
UNIVERSITÉ DE LIMOGES

ÉCOLE DOCTORALE Sciences et Ingénierie pour l’Information
FACULTÉ des SCIENCES et TECHNIQUES

Département de Mathématiques et Informatique
Laboratoire XLIM (UMR 6172)

Thèse N◦ 58 - 2011

THÈSE

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE LIMOGES

Discipline : Mathématiques et ses applications

présentée et soutenue publiquement par

Carole EL BACHA

le 25 novembre 2011 à 14h

Méthodes Algébriques pour la Résolution d’Équations
Différentielles Matricielles d’Ordre Arbitraire

dirigée par Moulay A. BARKATOU et codirigée par Thomas CLUZEAU

devant le jury composé de

Rapporteurs :
Mark VAN HOEIJ Professeur, Université d’État de Floride
George LABAHN Professeur, Université de Waterloo
Viktor LEVANDOVSKYY Assistant-Professeur, Université d’Aix-La-Chapelle

Examinateurs :
Sergei ABRAMOV Professeur, Université de Moscou
Moulay A. BARKATOU Professeur, Université de Limoges
Alin BOSTAN Chargé de Recherche, INRIA Rocquencourt
François BOULIER Professeur, Université Lille I
José-Maria CANO TORRES Professeur, Université de Valladolid
Thomas CLUZEAU Maître de Conférences, Université de Limoges

À mes parents,
À ma sœur et mon frère,

À mes neveux.

i

Remerciements

Cette thèse ne m’a pas juste apporté le titre de docteur mais elle m’a aussi permis de m’enrichir
personnellement, socialement, intellectuellement et scientifiquement. Je profite de ces quelques
lignes pour remercier les personnes qui ont contribué à la réussite de ce travail.

J’ai eu de la chance d’avoir un directeur de thèse et un co-encadrant formidables. Je parle
de Moulay Barkatou et Thomas Cluzeau sans qui ce travail n’aurait jamais vu le jour. Je
tiens à les remercier très chaleureusement pour leur assistance, leur disponibilité, leur patience
et leurs précieux conseils. Je voudrais aussi les remercier pour le temps qu’ils m’ont consacré
tout au long de ces années et la pleine confiance qu’ils m’ont accordée tout au long de ce
travail. Leur gentillesse, leur soutien et leur encouragement étaient mon remède pour rebondir
de mes faiblesses et aller plus loin. Leur perfectionnisme m’a poussée à donner le meilleur
de moi-même. Je leur suis très reconnaissante de m’avoir mise en contact avec des gens en
dehors du laboratoire XLIM, ce qui m’a permis de mieux nourrir mes réflexions et enrichir
mes connaissances dans le monde du Calcul Formel. Enfin, merci pour tous les bons moments
passés ensemble lors de nos voyages en mission, je ne les oublierai jamais.

Je suis très reconnaissante envers Mark van Hoeij, George Labahn et Viktor Levan-
dovskyy d’avoir accepté de rapporter sur ma thèse. Je les remercie pour le temps qu’ils ont
consacré pour bien lire ce manuscrit, pour leurs remarques constructives et pour leurs jugements
pertinents. Je remercie plus particulièrement George avec qui j’ai eu une collaboration
fructueuse présentée dans cette thèse. Merci aussi à Viktor pour sa sympathie (et surtout pour
la boîte de chocolat).

Je remercie également Sergei Abramov, Alin Bostan, François Boulier et José-Maria
Cano Torres d’avoir accepté d’examiner cette thèse et fait le voyage pour participer à mon
jury.

Ma reconnaissance va également à Eckhard Pflügel avec qui j’ai co-signé deux articles. Je
le remercie pour l’intérêt qu’il a su montrer à cette thèse.

Mes plus sincères remerciements vont aussi aux membres de l’équipe Algorithms de l’INRIA
Paris-Rocquencourt et ceux de l’équipe Calcul Formel du Laboratoire d’Informatique Fondamen-
tale de Lille de m’avoir conviée à présenter mes travaux de thèse dans leurs établissements. Je
les remercie pour leurs nombreux conseils et les discussions intéressantes que nous avons pu avoir.

Je n’oublie pas Clemens Raab, Flavia Stan et Morgan Barbier pour leurs encouragements
avant la soutenance et leurs félicitations après.

J’exprime tous mes remerciements aux personnels du Département Mathématiques Informa-
tique (DMI) de l’Université de Limoges de m’avoir accueillie chaleureusement parmi eux. Merci
tout particulièrement à mon tuteur pédagogique Alain Salinier de m’avoir guidée dans mes
premiers pas dans le monde académique et à Jacques-Arthur Weil avec qui j’ai eu des échanges
passionnés. Merci également à Odile Duval, Annie Nicolas, Nadia Rossi, Patricia Vareille
et Yolande Vicelli pour leur disponibilité pour répondre à tous nos besoins. Une pensée aux
doctorants qui sont passés par Limoges et qui sont devenus docteurs, en particulier Julien
Angeli, Aurore Bernard, Christophe Chabot, Daouda Diatta, Sandrine Jean et Benjamin

iii

iv Remerciements

Pousse. Également aux doctorants Slim Bettaieb, Abdelkarim Chakhar, Ba-Khiet Le,
Yves Jonathan Ndje, Hoang Anh Nguyen, Esteban Segura Ugalde, Zhenzhong Song et
Gaël Thomas.

Une pensée très chère va à Elsa Bousquet pour son amitié, à Ainhoa Aparicio Monforte
pour la belle surprise inattendue le jour de ma soutenance, à Amel Gheffar pour son sourire
permanent et sa bonté et à Delphine Poingt pour son amitié depuis le master. J’adresse aussi
toute ma gratitude à Marie-Jeanne Nal pour sa gentillesse.

Je tiens également à remercier mes compatriotes qui ont rendu mon séjour à Limoges plus
agréable : Hadia Rammal pour son amitié et les longues journées de shopping, et Michel El
Khoury et Georges Zakka El Nachef pour tous les bons moments passés ensemble entre
autres à la pause déjeuner de midi.

Je remercie aussi et très chaleureusement Hassan Saoud pour ses valeurs humaines, pour
la force qu’il me transmettait dans les moments les plus difficiles, pour son soutien et ses
encouragements sans faille, pour son aide, pour son écoute et pour pleine d’autres choses.

Enfin, le plus grand merci va à toute ma famille, plus particulièrement, à mes parents
Antoine et Kamale qui ont cru en mes capacités et m’ont laissée quitter le nid familial pour
réaliser mon rêve de devenir docteur. Merci pour leur prières qui m’ont aidée à aller jusqu’au
bout. Difficile en quelques mots de leur exprimer toute ma reconnaissance et tout mon amour.
Merci également à ma sœur Carla et sa famille, Imad, Christophe, Mickael et Marc, et à mon
frère Hany et sa famile, Jamila, Anthony et Kevin. Je n’oublie pas mes oncles et mes tantes qui
me transmettaient leur soutien par Skype et sms.

Carole El Bacha

Notation

N The set of nonnegative integers
N∗ The set of positive integers
Z The ring of integers
Q The field of rational numbers
C The field of complex numbers

K The algebraic closure of a field K

A[λ] The ring of polynomials in λ over a ring A
A[[x]] The ring of formal power series in x over a ring A

K(λ) The field of rational functions in λ over a field K
K((x)) The field of formal Laurent series in x over a field K

∂ The standard derivation d
dx

ϑ The Euler derivation x d
dx

ϑk with k ∈ N The derivation xk ϑ = xk+1 ∂
A[D] with D a derivation The ring of differential operators

∑n
i=0 aiD

i with n ∈ N and the ai’s
in a ring A

Am×n The additive group of m× n matrices with entries in a ring A
An×n The ring of n× n matrices with entries in a ring A
GLn(A) The general linear group of degree n over a ring A
An, resp. A1×n The additive group of n-dimensional (column) vectors, resp. row vectors,

with components in a ring A

Km×n The K-vector space of m× n matrices with entries in a field K
Kn×n The K-algebra of n× n matrices with entries in a field K
GLn(K) The general linear group of degree n over a field K
Kn, resp. K1×n The K-vector space of n-dimensional (column) vectors, resp. row vectors,

with components in a field K

f ′(x) The first derivative of a function f(x) w.r.t. to x
f (k)(x) The kth derivative of a function f(x) w.r.t. to x

σ(L) The spectrum of a square matrix polynomial L(λ)
ma(λ0) The algebraic multiplicity of an eigenvalue λ0

mg(λ0) The geometric multiplicity of an eigenvalue λ0

ω The exponent for the complexity of matrix multiplication [100]

deg(p) The degree of a polynomial p
dλ0 The degree of the extension K(λ0) over K, where λ0 ∈ K

dim(E) The dimension of a vector space E

1

2 Notation

0n The square zero matrix of size n
In The identity matrix of size n
AT The transpose of a matrix/vector A
A−1 The inverse of an invertible square matrix A

diag (A1, A2, . . . , An) The (block) diagonal matrix


A1 0 · · · 0

0 A2
. . .

...
...

. 0
0 · · · 0 An


rank(A) The rank of a matrix A
ker(A) The right nullspace of a matrix A
det(A) The determinant of a square matrix A
adj(A) The adjoint of a matrix A
coldim(A) The number of columns of a matrix A

A(i, j) The (i, j)th entry of a matrix A
A(i, .) The ith row of a matrix A
A(., j) The jth column of a matrix A
Ai,∗ The ith block row of a block matrix A
A∗,j The jth block column of a block matrix A

<(z) The real part of a complex number z

v(f) with f ∈ K((x)) The x-adic valuation of f
`c(f) with f ∈ K((x)) The coefficient of xv(f) in f
v(M) with M ∈ K((x))

m×n
The x-adic valuation of M defined by
v(M) = min{v(M(i, j)); 1 ≤ i ≤ m, 1 ≤ j ≤ n}

`c(M) with M ∈ K((x))
m×n

The coefficient matrix of xv(M) in M

M|ν with M ∈ K[[x]]m×n and ν ∈ N Matrix M truncated at order ν,
i.e., if M =

∑∞
i=0Mi x

i, then M|ν =
∑ν

i=0Mi x
i

|α| with α = (α1, . . . , αn) ∈ (N ∪ {±∞})n |α| =
∑

1≤i≤n s.t. αi 6=±∞ αi
and α /∈ {±∞}n

δi,j The Kronecker delta defined by

δi,j =
{

1 if i = j,
0 if i 6= j.

Contents

I Simple Forms and Regular Formal Solutions of Systems of Linear Dif-
ferential Equations 15

1 A Survey on Matrix Polynomials 17
1.1 Regular matrix polynomials . 17
1.2 The Smith normal form and partial multiplicities 19
1.3 Linearization . 21
1.4 Jordan chains and root polynomials . 22
1.5 Canonical sets of Jordan chains . 25
1.6 Efficient computation of a canonical set of Jordan chains 26
1.7 Minimal bases of singular matrix polynomials . 31

2 Symbolic Methods for Computing Regular Solutions of Higher-Order Linear
Differential Systems of the First Kind 35
2.1 Introduction . 35
2.2 Local analysis of first-order linear differential systems 38

2.2.1 Classification of singularities . 38
2.2.2 Computation of a fundamental solution matrix for systems of the first kind 40

2.3 Existing methods for computing regular solutions 40
2.4 Euler’s matrix differential equations . 41
2.5 Non-homogeneous linear differential systems with constant coefficients 44

2.5.1 Existence of polynomial solutions in t = log(x) 44
2.5.2 Computation of the general polynomial solution in t = log(x) 46

2.6 A direct method for computing regular solutions 49
2.6.1 Description of the approach . 49
2.6.2 First version: using Jordan chains . 51
2.6.3 Second version: by packet . 54

2.7 Generalization of Frobenius’ method . 56
2.7.1 First case . 58
2.7.2 Second case . 59
2.7.3 Summary and example . 62

2.8 Some comparison tests . 64

3 Simple Forms of Higher-Order Linear Differential Systems and their Appli-
cations in Computing Regular Solutions 67
3.1 Introduction . 67
3.2 Regular solutions of simple linear differential systems 69
3.3 Transformation to a first-order linear differential system: Algorithm of Barkatou-

Pflügel . 72
3.4 Non-simple systems . 77
3.5 Reduction to the simple case by linear substitutions 79

3.5.1 Necessary condition for the existence of a linear substitution 79
3.5.2 Algorithm . 80
3.5.3 Reconstruction of the regular solutions . 85

3.6 A differential variant of the EG’-algorithm . 86
3.6.1 Definitions and preliminaries . 86

3

4 Contents

3.6.2 Algorithm . 87
3.6.3 Reconstruction of the regular solutions . 91

4 On k-Simple Forms of First-Order Linear Differential Systems and their Com-
putation 93
4.1 Introduction and motivation . 93
4.2 On k-simple linear differential systems and the super-reduction 96

4.2.1 Definitions . 96
4.2.2 The notion of super-reduction . 97

4.3 Direct approach for computing k-simple forms . 98
4.3.1 Linearly dependent constant rows . 100
4.3.2 Reduction to the case of linearly dependent constant rows 103
4.3.3 An example . 107

4.4 Algorithm and complexity estimation . 109
4.5 Preservation of the simplicity . 111
4.6 An example . 118

II Reduction Algorithms for Linear Differential-Algebraic Equations 123

5 Reduction Algorithms for Linear Differential-Algebraic Equations of First-
Order 125
5.1 Introduction . 125
5.2 Review of Harris et al. algorithm . 127

5.2.1 Step 1: normalization . 128
5.2.2 Step 2: algebraic reduction . 128
5.2.3 Step 3: differential row-reduction . 129
5.2.4 Step 4: differential column-reduction . 130

5.3 A new reduction algorithm . 130
5.3.1 Row-reduction . 131
5.3.2 Column-reduction . 133
5.3.3 Decoupling differential and algebraic equations 134
5.3.4 Application: classification of singularities. 136

6 On Simultaneous Row and Column Reduction of Higher-Order Linear Differ-
ential Systems 137
6.1 Introduction . 137
6.2 Row-reduction procedure . 138
6.3 Simultaneously row and column reduced forms 141

6.3.1 Simultaneous row and column reduction 141
6.3.2 First-order matrix differential operators 144

6.4 A second algorithm for simultaneous row and column reduction 145
6.5 Algorithms and complexity . 152
6.6 Reduction of higher-order linear differential systems 155

Résumé de la thèse 159

Bibliography 173

Introduction

Nowadays, the theory of differential equations has an essential place in mathematics and
contributes to the development of various scientific fields.

Linear ordinary differential equations (ODEs) have been intensively studied in the past
years from both theoretical and algorithmic points of view, and considerable progress has been
made on this subject, see [37, 8, 59, 94, 10, 26, 36]. However, the mathematical modeling
of many problems in chemistry, physics, mechanics and control theory exceeds scalar linear
differential equations and gives rise to systems of linear differential equations of arbitrary
order, see [34, 71, 73, 81, 82, 89] and references therein. In this thesis, we are interested in the
algorithmic treatment of such systems.

We consider a matrix differential equation of order ` ≥ 1 of the form

A`(x) y(`)(x) +A`−1(x) y(`−1)(x) + · · ·+A0(x) y(x) = f(x), (1)

where x is a complex variable, the Ai’s are m × n matrices of analytic functions, f is
an m-dimensional vector of analytic functions, y is an unknown n-dimensional vector and
y(i)(x) = diy

dxi
(x).

When m = n and the matrix A`(x) is invertible, i.e., det(A`(x)) 6= 0, Equation (1) is called
an explicit differential system or simply a system of linear ordinary differential equations.

Systems of linear ODEs of first-order, generally given in the form

dy

dx
(x) = A(x) y(x) + b(x)

with A(x), respectively b(x), an n × n matrix, respectively an n-dimensional vector, of mero-
morphic functions, have been widely investigated and several efficient symbolic algorithms have
been developed for solving the local problems (around a singularity, i.e., a pole of A(x)):

• determination of the nature of singularities (regular or irregular singularities: Moser’s
algorithm [77, 54, 12, 25]),

• construction of formal solutions (construction of a fundamental solution matrix, regular
and irregular solutions [37, 101, 56, 13, 21, 85]),

• computation of certain formal invariants (Katz’s invariant [57, 13], Newton’s polygon [85],
Malgrange’s invariant and Gérard & Levelt’s invariant [55]).

There also exist many algorithms treating global problems such as:

• construction of global solutions (rational solutions [14], exponential solutions [83]),

• decomposition and factorization (computing a companion block diagonal form [11], com-
puting a block triangular form [22], using the eigenring method [15]), etc.

Nevertheless, algorithms handling directly higher-order explicit differential systems have been
less elaborated. The classical approach to deal with such systems consists in converting them

5

6 Introduction

into the first-order system

d

dx


y(x)
y′(x)
...

y(`−2)(x)
y(`−1)(x)

 =


0 In 0 · · · 0
0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In
Ã0(x) Ã1(x) Ã2(x) . . . Ã`−1(x)




y(x)
y′(x)
...

y(`−2)(x)
y(`−1)(x)

+


0
0
...
0

f(x)

 , (2)

where for i = 0, . . . , `, Ãi(x) = −A−1
` (x)Ai(x), then applying the results and the algorithms

developed for first-order systems (see for example [29, 66]). But the conversion of a higher-order
system into a first-order one has the computational drawback of increasing the size of the
problem; for a differential system of size n and order `, the resulting first-order system is of size
n `. Another approach dealing with higher-order systems of linear ODEs has been elaborated
by Abramov, Bronstein & Khmelnov (see [1, 2, 4, 5]). This time, systems of the form (1) are
transformed into matrix recurrence equations. We find also in literature some direct works as
for example in [64, 79, 80] but these latter treat only particular case of (1). Thus, the need to
treat directly higher-order systems of linear ODEs is the major motivation of this thesis.

When m 6= n or the matrix A`(x) is singular, systems of the form (1) are known as linear
differential-algebraic equations (DAEs). As the name indicates, a system of DAEs is a system
composed of ordinary differential equations coupled with purely algebraic equations and hence
DAEs differ from systems of ODEs in many aspects. Linear DAEs have been intensively studied
numerically: see [46, 67, 73, 88] and references therein. DAEs of first-order are best classified
using various concepts of index [67, 89, 90]. The most known is the differential index [46] which
measures the distance from the so-called underlying ordinary differential equation. The latter is
a system of ordinary differential equations of first-order computed by differentiating the DAE
successively and then using only algebraic manipulations to express y′ as function of y and x.
In Computer Algebra, a standard technique to treat linear DAEs is to reduce them into systems
of “simpler” forms: the Popov normal form [40] (this form is useful for rewriting high order
terms with respect to low order terms hence transforming higher-order DAEs into first-order
DAEs), the Hermite normal form [49] (an upper triangular matrix whose order is in general
larger than the one of the input DAE), the Jacobson normal form [38, 70, 74] (a diagonal
matrix which reduces the system into a scalar linear differential equation). An implementation
of the algorithms computing these normal forms is provided in the Computer Algebra system
Singular [51]. In this thesis, in order to apply the classical theory of ODEs, we are interested
in the algorithms that decouple a given linear DAE into a purely differential system and a
purely algebraic one.

Content of the Thesis

In this thesis, we are mainly interested in the local analysis systems of the form (1) at
a point x0 ∈ C which can be supposed, without any loss of generality, to be the origin, i.e.,
x0 = 0. Therefore, we will assume that the entries of the coefficient matrices Ai(x) and of the
right-hand side vector f(x) are power series in x.

The thesis is split into two essential parts. In the first part, which is composed of Chapters 1
to 4, we propose direct methods for computing regular formal solutions of systems of the
form (1) with m = n. We also describe a direct approach for computing k-simple forms
(k ∈ N) [14, 21, 85] of first-order systems of linear ordinary differential equations. These forms

Introduction 7

are useful for the computation of formal solutions without ramification. In the second part,
which is formed by Chapters 5 and 6, we are interested in the reduction algorithms of linear
differential-algebraic equations.

In addition to the theoretical results elaborated in this thesis, another contribution arises
in the implementation1 in Maple of most of the algorithms developed and the study of their
arithmetic complexity. Finally, it is important to note that the algorithms proposed at least in
the first part of this thesis can be generalized to handle linear difference and q-difference systems.

The material of this thesis is organized as follows. Chapter 1 contains classical results on
matrix polynomials [50, 65, 42, 104] used in the following chapters. The five remaining chapters
contain our contributions. In the sequel, we describe the content of each of them.

In all this thesis, K denotes a subfield of the field C of complex numbers and K denotes its
algebraic closure.

Chapter 2: Regular Solutions of Higher-Order Linear Differential
Systems of the First-Kind

We consider a system of n linear differential equations of order ` ≥ 1 of the form

L(x, ϑ)(y(x)) = A`(x)ϑ`(y(x)) +A`−1(x)ϑ`−1(y(x)) + · · ·+A0(x) y(x) = 0, (3)

where ϑ = x d
dx is the Euler derivation, Ai(x), for i = 0, . . . , `, are n×n matrices of formal power

series in x over K and y(x) is an unknown n-dimensional vector. In this chapter, we assume
that A`(0) is invertible and we address the problem of computing the regular formal solutions
of (3). These latter are linear combinations of solutions of the form

y(x) = xλ0 z(x), (4)

where λ0 ∈ K and z(x) ∈ K[[x]][log(x)]n. Computing such type of solutions is useful in the
applications since it can help sometimes in understanding the underlying problem. For example,
the existence of logarithm terms in the regular formal solutions of the variational equation of a
Hamiltonian system can prove its non-integrability (see [30]).

We will refer to systems of the form (3) satisfying the assumption “A`(0) is invertible” as
systems of the first kind. Here, the point x = 0 is a regular singularity for the system and the
space of its formal solutions is spanned by n ` regular solutions.

When n = 1 (scalar equations), saying that A`(0) is invertible is equivalent to saying that
A`(0) is nonzero. In this case, the exponent λ0 of any regular solution (4) must be chosen
as a root of the so-called indicial polynomial which is defined from the equation’s coefficients
evaluated at x = 0. Among the methods computing regular formal solutions of scalar linear
ordinary differential equations, we cite the most-known one, the method of Frobenius [44, 37],
and the two variants, that of Heffter [53] and that of Poole [86].

When ` = 1 (first-order systems), apart from the methods in [8, 37, 101] specifically dedicated
to systems of the first kind, the algorithms developed in [21] and [56, Chap. 9] compute regular
solutions of the system even when x = 0 is an irregular singularity.

When ` ≥ 2, the existing methods for solving directly2 this problem do not treat the general
case, see e.g. [5, 64, 79, 80, 81]. They either suppose that the coefficient matrices Ai of System

1see http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html
2Without the conversion into a first-order system.

8 Introduction

(3) are matrix polynomials or solve the problem under some other constraints.

In this chapter, we propose two new direct methods for computing regular formal solutions
of systems of the first kind of the form (3) under no assumption.

The first method that we propose is inspired by the work of Poole [86] treating the scalar case.
We look for regular formal solutions of the form (4) arranged as series in x whose coefficients
are polynomials in t = log(x) (ϑ = d

dt), that is, of the form

y(x) = xλ0(U0(t) + U1(t)x+ · · ·+ Ui(t)xi + · · ·)

with λ0 ∈ K, ∀ m ≥ 0, Um(t) ∈ K[t]n and U0 6= 0. Plugging y(x) into System (3), one finds that
λ0 and U0(t) must satisfy

L0(ϑ)
(
xλ0 U0

)
= 0,

where L0(λ) is the matrix polynomial defined by

L0(λ) = A`(0)λ` + · · ·+A1(0)λ+A0(0). (5)

It follows that λ0 must be chosen as an eigenvalue of the matrix polynomial L0(λ), i.e.,
det(L0(λ0)) = 0, and the coefficients of the polynomial U0 must form a Jordan chain for L0(λ)
associated with λ0 (see [50]). Hence, one can see that the determinant of L0(λ) will play the
same role as the indicial polynomial in the scalar case. For m ≥ 1, we find

L0(ϑ+ λ0 +m) (Um) = Pm(t),

where Pm(t) depends on U0(t), . . . , Um−1(t). We have thus reduced the problem of computing
regular formal solutions of (3) into two subproblems:

1. Computing regular solutions of linear differential systems with constant coefficients.

2. Computing polynomial solutions in log(x) of non-homogeneous linear differential systems
with constant coefficients.

We explain how to solve these two subproblems by reducing them to solving linear algebraic
systems. Thus, we obtain an algorithm which, for a given system of the first kind of the form
(3), returns a basis of its formal solution space. We give two variants of this algorithm. In
the first variant, each regular solution xλ0U0 in a fundamental system of solutions of system
L0(ϑ)(y(x)) = 0 is extended to form a regular solution of System (3). In the second variant,
we gather the eigenvalues of L0(λ) into disjoint sets so that two eigenvalues belonging to two
different sets do not differ by integers. Then, for each set of eigenvalues, we compute the general
regular formal solution of (3) generated by these eigenvalues. We study the arithmetic complexity
of these two variants and present some tables of timings comparing our Maple implementation
of this method with two others: the method presented in [5] which reduces the problem of
computing regular solutions of systems of the form (3) with polynomial coefficients Ai to the
one of computing Laurent series solutions of matrix recurrence equations and the method which
consists in converting (3) into first-order system of size n ` then applying the algorithm of [21].
The tables show the efficiency of our algorithm specially on systems of order ` ≥ 2.

Another contribution developed in this chapter is the generalization of Frobenius’ method
[44, 94] to handle systems of the first kind of the form (3). The Frobenius method has been
generalized to first-order systems in [92, 54, 56], but the generalizations to higher-order systems
found in literature are incomplete, see for instance [64, 80, 81]. Our generalization follows the
broad outlines of the Frobenius method in the scalar case and uses classical results on matrix
polynomials [50] (notably the notions of partial multiplicities and root polynomials) which

Introduction 9

distinguishes it from the other existing generalizations.

Finally, we note that this chapter is a work in collaboration with M. A. Barkatou and
T. Cluzeau and is published in [16] and in a part of [17, 18].

Chapter 3: Simple Forms and their Applications in Computing
Regular Solutions

This chapter is the subject of the published paper [18] in collaboration with M. A. Barkatou
and T. Cluzeau.

We consider here systems of the same form as (3) except that A`(0) and A`(x) are not
necessarily supposed to be invertible, i.e, arbitrary matrices. With such systems, we associate
the matrix polynomial L0(λ) defined in (5).

We first examine the case where the matrix polynomial L0(λ) is regular, i.e., det(L0(λ)) 6= 0.
We will call a system of the form (3) (or the corresponding operator L(x, ϑ)) having a regular
matrix polynomial L0(λ) a simple system (or a simple operator). The notion of simple systems
has been first introduced by Barkatou in computing rational solutions of first-order systems of
linear ODEs (see [14]). Then, it has been used by Barkatou & Pflügel [21] in the calculation
of regular solutions (always for first-order systems). These systems are called so because their
indicial polynomials can be easily computed.

Remark that a system of the first kind is necessarily simple but the converse is not always
true. We also point out that the class of simple systems may include linear differential-algebraic
equations, since the leading coefficient matrix A`(x) is not supposed to be invertible.

We show in this chapter that the methods developed in Chapter 2 for computing regular
formal solutions of systems of the first kind are still valid for simple systems and that

The dimension of the K-vector space spanned by the regular formal solutions of a simple
linear differential system of the form (3) is equal to the degree of the determinant of L0(λ).

This allows us to deduce the nature of the singularity x = 0:

A simple linear differential system of the form (3) with invertible leading coefficient matrix
A`(x) over the field of Laurent series K((x)) has a regular singularity at the point x = 0 if
and only if System (3) is of the first kind.

Another contribution of this chapter is the study of the arithmetic complexity of the
algorithm presented in [21] for computing the regular solutions of simple systems of first-order.
The purpose of this study is to compare, from an arithmetic complexity point of view, our
approach for solving directly simple systems of the form (3) with the one that consists in
transforming System (3) into a first-order simple system of size n ` then using the algorithm of
[21].

Then, we investigate non-simple systems, i.e., systems of the form (3) for which the ma-
trix polynomial L0(λ) is singular (det(L0(λ)) = 0). As our methods for computing regular
solutions are no longer applicable, we propose to compute a simple linear differential system
L(x, ϑ)(z(x)) = 0 from which one can get the regular formal solutions of the non-simple one.
To achieve this, we need to suppose that the leading coefficient matrix A`(x) of System (3) is
invertible over K((x)), i.e., we only consider explicit differential systems, to guarantee that the
regular formal solution space of (3) is of finite dimension.

10 Introduction

The problem of computing a simple system, from which one can recover the solutions of
the non-simple system L(x, ϑ)(y(x)) = 0, has been already studied in [21] (see also [14]) for
the case ` = 1: Barkatou & Pflügel [21] showed that, using the super-reduction algorithm
[24, 25, 58], one can construct two matrices S(x) and T (x) invertible in K((x))n×n such that
the operator L(x, ϑ) = S(x)L(x, ϑ)T (x) is simple. Note that the formal solutions space of
L(x, ϑ)(y(x)) = 0 and that of L(x, ϑ)(z(x)) = 0 are then isomorphic since y(x) and z(x) are
related by y(x) = T (x) z(x) and T (x) is invertible.

Unfortunately, when dealing with higher-order systems (` ≥ 2), it is not always possible to
find two invertible matrices S(x) and T (x) such that the operator S(x)L(x, ϑ)T (x) is simple3.
Indeed, we show that, given a non-simple system with n = ` = 2, if a right minimal basis and a
left minimal basis [65, 42] of the associated matrix polynomial L0(λ) do not contain nonzero con-
stant vectors then for any matrices S(x) and T (x) in K((x))2×2, the operator S(x)L(x, ϑ)T (x)
is always non-simple. For this reason, we are first interested in the existence of a linear sub-
stitution y(x) = T (x) z(x) with invertible matrix T (x) such that the linear differential system
satisfied by z(x) is simple. We give a necessary condition for the existence of a such linear
substitution:

Given a non-simple explicit differential system of the form (3), if there exists an invert-
ible matrix T (x) ∈ K((x))n×n such that the system L(x, ϑ)(z(x)) = 0, where L(x, ϑ) =
L(x, ϑ)T (x), is simple, then the elements of a right minimal basis of the matrix polynomial
L0(λ) associated with (3) are all constant vectors.

As a consequence, we propose an algorithm that either decides the existence of such a linear
substitution and computes it, or proves that it does not exist. In the latter case, we give a
differential variant of the EG’-algorithm developed by Abramov, Bronstein & Khmelnov in
[4, Section 4]. The EG’-algorithm, an improved version of the EG-algorithm described in [1],
has been elaborated in order to bring a matrix recurrence equation into another one whose
leading (or trailing) coefficient matrix is nonsingular. In this chapter, we adapt this algorithm
to our case: we have a linear differential system with singular matrix polynomial L0(λ) and we
would like to compute another system the associated matrix polynomial of which is regular. To
achieve this, we need to suppose that the non-simple system L(x, ϑ)(y(x)) = 0 has polynomial
coefficients. This algorithm applies a series of elementary operations to the rows of the operator
L(x, ϑ) and always yields a simple system from which the regular solutions of the original
system can be recovered. Note that, the obtained simple system could be of order greater than
` and it is not necessarily equivalent to the original system in the sense that the formal solution
spaces of the two systems may not be isomorphic; when they are not, we explain how regular
solutions of the non-simple system can be obtained.

Another contribution of this chapter is the Maple implementation and the arithmetic
complexity study of the new algorithms presented.

Chapter 4: On k-Simple Forms of First-Order Linear Differential
Systems and their Computation

The idea behind this chapter comes from the work [85] of Pflügel.
Consider a system of linear ordinary differential equations of first-order of the form

ϑ(y(x)) = A(x) y(x) with A(x) =
1
xp

(
A0 +A1 x+ · · ·+Ak x

k + · · ·
)
, (6)

3One must introduce ϑ in S and T .

Introduction 11

where p ∈ N and the Ai’s are n×nmatrices with entries in K such that A0 6= 0. In [85], in order to
compute the formal solutions of (6), the author is led to consider systems in a more general form
than (6). Indeed, for an integer k ∈ {0, . . . , p− 1}, define the matrix D(x) = diag(xα1 , . . . , xαn)
with αi = max{0,−k − v(A(x)(i, .))} , where A(x)(i, .) denotes the ith row of matrix A(x).
Multiplying System (6) on the left by xkD(x), one obtains

Dk(y(x)) = D(x)ϑk(y(x)) +N(x)y(x) = 0, (7)

where ϑk = xk ϑ and N(x) = −xkD(x)A(x) has formal power series entries.
Studying the action of Dk on a solution of the form y = exp

(∫
w
)
z with

w =
λ0

xk+1
+ · · · ∈ K((x)),

and z ∈ K[[x
1
r]]n (r ∈ N∗) such that z(0) 6= 0, one finds

exp
(
−
∫
w

)
Dk(y) = (D(0)λ0 +N(0)) z(0) + · · · ,

where the dots stand for terms of higher valuation. It follows that if y = exp
(∫
w
)
z is a solution

of Dk(y) = 0 then (D(0)λ0 +N(0)) z(0) = 0 which implies the two following conditions

det(D(0)λ0 +N(0)) = 0 and z(0) ∈ ker(D(0)λ0 +N(0)).

Hence, it is natural to expect that the roots of the determinant of the matrix pencil

Lk(λ) = D(0)λ+N(0)

will play an important role in the determination of the formal solutions. But it may happen that
the determinant det(Lk(λ)) vanishes identically in λ in which case, it is quite useless. Pflügel
called systems of the form (7) with a regular matrix pencil Lk(λ) k-simple systems4 and showed
in [85, Th. 3.3] that if System (6) can be written as a k-simple system of the form (7) and if
λ0 is an eigenvalue of the matrix pencil Lk(λ) of algebraic multiplicity m, then there exist m
linearly independent formal solutions of (6) of the form y = exp

(∫
w
)
z, where w ∈ x−1K[x−1/r]

(for some r ∈ N∗) can be written as

w =
λ0

xk+1
+ · · · ,

where the dots stand for terms of higher valuation, and z ∈ K[[x1/r]]n[log(x)]. Hence, the deter-
minant of Lk(λ) plays the same role as the Newton polynomials (or characteristic polynomials)
in the scalar case.

Remark that a system of the form (6) written as in (7) is not always k-simple. However,
while studying the super-redution algorithm (see [58, 24, 25]), the author of [85] noticed that
the polynomials defined from a super-reduced form5 are strongly connected to the Newton
polynomials. He showed that if System (6) is super-reduced, then it can be written as a k-
simple system for k = 0, . . . , p− 1.

In this chapter, we will consider the class of systems of the form (7) with k ∈ N, D(x) and
N(x) in K[[x]]n×n such that D(x) is invertible over K((x)) (D(x) is not necessarily supposed
to be diagonal). Before this thesis, the only method to compute a k-simple system equivalent

4We will also call them systems simple with respect to ϑk. The notion of k-simplicity comes as a generalization
of that of simplicity viewed in [14, 21].

5The super-reduced forms are defined for systems of the form (6).

12 Introduction

to (7) was by using the super-reduction algorithm. But, a k-simple system of the form (7),
written as in (6) with A(x) = −x−kD−1(x)N(x), is not necessarily super-reduced. Hence, we
develop in this chapter a direct algorithm that brings System (7) into an equivalent k-simple one
D̃k(z(x)) = D̃(x)ϑk(z(x)) + Ñ(x) z(x) = 0. Our approach is based on the algebraic treatment
of the matrix pencil Lk(λ) and proceeds in a similar way as in [58]. Finally, we point out three
characteristics of our algorithm :

• The k-simple system produced by our approach is not necessarily super-reduced.

• Our algorithm applied to Dk given in (7) with k = 0 allows us to determine the nature of
the singularity x = 0. It can then be considered as an alternative way of Moser’s reduction
[77] to determine the nature of the singularity x = 0.

• Our approach applied to Dk given in (7) preserves the simplicity with respect to ϑk+i

for i = 1, 2, In other words, if the operator Dk written respectively with ϑk+i for
i = 1, 2, . . . is simple with respect to ϑk+i, then after applying our algorithm to Dk, the
returned operator is also simple with respect to ϑk+i for i = 1, 2,

Here again, we study the arithmetic complexity of our algorithm which has been imple-
mented6 in Maple and we clarify our approach using examples.

Chapter 5: Reduction Algorithms for Linear
Differential-Algebraic Equations of First-Order

The content of this chapter constitutes a part of the published paper [20] in collaboration with
M. A. Barkatou and E. Pflügel.

We study linear differential-algebraic equations of first-order of the form

L(y(x)) = A(x) ∂(y(x)) +B(x) y(x) = f(x), (8)

where ∂ = d
dx , x is a complex variable, A(x) and B(x) are m × n matrices of formal power

series over K, y(x) is an unknown n-dimensional vector and the right-hand side f(x) is an
m-dimensional vector of formal power series over K. The purpose of our study is to generalize
the concepts developed for first-order systems of ODEs to the DAEs case. To achieve this,
the first idea that comes to mind is to reduce DAEs of the form (8) to a standard form which
can be handled via well known techniques as, for example, those elaborated for ODEs. In
this chapter, we develop a new approach decoupling the DAE (8) into an explicit differential
system of first-order and a purely algebraic one (and evidently some necessary conditions on
the right-hand side).

Regardless of their goals, most of the symbolic and numerical algorithms manipulating linear
DAEs of first-order (see [47, 67, 88]) follow the same techniques:

• multiply the DAEs on the left by an invertible matrix,

• differentiate the algebraic equations,

• make the change of variables y(x) = T (x) z(x) with invertible matrix T (x).

6The code is available at http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html

Introduction 13

These operations are not always enough to entirely decouple a DAE of the form (8) into a
first-order system of ODEs and a system of algebraic equations. However, having a closer look
on the algorithm of Harris, Sibuya & Weinberg [52], we have noticed that by authorizing also
change of variables of the form y(x) = T (z(x)), where T is a unimodular matrix differential
operator, one can achieve decoupling.

In this chapter, we first review the algorithm of Harris et al. [52]; we use a new presentation by
expressing the operations performed as a series of left- and right- (differential) transformations
on the matrix differential operator L. Then, inspired by the latter algorithm, we give a new and
simplified approach to show that

Given a matrix differential operator L = A(x) ∂+B(x), there exist two unimodular matrix
differential operators S and T such that L̃ = S LT is of the form

L̃ =

Ã11(x) ∂ + B̃11(x) 0 0
0 B̃22(x) 0
0 0 0

 , (9)

where Ã11 and B̃22 are both invertible.

Therefore, the DAE (8) is reduced to two separated systems:

1. the first-order system of linear ODEs Ã11(x) z′1(x) + B̃11(x) z1(x) = f̃1(x), and

2. the system of algebraic equations B̃22(x) z2(x) = f̃2(x),

together with some necessary conditions on the right-hand side expressed by f̃3(x) = 0. Here,
we have

y(x) = T

z1(x)
z2(x)
z3(x)

 and

f̃1(x)
f̃2(x)
f̃3(x)

 = S(f(x)).

Thus, bringing the DAE to an ODE problem, it is then possible to extend the notion of regular
and irregular singularities to linear DAEs of first-order.

To get the decoupled form (9), we proceed as follows. We start by applying the row-
reduction procedure [27] on the input matrix differential operator L. This is translated by a
left-multiplication of L by a unimodular matrix differential operator. Then, we follow it by a
column-reduction on the resulting row-reduced operator (right-multiplication by a unimodular
matrix differential operator). The obtained operator is now column-reduced but not necessarily
row-reduced. If it is not so, then we apply again row-reduction and so on, until we end up
with an operator which is row-reduced and column-reduced. We show that this happens after a
finite number of iterations. Finally, by means of multiplications by invertible matrices, we get
an operator of the form (9).

