive puisque la valeur de Q^2 est égale à 0,63 ($R^2 = 0,96$).

Les valeurs de R^2 et Q^2 données dans le tableau 12 sont calculées à partir des valeurs données par le tableau ANOVA (voir paragraphe VIII.2.1, partie I). A l'aide de ces tableaux, on peut analyser globalement les résultats, définir la qualité descriptive des modèles et savoir s'ils permettent de décrire la variation des résultats d'essais. Nous allons regrouper dans le tableau 14, les différentes données obtenues par les tables ANOVA pour toutes les réponses.

Réponses	F ₀	F ₁	Q_0
$SCM = \sum_{i=1}^{N} (\hat{Y}_i - \overline{Y})^2$	74,51	217,17	21812,1
$SCE = \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$	0,70	1,749	685,91
SCT = SCM + SCE	75,21	218,92	22498
Fc	60,55	70,93	18,17
ProbF _c	0	0	0

Tableau 14 : extraits des tables ANOVA pour toutes les réponses

Les modèles mathématiques permettent de décrire la variation des réponses puisque la valeur de Prob(F_c) est égale à zéro. Pour essayer d'améliorer la qualité des modèles utilisés, nous allons analyser les résidus pour savoir s'il existe des expériences atypiques.

III.3.1. Analyse statistique des résidus

Dans le logiciel Modde, les résidus sont reportés sur une échelle de probabilité cumulative normale (voir partie II, chapitre 1, paragraphe II.5.2.b). Cette représentation permet de détecter s'il existe des individus atypiques. Cette représentation pour la réponse F_0 , est reportée sur la figure 7.

Figure 7 : analyse statistique des résidus pour la réponse F₀

On peut remarquer que les résidus standardisés pour toutes les expériences sont compris entre -1,1 et 1 (une expérience est atypique lorsque son résidu standardisé est supérieur à 4 ou inférieur à -4), on peut donc dire qu'aucune expérience n'est atypique pour la réponse F_0 . Nous avons vérifié également qu'aucune expérience n'est atypique pour toutes les autres réponses. L'étape suivante va maintenant consister à déterminer les coefficients des modèles qui ne sont pas influents sur l'ensemble des réponses. S'il en existe, ils seront éliminés des modèles mathématiques afin d'améliorer la qualité des modèles postulés.

III.3.2. Analyse des coefficients des modèles

Dans un premier temps, nous allons donner les valeurs estimées pour chacun des coefficients pour la réponse F_0 ainsi que la significativité (tableau 15).

Réponse F ₀							
Coef	ficient	Valeur	Significativité	Coef	ficient	Valeur	Significativité
Constante	b_0	8,51799	4,71E-11	$w_2 \! imes \! w_2$	b ₄₄	0,185153	0,292836
L	b_1	-1,81303	7,29E-09	$L_1 \times L_2$	b ₁₂	0,0382859	0,620603
L_2	b ₂	-0,161641	0,27429	$L_1 \! imes \! w_1$	b ₁₃	0,179759	0,0284841
w_1	b ₃	-0,369962	0,0290868	$L_1 \! imes \! w_2$	b ₁₄	-0,0933264	0,209351
w ₂	b_4	0,0371273	0,621075	$L_2 imes w_1$	b ₂₃	0,0835552	0,734407
$L_1 \times L_1$	b ₁₁	0,0634377	0,681364	$L_2 imes w_2$	b ₂₄	0,0246042	0,739953
$L_2 \! imes \! L_2$	b ₂₂	0,0077836	0,956358	$w_1 \! imes \! w_2$	b ₃₄	0,0816108	0,258615
$w_1 \! imes \! w_1$	b ₃₃	0,0820185	0,624803				

Tableau 15 : analyse des coefficients du modèle de la réponse F₀

Un coefficient est significatif lorsque la valeur de la significativité est inférieure à 5% (voir partie I, paragraphe VIII.2.2). On peut remarquer d'après le tableau 14 que seuls les coefficients b_0 , b_1 , b_3 et b_{13} sont influents sur la réponse F_0 . Avant d'éliminer les autres coefficients (en rouge dans le tableau), il faut vérifier qu'ils n'ont également aucun effet sur les réponses F_1 et Q_0 . Pour cela, nous allons analyser le même tableau pour les deux autres réponses (tableau 16).

On peut remarquer d'après le tableau 16 que les coefficients b_0 , b_1 et b_4 sont influents sur la réponse F_1 . De même, les coefficients b_0 , b_1 , b_3 , b_4 et b_{34} sont influents sur la réponse Q_0 .