Chapter 6: On Simultaneous Row and Column Reduction of
Higher-Order Linear Differential Systems

This chapter is the subject of the paper [19] in collaboration with M. A. Barkatou, G. Labahn
and E. Pflügel.

14 Introduction

In this chapter, we generalize the method proposed in Chapter 5 for first-order linear DAEs
to higher-order ones of the form (1). We act on the matrix differential operator L defining
System (1), i.e.,

L = A`(x) ∂` +A`−1(x) ∂`−1 + · · ·+A0(x),

in order to obtain an equivalent operator which is simultaneously row and column reduced. This
latter is of order less than or equal to that of L and has a particular block structure allowing
to decouple the associated system into a purely algebraic system, a purely differential system
(square and its equations are linearly independent) and some necessary conditions on the right-
hand side. Furthermore, the obtained purely differential system can be easily rewritten as an
explicit first-order differential system and hence the dimension of its formal solution space can
be determined and the classification of singularities can be explored.

To compute a simultaneously row and column reduced form, we propose two approaches.
The first approach consists in applying alternatively row-reduction and column-reduction until
we find an operator which is at the same time row-reduced and column-reduced. Although this
method works on rows and columns, the final operator has a structure by blocks. The second
approach is inspired by techniques used for computing Popov forms in the commutative case
(see, e.g., [78]) except that here we manipulate blocks.

Finally, we note that a simultaneously row and column reduced form is weaker than the
Popov and Jacobson normal forms.

Part I

Simple Forms and Regular Formal
Solutions of Systems of Linear

Differential Equations

15

Chapter 1

A Survey on Matrix Polynomials

Contents
1.1 Regular matrix polynomials . 17
1.2 The Smith normal form and partial multiplicities 19
1.3 Linearization . 21
1.4 Jordan chains and root polynomials . 22
1.5 Canonical sets of Jordan chains . 25
1.6 Efficient computation of a canonical set of Jordan chains 26
1.7 Minimal bases of singular matrix polynomials 31

Let K be a subfield of the field C of complex numbers (Q ⊆ K ⊆ C) and K its algebraic
closure. An n× n matrix polynomial is an n× n matrix whose entries are polynomials in K[λ].
Since K[λ]n×n is isomorphic to Kn×n[λ], any matrix polynomial L(λ) can be written in the form

L(λ) = A` λ
` + · · ·+A1 λ+A0, (1.1)

where ` ∈ N, A0, A1, . . . , A` are (`+ 1) matrices of Kn×n and A` 6= 0. Hence, L(λ) is said
to be of degree ` and the matrix A` is called the leading coefficient matrix of L(λ). Matrix
polynomials of degree one are usually known as matrix pencils. The theory of matrix polynomials
has been extensively studied in literature: see, e.g., [45, 50, 65, 69]. This chapter aims at
recalling some basic results on matrix polynomials such as the Smith normal form, partial
multiplicities, Jordan chains, minimal bases, etc. We will use these mathematical objects in the
study of linear differential systems which is the main topic of this thesis. For the computation
of partial multiplicities and Jordan chains, which are useful in the algorithms developed in the
next chapters, we review an algorithm described in [104] (see also [97]) and provide here its
arithmetic complexity analysis.

The chapter is divided into 7 sections. Sections 1.1 to 1.6 are devoted to regular matrix
polynomials whereas Section 1.7 concerns only singular matrix polynomials.

1.1 Regular matrix polynomials

The rank of a matrix polynomial L(λ) is defined as

rank(L(λ)) = max
{

rank(L(λ0)) ; λ0 ∈ K
}
.

It is also the rank of L(λ) viewed as a matrix with entries in the field K(λ) of rational functions
in one variable λ.

Definition 1.1.1. An n×n matrix polynomial L(λ) is said to be regular if rank(L(λ)) = n, or,
equivalently, if its determinant det(L(λ)) does not vanish identically. Otherwise, it is said to be
singular.

17

18 Chapter 1. A Survey on Matrix Polynomials

The degree of the determinant of a regular matrix polynomial L(λ) ∈ K[λ]n×n of degree ` is
less than or equal to n ` and the equality holds if and only if the leading coefficient matrix of
L(λ) is invertible; this can be shown by considering the “reverse” polynomial λ`L(λ−1) of L(λ).

Example 1.1.1. Consider the 2× 2 matrix polynomial of degree 6 given by

L(λ) =
(

λ2 − 2λ+ 1 −2λ5 + 2λ4 + 3λ3 − 4λ2 + λ
−2λ3 + 5λ2 − 4λ+ 1 2λ6 − 8λ4 + 7λ3 − λ

)
(1.2)

=
(

(λ− 1)2 −λ
(
2λ2 + 2λ− 1

)
(λ− 1)2

(1− 2λ) (λ− 1)2 λ
(
2λ3 + 4λ2 − 2λ− 1

)
(λ− 1)2

)
.

Its determinant

det(L(λ)) = λ (λ− 1)4

∣∣∣∣ 1 −(2λ2 + 2λ− 1)
1− 2λ 2λ3 + 4λ2 − 2λ− 1

∣∣∣∣ = −2λ (λ+ 1) (λ− 1)6 (1.3)

is a nonzero polynomial hence L(λ) is a regular matrix polynomial. Remark that the degree of
det(L(λ)) is equal to 8, less than 2×6, which is coherent with the fact that the leading coefficient
matrix of L(λ)

A6 =
(

0 0
0 2

)
is singular. �

Definition 1.1.2. Let L(λ) ∈ K[λ]n×n be a regular matrix polynomial.

1. An element λ0 of K is called an eigenvalue (or a finite eigenvalue) of L(λ) if λ0 is a root
of the determinant of L(λ), i.e., det(L(λ0)) = 0. If λ0 ∈ K is an eigenvalue of L(λ), then
its multiplicity as a root of det(L(λ)) is called the algebraic multiplicity of λ0 and it is
denoted by ma(λ0).

2. The set of all eigenvalues of L(λ) is called the spectrum of L(λ) and denoted by σ(L)
(σ(L) ⊂ K).

3. For λ0 ∈ σ(L), a nonzero vector v of Kn is called an eigenvector of L(λ) associated with
λ0 if v belongs to the right nullspace ker(L(λ0)) of L(λ0), i.e., L(λ0) v = 0. The dimension
of ker(L(λ0)) is called the geometric multiplicity of λ0 and it is denoted by mg(λ0).

This definition of eigenvalues of regular matrix polynomials is a generalization of the well-
known notion of eigenvalues of square constant matrices. Indeed, an eigenvalue of a matrix
A ∈ Kn×n is, by definition, an eigenvalue of the regular matrix pencil Inλ−A.

We illustrate these notions with the following example.

Example 1.1.2. Consider the matrix polynomial L(λ) given by (1.2). From (1.3), we can see
that L(λ) has three eigenvalues −1, 0 and 1 of algebraic multiplicity 1, 1 and 6 respectively. To
compute their geometric multiplicities, we evaluate L(λ) respectively at λ0 = −1, 0 and 1. We
obtain

L(−1) =
(

4 −4
12 −12

)
, L(0) =

(
1 0
1 0

)
and L(1) =

(
0 0
0 0

)
.

Thus, mg(−1) = 1, mg(0) = 1 and mg(1) = 2. An eigenvector respectively associated with the
eigenvalue λ0 = −1, 0 and 1 is any vector of C2 respectively of the form(

a
a

)
,

(
0
b

)
and

(
c
d

)
,

where a, b, c, d ∈ C such that a 6= 0, b 6= 0 and (c, d) 6= (0, 0). �

1.2. The Smith normal form and partial multiplicities 19

Remark 1.1.1. In the algorithms that we develop in the next chapters, we need to compute a
representation of the spectrum of a regular matrix polynomial L(λ) ∈ K[λ]n×n of degree `. We
proceed as follows. We compute the determinant of L(λ), then we factor it over K. Thus, each
eigenvalue λ0 ∈ σ(L) is represented by RootOf(p(λ)) (using Maple notation) where p(λ) is an
irreducible factor of det(L(λ)) in K[λ] with p(λ0) = 0. Note that λ0 belongs to K if and only if
the polynomial p(λ) is of degree 1. Randomized algorithms allow us to compute the determinant
of L(λ) in O∼(nω `) operations in K (see [62]), where 2 ≤ ω < 2.376 is the exponent for the
complexity of matrix multiplication (see [100]), and to factor it over K in O∼

(
(n `)12

)
operations

in K (see [76, Algorithm 18.7.3]). In the sequel, the cost of computing σ(L) will not be taken
into account in the complexity analysis of our algorithms.

1.2 The Smith normal form and partial multiplicities

Definition 1.2.1. Two matrix polynomials A(λ) and B(λ) of K[λ]n×n are said to be equivalent
if there exist two unimodular matrix polynomials E(λ) and F (λ) of K[λ]n×n, i.e., with constant
nonzero determinant in K, such that

A(λ) = E(λ)B(λ)F (λ). (1.4)

In the sequel, we denote this equivalence relation by the symbol v, i.e., we write A(λ) v B(λ)
if A(λ) is equivalent to B(λ).

Notice that if A(λ) v B(λ), then A(λ) is regular if and only if B(λ) is regular and we have
σ(A) = σ(B).

Since the ring K[λ] is a principal ideal domain, any matrix polynomial L(λ) admits a Smith
normal form, i.e., a diagonal representation, as it is stated by the following theorem.

Theorem 1.2.1 ([50], Th. S1.1). Any regular matrix polynomial L(λ) ∈ K[λ]n×n is equivalent
to a unique matrix polynomial of the form

S(λ) = diag(d1(λ), . . . , dn(λ)) , (1.5)

where the di’s are monic polynomials and di(λ) divides di+1(λ), for i = 1, . . . , n− 1.

Definition 1.2.2. The matrix polynomial S(λ) given by (1.5) is called the Smith normal form
of L(λ) and the monic polynomials di(λ) are called the invariant polynomials of L(λ).

The Smith normal form of a matrix polynomial L(λ) can be obtained by applying a sequence
of elementary row and column operations to L(λ). Randomized algorithms allow to compute
the Smith normal form of an n×n matrix polynomial of degree ` in at most O∼(nω `) operations
in K (see [62, 93] and references therein).

Example 1.2.1. Using for example the command SmithForm of the LinearAlgebra package
of Maple, we can compute the Smith normal form S(λ) of the matrix polynomial L(λ) given by
(1.2) together with two unimodular matrix polynomials E(λ) and F (λ) providing the equivalence
L(λ) v S(λ). We find

S(λ) =
(
λ2 − 2λ+ 1 0

0 λ6 − 3λ5 + 2λ4 + 2λ3 − 3λ2 + λ

)

=
(

(λ− 1)2 0
0 λ (λ+ 1) (λ− 1)4

)
(1.6)

=
(

1 0
−λ4 + λ3 + λ2 − 2λ+ 1

2 −1
2

)
︸ ︷︷ ︸

E(λ)

L(λ)
(

2λ3 + 2λ2 − λ+ 1 2λ3 + 2λ2 − λ
1 1

)
︸ ︷︷ ︸

F (λ)

,

20 Chapter 1. A Survey on Matrix Polynomials

with det(E(λ)) = −1
2 and det(F (λ)) = 1. �

Due to the equivalence, each invariant polynomial di(λ) of positive degree can be written as

di(λ) =
Ni∏
j=1

(λ− λj)αi,j ,

where λj ∈ σ(L) such that λi 6= λj for i 6= j and αi,j , Ni ∈ N∗ such that Ni ≤ Ni+1 and
αi,j ≤ αi+1,j (since di(λ) divides di+1(λ)). The factors (λ− λj)αi,j are called the elementary
divisors of L(λ).

Theorem 1.2.2 ([50], Th. S1.10). Let L(λ) ∈ K[λ]n×n be a regular matrix polynomial and
λ0 ∈ σ(L). There exist two matrix polynomials Eλ0(λ) and Fλ0(λ) of K[λ]n×n invertible at
λ = λ0, i.e., Eλ0(λ0), Fλ0(λ0) ∈ GLn(K), such that

L(λ) = Eλ0(λ)Sλ0(λ)Fλ0(λ)

with Sλ0(λ) of the form

Sλ0(λ) = diag(1, . . . , 1, (λ− λ0)κ1 , . . . , (λ− λ0)κmg(λ0)) , (1.7)

where the κi’s are positive integers uniquely determined from L(λ) and λ0, satisfying κ1 ≤ · · · ≤
κmg(λ0) and

∑mg(λ0)
i=1 κi = ma(λ0).

Definition 1.2.3. The matrix polynomial Sλ0(λ) given by (1.7) is called the local Smith form
of L(λ) at λ0 and the integers κi, for i = 1, . . . ,mg(λ0), are called the partial multiplicities of
L(λ) at λ0.

Example 1.2.2. From the Smith normal form (1.6) of the matrix polynomial L(λ) defined by
(1.2), we can get the local Smith form of L(λ) at λ0 = 1 as follows. We have

L(λ) = E−1(λ)S(λ)F−1(λ)

= E−1(λ)
(

1 0
0 λ (λ+ 1)

) (
(λ− 1)2 0

0 (λ− 1)4

)
F−1(λ)

= E1(λ)S1(λ)F1(λ),

where

E1(λ) = E−1(λ)
(

1 0
0 λ (λ+ 1)

)
=
(

1 0
−2λ4 + 2λ3 + 2λ2 − 4λ+ 1 −2λ (λ+ 1)

)
,

F1(λ) = F−1(λ) =
(

1 −2λ3 − 2λ2 + λ
−1 2λ3 + 2λ2 − λ+ 1

)
,

and

S1(λ) =
(

(λ− 1)2 0
0 (λ− 1)4

)
is the local Smith form of L(λ) at λ0 = 1. Here, the eigenvalue 1 has 2 (2 = mg(1)) partial
multiplicities κ1 = 2 and κ2 = 4 with κ1 + κ2 = ma(1) = 6. �

1.3. Linearization 21

The usefulness of the Smith normal form is twofold. On one hand, it allows to define the
partial multiplicities at a given eigenvalue which make the difference between scalar polynomials
(n = 1) and matrix polynomials (n > 1). Indeed, in the scalar case (n = 1), an eigenvalue of a
polynomial L(λ), which is a root of L(λ), has a unique partial multiplicity equal to its (algebraic)
multiplicity. This is not always true in the matrix case (n > 1) as shown in Example 1.2.2 where
the algebraic multiplicity of the eigenvalue 1 is split into two partial multiplicities. Additionally,
the partial multiplicities determine the maximum lengths of Jordan chains that we will consider
later. On the other hand, due to its diagonal form, it is sometimes easier to work with the Smith
normal form of a matrix polynomial L(λ) instead of working with L(λ) itself.

We will explain later, in Section 1.6, how one can obtain the partial multiplicities of L(λ) at
a given eigenvalue λ0 without computing the local Smith form of L(λ) at λ0.

1.3 Linearization

From a theoretical point of view, it is sometimes easier to reduce a problem of higher degree to
another problem of degree one. For matrix polynomials of degree greater than or equal to 2,
this can be done by computing an “equivalent” matrix pencil called a linearization.

Definition 1.3.1. Let L(λ) be an n× n matrix polynomial of degree `. A matrix pencil P (λ) =
P1 λ+ P0, where P1, P0 ∈ Kn `×n `, is called a linearization of L(λ) if

P (λ) v
(
L(λ) 0

0 In(`−1)

)
.

Computing a linearization of a regular matrix polynomial L(λ) is one of the classical ap-
proaches for investigating the spectral information of L(λ) provided by the elementary divisors.
Indeed, from Definitions 1.2.1 and 1.3.1, it derives that L(λ) and its linearization P (λ) share
the same spectrum. Moreover, if S(λ) denotes the Smith normal form of L(λ) then

P (λ) v
(
L(λ) 0

0 In(`−1)

)
v

(
S(λ) 0

0 In(`−1)

)
v

(
In(`−1) 0

0 S(λ)

)
.

The matrix polynomial diag
(
In(`−1), S(λ)

)
is a diagonal matrix whose ith diagonal entry is

monic and divides the (i+ 1)th one. From the uniqueness of the Smith normal form, it follows
that diag

(
In(`−1), S(λ)

)
is the Smith normal form of P (λ). Thus, the elementary divisors of

L(λ) and of P (λ) are the same.

Theorem 1.3.1 ([50], page 186). Let L(λ) =
∑`

i=0Ai λ
i be an n×n matrix polynomial of degree

`. The matrix pencil defined by

CL(λ) =


In 0 0 · · · 0
0 In 0 · · · 0
...

.
...

0
. . . In 0

0 · · · · · · 0 A`

λ+


0 −In 0 · · · 0
0 0 −In · · · 0
...

...
. . .

...
0 0 · · · · · · −In
A0 A1 · · · · · · A`−1

 (1.8)

and called the first companion form (or companion polynomial) of L(λ) is a linearization of
L(λ).

The general point of view of this thesis is to avoid increasing the problem dimension. Thus,
we will merely use the notion of linearization for theoretical purposes and not for practical ones.
Therefore, we do not provide more information on this notion here and we invite the reader to
consult the papers [68, 72] for additional details.

22 Chapter 1. A Survey on Matrix Polynomials

Remark 1.3.1. For n × n matrix polynomials whose leading coefficient matrix is singular
(or even for m × n matrix polynomials), linearizations of smaller size than the ones given in
Definition 1.3.1 have been considered in [32] and sharp lower bounds on their sizes have been
provided in [41].

1.4 Jordan chains and root polynomials

In classical linear algebra, the concept of Jordan chains for constant matrices is relatively well-
known in connection with the eigenvalue problem (see [45, 69]). The extension of this notion to
matrix polynomials is defined as follows.

Definition 1.4.1. Let L(λ) ∈ K[λ]n×n be a regular matrix polynomial and consider an eigenvalue
λ0 ∈ σ(L).

1. A sequence of vectors v0 6= 0, v1, . . . , vk−1 (k ∈ N∗) of Kn is called a Jordan chain of length
k for L(λ) associated with λ0 if these vectors satisfy

L(λ0) v0 = 0,
1
1!L
′(λ0) v0 + L(λ0) v1 = 0,

...
1

(k−1)!L
(k−1)(λ0) v0 + · · ·+ 1

1!L
′(λ0) vk−2 + L(λ0) vk−1 = 0,

where L(i)(λ) represents the ith derivative with respect to λ of the matrix polynomial L(λ).

2. If v0, v1, . . . , vk−1 (k ∈ N∗) is a Jordan chain for L(λ) of length k associated with λ0,
then, by definition, v0 is an eigenvector of L(λ) associated with λ0. The other vectors
v1, . . . , vk−1 are called generalized eigenvectors associated with λ0.

Remark that a Jordan chain for a matrix A ∈ Kn×n associated with an eigenvalue λ0 (see
[45]) is a Jordan chain for the matrix pencil Inλ−A (in the sense of Definition 1.4.1) associated
with the same eigenvalue. In this case, it has been shown that the vectors in a Jordan chain
are linearly independent. Nevertheless this is not always true for matrix polynomials of degree
greater than one where the generalized eigenvectors can be zero.

Definition 1.4.2. Let L(λ) ∈ K[λ]n×n be a regular matrix polynomial and consider an eigenvalue
λ0 ∈ σ(L). A vector polynomial φ(λ) ∈ K[λ]n is called a root polynomial of L(λ) of order k ∈ N∗
associated with λ0 if φ(λ0) 6= 0 and L(λ)φ(λ) = 0 mod (λ− λ0)k.

From Definitions 1.4.1 and 1.4.2, it follows that, for a given eigenvalue λ0 of L(λ), there exists
a correspondence between the set of root polynomials and the set of Jordan chains. Indeed, if
one writes a root polynomial φ(λ) of L(λ) of order k associated with λ0 as a polynomial in λ−λ0

φ(λ) =
q∑
i=0

(λ− λ0)i φi,

where q ∈ N, φi ∈ Kn and φ0, φq 6= 0, then, for any positive integer p ≤ k, the vectors
φ0, . . . , φp−1, with the convention φi = 0 when i > q, form a Jordan chain of length p associated
with λ0. This can be seen as follows. Taylor’s formula applied to L(λ) at the point λ0 gives

L(λ) =
∑̀
j=0

1
j!
L(j)(λ0) (λ− λ0)j .

1.4. Jordan chains and root polynomials 23

The product L(λ)φ(λ) is thus equal to

L(λ)φ(λ) =

∑̀
j=0

1
j!
L(j)(λ0) (λ− λ0)j

[q∑
i=0

(λ− λ0)i φi

]

=
p−1∑
i=0

 i∑
j=0

1
j!
L(j)(λ0)φi−j

 (λ− λ0)i mod (λ− λ0)p . (1.9)

Since L(λ)φ(λ) = 0 mod (λ − λ0)k with k ≥ p, it follows from relation (1.9) that for i =
0, . . . , p− 1, one has

i∑
j=0

1
j!
L(j)(λ0)φi−j = 0. (1.10)

Therefore, φ0, . . . , φp−1 form a Jordan chain of length p associated with λ0. Conversely, if
v0, v1, . . . , vp−1 is a Jordan chain of length p for L(λ) associated with λ0, then the vector poly-
nomial defined by

φ(λ) =
p−1∑
i=0

(λ− λ0)i vi + (λ− λ0)p ψ(λ),

where ψ(λ) is an arbitrary vector polynomial of K[λ]n, is a root polynomial of L(λ) of order p
associated with λ0.

Definition 1.4.3. Let L(λ) ∈ K[λ]n×n be a matrix polynomial and λ0 ∈ σ(L). An eigenvector
v0 associated with λ0 is said to be of rank κ if the maximal order of root polynomials φ(λ) of
L(λ) associated with λ0 such that φ(λ0) = v0 is κ.

Due to the relation between Jordan chains and root polynomials, we can say that an eigen-
vector v0 of L(λ) associated with λ0 is of rank κ if the maximum length of Jordan chains for
L(λ) associated with λ0 having v0 as a first vector is κ.

Theorem 1.4.1 ([50], Th. 1.12). Let L(λ) be a regular matrix polynomial and λ0 ∈ σ(L).
The rank of an eigenvector v0 of L(λ) associated with λ0 is always equal to one of the partial
multiplicities of L(λ) at λ0.

We illustrate the notions of Jordan chain and rank of an eigenvector with the following
example.

Example 1.4.1. Let

L(λ) =
(

λ2 − 2λ+ 1 −2λ5 + 2λ4 + 3λ3 − 4λ2 + λ
−2λ3 + 5λ2 − 4λ+ 1 2λ6 − 8λ4 + 7λ3 − λ

)
be the matrix polynomial given by (1.2). We have found in Example 1.1.2 that any nonzero
vector of C2 is an eigenvector of L(λ) associated with the eigenvalue 1. Let us now compute the

Jordan chains for L(λ) associated with 1 which begin with an eigenvector v0 =
(
v01

v02

)
. For the

first generalized eigenvector v1 =
(
v11

v12

)
, we have

L′(1) v0 + L(1) v1 = 0 ⇐⇒
(

0 0
0 0

)(
v01

v02

)
+
(

0 0
0 0

)(
v11

v12

)
= 0.

24 Chapter 1. A Survey on Matrix Polynomials

This latter relation holds for any vector v1 of C2 and any (nonzero) vector v0 of C2. For the

second generalized eigenvector v2 =
(
v21

v22

)
, we have

1
2!L

(2)(1) v0 + L′(1) v1 + L(1) v2 = 0

⇐⇒
(

1 −3
−1 3

)(
v01

v02

)
+
(

0 0
0 0

)(
v11

v12

)
+
(

0 0
0 0

)(
v21

v22

)
= 0

=⇒ v01 = 3 v02.

Thus, v2 exists if and only if v0 satisfies v01 = 3 v02. Consequently, any Jordan chain associated

with eigenvalue 1 beginning with an eigenvector of the form v0 =
(
v01

v02

)
such that v01 6= 3 v02

is of length at most 2. Assume now that the eigenvector v0 satisfies v01 = 3 v02. For the third

generalized eigenvector v3 =
(
v31

v32

)
, we have

1
3!L

(3)(1) v0 + 1
2!L

(2)(1) v1 + L′(1) v2 + L(1) v3 = 0

⇐⇒
(

0 −9
−2 15

)(
3 v02

v02

)
+
(

1 −3
−1 3

)(
v11

v12

)
+
(

0 0
0 0

)(
v21

v22

)
+
(

0 0
0 0

)(
v31

v32

)
= 0

=⇒ −9 v02 + v11 − 3 v12 = 0

=⇒ v11 = 9 v02 + 3 v12.

Thus, the first generalized eigenvector v1 of any Jordan chain associated with the eigenvalue 1
of length at least 4 must satisfy v11 = 9 v02 + 3 v12. For the fourth generalized eigenvector v4, we
have

1
4!L

(4)(1) v0 + 1
3!L

(3)(1) v1 + 1
2!L

(2)(1) v2 + L′(1) v3 + L(1) v4 = 0

⇐⇒
(

0 −8
0 22

)(
3 v02

v02

)
+
(

0 −9
−2 15

)(
9 v02 + 3 v12

v12

)
+
(

1 −3
−1 3

)(
v21

v22

)
= 0

=⇒
{
−8 v02 − 9 v12 + v21 − 3 v22 = 0
4 v02 + 9 v12 − v21 + 3 v22 = 0

=⇒ v02 = 0.

This implies v0 = 0 which is impossible. Thus, the length of any Jordan chain associated with 1

beginning with an eigenvector of the form v0 =
(

3 v02

v02

)
(v02 6= 0) is at most 4. To summarize,

the Jordan chains associated with eigenvalue 1 can be described as follows:

• Jordan chains of length 1 are formed by an arbitrary nonzero vector v0 of C2;

• Jordan chains of length 2 are of the form v0, v1, where v0, v1 are both arbitrary vectors of
C2 and v0 6= 0;

• Jordan chains of length 3 are of the form v0 =
(

3 v02

v02

)
, v1, v2, where v02 ∈ C \ {0} and v1

and v2 are two arbitrary vectors of C2;

• Jordan chains of length 4 are of the form v0 =
(

3 v02

v02

)
, v1 =

(
9 v02 + 3 v12

v12

)
, v2, v3, where

v02 ∈ C \ {0}, v12 ∈ C and v2 and v3 are two arbitrary vectors of C2;

1.5. Canonical sets of Jordan chains 25

From above explanation, we can deduce that the rank of an eigenvector v0 =
(
v01

v02

)
associated

with the eigenvalue 1 is equal to 2 if v01 6= 3 v02 and 4 otherwise. We recall that 2 and 4 are
indeed the partial multiplicities of L(λ) at 1 (see Example 1.2.2). �

1.5 Canonical sets of Jordan chains

In Theorem 1.4.1, we have seen that the rank of an eigenvector associated with a given eigenvalue
λ0 is equal to one of the partial multiplicities at λ0. The following proposition states that it is
always possible to find a basis of the right nullspace of L(λ0) (i.e., mg(λ0) linearly independent
eigenvectors associated with λ0) such that each partial multiplicity of L(λ) at λ0 corresponds to
the rank of an element of this basis.

Proposition 1.5.1 ([50], page 32). Let L(λ) be a regular matrix polynomial and λ0 ∈ σ(L) an
eigenvalue with partial multiplicities κ1, . . . , κmg(λ0). For each i = 1, . . . ,mg(λ0), there exists
a Jordan chain vi,0, . . . , vi,κi−1 of maximal length κi associated with λ0, i.e., there exists an
eigenvector vi,0 of rank κi, such that the family of eigenvectors

(
v1,0, . . . , vmg(λ0),0

)
forms a basis

of the right nullspace of L(λ0).

Definition 1.5.1. With the notation of Proposition 1.5.1, the Jordan chains

v1,0, . . . , v1,κ1−1, v2,0, . . . , v2,κ2−1, . . . , vmg(λ0),0, . . . , vmg(λ0),κmg(λ0)−1

are said to form a canonical set of Jordan chains for L(λ) associated with λ0.

We draw attention that a canonical set of Jordan chains is not unique. Moreover, not every
basis of the right nullspace of L(λ0) can be extended to form a canonical set of Jordan chains
at λ0.

Example 1.5.1. We consider the matrix polynomial L(λ) defined by (1.2). From the calculations
done in Example 1.4.1, we can deduce that the Jordan chains(

1
0

)
,

(
0
0

)
,

(
3
1

)
,

(
9
0

)
,

(
0
0

)
,

(
0
0

)
form a canonical set of Jordan chains for L(λ) associated with the eigenvalue 1. Another canon-
ical set of Jordan chains associated with 1 could be(

1
1

)
,

(
0
i

)
,

(
3 i
i

)
,

(
9 i+ 3

1

)
,

(
2
3

)
,

(
4
7

)
.

Consider now the basis of ker(L(λ0)) composed of the eigenvectors
(

1
0

)
and

(
0
1

)
. This basis

cannot be extended to form a canonical set of Jordan chains associated with 1 since these two
eigenvectors have rank equal to 2. �

Proposition 1.5.2 ([50], Prop. 1.15). Given a regular matrix polynomial L(λ) and an eigenvalue
λ0 with partial multiplicities κ1, . . . , κmg(λ0), a set of Jordan chains for L(λ)

v1,0, . . . , v1,κ1−1, v2,0, . . . , v2,κ2−1, . . . , vmg(λ0),0, . . . , vmg(λ0),κmg(λ0)−1

associated with λ0 form a canonical set if and only if the eigenvectors v1,0, . . . , vmg(λ0),0 are
linearly independent.

26 Chapter 1. A Survey on Matrix Polynomials

1.6 Efficient computation of a canonical set of Jordan chains

The partial multiplicities at an eigenvalue λ0 and the corresponding Jordan chains in a canonical
set can be computed respectively from the local Smith form at λ0 and from the inverse of
the multiplier Fλ0(λ) (see Theorem 1.2.2) which can be supposed to be a unimodular matrix
polynomial (as we did in Example 1.2.2 by absorbing the missing part of the Smith form S(λ)
into the multiplier on the left E(λ)). In this section, we investigate more efficient methods for
obtaining a canonical set of Jordan chains for an n × n regular matrix polynomial L(λ) at an
eigenvalue λ0 avoiding the computation of the (local) Smith form of L(λ).

If we assume that we know one partial multiplicity κ of L(λ) at λ0, then, according to
Definition 1.4.1, the corresponding Jordan chains in a canonical set are among the solutions of
the linear system

Tλ0,iVi =



L(λ0) 0 · · · · · · 0
1
1!L
′(λ0) L(λ0)

. . .
...

...
.

...
1

(i−2)!L
(i−2)(λ0) · · · . . . L(λ0) 0

1
(i−1)!L

(i−1)(λ0) · · · · · · 1
1!L
′(λ0) L(λ0)




v0

v1
...

vi−2

vi−1

 = 0, for i = κ. (1.11)

For the computation of the partial multiplicities at λ0, it has been shown in [104, Chap. 3]
(see also [97]) that they can be obtained by analyzing iteratively the ranks of the block Toeplitz
matrices Tλ0,i given in (1.11) as stated in the following proposition.

Proposition 1.6.1 ([104], Prop. 3.1). Let L(λ) ∈ K[λ]n×n be a regular matrix polynomial of
degree `, λ0 ∈ σ(L) and for i ≥ 1, Tλ0,i the block Toeplitz matrix appearing in (1.11). Let r1

denote the rank of Tλ0,1 = L(λ0) and let, for i ≥ 2, ri = rank(Tλ0,i)− rank(Tλ0,i−1) . Then

1. ∀ i ∈ N∗, ri ≤ ri+1;

2. if the difference xi = ri+1−ri is a positive integer, then there exists xi partial multiplicities
at λ0 equal to i;

3. there exists a positive integer p ≤ ma(λ0) + 1 ≤ n `+ 1 such that ∀ i ≥ p, ri = n and hence
one has

∑p−1
i=1 xi = mg(λ0).

Example 1.6.1. Consider the 2 × 2 matrix polynomial L(λ) given by (1.2) and its eigenvalue
λ0 = 1. Let us compute the integers ri defined in Proposition 1.6.1. For this, we construct
successively the block Toeplitz matrices T1,i for i ≥ 1 then compute their ranks and the integers
ri. We find successively r1 = 0, r2 = 0, r3 = 1, r4 = 1 and r5 = 2 the step at which we stop
since we find an integer p (p = 5) for which rp = n = 2. Thus, the differences xi = ri+1− ri for
i = 1, . . . , p − 1, are equal to x1 = 0, x2 = 1, x3 = 0 and x4 = 1. This means that there exist
two partial multiplicities at λ0 = 1, one equal to 2 and the other equal to 4. This is consistent
with what we found in Example 1.2.2. �

Thus, based on Proposition 1.6.1, one can deduce a first algorithm for computing a canonical
set of Jordan chains at λ0. This algorithm proceeds as follows. One constructs successively the
block Toeplitz matrices Tλ0,i for i ≥ 1, and computes the integers ri and xi as defined in
Proposition 1.6.1. If for some i = κ, xκ 6= 0, then one computes a basis of solutions of System
(1.11) for i = κ and stores its elements in a set Eκ. One continues this process until finding a
positive integer p for which rp = n. At this stage, one knows that the set of partial multiplicities
at λ0 has been completed. We point out that each element of the set Eκ corresponds to a
Jordan chain associated with λ0 of length less than or equal to κ. Indeed, a sequence of vectors

1.6. Efficient computation of a canonical set of Jordan chains 27

v0, v1, . . . , vj−1 of Kn form a Jordan chain for L(λ) of length j ≤ κ associated with λ0 if and
only if the vector 

0
...
0
v0
...

vj−1


∈ Knκ

is a solution of System (1.11) for i = κ. Therefore, to obtain a canonical set of Jordan chains
for L(λ) at λ0, the last step of the algorithm consists in picking respectively xκ elements from
Eκ corresponding to Jordan chains of length equal to κ, such that the eigenvectors of all Jordan
chains collected from all sets Eκ are linearly independent. This can be done as follows. Let κ1 <
· · · < κs be the distinct partial multiplicities at λ0. Select xκs elements from Eκs corresponding
to Jordan chains of length κs and whose eigenvectors are linearly independent. Put them in
a set Xκs . Then, choose xκs−1 elements from Eκs−1 corresponding to Jordan chains of length
κs−1 and whose eigenvectors are linearly independent and not in the span of the eigenvectors
of the Jordan chains in Xκs . Put these elements in a set Xκs−1 , and so on. If we suppose that
Xκs , . . . ,Xκi+1 have been already determined, then choose xκi elements from Eκi corresponding
to Jordan chains of length κi and whose eigenvectors are linearly independent and not in the
span of the eigenvectors of the Jordan chains in Xκs , . . . ,Xκi+1 . We continue this process until
Xκ1 is determined. In this way, the elements of Xκ1 , . . . ,Xκs form a canonical set of Jordan
chains for L(λ) at λ0 (see Proposition 1.5.2 above).

In the above approach, computing directly the rank, respectively the right nullspace, of
matrix Tλ0,i, which is of size i n × i n, without taking into consideration its particular block
structure could be expensive. Indeed, if we suppose that computing the rank, respectively the
right nullspace, of an n×n matrix with entries in K(λ0) costs O(nω dλ0) operations in K, where
dλ0 denotes the degree of the extension K(λ0) over K, then computing the rank, respectively the
right nullspace, of Tλ0,i costs at most O(nω iω dλ0) operations in K with i ≤ ma(λ0) ≤ n `. The
latter inequalities follow from the fact that the values of integers i in Proposition 1.6.1 give those
of the partial multiplicities at λ0 which are bounded by ma(λ0) ≤ n `. Thus, it is worth look-
ing for other efficient ways for computing the integers ri and the right nullspaces of matrices Tλ0,i.

It has been noticed in [104, Chap. 3] that the integers ri can be obtained by analyzing
only the rank of the last block row of matrices Tλ0,i. Indeed, for i ≥ 2, let T ∗λ0,i−1 denote the
submatrix of Tλ0,i composed of rows of indices from (i− 1)n + 1 to i n and columns of indices
from 1 to (i− 1)n respectively, namely,

T ∗λ0,i−1 =
(

1
(i−1)!L

(i−1)(λ0) · · · L′(λ0)
)
∈ Kn×(i−1)n

.

Thus, for i ≥ 2, matrix Tλ0,i can be written as

Tλ0,i =
(
Tλ0,i−1 0
T ∗λ0,i−1 L(λ0)

)
. (1.12)

Remark now that the integer ri defined by ri = rank(Tλ0,i) − rank(Tλ0,i−1) is the number of
linearly independent rows added in the block row

(
T ∗λ0,i−1 L(λ0)

)
. Let V be a matrix whose

columns form a basis of ker(Tλ0,i−1). Augment matrix V by another matrix V ∗ in such a way
that the columns of the matrix

(
V ∗ V

)
form a basis of the K(λ0)-vector space K(λ0)(i−1)n.

Therefore, one has

rank(Tλ0,i) = rank
(
Tλ0,i

(
V ∗ V 0
0 0 In

))

28 Chapter 1. A Survey on Matrix Polynomials

with, from (1.12),

Tλ0,i

(
V ∗ V 0
0 0 In

)
=
(
Tλ0,i−1V

∗ Tλ0,i−1V 0
T ∗λ0,i−1V

∗ T ∗λ0,i−1V L(λ0)

)
=
(
Tλ0,i−1V

∗ 0 0
T ∗λ0,i−1V

∗ T ∗λ0,i−1V L(λ0)

)
.

Since matrix Tλ0,i−1V
∗ is of full column-rank and rank(Tλ0,i−1V

∗) = rank(Tλ0,i−1) , it follows
that

ri = rank(Tλ0,i)− rank(Tλ0,i−1)

= rank
(
Tλ0,i

(
V ∗ V 0
0 0 In

))
− rank(Tλ0,i−1V

∗)

= rank
(
Tλ0,i−1V

∗ 0 0
T ∗λ0,i−1V

∗ T ∗λ0,i−1V L(λ0)

)
− rank(Tλ0,i−1V

∗)

= rank
(
T ∗λ0,i−1V L(λ0)

)
. (1.13)

Lemma 1.6.1. Given a regular matrix polynomial L(λ) ∈ K[λ]n×n and an eigenvalue λ0 ∈ σ(L),
the dimension of the right nullspace of matrix Tλ0,i (i ≥ 1) defined in (1.11) is less than or equal
to ma(λ0).

Proof. From Proposition 1.6.1, we can deduce that rank(Tλ0,i) =
∑i

j=1 rj = i (n−mg(λ0)) +∑i−1
j=1 (i− j)xj . Thus,

dim(ker(Tλ0,i)) = i n− rank(Tλ0,i)

= img(λ0)−
i−1∑
j=1

(i− j)xj

= i

mg(λ0)−
i−1∑
j=1

xj

+
i−1∑
j=1

j xj

= i

p−1∑
j=i

xj +
i−1∑
j=1

j xj

≤
p−1∑
j=1

j xj ,

where p is the integer given in Proposition 1.6.1. Now
∑p−1

j=1 j xj is the sum of the partial
multiplicities at λ0 which is equal to ma(λ0).