Partie IV – chapitr	e 3 : c	ptimisation	d'un	résonateur	planaire	de Ha	airpin
---------------------	---------	-------------	------	------------	----------	-------	--------

Réponse F ₁				Réponse Q ₀			
Coeff	icient	Valeur	Significativité	Coef	ficient	Valeur	Significativité
Constante	b_0	15,5837	1,44E-11	Constante	b_0	145,069	5,84E-09
L	b 1	-3,09844	3,86E-09	L	b1	-10,2913	1,95E-03
L ₂	b ₂	-0,16042	0,481341	L_2	b ₂	4,75197	0,301392
w ₁	b ₃	-0,239266	0,308255	w ₁	b ₃	27,8312	0,000210955
w2	b_4	-0,70578	0,000260597	w ₂	b ₄	11,4234	0,000971449
$L_l \times L_l$	b ₁₁	0,28615	0,25788	$L_1 \times L_1$	b ₁₁	0,957358	0,84207
$L_2 \times L_2$	b ₂₂	-0,287084	0,22327	$L_2 \times L_2$	b ₂₂	-8,06754	0,097841
$\mathbf{w}_1 \! imes \! \mathbf{w}_1$	b ₃₃	0,157199	0,553807	$w_1 \! imes \! w_1$	b ₃₃	-6,40524	0,239247
$\mathbf{w}_2 \! imes \! \mathbf{w}_2$	b ₄₄	0,291518	0,293654	$w_2 \times w_2$	b ₄₄	-2,1599	0,685158
$L_1 \times L_2$	b ₁₂	0,241891	0,0731247	$L_1 \times L_2$	b ₁₂	0,046082	0,984661
$L_1 imes w_1$	b ₁₃	0,0743877	0,503916	$L_1 \times w_1$	b ₁₃	-1,25007	0,568998
$L_1 imes w_2$	b ₁₄	0,118697	0,303012	$L_1 \! imes \! w_2$	b ₁₄	-3,56522	0,133508
$L_2 \times w_1$	b ₂₃	0,0476763	0,902001	$L_2 \times w_1$	b ₂₃	-4,99459	0,520252
$L_2 \times w_2$	b ₂₄	0,138572	0,254666	$L_2 \times w_2$	b ₂₄	2,87948	0,233823
$w_1 \times w_2$	b ₃₄	0,111986	0,320987	$w_1 \times w_2$	b ₃₄	5,70447	0,0261833

Tableau 16 : analyse statistique des coefficients pour les réponses F_1 et Q_0

Compte tenu des résultats ci-dessus, on peut donc éliminer les coefficients qui ne sont pas influents simultanément sur toutes les réponses : b_2 (L_2), b_{11} ($L_1 \times L_1$), b_{22} ($L_2 \times L_2$), b_{33} ($w_1 \times w_1$), b_{44} ($w_2 \times w_2$), b_{12} ($L_1 \times L_2$), b_{14} ($L_1 \times w_2$), b_{23} ($L_2 \times w_1$) et b_{24} ($L_2 \times w_2$). Dans ce cas, le modèle mathématique s'écrit de la façon suivante :

$$Y = b_0 + b_1 X_1 + b_3 X_3 + b_4 X_4 + b_{13} X_1 X_3 + b_{34} X_3 X_4$$
(3)

Dans la relation (3), X_1 est la valeur codée du facteur L_1 , X_3 celle du facteur w_1 et X_4 est celle du facteur w_2 . Nous allons dans la suite comparer la qualité des modèles avant et après l'élimination des coefficients qui ne sont pas influents sur les trois réponses (tableau 17).

	Avant élimination des coefficients non influents						
	Réponse F ₀	se F_0 Réponse F_1 Réponse Q					
R^2	0,99	0,992	0,969				
Q^2	0,821	0,852	0,63				
	Après élimination des coefficients non influents						
	Réponse F ₀	Réponse F ₁	Réponse Q ₀				
R^2	0,958	0,974	0,924				
O^2	0,908	0,933	0,84				

Tableau 17 : comparaison des qualités des modèles avant et après l'élimination des coefficients non influents

On peut remarquer d'après le tableau 17, que l'élimination des coefficients non influents sur les trois réponses simultanément, a permis d'améliorer la qualité prédictive des modèles pour toutes les réponses.

Nous allons maintenant analyser les coefficients restants des modèles afin de voir s'il en existe encore qui ne sont pas influents (figure 8). Les effets des coefficients peuvent être tracés sous forme de diagrammes des effets.

Figure 8 : analyse graphique des coefficients influents dans les modèles

A partir de la figure 8, on remarque que le coefficient $L_1 \times w_1$ est le seul qui n'est pas influent sur les trois réponses, on va donc l'enlever et analyser les nouveaux modèles.

La comparaison de la qualité des différents modèles est résumée dans le tableau 18.

	modèle initial						
	Réponse F ₀	Réponse F ₁	Réponse Q ₀				
R^2	0,99	0,992	0,969				
Q^2	0,821	0,852	0,63				
	élimination des 9 coefficients						
	Réponse F ₀	Réponse F ₁	Réponse Q ₀				
R^2	0,958	0,974	0,924				
Q^2	0,908	0,933	0,84				
	eliminatio	on des 9 coefficients pl	us $L_1 \times w_1$				
	Réponse F ₀	Réponse F ₁	Réponse Q ₀				
R^2	0,967	0,976	0,924				
Q^2	0,946	0,959	0,869				

Tableau 18 : comparaison de la qualité des modèles lors des différentes étapes d'amélioration

On constate à nouveau d'après le tableau 18, une amélioration de la qualité prédictive des modèles pour toutes les réponses.