Thus, from relation (1.13) and Lemma 1.6.1, it follows that the integer ri is the rank of a
rectangular matrix of size n ×m with m ≤ ma(λ0) + n. It is known that computing the rank
of a rectangular matrix of size n × m with coefficients in K(λ0) can be done in O

(
n2mdλ0

)
operations in K (using, e.g., Gaussian elimination). Hence, computing integer ri can be done
in at most O

(
n2 (ma(λ0) + n) dλ0

)
operations in K. In this way, one has reduced the number

of operations required at each step. Now, it remains to explain how one can obtain a basis of
the right nullspace of matrix Tλ0,i from those of Tλ0,i−1 and

(
T ∗λ0,i−1V L(λ0)

)
. Let W denote

a matrix whose columns form a basis of the right nullspace of the matrix
(
T ∗λ0,i−1V L(λ0)

)
.

The columns of the matrix

V ′ =
(
V 0
0 In

)
W

1.6. Efficient computation of a canonical set of Jordan chains 29

form a basis of ker(Tλ0,i) . Indeed, it is easy to check that

Tλ0,iV
′ =

(
Tλ0,i−1 0
T ∗λ0,i−1 L(λ0)

)(
V 0
0 In

)
W = 0,

which means that the columns of matrix V ′ belong to ker(Tλ0,i) . Furthermore, these columns
are linearly independent since V ′ is the product of two matrices of full-column rank. Finally,
the number of columns of V ′ is equal to

coldim
(
V ′
)

= coldim(W)

= coldim
(
T ∗λ0,i−1V L(λ0)

)
− rank

(
T ∗λ0,i−1V L(λ0)

)
= coldim(V) + n− ri
= (i− 1)n− rank(Tλ0,i−1) + n− ri
= i n− rank(Tλ0,i−1)− ri
= i n− rank(Tλ0,i)
= dim(ker(Tλ0,i)) ,

hence the columns of matrix V ′ form a basis of ker(Tλ0,i) .
This provides another algorithm1 for computing a canonical set of Jordan chains at a given

eigenvalue λ0. Algorithm CanonicalSet_JC below takes as input a regular matrix polynomial
L(λ) and an eigenvalue λ0 ∈ σ(L) and returns the partial multiplicities of L(λ) at λ0 with a
canonical set of Jordan chains for L(λ) at λ0. More precisely, the output is a list of elements of
the form

[κ, xκ, JCκ] ,

where κ is a partial multiplicity of L(λ) at λ0, xκ is the number of partial multiplicities equal
to κ (i.e., κ occurs xκ times in the local Smith form at λ0) and JCκ is a list of xκ vectors of size
nκ of the form  v0

...
vκ−1

 .

The latter vector corresponds to a Jordan chain v0, . . . , vκ−1 at λ0 such that the rank of the
eigenvector v0 is equal to κ. Thus, the Jordan chains corresponding to the elements of all lists
JCκ form a canonical set of Jordan chains for L(λ) at λ0.

Algorithm CanonicalSet_JC

Input: A regular matrix polynomial L(λ) ∈ K[λ]n×n and an eigenvalue λ0 ∈ σ(L).
Output: The partial multiplicities of L(λ) at λ0 and a canonical set of Jordan chains for

L(λ) at λ0.

Initialization: Put T1 = L(λ0), i = 2 and PM = { };

1. Compute a matrix V1 whose columns form a basis of ker(T1);
Let r1 = n− coldim(V1) ; // r1 is the rank of T1

2. While ri−1 6= n do
2.1. Compute Ai−1 = 1

(i−1)!L
(i−1)(λ0) and put T ∗ =

(
Ai−1 Ai−2 · · · A1

)
;

2.2. Compute T ∗Vi−1 and set T =
(
T ∗Vi−1 T1

)
;

1A slightly modified version of this algorithm has been presented in [104, Algorithm 3.3]. Another algorithm
is given in [102].

30 Chapter 1. A Survey on Matrix Polynomials

2.3. Compute a matrix W whose columns form a basis of ker(T);
Let ri = coldim(T)− coldim(W); // ri is the rank of T

2.4. Let xi−1 = ri − ri−1;
If xi−1 6= 0 then

Let PM= PM ∪ {i− 1};
end if ;

2.5. Compute Vi = diag(Vi−1, In)W ;
// The columns of Vi form a basis of the right nullspace of Tλ0,i defined in (1.11)

2.6. Put i = i+ 1;
end do;

3. For each κ ∈ PM, extract “carefully” xκ columns of Vκ and put them in a list JCκ;
// See Remark 1.6.1 below

4. Return [[κ, xκ, JCκ] , for κ ∈ PM];

Remark 1.6.1. In step 3 of Algorithm CanonicalSet_JC, one has to extract xκ columns
from matrix Vκ in such a way that they correspond to Jordan chains of length κ and that the
eigenvectors of these Jordan chains for all values κ ∈ PM are linearly independent. To achieve
this, one can proceed as we have explained earlier. In our implementation, we proceed differently.
For each κ ∈ PM, we take xκ random linear combinations of the columns of Vκ corresponding to
Jordan chains of length κ. Then, we check whether the eigenvectors of these linear combinations
for all κ ∈ PM are linearly independent. If this is not the case, we iterate the process.

We have implemented2 Algorithm CanonicalSet_JC in Maple. We illustrate it on the
matrix polynomial given by (1.2).

Example 1.6.2. We first enter the matrix polynomial given by (1.2) in Maple

> L := Matrix([[x^2-2*x+1,-2*x^5+2*x^4+3*x^3-4*x^2+x],[5*x^2-4*x+1-2*x^3,
> 2*x^6-8*x^4+7*x^3-x]]);

L :=

[
x2 − 2x+ 1 −2x5 + 2x4 + 3x3 − 4x2 + x

5x2 − 4x+ 1− 2x3 2x6 − 8x4 + 7x3 − x

]

Now, we apply the procedure CanonicalSet_JC to L at the eigenvalue 1

> CanonicalSet_JC(L,x,1);

2, 1,




10

6

0

0





 ,



4, 1,





−2
3

−2
9

4

2

0

0

0

0








2The code is available at http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html.

1.7. Minimal bases of singular matrix polynomials 31

This means that the two chains(
10
6

)
,

(
0
0

)
and

(
−2

3

−2
9

)
,

(
4
2

)
,

(
0
0

)
,

(
0
0

)
form a canonical set of Jordan chains for L(λ) associated with eigenvalue 1. �

Proposition 1.6.2. Given a regular matrix polynomial L(λ) ∈ K[λ]n×n of degree ` and an
eigenvalue λ0 ∈ σ(L), Algorithm CanonicalSet_JC computes a canonical set of Jordan chains
for L(λ) at λ0 in at most O

((
nma(λ0)2 min{ma(λ0), `}+ n2ma(λ0) +ma(λ0)4 + n `2

)
ndλ0

)
arithmetic operations in K, where dλ0 denotes the degree of the extension K(λ0) over K.

Proof. Let us first investigate the cost of computing L(i)(λ0) for i = 0, . . . , `. For this, we need
to differentiate n2 polynomials of degree bounded by ` at most ` times. Each differentiation
costs O(`) arithmetic operations in K. Thus, the cost of computing the derivatives L(i)(λ) for
i = 0, . . . , ` is bounded by O

(
n2 `2

)
operations in K. Then, we need to evaluate each of these

derivatives at λ0. This is equivalent to evaluate at most n2 ` polynomials of degree bounded by
` at λ0. Since evaluating a polynomial of degree ≤ ` with coefficients in K at λ0 can be done
using at most O(` dλ0) operations in K, where dλ0 denotes the degree of the extension K(λ0)
over K, the cost of evaluation is O

(
n2 `2 dλ0

)
operations in K. Hence, computing L(i)(λ0) for

i = 0, . . . , ` can be done in at most O
(
n2 `2 dλ0

)
operations in K.

Now, matrix T1 = L(λ0) in Step 1 of the algorithm is of size n× n, therefore computing its
right nullspace V1 requires at most O

(
n3 dλ0

)
operations in K.

Let us now compute the cost of one While loop in Algorithm CanonicalSet_JC. In
Step 2.2, matrix T ∗ is of size n × (i− 1)n and matrix Vi−1 has at most ma(λ0) columns (see
Lemma 1.6.1). Remark that since Ai = 0 for i > `, the product T ∗Vi−1 is indeed the sum of
min{i − 1, `} products of an n × n matrix by a matrix having at most ma(λ0) columns. So
the cost of the multiplication T ∗Vi−1 is bounded by O

(
n2ma(λ0) min{i− 1, `} dλ0

)
operations

in K. In Step 2.3, matrix T has n rows and at most ma(λ0) + n columns. Thus, Step 2.3
costs at most O

(
n2 (ma(λ0) + n) dλ0

)
operations in K. It remains to study the cost of Step

2.5. Let us partition the matrix W into two blocks W =
(
W T

1 W T
2

)T corresponding to the
partition of the matrix diag(Vi−1, In). The cost of the product diag(Vi−1, In)W is thus re-
duced to the cost of multiplication Vi−1W1. Since matrix Vi−1 has (i − 1)n rows and at most
ma(λ0) columns and matrix W1 has at most ma(λ0) columns, the cost of product Vi−1W1 is
bounded by O

(
n ima(λ0)2 dλ0

)
operations in K. Hence, one passage in the While loop costs

at most O
((
nma(λ0) min{i− 1, `}+ n2 + ima(λ0)2

)
ndλ0

)
operations in K. As the integer i is

bounded by ma(λ0) and the While loop is repeated at most ma(λ0) times, Algorithm Canoni-
calSet_JC computes a canonical set of Jordan chains for L(λ) corresponding to the eigenvalue
λ0 in at most O

((
nma(λ0)2 min{ma(λ0), `}+ n2ma(λ0) +ma(λ0)4 + n `2

)
ndλ0

)
operations in

K.

Remark 1.6.2. In the complexity result of Proposition 1.6.2 above, bounding ma(λ0)4 by
n3 `3ma(λ0), we find that computing a canonical set of Jordan chains for L(λ) at λ0 using
Algorithm CanonicalSet_JC can be done using at most O

(
n4 `3ma(λ0) dλ0

)
operations in

K. We will use this bound in the complexity analysis of the algorithms developed in the next
chapters.

1.7 Minimal bases of singular matrix polynomials

Unlike the previous sections of this chapter, this section merely concerns singular matrix poly-
nomials (see Definition 1.1.1). As it will be useful in our algorithms, we focus on minimal bases
of singular matrix polynomials and their computations.

32 Chapter 1. A Survey on Matrix Polynomials

Throughout this section, we suppose that L(λ) is an n × n singular matrix polynomial of
degree ` and rank r.

Definition 1.7.1 ([42], Def. 2.1). The right nullspace, respectively the left nullspace, of L(λ) ∈
K[λ]n×n is the K(λ)-subspace of K(λ)n, respectively of K(λ)1×n, defined by

{x(λ) ∈ K(λ)n ; L(λ)x(λ) = 0}, respectively {y(λ) ∈ K(λ)1×n ; y(λ)L(λ) = 0}.

It is always possible to construct a basis of the right nullspace, respectively of the left
nullspace, of L(λ) constituted only of vectors polynomials in the variable λ. Indeed, it suffices
to consider an arbitrary basis and to multiply each vector by the least common denominator
of its components. Such a basis is called a right polynomial basis, respectively a left polynomial
basis, of L(λ) and the sum of the degrees of its elements is called the order of the basis. The
following definition is a particular case of [42, Def. 2.4].

Definition 1.7.2. Let B be a right polynomial basis, respectively a left polynomial basis, of L(λ)
and let δ be the order of B. If δ is minimal among the orders of all right polynomial bases,
respectively all left polynomial bases, of L(λ) then B is called a right minimal basis, respectively
a left minimal basis, of L(λ).

Example 1.7.1. Let L(λ) be the 4× 4 singular matrix polynomial of degree 2 and rank 2 given
by

L(λ) =


λ2 1 λ λ2 + λ
2 0 0 2
0 1 λ λ
λ 1 λ 2λ

 .

The two families

B1 =




0
λ
−1
0

 ,


1
λ
0
−1


 and B2 =




0
λ
−1
0

 ,


1
0
1
−1




form two right polynomial bases of L(λ). The order of B1, respectively B2, is equal to 2, respec-
tively 1. Thus B1 is not a right minimal basis of L(λ) whereas one can show that B2 is a right
minimal basis of L(λ) (see [65, Th. 6.5-10, page 458]).

The ordered list of the degrees of the elements in any right minimal basis of L(λ) does not
depend on the choice of the right minimal basis. In other words, if B1 = (x1(λ), . . . , xn−r(λ))
and B2 = (y1(λ), . . . , yn−r(λ)) are two right minimal bases of L(λ) such that for 1 ≤ i ≤ j ≤
n − r, one has deg(xi(λ)) ≤ deg(xj(λ)) and deg(yi(λ)) ≤ deg(yj(λ)), then for i = 1, . . . , n − r,
deg(xi(λ)) = deg(yi(λ)) (see [42] and references therein). An analogous result can also be
stated for left minimal bases. These degrees are called the right minimal (or Kronecker) indices,
respectively the left minimal (or Kronecker) indices, of L(λ) and the sum of the right and left
minimal indices does not exceed r ` (see for example [104, Corollary 3.1]). Note that the minimal
indices of a matrix pencil can be read off from its Kronecker canonical form (see [45, Chap. 12]
and [65, Chap. 6]). Furthermore, relations between the minimal indices of a matrix polynomial
L(λ) and those of its linearizations are provided in [42].

Lemma 1.7.1. Let P ∈ GLn(K) be an invertible constant matrix. The right minimal indices of
the matrix polynomials L(λ) and L(λ)P are the same.

1.7. Minimal bases of singular matrix polynomials 33

Proof. Consider the endomorphism of the K(λ)-vector space K(λ)n defined by

P. : K(λ)n −→ K(λ)n

x(λ) 7−→ P x(λ).

Since P is invertible, this map sends any basis of a K(λ)-subspace V of K(λ)n to a basis of the
K(λ)-subspace P V defined by

P V = {P x(λ) ; x(λ) ∈ V}.

Moreover, as P ∈ GLn(K), if x(λ) ∈ K[λ]n, then deg(x(λ)) = deg(P x(λ)). The proof of the
lemma follows by taking V = ker(L(λ)P) (P V = ker(L(λ))).

The computation of a minimal basis of a singular matrix polynomial L(λ) can be reduced to
the computation of a minimal approximant basis of L(λ) viewed as a formal power series matrix.

Minimal approximant bases (see [62, 103]). Let F (λ) be an m× n matrix whose entries
are formal power series over K and let σ ∈ N. A vector polynomial v(λ) ∈ K[λ]n satisfying

F (λ) v(λ) = 0 mod λσ (1.14)

is said to have order (F, σ). The set MF,σ of all vector polynomials of order (F, σ) is a free
K[λ]-module of rank n (see [96]).

Definition 1.7.3 ([62]). A basis (v1(λ), . . . , vn(λ)) of MF,σ with ordered degrees deg(v1) ≤
· · · ≤ deg(vn) is called a minimal approximant basis for F (λ) of order σ if any other basis of
MF,σ with degrees d1 ≤ · · · ≤ dn satisfies di ≥ deg(vi) for i = 1, . . . , n.

Given a singular matrix polynomial L(λ), it is easy to see that the right nullspace of L(λ)
is contained in the module ML,σ for any positive integer σ. However, in order to extract a
minimal basis of L(λ) from a minimal approximant basis for L(λ) of order σ, we have to choose
an appropriate value for σ. Keeping in mind that the degrees of the vectors in a right minimal
basis of a matrix polynomial of rank r and degree ` do not exceed r `, we deduce from [62,
Th. 2.4] that:

Theorem 1.7.1. Let L(λ) ∈ K[λ]n×n be a singular matrix polynomial of rank r and degree `.
Let B be a minimal approximant basis for L(λ) of order σ = (r + 1) ` + 1. Then, the (n − r)
elements of B of minimal degrees form a right minimal basis of L(λ).

The complexity of computing a minimal approximant basis of order σ for an n×n matrix of
formal power series is O∼(nω σ) operations in K (see [62, 103]). From Theorem 1.7.1, we obtain:

Lemma 1.7.2. The cost of computing a minimal basis of an n× n singular matrix polynomial
of degree ` is at most O∼

(
nω+1 `

)
operations in K.

Note that for our implementation in Maple, we use the command MinimalBasis of the
MatrixPolynomialAlgebra package.

Chapter 2

Symbolic Methods for Computing
Regular Solutions of Higher-Order

Linear Differential Systems of the First
Kind

Contents
2.1 Introduction . 35
2.2 Local analysis of first-order linear differential systems 38

2.2.1 Classification of singularities . 38
2.2.2 Computation of a fundamental solution matrix for systems of the first kind . 40

2.3 Existing methods for computing regular solutions 40
2.4 Euler’s matrix differential equations . 41
2.5 Non-homogeneous linear differential systems with constant coefficients . 44

2.5.1 Existence of polynomial solutions in t = log(x) 44
2.5.2 Computation of the general polynomial solution in t = log(x) 46

2.6 A direct method for computing regular solutions 49
2.6.1 Description of the approach . 49
2.6.2 First version: using Jordan chains . 51
2.6.3 Second version: by packet . 54

2.7 Generalization of Frobenius’ method . 56
2.7.1 First case . 58
2.7.2 Second case . 59
2.7.3 Summary and example . 62

2.8 Some comparison tests . 64

2.1 Introduction

We consider systems of linear differential equations of arbitrary order ` ≥ 1 with meromorphic
coefficients and treat the problem of computing their formal solutions at a singular point x0 which
can be supposed, without any loss of generality, located at the origin. Since we are interested
in the local analysis, we can hence assume that the coefficients of the systems considered are
formal series.

In the sequel, for ease of presentation, we will use the Euler derivation ϑ = x d
dx instead of

the standard derivation d
dx . These derivations are related by

∀ i ≥ 1, xi
(
d

dx

)i
= ϑ (ϑ− 1) · · · (ϑ− i+ 1) .

35

36 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

For a subfield K of C, we denote by K[[x]] the ring of formal power series over K in the variable
x and by K((x)) its field of fractions. One has K((x)) = K[[x]][x−1].

We consider a system of n linear differential equations of order ` ≥ 1 of the form

L(x, ϑ)(y(x)) = A`(x)ϑ`(y(x)) + · · ·+A1(x)ϑ(y(x)) +A0(x) y(x) = 0, (2.1)

where for i = 0, . . . , `, Ai(x) is an n × n matrix with entries in K[[x]] and y(x) =
(y1(x), . . . , yn(x))T is an unknown n-dimensional vector. In this chapter, we assume that A`(0)
is an invertible matrix which is equivalent to assuming that the leading coefficient matrix A`(x)
is invertible over K[[x]].

The classical approach to deal with such systems consists in converting them into a first-order
system of size n `

ϑ(Y (x)) = C(x)Y (x), (2.2)

where

Y (x) =


y(x)

ϑ(y(x))
...

ϑ`−2(y(x))
ϑ`−1(y(x))

 and C(x) =


0 In 0 · · · 0
0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In
Ã0(x) Ã1(x) Ã2(x) . . . Ã`−1(x)

 (2.3)

is the block companion matrix with Ãi(x) = −A−1
` (x)Ai(x) ∈ K[[x]]n×n for i = 0, . . . , ` − 1.

Since C(0) 6= 0, the first-order system (2.2) is of the first kind (see [8, Chap. 2], [37, Chap. 4]
or [101, Chap. 2]) and hence we will say that System (2.1) is of the first kind as well. It is
well-known (see for instance [8, Chap. 2], [37, Chap. 4] or [101, Chap. 2]) that a fundamental
system of solutions of System (2.2) is provided by the columns of a matrix of the form

W (x) = Φ(x)xJ ,

where Φ(x) ∈ K[[x]]n `×n ` and J = diag(J1, . . . , Jr) ∈ Kn `×n ` with Ji a Jordan block of the
form

Ji =


λi 1 (0)

.

(0)
. . . 1

λi

 (λi ∈ K).

Therefore, a fundamental system of solutions of System (2.1) is given by the columns of the
matrix

U(x) = PW (x) = P Φ(x)xJ = Q(x)xJ = Q(x) diag
(
xJ1 , . . . , xJr

)
,

where P =
(
In 0 · · · 0

)
∈ Kn×n `, Q(x) = P Φ(x) ∈ K[[x]]n×n ` and

xJi =


xλi xλi log(x) · · · xλi logki−1(x)

(ki−1)!

.
...

(0)
. . . xλi log(x)

xλi



2.1. Introduction 37

with ki being the size of the Jordan block Ji. We thus get ki linearly independent solutions of
System (2.1) which can be written of the form

yi,1(x) = xλi Q(., Ni + 1),

yi,2(x) = xλi Q(., Ni + 2) + xλi log(x)Q(., Ni + 1),

...

yi,ki(x) = xλi Q(., Ni + ki) + xλi log(x)Q(., Ni + ki − 1) + · · ·+ xλi logki−1(x)
(ki−1)! Q(., Ni + 1),

where Q(., j) denote the jth column of the matrix Q and Ni =
∑i−1

j=1 kj . Consequently, the
formal solution space of System (2.1) is spanned by n ` linearly independent formal solutions of
the form

y(x) = xλ0 z(x), (2.4)

where λ0 ∈ K and z(x) ∈ K[[x]][log(x)]n with degree in log(x) less than n `. These solutions
are known as regular formal solutions. More generally, a linear combination of this type of
solutions is called a regular formal solution and the vector space generated by the regular formal
solutions is known as the regular formal solution space. In this chapter, we address the problem
of constructing directly a basis of the regular formal solution space of System (2.1) by avoiding
the transformation into first-order systems. To achieve this, we propose two methods:

• The first one is a generalization of the approach developed by Poole in [86, Chap. 5, § 16]
for the scalar case (n = 1). It consists in arranging a regular solution y(x) of the form
(2.4) as a series in x whose coefficients are polynomials in t = log(x) (ϑ = d

dt) of degree
less than n `, that is,

y(x) = xλ0
(
U0(t) + U1(t)x+ · · ·+ Ui(t)xi + · · ·

)
, (2.5)

with λ0 ∈ K, ∀ m ≥ 0, Um(t) ∈ K[t]n and U0 6= 0. In the sequel, we will refer to y(x)
given by (2.5) as a regular solution of exponent λ0. Plugging y(x) into System (2.1), one
finds that λ0 and U0(t) must satisfy

L0(ϑ)
(
xλ0 U0

)
= 0,

where L0(λ) designates the matrix polynomial

L0(λ) = A`(0)λ` + · · ·+A1(0)λ+A0(0)

whose determinant will play the same role as the indicial polynomial in the scalar case. It
follows that λ0 must be chosen as an eigenvalue of the matrix polynomial L0(λ) and the
coefficients of the polynomial U0 form a Jordan chain for L0(λ) associated with λ0 (see
Lemma 2.4.1 on page 42). For m ≥ 1, we find

L0(ϑ+ λ0 +m) (Um) = Pm(t),

where Pm(t) depends on U0(t), . . . , Um−1(t). The problem is thus reduced to computing
polynomial solutions in t of non-homogeneous linear differential systems with constant
coefficients.

• The second one is a generalization of Frobenius’ method, a well-known approach for com-
puting regular solutions of scalar linear differential equations (see [10, Chap. 1], [37,
Chap. 4, Section 8], [44] or [59, Chap. 16]). This approach consists in computing the
regular solutions of System (2.1) from the (logarithm-free) formal power series solutions
of non-homogeneous linear differential systems well-defined.

38 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

The chapter is organized as follows. In Section 2.2, we consider linear differential systems of
first-order. We recall the classification of singularities and the classical algorithm for computing
a fundamental solution matrix of first-order linear differential systems of the first-kind. In
Section 2.3, we review the existing methods for handling higher-order systems of the form
(2.1). In Section 2.4, we examine systems of the form (2.1) with constant coefficient matrices
Ai. We show how the regular solutions of such systems are strongly connected to the notion
of Jordan chains of matrix polynomials. In Section 2.5, we show that non-homogeneous
differential systems with constant coefficients and polynomial right-hand side in t = log(x)
always admit a polynomial solution in t and we give a bound on its degree and an algorithm
for its computation. In Section 2.6, we propose a direct method inspired by Poole’s approach
[86] for handling systems of the form (2.1). In Section 2.7, we generalize Frobenius’ method to
compute regular solutions of systems of the form (2.1). Finally, in Section 2.8, we present some
tables of timings.

The content of this chapter is published in [16] and in a part of [17, 18].

2.2 Local analysis of first-order linear differential systems

Consider a system of ordinary differential equations of first-order of the form

y′(x) = A(x) y(x) (2.6)

where A(x) is an n× n complex-valued matrix, analytic and single-valued in a neighborhood of
the point x = 0, say 0 < |x| < a (a being a positive real number), having at most an isolated
singularity at x = 0, y(x) is an unknown n-dimensional vector and y′(x) = dy

dx(x). The point
x = 0 is called a singular point or a singularity for System (2.6) if A(x) has a singularity at
x = 0. Otherwise, it is called an ordinary point.

2.2.1 Classification of singularities

A fundamental solution matrix of System (2.6) is defined as an n × n matrix whose columns
form n linearly independent solutions of (2.6). It has been shown in [37, Chap. 4] that any
fundamental solution matrix of (2.6) can be written in the form

W (x) = Φ(x)xD,

where Φ(x) is single-valued, analytic in 0 < |x| < a and D is a constant matrix. If the point
x = 0 is an ordinary point for (2.6), then Φ(x) is also analytic at x = 0. If x = 0 is a singularity
for System (2.6), then

Definition 2.2.1. The point x = 0 is called a regular singularity for System (2.6) if Φ(x) has
at most a pole at x = 0. Otherwise, it is called an irregular singularity.

This classification of the singularity building on the knowledge of a fundamental solution
matrix is not immediately checkable for a given system of the form (2.6).

Suppose now that A(x) has at most a pole at x = 0. A second classification of the singularity
based on the nature of the pole x = 0 of A(x) is provided. Indeed, write matrix A(x) of System
(2.6) as

A(x) =
1

xp+1

∞∑
i=0

Ai x
i,

where Ai ∈ Cn×n, A0 6= 0 and p ∈ N. The integer p is called the Poincaré-rank of System (2.6).

2.2. Local analysis of first-order linear differential systems 39

Definition 2.2.2. The point x = 0 is called a singularity of the first kind for System (2.6) if
p = 0, or in other terms, x = 0 is a simple pole for A(x). Otherwise, it is called a singularity of
the second kind.

These two classifications of the singularity x = 0 are not directly connected. However, it has
been shown in [37, Chap. 4, Th. 2.1] that if the point x = 0 is a singularity of the first kind for
(2.6), then it is a regular singularity for (2.6). The converse is not always true and a singularity
of the second kind for (2.6) can be a regular singularity.

A transformation of the form

y(x) = T (x) z(x)

with T (x) an invertible matrix with meromorphic entries is known as gauge transformation and
transforms System (2.6) into a new system z′(x) = B(x) z(x), where

B(x) = T−1(x)
(
A(x)T (x)− T ′(x)

)
is often denoted by T [A]. The matrices A and B or the corresponding systems are said to be
gauge-equivalent. It has been proven by Moser in [77] that, in the case where the point x = 0
is a regular singularity, there exists a polynomial gauge transformation T (x) such that T [A]
has a simple pole at x = 0 (i.e., x = 0 is a singularity of the first kind for the system defined
by T [A]). More precisely, Moser developed an algorithm (see also [12, 54, 56]) which returns a
system gauge-equivalent to (2.6) having minimal Poincaré-rank among all the gauge-equivalent
systems . Using this algorithm, one can then determine the nature of the singularity (regular or
irregular) for a given system.

Recall that by means of the so-called “cyclic vector” method (see [39, 11, 35]), any system of
the form (2.6) can be reduced to an equivalent scalar linear differential equation of order n. In
other words, one can always construct a gauge transformation T (x) ∈ GLn(C((x))) such that

T [A] =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0(x) −a1(x) −a2(x) . . . −an−1(x)


with ai(x) ∈ C((x)). Hence, System (2.6) is equivalent to the scalar linear differential equation

z(n)(x) + an−1(x) z(n−1)(x) + · · ·+ a0(x) z(x) = 0, (2.7)

where y(x) and z(x) are related by y(x) = T (x) (z(x), z′(x), . . . , z(n−1)(x))T . While it is not
always obvious whether a differential system has a regular or irregular singularity at x = 0,
it is much easier to check it for a scalar linear differential equation. This is provided by the
Fuchs criterion which establishes a link between the nature of the singularity for (2.7) and the
valuation at x = 0 of its coefficients a0(x), . . . , an−1(x); indeed, x = 0 is a regular singularity for
(2.7) if and only if for i = 0, . . . , n− 1, ai(x) has a pole at x = 0 of order less than or equal to
n− i. The reduction to scalar linear differential equations constitutes then another approach for
the classification of the singularities of systems of the form (2.6). Nevertheless, it is important
to mention that computing an equivalent scalar equation from a given system can be very costly
specially when the system has large size n, and the coefficients of the obtained equation can be
very huge (see [36]).

40 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

2.2.2 Computation of a fundamental solution matrix for systems of the first
kind

Consider a first-order linear differential system of the first kind of the form

y′(x) = A(x) y(x) with A(x) =
1
x

∞∑
i=0

Ai x
i ∈ x−1K[[x]]n×n and A0 6= 0. (2.8)

The aim of this subsection is to recall the classical method for computing a formal fundamental
solution matrix for systems of the first kind (2.8).

Suppose first that the matrix A(x) has good spectrum (see [8, page 18]), i.e., the distinct
eigenvalues of A0 do not differ by integers. This implies that the matrices A0 + i I and A0 have
disjoint spectrums for every nonzero integer i. It follows the existence of a gauge transformation
P (x) =

∑∞
i=0 Pi x

i ∈ GLn(K[[x]]) with P0 = I that transforms System (2.8) into the system

z′(x) =
A0

x
z(x)

whose general solution is given by C xA0 , where C ∈ GLn(K). To compute the coefficients Pi of
P (x) for i ≥ 1, we have

P [A] =
A0

x
⇐⇒ A(x)P (x)− P ′(x) = P (x)

A0

x

⇐⇒ Pi (A0 + i I)−A0 Pi =
i−1∑
j=0

Ai−j Pj , ∀ i ≥ 1.

Since A0 + i I and A0 have disjoint spectrums, the above system has a unique solution (see for
example [60]). Thus, the coefficients Pi for i ≥ 1 are uniquely determined from the coefficients of
A(x). Consequently, a formal fundamental solution matrix of System (2.8) with good spectrum
is given by P (x)xA0 (see [37, Chap. 4, Th. 4.1] and [101, Chap. 2, Th. 5.5]).

Suppose now that A(x) does not have a good spectrum. The idea is to seek a gauge transfor-
mation T (x) such that T [A] has a good spectrum. For achieving this, one can proceed as follows.
Suppose that A0 has exactly r distinct eigenvalues λ1, λ2, . . . , λr such that λi − λ1 = ni ∈ N∗
for i = 2, . . . , s (2 ≤ s ≤ r) and λi − λ1 /∈ Z for i = s+ 1, . . . , r. Let mi denote the (algebraic)
multiplicity of eigenvalue λi for i = 2, . . . , s. Let P be an invertible matrix such that P−1A0 P
is of the form diag(M,N) where M is of size m1 ×m1 having λ1 as the unique eigenvalue. Let
S(x) = diag(Im1 , x In−m1). The gauge transformation T1(x) = PS(x) transforms System (2.6)
into another one z′(x) = A[1](x)

x z(x) with A[1](x) ∈ K[[x]]n×n such that the eigenvalues of A[1](0)
are λ1, λ2−1, . . . , λr−1 (see [37, Chap. 4, Sec. 4] or [54, Chap. 4]). Hence, repeating this process
n2 times, we find that the eigenvalues of the matrix A[n2](0) are λ1, λ2 − n2 = λ1, . . . , λr − n2

and λ1 is now of multiplicity equal to m1 + m2. Hence, after a finite number of iterations, we
obtain a gauge transformation T (x) ∈ K[x]n×n invertible for x 6= 0 such that T [A] has a good
spectrum.

Theorem 2.2.1 ([37], Chap. 4, Th. 4.2). Any system of the first kind of the form (2.8) has a
formal fundamental solution matrix of the form Φ(x)xΛ where Φ(x) ∈ K[[x]]n×n is invertible
over K((x)) and Λ ∈ Kn×n whose eigenvalues do not differ by integers.

2.3 Existing methods for computing regular solutions

As we have already mentioned, the classical method for solving higher-order linear differential
systems consists in transforming them into first-order systems of the form (2.2). We have exposed

2.4. Euler’s matrix differential equations 41

in Subsection 2.2.2 a method for computing a formal fundamental solution matrix for first-order
systems of the first-kind. There exists another algorithm due to Barkatou and Pflügel [21]1

which computes a basis of the regular formal solution space of first-order systems even in the
case of an irregular singularity. An implementation of this algorithm can be found in the Isolde
package of Maple [23]. However, the conversion into first-order systems has the computational
drawback of increasing the size of the system. Furthermore, the algorithms presented for first-
order systems do not take advantage of the structure of the block companion matrix C(x) given
by (2.3). For those reasons, the purpose of this chapter is to look for methods that handle
directly Systems of the form (2.1).

To our knowledge, there exist only few works on that direction. In [5], Abramov et al. prove
that Heffter’s method [53, Chap. 8], known for solving scalar linear differential equations, can
be generalized for higher-order systems with polynomial coefficients not necessarily of the first
kind; the problem of finding regular solutions is reduced to computing Laurent series solutions of
auxiliary non-homogeneous higher-order linear differential systems with polynomial coefficients.
To compute these Laurent series solutions, the authors transform first the non-homogeneous dif-
ferential systems into matrix recurrence equations (see [2]) using the dictionary: x 7−→ E−1 and
d
dx 7−→ (n+ 1)E where E is the shift operator E : n 7−→ n+ 1 . Then, they solve these matrix
recurrence equations using the EG-elimination method (see [1, 4]). The EG-elimination method
transforms a matrix recurrence equation into another one whose leading coefficient matrix (or
trailing coefficient matrix) in nonsingular. In the case of systems of the first-kind, there is no
need for the EG-elimination since the leading coefficient matrix is already nonsingular. The
LinearFunctionalSystems package of Maple contains an implementation of this method.

In [64], Jódar and Legua consider systems of the form (2.1) with ` = 2 and A2(x) = In and
generalize the Frobenius method to such systems under some restrictions, such as supposing
that the matrix C(0), where C(x) is given by (2.3), is diagonalizable. Therefore, the regular
formal solution space of such systems is only composed of logarithm-free regular solutions, i.e.,
solutions of the form y(x) = xλ0 z(x) with λ0 ∈ K and z(x) ∈ K[[x]]n.

In [79], the authors consider particular systems called Bessel matrix differential equations.
These systems are of the form (2.1) with ` = 2, A2(x) = In, A1(x) = 0 and A0(x) = In x

2 −A2

(A being a constant matrix). Again, to compute the regular solutions of such systems, they
impose some conditions on the matrix A. Later in [63], they consider another type of systems
of second-order and introduce the class of Laguerre matrix polynomials which appears as finite
series solutions of such systems. Finally, in [80], the authors develop a Frobenius matrix method
for solving systems of the form (2.1). They look for solutions of the form

(∑∞
i=0Di x

i
)
xZ

where Di ∈ Kn×m and Z ∈ Km×m. For computing such solutions, the authors assume that the
eigenvalues of the matrix C(0), where C(x) is given by (2.3), do not differ by integers.

2.4 Euler’s matrix differential equations

In this section, we investigate the case where the coefficient matrices of System (2.1) are constant,
i.e., we consider systems of the form

A` ϑ
`(y(x)) + · · ·+A1 ϑ(y(x)) +A0 y(x) = 0, (2.9)

where for i = 0, . . . , `, Ai ∈ Kn×n and A` ∈ GLn(K). In the scalar case, that is, when we have
a differential equation of the form

a` ϑ
`(y(x)) + · · ·+ a1 ϑ(y(x)) + a0 y(x) = 0,

1We will review this algorithm in more details in the next chapter.

42 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

where for i = 0, . . . , `, ai ∈ K and a` 6= 0, such an equation is called Euler’s equation (see [37,
Chap. 4, Sec. 5]). A basis of the regular formal solution space of an Euler equation is composed
of ` regular solutions y(x) = xλ0 z(x), where λ0 ∈ K is a root of the so-called indicial polynomial
defined by f(λ) = a` λ+ · · ·+ a1 λ+ a0 and z(x) ∈ K[log(x)] is of degree in log(x) less than the
multiplicity of λ0 as a root of f(λ) (see [37, Chap. 4]). In the sequel, we will refer to a system of
the form (2.9) as Euler’s matrix differential equation and we will show that the result obtained
in the scalar case can be extended to the matrix case. For this, define the matrix polynomial
L(λ) associated with System (2.9) by

L(λ) = A` λ
` + · · ·+A1 λ+A0. (2.10)

The following lemma shows that the determinant of L(λ) plays the same role as the indicial
polynomial in the scalar case.

Lemma 2.4.1. Consider an Euler matrix differential equation of the form (2.9). The vector-
valued function

y(x) = xλ0

(
vk−1 + vk−2

log(x)
1!

+ · · ·+ v0
logk−1(x)
(k − 1)!

)
,

where λ0 ∈ K, k ∈ N∗ and v0, . . . , vk−1 ∈ Kn, is a solution of (2.9) if and only if λ0 is an
eigenvalue of L(λ) defined in (2.10) and v0, . . . , vk−1 form a Jordan chain for L(λ) associated
with λ0.

Proof. Write the Taylor series expansion for the matrix polynomial L(λ) at λ = λ0:

L(λ) = L(λ0) +
1
1!
L′(λ0)(λ− λ0) + · · ·+ 1

j!
L(j)(λ0)(λ− λ0)j + · · ·+ 1

`!
L(`)(λ0)(λ− λ0)`.

We thus have

L(ϑ)(y(x)) = L(λ0) y(x) +
1
1!
L′(λ0)(ϑ− λ0)(y(x)) + · · ·

+
1
j!
L(j)(λ0)(ϑ− λ0)j(y(x)) + · · ·+ 1

`!
L(`)(λ0)(ϑ− λ0)`(y(x)). (2.11)

It is easy now to check that (ϑ− λ0)j(y(x)) with y(x) = xλ0
∑k−1

i=0 vk−i−1
logi(x)
i! is equal to

(ϑ− λ0)j(y(x)) =

{
xλ0

(
vk−1−j + vk−2−j

log(x)
1! + · · ·+ v0

logk−1−j(x)
(k−1−j)!

)
if j ≤ k − 1,

0 if j ≥ k.

Hence, substituting y(x) = xλ0
∑k−1

i=0 vk−i−1
logi(x)
i! in (2.11) and identifying the coefficients of

logi(x)
i! , for i = 0, . . . , k − 1, to zero yield

p∑
j=0

1
j!
L(j)(λ0) vp−j = 0 for p = 0, . . . , k − 1,

which ends the proof.

Proposition 2.4.1. Consider the Euler matrix differential equation given by (2.9). For each
eigenvalue λ0 of L(λ) defined in (2.10), let vλ0,i,0, . . . , vλ0,i,κi(λ0)−1 for i = 1, . . . ,mg(λ0) form
a canonical set of Jordan chains for L(λ) corresponding to λ0 (the κi(λ0)’s being the partial
multiplicities at λ0). For i = 1, . . . ,mg(λ0) and j = 0, . . . , κi(λ0)− 1, define

yλ0,i,j(x) = xλ0

j∑
k=0

vλ0,i,j−k
logk(x)
k!

.

2.4. Euler’s matrix differential equations 43

The vector-valued functions yλ0,i,j(x) with λ0 ∈ σ(L), i = 1, . . . ,mg(λ0) and j = 0, . . . , κi(λ0)−1
form a basis of the regular formal solution space of System (2.9).