Après avoir vérifié que tous les coefficients restants sont significatifs, nous avons étudié les effets des facteurs d'entrée sur les réponses (figure 9), sans le facteur L_2 puisque tous les coefficients liés à ce facteur ont été éliminés des modèles.

Figure 9 : diagrammes d'effets des facteurs d'entrée sur les réponses

L'étude des effets des facteurs d'entrée sur les réponses a montré que :

- la fréquence de résonance F₀ augmente quand L₁ et w₁ diminuent ; en revanche pas d'effet de w₂ sur F₀ ;
- la fréquence du deuxième mode F₁ augmente quand L₁ et w₂ diminuent ; pas d'effet de w₁ sur F₁ ;
- le facteur de qualité à vide augmente avec les largeurs w₁ et w₂ et diminue quand la longueur L₁ augmente.

Nous allons maintenant étudier les interactions entre les facteurs d'entrée. Pour chaque réponse, on peut étudier son évolution en fonction d'un facteur u_1 lorsque le facteur u_2 est à son niveau haut et bas. Nous avons étudié les interactions entre les différents facteurs de cette étude ; dans le cas présent, nous allons présenter les graphes d'interactions entre les facteurs w_1 et w_2 pour les réponses F_0 (figure 10), F_1 (figure 11) et Q_0 (figure 12).

En présence d'une interaction forte entre les deux facteurs u_1 et u_2 , on considère que les deux droites se coupent entre elles dans le domaine de variation. Si ces deux droites sont parallèles, on peut donc considérer qu'il n'existe pas d'interaction entre les deux facteurs.

Figure 10 : interactions entre les facteurs w₁ et w₂ (réponse F₀)

w1 (µm)

Figure 11 : interactions entre les facteurs w_1 et w_2 (réponse F_1)

Figure 12 : interactions entre les facteurs w_1 et w_2 (réponse Q_0)

Ces graphiques ne sont valables que dans les domaines de variations choisis pour les facteurs d'entrée. Ils permettent seulement d'indiquer si l'interaction entre deux facteurs d'entrée est forte ou faible.

D'après la figure 10, on remarque que les deux droites ne sont pas parallèles mais elles ne se coupent pas (sauf pour une petite valeur de w_1), l'interaction est donc considérée faible entre les deux facteurs w_1 et w_2 pour la réponse F_0 . Pour la réponse F_1 (figure 11), les deux droites sont presque parallèles, on peut donc dire qu'il n'existe pas d'interaction entre les facteurs w_1 et w_2 pour la réponse F_1 .

En se référant à la figure 12, on peut constater que les deux droites ne sont pas parallèles mais elles ne se coupent pas entre elles. Dans ce cas, il existe une interaction entre les deux facteurs mais elle reste plus faible que celle de la figure 10 (pour la réponse F_0).

Après avoir amélioré la qualité des modèles mathématiques et étudié les effets des facteurs sur les réponses, on peut maintenant utiliser les modèles pour sélectionner les meilleures valeurs des facteurs d'entrée (L_1 , w_1 et w_2).

III.3.3. Optimisation multicritère

Cette étude présente trois réponses donc trois fonctions de désirabilité individuelle. La première fonction de désirabilité représente la fréquence de résonance F_0 fixée à une valeur cible ; cette fonction doit être caractérisée par trois valeurs : la valeur cible, la valeur inferieure acceptée et la valeur supérieure acceptée. La deuxième fonction représente la fréquence du deuxième mode que l'on cherche à maximiser ; cette fonction de désirabilité représente la valeur suleur : la valeur minimale acceptée et la valeur cible. La troisième fonction de désirabilité représente le facteur de qualité à vide que l'on cherche également à maximiser. Les valeurs des désirabilités individuelles sont données dans le tableau 19.

Réponse	Critère	Poids	Min	Cible	Max
Fréquence de resonance F ₀ (GHz)	Cible	1	6,39	6,4	6,41
Fréquence du deuxieme mode F1 (GHz)	Max	1	12	12,5	
Facteur de qualité Q_0	Max	1	100	200	

Tableau 19 : fonctions de désirabilité individuel	lle
---	-----

Une première recherche de l'optimum multicritère a conduit aux résultats donnés dans le tableau 20.

Facteurs d'entrée			Réponses			T		
L ₁ (μm)	L ₂ (µm)	w ₁ (μm)	w ₂ (μm)	F ₀ (GHz)	F ₁ (GHz)	Q ₀	Iteration	$Log(D_G)$
4149,71		208,266	161,705	6,3975	12,3519	141,049	157	-0,7795
4280		100,488	60	6,3927	12,4217	102,438	205	-0,3002
4114,19		270,138	222,452	6,3987	12,1875	171,074	253	-0,7871
4109,42		272,215	218,837	6,3975	12,2316	171,076	76	-0,8389
4196,42		168,478	145,916	6,3987	12,2267	127,429	128	-0,5517
4060,21		225,269	60,1296	6,4009	13,3756	129,992	70	-0,78
4143,09		212,054	160,728	6,3996	12,3889	142,039	70	-0,8897
4189,57		173,59	147,447	6,3994	12,2492	129,072	85	-0,5973

Partie IV – chapitre 3 : optimisation d'un résonateur planaire de Hairpin

Tableau 20 : coordonnées de l'optimum multicritère

Avant de préciser le choix du paramètre L_2 (n'ayant aucune influence sur l'ensemble des réponses), nous détaillons en quelques lignes le paramètre $Log(D_G)$ et son calcul.

Parmi les 8 solutions trouvées, le logiciel sélectionne la meilleure dont la distance normalisée à la cible D_G est la plus petite possible (quatrième ligne). La valeur de log (D_G) est calculée par la formule (voir paragraphe IX.3.1 de la partie I) :

$$\log(D_G) = \log\left[\frac{\sum w_i \left(\frac{Y_i - Y_c}{Y_c - Y_w}\right)^2}{M}\right]$$
(4)

avec :

 Y_c la valeur cible de la réponse, Y_w la valeur de la réponse lorsque la fonction de désirabilité individuelle est égale à zéro, Y_i la valeur calculée de la réponse et M le nombre de réponses. D'après le tableau 20, le modèle calcule une valeur de 6,39 GHz pour la réponse F_0 , 12,23 GHz pour la réponse F_1 et 171 pour la réponse Q_0 .

Ce qui donne :

$$\log(D) = \log\left[\frac{w_1\left(\frac{6,3975 - 6,4}{6,4 - 6,41}\right)^2 + w_2\left(\frac{12,2316 - 12,5}{12,5 - 12}\right)^2 + w_3\left(\frac{171,076 - 200}{200 - 100}\right)^2}{3}\right]$$
(5)

Dans notre cas, nous avons attribué le même poids à toutes les réponses ($w_1 = w_2 = w_3 = 1$), ce qui donne log(D) = -0,8389.

Nous avons choisi une valeur quelconque pour le facteur L_2 (515 µm) en respectant les contraintes et réalisé la simulation avec les facteurs d'entrée optimaux trouvés par le logiciel ($L_1 = 4109,42 \text{ µm}, w_1 = 272,215 \text{ µm}$ et $w_2 = 218,837 \text{ µm}$).

Les résultats de simulation sont donnés dans le tableau 21.

Réponses	F ₀ (GHz)	F ₁ (GHz)	Q ₀
Modèle	6,3975	12,2316	171
Simulation	6,61	12,32	189
Ecart (%)	3,3	0,7	10,5

Tableau 21 : résultats de simulation de la solution trouvée par Modde

D'après les résultats obtenus par simulation, on constate une amélioration de 78 % du facteur de qualité à vide par rapport au filtre de référence ($Q_0 = 106$); la fréquence du deuxième mode F_1 est bien supérieure à 12 GHz. Nous avons trouvé un écart de 0,21 GHz entre la valeur cherchée de la fréquence de résonance et la valeur obtenue par simulation.

Pour obtenir plus de précision sur la fréquence de résonance F_0 , nous avons recherché à nouveau un optimum multicritère en rendant plus sélective la fonction de désirabilité pour la réponse F_0 (tableau 22).

Réponse	Critère	Poids	Min	Cible	Max
Fréquence de resonance F ₀ (GHz)	Target	1	6,399	6,4	6,401
Fréquence du deuxieme mode F_1 (GHz)	Maximize	1	12	12,5	
Facteur de qualité Q_0	Maximize	1	100	200	

La recherche de l'optimum multicritère conduit à 8 solutions (tableau 23).

Facteurs d'entrée				Réponses	T4			
L ₁ (μm)	L ₂ (µm)	w ₁ (μm)	w ₂ (μm)	F ₀ (GHz)	F ₁ (GHz)	Q_0	Iteration	$Log(D_G)$
4052,81		247,688	103,079	6,3999	13,1496	142,462	196	-0,9387
4280		98,8818	60	6,3994	12,4213	102,123	211	-0,3338
4112,31		269,752	220,068	6,3997	12,2093	170,49	294	-0,7631
4106,92		273,248	218,508	6,4	12,2452	171,377	115	-0,9436
4198,42		167,88	149,549	6,3996	12,194	127,685	150	-0,4642
4135,71		211,066	146,081	6,3999	12,5117	139,58	147	-0,9076
4062,72		224,031	60,1387	6,4	13,3647	129,715	96	-0,7815
4143,09		212,054	160,728	6,3996	12,3889	142,039	100	-0,7539

Tableau 23 : nouvelles coordonnées de l'optimum multicritère

La meilleure solution, d'après le tableau 23, est celle qui possède une valeur de log(D) = -0.9436, on remarque que la valeur calculée pour la fréquence de résonance est de 6,4 GHz ce qui correspond à la valeur recherchée. La fréquence du deuxième mode F₁ est bien supérieure à 12 GHz, le facteur de qualité à vide est égal à 171.

Nous avons choisi à nouveau une valeur quelconque pour le facteur L_2 (513 µm) en respectant les contraintes (comme vu dans la page précédente) et réalisé la simulation avec les facteurs d'entrée optimaux trouvés par le logiciel ($L_1 = 4106,92$ µm, $w_1 = 273,24$ µm et $w_2 = 218,5$ µm). Les résultats sont reportés dans le tableau 24.