Proof. According to Lemma 2.4.1, each vector-valued function yλ0,i,j with λ0 ∈ σ(L), i ∈
{1, . . . ,mg(λ0)} and j ∈ {0, . . . , κi(λ0) − 1} is a solution of System (2.9). Let us show now
the linearly independency of these vectors. For i ∈ {1, . . . ,mg(λ0)}, the vectors yλ0,i,j1 and
yλ0,i,j2 with j1 6= j2 are linearly independent over K since they are of different degrees in log(x).
The vectors yλ0,i1,j1 and yλ0,i2,j2 with i1 6= i2 are linearly independent over K since the eigenvec-
tors vλ0,i1,0 and vλ0,i2,0 are so (see Section 1.5 of Chapter 1). Thus, the yλ0,i,j(x) with λ0 ∈ σ(L),
i = 1, . . . ,mg(λ0) and j = 0, . . . , κi(λ0)− 1 constitute

∑
λ0∈σ(L)ma(λ0) = deg(det(L(λ))) = n `

(since A` ∈ GLn(K)) linearly independent regular solutions of (2.9). Consequently, they form a
basis of the regular formal solution space of (2.9) since its dimension is equal to n `.

We sketch the above proposition in the following algorithm.

Algorithm Euler_MDE

Input: The matrices Ai defining System (2.9).
Output: A basis of the regular formal solution space of System (2.9).

Initialization: Let L(λ) =
∑`

i=0Ai λ
i and Sol = { };

1. Compute σ(L); //See Remark 1.1.1 of Chapter 1
2. For each element λ0 of σ(L) do

2.1. Compute a canonical set of Jordan chains vi,0, . . . , vi,κi(λ0)−1, i = 1, . . . ,mg(λ0),
for L(λ) associated with λ0;

2.2. For i from 1 to mg(λ0) do
For j from 0 to κi(λ0)− 1 do

Let Sol = Sol ∪
{
xλ0

∑j
k=0 vi,j−k

logk(x)
k!

}
;

end do;
end do;

end do;
3. Return Sol;

Proposition 2.4.2. Algorithm Euler_MDE returns a basis of the regular formal solution
space of System (2.9) using at most O

(
n5 `4

)
arithmetic operations in K.

Proof. Using Algorithm CanonicalSet_JC developed in Chapter 1, Step 2.1 can be performed
using at most O

(
n4 `3ma(λ0) dλ0

)
operations in K (see Remark 1.6.2 of Chapter 1). Since∑

λ0∈σ(L)ma(λ0) dλ0 = deg(det(L(λ))) = n ` (see Remark 1.1.1 of Chapter 1), the above algo-
rithm returns a basis of the regular formal solution space of System (2.9) using at most O

(
n5 `4

)
arithmetic operations in K.

Example 2.4.1. We consider the linear differential system of order 3(
1 1
1 2

)
ϑ3(y(x)) +

(
1 1
1 0

)
ϑ2(y(x)) +

(
−2 −1
−2 −1

)
ϑ(y(x)) +

(
0 −1
0 −1

)
y(x) = 0. (2.12)

The matrix polynomial L(λ) associated with this system is given by

L(λ) =
(
λ3 + λ2 − 2λ λ3 + λ2 − λ− 1
λ3 + λ2 − 2λ 2λ3 − λ− 1

)

44 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

and has three eigenvalues −2, 0 and 1 of algebraic multiplicity ma(−2) = 1, ma(0) = 3 and
ma(1) = 2. Using Algorithm CanonicalSet_JC developed in Chapter 1, we compute a canon-
ical set of Jordan chains associated respectively with the eigenvalues −2, 0 and 1. We find
respectively (

1
0

)
(one Jordan chain of length 1),

(
1
0

)
,

(
0
−2

)
,

(
0
−1

)
(one Jordan chain of length 3),

and (
1
0

)
,

(
0
1

)
(two Jordan chains of length 1).

Thus, a basis of the regular formal solution space of System (2.12) is given by(
x−2

0

)
,

(
1
0

)
,

(
log(x)
−2

)
,

(
log2(x)

2
−2 log(x)− 1

)
,

(
x
0

)
,

(
0
x

)
.

�

2.5 Non-homogeneous linear differential systems with constant
coefficients

As mentioned in the introduction of this chapter, Poole’s method reduces the problem of com-
puting regular formal solutions of System (2.1) to the one of computing polynomial solutions
in t = log(x) of non-homogeneous linear differential systems with constant coefficients and a
right-hand side polynomial in t. In this section, we show that such a system is always consistent
and we give a method for computing its general polynomial solution in t.

2.5.1 Existence of polynomial solutions in t = log(x)

In the following proposition, we prove that non-homogeneous linear differential systems with
constant coefficients and a right-hand side polynomial in t = log(x) admit at least one polynomial
solution in t whose degree can be bounded explicitly.

Proposition 2.5.1. Let t = log(x) and consider the non-homogeneous linear differential system

A` ϑ
`(y(x)) + · · ·+A1 ϑ(y(x)) +A0 y(x) = φ(t), (2.13)

where for i = 0, . . . , `, Ai ∈ Fn×n (F being a subfield of C), A` ∈ GLn(F) and φ(t) is an n-
dimensional vector polynomial in t of degree d with coefficients in F. Let L(λ) be the matrix
polynomial defined by

L(λ) = A` λ
` + · · ·+A1 λ+A0 ∈ F[λ]n×n. (2.14)

System (2.13) has at least one polynomial solution in t of degree p such that{
p = d if 0 /∈ σ(L),

d ≤ p ≤ d+ max{κj , j = 1, . . . ,mg(0)} if 0 ∈ σ(L),

where κ1, . . . , κmg(0) denote the partial multiplicities of L(λ) at the eigenvalue 0.

2.5. Non-homogeneous linear differential systems with constant coefficients 45

Proof. We give here a proof using the associated non-homogeneous differential system of first-
order

ϑ(Y) = C Y + Φ(t), (2.15)

where C is the block companion matrix (2.3) with the Ãi = −A−1
` Ai constant and Φ(t) =(

0 · · · 0 φ(t)T
)T
.

Write Y =
∑p

i=0 Yi
ti

i! with Yi ∈ Fn` and Yp 6= 0 and Φ(t) =
∑d

i=0 Φi
ti

i! with Φi ∈ Fn` and
Φd 6= 0. Since ϑ(logi(x)) = d

dt(t
i) = iti−1, the degree in t of ϑ(Y)− C Y is less than or equal to

that of Y . Hence we have d ≤ p. Suppose first that C is invertible, i.e., 0 is not an eigenvalue
of L(λ) (Iλ− C is a linearization of the matrix polynomial L(λ), see Section 1.3 of Chapter 1).
Plugging Y =

∑p
i=0 Yi

ti

i! into (2.15), we find that the Yi must satisfy{
C Yp = −Φp,
C Yi = Yi+1 − Φi, i = p− 1, . . . , 0,

with Φi = 0 for i > d. Since C is supposed to be invertible, we necessarily have p = d and
the Yi for i = p, . . . , 0 can be computed recursively which provides a polynomial solution of
(2.15) of degree p = d. Suppose now that C is not invertible. Let P be an invertible constant
matrix of size n ` such that the change of variables Z = P Y transforms System (2.15) into
ϑ(Z) = JZ + Ψ(t), where J is the Jordan normal form of C and Ψ(t) = P Φ(t). Note that Ψ(t)
is a vector polynomial in t of degree d since P is invertible. We can suppose without any loss of
generality that J = diag(J1,J2) with J1 nilpotent and J2 invertible. Decompose Z and Ψ(t)
into blocks according to the decomposition of J , i.e.,

Z =
(
Z1

Z2

)
and Ψ(t) =

(
Ψ1(t)
Ψ2(t)

)
.

System (2.15) is then equivalent to

ϑ(Zi) = Ji Zi + Ψi(t), with i = 1, 2. (2.16)

Since J2 is invertible, System (2.16) for i = 2 has a polynomial solution in t of degree equal
to that of Ψi(t), namely, bounded by d. Now for i = 1, the problem can be reduced to that of
finding polynomial solutions of the first-order differential system of size κ

ϑ(X) = JX + F (t), (2.17)

where κ is a partial multiplicity of L(λ) associated with eigenvalue 0, J is a nilpotent Jordan
block of the form

J =


0 1 (0)

.

(0)
. . . 1

0


and F (t) is a vector polynomial in t of degree bounded by d. Let X =

(
X1 · · · Xκ

)T and
F (t) =

(
F1(t) · · · Fκ(t)

)T . System (2.17) can then be written as{
ϑ(Xκ) = Fκ(t),
ϑ(Xi) = Xi+1 + Fi(t), for i = κ− 1, . . . , 1.

Since Fκ(t) is a polynomial in t, Xκ can be obtained by integration and is also a polynomial in
t with deg(Xκ) = deg(Fκ) + 1. Proceeding recursively, we can thus compute the polynomials
Xi for i = κ − 1, . . . , 1. The degree in t of the polynomial solution X of (2.17) that we obtain
is then less than or equal to κ+ d.

46 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

The general polynomial solution in log(x) of System (2.13) follows directly from the above
proposition and from the fact that a polynomial solution in t = log(x) of the homogeneous
system associated with (2.13) is a regular solution of exponent 0 (if of course L(λ) given in
(2.10) has 0 as an eigenvalue).

Corollary 2.5.1. Consider a non-homogeneous linear differential system with constant coeffi-
cients of the form (2.13) and let z(x) be a particular polynomial solution in log(x) of the system.
If 0 6∈ σ(L) where L(λ) is the matrix polynomial given in (2.14), then z(x) is the unique poly-
nomial solution in log(x) of System (2.13). Otherwise, let vi,0, · · · , vi,κi−1 for i = 1, . . . ,mg(0)
be a canonical set of Jordan chains for L(λ) associated with eigenvalue 0. For i = 1, . . . ,mg(0)
and j = 0, . . . , κi − 1, let

yi,j(x) = vi,j + vi,j−1
log(x)

1!
+ · · ·+ vi,0

logj(x)
j!

.

Then, the general polynomial solution in log(x) of (2.13) is given by

y(x) =
∑

1≤i≤mg(0)
0≤j≤κi−1

Ki,j yi,j(x) + z(x),

where the Ki,j are arbitrary constants in F.

2.5.2 Computation of the general polynomial solution in t = log(x)

We will now explain how to compute efficiently the general polynomial solution in t = log(x)
of systems of the form (2.13). Write the right-hand side φ(t) of (2.13) under the form φ(t) =∑d

i=0 qi
ti

i! , where qi ∈ Fn and qd 6= 0. Write the general polynomial solution of (2.13) in the
form y =

∑p
i=0 yi

ti

i! , where yi ∈ Fn are to be determined and{
p = d if 0 /∈ σ(L),

p = d+ max{κj , j = 1, . . . ,mg(0)} if 0 ∈ σ(L).
(2.18)

Writing L(ϑ) =
∑`

i=0
1
i!L

(i)(0)ϑi, we see that solving System (2.13) is equivalent to solving the
linear system of size (p+ 1)n

L(0)
...

. . . (0)
1

(p−d)!L
(p−d)(0)

. . .
...

. . .
1
p!L

(p)(0) · · · · · · · · · L(0)


︸ ︷︷ ︸

Tp+1


yp
...
yd
...
y0

 =



0
...
0
qd
...
q0


, (2.19)

which is equivalent to solving the p+ 1 linear systems of size n

L(0) yi = fi, for i = p, . . . , 0, (2.20)

where fp = qp, fi = qi −
∑p−i

j=1
1
j!L

(j)(0) yi+j for i = p− 1, . . . , 0, and qi = 0 for i > d. Note that
all the systems in (2.20) share the same matrix L(0).

If 0 is not an eigenvalue of L(λ), then the yi for i = p, . . . , 0 are given by yi = L−1(0) fi.
Otherwise, compute an LU decomposition of L(0) and then use it to compute recursively the yi’s

2.5. Non-homogeneous linear differential systems with constant coefficients 47

in the following way. Let L(0) = PLU where P is a permutation matrix, L a lower triangular
matrix having 1 on its diagonal and U an upper triangular matrix whose last n− rank(L(0)) =
mg(0) rows are zero. Since the κi’s are positive integers, the integer p is then greater than d and
hence yp satisfies the system L(0) yp = 0. Thus, computing yp is equivalent to solving the system
U yp = 0. It follows that the last mg(0) components of yp are arbitrary constants. Suppose
now that we have already computed the yj ’s for j = i + 1, . . . , p. These vectors depend on
arbitrary constants since L(0) is a singular matrix. Let us now explain how to solve the system
L(0) yi = fi. We first solve the system L z = PT fi. Since L is invertible, the solution z depends
only on the arbitrary constants appearing in fi. Then, we consider the system U yi = z. As
it has to be consistent, the values of some arbitrary constants of z (and hence some arbitrary
constants of yj for j = i+ 1, . . . , p) are fixed so that the last mg(0) components of z can be zero.
Thus, the system can be solved and one gets yi and so on.

We summarize this in the following algorithm.

Algorithm GenPolSol_NHS

Input: The matrices L(0), L′(0), . . . , L(`)(0), the right-hand side φ(t) of System (2.13),
the matrix L−1(0) if 0 /∈ σ(L), and the partial multiplicities κ1, . . . , κmg(0) at 0,
otherwise.

Output: The general polynomial solution in t = log(x) of System (2.13).

Initialization: Write φ(t) under the form φ(t) =
∑d

i=0 qi
ti

i! with qi ∈ Fn and qd 6= 0;

1. If 0 is not an eigenvalue of L(0) then
1.1. Let p = d;
1.2. For i from p by −1 to 0 do

1.2.(a). If i < p then compute fi = qi −
∑p−i

j=1
1
j!L

(j)(0) yi+j else fi = qi end if ;
1.2.(b). Compute yi = L−1(0) fi;
end do;

2. else
2.1. Let p = d+ max{κi, i = 1, . . . ,mg(0)}, r = n−mg(0) and qi = 0 for i > d;
2.2. Compute an LU decomposition of L(0), namely, L(0) = PLU;
2.3. For i from p by −1 to 0 do

2.3.(a). If i < p then compute fi = qi −
∑p−i

j=1
1
j!L

(j)(0) yi+j else fi = qi end if ;
2.3.(b). Solve the linear system L z = PT fi;
2.3.(c). Solve the linear system {zj = 0, for j = r + 1, . . . , n};

// Here zj denotes the jth component of vector z
2.3.(d). Update z and yj for j = i+ 1, . . . , p;
2.3.(e). Compute the general solution of system U yi = z;
end do;

end if ;
3. Return

∑p
i=0 yi

ti

i! ;

Proposition 2.5.2. Algorithm GenPolSol_NHS is correct, i.e., the number of arbitrary con-
stants in its output is equal to the dimension of ker(Tp+1), where Tp+1 is the matrix defining
System (2.19).

Proof. When 0 /∈ σ(L), this is obvious since there exists a unique solution and matrix Tp+1 is
invertible. Hence, we consider the case where 0 ∈ σ(L). For sake of simplicity, we will suppose
that the right-hand side φ(t) is equal to zero since the arbitrary constants in the output come

48 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

from the solution of the homogeneous system associated with (2.19). More generally, we will
show that, for i = i0 (0 ≤ i0 ≤ p) in the For loop, the vector

y
(i0)
p
...

y
(i0)
i0

 ,

where y(i0)
p , . . . , y

(i0)
i0

denote the vectors yp, . . . , yi0 just after executing Step 2.3.(e), is the general
solution of system Tp−i0+1X = 0, where

Tp−i0+1 =

 L(0) (0)
...

. . .
1

(p−i0)!L
(p−i0)(0) · · · L(0)

 .

In other words, we will show that the number of arbitrary constants in y(i0)
p , . . . , y

(i0)
i0

is equal
to the dimension of ker(Tp−i0+1). We proceed by induction. First, for i = p, we have fp = 0
and the vector y(p)

p , as computed in Step 2.3.(e), is the general solution of System UX = 0
and therefore it is so for the system T1X = 0 with T1 = L(0). Hence, it is satisfied for i = p.
Suppose now that it is satisfied for i = i0 + 1, that is, the number of arbitrary constants in
y

(i0+1)
p , . . . , y

(i0+1)
i0+1 is equal to the dimension of ker(Tp−i0), and let us show it for i = i0. Write

y
(i0+1)
p
...

y
(i0+1)
i0+1

 = Vi0+1Ci0+1,

where Ci0+1 is the vector of the arbitrary constants appearing in y(i0+1)
p , . . . , y

(i0+1)
i0+1 and Vi0+1

is a matrix whose columns form a basis of the matrix Tp−i0 . In Step 2.3.(a), fi0 can be written
as

fi0 = −T ∗p−i0 Vi0+1Ci0+1 with T ∗p−i0 =
(

1
(p−i0)!L

(p−i0)(0) · · · L′(0)
)
.

Hence, z in Step 2.3.(b) is given by z = −L−1 PT T ∗p−i0 Vi0+1Ci0+1. Let si0 denote the rank of
the system in Step 2.3.(c); si0 is indeed equal to the rank of the submatrix of L−1 PT T ∗p−i0 Vi0+1

composed of rows of indices from r + 1 to n, where r = rank(L(0)) = n−mg(0). However, we
have seen in Chapter 1 (see Equation (1.13)) that

rank
(
T ∗p−i0 Vi0+1 L(0)

)
= rank(Tp−i0+1)− rank(Tp−i0).

Thus, by multiplying on the left by the invertible matrix L−1 PT , we find

rank
(
L−1 PT T ∗p−i0 Vi0+1 U

)
= rank(Tp−i0+1)− rank(Tp−i0).

From the particular structure of U and the equality just above, it follows that

si0 + r = rank(Tp−i0+1)− rank(Tp−i0).

In Step 2.3.(d), the values of si0 arbitrary constants are determined and in Step 2.3.(e),
mg(0) new arbitrary constants are introduced. Hence, the number of arbitrary constants in
y

(i0)
p , . . . , y

(i0)
i0

is equal to

dim(ker(Tp−i0))− si0 +mg(0) = dim(ker(Tp−i0))− rank(Tp−i0+1)︸ ︷︷ ︸
=n (p−i0)

+rank(Tp−i0) + r +mg(0)︸ ︷︷ ︸
=n

= n (p− i0 + 1)− rank(Tp−i0+1)
= dim(ker(Tp−i0+1)) QED.

2.6. A direct method for computing regular solutions 49

Thus, for i0 = 0, the number of arbitrary constants in y(0)
p , . . . , y

(0)
0 , which appear in the output

of the algorithm, is equal to the dimension of ker(Tp+1), which ends the proof.

Remark 2.5.1. From the proof of Proposition 2.5.2 and Lemma 1.6.1 of Chapter 1, we can
deduce that the number of arbitrary constants appearing in the y′is during all steps of Algorithm
GenPolSol_NHS never exceeds ma(0).

Proposition 2.5.3. Algorithm GenPolSol_NHS returns the general polynomial solution of
System (2.13) after at most O

(
n2 pma(0) min{p, `}+ n p2mg(0)ma(0) + n3

)
operations in F if

0 ∈ σ(L), and O
(
n2 p min{p, `}

)
operations in F, otherwise. Here, p is given by (2.18).

Proof. Step 1.2.(a) requires O
(
n2 min{p, `}

)
operations in F while Step 1.2.(b) can de done in

O
(
n2
)
operations in F. As Step 1.2 is repeated p+1 times, Step 1 costs at most O

(
n2 pmin{p, `}

)
operations in F.

Let us now determine the cost of Step 2. Step 2.2 can be done using at most O
(
n3
)

operations in F. From Remark 2.5.1, it follows that Step 2.3.(a) can be done in at most
O
(
n2ma(0) min{p, `}

)
operations in F. Since L and U are triangular matrices and since

vectors fi and z depend on at most ma(0) arbitrary constants, Steps 2.3.(b) and 2.3.(e) can
be done using at most O

(
n2ma(0)

)
operations in F. Let us now determine the cost of Step

2.3.(c). The components of z are linear combinations of the arbitrary constants appearing in
yj for j = i + 1, . . . , p and hence solving the system in Step 2.3.(c) can be done in at most
O
(
(n− r)2ma(0)

)
= O

(
mg(0)2ma(0)

)
operations in F. It remains to compute the cost of Step

2.3.(d). Let s ≤ mg(0) denote the rank of the system in Step 2.3.(c). Solving the system in
Step 2.3.(c) determines the values of s arbitrary constants of z as linear combinations of the
other arbitrary constants whose number is bounded by ma(0)− s. Updating one component of
z costs then at most O(s (ma(0)− s)) = O(mg(0)ma(0)) operations in F. Since the number of
components to be updated in vectors z and yj for j = i+1, . . . , p is bounded by n (p−i+1), Step
2.3.(d) can be done in at most O(n pmg(0)ma(0)) operations in F. Thus, one passage through
the For loop costs at most O

(
n2ma(0) min{p, `}+ n pmg(0)ma(0)

)
operations in F. Hence,

Step 2.3 costs O
(
n2 pma(0) min{p, `}+ n p2mg(0)ma(0)

)
operations in F. Step 2 can then be

done using at most O
(
n2 pma(0) min{p, `}+ n p2mg(0)ma(0) + n3

)
operations in F.

2.6 A direct method for computing regular solutions

In this section, we develop a new approach for computing a basis of the regular formal solu-
tion space of systems of the form (2.1). This approach is inspired by Poole’s method [86] for
computing regular solutions of scalar linear differential equations.

2.6.1 Description of the approach

The idea behind Poole’s method consists in looking for regular solutions viewed as formal power
series whose coefficients are vectors of polynomials in t = log(x), i.e., of the form

y(x) =
∞∑
m=0

Um(t)xλ0+m, (2.21)

where λ0 ∈ K, for all m ≥ 0, Um(t) ∈ K[t]n and U0 6= 0. We refer to y(x) in (2.21) as a regular
solution of exponent λ0.

Write the coefficient matrices Ai(x) of System (2.1) as

Ai(x) =
∞∑
j=0

Ai,j x
j , (2.22)

50 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

where Ai,j ∈ Kn×n. With System (2.1), we associate the matrix polynomials defined by

∀ i ≥ 0, Li(λ) = A`,i λ
` + · · ·+A1,i λ+A0,i. (2.23)

Therefore, System (2.1) can be written in the form

L(x, ϑ)(y(x)) =
∞∑
i=0

xi Li(ϑ)(y(x)) = 0. (2.24)

Substituting (2.21) into (2.24), we find

∞∑
i=0

xi Li(ϑ)

(∞∑
m=0

Um x
λ0+m

)
=
∞∑
i=0

∞∑
m=0

xi Li(ϑ)
(
Um x

λ0+m
)

= 0.

Identifying the coefficients of the powers of x to 0, we find that λ0 and U0 must satisfy

L0(ϑ)
(
xλ0 U0

)
= 0, (2.25)

and then using the equality

Li(ϑ)
(
xλ0+m Um

)
= xλ0+m Li(ϑ+ λ0 +m) (Um) ,

we find that, for m ≥ 1, Um satisfies

L0(ϑ+ λ0 +m) (Um) = −
m−1∑
i=0

Lm−i(ϑ+ λ0 + i) (Ui) . (2.26)

The problem is then reduced to finding λ0 and U0, U1, . . . ∈ K[t]n satisfying (2.25) and (2.26).
Equation (2.25) shows that xλ0 U0 is a regular solution of the Euler matrix differential equa-

tion defined by L0(ϑ)(y(x)) = 0. Hence, by Lemma 2.4.1, λ0 must be chosen as an eigenvalue
of L0(λ) and U0 of the form

U0 = vk−1 + vk−2
log(x)

1!
+ · · ·+ v0

logk−1(x)
(k − 1)!

, (2.27)

where k ∈ N∗ and v0, . . . , vk−1 form a Jordan chain of length k for L0(λ) associated with λ0.
We recall that k is less than or equal to one of the partial multiplicities of L0(λ) at λ0.

Let λ0 ∈ σ(L0) and U0 the vector polynomial in t = log(x) of degree k − 1 given by (2.27).
Consider first Equation (2.26) for m = 1. This is a non-homogeneous linear differential system
with constant coefficients in K(λ0) and polynomial right-hand side in t = log(x) of degree less
than k. According to Proposition 2.5.1, this system admits at least one polynomial solution U1

in t. The degree of this latter is bounded by k if λ0 + 1 is not an eigenvalue of L0(λ) (which is
equivalent to saying that 0 is not an eigenvalue of L0(λ+λ0 + 1)) and by k+ maxj{κj(λ0 + 1)},
otherwise, where the κj(λ0 +1) denote the partial multiplicities of L0(λ) at the eigenvalue λ0 +1.
Recursively, we can then obtain U2, U3, . . . ∈ K(λ0)[t]n as polynomial solutions in t = log(x) of
the non-homogeneous systems (2.26) for m = 2, 3, From Proposition 2.5.1, it follows that
the degree in t of Um is bounded by

k +
∑

1≤i≤m s.t. λ0+i∈σ(L0)

max
j
{κj(λ0 + i)} , (2.28)

where the κj(λ0 + i) denote the partial multiplicities of L0(λ) at the eigenvalue λ0 + i.

2.6. A direct method for computing regular solutions 51

In the sequel, we propose two versions of this approach. In the first version, we propose to
compute a basis of the regular formal solution space of System (2.1) starting from a basis of the
regular formal solution space of System (2.25) that we obtain using Algorithm Euler_MDE.
In the second version, we propose to split the spectrum of L0(λ) into pairwise disjoint subsets
σ1, . . . , σr such that two eigenvalues belonging to two different subsets σi and σj do not differ
by integers2, then we compute the general regular solution associated with each subset σi. In
the latter version, we do not use the notion of partial multiplicities nor that of Jordan chains.

2.6.2 First version: using Jordan chains

We have shown earlier that every regular solution xλ0 U0 of System (2.25) can be extended to
construct a regular formal solution of System (2.1) of exponent λ0. Thus, starting from a basis
of the regular formal solution space of System (2.25), one can construct n ` regular solutions
of System (2.1). Furthermore, these solutions are linearly independent since their first terms
xλ0 U0 are so. Therefore, we obtain a basis of the regular formal solution space of System (2.1).

Algorithm BCE_V1 below takes as input the coefficients Ai(x) of System (2.1) and an
integer ν ∈ N and returns a basis of the regular formal solution space of System (2.1) where the
series involved are computed up to order ν, that is, only the coefficients of xi with i ≤ ν are
computed.

Remark 2.6.1. From Equation (2.26), we can deduce that the computation of a regular solution
up to order ν of System (2.1) requires only the knowledge of the operators L0(ϑ), L1(ϑ), . . . ,
Lν(ϑ) given by (2.23). These operators depend only on the first ν+1 coefficients of the expansion
(2.22). Consequently, it suffices to truncate the entries of the coefficient matrices Ai(x) of System
(2.1) at order ν, i.e., Ai(x) =

∑ν
j=0Ai,j x

j +O
(
xν+1

)
.

Algorithm BCE_V1

Input: An integer ν ∈ N and the coefficient matrices Ai(x) of System (2.1) truncated at
order ν.

Output: A basis of the regular formal solution space of System (2.1) where the series
involved are truncated at order ν.

Initialization: Let L0(λ) =
∑`

i=0Ai(0)λi and Sol = { };

1. Compute σ(L0);
2. For each element λ0 of σ(L0) do

2.1. Compute a canonical set of Jordan chains vi,0, . . . , vi,κi(λ0)−1 for i = 1, . . . ,mg(λ0)
for L0(λ) associated with λ0;

2.2. For i from 1 to mg(λ0) do
For j from 0 to κi(λ0)− 1 do

Let U(i,j),0 =
∑j

k=0 vi,j−k
logk(x)
k! ;

For m from 1 to ν do
Compute U(i,j),m as solution of System
L0(ϑ+ λ0 +m)

(
U(i,j),m

)
= −

∑m−1
k=0 Lm−k(ϑ+ λ0 + k)

(
U(i,j),k

)
;

end do;
Let Sol = Sol ∪

{∑ν
m=0 U(i,j),m x

λ0+m
}
;

end do;

2This implies that the eigenvalues belonging to the same subset σi differ by nonzero integers.

52 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

end do;
end do;

3. Return Sol;

Remark 2.6.2. Let us make some comments concerning our Maple implementation of Algo-
rithm BCE_V1 above.

1. To compute U(i,j),m (for m = 1, . . . , ν) in Step 2.2, we need to check whether λ0 + m
with λ0 ∈ σ(L0) is an element of σ(L0) or not. This leads us to consider the problem in
a more general form: check whether two distinct elements of σ(L0) (see Remark 1.1.1 of
Chapter 1) differ or not by nonzero integer. To achieve this in practice, we rely on two
facts. The first fact is that the roots of an irreducible polynomial over K[λ] do not differ
by integers. The second fact is that if p1(λ) and p2(λ) are two irreducible polynomials
over K[λ] and if there exist a root α of p1(λ) and a nonzero integer s such that α+ s is a
root of p2(λ), that is,

p1(α) = p2(α+ s) = 0,

then p1(λ) = p2(λ + s). Thus, the roots of two monic irreducible polynomials p1(λ) and
p2(λ) of same degree differ by a nonzero integer if and only if s defined by

s :=
tr(p1(λ))− tr(p2(λ))

deg(p1(λ))
,

where tr(pi(λ)) denote the trace of the polynomial pi(λ) for i = 1, 2, is a nonzero integer
and p1(λ) = p2(λ+ s).

2. For each λ0 ∈ σ(L), i ∈ {1, . . . ,mg(λ0)} and m ∈ {1, . . . , ν}, we only compute
U(i,κi(λ0)−1),m (i.e., for j = κi(λ0) − 1) since from it we can deduce U(i,j),m for j =
0, . . . , κi(λ0)−2. Indeed, let pm denote the degree of U(i,κi(λ0)−1),m and write U(i,κi(λ0)−1),m

as a vector polynomial in t as follows

U(i,κi(λ0)−1),m =
pm∑
s=0

U(i,κi(λ0)−1),(m,s)
ts

s!
,

where U(i,κi(λ0)−1),(m,s) ∈ Kn for s = 0, . . . , pm. For j = 0, . . . , κi(λ0)− 2, we take

U(i,j),m =
|pm−κi(λ0)+1|+j∑

s=0

U(i,κi(λ0)−1),(m,κi(λ0)−1−j+s)
ts

s!
,

with U(i,κi(λ0)−1),(m,s) = 0 if s > pm.

3. We compute the vector polynomial U(i,κi(λ0)−1),m using Algorithm GenPolSol_NHS by
giving as input the matrices L0(λ0 +m), L′0(λ0 +m), . . . , L(`)

0 (λ0 +m), the right-hand side
of the system satisfied by U(i,κi(λ0)−1),m, the matrix L−1

0 (λ0 +m) if λ0 +m /∈ σ(L0), and
the partial multiplicities of L0(λ) at λ0 + m, otherwise. The algorithm will return the
general polynomial solution, i.e., when λ0 +m ∈ σ(L0), the output of Algorithm GenPol-
Sol_NHS will depend on arbitrary constants. Since we need any solution U(i,κi(λ0)−1),m,
we replace then these arbitrary constants by zero.

4. If the eigenvalues of L0(λ) differ by integers, then we proceed with them in Step 2 by
decreasing order. Hence the partial multiplicities of L0(λ) at λ0 +m (if λ0 +m ∈ σ(L0))
needed to compute U(i,κi(λ0)−1),m are already known without any extra computation.

2.6. A direct method for computing regular solutions 53

Proposition 2.6.1. Given a system of n linear differential equations of order ` of the form
(2.1), Algorithm BCE_V1 returns a basis of its regular formal solution space using at most
O
(
n4 `3 ν2 + n6 `4

)
operations in K where ν denotes the order of truncation of the series.

Proof. We first compute the matrix inverse L−1
0 (λ) and the first ` derivatives of the matrices

Li(λ) for i = 0, . . . , ν as it is needed to compute the coefficients U(i,j),m. Computing the inverse
of an n×n matrix polynomial of degree ` can be done using O∼

(
n3 `

)
operations in K (see [61]).

Computing the derivatives reduces to differentiate n2(ν + 1) polynomials of degree less than or
equal to ` at most ` times. Each differentiation costs O(`) operations in K. Hence, the cost of
computing the L(j)

i (λ) for i = 0, . . . , ν and j = 1, . . . , ` is bounded by O
(
n2 `2 ν

)
operations in

K.
For each element of σ(L0), using Algorithm CanonicalSet_JC, Step 2.1 can be performed

in at most O
(
n4 `3ma(λ0) dλ0

)
operations in K (see Remark 1.6.2 of Chapter 1). Let us now

determine the cost of computing one U(i,κi−1),m
3 (see Remark 2.6.2). For this, we need first

to determine the cost of computing the right-hand side −
∑m−1

k=0 Lm−k(ϑ+ λ0 + k)
(
U(i,κi−1),k

)
of the system satisfied by U(i,κi−1),m. Let us study the cost of applying Lm−k(ϑ + λ0 + k)
to U(i,κi−1),k. Since the degree of U(i,κi−1),k in t = log(x) is less than n `, write U(i,κi−1),k =∑n`−1

j=0 U(i,κi−1),(k,j)
tj

j! with U(i,κi−1),(k,j) ∈ K(λ0)n. Computing Lm−k(ϑ+ λ0 + k)
(
U(i,κi−1),k

)
is

then equivalent to performing the matrix-vector product Lm−k(λ0 + k) (0)
...

. . .
1

(n `−1)!L
(n`−1)
m−k (λ0 + k) · · · Lm−k(λ0 + k)


U(i,κi−1),(k,n`−1)

...
U(i,κi−1),(k,0)

 . (2.29)

To achieve this multiplication, we have to evaluate L(j)
m−k(λ) for j = 0, . . . , ` at λ = λ0 + k

(L(j)
m−k(λ) = 0 for j > `). This is equivalent to evaluate at most n2 (` + 1) polynomials of

degree bounded by ` at λ0 + k. Evaluating a polynomial of degree less than or equal to ` with
coefficients in K at λ0 + k ∈ K(λ0) can be done using at most O(` dλ0) operations in K. Hence,
the cost of the evaluation is O

(
n2 `2 dλ0

)
operations in K. Now, the multiplication in (2.29)

requires n `2 +n `− `
2 (`+1) products of an n×n matrix by an n-dimensional vector with entries

in K(λ0). Consequently, the multiplication in (2.29) costs at most O
(
n3 `2 dλ0

)
operations in

K. Thus, computing the right-hand side of the system satisfied by U(i,κi−1),m requires at most
O
(
n3 `2mdλ0

)
operations in K.

Let us now determine the cost of solving the non-homogeneous linear differential sys-
tem satisfied by U(i,κi−1),m. For this, we need first the cost of evaluating the ma-
trices L(j)(λ) for j = 0, . . . , ` and L−1(λ) (when λ0 + m /∈ σ(L0)) at λ = λ0 +
m. This can de done using O

(
(n2 `2 + n3 `) dλ0

)
operations in K. Using the result

of Proposition 2.5.3 and bounding p by n ` and mg by n, solving the system satis-
fied by U(i,κi−1),m can be done using at most O

(
n4 `2ma(λ0 +m) dλ0

)
operations in K

if λ0 + m ∈ σ(L0), and O
(
n3 `2 dλ0

)
operations in K, otherwise. Since m varies

from 1 to ν and i from 1 to mg(λ0), Step 2.2 can then be performed using at most
O
(∑ν

m=1

(
n4 `2ma(λ0 +m) + n3 `2m

)
mg(λ0) dλ0

)
= O

((
n5 `3 + n3 `2 ν2

)
mg(λ0) dλ0

)
opera-

tions in K4. Thus, one obtains ma(λ0) linearly independent regular solutions of exponent λ0

computed up to order ν in O
((
n5 `3 + n3 `2 ν2

)
mg(λ0) dλ0 + n4 `3ma(λ0) dλ0

)
operations in K.

Since
∑

λ0∈σ(L0)mg(λ0) dλ0 ≤
∑

λ0∈σ(L0)ma(λ0) dλ0 = n `, we obtain O
(
n4 `3 ν2 + n6 `4

)
opera-

tions in K.
3We omit λ0 from the notation of the partial multiplicities κi for sake of brevity.
4We use the fact that

Pν
m=1ma(λ0 +m) ≤ n ` with ma(λ0 +m) = 0 if λ0 +m /∈ σ(L0).

54 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

2.6.3 Second version: by packet

We will give here a slightly modified version of Algorithm BCE_V1 in which we avoid any
computation of partial multiplicities and Jordan chains. We proceed as follows. We first par-
tition the spectrum of L0(λ) into pairwise disjoint subsets σ1, . . . , σr such that two eigenvalues
belonging to two different subsets σi and σj do not differ by integers. Then, for each set σi for
i ∈ {1, . . . , r}, we compute the general regular solution associated with σi, i.e., the solution

yi(x) =
∑
λ0∈σi

ma(λ0)∑
j=1

cλ0,j yλ0,j(x),

where the cλ0,j ’s are arbitrary constants and yλ0,1(x), . . . , yλ0,ma(λ0)(x) are ma(λ0) linearly in-
dependent regular formal solutions of (2.1) of exponent λ0. Choosing λi ∈ σi such that
<(λi) = minλ0∈σi <(λ0), where <(λ0) denotes the real part of the complex number λ0, the
general regular solution associated with σi can then be written as

yi(x) =
∑
m≥0

Ui,m x
λi+m, (2.30)

where the Ui,m’s are n-dimensional vector polynomials in log(x) depending on arbitrary constants
and Ui,0 6= 0. As we have already seen, λi and Ui,0 must satisfy L0(ϑ)

(
xλiUi,0

)
= 0. Hence, to

compute yi(x), we choose Ui,0 of the form

Ui,0 =
mg(λi)∑
l=1

κl(λi)−1∑
j=0

Ci,l,j

(
j∑

k=0

vl,j−k
logk(x)
k!

)
, (2.31)

where the Ci,l,j ’s are arbitrary constants, the κl(λi)’s for l = 1, . . . ,mg(λi) denote the partial
multiplicities at λi and vl,0, . . . , vl,κl(λi)−1 for l = 1, . . . ,mg(λi) form a canonical set of Jordan
chains for L0(λ) associated with λi (see Proposition 2.4.1). Then, for m ≥ 1, we choose Ui,m
as the general polynomial solution in log(x) given by Corollary 2.5.1 of the non-homogeneous
system with constant coefficients

L0(ϑ+ λi +m) (Ui,m) = −
m−1∑
k=0

Lm−k(ϑ+ λi + k) (Ui,k) . (2.32)

Consider first System (2.32) with m = 1. According to Corollary 2.5.1, two cases have to be
distinguished: if λi + 1 is not an eigenvalue of L0(λ), then the system has a unique polynomial
solution in log(x): hence, in this case, Ui,1 only depends on the arbitrary constants appearing
in the right-hand side of (2.32), i.e., on the Ci,l,j ’s appearing in the expression of Ui,0 (see
Equation (2.31)). Otherwise, i.e., if λi + 1 is an eigenvalue of L0(λ), then Ui,1 depends on the
Ci,l,j ’s and on ma(λi + 1) new arbitrary constants appearing in the general polynomial solution
in t = log(x) of L0(ϑ+ λi + 1) (y(x)) = 0. Hence, continuing this process for m = 2, 3, . . ., if we
denote by δi ∈ N∗ the maximal difference between two elements of σi, then Ui,δi depends on
the constants appearing in the right-hand side of (2.32) with m = δi and on ma(λi + δi) new
arbitrary constants. For m > δi, no new arbitrary constants are introduced. Finally, the general
regular solution yi(x) =

∑
m≥0 Ui,m x

λi+m computed following this way contains
∑

λ0∈σima(λ0)
arbitrary constants and hence it is the general regular solution associated with the subset σi.