Réponses	F ₀ (GHz)	F ₁ (GHz)	Q_0
Modèle	6,4	12,2452	171
Simulation	6,65	12,4	184
Ecart (%)	3,9	1,2	7,6

Tableau 24 : résultats de simulation pour la meilleure solution

D'après les résultats de simulation, on constate une amélioration du facteur de qualité à vide de 73,5 % par rapport à la valeur du résonateur de référence (106). La fréquence du deuxième mode F_1 est supérieure à 12 GHz. La valeur cherchée de la fréquence F_0 est 6,4 GHz, la valeur obtenue par simulation est 6,65 GHz, ce qui conduit à un écart de 3,9 %.

D'après les résultats d'optimisation obtenus par les deux logiciels, on remarque que l'optimiseur du logiciel Nemrodw conduit à une amélioration du facteur de qualité à vide de 58,5 %, cette amélioration peut atteindre 73,5 % avec le logiciel Modde ; la fréquence de résonance dans ce cas est égale à 6,65 GHz au lieu de 6,4 GHz cherchée.

Des chercheurs de l'Institut de Recherche XLIM travaillent sur des problèmes d'optimisation de forme en utilisant plusieurs techniques : le gradient topologique, les courbes des niveaux et l'algorithme génétique. Avec ces méthodes, le critère à optimiser dépend fortement de la fréquence de travail. Dans ce cas, il est nécessaire d'optimiser le composant sur plusieurs valeurs de fréquence autour de celle désirée (6,4 GHz dans notre cas). Nous allons maintenant optimiser le résonateur pour des valeurs différentes de la fréquence de résonance.

III.4. Optimisation sur plusieurs valeurs de fréquence

Dans le but de tester le résonateur sur plusieurs fréquences de résonance autour de 6,4 GHz, en assurant une fréquence F_1 supérieure à 12 GHz et un facteur de qualité à vide élevé, nous allons rechercher un optimum multicritère en ciblant la fréquence F_0 à 6,2 GHz, 6,3 GHz, 6,5 GHz et 6,6 GHz. Les valeurs obtenues par les modèles (Nemrodw et Modde) et par simulations sont regroupées dans le tableau 25.

On remarque qu'avec le logiciel Nemrodw, la valeur simulée de la fréquence de résonance F_0 est toujours proche de la valeur cherchée, l'écart varie entre 0,2 et 0,7 %. Pour le logiciel Modde, le facteur de qualité est toujours plus grand que celui trouvé par le logiciel Nemrodw, l'écart varie entre 7,3 et 9,3 %. Dans tous les cas et avec les deux logiciels, l'isolation fréquentielle est assurée.

	Modde							
F ₀ ciblée à 6,2 GHz								
Réponses	F ₀ (GHz)	F ₁ (GHz)	Q_0	F ₀ (GHz)	F ₁ (GHz)	Q_0		
Modèle	6,205	12,21	136	6,2	12,16	163		
Simulation	6,25	12,34	150	6,537	12,32	176		
Ecart (%)	0,7	1,1	10,3	5,4	1,3	7,9		
F ₀ ciblée à 6,3 GHz								
Réponses	F ₀ (GHz)	F ₁ (GHz)	Q_0	F ₀ (GHz)	F ₁ (GHz)	Q_0		
Modèle	6,3	12,45	139	6,299	12,13	172		
Simulation	6,315	12,32	144	6,56	12,255	188		
Ecart (%)	0,2	1	3,5	4,1	1	9,3		
F ₀ ciblée à 6,5 GHz								
Réponses	F ₀ (GHz)	F ₁ (GHz)	Q_0	F ₀ (GHz)	F ₁ (GHz)	Q_0		
Modèle	6,5	12,41	150	6,499	12,25	175		
Simulation	6,518	12,38	164	6,665	12,38	190		
Ecart (%)	0,2	0,2	9,3	2,5	1	8,5		
F ₀ ciblée à 6,6 GHz								
Réponses	F ₀ (GHz)	F ₁ (GHz)	Q ₀	F ₀ (GHz)	F ₁ (GHz)	Q ₀		
Modèle	6,6	12,27	157	6,599	12,06	178		
Simulation	6,5618	12,34	177	6,7	12,32	191		
Ecart (%)	0,5	0,5	13	1,5	2,1	7,3		

Tableau 25 : résultats optimisation pour plusieurs fréquences de résonances

III.5. <u>Conclusion</u>

La construction du plan optimal utilisé dans ce chapitre consiste à extraire du domaine expérimental un certain nombre de combinaisons permettant de satisfaire différents critères algébriques. Nous avons généré le plan optimal à l'aide de deux logiciels.

Le logiciel Nemrodw utilise la méthode de régression linéaire multiple (MLR) pour estimer les coefficients du modèle. La valeur simulée de la fréquence de résonance est toujours très proche de celle calculée par le modèle.

Le logiciel Modde utilise la méthode PLS pour estimer les coefficients du modèle, nous avons identifié à l'aide de ce logiciel les coefficients qui ne sont pas influents sur les trois réponses étudiées. L'élimination de ces coefficients non influents permet d'améliorer la qualité des modèles.