Let us now explain how we proceed to compute the vector polynomials Ui,m for m ≥ 0.
The vector polynomial Ui,0 can of course be obtained from a canonical set of Jordan chains
for L0(λ) at the eigenvalue λi but here we propose to proceed in the same way as we did in

2.6. A direct method for computing regular solutions 55

Section 2.5 for computing the general polynomial solution in t = log(x) for non-homogeneous
linear differential systems. From (2.31), we remark that the degree in t = log(x) of Ui,0 is
equal to max{κl(λi), l = 1, . . . ,mg(λi)} − 1 which can be bounded by ma(λi) − 1. Hence, let
αi = ma(λi)− 1 and write Ui,0 =

∑αi
j=0 U(i,0),j

tj

j! where the U(i,0),j are n-dimensional vectors to
be determined. Substituting y(x) = xλi Ui,0 into L0(ϑ)(y(x)) = 0 and equating the coefficients
of the powers of t to 0 yield the following linear system

L0(λi)
1
1!L
′
0(λi) L0(λi) (0)
...

. . .
...

. . .
1
αi!
L

(αi)
0 (λi) · · · · · · · · · L0(λi)




U(i,0),αi

U(i,0),αi−1
...
...

U(i,0),0

 =


0
0
...
...
0

 .

Consequently, computing Ui,0 is reduced to solving recursively the αi+1 = ma(λi) linear systems
of size n given by{

L0(λi)U(i,0),αi = 0,

L0(λi)U(i,0),j = −
∑αi−j

k=1
L

(k)
0 (λi)
k! U(i,0),(j+k), for j = αi − 1, . . . , 0.

(2.33)

To solve the above system, we proceed exactly as we did in Section 2.5, i.e., using an LU
decomposition of L0(λi). Thus, from Proposition 2.5.3, we obtain the complexity of computing
Ui,0 by solving System (2.33).

Lemma 2.6.1. With the previous notation, computing Ui,0 by solving System (2.33) can be
done using at most O

((
ma(λi)2 min{ma(λi), `}+ma(λi)3 + n

)
n2 dλi

)
operations in K, where

dλi denotes the degree of the extension K(λi) over K.

Concerning Ui,m form ≥ 1, we use AlgorithmGenPolSol_NHS with a slight modification:
if λi+m is an eigenvalue of L0(λ), or, equivalently, 0 is an eigenvalue of L0(λ+λi+m), we give
the algebraic multiplicity of λi +m as input instead of its partial multiplicities. In this way, the
degree bound p becomes{

p = d if λi +m /∈ σ(L0(λ)),
p = d+ma(λi +m) if λi +m ∈ σ(L0(λ)).

Before providing an algorithm derived from the previous discussion and studying its com-
plexity, let us clarify the order of truncation of the power series involved, used in our algorithm.

Remark 2.6.3. Let ν ∈ N. If the power series involved in the general regular solution (2.30)
associated with σi of System (2.1) are truncated at order ν, then we have

x−λi L(x, ϑ)

(
ν∑

m=0

Ui,m x
λi+m

)
= 0 mod xν+1.

Definition 2.6.1. Consider a linear differential system of the form (2.1) and an integer ν ∈ N.
Let σ1, . . . , σr be the partition of the spectrum of L0(λ) as defined above. For i = 1, . . . , r, let
yi be the general regular solution associated with σi of System (2.1), computed up to order ν.
Then, we will say that y =

∑r
i=1 yi is the general regular solution up to order ν of System (2.1).

From the method sketched above, we deduce the following algorithm.

56 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

Algorithm BCE_V2

Input: An integer ν ∈ N and the coefficient matrices Ai(x) of System (2.1) truncated at
order ν (see Remark 2.6.1).

Output: The general regular solution up to order ν of System (2.1).

Initialization: Define L0(λ) =
∑`

i=0Ai(0)λi;

1. Compute σ(L0) and partition it into subsets σ1, . . . , σr defined as above;
// see Remark 2.6.2

2. For i from 1 to r do
2.1. Let λi ∈ σi be such that <(λi) = minλ0∈σi <(λ0);
2.2. Compute Ui,0 by solving the system given by (2.33);
2.3. For m from 1 to ν do

Compute Ui,m as the general polynomial solution of System (2.32);
end do;

2.4. Let yi =
∑ν

m=0 Ui,m x
λi+m;

end do;
3. Return y =

∑r
i=1 yi;

Proposition 2.6.2. The algorithm BCE_V2 returns the general regular solution up to order
ν of system (2.1) after at most O

(
n4 `3 ν2 + n6 `4

)
operations in K.

Proof. We first compute the matrix inverse L−1
0 (λ) and the first ` derivatives of the matrices

Li(λ) for i = 0, . . . , ν. This costs at most O∼
(
n3 `+ n2 `2 ν

)
operations in K (see the proof of

Proposition 2.6.1). Let now λi and σi be as defined in the algorithm. According to Lemma 2.6.1,
Step 2.2 can be performed using at most O

((
ma(λi)2 min{ma(λi), `}+ma(λi)3 + n

)
n2 dλi

)
=

O
(
n5 `3 dλi

)
operations in K. Let now determine the cost of Step 2.3. We first consider the cost

of computing the right-hand side of System (2.32). Since the Ui,j for i = 0, . . . ,m − 1 depend
on arbitrary constants whose number do not exceed

∑
λ0∈σima(λ0), following the computation

done in the proof of Proposition 2.6.1 we find that computing the right-hand side of System
(2.32) can be done using at most O

((∑
λ0∈σima(λ0)

)
n3 `2mdλi

)
operations in K. Now using

the result of Proposition 2.5.3 and bounding p by n ` and mg by n, the complexity of solving
System (2.32) is bounded by O

((∑
λ0∈σima(λ0)

)
n4 `2ma(λi +m) dλi

)
operations in K5 if λi +

m ∈ σ(L0), and O
((∑

λ0∈σima(λ0)
)
n3 `2 dλi

)
operations in K, otherwise. Thus, Step 2.3 costs

O
((
n3 `2 ν2 + n5 `3

)∑
λ0∈σima(λ0) dλi

)
operations in K6. Since

∑r
i=1

∑
λ0∈σima(λ0) dλi = n `,

Algorithm BCE_V2 returns the general regular solution up to order ν of system (2.1) using
O
(
n4 `3 ν2 + n6 `4

)
operations in K.

Algorithm BCE_V2 above has been implemented7 in Maple using the LinearAlgebra
package.

2.7 Generalization of Frobenius’ method

A classical method for computing a basis of the regular formal solution space of scalar linear
differential equations of the form (2.1) (with n = 1) is Frobenius’ method (see [37, Chap. 4,

5Since the right-hand side of the system depends on at most
P
λ0∈σi

ma(λ0) arbitrary constants.
6We use the fact that

Pν
m=1ma(λ0 +m) ≤ n ` with ma(λ0 +m) = 0 if λ0 +m /∈ σ(L0).

7The implementation is available at http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html

2.7. Generalization of Frobenius’ method 57

Section 8], [44], [59, Chap. 16] or [94, Chap. 2]). This method has been generalized to first-
order linear differential systems of the first kind in [92, Chap. 3] (see also [54, Chap. 4]). As
we have seen in Section 2.3, there exist some works [64, 81, 80] adapting Frobenius’ method to
higher-order linear differential systems, but these works do not treat the general case. Indeed,
generalizing Frobenius’ method to the matrix case is not a simple task. Nevertheless, based
on the theory of matrix polynomials, we manage to propose a generalization of the Frobenius
method to handle arbitrary systems of the form (2.1). Our approach follows the broad outlines
of the Frobenius method in the scalar case.

We consider an n-dimensional vector of logarithm-free formal power series of the form

y(x, λ, g0) =
∞∑
i=0

gi(λ)xλ+i, (2.34)

where ∀ i ≥ 0, gi ∈ K(λ)n and g0 6= 0, and we seek to determine the gi’s as vectors of rational
functions in λ in such a way that y(x, λ, g0) is a nontrivial solution of the non-homogeneous
differential system

L(x, ϑ)(y(x)) = L0(λ) g0(λ)xλ. (2.35)

Since

∀ j ≥ 0, ϑj

(∞∑
i=0

gi(λ)xλ+i

)
=
∞∑
i=0

(λ+ i)jgi(λ)xλ+i,

substituting (2.34) into L(x, ϑ) yields

L(x, ϑ)(y(x, λ, g0)) =
∞∑
i=0

 i∑
j=0

Lj(λ+ i− j) gi−j(λ)

xλ+i,

where the Lj ’s are given by (2.23). Identifying the coefficients of the powers of x, we find that
y(x, λ, g0) is a solution of System (2.35) if and only if

∀ i ≥ 1, L0(λ+ i) gi(λ) = −
i∑

j=1

Lj(λ+ i− j) gi−j(λ).

As L0(λ) is a regular matrix polynomial, i.e., det(L0(λ)) 6= 0, the above systems can be solved
recursively for g1(λ), g2(λ), . . . as vectors of rational functions. Indeed, taking g0(λ) as an arbi-
trary n-dimensional vector of rational functions in λ and supposing that g1(λ), . . . , gi−1(λ) have
already been determined, gi(λ) is given by

gi(λ) = −L−1
0 (λ+ i)

i∑
j=1

Lj(λ+ i− j) gi−j(λ). (2.36)

Hence, for i ≥ 1, the vector gi of rational functions is well-defined at any element λ0 of K where
g0 is well-defined and det(L0(λ0 + i)) 6= 0, i.e., λ0 + i is not an eigenvalue of L0(λ). In other
terms, if one chooses λ0 as an element of K such that ∀ i ≥ 1, λ0 + i is not an eigenvalue of L0(λ)
and chooses g0 as an element of K(λ)n defined at λ0, then y(x, λ, g0) is well-defined at λ0. For
y(x, λ0, g0) to be a nontrivial solution of System (2.1), two other conditions are required:

1. g0(λ0) must be a nonzero vector, and

2. the right-hand side of (2.35) must vanish for λ = λ0, i.e., L0(λ0) g0(λ0) = 0.

58 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

These conditions are ensured if one takes λ0 as an eigenvalue of L0(λ), and g0(λ0) as an eigen-
vector of L0(λ) associated with λ0. To summarize, by taking λ0 ∈ σ(L0) such that ∀i ≥ 1,
λ0 + i 6∈ σ(L0) and taking g0 ∈ K(λ)n such that g0(λ0) is an eigenvector of L0(λ) associated
with λ0 (e.g., one can take g0(λ) as a root polynomial of L0(λ) associated with λ0, or g0(λ) = v,
where v is an eigenvector of L0(λ) associated with λ0), one has a logarithm-free regular solution
of (2.1) given by y(x, λ0, g0).

Theorem 2.7.1. If λ0 is an eigenvalue of the matrix polynomial L0(λ) =
∑`

i=0Ai(0)λi such that
λ0 + i 6∈ σ(L0) for every positive integer i, then one can construct mg(λ0) linearly independent
logarithm-free regular solutions of System (2.1) of exponent λ0 of the form y(x, λ0, g0), where
y(x, λ, g0) is given by (2.34) with g0(λ0) an eigenvector of L0(λ) associated with λ0.

The two following corollaries are direct consequences of the theorem above.

Corollary 2.7.1. Consider a system of the form (2.1). If the matrix polynomial defined by
L0(λ) =

∑`
i=0Ai(0)λi has n ` distinct eigenvalues which do not differ by integers, then System

(2.1) admits n ` linearly independent logarithm-free regular solutions of the form y(x, λ0, g0),
where y(x, λ, g0) is given by (2.34), λ0 ∈ σ(L0) and g0(λ0) is an eigenvector of L0(λ) associated
with λ0.

Corollary 2.7.2. Consider a system of the form (2.1). If the distinct eigenvalues of the matrix
polynomial L0(λ) =

∑`
i=0Ai(0)λi do not differ by integers and if for every λ0 ∈ σ(L0), one

has ma(λ0) = mg(λ0)8, then System (2.1) admits n ` linearly independent logarithm-free regular
solutions of the form y(x, λ0, g0), where y(x, λ, g0) is given by (2.34), λ0 ∈ σ(L0) and g0(λ0) is
an eigenvector of L0(λ) associated with λ0.

The difficulty arises then when one of the following cases happens:

• First case: The matrix polynomial L0(λ) has an eigenvalue λ0 such that ∀ i ≥ 1, λ0 + i /∈
σ(L0) and one of the partial multiplicities of L0(λ) at λ0 is greater than or equal to 2.

• Second case: The matrix polynomial L0(λ) has an eigenvalue λ0 such that λ0 + i with
i ∈ N∗ is also an eigenvalue of L0(λ).

In the sequel, we explain how to compute ma(λ0) linearly independent regular solutions of
(2.1) of exponent λ0 in each of the two cases described above.

2.7.1 First case

We suppose here that ∀ i ≥ 1, λ0 + i is not an eigenvalue of L0(λ) and that there exists a partial
multiplicity κ of L0(λ) at λ0 such that κ ≥ 2. One can compute κ linearly independent regular
solutions of (2.1) of exponent λ0 by proceeding in the following way. Differentiating formally
Equation (2.35) with respect to the parameter λ, we find

∀ k ≥ 1,
∂k

∂λk
L(x, ϑ)(y(x, λ, g0)) =

k∑
j=0

(
k
j

)
∂j

∂λj
(L0(λ)g0(λ)) logk−j(x)xλ,

where
(
k
j

)
= k!

j! (k−j)! is a binomial coefficient. Taking into account the commutativity of the

two derivations ∂
∂λ and ϑ, we have

∂k

∂λk
L(x, ϑ)(y(x, λ, g0)) = L(x, ϑ)

(
∂ky

∂λk
(x, λ, g0)

)
,

8This is equivalent to saying that all the partial multiplicities of L0(λ) at λ0 are equal to 1.

2.7. Generalization of Frobenius’ method 59

and hence

∀ k ≥ 1, L(x, ϑ)
(
∂ky

∂λk
(x, λ, g0)

)
=

k∑
j=0

(
k
j

)
∂j

∂λj
(L0(λ)g0(λ)) logk−j(x)xλ. (2.37)

Since κ ≥ 2, it is always possible to choose g0(λ) as a root polynomial of L0(λ) of maximal order
κ associated with eigenvalue λ0. For this choice of g0, the right-hand side of (2.37) vanishes for
λ = λ0 and k = 1, . . . , κ− 1. Therefore, the vectors

∂ky

∂λk
(x, λ0, g0) =

∞∑
i=0

k∑
j=0

(
k
j

)
∂jgi
∂λj

(λ0) logk−j(x)xλ0+i, for k = 0, . . . , κ− 1 (2.38)

form κ regular solutions of System (2.1).

Lemma 2.7.1. The vectors ∂ky
∂λk

(x, λ0, g0) given in (2.38) with g0(λ) a root polynomial of L0(λ)
of maximal order κ associated with the eigenvalue λ0 form κ regular solutions of exponent λ0

linearly independent over K.

Proof. Notice that the right-hand side of the equality in (2.38) contains the nonzero term
g0(λ0) logk(x)xλ0 . Hence, every solution ∂ky

∂λk
(x, λ0, g0) can be written as

∑
i≥0 Uk,i x

λ0+i with

Uk,i ∈ K[log(x)]n and Uk,0 6= 0. Thus, the solutions ∂ky
∂λk

(x, λ0, g0) for k = 0, . . . , κ−1 are regular
solutions of exponent λ0. Now, the linearly independency follows from the fact that the Uk,0 for
k = 0, . . . , κ− 1 are of strictly increasing degrees in log(x).

The following proposition shows how to construct ma(λ0) linearly independent regular solu-
tions of (2.1) of exponent λ0 where λ0 ∈ σ(L0) such that ∀ i ∈ N∗, λ0 + i 6∈ σ(L0).

Proposition 2.7.1. Let λ0 be an eigenvalue of L0(λ) such that ∀ i ∈ N∗, λ0 + i /∈ σ(L0). Let
κ1, . . . , κmg(λ0) denote the partial multiplicities of L0(λ) at λ0. For i = 1, . . . ,mg(λ0), define
gi,0(λ) as a root polynomial of L0(λ) of maximal order κi associated with λ0 such that the
eigenvectors g1,0(λ0), . . . , gmg(λ0),0(λ0) are linearly independent 9 over K. The vectors

∂ky

∂λk
(x, λ0, gi,0) for i = 1, . . . ,mg(λ0) and k = 0, . . . , κi − 1,

where y(x, λ, gi,0) is given by (2.34) with g0 = gi,0, form ma(λ0) linearly independent regular
solutions of (2.1) of exponent λ0.

Proof. For a fixed integer i ∈ {1, . . . ,mg(λ0)}, the vectors ∂ky
∂λk

(x, λ0, gi,0) for k = 0, . . . , κi − 1
are linearly independent over K due to Lemma 2.7.1. For i1, i2 ∈ {1, . . . ,mg(λ0)} such that
i1 6= i2, the two vectors ∂ky

∂λk
(x, λ0, gi1,0) and ∂jy

∂λj
(x, λ0, gi2,0) are linearly independent over K

since the eigenvectors gi1,0(λ0) and gi2,0(λ0) are so.

2.7.2 Second case

Suppose that there exist r (r ≥ 1) positive integers n1 < · · · < nr such that λ0 + ni is an
eigenvalue of L0(λ) and λ0 + i is not for i ∈ N∗ \{n1, . . . , nr}. For i = 1, . . . , r, let mi denote the
algebraic multiplicity of λ0 + ni and let m =

∑r
i=1mi. We explain in the sequel how one can

construct ma(λ0) linearly independent regular solutions of (2.1) of exponent λ0. We proceed
9This means that the Jordan chains derived from gi,0(λ) for i = 1, . . . ,mg(λ0) form a canonical set of Jordan

chains for L0(λ) associated with λ0.

60 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

as earlier, i.e., we seek the solutions of (2.1) from those of non-homogeneous systems properly
chosen.

Instead of (2.35), we consider the non-homogeneous differential system

L(x, ϑ)(y(x)) = (λ− λ0)m L0(λ) g0(λ)xλ, (2.39)

where g0(λ) is an arbitrary n-dimensional vector of rational functions well-defined at λ = λ0

and we look for logarithm-free regular formal solutions of (2.39) of the form

y(x, λ, g0) = (λ− λ0)m g0(λ)xλ +
∞∑
i=1

gi(λ)xλ+i, (2.40)

where, for i ≥ 1, gi(λ) is an n-dimensional vector of rational functions to be determined. Plug-
ging (2.40) into (2.39) yields

L0(λ+ 1) g1(λ) = −(λ− λ0)m L1(λ) g0(λ),

and for i ≥ 2, L0(λ+ i) gi(λ) = −
i−1∑
j=1

Lj(λ+ i− j) gi−j(λ)− (λ− λ0)m Li(λ) g0(λ). (2.41)

For i = 1, . . . , n1 − 1, we have det(L0(λ0 + i)) 6= 0, thus gi(λ) is well-defined at λ0. Further-
more, notice that gi(λ) can be written as gi(λ) = (λ− λ0)mMi(λ) g0(λ) with Mi(λ) ∈ K(λ)n×n

well-defined at λ = λ0, so gi(λ0) = 0 for i = 1, . . . , n1 − 1.
For i = n1 in (2.41), the right-hand side of (2.41) can be written as (λ − λ0)m Fn1(λ) g0(λ)

with Fn1(λ) ∈ K(λ)n×n well-defined at λ = λ0. Therefore, gn1(λ) can be written as

gn1(λ) = (λ− λ0)m L−1
0 (λ+ n1)Fn1(λ) g0(λ)

=
(λ− λ0)m

det(L0(λ+ n1))
adj(L0(λ+ n1))Fn1(λ) g0(λ), (2.42)

where adj(L0(λ+ n1)) denotes the adjoint (the transpose of the cofactor matrix) of L0(λ+n1).
Since λ0 + n1 is a root of multiplicity m1 for det(L0(λ)), λ0 is a root of multiplicity m1 for
det(L0(λ+ n1)), i.e., det(L0(λ+ n1)) = (λ− λ0)m1 p(λ) with p(λ) ∈ K[λ] such that p(λ0) 6= 0.
Therefore, after simplification in (2.42), the expression of gn1(λ) becomes

gn1(λ) =
(λ− λ0)m−m1

p(λ)
adj(L0(λ+ n1))Fn1(λ) g0(λ)

and hence it is well-defined at λ = λ0. Continuing with the same process, we find that

gi(λ) = (λ− λ0)m−m1 Mi(λ) g0(λ), for i = n1, . . . , n2 − 1,

gi(λ) = (λ− λ0)m−m1−m2 Mi(λ) g0(λ), for i = n2, . . . , n3 − 1,
...

gi(λ) = (λ− λ0)mr Mi(λ) g0(λ), for i = nr−1, . . . , nr − 1,

gi(λ) = Mi(λ) g0(λ), for i ≥ nr,

whereMi(λ) ∈ K(λ)n×n is well-defined at λ = λ0. It follows that for i = 1, . . . , nr−1, gi(λ0) = 0
and substituting λ by λ0 in (2.40) gives

y(x, λ0, g0) =
∞∑
i=nr

gi(λ0)xλ0+i =
∞∑
i=0

gi+nr(λ0)xλ0+nr+i.

2.7. Generalization of Frobenius’ method 61

From (2.41), the vector gnr(λ0) satisfies L0(λ0 + nr) gnr(λ0) = 0 and hence gnr(λ0) is either
a zero vector or an eigenvector associated with λ0 + nr. In both cases, y(x, λ0, g0) is linearly
dependent to the regular solutions of (2.1) of exponent λ0 + nr which can be computed as
explained in Proposition 2.7.1. Nevertheless, since we search for regular solutions that are
linearly independent from those of exponent λ0 + n1, . . . , λ0 + nr, we differentiate formally
Equation (2.39) m times with respect to λ. We find

L(x, ϑ)
(
∂my

∂λm
(x, λ, g0)

)
=

m∑
j=0

(
m
j

)
∂j

∂λj
((λ− λ0)m)

∂m−j

∂λm−j

(
L0(λ) g0(λ)xλ

)
. (2.43)

Therefore, ∂my
∂λm (x, λ0, g0) is a regular solution of the homogeneous system L(x, ϑ)(y(x)) = 0 if

and only if the right-hand side of (2.43) vanishes for λ = λ0, i.e., if and only if L0(λ0) g0(λ0) = 0
since ∂j

∂λj
((λ− λ0)m) |λ=λ0 = 0 for j = 0, . . . ,m−1. So one has to choose g0(λ) such that g0(λ0)

is an eigenvector of L0(λ) associated with λ0. Moreover, for this choice of g0(λ), ∂my
∂λm (x, λ0, g0)

is a regular solution of exponent λ0 since it has a nonzero term of the form m! g0(λ0)xλ0 .

Hence, one can construct ma(λ0) linearly independent regular solutions of (2.1) of exponent
λ0 as following.

Proposition 2.7.2. Let λ0 be an eigenvalue of L0(λ) and κ1, . . . , κmg(λ0) denote the partial
multiplicities of L0(λ) at λ0. For i = 1, . . . ,mg(λ0), define gi,0(λ) as a root polynomial of
L0(λ) of maximal order κi associated with λ0 such that the vectors g1,0(λ0), . . . , gmg(λ0),0(λ0) are
linearly independent over K. Suppose that there exist n1, . . . , nr ∈ N∗ such that λ0 + ni is an
eigenvalue of L0(λ) and ∀ i ∈ N∗ \ {n1, . . . , nr}, λ0 + i is not. Set m =

∑r
i=1ma(λ0 + ni). The

vectors
∂m+ky

∂λm+k
(x, λ0, gi,0) for i = 1, . . . ,mg(λ0) and k = 0, . . . , κi − 1,

form ma(λ0) linearly independent regular solutions of (2.1) of exponent λ0. Here, y(x, λ, gi,0) is
given by (2.40) with g0 = gi,0,

Proof. For each i ∈ {1, . . . ,mg(λ0)}, the (m+k)th derivative (0 ≤ k ≤ κi− 1) of the right-hand
side of (2.39) for g0 = gi,0 can be written as (I)+(II), where

(I) =
m∑
j=0

(
m+ k
j

)
∂j

∂λj
((λ− λ0)m)

∂m+k−j

∂λm+k−j

(
L0(λ) gi,0(λ)xλ

)
,

and

(II) =
m+k∑
j=m+1

(
m+ k
j

)
∂j

∂λj
((λ− λ0)m)

∂m+k−j

∂λm+k−j

(
L0(λ) gi,0(λ)xλ

)

=
k∑
j=1

(
m+ k
m+ j

)
∂m+j

∂λm+j
((λ− λ0)m)

∂k−j

∂λk−j

(
L0(λ) gi,0(λ)xλ

)
.

(I) evaluated at λ = λ0 is equal to

m!
∂k

∂λk

(
L0(λ) gi,0(λ)xλ

)
λ=λ0

which is zero by definition of gi,0(λ). Similarly, (II) vanishes for λ = λ0 since ∂m+j

∂λm+j ((λ− λ0)m) =
0 for j ≥ 1. Thus, the (m+ k)th derivative of the right-hand side of (2.39) for g0 = gi,0 vanishes

62 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

for λ = λ0. Therefore, ∂
m+ky
∂λm+k (x, λ0, gi,0) for i = 1, . . . ,mg(λ0) and k = 0, . . . , κi − 1 are regular

solutions of (2.1). Furthermore, it is easy to check that each solution ∂m+ky
∂λm+k (x, λ0, gi,0) can be

written as
∑

j≥0 Ui,k,j x
λ0+j with Ui,k,j ∈ K[log(x)]n and

Ui,k,0 =
(
m+ k
m

)
m!

k∑
s=0

(
k
s

)
∂sgi,0
∂λs

(λ0) logk−s(x).

Thus, Ui,k,0 is of degree k in log(x) since gi,0(λ0) 6= 0. Consequently, the vectors ∂
m+ky
∂λm+k (x, λ0, gi,0)

for i = 1, . . . ,mg(λ0) and k = 0, . . . , κi−1 are regular solutions of (2.1) of exponent λ0 and they
are linearly independent over K since the Ui,k,0’s are so (recall that gi1,0(λ0) and gi2,0(λ0) are
linearly independent for i1 6= i2).

2.7.3 Summary and example

We sum up our generalization of the Frobenius method for computing regular formal solutions
of System (2.1) as follows. First, compute σ(L0) and partition it into r pairwise disjoint subsets
σ1, . . . , σr such that two eigenvalues belonging to two different subsets σi and σj do not differ
by integers. For i = 1, . . . , r, let λi ∈ σi such that <(λi) = minλ0∈σi <(λ0). If ma(λi) = mg(λi),
then one can compute ma(λi) linearly independent logarithm-free regular solutions of System
(2.1) of exponent λi as in Theorem 2.7.1. Otherwise, one can have ma(λi) linearly independent
regular solutions of exponent λi by proceeding as in Proposition 2.7.1. For λ0 ∈ σi different
from λi, one can compute ma(λ0) linearly independent regular solutions of exponent λ0 by
proceeding as in Proposition 2.7.2. In this way, one can construct a basis of the regular formal
solution space of systems of the first kind of the form (2.1), composed of deg(det(L0(λ))) = n`
linearly independent regular solutions.

We have implemented10 the generalization of Frobenius’ method described above in Maple
using the LinearAlgebra package. Our implementation computes a basis of the regular formal
solution space of a system of the form (2.1), where the series involved are computed up to a
fixed order ν given as input.

Example 2.7.1. We consider an application taken from [71]. The incipient buoyant thermal
convection in vertical cylindrical geometries (see Equations (2.17)-(2.19) of [71]) gives rise to
the system composed of 3 linear differential equations with variable r and unknowns ψ, p and T

−r2 ϑ(p) +mϑ2(ψ)− 2mϑ(ψ)−m3 r2 ψ = 0, (2.44)

mr4 p− ϑ3(ψ) + 4ϑ2(ψ) +
(
m2 r2 − 4

)
ϑ(ψ) + Ra r4 T = 0, (2.45)

ϑ2(T)−m2 r2 T − ϑ(ψ) = 0, (2.46)

where ϑ = r d
dr and m and Ra are two nonzero constants. In order to compute regular solutions

of this system, the authors of [71] reduce it to a scalar linear differential equation in ψ of order
6 and then apply the classical Frobenius method. Here, we propose to apply our generalization of
Frobenius’ method to the system directly. But before, we will transform the system into another
one which will be of the first kind. Multiplying Equation (2.45) on the left by r−2m then adding
to the obtained equation, Equation (2.44) multiplied on the left by the scalar operator r−2 (ϑ− 2)
yield an equivalent system (see Chapter 3, Subsection 3.6.1) of second-order which can be written

10The program is available at http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html

2.7. Generalization of Frobenius’ method 63

as

L(r, ϑ)(y) =

m 0 0
0 −1 0
0 0 1

ϑ2(y)+

−2m −r2 0
0 0 0
−1 0 0

ϑ(y)+

−m3 r2 0 0
0 m2 r2 Ramr2

0 0 −m2 r2

 y = 0,

(2.47)
where y =

(
ψ p T

)T is the vector of unknowns. System (2.47) is of the first kind since its
leading coefficient is an invertible constant matrix. The matrix polynomial L0(λ) associated with
System (2.47) is given by

L0(λ) =

mλ2 − 2mλ 0 0
0 −λ2 0
−λ 0 λ2


and has 2 eigenvalues: 0 of algebraic multiplicity ma(0) = 5 and 2 of algebraic multiplicity
ma(2) = 1. Thus, a basis of the regular formal solution space of (2.47) is composed of:

• one logarithm-free regular solution of exponent 2 of the form y(x, λ, g0) given by (2.34)
with λ = 2 and g0(2) an eigenvector of L0(λ) associated with 2, and

• 5 regular solutions of exponent 0 which can be obtained following the indications in Propo-
sition 2.7.2. Here, we note that the eigenvalue 0 has three partial multiplicities κ1 = 1,
κ2 = 2 and κ3 = 2.

In the sequel, we will use our Maple implementation of the generalization of the Frobenius
method to compute a basis of the regular solution space of System (2.47). For this, we need to
define the coefficient matrices of the system

A2 :=


m 0 0

0 −1 0

0 0 1

 A1 :=


−2m −r2 0

0 0 0

−1 0 0

 A0 :=


−m3 r2 0 0

0 m2 r2 Ramr2

0 0 −m2 r2

.
Taking ν = 2, we obtain a basis of the regular formal solution space of System (2.47)

composed of vectors:

> Frobenius([A2,A1,A0],r,{Ra,m},2);
2 r2

(
8 +m2 r2

)
1
2 r

4 Ram

r2
(
8 +m2 r2

)



1
2

4m+2 r2 log(r)m3+10 r2−m3 r2

m

10 + 5
2 m

2 r2 + 5
4 Ramr2

1
4

20m+2 r2 log(r)m3+10 r2+3m3 r2

m




r2

m

2 + 1
2 m

2 r2 + Ramr2

1
2

8m+r2+2m3 r2

m



64 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind


r2(2 log(r)−1)

m

4 log(r) + r2 log(r)m2 + 2 r2 log(r)mRa−m2 r2 − 2 Ramr2

8 log(r)m+r2 log(r)+2 r2 log(r)m3−r2−2m3 r2

m




4 r2

m

8 + 2m2 r2 + 3
4 Ramr2

1
4

12m+8 r2+3m3 r2

m




4 r2(2 log(r)−1)
m

16 log(r) + 4 r2 log(r)m2 + 3
2 r

2 log(r)mRa− 4m2 r2 − 3
2 Ramr2

1
2

12 log(r)m+8 r2 log(r)+3 r2 log(r)m3−8 r2−3m3 r2

m


�

2.8 Some comparison tests

Our prototype of Frobenius’ approach follows exactly the method described in Section 2.7. When
the associated matrix polynomial L0(λ) has eigenvalues with large partial multiplicities, a lot of
differentiations and evaluations have to be performed in order to compute the regular solutions.
This leads sometimes to the saturation of the memory machine. Hence, our implementation of
Frobenius’ method turns out to work only for systems of small size and order. Consequently, we
will not give any timings of it here but it could be worth looking for an improved implementa-
tion by considering, if possible, the linear systems hidden behind all these differentiations and
evaluations.

In the sequel, we give some timings11 comparing three implementations:

• Bce implements Algorithm BCE_V2 and it is available at
http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html;

• Lfs implements the algorithm of [5] available in the LinearFunctionalSystems pack-
age;

• Fos converts System (2.1) into a first-order system of size n ` and then use the implemen-
tation of the algorithm given in [21] available in the Isolde package [23].

We have first made tests on first-order systems of the form ϑ(y(x)) + A(x) y(x) = 0, where
A(x) is an n × n matrix polynomial. This case is also of interest since we did not find, in
literature, any work adapting Poole’s idea to first-order systems. Systems on which we have
made our tests have been constructed as follows. We have first chosen a set S of n′ (n′ ≤ n)
distinct elements of Q. Then, we have constructed a matrix A0 ∈ Qn×n such that σ(L0) = S,
where L0(λ) = In λ+A0. Finally, using the command RandomMatrix of the LinearAlgebra
package, we have generated 20 matrix polynomials12 A(x) ∈ Q[x]n×n of degree 10 such that
A(0) = A0 and we have run the three algorithms. Timings are presented in Table 2.1: they
indicate the average time in seconds taken for computing the general regular solution of the
system up to order ν = 5 (see Definition 2.6.1). We can remark on these examples that our
algorithm is faster than the two others when the matrix A0 has n distinct eigenvalues which do

11Computations were made on a 2.4 GHz Intel Core 2 Duo.
12The coefficients having integer values in the range 0, . . . , 50.

2.8. Some comparison tests 65

n σ(L0) Bce Lfs Fos

2 {1, 2} 0.080 0.052 0.153
4 {1, 2} 0.254 0.192 0.495
8 {1, 2, 3} 1.153 1.033 3.218
16 {1, 2, 3, 4} 14.037 21.044 63.388
2 {1

2 ,
1
3} 0.071 0.083 0.141

4 {1
2 ,

1
3 , . . . ,

1
5} 0.183 0.390 0.451

8 {1
2 ,

1
3 , . . . ,

1
9} 0.775 3.180 2.959

16 {1
2 ,

1
3 , . . . ,

1
17} 11.798 51.248 95.691

2 {1} 0.063 0.051 0.118
4 {1} 0.137 0.163 0.271
8 {1} 0.501 0.673 1.132
16 {1} 6.186 5.808 20.049

Table 2.1: Timings (in seconds) for ` = 1

` σ(L0) Bce Lfs Fos

4 {1
2 ,

5
2 ,

1
3} 0.368 1.050 1.354

8 {1
2 ,

5
2 ,

1
3} 1.198 9.064 6.484

12 {1
2 ,

5
2 ,

1
3} 2.822 41.265 26.573

4 {1
2 ,

1
3} 0.287 1.037 1.310

8 {1
2 ,

1
3} 1.004 8.524 6.812

12 {1
2 ,

1
3} 2.123 34.711 23.634

Table 2.2: Timings (in seconds) for n = 2

not differ by integers. It is also faster when n = 16 and σ(L0) = {1, 2, 3, 4}, and when n = 4, 8
and the matrix pencil L0(λ) has one eigenvalue.

We have also made comparison tests on higher-order (` ≥ 2) linear differential systems of
the form (2.1). We have first made tests for n = 2 and ` ∈ {4, 8, 12}. Systems on which we have
applied our tests have been constructed as follows. We have first chosen a set S of n′ ≤ n ` = 2 `
rational numbers. Then, we have constructed a 2× 2 upper triangular matrix polynomial L(λ)
of degree ` attained at the diagonal entries and such that σ(L) = S. Finally, we have generated
20 systems of the form (2.1) where the coefficient matrices Ai(x), for i = 0, . . . , `, are matrix
polynomials of degree 10 and the associated matrix polynomial L0(λ) is equal to L(λ). Timings
are represented in Table 2.2 where the general regular solution is computed up to order ν = 5.
Then, we have made other tests on systems with ` = 4 and n ∈ {2, 5, 8}. Such systems have been
constructed as follows. We have started by choosing a set S of n′ ≤ n ` = 4n rational numbers,
then we have constructed an n × n diagonal matrix polynomial D(λ) such that its diagonal
entries are monic polynomials of degree ` and σ(D) = S. Then, we have set L(λ) = P D(λ)P −1,
where P is an invertible random matrix whose entries are integers between 0, . . . , 50. Finally,
we have generated 20 systems of the form (2.1) with coefficient matrices Ai(x) polynomials of
degree 10 and whose associated matrix polynomial L0(λ) is equal to L(λ). Timings are given
in Table 2.3 where the general regular solution is computed up to order ν = 5. Timings in
Tables 2.2 and 2.3 show that our algorithm Bce is always faster than Lfs and Fos. This can be
explained by the fact that our program uses a direct approach while Lfs reduces the problem
into solving matrix recurrence equations (see [1, 2]) and Fos manipulates a first-order system
of bigger size n ` without taking advantage of its companion structure. However, we cannot rely
on these tests to claim definitively the performance of our algorithm.

66 Chapter 2. Regular Solutions of Higher-Order Systems of the First Kind

n σ(L0) Bce Lfs Fos

2 {1
2 ,

5
2 ,

1
3} 0.479 1.307 1.648

5 {1
2 ,

5
2 ,

1
3} 2.396 26.516 39.413

8 {1
2 ,

5
2 ,

1
3} 7.202 116.363 327.552

2 {1
2 ,

1
3} 0.291 1.064 1.401

5 {1
2 ,

1
3} 1.383 17.188 31.158

8 {1
2 ,

1
3} 5.151 77.646 279.047

Table 2.3: Timings (in seconds) for ` = 4

Chapter 3

Simple Forms of Higher-Order Linear
Differential Systems and their

Applications in Computing Regular
Solutions

Contents
3.1 Introduction . 67
3.2 Regular solutions of simple linear differential systems 69
3.3 Transformation to a first-order linear differential system: Algorithm of

Barkatou-Pflügel . 72
3.4 Non-simple systems . 77
3.5 Reduction to the simple case by linear substitutions 79

3.5.1 Necessary condition for the existence of a linear substitution 79
3.5.2 Algorithm . 80
3.5.3 Reconstruction of the regular solutions . 85

3.6 A differential variant of the EG’-algorithm 86
3.6.1 Definitions and preliminaries . 86
3.6.2 Algorithm . 87
3.6.3 Reconstruction of the regular solutions . 91

3.1 Introduction

We consider systems of n linear differential equations of order ` ≥ 1 of the form

L(x, ϑ)(y(x)) = A`(x)ϑ`(y(x)) +A`−1(x)ϑ`−1(y(x)) + · · ·+A0(x) y(x) = 0, (3.1)

where ϑ = x d
dx , the coefficients Ai(x), for i = 0, . . . , `, are n× n matrices having entries in the

ring K[[x]] and y(x) is an unknown n-dimensional vector. We suppose that A`(x) is a nonzero
matrix, but not necessarily invertible and that all the rows of L(x, ϑ) are of valuation zero (the
valuation with respect to x). We recall that when A`(0) is invertible, such systems are said to
be of the first kind and have been investigated in Chapter 2. In this chapter, we are interested
in computing the regular formal solutions of System (3.1), i.e., solutions of the form

y(x) = xλ0z(x),

where λ0 ∈ K and z(x) ∈ K[log(x)]n[[x]].
With System (3.1), we associate the matrix polynomial

L(0, λ) = A`(0)λ` +A`−1(0)λ`−1 + · · ·+A0(0),

and we distinguish two cases:

67

68 Chapter 3. Simple Forms and Regular Solutions

• First case: det(L(0, λ)) 6= 0. In this case, System (3.1) is said to be simple. We show that
simple systems have regular formal solution spaces of finite dimension over K, equal to the
degree of det(L(0, λ)) (see Theorem 3.2.1). We also prove that the methods developed in
Chapter 2 are still valid to compute regular solutions of simple systems even if A`(0) is
not invertible.