L'optimisation multicritère est faite à l'aide des deux logiciels. Avec Nemrodw, nous avons cherché les valeurs optimales des quatre facteurs d'entrée pour atteindre les réponses souhaitées. Avec le logiciel Modde, l'optimisation multicritère n'est faite que sur trois facteurs d'entrée ; nous avons éliminé tous les coefficients liés au facteur L_2 parce qu'ils n'ont pas d'influence sur les trois réponses.

L'application de la méthode des plans d'expériences pour optimiser le filtre planaire de Hairpin a permis d'améliorer son facteur de qualité à vide de 58,4 % à la fréquence F_0 égale à 6,4 GHz en assurant une isolation fréquentielle (F_1 supérieure à 12 GHz).

Les résultats de simulations sur plusieurs points de fréquences montrent que le facteur de qualité à vide augmente avec la fréquence de résonance. Cette augmentation peut atteindre 80 % pour une fréquence F_0 égale à 6,7 GHz.

IV. <u>Références</u>

[1] M. Sagawa, K. Takahasi, and M. Makimoto. Miniaturized Hairpin resonator filters and their application to receiver front-end MIC's. IEEE Transaction Microwave Theory Tech. Vol. 37, No. 10, 1989.

[2] J. S. Hong and M. J. Lancaster. Cross-coupled microstrip Hairpin-resonator filters. IEEE Transaction Microwave Theory Tech. Vol. 46, 118-122, 1998.

[3] H. K. Yoon, Y. J. Yoonjoo, H. Park, and S. Ye. Hairpin line half wave parallel coupled line narrowband band pass filters using high temperature superconducting thin films. IEEE Transaction Applied Superconductivity. Vol. 9, 901-3904, June 1999.

[4] C. J. Kikkert. Designing low cost wideband microstrip bandpass filters. Tencon 2005 IEEE Region 10, 1-6, Nov. 2005.

CONCLUSION GENERALE ET PERSPECTIVES

Différentes méthodes d'optimisation de formes sont aujourd'hui disponibles et peuvent s'appliquer à la conception de dispositifs hyperfréquences. Ces approches sont souvent locales, basées sur le calcul d'un gradient, et permettent, dans une certaine mesure, d'atteindre une solution optimale inconnue a priori.

Ces travaux de recherche ont été consacrés à l'étude et l'application de la méthode des plans d'expériences pour l'étude des surfaces de réponses. Afin de montrer le potentiel de la méthodologie proposée, celle-ci a été appliquée à différentes problématiques dans le domaine de l'optimisation des composants hyperfréquences.

Dans une première partie, nous nous sommes attachés à décrire la méthode des plans d'expériences pour l'étude des surfaces de réponses. Deux types de plans ont été présentés :

- tout d'abord, les plans de Doelhert qui présentent une démarche séquentielle, au même titre que les possibilités d'extension du domaine expérimental ;

- ensuite, les plans composites centrés appliqués à deux domaines expérimentaux (sphérique et cubique) ainsi que le passage du domaine sphérique qui nécessite 5 niveaux par facteur à un domaine cubique qui nécessite 3 niveaux.

Ensuite, nous avons détaillé les analyses des modèles polynomiaux utilisés :

- les analyses mathématiques qui ont pour but d'estimer, grâce à la méthode des moindres carrés, les coefficients du modèle utilisé ;
- l'analyse statistique qui a pour but de valider le modèle mathématique et d'identifier s'il existe des expériences atypiques ;
- les analyses graphiques, et plus particulièrement les surfaces de réponses qui permettent d'étudier les comportements des réponses en fonction des paramètres d'entrée.

Enfin, la notion de désirabilité a été présentée, outil qui permet de rassembler plusieurs critères de natures différentes en un objectif composite unique permettant de traiter des problématiques multicritères.

La deuxième partie a été consacrée à l'application de la méthodologie des surfaces de réponses pour optimiser des composants hyperfréquences.

- Le premier chapitre concerne l'optimisation d'un filtre OMUX dans la bande C. Nous avons présenté dans un premier temps, la structure de référence de ce filtre ainsi que les réponses que l'on souhaite améliorer. Un plan composite centré dans un domaine sphérique a été créé. Après analyses et améliorations des modèles mathématiques, chaque réponse a été transformée en une fonction de désirabilité individuelle dont la nature dépendait de l'objectif de l'étude. La solution trouvée étant située à la limite du domaine expérimental, nous avons considéré un domaine expérimental cubique qui ne nécessitait que 4 nouvelles expériences et permettait d'étendre le domaine expérimental. L'utilisation d'un plan composite centré dans les deux domaines

sphérique et cubique a permis d'améliorer le facteur de qualité à vide (respectivement de 17,4 % et 25,3 % par rapport à la valeur de référence 10145). L'isolation fréquentielle dans ce cas n'est pas très bonne parce que la valeur de la fréquence du premier mode non excité F_1 est légèrement inferieure à la valeur seuil (4,5 GHz). Enfin, la méthode BFGS, qui permet de résoudre un problème linéaire sans contrainte, a été couplée avec les modèles polynomiaux issus des logiciels des plans d'expériences. En profitant du domaine restreint des paramètres d'entrée, la méthode BFGS a permis d'obtenir tous les minima locaux de la fonction à minimiser. C'est la raison pour laquelle les résultats obtenus à partir de la méthode BFGS sont meilleurs que ceux donnés par les optimiseurs des plans d'expériences. Le couplage cette méthode avec les modèles polynomiaux a permis d'améliorer le facteur de qualité à vide du filtre de 25 % en assurant une bonne isolation fréquentielle.