• Second case: det(L(0, λ)) = 0. Here, we need to suppose that the leading coefficient
matrix A`(x) is invertible in K((x))n×n in order to guarantee that System (3.1) has a
finite dimensional space of regular formal solutions. Our strategy is to compute a simple
linear differential system L(x, ϑ)(z(x)) = 0 from which we can get the regular solutions of
the original system. Unlike linear differential systems of first-order (cf. [21]), the operator
L(x, ϑ) cannot always be obtained from L(x, ϑ) via a transformation of the form L(x, ϑ) =
S(x)L(x, ϑ)T (x), where S(x) and T (x) are two n × n invertible matrices with entries in
K((x)) (see Theorem 3.4.1 below). For this reason, we are first interested in the existence
of a linear substitution y(x) = T (x) z(x) with invertible matrix T (x) such that the linear
differential system satisfied by z(x) is simple. We develop an algorithm that either decides
the existence of such a linear substitution and computes it, or proves that it does not exist.
In the latter case, we give a differential variant of the EG’-algorithm proposed by Abramov
et al. in [4, Section 4] for matrix recurrence equations. Here we need to suppose that the
non-simple system L(x, ϑ)(y(x)) = 0 has polynomial coefficients. This algorithm applies
a series of elementary operations to the rows of L(x, ϑ) and always yields a simple system
from which the regular solutions of the original system can be recovered. Depending on the
elementary operations performed, the regular formal solution spaces of these two systems
may not be isomorphic; when they are not so, we explain how regular solutions of the
non-simple system can be obtained. Finally, we note that we have implemented these
algorithms in Maple and we study here their arithmetic complexity.

The remainder of the chapter is organized as follows. Section 3.2 deals with simple systems:
we prove that the methods proposed in Chapter 2 can be applied to compute a basis of the
regular formal solution space of any simple linear differential system of the form (3.1). In
Section 3.3, we review the algorithm proposed in [21] for computing regular formal solutions of
first-order simple linear differential systems. We then compare, from an arithmetic complexity
point of view, the method developed in Section 2.6 of Chapter 2 with the one consisting in
transforming System (3.1) into a first-order linear differential system of size n ` and then
using the algorithm of [21]. Section 3.4 introduces our approach to handle non-simple systems
and points out the main difference with linear differential systems of first-order. Then, in
Section 3.5, we are interested in computing a linear substitution yielding a simple system.
We provide both a necessary condition for the existence of such a linear substitution and an
algorithm that computes it when it exists. Furthermore, since we deal with systems having
formal power series coefficients, we give a bound on the order at which we have to truncate the
coefficients of L(x, ϑ) in order to get its general regular solution up to a fixed order. Section 3.6
is concerned with the case when the system cannot be reduced to a simple one by means of
a linear substitution: we describe a differential variant of the EG’-algorithm proposed in [4,
Section 4] which always provides a simple system. Then, we explain how to recover the regular
formal solutions of the original system from those of the simple one computed by the latter
algorithm.

This chapter constitutes the subject of the published paper [18].

Notation. For an m × n matrix M , we denote by M(i, j) the (i, j)th entry of M and by
M(i, .), respectively M(., j), the ith row, respectively the jth column, of M . For f ∈ K((x)) \

3.2. Regular solutions of simple linear differential systems 69

{0}, we define the valuation v(f) as the order of f at 0. We set v(0) = +∞. For M ∈
K((x))m×n, we define v(M) = min{v(M(i, j)), 1 ≤ i ≤ m and 1 ≤ j ≤ n} and we denote by
`c(M) the coefficient of xv(M) in M (if M = 0, then we set `c(M) = 0). For a linear differential
system of the form (3.1) and 1 ≤ i ≤ n, we define

degx(L(x, ϑ)(i, .)) = max
k=0,...,`

deg(Ak(x)(i, .))

and similarly,
v(L(x, ϑ)(i, .)) = min

k=0,...,`
v(Ak(x)(i, .)).

The same definitions hold for the columns of L(x, ϑ). Finally, we denote by A[ϑ] with A = K[[x]],
K((x)), etc, the ring of differential operators with coefficients in A, i.e., the set of finite sums∑
ai ϑ

i with ai in A equipped with the addition and the multiplication defined by ϑiϑj = ϑi+j ,
where i, j ∈ N, and ϑa = aϑ+ ϑ(a), where a ∈ A.

3.2 Regular solutions of simple linear differential systems

In this section, we show that the approach for computing regular solutions of systems of the
first kind proposed in Section 2.6 of Chapter 2 can be generalized to handle any system of the
form (3.1) whose associated matrix polynomial L(0, λ) is regular. To achieve this, we give new
(direct) proofs of the results on which this approach is built.

In the sequel, we follow the terminology used in [21, Def. 2.1] for linear differential systems
of first-order:

Definition 3.2.1. A linear differential system L(x, ϑ)(y(x)) = 0 (or the matrix differential
operator L(x, ϑ)) of the form (3.1) is said to be simple if its associated matrix polynomial L(0, λ)
is regular.

A system of the form (3.1) with invertible matrix A`(0) is necessarily simple, but the converse
is not always true.

Example 3.2.1. Consider the matrix differential operator given by

L(x, ϑ) =
(

1 + x+ x2 0
3x2 + x5 0

)
ϑ2 +

(
2 + 5x4 3 + x3

2 + x3 + x4 1 + 2x2 + x4

)
ϑ+

(
1 + 5x2 x+ x2 + x3

0 1 + 2x2 + x4

)
.

Its associated matrix polynomial

L(0, λ) =
(
λ2 + 2λ+ 1 3λ

2λ λ+ 1

)
is regular since det(L(0, λ)) = λ3 − 3λ2 + 3λ + 1. Consequently, L(x, ϑ) is simple whereas its
leading coefficient matrix is not invertible at x = 0. �

Assume that System (3.1) is simple. We search for regular formal solutions of (3.1) written
as

y(x) =
∑
m≥0

Um(t)xλ0+m, (3.2)

where λ0 ∈ K, t = log(x), for all m ≥ 0, Um(t) ∈ K[t]n and U0 6= 0. We referred to such a
solution as a regular solution of exponent λ0.

Write the coefficient matrices Ai(x), for i = 0, . . . , `, of System (3.1) as formal power series

Ai(x) =
∞∑
i=0

Ai,j x
j (3.3)

70 Chapter 3. Simple Forms and Regular Solutions

with Ai,j ∈ Kn×n. For j ≥ 1, define the matrix differential operator

Lj(ϑ) =
∑̀
i=0

Ai,j ϑ
i, (3.4)

where the Ai,j are given by (3.3). System (3.1) can then be written in the form

∞∑
j=1

xj Lj(ϑ)(y(x)) + L(0, ϑ)(y(x)) = 0. (3.5)

Plugging (3.2) into (3.5) and using the equality Lj(ϑ)
(
xλ0+m Um

)
= xλ0+m Lj(ϑ+λ0 +m)(Um),

we find that λ0 and U0 must satisfy

L(0, ϑ)
(
xλ0 U0

)
= 0, (3.6)

and for m ≥ 1, Um satisfies

L(0, ϑ+ λ0 +m)(Um) = −
m−1∑
i=0

Lm−i(ϑ+ λ0 + i)(Ui). (3.7)

Equation (3.6) shows that xλ0 U0 is a regular solution of the simple system with constant
coefficients L(0, ϑ)(y(x)) = 0. From Lemma 2.4.1 of Chapter 2, which remains valid even if
the leading coefficient matrix of L(0, ϑ)(y(x)) = 0 is not invertible but the system is simple, it
follows that λ0 must be chosen as an eigenvalue of L(0, λ) and U0 of the form

U0 = vk−1 + vk−2
log(x)

1 !
+ · · ·+ v0

logk−1(x)
(k − 1) !

,

where v0, . . . , vk−1 form a Jordan chain of length k associated with λ0.

From Equation (3.7), Um satisfies a non-homogeneous simple linear differential system with
constant coefficients belonging to K(λ0) and polynomial right-hand side in t = log(x). In the
sequel, we show that Proposition 2.5.1 of Chapter 2 is still valid even if the leading coefficient
matrix is not invertible: we only need to suppose that the system is simple.

Proposition 3.2.1. Consider a non-homogeneous linear differential system with constant coef-
ficients of the form

L(ϑ)(y(x)) = A` ϑ`(y(x)) +A`−1 ϑ
`−1(y(x)) + · · ·+A0 y(x) = φ(t), (3.8)

where for i = 0, . . . , `, Ai ∈ Fn×n (K ⊆ F ⊆ C), t = log(x) and φ(t) ∈ F[t]n of degree d. If the
system is simple, i.e., det(L(λ)) 6= 0, then it admits at least a polynomial solution in t of degree
p with coefficients in F such that{

p = d if 0 /∈ σ(L),

d ≤ p ≤ d+ max{κj , j = 1, . . . ,mg(0)} if 0 ∈ σ(L),

where κ1, . . . , κmg(0) denote the partial multiplicities of L(λ) at the eigenvalue 0.

The proof given in Chapter 2 uses explicitly the hypothesis “A` is invertible” to convert
System (3.8) into a first-order one. Consequently, we provide here a new proof.

3.2. Regular solutions of simple linear differential systems 71

Proof. Let S(λ) = diag(a1(λ), . . . , an(λ)), where the ai’s are monic polynomials in λ with coeffi-
cients in F, be the Smith normal form of L(λ) (see Theorem 1.2.1 of Chapter 1). Then, there exist
two unimodular matrix polynomials E(λ) and F (λ) in F[λ]n×n such that E(λ)L(λ) = S(λ)F (λ).
Put ψ(t) = E(ϑ)(φ(t)) ∈ F[t]n and z(x) = F (ϑ)(y(x)). System (3.8) is then equivalent to the
system S(ϑ)(z(x)) = ψ(t) and y is a polynomial solution in t of (3.8) of degree p if and only
if z is a polynomial solution in t of S(ϑ)(z(x)) = ψ(t) of the same degree p since F (λ) is uni-
modular. Furthermore, since E(λ) is unimodular, we have deg(ψ(t)) = deg(φ(t)) = d. Let
z = (z1, . . . , zn)T and ψ = (ψ1, . . . , ψn)T . We show now that the scalar linear differential equa-
tion ai(ϑ)(zi(x)) = ψi(t) has a polynomial solution in t = log(x) and give a bound on its degree.
Write zi as a polynomial in t = log(x), plug it into ai(ϑ)(zi(x)) = ψi(t) and identify the coeffi-
cients of the powers of t. Two cases must be considered: if ai(0) 6= 0, then the coefficients of zi
are uniquely determined and the degree in t of zi is equal to that of ψi. Otherwise, ai(λ) is of
the form λκibi(λ) where bi(0) 6= 0 and κi ∈ N∗ is one of the partial multiplicities of L(λ) at 0.
In this case, the scalar differential equation ai(ϑ)(zi(x)) = ψi(t) admits a polynomial solution
in t = log(x) of degree equal to deg(ψi(t)) + κi ≤ d+ κi, which ends the proof.

We also stress that Corollary 2.5.1 of Chapter 2 which gives the general polynomial solution
in t = log(x) and Algorithm GenPolSol_NHS which computes this general solution remain
valid for any simple linear differential system of the form (3.8).

Thus, for all m ≥ 1, System (3.7) always admits a polynomial solution Um(t). Hence,
every regular solution xλ0 U0 of System (3.6) can be extended to a regular formal solution of
exponent λ0 of System (3.1). As the dimension of the regular formal solution space of system
L(0, ϑ)(y(x)) = 0 is equal to deg(det(L(0, λ))), see [50, Th. S1.6], this provides deg(det(L(0, λ)))
linearly independent regular formal solutions of System (3.1). We prove in the next theorem
that this is exactly the dimension of the regular formal solution space of System (3.1).

Theorem 3.2.1. The dimension of the regular formal solution space of a simple linear differ-
ential system of the form (3.1) is equal to deg(det(L(0, λ))).

Proof. Let V denote the K-vector space spanned by the deg(det(L(0, λ))) linearly independent
regular formal solutions computed by the method described above. Suppose that the dimension
of the regular formal solution space of the simple system L(x, ϑ)(y(x)) = 0 is greater than
deg(det(L(0, λ))). Then there exists a regular formal solution y(x) of (3.1) which is not in
V. Let y(x) =

∑∞
i=0 Ui x

λ0+i be such a solution with λ0 ∈ K, Ui ∈ K[log(x)]n and U0 6= 0.
We assume, without loss of generality, that the real part of λ0 is maximal among those of the
exponents of the regular formal solutions of (3.1) which do not belong to V. Since y(x) is a regular
solution of L(x, ϑ)(y(x)) = 0, we know from the discussion above that necessarily xλ0 U0 satisfies
L(0, ϑ)

(
xλ0 U0

)
= 0. Consequently, there exists a regular formal solution z(x) =

∑∞
i=0 Vi x

λ0+i ∈
V of (3.1) with V0 = U0. We point out that z(x) is a linear combination of the regular formal
solutions of exponent λ0 belonging to V. Now, y(x)− z(x) is a nonzero regular formal solution
of (3.1) not belonging to V. Moreover, since V0 = U0, we have y(x)− z(x) = xλ0+j

∑∞
i=0Wi x

i

with j ∈ N∗ and W0 6= 0. This is in contradiction with the fact that <(λ0) is maximal.

We have thus proven that Algorithm BCE_V1 developed in Subsection 2.6.2 of Chapter 2
can be applied to compute a basis of the regular formal solution space of any linear differential
system of the form (3.1) assuming only that it is simple, i.e., det(L(0, λ)) 6= 0. Similarly, the
other variant BCE_V2 developed in Subsection 2.6.3 of Chapter 2 works as well on simple
linear differential systems of the form (3.1) and produces its general regular solution.

Now, concerning our generalization of the Frobenius method described in Subsection 2.7 of
Chapter 2, it remains correct for any simple linear differential system of the form (3.1) not neces-
sarily of the first kind. This follows from the fact that to achieve the generalization, we have only

72 Chapter 3. Simple Forms and Regular Solutions

used the regularity of the matrix polynomial L(0, λ) (which was denoted by L0(λ) in Chapter 2).

Finally, we note that Theorem 3.2.1 above allows us to easily detect whether a simple system
of the form (3.1) with A`(x) ∈ GLn(K((x))) has a regular singularity at x = 0 or not, as stated
in the following corollary.

Corollary 3.2.1. A simple linear differential system L(x, ϑ)(y(x)) = 0 of the form (3.1) with
invertible leading coefficient matrix A`(x) in K((x))n×n has a regular singularity at the point
x = 0 if and only if it is of the first kind.

Proof. The system has a regular singularity at x = 0 if and only if all its formal solutions are
regular solutions, namely, if and only if the dimension of its regular formal solution space is
equal to n `. According to Theorem 3.2.1, this occurs if and only if deg(det(L(0, λ))) = n `, i.e.,
A`(0) is invertible (see Section 1.1 of Chapter 1).

3.3 Transformation to a first-order linear differential system: Al-
gorithm of Barkatou-Pflügel

Another approach for computing regular formal solutions of a linear differential system of the
form (3.1) consists in converting it into a first-order linear differential system and then using
one of the algorithms dedicated to the first-order case: see [8, 21, 37, 56].

In this section, we sketch the algorithm proposed in [21]1 for computing regular formal solu-
tions of simple linear differential systems of first-order and we study its arithmetic complexity.
Then, we compare, from an arithmetic complexity point of view, Algorithm BCE_V2 which
handles directly a simple linear differential system of the form (3.1) to the approach consisting
in transforming (3.1) into the first-order linear differential system of size n `

D(x)ϑ(Y (x))−N(x)Y (x) = 0,

where

D(x) =
(
In (`−1) 0

0 A`(x)

)
, N(x) =


0 In 0 . . . 0
0 0 In . . . 0
...

...
. . .

...
0 0 In

−A0(x) −A1(x) −A`−1(x)

 (3.9)

and Y (x) = (y(x)T , ϑ(y(x))T , . . . , ϑ`−1(y(x))T)T , and then applying the algorithm of [21]. Note
that the resulting first-order system is also simple since D(0)λ − N(0) is a linearization of
L(0, λ) (see Section 1.3 of Chapter 1).

Consider a simple linear differential system of first-order of the form

D(y(x)) = D(x)ϑ(y(x))−N(x) y(x) = 0, (3.10)

where D(x) =
∑

j≥0Dj x
j ∈ K[[x]]n×n and N(x) =

∑
j≥0Nj x

j ∈ K[[x]]n×n.
In [21], the authors look for regular solutions of System (3.10) written in the form

y(x) = xλ0

(
hs(x) + log(x)hs−1(x) + · · ·+ logs−1(x)

(s− 1)!
h1(x)

)
,

1This algorithm has been implemented by the authors of [21] in Maple and can be found in the package
Isolde [23].

3.3. Algorithm of Barkatou-Pflügel 73

where s ∈ N∗, λ0 ∈ K and for k = 1, . . . , s, hk(x) ∈ K[[x]]n such that h1(x) 6= 0. We know
that λ0 must be chosen as an eigenvalue of the matrix pencil D0 λ − N0. Thus, by gathering
the eigenvalues of D0 λ − N0 into pairwise disjoint sets σ1, . . . , σr such that two eigenvalues
belonging to two different sets σi and σj do not differ by integers, one needs to compute the
general regular solution associated with each set σi (see page 54). For this, let λi ∈ σi such that
<(λi) = minλ0∈σi <(λ0) and let

yi(x) = xλi
si∑
k=1

logsi−k(x)
(si − k)!

hi,k(x), (3.11)

where the hi,k’s are vectors of formal power series and hi,1(x) 6= 0, be the general regular solution
associated with σi to be computed. Let

mi =
∑
λ0∈σi

ma(λ0). (3.12)

From Equation (2.28) in Chapter 2, we can deduce that the degree si is bounded by the sum
of the algebraic multiplicities of the eigenvalues belonging to σi, i.e., si ≤ mi. Note that the
number of arbitrary constants appearing in hi,k for k = 1, . . . , si is equal to mi. According to
[21, Lemma 3.1], yi(x) is a solution of D(y(x)) = 0 if and only if{

Di(hi,1(x)) = 0,

Di(hi,k(x)) = −D(x)hi,k−1(x) for 2 ≤ k ≤ si,

where Di = D(x)ϑ− (N(x)−D(x)λi) ∈ K(λi)[[x]][ϑ]n×n. Consequently, computing the regular
solution yi(x) of the form (3.11) is reduced to finding the general formal power series solution
of at most mi linear differential system of first-order of the form

Di(y(x)) = (D(x)ϑ−N(x) +D(x)λi)(y(x)) = b(x), (3.13)

where b is an n-dimensional vector of formal power series depending linearly on parameters.

Let us now explain how the authors of [21] proceed to compute the general formal power
series solution up to order ν ∈ N of System (3.13). Solving System (3.13) means finding the
set of all parameters appearing in the right-hand side b for which the system is consistent and
computing its general power series solution. Let p1, . . . , pl denote the parameters appearing in
b and write

b(x) = `c(b)xδ + · · · ,
where δ ∈ N, `c(b) depends linearly on some of the pi’s and the dots stand for terms of valuation
greater than δ. Write

y(x) = c xµ + z(x)

with µ ∈ N such that µ ≤ ν and c is a nonzero vector. The problem is to find an integer µ ≤ ν
and a nonzero vector c such that Di(y(x)) = b(x) and v(z) > µ. Plugging y(x) into (3.13), one
gets

Di(z(x)) = b(x)−Di(c xµ) =
[
`c(b)xδ + · · ·

]
− [(D0 µ−N0 +D0 λi) c xµ + · · ·] . (3.14)

Since v(Di(z)) ≥ v(z) > µ (see [21, Lemma 2.1]), a necessary condition for the existence of
a couple (µ, c) is that the valuation of the right-hand side of (3.14) must be greater than µ.
This occurs only if one chooses µ < δ such that det(D0 µ − N0 + D0 λi) = 0 and c such that
(D0 µ − N0 + D0 λi) c = 0, or µ = δ and c satisfying (D0 µ − N0 + D0 λi) c = `c(b). So let
R = σ(D0 λ−N0 +D0 λi) ∩ {0, 1, . . . , ν} and let P = {p1, . . . , pl} denote the set of parameters
appearing in the right-hand side of (3.14). There are several cases:

74 Chapter 3. Simple Forms and Regular Solutions

• If δ > ν and R = ∅, then there is no possible couple (µ, c).

• If there is a µ0 ∈ R such that µ0 < δ, then take µ = µ0 and c as the general solution of
(D0 µ−N0 +D0 λi) c = 0 (c depends then on mg(λi + µ) parameters2).

• If ∀µ0 ∈ R, one has µ0 ≥ δ, then two cases have to be distinguished: if one can determine
some elements of P in such a way that `c(b) belongs to the range of the matrix D0 δ −
N0 +D0 λi, then take µ = δ and c as the general solution of (D0 µ−N0 +D0 λi) c = `c(b).
Otherwise, i.e., `c(b) does not belong to the range of D0 δ −N0 + D0 λi for all choices of
the pi’s, then there is no possible couple (µ, c).

After having found the couple (µ, c), one performs the substitution y(x) = c xµ+z(x) into (3.13).
This provides a linear differential system satisfied by z(x) of the form

Di(z(x)) = b(x)−Di(c xµ) (3.15)

and the process is iterated by updating the sets R and P: R = σ(D0 λ − N0 + D0 λi) ∩
({0, 1, . . . , ν} \ {µ}) and P contains the parameters appearing in the right-hand side of (3.15)
(for more details, see [21, pages 575-576]). Note that the cardinality of the set P is always
bounded by l +

∑
λ0∈σimg(λ0) ≤ l + n (here mg(λ0) denote the geometric multiplicity of λ0 as

an eigenvalue of the matrix pencil D0 λ − N0). Thus, the general formal power series solution
y(x) of System (3.13) obtained by proceeding as explained above depends on the pi’s and on at
most

∑
λ0∈σimg(λ0) new parameters.

Lemma 3.3.1. With the previous notation, computing the general formal power series solution
of System (3.13) up to order ν can be done in at most O

(
n2 (l + n) ν2 dλi

)
arithmetic operations

in K, where l denotes the number of parameters in the right-hand side b of (3.13) and dλi denotes
the degree of the extension K(λi) over K.

Proof. Since we are interested in computing the general power series solution of System (3.13)
up to order ν so we can suppose that the right-hand side b of System (3.13) is truncated at order
ν. Let now study the cost of solving the system up to order ν. First of all, we compute a LU
decomposition of each matrix D0 µ − N0 + D0 λi for µ = 0, . . . , ν. In this way, we reduce the
problem of solving linear systems of the form (D0 µ−N0 +D0 λi) c = w to that of solving two
linear systems with triangular matrices in K(λi)n×n. This can be done in at most O

(
n3 ν dλi

)
operations in K. After this, solving System (3.13) can be done in at most O

(
n2 (l + n) ν2 dλi

)
operations in K. Indeed, the computation of formal power series solutions of System (3.13) up
to order ν is a recursive procedure repeated at most ν+ 1 times and composed of three essential
steps:

1. computing c as the general solution of a linear algebraic system of the form

(D0 µ−N0 +D0 λi) c = w,

where w depends on at most l + n parameters;

2. updating the parameters in the right-hand side b of System (3.13) and the so-far-computed
terms when some conditions on the parameters of w are imposed in order to the system
be consistent;

3. computing the right-hand side up to order ν of the linear differential system satisfied by z
obtained after substituting y = c xµ + z.

2mg(λi + µ) denotes the geometric multiplicity of λi + µ as an eigenvalue of the matrix pencil D0 λ−N0.

3.3. Algorithm of Barkatou-Pflügel 75

For the computation of c, write D0 µ −N0 + D0 λi = P LU where P is a permutation matrix,
L a lower triangular matrix having 1 on its diagonal and U is an upper triangular matrix
whose last n − r rows are zero (r being the rank of matrix D0 µ − N0 + D0 λi). Thus, solving
(D0 µ−N0 +D0 λi) c = w is reduced to solving Lc′ = P T w and then U c = c′. Since L is a lower
invertible triangular matrix and w depends on at most l + n parameters, solving Lc′ = P T w
can be done in at most O

(
n2 (l + n) dλi

)
operations in K. Now, to solve system U c = c′, we

have to ensure that the last n − r components of c′ are zero (c′ depends on the parameters
appearing in w so on at most l + n parameters). This is equivalent to solving a system of
n − r linear algebraic equations in at most l + n variables. So it can be performed in at most
O
(
(n− r)2 (l + n) dλi

)
= O

(
n2 (l + n) dλi

)
operations in K. This gives R parameters (R ≤ n−r)

written as linear combinations of the other parameters which are of number bounded by l+n−R.
Thus, updating one component of vector c′ costs at most O(R (l + n−R) dλi) = O(n (l + n) dλi)
operations in K. So the cost of updating vector c′ is bounded by O

(
n2 (l + n) dλi

)
operations

in K. Now vector c′ depends on at most l + n − R parameters, so solving system U c = c′ can
be done in at most O

(
n2 (l + n) dλi

)
operations in K. Hence, the cost of computing c (Step 1

above) is bounded by O
(
n2 (l + n) dλi

)
operations in K.

In Step 2, we have at most ν + µ vectors with n components to be updated. So, the cost of
Step 2 is bounded by O

(
n2 (l + n) (ν + µ) dλi

)
operations in K.

In Step 3, the cost of computing of the new right-hand side up to order ν is reduced to
that of computing Di(c xµ) truncated at order ν, i.e.,

∑ν−µ
j=0 (Dj µ −Nj + Dj λi) c xµ+j . So we

have ν − µ+ 1 products of an n× n matrix with coefficients in K(λi) by a n-dimensional vector
which depends on at most l+n parameters. Thus, Step 3 costs at most O

(
n2 (l + n) (ν − µ) dλi

)
operations in K.

Consequently, one call of the procedure costs at most O
(
n2 (l + n) (ν + µ) dλi

)
operations in

K. As µ goes from 0 to ν, computing the general formal power series solution of System (3.13)
up to order ν can be done in at most O

(
n2 (l + n) ν2 dλi

)
operations in K.

Remark 3.3.1. Suppose that hi,1, . . . , hi,k−1 (with k − 1 < n) appearing in (3.11) have been
already computed and that hi,1 6= 0. The vector defined by

y(x) = xλi

(
hi,k−1 + log(x)hi,k−2 + · · ·+ logk−2(x)

(k − 2)!
hi,1(x)

)

forms a regular solution of System (3.10) (cf. [21], page 578) and hence one can deduce that the
number of arbitrary constants appearing in hi,1, . . . , hi,k−1 does not exceed n. Thus, according
to Lemma 3.3.1, computing hi,k(x) as the general power series solution up to order ν of System

Di(y(x)) = −D(x)hi,k−1(x)

can be performed using at most O
(
n3 ν2 dλi

)
operations in K since l, the number of parameters

in D(x)hi,k−1(x), is bounded by n.

The algorithm of [21] can be sketched as follows:

76 Chapter 3. Simple Forms and Regular Solutions

Algorithm BP

Input: An integer ν ∈ N and the coefficient matrices D(x) and N(x) truncated at order ν
of the simple first-order linear differential system (3.10).

Output: The general regular solution of (3.10) up to order ν.

1. Compute σ(D(0)λ−N(0)) and gather the eigenvalues that differ by integers into sets
σ1, . . . , σr;

2. For i from 1 to r do
2.1. Let λi ∈ σi be such that <(λi) = minλ0∈σi <(λ0) and let Di = Dϑ− (N −Dλi);
2.2. Compute the general formal power series solution of Di(hi,1) = 0 up to order ν;

Set k = 1;
2.3. While hi,1 6= 0 do

2.3.(a). Let k = k + 1;
2.3.(b). Compute the general formal power series solution of system

Di(hi,k) = −Dhi,k−1 up to order ν;
2.3.(c). Update the parameters in hi,1, . . . , hi,k−1;

end do;

2.4. Set si = k − 1 and yi = xλi
∑si

j=1
logsi−j(x)
(si − j)!

hi,j(x) ;

end do;
3. Return y =

∑r
i=1 yi;

Proposition 3.3.1. Algorithm BP computes the general regular solution of System (3.10) up
to order ν using at most O

(
n5 ν + n4 ν2

)
arithmetic operations in K.

Proof. Let us first determine the cost of computing the general regular solution associated with σi
up to order ν. From Lemma 3.3.1, Step 2.2 can be done using at most O

(
n3 ν2 dλi

)
operations

in K. In Step 2.3.(b), computing the right-hand side Dhi,k−1 truncated at order ν can be
done using at most O

(
n3 ν2 dλi

)
operations in K since the number of matrix-vector products

with entries in K(λi) is 1
2(ν + 1) (ν + 2) and hi,k−1 depends on at most n parameters. Now

from Lemma 3.3.1, solving the system in Step 2.3.(b) can be done using at most O
(
n3 ν2 dλi

)
operations in K. Hence, the cost of Step 2.3.(b) is bounded by O

(
n3 ν2 dλi

)
operations in K. In

Step 2.3.(c), we have (k − 1) (ν + 1) n-dimensional vector in K(λi) depending on parameters,
whose number does not exceed n, to be updated. Updating one component of these vectors
can be done in at most O

(
n2 dλi

)
operations in K. Hence the cost of Step 2.3.(c) is bounded

by O
(
n3 k ν dλi

)
operations in K. Consequently, the kth passage in the While loop costs at

most O
(
(n3 k ν + n3 ν2) dλi

)
operations in K. Since k goes from 1 to si which is bounded by mi

given by (3.12), computing the general regular solution up to order ν associated with σi can
be done in at most O

(
(n3m2

i ν + n3mi ν
2) dλi

)
operations in K. Now, we have

∑r
i=1mi dλi =∑r

i=1

∑
λ0∈σima(λ0) dλi ≤ n and

∑r
i=1m

2
i dλi ≤ n2 so AlgorithmBP returns the general regular

solution of System (3.10) up to order ν after at most O
(
n5 ν + n4 ν2

)
arithmetic operations in

K.

We have now two different approaches to compute the general regular solution up to order
ν of a given simple linear differential system (3.1) of order ` and size n:

• First approach: application of Algorithm BCE_V2 directly to System (3.1). This algo-
rithm uses O

(
n4 `3 ν2 + n6 `4

)
arithmetic operations in K (see Proposition 2.6.2 of Chap-

ter 2).

3.4. Non-simple systems 77

• Second approach: conversion of System (3.1) into the first-order linear differential system
D(x)ϑ(Y (x))−N(x)Y (x) = 0, where D(x) and N(x) are given by (3.9), then application
of Algorithm BP above. This can be done using at most O

(
n5 `5 ν + n4 `4 ν2

)
arithmetic

operations in K since the resulting first-order system is of size n `.

3.4 Non-simple systems

In the remainder of the chapter, we consider systems of the form (3.1) which are not simple,
i.e., for which det(L(0, λ)) = 0. In order to compute the regular formal solution space of a
non-simple system, we propose to compute another differential system which is simple and from
which one can get the solutions of the non-simple one.

From now on, we will assume that the leading coefficient matrix A`(x) is invertible in
K((x))n×n: this guarantees that the regular formal solution space of System (3.1) is of finite
dimension since it can be converted into a first-order system of the form ϑ(Y (x)) = C(x)Y (x)
where C(x) = D(x)−1N(x) ∈ K((x))n `×n ` with D(x) and N(x) given by (3.9). The invertibility
of A`(x) also allows us to suppose, without loss of generality, that A`(x) ∈ K[x]n×n: indeed,
let L̃(x, ϑ) = A−1

` (x)L(x, ϑ) and let, for i = 1, . . . , n, αi = min
{

0, v
(
L̃(x, ϑ)(i, .)

)}
and

S(x) = diag(x−α1 , . . . , x−αn) ∈ K[x]n×n. Multiplying L̃(x, ϑ) on the left by S(x), we get a new
matrix differential operator with coefficient matrices in K[[x]]n×n and having S(x) ∈ K[x]n×n

as a leading coefficient matrix.

The problem of computing a simple system, from which one can recover the solutions of the
non-simple system L(x, ϑ)(y(x)) = 0, has been already treated in [21] for the case of first-order
systems, i.e., when ` = 1: the authors have shown that, using the super-reduction algorithm
[24, 25, 58], any non-simple matrix differential operator L(x, ϑ) of first-order can be reduced to an
equivalent simple one of first-order as well. More precisely, they have shown that there exist two
matrices S(x) and T (x) in GLn(K((x))) such that the operator L(x, ϑ) = S(x)L(x, ϑ)T (x) ∈
K[[x]][ϑ]n×n is simple; this implies that the two regular formal solution spaces of L(x, ϑ)(y(x)) =
0 and L(x, ϑ)(z(x)) = 0 are isomorphic since y(x) and z(x) are related by y(x) = T (x) z(x) with
T (x) ∈ GLn(K((x))). In the next chapter, we will develop a new algorithm computing an
equivalent simple operator when ` = 1 without making use of the super-reduction. However,
when ` ≥ 2, it is not always possible to reduce a non-simple system of the form (3.1) to a simple
one using only algebraic transformations S(x) and T (x) in GLn(K((x))) as we will show in the
sequel.

Proposition 3.4.1. Consider a non-simple matrix differential operator of the form

L(x, ϑ) = A2(x)ϑ2 +A1(x)ϑ+A0(x)

with A2(x), A1(x) and A0(x) in K[[x]]2×2. Assume that its associated matrix polynomial L(0, λ)
is equal to

L(0, λ) = A2(0)λ2 +A1(0)λ+A0(0) =
(
λ2 λ
λ 1

)
.

For any nonzero matrices S(x) and T (x) in K((x))2×2 such that L̃(x, ϑ) = S(x)L(x, ϑ)T (x)
has formal power series coefficients and such that L̃(0, λ) 6= 0, the matrix differential operator
L̃(x, ϑ) is non-simple.

Proof. Write

T (x) = Tα x
α + · · · =

(
a b
c d

)
xα + · · · and S(x) = Sβ x

β + · · · ,

78 Chapter 3. Simple Forms and Regular Solutions

where α, β ∈ Z, Tα, Sβ are two nonzero matrices of K2×2 and the dots stand for terms of higher
valuation. The coefficient matrices of the operator L̃(x, ϑ) = Ã2(x)ϑ2 + Ã1(x)ϑ+ Ã0(x) defined
by L̃(x, ϑ) = S(x)L(x, ϑ)T (x) are given by

Ã2(x) = S(x)A2(x)T (x) = Sβ

(
a b
0 0

)
xα+β + · · · ,

Ã1(x) = S(x) (2A2(x)ϑ(T (x)) +A1(x)T (x)) = Sβ

(
c+ 2αa d+ 2α b

a b

)
xα+β + · · · ,

Ã0(x) = S(x)(A2(x)ϑ2(T (x))+A1(x)ϑ(T (x))+A0(x)T (x)) = Sβ

(
α2 a+ α c α2 b+ αd
c+ αa d+ α b

)
xα+β+· · · ,

where the dots stand for terms of valuation greater than α + β. Consider now the matrix
polynomial

M(λ) =
(
a b
0 0

)
λ2 +

(
c+ 2αa d+ 2α b

a b

)
λ+

(
α2 a+ α c α2 b+ αd
c+ αa d+ α b

)
.

One can easily check that it is a singular and none of its rows is zero since Tα is assumed to be a
nonzero constant matrix. Moreover, its left nullspace is spanned by the row vector (−1 λ+α).
If α+β < 0, then the coefficient matrices of xα+β in Ã2(x), Ã1(x) and Ã0(x) are necessarily equal
to zero since L̃(x, ϑ) ∈ K[[x]][ϑ]2×2. This implies that SβM(λ) = 0 with Sβ a nonzero constant
matrix which is impossible since there is no nonzero constant vectors in the left nullspace of
M(λ). Consequently, we have α+β = 0 (since we suppose that L̃(0, λ) 6= 0) and L̃(0, λ) is equal
to SβM(λ) and hence it is singular.

The above proposition can be applied to any 2×2 non-simple matrix differential operator of
second-order whose associated matrix polynomial has no nonzero constant vectors in its left and
right minimal bases. This can be shown using the result of [90, Th. 4.47] which can be stated
as follows:

Lemma 3.4.1. A matrix polynomial L(λ) ∈ K[λ]2×2 is singular if and only if one of the following
three cases happens:

• L(λ) has a nonzero constant vector in its right minimal basis;

• L(λ) has a nonzero constant vector in its left minimal basis;

• There exist two nonsingular matrices S0 and T0 of K2×2 such that

S0 L(λ)T0 =
(
λ2 λ
λ 1

)
.

Thus, it derives that

Theorem 3.4.1. Let L(x, ϑ) ∈ K[[x]][ϑ]2×2 be a non-simple matrix differential operator of
second-order. Assume that a right minimal basis and a left minimal basis of its associated
matrix polynomial L(0, λ) do not contain nonzero constant vectors. For any matrices S(x) and
T (x) in K((x))2×2 such that L̃(x, ϑ) = S(x)L(x, ϑ)T (x) has formal power series coefficients,
the matrix differential operator L̃(x, ϑ) is non-simple.

3.5. Reduction to the simple case by linear substitutions 79

Proof. From Lemma 3.4.1, there exist two nonsingular matrices S0 and T0 of K2×2 such that

S0 L(0, λ)T0 =
(
λ2 λ
λ 1

)
.

Thus, the matrix differential operator L1(x, ϑ) = S0 L(x, ϑ)T0 satisfies the assumptions
of Proposition 3.4.1. If there exist S(x) and T (x) in K((x))2×2 such that L̃(x, ϑ) =
S(x)L(x, ϑ)T (x) is simple, then this implies the existence of two matrices S1(x) = S(x)S−1

0

and T1(x) = T−1
0 T (x) of K((x))2×2 such that S1(x)L1(x, ϑ)T1(x) is simple (indeed,

S1(x)L1(x, ϑ)T1(x) = L̃(x, ϑ)) which is in contradiction with Proposition 3.4.1.

In the next section, we provide a necessary condition on the existence of a linear substitution
y(x) = T (x) z(x) with T (x) ∈ GLn(K((x))) such that the new system (L(x, ϑ)T (x))(z(x)) = 0
is simple. An algorithm deciding the existence of such a linear substitution and computing
it explicitly, when it exists, is developed. Note that in this case, the regular solutions of the
original system are easily obtained by multiplying those of the simple one on the left by T (x).
In Section 3.6, the case where such a linear substitution does not exist is investigated. We
propose a differential variant of the EG’-method developed in [4]: the latter algorithm can
only be applied to systems with polynomial coefficients. It consists in performing elementary
operations on the equations of the input system and always yields a simple linear differential
system L(x, ϑ)(y(x)) = 0 having among its regular solutions the ones of the input one. Note that
the order of L(x, ϑ)(y(x)) = 0 may be greater than ` and that L(x, ϑ)(y(x)) = 0 is not necessarily
equivalent to L(x, ϑ)(y(x)) = 0 in the sense that the regular formal solution spaces of these two
systems are not necessarily isomorphic. However, we will explain at the end of Section 3.6 how
one can obtain the regular solutions of L(x, ϑ)(y(x)) = 0 from those of L(x, ϑ)(y(x)) = 0.