- Le second chapitre a été consacré à optimiser un résonateur diélectrique situé dans une cavité cylindrique. Un plan composite centré dans un domaine sphérique a été utilisé. La localisation de l'optimum sur la limite du domaine expérimental sphérique a permis de construire un nouveau plan en diminuant les domaines expérimentaux des deux facteurs d'entrée. Cela a permis d'améliorer les qualités des modèles mathématiques de toutes les réponses. Puis la méthode BFGS a été appliquée sans contrainte sur le volume du résonateur. Nous avons obtenu à l'aide de cette méthode, tous les couples des facteurs qui conduisent aux réponses souhaitées. Sachant que le résonateur est réalisé à l'aide de poudre céramique BMT qui est très chère, la méthode BFGS a ensuite été utilisée en limitant le volume de ce résonateur, ce qui a conduit à des valeurs des facteurs d'entrée conduisant aux réponses désirées en diminuant de 7 % le volume du résonateur par rapport au volume de référence.

La partie III est dédiée au couplage de la méthode des plans d'expériences avec une technique d'optimisation de forme (courbes de niveaux) afin d'améliorer les caractéristiques du filtre OMUX étudié dans la 2^{ème} partie. Nous avons montré l'avantage de coupler la méthode des plans d'expériences avec d'autres méthodes d'optimisation de forme. Le facteur de qualité du filtre a été amélioré de 26 % tout en diminuant l'encombrement de la cavité. La forme obtenue après optimisation par la méthode des courbes de niveaux a été approchée par une forme plus simple pour réduire les paramètres d'entrée afin de faciliter la fabrication du composant. L'utilisation de la méthode BFGS dans cette partie n'a pas permis d'obtenir de meilleurs résultats que les plans composites centrés appliqués dans les domaines sphérique et cubique car le domaine d'étude avait déjà été considérablement réduit.

Dans la partie IV, nous avons étudié les plans optimaux. En présence de contraintes relationnelles entre tout ou partie des facteurs d'entrée, il n'est plus possible d'établir une méthode généraliste produisant une distribution uniforme des expériences au sein du domaine. Le nombre d'expériences dans ce cas, dépend du nombre de facteurs, de l'utilisateur et de quelques critères d'optimalité.

- Le premier chapitre de cette partie a été consacré à la présentation des plans optimaux et des critères d'optimalité les plus utilisés. Nous avons décrit l'algorithme d'échange de Fedorov et présenté un exemple de choix d'un plan optimal selon le critère D.

- Nous avons, dans un deuxième chapitre, appliqué un plan optimal à l'optimisation d'un résonateur à base de dioxyde de vanadium. A l'aide d'un point test situé dans le domaine expérimental, nous avons montré dans ce chapitre l'incapacité des modèles à prévoir les réponses dans n'importe quel point du domaine expérimental malgré leur excellente qualité. Cependant, nous avons cherché un optimum multicritère sachant que l'on n'aurait pas l'assurance d'obtenir des résultats validés par la simulation. Cette étude a conduit à une solution dont les réponses sont proches de celles recherchées. Le rapport de la conductivité du dioxyde de vanadium étant égal à 100, la structure optimale a ensuite été étudiée pour des rapports de conductivités supérieurs. Les résultats obtenus montrent une amélioration des facteurs de qualité à vide, par contre, l'écart fréquentiel reste inférieur à la valeur cherchée (50 MHz). Afin d'augmenter cet écart, nous avons doublé la surface occupée par le VO₂ en tenant compte des plans de symétrie, ce qui a permis d'obtenir le bon écart fréquentiel et des facteurs de qualité à vide qui restent supérieurs aux valeurs souhaitées.

- Le chapitre 3 a été consacré à l'optimisation d'un résonateur Hairpin. Un plan optimal a été utilisé pour tenir compte des contraintes imposées sur les dimensions du filtre. Ce plan a été créé à partir de deux logiciels de plans d'expériences et a conduit à une amélioration du facteur de qualité à vide de 58 % par rapport à la valeur du résonateur de référence.

Des chercheurs de l'Institut de Recherche XLIM travaillent sur de nombreux problèmes d'optimisation de forme en utilisant plusieurs techniques : le gradient topologique, les courbes de niveaux et l'algorithme génétique. Ces travaux de thèse ont permis de montrer l'efficacité du couplage de la méthode des plans d'expériences avec une de ces méthodes d'optimisation.

ANNEXES

ANNEXE : Algorithme BFGS

```
L'algorithme de la méthode BFGS est programmé sous le langage c++, le code complet est
le suivant :
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <math.h>
#include "nrutil.h"
#define ITMAX 10000
#define EPS 3.0e-8
#define TOLX (4*EPS)
#define STPMX 100.0
#define FREEALL free_vector(xi,1,n);free_vector(pnew,1,n); \
free_matrix(hessin,1,n,1,n);free_vector(hdg,1,n);free_vector(g,1,n); \
free vector(dg,1,n);
void dfpmin(double p[], int n, double gtol, int *iter, double *fret,double(*func)(double []), void
(*dfunc)(double [], double []))
{
void lnsrch(int n, double xold[], double fold, double g[], double p[], double x[], double *f, double
stpmax, int *check, double (*func)(double []));
int check, i, its, j;
double den,fac,fad,fae,fp,stpmax,sum=0.0,sumdg,sumxi,temp,test;
double *dg,*g,*hdg,**hessin,*pnew,*xi;
dg=vector(1,n);
g=vector(1,n);
hdg=vector(1,n);
hessin=matrix(1,n,1,n);
pnew=vector(1,n);
xi=vector(1,n);
fp=(*func)(p);
(*dfunc)(p,g);
for (i=1;i<=n;i++) {
       for (j=1;j<=n;j++) hessin[i][j]=0.0;
       hessin[i][i]=1.0;
       xi[i] = -g[i];
       sum += p[i]*p[i];
}
stpmax=STPMX*FMAX(sqrt(sum),(double)n);
```

```
for (its=1;its<=ITMAX;its++) {</pre>
       *iter=its;
       lnsrch(n,p,fp,g,xi,pnew,fret,stpmax,&check,func);
       fp = *fret;
       for (i=1;i<=n;i++) {
               xi[i]=pnew[i]-p[i];
              p[i]=pnew[i];
       }
       test=0.0;
       for (i=1;i<=n;i++) {
               temp=fabs(xi[i])/FMAX(fabs(p[i]),1.0);
               if (temp > test) test=temp;
       }
       if (test < TOLX) {
               FREEALL
       return;
       }
       for (i=1;i<=n;i++) dg[i]=g[i];
       (*dfunc)(p,g);
       test=0.0;
       den=FMAX(*fret,1.0);
       for (i=1;i<=n;i++) {
               temp=fabs(g[i])*FMAX(fabs(p[i]),1.0)/den;
              if (temp > test) test=temp;
       }
       if (test < gtol) {
              FREEALL
               return;
       }
       for (i=1;i<=n;i++) dg[i]=g[i]-dg[i];
       for (i=1;i<=n;i++) {
              hdg[i]=0.0;
               for (j=1;j<=n;j++) hdg[i] += hessin[i][j]*dg[j];
       }
       fac=fae=sumdg=sumxi=0.0;
       for (i=1;i<=n;i++) { //nators.
               fac += dg[i]*xi[i];
```

```
fae += dg[i]*hdg[i];
               sumdg += SQR(dg[i]);
               sumxi += SQR(xi[i]);
        }
       if (fac*fac > EPS*sumdg*sumxi) {
               fac=1.0/fac;
               fad=1.0/fae;
               for (i=1;i\leq=n;i++) dg[i]=fac*xi[i]-fad*hdg[i];
               for (i=1;i<=n;i++) {
                       for (j=1;j<=n;j++) {
                              hessin[i][j] += fac*xi[i]*xi[j] \setminus
                              -fad*hdg[i]*hdg[j]+fae*dg[i]*dg[j];
                       }
               }
        }
       for (i=1;i<=n;i++) {
               xi[i]=0.0;
               for (j=1;j<=n;j++) xi[i] -= hessin[i][j]*g[j];
        }
}
nrerror("too many iterations in dfpmin");
FREEALL
}
double func( double * x )
{
return (F) // définition de la fonction F à minimiser
}
void dfunc( double * x, double * y )
{
// définition du vecteur Grad (F)
int main( void ){
  int n = 2; // nombre de variables
  double *p;
  double *q;
  double *y;
  FILE* fichier; //création d'un fichier pour sauvegarder les résultats obtenus
  p = vector(1,n);
  q = vector(1,n);
```

```
y = vector(1,n);
  double x1, x2;
  int iter = 0;
  double fret = 0;
float step = 0.05;
fichier = fopen("test.txt", "w");
fprintf (fichier,"%f \n", fret);
fclose(fichier);
fichier = fopen("test.txt", "a+");
for (x_1=-1;x_1=x_1) // variation des facteurs d'entrée entre -1 et +1 (valeurs données
dans la matrice d'expériences)
{
 for (x2=-1;x2<=1;x2+=step) // variation des facteurs d'entrée entre -1 et +1 (valeurs données
dans la matrice d'expériences)
  {
  p[1] = x1;
  p[2] = x2;
dfpmin( p, 2, .001, &iter, &fret, func, dfunc ) ; // calcul du minimum de la fonction F
fprintf (fichier,"L'optimum est %f en (%f, %f)\n",fret, p[1], p[2]); // affichage des coordonnées de
l'optimum
    }
    }
fclose(fichier);
```

return 0;

}