3.5 Reduction to the simple case by linear substitutions

Theorem 3.4.1 above shows that for non-simple linear differential systems of the form (3.1) and
order ` ≥ 2, there do not always exist two matrices S(x) and T (x) in GLn(K((x))) such that the
linear differential system (S(x)L(x, ϑ)T (x))(z(x)) = 0 is simple. In this section, we are merely
interested in the existence of a linear substitution y(x) = T (x) z(x) with T (x) ∈ GLn(K((x)))
such that the system L(x, ϑ)(z(x)) = 0, where L(x, ϑ) = L(x, ϑ)T (x), is simple.

3.5.1 Necessary condition for the existence of a linear substitution

We give here a necessary condition for the existence of a linear substitution T (x) transforming
a non-simple system into a simple one. For this, we will make use of the following lemma.

Lemma 3.5.1 ([77], Lemma 1). Every invertible matrix T (x) ∈ GLn(K((x))) can be written as

T (x) = P (x)xαQ(x),

where P (x) ∈ K[x]n×n with det(P (x)) = 1, Q(x) ∈ K[[x]]n×n with det(Q(0)) 6= 0 and α =
diag(α1In1 , . . . , αsIns) where the αi’s are integers satisfying α1 < · · · < αs and the ni’s are
positive integers such that

∑s
i=1 ni = n.

Following [77] and using the notation of Lemma 3.5.1, we will refer to αs − α1 as the span
of T and denote it by span(T) (span(T) = αs − α1 = −(v(T) + v(T−1))). This quantity is also
called lag of T in [7].

Lemma 3.5.2 ([7], Prop. 1). ∀ T1, T2 ∈ GLn(K((x))), span(T1 T2) ≤ span(T1) + span(T2).

80 Chapter 3. Simple Forms and Regular Solutions

We give in the following theorem a necessary condition for the existence of a linear substi-
tution leading to a simple system.

Theorem 3.5.1. Let L(x, ϑ)(y(x)) = 0 be a non-simple linear differential system of the form
(3.1). If there exists a linear substitution y(x) = T (x) z(x) with T (x) ∈ GLn(K((x))) such that
L(x, ϑ) = L(x, ϑ)T (x) ∈ K[[x]][ϑ]n×n and the system L(x, ϑ)(z(x)) = 0 is simple, then the
elements of a right minimal basis of L(0, λ) are contained in Kn, i.e., the right minimal indices
of L(0, λ) are all equal to zero.

Proof. Write T (x) = P (x)xαQ(x) where P (x), α and Q(x) are as in Lemma 3.5.1. If v(T) ≥ 0,
the matrix polynomial L(0, λ) is then equal to L(0, λ)T (0) and hence it is singular which is in
contradiction with the hypotheses of the theorem. Therefore, there exists k ∈ {1, . . . , s} such
that α1 < · · · < αk < 0 ≤ αk+1 < · · · < αs. Let L1(x, ϑ) = L(x, ϑ)P (x). Since L(x, ϑ) ∈
K[[x]][ϑ]n×n and P (x) ∈ K[[x]]n×n, we have L1(x, ϑ) ∈ K[[x]][ϑ]n×n. The matrix polynomial
L1(0, λ), which is equal to L(0, λ)P (0), is singular (since L(0, λ) is so) and P (0) is invertible, so
from Lemma 1.7.1 of Chapter 1, the task reduces to proving that all the right minimal indices
of L1(0, λ) are zero. Let L2(x, ϑ) = L(x, ϑ)Q−1(x). Since Q(0) ∈ GLn(K), the matrix inverse
Q−1(x) belongs to K[[x]]n×n and hence L2(x, ϑ) ∈ K[[x]][ϑ]n×n. The matrix polynomial L2(0, λ)
is thus equal to L(0, λ)Q−1(0) and consequently, it is regular. Consider now the two matrix
differential operators L2(x, ϑ) and L1(x, ϑ). They are connected by L2(x, ϑ) = L1(x, ϑ)xα.
Let m =

∑k
i=1 ni. Since for i = 1, . . . , k, αi < 0, the valuations in x of the first m columns

of L1(x, ϑ) are necessarily positive which implies that, for j = 1, . . . ,m, L1(0, λ)(., j) = 0.
Consequently, the number of right minimal indices of L1(0, λ) equal to zero is greater than or
equal to m. If m = n or equivalently k = s, then the proof ends. Otherwise, the columns
L2(0, λ)(., j) for j = m + 1, . . . , n cannot be zero since L2(0, λ) is regular. This entails that
αk+1 = · · · = αs = 0 and hence L2(0, λ)(., j) = L1(0, λ)(., j) for j = m + 1, . . . , n. This proves
that the dimension of the right nullspace of L1(0, λ) is exactly equal to m since the columns
L2(0, λ)(., j) for j = m+ 1, . . . , n are linearly independent.

3.5.2 Algorithm

Let L(x, ϑ)(y(x)) = 0 be a non-simple linear differential system of the form (3.1) with invertible
leading coefficient matrix A`(x) ∈ K[x]n×n. We suppose that we have already simplified the
equations of the system by suitable powers of x so that we can have v(L(x, ϑ)(i, .)) = 0 for
i = 1, . . . , n. In other terms, we suppose that all the rows of L(0, λ) are nonzero. We will now
develop an algorithm that either computes a linear substitution y(x) = T (x) z(x) such that the
new system (L(x, ϑ)T (x))(z(x)) = 0 is simple or proves that such a linear substitution does
not exist. It proceeds as follows. First, compute a right minimal basis of L(0, λ). If one of
its elements is non constant, i.e., belongs to K[λ]n \ Kn, then, by Theorem 3.5.1, such a linear
substitution does not exist and we are done. Otherwise, let B denote the matrix whose columns
are the elements of the computed right minimal basis. For every column B(., k), select one of
its nonzero entries, say B(ik, k), in such a way that the degree of the ikth column of A`(x) is
maximal among the degrees of the columns of A`(x) of indices corresponding to the nonzero
entries of B(., k). Then, execute the following reduction procedure:

1. Replace the ikth column of L(x, ϑ) by L(x, ϑ)B(., k). This is equivalent to multiplying
L(x, ϑ) on the right by an invertible constant matrix T1 obtained from the identity matrix
In by replacing its ikth column by the column B(., k). If L̃(x, ϑ) denotes the resulting
operator, then its associated matrix polynomial L̃(0, λ) is equal to L(0, λ)T1 and hence
the ikth column of L̃(0, λ) is zero. Note here that all rows of L̃(0, λ) are nonzero since T1

is invertible and the rows of L(0, λ) are supposed to be nonzero as well. As for the ikth

3.5. Reduction to the simple case by linear substitutions 81

column of the leading coefficient matrix Ã`(x) of L̃(x, ϑ), it is exactly equal to A`(x)B(., k)
since Ã`(x) = A`(x)T1;

2. Let γik = v
(
L̃(x, ϑ)(., ik)

)
be the valuation of the ikth column of L̃(x, ϑ). Since the leading

coefficient A`(x) of L(x, ϑ) is assumed to be invertible, this guarantees that L̃(x, ϑ)(., ik) is
a nonzero column and implies that γik is finite, positive and less than or equal to the degree
of the ikth column of Ã`(x). Multiply now each component of the ikth column of L̃(x, ϑ) on
the right by x−γik (note that ϑjx−γik = x−γik (ϑ−γik)j). This is equivalent to multiplying
L̃(x, ϑ) on the right by an invertible diagonal matrix T2 ∈ K[x−1]n×n obtained from the
identity matrix In by replacing its ikth diagonal entry by x−γik . Let L(x, ϑ) = L̃(x, ϑ)T2.
By definition of γik , the ikth column of L(0, λ) is nonzero. Here again, the rows of L(0, λ)
are nonzero which means that a simplification of the rows of L(x, ϑ) by powers of x cannot
occur.

Now, we use B(ik, k) as a pivot to eliminate all the elements B(ik, j) for j 6= k. In this way,
the new columns of B of index j 6= k belong now to the right nullspace of L(0, λ). We then
repeat the reduction procedure on L(x, ϑ) using the new columns of B and so on.

Proposition 3.5.1. The reduction procedure described above strictly reduces the degree of one
column of the leading coefficient matrix while the degrees of the other columns remain unchanged.

Proof. The ikth column of L(x, ϑ) is given by

L(x, ϑ)(., ik) = L(x, ϑ)B(., k)x−γik = x−γik
∑̀
i=0

Ai(x)B(., k) (ϑ− γik)i. (3.16)

From the relation (3.16), we can deduce that the degree of the ikth column of the leading
coefficient A`(x) of L(x, ϑ) is less than or equal to that of the ikth column of A`(x) minus
γik . Indeed, let dj , for j = 1, . . . , n, denote the degree of the jth column of A`(x) and write
A`(x) =

∑d
i=0A`,i x

i where d = maxj=1,...,n dj . According to (3.16), the ikth column of A`(x) is
defined as follows:

A`(x)(., ik) = A`(x)B(., k)x−γik =
d∑
i=0

A`,i B(., k)xi−γik .

By definition of γik > 0, we have A`,i B(., k) = 0, for i = 0, . . . , γik − 1. Moreover, for j ∈
{1, . . . , n} such that dj > dik , we have B(j, k) = 0 (from the choice of ik), and for j ∈ {1, . . . , n}
such that dj ≤ dik and for i such that dik < i ≤ d, we have A`,i(., j) = 0. Consequently, for
dik < i ≤ d, A`,i B(., k) =

∑n
j=1A`,i(., j)B(j, k) = 0 and then deg(A`(x)(., ik)) ≤ dik − γik <

dik = deg(A`(x)(., ik)).

We illustrate the above approach with the following example:

Example 3.5.1. Consider the matrix differential operator given by

L(x, ϑ) = A2(x)ϑ2+A1(x)ϑ+A0(x) =

1 + x2 2 1
0 3x 4x
0 0 x

 ϑ2+

x x2 0
1 2 1
0 x2 0

 ϑ+

1 + x 2 1
0 x2 0

2 + x 4 2

 .

This operator is non-simple since its associated matrix polynomial

L(0, λ) =

λ2 + 1 2λ2 + 2 λ2 + 1
λ 2λ λ
2 4 2



82 Chapter 3. Simple Forms and Regular Solutions

is singular. A right minimal basis of L(0, λ) is given by the columns of the matrix

B =

−2 −1
1 0
0 1

 .

We consider the first column of B which corresponds to k = 1 with the previous notation. Its first
two components are nonzero, but since deg(A2(x)(., 1)) = 2 > deg(A2(x)(., 2)) = 1, we select
the first one, i.e., i1 = 1. We then apply our reduction procedure. We first replace L(x, ϑ)(., 1)
by L(x, ϑ)B(., 1), i.e., multiply operator L(x, ϑ) on the right by

T1 =

−2 0 0
1 1 0
0 0 1

 .

The operator obtained is given by

L1(x, ϑ) =

−2x2 2 1
3x 3x 4x
0 0 x

ϑ2 +

−2x+ x2 x2 0
0 2 1
x2 x2 0

ϑ+

−2x 2 1
x2 x2 0
−2x 4 2

 .

The first column of L1(0, λ) is now zero and the degree of the first column of the leading coefficient
matrix has not changed. With the previous notation, we have γ1 = 1 so we multiply L1(x, ϑ)(., 1)
on the right by x−1 which corresponds to multiplying L1(x, ϑ) on the right by the matrix T2(x) =
diag(x−1, 1, 1). We obtain the new matrix differential operator

L2(x, ϑ) =

−2x 2 1
3 3x 4x
0 0 x

ϑ2 +

5x− 2 x2 0
−6 2 1
x x2 0

ϑ+

 −3x 2 1
3 + x x2 0
−2− x 4 2

 .

Consequently, the first column of L2(0, λ) is nonzero and the degree of the first column of the
leading coefficient matrix has decreased by γ1 = 1. Then, we use B(1, 1) as a pivot to eliminate
B(1, 2) and obtain

B1 =

−2 0
1 −1

2
0 1

 .

We now consider the second column of B1 which belongs to a right minimal basis of L2(0, λ).
Since the degrees in x of the second and third columns of the leading coefficient of L2(x, ϑ) are
equal, we choose one of these two columns to perform our reduction. Let us choose the second
one. Replacing L2(x, ϑ)(., 2) by L2(x, ϑ)B1(., 2), we get

L3(x, ϑ) =

−2x 0 1
3 5

2x 4x
0 x x

ϑ2 +

5x− 2 −1
2 x

2 0
−6 0 1
x −1

2 x
2 0

ϑ+

 −3x 0 1
3 + x −1

2 x
2 0

−2− x 0 2

 .

Now we have v(L3(x, ϑ)(., 2)) = 1. So we multiply L3(x, ϑ)(., 2) on the right by x−1. We obtain
the matrix differential operator

L4(x, ϑ) =

−2x 0 1
3 5

2 4x
0 1 x

ϑ2 +

5x− 2 −1
2 x 0

−6 −5 1
x −2− 1

2 x 0

ϑ+

 −3x 1
2 x 1

3 + x 5
2 −

1
2 x 0

−2− x 1 + 1
2 x 2



3.5. Reduction to the simple case by linear substitutions 83

which is connected to L2(x, ϑ) by L4(x, ϑ) = L2(x, ϑ)T3(x) with

T3(x) =

1 0 0
0 − 1

2x 0
0 1

x 1

 .

The determinant of the matrix polynomial L4(0, λ) is equal to (λ−1)2 (3λ4−6λ3+13λ2−16λ+8)
and hence operator L4(x, ϑ) is simple. We finally note that the two operators L(x, ϑ) and L4(x, ϑ)
are related by L4(x, ϑ) = L(x, ϑ)T (x) with

T (x) = T1 T2(x)T3(x) =

− 2
x 0 0

1
x − 1

2x 0
0 1

x 1

 .

�

The following corollary follows from Proposition 3.5.1.

Corollary 3.5.1. The number of iterations of the reduction procedure described above does not
exceed D =

∑n
j=1 deg(A`(x)(., j)).

Thus, after applying the reduction procedure at mostD times, we obtain a matrix differential
operator L̂(x, ϑ) which can be written as L(x, ϑ)T (x) with T (x) an invertible matrix such that
either L̂(x, ϑ) is simple or a right minimal basis of L̂(0, λ) contains non constant elements.

Lemma 3.5.3. The matrix T constructed by applying iteratively the reduction procedure de-
scribed above is a matrix polynomial in x−1 satisfying −D ≤ v(T) < 0 and span(T) ≤ D where
D =

∑n
j=1 deg(A`(x)(., j)).

Proof. The matrix T is the product of invertible matrices which are either constant matrices or
diagonal matrices of the form diag(1, . . . , 1, x−γik , 1, . . . , 1) where 1 ≤ γik ≤ deg(A`(x)(., ik)).
Therefore, T ∈ K[x−1]n×n with −

∑
γik ≤ v(T) < 0 and span(T) ≤

∑
γik (see Lemma 3.5.2).

Now, from Proposition 3.5.1 and Corollary 3.5.1,
∑
γik cannot exceed D which ends the proof.

In practice, we deal with matrix differential operators with truncated coefficient matrices.
Let L(x, ϑ)|N denote the operator L(x, ϑ) given by (3.1) truncated at order N, i.e., L(x, ϑ)|N =∑N

i=1 x
i Li(ϑ) +L(0, ϑ), where the Li’s are given by (3.4). The question that arises here is how

to choose N so that if we apply iteratively the reduction procedure described above to L|N (x, ϑ)
and get a matrix T such that L(x, ϑ)|N T is simple, then we can ensure that the whole operator
L(x, ϑ)T is simple too.

Proposition 3.5.2. With the notation above, we have

∀N ∈ N, L(x, ϑ)T = L(x, ϑ)|N T mod xN+v(T)+1.

Therefore, if L(x, ϑ)|N T is simple with N ≥ −v(T), then so is L(x, ϑ)T .

Proof. The first assertion is obvious. Now, for N ≥ −v(T), we have, in particular, L(x, ϑ)T =
L(x, ϑ)|N T mod x. Therefore, the matrix polynomials associated respectively with L(x, ϑ)T
and L(x, ϑ)|N T are equal. Hence, L(x, ϑ)|N T is simple implies that L(x, ϑ)T is simple too.

84 Chapter 3. Simple Forms and Regular Solutions

From the discussion above, we derive the following algorithm:

Algorithm LinSubs

Input: The operator L(x, ϑ)|N , the truncation of L(x, ϑ) at order N , where N is an integer
greater than or equal to

∑n
j=1 deg(A`(x)(., j)).

Output: The empty list [] in case L(x, ϑ) cannot be reduced to a simple operator
by means of a linear substitution or an invertible matrix T ∈ K[x−1]n×n such
that L(x, ϑ)T is simple.

Initialization: T = In and L(x, ϑ) = L(x, ϑ)|N ;

While L(0, λ) is singular do
1. Compute a matrix B whose columns form a right minimal basis of L(0, λ);
2. If deg(B) > 0 then

Return [];
3. else

For each column B(., k) do
3.1. Let A` be the leading coefficient matrix of L(x, ϑ);
3.2. Let Jk = {i ∈ {1, . . . , n} such that B(i, k) 6= 0};
3.3. Choose ik ∈ Jk such that deg(A`(., ik)) ≥ deg(A`(., j)) ∀ j ∈ Jk;
3.4. Apply the following reduction procedure:

3.4.(a). Let L(x, ϑ)(., ik) = L(x, ϑ)B(., k);
3.4.(b). Let γik = v

(
L(x, ϑ)(., ik)

)
and L(x, ϑ)(j, ik) = L(x, ϑ)(j, ik)x−γik

for j = 1, . . . , n;
3.5. Let T (., ik) = x−γik T B(., k);
3.6. Use B(ik, k) as a pivot to eliminate all the elements B(ik, j) with j 6= k;

end do;
end if ;

end do;
Return T ;

Proposition 3.5.3. Let L(x, ϑ) be a non-simple matrix differential operator of the form (3.1)
with invertible leading coefficient matrix A`(x) ∈ K[x]n×n. Let D =

∑n
j=1 deg(A`(x)(., j))

and N ≥ D be the order of truncation of the coefficient matrices Ai(x) of L(x, ϑ). Then,
Algorithm LinSubs stops after at most D calls of the reduction procedure and uses at most
O∼
(
nω+1 `D + n2 `N D

)
arithmetic operations in K.

Proof. The first assertion follows from Corollary 3.5.1. Let us now study the complexity of
the algorithm. From Lemma 1.7.2 of Chapter 1, computing a right minimal basis of an n × n
matrix polynomial with entries degrees bounded by ` can be done in O∼

(
nω+1 `

)
arithmetic

operations in K. In the algorithm, we compute at most D right minimal bases, so the total cost
of minimal bases computations is bounded by O∼

(
nω+1 `D

)
operations in K. In Step 3.4.(a),

write L(x, ϑ) =
∑N

j=0 x
j Lj(ϑ) where N ≤ N . The cost of computing the product L(x, ϑ)B(., k)

is thus bounded by (N + 1) times the cost of computing one product Lj(ϑ)B(., k). Since Lj(ϑ)
is a constant matrix operator of order at most `, computing Lj(ϑ)B(., k) can be done using at
most O

(
n2 `

)
operations in K. Consequently, Step 3.4.(a) can be done in at most O

(
n2 `N

)
operations in K. In Step 3.4.(b), multiplying each component of the column L(x, ϑ)(., ik) on the
right by x−γik can be done by substituting ϑ by ϑ−γik in the ikth column of each matrix Lj(ϑ).
The latter operation uses at most O(n `) operations in K. Since we have at most N +1 matrices

3.5. Reduction to the simple case by linear substitutions 85

Lj(ϑ), then the total cost of Step 3.4.(b) is at most O(n `N) operations in K. Consequently,
the reduction procedure can be done using at most O

(
n2 `N

)
operations in K. Concerning Step

3.5, since T ∈ K[x−1]n×n of degree in x−1 always bounded by D, Step 3.5 can then be performed
using at most O

(
n2D

)
operations in K. Finally Step 3.6 uses at most O

(
n2
)
operations in K.

Thus, one passage by the For loop costs at most O
(
n2 `N

)
operations in K. Consequently, the

total cost of the algorithm is at most O∼
(
nω+1 `D + n2 `N D

)
arithmetic operations in K.

3.5.3 Reconstruction of the regular solutions

The following proposition shows how to choose N in Algorithm LinSubs and ν in Algorithm
BCE_V2 in order to get the general regular solution of L(x, ϑ)(y(x)) = 0 up to a fixed order
ν1.

Proposition 3.5.4. Let L(x, ϑ)(y(x)) = 0 be a non-simple linear differential system of the form
(3.1) having an invertible leading coefficient matrix A`(x) ∈ K[x]n×n. Suppose that L(x, ϑ) can
be reduced to a simple operator by means of a linear substitution. Let D =

∑n
j=1 deg(A`(x)(., j))

and ν1 ∈ N. The general regular solution up to order ν1 of system L(x, ϑ)(y(x)) = 0 can be
computed as follows:

1. apply Algorithm LinSubs to L(x, ϑ)|N with N = ν1 + 2D. Let T be the computed matrix;
then

2. apply Algorithm BCE_V2 to L(x, ϑ)|N T with ν = ν1 +D, and finally,

3. multiply the output of Algorithm BCE_V2 on the left by T .

Proof. We will start by proving that to compute the regular solutions of L(x, ϑ)(y(x)) = 0 up
to order ν1, it suffices to compute those of L(x, ϑ)(z(x)) = 0, where L(x, ϑ) = L(x, ϑ)T , up to
order ν1 + D. Write T = P (x)xαQ(x) where P (x) ∈ K[x]n×n and Q(x) ∈ K[[x]]n×n are as in
Lemma 3.5.1 and α = diag(α1, . . . , αn) with α1 ≤ · · · ≤ αn and α1 < 0 because v(T) < 0. Put
L1(x, ϑ) = L(x, ϑ)P (x) and L2(x, ϑ) = L(x, ϑ)Q−1(x), then L2(x, ϑ) = L1(x, ϑ)xα. Since P (x)
is unimodular (P (0) is invertible), then to each regular solution y of L(x, ϑ) of exponent λ0 ∈ K
corresponds a regular solution u = P−1(x) y of L1(x, ϑ) of the same exponent λ0. Moreover, to
have y up to order ν1, it suffices to compute u up to order ν1. Similar statements hold for the
regular solutions z of L(x, ϑ) and those w = Q(x) z of L2(x, ϑ). Now, u and w are related by
u = xαw. Our problem is now reduced to show that to compute u up to order ν1 it suffices to
have w up to order ν1 +D. For this, write w = xλ1w̃ with λ1 ∈ K and

w̃ = W̃0 + W̃1 x+ · · ·+ W̃k x
k + · · · , where W̃k ∈ K[log(x)]n and W̃0 6= 0.

Let w̃i denote the ith component of w̃ and vi = v(w̃i) ≥ 0. Put ũ = xα w̃ and m = v(ũ) =
mini=1,...,n(αi+vi). Since W̃0 6= 0, then there exists i0 ∈ {1, . . . , n} such that the i0th component
of W̃0 is nonzero, i.e., for which vi0 = 0. Therefore, m is well defined and α1 ≤ m ≤ αi0 + vi0 =
αi0 ≤ αn. Since u = xαw = xλ1 xα w̃ = xλ1 ũ, u is then a regular solution of L1(x, ϑ) of exponent
λ1 +m. Write

ũ = xm
(
Ũ0 + Ũ1 x+ · · ·+ Ũk x

k + · · ·
)
, where Ũk ∈ K[log(x)]n and Ũ0 6= 0.

Computing u up to order ν1 requires the knowledge of the coefficients Ũ0, . . . , Ũν1 . Now, the ith
component

(
Ũk

)
i
of Ũk is the coefficient of xk+m in ũi = xαi w̃i, hence,

(
Ũk

)
i

=
(
W̃k+m−αi

)
i
.

Thus, the coefficients Ũ0, . . . , Ũν1 depend on W̃0, . . . , W̃ν1+m−α1 . Hence, it suffices to compute
w up to order ν1 + D because we have ν1 + m − α1 ≤ ν1 + αn − α1 = ν1 + span(T) ≤ ν1 + D

86 Chapter 3. Simple Forms and Regular Solutions

(see Lemma 3.5.3). Now, since L(x, ϑ) is simple, we only have to consider L(x, ϑ) = L(x, ϑ)T
truncated at order ν1 +D (see Remark 2.6.1 of Chapter 2). Thus, according to Proposition 3.5.2,
we need to truncate L(x, ϑ) at order ν1 +D−v(T), so we take N = ν1 +2D ≥ ν1 +D−v(T).

3.6 A differential variant of the EG’-algorithm

In this section, we consider a non-simple linear differential system of the form (3.1) with invertible
leading coefficient A`(x) and we suppose that all its coefficient matrices Ai(x) are n×n matrix
polynomials. Inspired by the EG’-algorithm proposed by Abramov et al. in [4] (see also
[1, 2, 3]), we develop an algorithm which carries out elementary operations on the rows of L(x, ϑ)
and always yields a simple operator L(x, ϑ) which can be written as L(x, ϑ) = P(x, ϑ)L(x, ϑ)
with P(x, ϑ) ∈ K[x−1][ϑ]n×n. We then explain how to recover the regular solutions of L(x, ϑ)
from those of L(x, ϑ) which can be computed using Algorithm BCE_V2.

3.6.1 Definitions and preliminaries

In the sequel, we use definitions and terminologies defined in [27] for matrices of Ore polynomials
and we adapt them to matrix differential operators in K((x))[ϑ]n×n.

Definition 3.6.1. Let L(x, ϑ) ∈ K((x))[ϑ]n×n be a matrix differential operator and J ⊆
{1, . . . , n}. The rows of L(x, ϑ) with index i ∈ J are said to be K((x))[ϑ]-linearly de-
pendent if there exist differential operators {Wi}i∈J in K((x))[ϑ] not all zero such that∑

i∈JWi L(x, ϑ)(i, .) = 0. Otherwise, they are said to be K((x))[ϑ]-linearly independent.

Definition 3.6.2. Let L(x, ϑ) ∈ K((x))[ϑ]n×n be a matrix differential operator. Denote byML
the submodule of the left K((x))[ϑ]-module K((x))[ϑ]1×n defined by

ML =
{
P (x, ϑ)L(x, ϑ); P (x, ϑ) ∈ K((x))[ϑ]1×n

}
.

The row rank of L(x, ϑ) is defined to be the rank of the moduleML which is, following [38, page
28], equal to the cardinality of a maximal K((x))[ϑ]-linearly independent subset ofML.

It has been shown in [27, Appendix] that the row rank of L(x, ϑ) is equal to the maximum
number of K((x))[ϑ]-linearly independent rows of L(x, ϑ). In the rest of this section, we will
refer to the row rank by simply rank.

In this section, we are merely interested in applying two types of elementary row operations
to a matrix differential operator L(x, ϑ). The first type of elementary row operations includes:

(E1) interchanging two rows of L(x, ϑ);

(E2) adding to a row of L(x, ϑ) another row multiplied on the left by a scalar differential
operator in K((x))[ϑ];

(E3) multiplying a row of L(x, ϑ) on the left by a nonzero scalar differential operator in
K((x))[ϑ];

The second type includes the elementary row operations (E1) and (E2) and

(E3’) multiplying a row of L(x, ϑ) on the left by a nonzero element of K((x)).

Note that each elementary row operation can be performed by multiplying L(x, ϑ) on the left
by a square matrix differential operator.

3.6. A differential variant of the EG’-algorithm 87

Definition 3.6.3. 1. A matrix differential operator P(x, ϑ) ∈ K((x))[ϑ]n×n is said to be
unimodular if it has a two-sided inverse in K((x))[ϑ]n×n, that is, if there exists a matrix
differential operator Q(x, ϑ) ∈ K((x))[ϑ]n×n such that Q(x, ϑ)P(x, ϑ) = P(x, ϑ)Q(x, ϑ) =
In.

2. Two matrix differential operators L(x, ϑ) and L(x, ϑ) are said to be left-equivalent
if there exists a unimodular matrix differential operator P(x, ϑ) such that L(x, ϑ) =
P(x, ϑ)L(x, ϑ).

It is easy to see that two left-equivalent matrix differential operators have the same regular
formal solution space.

Lemma 3.6.1 ([75], Theorem III). A matrix differential operator P(x, ϑ) is unimodular if and
only if it can be expressed as a product of elementary operations of the second type.

Thus, two matrix differential operators L(x, ϑ) and L(x, ϑ) are left-equivalent if one is ob-
tained from the other by means of elementary row operations of the second type.

Lemma 3.6.2. [27, Lemma A.3] The rank of a matrix differential operator L(x, ϑ) does not
change if one applies to L(x, ϑ) elementary row operations of the first or of the second type.

Proposition 3.6.1. A matrix differential operator L(x, ϑ) =
∑`

i=0Ai(x)ϑi ∈ K((x))[ϑ]n×n with
A`(x) ∈ GLn(K((x))) is of rank n.

Proof. Since A`(x) is an invertible matrix, we may suppose, without loss of generality, that it
is the identity matrix In. If the rows of L(x, ϑ) are K((x))[ϑ]-linearly dependent, then there
exist W1, . . . ,Wn ∈ K((x))[ϑ] not all zero such that

∑n
i=1Wi L(x, ϑ)(i, .) = 0. Since the leading

coefficient of L(x, ϑ) is supposed to be the identity matrix, the order of each diagonal entry
L(x, ϑ)(i, i) is greater than those of other entries L(x, ϑ)(i, j) for j 6= i. Choose j0 ∈ {1, . . . , n}
such that the order of the differential operatorWj0 is greater than or equal to the orders of all the
Wj for j 6= j0. We have Wj0 L(x, ϑ)(j0, j0) = −

∑
i 6=j0 Wi L(x, ϑ)(i, j0) which is impossible since

the order of the left-hand side of the latter equality is greater than the order of its right-hand
side.

3.6.2 Algorithm

The following algorithm consists in applying elementary row operations of the first or second
type to a non-simple matrix differential operator L(x, ϑ) ∈ K[x][ϑ]n×n with invertible leading
coefficient and yields another operator L(x, ϑ) = P(x, ϑ)L(x, ϑ) whose rank is equal to that of
L(0, λ). We know, from Proposition 3.6.1, that the rank of L(x, ϑ) is equal to n. Consequently,
from Lemma 3.6.2, the rank of L(x, ϑ) is also n, so rank(L(0, λ)) = n and L(x, ϑ) is simple. Note
that the regular formal solution space of the original system L(x, ϑ)(y(x)) = 0 is a subspace of
that of L(x, ϑ)(y(x)) = 0. Nevertheless, depending on the elementary row operations performed
on L(x, ϑ), it may be that the two systems share the same regular formal solution space.

The steps of the following algorithm are very close to those of Algorithm LinSubs developed
in the previous section. The main changes are the following:

• We work with the rows of the matrix differential operator instead of working with its
columns. In particular, we act on the left and compute left minimal bases;

• We consider all the rows of the left minimal bases and not only the constant ones. Note
that a consequence is that the termination criterion of the algorithm slightly changes;

88 Chapter 3. Simple Forms and Regular Solutions

• As our goal is to find the regular solutions of the non-simple system, at each step of the
reduction, we look at the type of the elementary row operation performed. If we apply
an elementary row operation of the first and not of the second type, then we keep the
index of the corresponding row in a set K (see Algorithm EG_DV below) which will
be used later in Subsection 3.6.3 to reconstruct the regular solutions of the original system.

Algorithm EG_DV

Input: A non-simple matrix differential operator L(x, ϑ) ∈ K[x][ϑ]n×n with invertible
leading coefficient matrix.

Output: A simple matrix differential operator L(x, ϑ) = P(x, ϑ)L(x, ϑ) and a set K.

Initialization: L(x, ϑ) = L(x, ϑ) and K = { };

While L(0, ϑ) is singular do
1. Compute a matrix B whose rows form a left minimal basis of L(0, ϑ);
2. For each row B(k, .) do

2.1. Let Jk = {j ∈ {1, . . . , n} such that B(k, j) 6= 0};
2.2. Choose ik ∈ Jk such that degx(L(x, ϑ)(ik, .)) ≥ degx(L(x, ϑ)(i, .)) ∀ i ∈ Jk;
2.3. Apply the following reduction procedure:

2.3.(a). Let L(x, ϑ)(ik, .) = B(k, .)L(x, ϑ);
2.3.(b). Let βik = v

(
L(x, ϑ)(ik, .)

)
and L(x, ϑ)(ik, .) = x−βik L(x, ϑ)(ik, .);

2.4. If deg(B(k, ik)) 6= 0 then K = K ∪ {ik} end if ;
2.5. If deg(B(k, .)) = 0 then use B(k, ik) as a pivot to eliminate all B(j, ik)

with j 6= k else go back to Step 1 end if ;
end do;

end do;
Return L(x, ϑ) and K;

Proposition 3.6.2. Let L(x, ϑ) =
∑`

i=0Ai(x)ϑi ∈ K[x][ϑ]n×n be a non-simple matrix differen-
tial operator with invertible leading coefficient matrix A`(x) and let N = maxi=0,...,` deg(Ai(x)).
Let `simple (`simple ≤ nnN `) denote the order of the operator returned by Algorithm EG_DV.
Then, Algorithm EG_DV stops after at most nN calls of the reduction procedure and uses at
most O∼

(
nω+2N `simple + n4N2 `simple

)
arithmetic operations in K.

Proof. Each time we execute the reduction procedure, the degree in x of one row of the operator
L(x, ϑ) decreases by at least 1 while the degrees of the other rows remain unchanged (adapt the
proof of Proposition 3.5.1: the columns of the leading coefficient matrix are replaced by the rows
of the matrix differential operator). Consequently, either the algorithm stops before performing
nN times the reduction procedure or after the (nN)th reduction, in which case, the output
operator has constant coefficient matrices and is of rank n (by Lemma 3.6.2); therefore, it is
necessarily simple. This proves the first claim. We now study the arithmetic complexity of the
algorithm. We recall first that the degrees of the elements of a left minimal basis of an n × n
singular matrix polynomial of rank r and degree d are bounded by r d < nd (see Section 1.7
of Chapter 1). Consequently, if we suppose that, after running i times the While loop, the
operator L(x, ϑ) is still non-simple and if `i ∈ N∗ (`0 = `) denotes the order of L(x, ϑ) and ri
denotes the rank of L(0, ϑ), then we have `i ≤ `i+1 ≤ `i + ri `i ≤ n `i. Now in the worst case,
we run nN times the While loop, so if `simple denotes the order of the output operator then
we have `simple ≤ nnN `. At the ith passage in the While loop, Step 1 can be done using at
most O∼

(
nω+1 `i−1

)
operations in K (see Lemma 1.7.2 of Chapter 1). Taking into account the

3.6. A differential variant of the EG’-algorithm 89

degrees of the elements of the computed left minimal basis, Step 2.3.(a) at the ith passage in
the While loop can be performed using at most O∼

(
n3N `i−1

)
operations in K3 and Step 2.5

in O
(
n3 `i−1

)
operations in K. Hence Algorithm EG_DV returns a simple operator after at

most O∼
(
nω+2N `simple + n4N2 `simple

)
operations in K.

We will make a few comments on Algorithm EG_DV:

1. We use B(k, ik) as a pivot to eliminate all the elements B(j, ik) with j 6= k only if B(k, .) is a
constant row, otherwise we may increase the degrees of the elements of B and consequently,
we cannot ensure in the proof of Proposition 3.6.2 that `i+1 ≤ `i + ri `i;

2. Algorithm EG_DV can be applied more generally to any non-simple matrix differen-
tial operator L(x, ϑ) =

∑`
i=0Ai(x)ϑi ∈ K[x][ϑ]n×n of rank n and not necessarily with

invertible leading coefficient A`(x);

3. The complexity result that we give is a worst case estimate. In practice, the potentially
exponential growth of the order of the operator does not seem to be a serious limitation.

Example 3.6.1. Consider the matrix differential operator defined by

L(x, ϑ) =

x 0 0
0 x x
0 0 1

ϑ3 +

0 x3 1
0 x2 1
x 1 0

ϑ2 +

0 1 x2

0 1 x
1 0 2x

ϑ+

1 0 0
1 0 0
0 x2 4x3

 .

Its associated matrix polynomial L(0, ϑ) given by

L(0, ϑ) =

1 ϑ ϑ2

1 ϑ ϑ2

ϑ ϑ2 ϑ3


is singular; thus the operator L(x, ϑ) is non-simple. A right minimal basis of L(0, ϑ) is given by
the columns of the matrix −ϑ 0

1 −ϑ
0 1

 ;

hence, according to Theorem 3.5.1, there exists no linear substitution yielding a simple operator.
Consequently, we will apply Algorithm EG_DV above. A left minimal basis of L(0, ϑ) is given
by the rows of the matrix

B =
(
−1 1 0
ϑ 0 −1

)
.

Let us start by considering the first row B(1, .) =
(
−1 1 0

)
whose first two components are

nonzero. Since degx (L(x, ϑ)(1, .)) = 3 > degx (L(x, ϑ)(2, .)) = 2, we will reduce the first row of
L(x, ϑ), i.e., i1 = 1. Replacing L(x, ϑ)(1, .) by B(1, .)L(x, ϑ) = −L(x, ϑ)(1, .) + L(x, ϑ)(2, .), we
get the matrix differential operator

L1(x, ϑ) =

−x x x
0 x x
0 0 1

ϑ3 +

0 x2 − x3 0
0 x2 1
x 1 0

ϑ2 +

0 0 x− x2

0 1 x
1 0 2x

ϑ+

0 0 0
1 0 0
0 x2 4x3

 .

3We suppose that the Fast Fourier Transform can be used so that two univariate polynomials with coefficients
in K and degree bounded by d can be multiplied in O∼(d) arithmetic operations in K, see [31].

90 Chapter 3. Simple Forms and Regular Solutions

Now β1 = v(L1(x, ϑ)(1, .)) = 1 so we multiply L1(x, ϑ)(1, .) on the left by x−1. We obtain the
operator

L2(x, ϑ) =

−1 1 1
0 x x
0 0 1

ϑ3 +

0 x− x2 0
0 x2 1
x 1 0

ϑ2 +

0 0 1− x
0 1 x
1 0 2x

ϑ+

0 0 0
1 0 0
0 x2 4x3


which is left-equivalent to L(x, ϑ) since deg(B(1, 1)) = 0. We now use B(1, 1) = −1 as a pivot
to eliminate B(2, 1). Consequently, B becomes

B1 =
(
−1 1 0
0 ϑ −1

)
.

Let us now consider the second row B1(2, .) which is in the left minimal basis of L2(0, ϑ). Since
degx (L2(x, ϑ)(3, .)) = 3 > degx (L2(x, ϑ)(2, .)) = 2, we have i2 = 3; we replace L2(x, ϑ)(3, .) by
B1(2, .)L2(x, ϑ) = −L2(x, ϑ)(3, .) + ϑL2(x, ϑ)(2, .) and obtain the operator of order 4

L3(x, ϑ) =

0 0 0
0 0 0
0 x x

ϑ4 +

−1 1 1
0 x x
0 x+ x2 x

ϑ3 +

 0 x− x2 0
0 x2 1
−x 2x2 x

ϑ2

+

0 0 1− x
0 1 x
0 0 −x

ϑ+

0 0 0
1 0 0
0 −x2 −4x3

 .

Since deg(B1(2, 3)) = 0, L3(x, ϑ) is also left-equivalent to L(x, ϑ). Now β3 = v(L3(x, ϑ)(3, .)) =
1, so we multiply the third row of L3(x, ϑ) on the left by x−1 and get

L4(x, ϑ) =

0 0 0
0 0 0
0 1 1

ϑ4 +

−1 1 1
0 x x
0 1 + x 1

ϑ3 +

 0 x− x2 0
0 x2 1
−1 2x 1

ϑ2

+

0 0 1− x
0 1 x
0 0 −1

ϑ+

0 0 0
1 0 0
0 −x −4x2

 .

One can easily check that the matrix polynomial associated with L4(x, ϑ) given by

L4(0, λ) =

−λ3 λ3 λ3 + λ
1 λ λ2

−λ2 λ4 + λ3 λ4 + λ3 + λ2 − λ


is regular and hence the operator L4(x, ϑ) is simple. Furthermore, it is left-equivalent to L(x, ϑ).
Consequently, the regular formal solution spaces of L(x, ϑ)(y(x)) = 0 and L4(x, ϑ)(y(x)) = 0 are
exactly the same, so applying Algorithm BCE_V2 to L4(x, ϑ) yields the general regular formal
solution of L(x, ϑ). �

Example 3.6.2. Consider the matrix differential operator L(x, ϑ) given by

L(x, ϑ) =
(

1 0
0 x

)
ϑ2 +

(
0 1
1 0

)
ϑ+

(
0 0
0 1

)
. (3.17)

Its associated matrix polynomial given by

L(0, ϑ) =
(
ϑ2 ϑ
ϑ 1

)

3.6. A differential variant of the EG’-algorithm 91

is singular and hence the operator L(x, ϑ) is non-simple. According to Proposition 3.4.1, a simple
operator cannot be obtained from L(x, ϑ) by means of a linear substitution. Consequently, we
will apply Algorithm EG_DV to L(x, ϑ). A left minimal basis of L(0, ϑ) is composed of one
vector v =

(
−1 ϑ

)
. Since degx(L(x, ϑ)(2, .)) > degx(L(x, ϑ)(1, .)), we replace L(x, ϑ)(2, .) by

vL(x, ϑ) = ϑL(x, ϑ)(2, .)−L(x, ϑ)(1, .); this is a combination of two elementary row operations
of the first type. It yields the matrix differential operator

L1(x, ϑ) =
(

0 0
0 x

)
ϑ3 +

(
1 0
0 x

)
ϑ2 +

(
0 1
0 0

)
ϑ

which is not left-equivalent to L(x, ϑ). So we set K = {2}. Finally, we multiply the second row
of L1(x, ϑ) on the left by x−1 and we get

L2(x, ϑ) =
(

0 0
0 1

)
ϑ3 +

(
1 0
0 1

)
ϑ2 +

(
0 1
0 0

)
ϑ. (3.18)

The latter system is simple but not left-equivalent to L(x, ϑ) given by (3.17). Hence the regular
formal solution space of L(x, ϑ)(y(x)) = 0 is a subspace of that of L2(x, ϑ)(y(x)) = 0. �

3.6.3 Reconstruction of the regular solutions

Now, we will explain how to reconstruct the general regular solution up to order ν ∈ N of a
non-simple system L(x, ϑ)(y(x)) = 0 from that of the output of Algorithm EG_DV.

Two cases have to be considered. If the output operator L(x, ϑ) of Algorithm EG_DV is
left-equivalent to the input one L(x, ϑ) (this corresponds to K = { }), then the general regular
solution of L(x, ϑ)(y(x)) = 0 is exactly that of L(x, ϑ)(y(x)) = 0. Consequently, to get the
general regular solution of L(x, ϑ)(y(x)) = 0 up to order ν, it suffices to compute that of
L(x, ϑ)(y(x)) = 0 up to order ν by applying Algorithm BCE_V2.

Otherwise, i.e., ifK is a nonempty set, L(x, ϑ) is not left-equivalent to L(x, ϑ) and we can pro-
ceed as follows. First, we compute the general regular solution z(x) of system L(x, ϑ)(z(x)) = 0
up to order ν by applying Algorithm BCE_V2. Write z(x) =

∑r
i=1 x

λi zi(x), where xλi zi(x)
is the general regular solution associated with the set σi, computed up to order ν (see Subsec-
tion 2.6.3 of Chapter 2). Then, we consider the subsystem of L(x, ϑ)(y(x)) = 0 formed by the
equations given by the rows of L(x, ϑ) of indices j ∈ K and we plug z(x) into it. Hence, z(x)
is a general regular solution up to order ν of L(x, ϑ)(y(x)) = 0 if and only if the coefficients
of xλi+k in L(x, ϑ)(j, .)(z(x)) for j ∈ K, i = 1, . . . , r and k = 0, . . . , ν are all equal to zero
(see Remark 2.6.3 of Chapter 2). This yields a system of linear equations in the parameters
appearing in z(x). Finally, solving this system and substituting its solution into z(x), we get
the general regular solution of L(x, ϑ)(y(x)) = 0 up to order ν.

Example 3.6.3. We are interested in computing the general regular solution of the linear dif-
ferential system L(x, ϑ)((y(x)) = 0, where L(x, ϑ) is given by (3.17). As we have already seen
in Example 3.6.2, Algorithm EG_DV applied to L(x, ϑ) returns a non left-equivalent operator
L2(x, ϑ) given by (3.18) and the set K = {2}. Since the system L2(x, ϑ)((y(x)) = 0 has constant
coefficient matrices, its regular solutions are then of the form given by Lemma 2.4.1 of Chapter 2.
Since σ(L2(0, λ)) = {−1, 0}, the general regular solution of L2(x, ϑ)(y(x)) = 0 can be written
as x−1 (U0 + U1 x), where U0 and U1 are two vector polynomials in log(x) whose coefficients de-
pend on arbitrary constants. Consequently, Algorithm BCE_V2 applied to L2(x, ϑ) with ν = 1
returns the general regular solution of L2(x, ϑ)(y(x)) = 0 given by

z(x) =
(
C1 x

−1 + C2 + C3 log(x)− C4
2 log2(x)

C1 x
−1 + C5 + C4 log(x)

)
,

92 Chapter 3. Simple Forms and Regular Solutions

where the Ci’s are arbitrary constants in Q. Since K = {2}, we plug z(x) into the second equation
of the original system and we find

L(x, ϑ)(2, .)(z(x)) = C1 + C3 + C5.

Therefore, the vector z is the general regular solution of L(x, ϑ)(y(x)) = 0 if and only if the
constants C1, C3 and C5 satisfies C1 = −C3−C5. Hence, the general regular solution of system
L(x, ϑ)(y(x)) = 0 is given by(

C2 + C3 (log(x)− x−1)− C4
2 log2(x)− C5 x

−1

−C3 x
−1 + C5 (1− x−1) + C4 log(x)

)
.

�

Chapter 4

On k-Simple Forms of First-Order
Linear Differential Systems and their

Computation

Contents
4.1 Introduction and motivation . 93
4.2 On k-simple linear differential systems and the super-reduction 96

4.2.1 Definitions . 96
4.2.2 The notion of super-reduction . 97

4.3 Direct approach for computing k-simple forms 98
4.3.1 Linearly dependent constant rows . 100
4.3.2 Reduction to the case of linearly dependent constant rows 103
4.3.3 An example . 107

4.4 Algorithm and complexity estimation . 109
4.5 Preservation of the simplicity . 111
4.6 An example . 118

4.1 Introduction and motivation

Consider a system of first-order linear differential equations of the form

ϑ(y(x)) = A(x) y(x), with A(x) =
1
xp

∞∑
i=0

Ai x
i, (4.1)

where Ai ∈ Kn×n such that A0 6= 0 and p ∈ N is the Poincaré-rank of the system. It is well-
known (see [9, 95, 101]) that System (4.1) has n linearly independent formal solutions of the
form

yi(x) = exp
(
qi

(
x−1/ri

))
xλi zi

(
x1/ri

)
, for i = 1, . . . , n, (4.2)

where ri ∈ N∗, qi(t) ∈ tK[t], λi ∈ K and zi
(
x1/ri

)
∈ K[[x1/ri]][log(x)]n. For some integer

i ∈ {1, . . . , n}, if one has qi = 0, then ri can be chosen equal to 1 and yi(x) is a regular solution
of System (4.1). Otherwise, i.e., if one has qi 6= 0, yi(x) is called an irregular solution. When
System (4.1) admits at least one irregular solution, the point x = 0 is said to be an irregular
singularity for the system. Remark that each solution yi can be written as

yi = exp
(∫

wi

)
zi with wi =

dqi
dx

+
λi
x
∈ x−1K[x−1/ri]

and the polynomials qi are invariant with respect to any gauge transformation y(x) = T (x) z(x)
(see Subsection 2.2.1 of Chapter 2) with T (x) ∈ GLn

(
K((x))

)
.

93

94 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

A classical approach for computing the formal solutions (4.2) of System (4.1) consists in
reducing the system, by means of cyclic vectors [11, 35] for example, to an nth order scalar linear
differential equation. The classification of the singularity can then be read off directly from the
Newton polygon [13, 94] which is constructed from the valuations of the coefficients of the scalar
equation at x = 0; the singularity is regular if and only if the Newton polygon has only one
slope equal to 0 (see [94, Chap. 2] and references therein). When the singularity is irregular, the
positive slopes of the Newton polygon give the “degrees” in 1/x of the polynomials qi occurring
in the exponential parts of the solutions (4.2) and the roots of the Newton polynomials1 give the
leading coefficients of these qi’s (see [13, 26, 94]). The Newton algorithm [10, 26, 94] can then be
used to compute a fundamental system of formal solutions of the scalar equation from which the
solutions of the given system can be deduced. However, one would like to avoid the computation
of an equivalent scalar linear differential equation as it can be very costly in general (see [36,
Chap. 1]).

The Newton polygon of a system of the form (4.1) is defined as the Newton polygon of any
nth order linear differential equation equivalent to (4.1). Unfortunately, the Newton polygon
of (4.1) cannot immediately be read off from the system matrix A(x). Nevertheless, there exist
direct methods (see [13, 33, 85, 101] and references therein) for constructing the solutions (4.2) of
(4.1) without converting into an nth order linear differential equation. These methods determine
first the polynomials qi. After this, the problem can then be reduced to solving regular formal
solutions of systems of the form (4.1). These algorithms are essentially based on the formal
reduction procedure: reducing the problem of size n into several independent subproblems of
smaller size (Splitting Lemma [13, Th. 2] and Generalized Splitting Lemma [85, Prop. 3.2]). Here,
we will be interested in particular in the algorithm developed in [85] which is able to detect and
separate the polynomials qi having integer degrees from those having non integer degrees for
which the task seems to be a bit more complicated. Let k be a nonnegative integer smaller than
or equal to the Poincaré-rank p of System (4.1). Write System (4.1) in the form

Dk(y(x)) = D(x)ϑk(y(x)) +N(x) y(x) = 0, (4.3)

where ϑk = xk ϑ, D(x) and N(x) belong to K[[x]]n×n such that D(x) ∈ GLn(K((x))) and for
i = 1, . . . , n, min{v(D(i, .)), v(N(i, .)} = 0 (see [84, 85] for more details). The action of Dk on a
solution of the form y = exp

(∫
w
)
z with w ∈ K((x)) of the form

w =
λ0

xk+1
+ · · · ,

and z ∈ K[[x
1
r]]n (r ∈ N∗) such that z(0) 6= 0 gives

exp
(
−
∫
w

)
Dk(y) = (D(0)λ0 +N(0)) z(0) + · · · ,

where the dots stand for terms of higher valuation. Therefore, y = exp
(∫
w
)
z is a solution of

Dk(y) = 0 implies that (D(0)λ0 +N(0)) z(0) = 0. Consequently, if the matrix pencil defined by

Lk(λ) = D(0)λ+N(0)

is singular, then no useful information is provided. Otherwise, λ0 has to be chosen as an
eigenvalue of Lk(λ) and z(0) as an eigenvector of Lk(λ) associated with λ0 (see Section 1.1 of
Chapter 1). Systems of the form (4.3) with a regular matrix pencil Lk(λ) are called k-simple
systems (see Definition 4.2.1 below). Thus, the notion of 0-simple systems coincides with that

1Newton’s polynomials are also known as characteristic polynomials. They are polynomials associated with
the slopes of the Newton polygon.

4.1. Introduction and motivation 95

of simple systems viewed in Definition 3.2.1 of the previous chapter. It has been shown in [85,
Th. 3.3] that if System (4.1) can be written as a k-simple system (4.3) and if λ0 is an eigenvalue
of the matrix pencil Lk(λ) of algebraic multiplicity m, then there exist m linearly independent
formal solutions of (4.1) of the form y(x) = exp

(∫
w
)
z(x), where w ∈ x−1K[x−1/r] (r ∈ N∗) can

be written as
w =

λ0

xk+1
+ · · · ,

here the dots stand for terms of higher valuation, and z ∈ K[[x1/r]][log(x)]n. We see then that
the determinant of Lk(λ) plays the same role as a Newton polynomial. Thus, assuming that for
k = 0, 1, . . . , p, the matrix pencil Lk(λ) is regular, the Newton polygon of System (4.1) has

• a zero slope if and only if L0(λ) has at least one eigenvalue, i.e., det(L0(λ)) 6∈ K, and

• an integer slope k between 1 and p if and only if Lk(λ) has a nonzero eigenvalue.

Thus, to determine whether an integer k ∈ {0, . . . , p} is a slope of the Newton polygon of
(4.1), the latter system needs first to be written as k-simple system of the form (4.3). But this is
not always trivial since the condition on the regularity of the matrix pencil Lk(λ) is sometimes
hard to satisfy. However, it has been shown in [85, Th. 4.1] that if System (4.1) is in the so-called
super-reduced form [58, 24, 25], then it can be written as k-simple system for all the integers k
between 0 and p.

In this chapter, we consider the class of systems of the form (4.3) with k ∈ N. Motivated by
the fact that for some integer k, a k-simple system (4.3) written as

ϑ(y(x)) = −x−kD−1(x)N(x) y(x)

is not necessarily super-reduced, the purpose of this chapter is the development of a direct
method transforming a given system of the form (4.3) into a k-simple equivalent one (see Defi-
nition 4.2.2 below). Thus, we will be able in particular to answer the question whether a fixed
integer k is a slope of the Newton polygon of System (4.1) without reducing the latter system
into a super-reduced form. Our approach is also useful when one is looking for regular solutions
of System (4.1), or more generally, of systems of the form

D(x)ϑ(y(x)) +N(x) y(x) = 0 (4.4)

with D(x) and N(x) in K[[x]]n×n and D(x) ∈ GLn(K((x))): indeed, the algorithms that we
have developed in Chapter 2 and the algorithm of [21] for computing regular solutions are both
built on the prerequisite condition that System (4.4) is simple.

The chapter is organized as follows. First, in Section 4.2, we review the notion of k-simple
systems which has been introduced in [84, 85] as a generalization of that of simple systems, see
Chapter 3. Then, we recall the notion of super-reduction which consists a standard approach
for computing k-simple forms. In Section 4.3, we develop our direct method for computing a
k-simple system equivalent to (4.3). We illustrate our approach with examples and we study
its arithmetic complexity in Section 4.4. In Section 4.5, we highlight a characteristic of our
algorithm. Finally, we provide in Section 4.6 an example recapitulating all the notions viewed
in this chapter.

Notation. Throughout this chapter, for a matrix M with entries in K[[x]], the notation M0

denotes matrix M evaluated at x = 0 and M|ν denotes matrix M truncated at order ν ∈ N. For
f ∈ K((x)) \ {0}, v(f) stands for the x-adic valuation of f and `c(f) for the leading coefficient
of f , i.e., the coefficient of xv(f) in f . By convention, we take v(0) = +∞. For an n-dimensional

96 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

multi-index α = (α1, . . . , αn), |α| denotes the sum of its components, that is, |α| =
∑n

i=1 αi.
We recall that the Kronecker delta δi,j is defined by

δi,j =
{

1 if i = j,
0 if i 6= j.

Finally, for a nonnegative integer k, ϑk stands for the derivation xkϑ and the symbol
∫
denotes

the integration with respect to dx, i.e.,

for w ∈ K((x)) =
⋃
r≥1

K((x
1
r)),

d

dx

(∫
w

)
= w.

4.2 On k-simple linear differential systems and the super-
reduction

4.2.1 Definitions

Definition 4.2.1 ([85], Def. 3.3). Let k ∈ N. A linear differential system of the form

Dk(y(x)) = D(x)ϑk(y(x)) +N(x) y(x) = 0,

or the matrix differential operator Dk = D(x)ϑk+N(x), with D(x), N(x) ∈ K[[x]]n×n such that
D(x) ∈ GLn(K((x))) and for i = 1, . . . , n, min{v(D(i, .)), v(N(i, .)} = 0 is said to be k-simple,
or simple with respect to ϑk, or just simple when no confusion arises, if the matrix pencil Lk(λ)
defined by

Lk(λ) = D0 λ+N0

is regular. In the sequel, we will refer to Lk(λ) as the matrix pencil associated with Dk.

Definition 4.2.2. Two matrix differential operators Dk = D(x)ϑk +N(x) and D̃k = D̃(x)ϑk +
Ñ(x), with matrices D(x), N(x), D̃(x) and Ñ(x) belonging to K((x))n×n, are said to be equiv-
alent if there exist two matrices S(x) and T (x) in GLn(K((x))) such that D̃k = S(x)Dk T (x),
that is, D̃(x) = S(x)D(x)T (x) and Ñ(x) = S(x)N(x)T (x) + S(x)D(x)ϑk(T (x)).

It is important to point out that the multiplication of an operator Dk ∈ K[[x]][ϑk]n×n on the
left and on the right by unimodular matrices of K[[x]]n×n, i.e., by invertible matrices over K[[x]],
preserves the k-simplicity of the operator. In other terms, if S(x) and T (x) are two unimodular
matrices of K[[x]]n×n, then two equivalent operators Dk and D̃k = S(x)Dk T (x) = D̃(x)ϑ+Ñ(x)
are simultaneously either simple or non-simple with respect to ϑk. Indeed, let L̃k(λ) denote the
matrix pencil associated with D̃k. By definition, L̃k(λ) is equal to

L̃k(λ) = D̃(x)λ+ Ñ(x)

x=0

= S(x)
(
D(x)λ+N(x) + D(x)ϑk(T (x))T−1(x)

)
T (x)


x=0

= S0 (D0 λ+N0)T0

(
since v(ϑk(T (x))) ≥ k + 1 and v

(
T−1(x)

)
≥ 0
)

= S0 Lk(λ)T0

with S0 and T0 both invertible. Thus, L̃k(λ) is regular if and only if Lk(λ) is so.

4.2. On k-simple linear differential systems and the super-reduction 97

4.2.2 The notion of super-reduction

In this section, we review the notion of super-reduction and the connexion between this notion
and that of k-simplicity. We start by the reduction in the sense of Moser since it is the base of
the super-reduction.

Let m(A) and µ(A) be two rational numbers associated with System (4.1) and defined
respectively by

m(A) = max
{

1, p+ rank(A0)
n

}
and µ(A) = min

{
m(T−1(AT − ϑ(T))); T ∈ GLn(K((x)))

}
.

If System (4.1) satisfies m(A) = µ(A), then it is said to be Moser-reduced. Otherwise, it
is said to be Moser-reducible. In the latter case, Moser proves in [77] that there exists an
invertible matrix T (x) ∈ K[x]n×n such that the system ϑ(z(x)) = B(x) z(x), where B(x) =
T−1(x)A(x)T (x)−T−1(x)ϑ(T (x)), satisfies m(B) = µ(A). To construct such a transformation
T (x), Moser proposes an algorithm which has been later improved in [56, 12].

Apart from the classification of the singularity of (4.1) (see Subsection 2.2.1 of Chapter 2),
Moser’s algorithm answers the question whether the Katz invariant κ of System (4.1), which is
the biggest slope of the Newton Polygon, is an integer or not, see [13]. Indeed, suppose that
System (4.1) is Moser-reduced and that its Poincaré-rank p is greater than or equal to 1. The
Katz invariant of (4.1) is an integer if and only if the matrix A0 is non nilpotent. In this case,
we have κ = p. When κ ∈ Q \ N, the matrix A0 is necessarily nilpotent and p is the smallest
integer greater than κ, i.e., p− 1 < κ < p.

Starting from the notion of Moser-reduction, Hilali & Wazner introduced in [58] the notion of
super-reduction. As we will see in Lemma 4.2.1 below, the super-reduction provides information
on the integer slopes of the Newton polygon of System (4.1). Furthermore, it has been shown
that the invariants of Malgrange and of Gerard-Levelt [55] can be directly read off from a super-
reduced form. Following the presentation in [14], we will define the super-reduction by working
with the rows of the system matrix A(x). For 0 ≤ i ≤ p − 1, let ni denote the number of rows
of A(x) with valuation i− p. For 1 ≤ k ≤ p, define the rational numbers mk(A) by{

mk(A) = 1 if p = 0,
mk(A) = p+ n0

n + n1

n2 + · · ·+ nk−1

nk
if p ≥ 1

and µk(A) by

µk(A) = min
{
mk

(
T−1(AT − ϑ(T))

)
; T ∈ GLn(K((x)))

}
.

System (4.1) is said to be k-reduced if mk(A) = µk(A) and super-reduced if it is p-reduced. The
notion of 1-reduced systems coincides then with that of Moser-reduced systems.

In [58], Hilali and Wazner provide a criterion to decide whether a system of the form (4.1)
is k-reduced. For 1 ≤ j ≤ p, define

rj = j n0 + (j − 1)n1 + · · ·+ nj−1 and θj(A, x, λ) = xrj det
(
In λ− xp−jA(x)

)
. (4.5)

According to [58, Lemma 2.3.1], the θj(A, x, λ) are polynomials in λ with coefficients in K[[x]].

Proposition 4.2.1 ([58], Th. 1). Let k ∈ {1, . . . , p}. The system (4.1) is k-reduced if and only
if for i = 1, . . . , k, θi(A, 0, λ) does not vanish identically.

98 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

It follows that System (4.1) is k-reduced if and only if it is j-reduced for 1 ≤ j ≤ k. In [58],
the authors give an algorithm for computing a super-reduced system gauge-equivalent to (4.1);
starting by applying Moser’s algorithm to System (4.1), they explain how to lift a (k−1)-reduced
system to a k-reduced one. Recently, another algorithm for computing a super-reduced form has
been proposed by Barkatou & Pflügel in [25]. Their method reduces the computation of a super-
reduced system to that of several Moser-reduced systems of smaller size using a block-reduction
algorithm transforming the system into a lower block-triangular one. This algorithm computes
a super-reduced system gauge-equivalent to (4.1) using O

(
ν p n4 min{n− 1, p}

)
operations in K,

where ν is the number of coefficients in the expansion of the system matrix A(x) of (4.1) taking
into account (see [25, Prop. 4.3]).

The following lemma shows the link between super-reduced forms and k-simple systems.

Lemma 4.2.1 ([85], Th. 4.1). Any super-reduced system of the form (4.1) can be written as
k-simple system for any integer 0 ≤ k ≤ p− 1.

For the sake of completeness, we repeat the proof here.

Proof. System (4.1) is super-reduced implies that it is (p − k)-reduced for 0 ≤ k ≤ p − 1.
Thus θp−k(A, 0, λ) 6= 0 for 0 ≤ k ≤ p − 1. Define the matrix α = diag(α1, . . . , αn) with αi =
max{0,−k − v(A(x)(i, .))} . Put D(x) = xα ∈ K[x]n×n. It is easy to check that det(D(x)) =
xrp−k with rp−k given by (4.5). Therefore, we have θp−k(A, x, λ) = det(D(x)λ− xkD(x)A(x)).
From the construction of matrix D(x), we have v(D(x)A(x)) ≥ −k. Hence, the matrix N(x) =
−xkD(x)A(x) belongs to K[[x]]n×n and θp−k(A, 0, λ) = det(D(0)λ+N(0)). On the other hand,
multiplying System (4.1) on the left by xkD(x), we find

D(x)ϑk(Y (x)) +N(x)Y (x) = 0,

with det(D(0)λ+N(0)) = θp−k(A, 0, λ) 6= 0. Hence, the latter system is k-simple.

It is important to note that a k-simple system of the form (4.3) written as ϑ(y(x)) =
−x−kD−1(x)N(x) y(x) is not necessarily super-reduced not even j-reduced for some positive
integer j (see for example [21, Example 5]). Thus, it is worth looking for an alternative way
to compute k-simple systems without using the super-reduction algorithm. This is the main
purpose of this chapter and our contribution will be explained in the following section.

4.3 Direct approach for computing k-simple forms

Let k be a nonnegative integer. We consider a first-order matrix differential operator written
with ϑk of the form

Dk = D(x)ϑk +N(x), (4.6)

where D(x) and N(x) are two matrices of K[[x]]n×n such that D(x) ∈ GLn(K((x))) and for
i = 1, . . . , n, min{v(D(i, .)), v(N(i, .))} = 0. We assume that Dk is not k-simple. We will develop
a direct approach for computing a k-simple first-order matrix differential operator equivalent to
Dk in the sense of Definition 4.2.2. This approach is based on the algebraic treatment of the
matrix pencil associated with Dk.

We introduce the set An of invertible matrices M of K[[x]]n×n satisfying

1. ∀ i = 1, . . . , n, `c(M(i, i)) = 1,

2. ∀ i = 1, . . . , n− 1, v(M(i, i)) ≤ v(M(i+ 1, i+ 1)),

3. ∀ i = 1, . . . , n and j = 1, . . . , n such that i 6= j, v(M(i, j)) > v(M(i, i)),

4.3. Direct approach for computing k-simple forms 99

and we assume that the leading coefficient matrix D(x) of Dk belongs to An. Any operator
of the form (4.6) with arbitrary invertible matrix D(x) ∈ K[[x]]n×n is equivalent, by means of
multiplications by unimodular matrices of K[[x]]n×n, to an operator having a leading coefficient
matrix in An. Indeed, from Lemma 3.5.1 of Chapter 3, we know that any invertible matrix
D(x) ∈ K[[x]]n×n can be written as

D(x) = P (x)xαQ(x),

where P (x) ∈ K[x]n×n with det(P (x)) = 1, Q(x) ∈ K[[x]]n×n with det(Q(0)) 6= 0 and α =
diag(α1 In1 , . . . , αs Ins) where the αi’s are nonnegative integers satisfying α1 < · · · < αs. It
follows that

P−1(x)D(x)Q−1(0) = xαQ(x)Q−1(0) ∈ An.

Hence, for any matrix differential operator Dk of the form (4.6) with arbitrary invertible matrix
D(x) ∈ K[[x]]n×n, there exist a unimodular matrix polynomial S(x) and an invertible constant
matrix T such that S(x)Dk T has a leading coefficient matrix in An. Note that starting from a
system of the form (4.1), it is easy to write it in the form (4.6) with D(x) ∈ An; one can proceed
as in the proof of Lemma 4.2.1 and obtain an operator of the form (4.6) with a diagonal leading
coefficient matrix D(x). In this case, the resulting operator is not necessarily k-simple unless
System (4.1) is (p− k)-reduced.

Definition 4.3.1. Let Dk be a matrix differential operator of the form (4.6) with D(x) ∈ An.
We define the multi-index α(Dk) by α(Dk) = (v(D(1, 1)), . . . , v(D(n, n))). In the sequel, we
mean by αi(Dk) the ith component of α(Dk).

The main result of this section can be stated as follows.

Theorem 4.3.1. Given a non-simple matrix differential operator Dk of the form (4.6) with
a leading coefficient matrix D(x) ∈ An, there exist two invertible matrices U(x) ∈ K[x−1]n×n

with U−1(x) ∈ K[x]n×n and V (x) ∈ K[x]n×n with V −1(x) ∈ K[x−1]n×n such that the operator
U(x)Dk V (x) is k-simple and satisfies |α(U(x)Dk V (x))| < |α(Dk)|.

Assuming that the leading coefficient matrix D(x) of Dk is in An, the matrix pencil Lk(λ)
associated with Dk is then of the form

Lk(λ) = D0 λ+N0 =
(
Ir λ+N11

0 N12
0

N21
0 N22

0

)
, (4.7)

where r = rank(D0) < n (if rank (D0) = n, then Lk(λ) is regular and hence Dk is k-simple) and
N11

0 and N22
0 are square matrices of size respectively r and n− r. Note that all the rows of the

submatrix
(
N21

0 N22
0

)
are nonzero since the matrices D(x) and N(x) are supposed to satisfy

min{v(D(i, .)), v(N(i, .))} = 0 for i = 1, . . . , n. In the sequel, for a matrix pencil Lk(λ) of the
form (4.7), we will refer to the rows of

(
N21

0 N22
0

)
as the constant rows of Lk(λ).

To prove Theorem 4.3.1, we first investigate the case where the constant rows of the matrix
pencil Lk(λ) are linearly dependent. In this case, we show that by multiplying Dk from two sides
by suitable invertible matrices, we can drop the value of |α(Dk)|. Then, our purpose would be
to assure that any operator Dk can be reduced, without increasing |α(Dk)|, to another matrix
differential operator whose associated matrix pencil has linearly dependent constant rows. Note
that the transformations carried out on the operator in all different stages may affect the special
structure of the leading coefficient matrix and hence that of the associated matrix pencil. Each
time this happens, we do additional transformations in order to ensure that the leading coefficient
matrix still belongs to An.

100 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

4.3.1 Linearly dependent constant rows

A sufficient (but not necessary) condition for the operator Dk to be non-simple is that the
constant rows of its associated matrix pencil Lk(λ) are linearly dependent. In this subsection,
we show how to use these linear dependencies to reduce the value of |α(Dk)|.

Proposition 4.3.1. Consider a matrix differential operator Dk of the form (4.6) with a leading
coefficient matrix D(x) in An and with min{v(D(i, .)), v(N(i, .))} = 0 for i = 1, . . . , n. Let
Lk(λ) denote the matrix pencil associated with Dk. Assume that r = rank(D(0)) < n and the
row of Lk(λ) of index i0 ∈ {r+ 1, . . . , n− 1} can be written as a linear combination of the rows
of index i0 + 1 to n. Then, there exist an invertible constant matrix T and an invertible matrix
S(x) ∈ K[x−1]n×n of the form

S(x) = P diag(1, . . . , 1, x−γ , 1, . . . , 1)S1,

where P is a permutation matrix of size n, S1 ∈ GLn(K), γ ∈ N∗ and x−γ stands at the
i0th position, such that the operator D̃k = S(x)Dk T has coefficients in K[[x]] and satisfies∣∣∣α(D̃k)

∣∣∣ = |α(Dk)| − γ < |α(Dk)|.

Proof. Write
Lk(i0, .) = −ui0+1 Lk(i0 + 1, .)− · · · − un Lk(n, .),

with ui ∈ K for i = i0 + 1, . . . , n. Define the matrix S1 obtained from the identity matrix of size
n by replacing its i0th row by the row vector

(
0 · · · 0 1 ui0+1 · · · un

)
, where 1 comes at

the i0th position, that is,

S1 =



1
. . .

1
1 ui0+1 · · · un

1

(0)
. . .

1


. (4.8)

Multiply operator Dk on the left by S1. Let Dk = D(x)ϑk +N(x) denote the resulting operator.
Since S1 is a constant matrix, the matrix pencil associated with Dk is equal to S1 Lk(λ) and
hence operator Dk is also non-simple. Moreover, by definition of S1, the i0th row of N(0) is zero.
We point out here that the leading coefficient matrix D(x) of Dk may not be in An. Indeed, we
have

v(D(i0, j)) = v(D(i0, i0)) if j > i0 and αj(Dk) = αi0(Dk),

and v(D(i0, j)) > v(D(i0, i0)), otherwise.

However, by multiplying operator Dk on the right by

T =



1
. . .

1
1 −δαi0 ,αi0+1ui0+1 · · · −δαi0 ,αnun

1

(0)
. . .

1


, (4.9)

4.3. Direct approach for computing k-simple forms 101

where for j = i0, . . . , n, αj denotes αj(Dk), we get the operator D̂k = Dk T whose leading
coefficient matrix belongs to An. Put D̂k = D̂(x)ϑk + N̂(x). We have α(D̂k) = α(Dk) and the
i0th row of N̂(x) is of valuation greater than or equal to 1 since the i0th row of N(x) is so.
As αi0(D̂k) = αi0(Dk) is a positive integer, a simplification of the i0th row of D̂k by a positive
power of x is possible. So let γ = min(αi0(D̂k), v(N̂(i0, .))) ∈ N∗ and define

S2(x) = diag (1, . . . , 1, x−γ , 1, . . . , 1), (4.10)

where x−γ stands at the i0th position. The multiplication of D̂k on the left by S2(x) followed,
if necessary, by a permutation of rows and columns2 yields an operator D̃k ∈ K[[x]][ϑk]n×n with
a leading coefficient matrix in An such that

∣∣∣α(D̃k)
∣∣∣ = |α(Dk)| − γ. Finally, the matrix S(x) we

are seeking for is the product of a permutation matrix, S2(x) and S1, and T is equal to T given
by (4.9) up to a permutation of its columns.

Remark 4.3.1. At the end of the proof of Proposition 4.3.1, we either have γ = αi0(D̂k) or
γ < αi0(D̂k). If the former case occurs then, after simplifying the i0th row of operator D̂k by
x−γ , the i0th diagonal entry of the leading coefficient matrix becomes of valuation zero. This
means that the rank of the leading coefficient matrix of the associated matrix pencil has been
increased by 1. Otherwise, the i0th row of matrix S2(x) N̂(x) is of valuation zero and hence a
new constant row has been introduced in the associated matrix pencil.

We now illustrate Proposition 4.3.1 with the following example.

Example 4.3.1. Consider the matrix differential operator given by

D =


1 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x2

ϑ+


−2x2 1 −1 0

0 −x3 0 −1
0 2x −x 1
0 0 0 −x3 − 1

 . (4.11)

Here the multi-index α(D) is given by α(D) = (0, 1, 1, 2) and |α(D)| = 4. The matrix pencil
associated with D

L(λ) =


λ 1 −1 0
0 0 0 −1
0 0 0 1
0 0 0 −1


is singular since we have L(2, .) = −L(3, .). Multiply operator D on the left by the invertible
constant matrix

S1 =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1


to eliminate the linear dependency between the second and third row of L(λ). We obtain the
operator

S1D =


1 0 0 0
0 x x 0
0 0 x 0
0 0 0 x2

ϑ+


−2x2 1 −1 0

0 2x− x3 −x 0
0 2x −x 1
0 0 0 −x3 − 1


2To make the leading coefficient matrix in An, more precisely, to make the valuations of diagonal entries in

an increasing order.

102 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

whose leading coefficient matrix does not belong to A4. For this reason, we multiply S1D on the
right by the matrix

T =


1 0 0 0
0 1 −1 0
0 0 1 0
0 0 0 1

 . (4.12)

We find the operator

D̂ = SD T =


1 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x2

ϑ+


−2x2 1 −2 0

0 2x− x3 x3 − 3x 0
0 2x −3x 1
0 0 0 −x3 − 1


whose second row can be simplified by x. Once this simplification is made, i.e., after multiplying
D̂ on the left by S2(x) = diag(1, x−1, 1, 1), we get the operator

D̃ = S2(x) D̂ =


1 0 0 0
0 1 0 0
0 0 x 0
0 0 0 x2

ϑ+


−2x2 1 −2 0

0 2− x2 x2 − 3 0
0 2x −3x 1
0 0 0 −x3 − 1

 (4.13)

which satisfies |α(D̃)| = |(0, 0, 1, 2)| = 3 = |α(D)| − 1. Remark here that the rank of the leading
coefficient matrix of the associated matrix pencil has been increased by 1. �

Lemma 4.3.1. Under the assumptions of Proposition 4.3.1, let ν be an integer greater than or
equal to |α(Dk)| and let Dk|ν = D(x)|ν ϑk + N(x)|ν denote the operator Dk truncated at order
ν. Computing matrices S(x) and T as in Proposition 4.3.1 and the operator S(x)Dk|ν T can be
done using O

(
n3 + ν n2

)
arithmetic operations in K.

Proof. First, we need to compute a vector in the left nullspace of an (n−r)×n constant matrix.
Using Gaussian elimination, this can be done in O

(
n3
)
operations in K. Then, we compute the

products S1D(x)|ν and S1N(x)|ν , where S1 is the matrix given by (4.8). Due to the particular
structure of S1, this costs O

(
n2 ν

)
operations in K. Similarly, the multiplication on the right

by matrix T given by (4.9) costs O
(
n2 ν

)
operations in K. Finally, as the multiplication on the

left by matrix S2(x) given by (4.10) is just a simplification by a positive power of x, computing
matrices S(x) and T and the operator S(x)Dk|ν T can be done in O

(
n3 + n2 ν

)
operations in

K.

After applying the process described in the proof of Proposition 4.3.1 to Dk, if the constant
rows of the matrix pencil associated with operator D̃k = S(x)Dk T are yet linearly dependent,
then we repeat the same process but now on D̃k. Thus, as long as the constant rows of the
matrix pencil associated with the resulting operator are linearly dependent, by applying Propo-
sition 4.3.1, we can decrease the value of |α| by at least 1. Consequently, after at most |α(Dk)|
successive iterations, we get an operator equivalent to Dk satisfying one of the three following
cases:

• the length of its multi-index α is zero, or, equivalently, the leading coefficient matrix of its
associated matrix pencil is the identity matrix In in which case the operator is k-simple
and we are done;

• the length of its multi-index α is nonzero, the constant rows of its associated matrix pencil
are linearly independent and the operator is k-simple;

4.3. Direct approach for computing k-simple forms 103

• the length of its multi-index α is nonzero, the constant rows of its associated matrix pencil
are linearly independent but the operator is still non simple. We will see in the next
subsection how this operator can be transformed, without affecting the multi-index α, into
another one whose associated matrix pencil has linearly dependent constant rows. Hence,
the length of α can be further reduced (by going back to Proposition 4.3.1).

Example 4.3.2. We continue our reduction process on operator D̃ given in (4.13) which is yet
non-simple since the constant rows of its associated matrix pencil are still linearly dependent.
Proposition 4.3.1 applied to D̃ gives rise to the operator

D = D(x)ϑ+N(x) =


1 0 0 0
0 1 0 0
0 0 1 x
0 0 0 x2

ϑ+


−2x2 1 −2 0

0 −x2 + 2 x2 − 3 0
0 2 −3 −x2

0 0 0 −x3 − 1

 (4.14)

which is simple and satisfies |α(D)| = 2 = |α(D̃)| − 1. Finally, the two operators D and D given
in (4.11) are related by D = S(x)D T , where

S(x) =


1 0 0 0
0 x−1 x−1 0
0 0 x−1 x−1

0 0 0 1


and T is given by (4.12). �

Remark 4.3.2. Consider the linear differential system D(y(x)) = 0, where D is defined in
(4.14). Writing System D(y(x)) = 0 in the form ϑ(y(x)) = A(x) y(x) with

A(x) = D
−1(x)N(x) =


2x2 −1 2 0

0 x2 − 2 3− x2 0
0 −2 3 − 1

x
0 0 0 x+ 1

x2

 ,

the function θ2(A, x, λ) defined in (4.5) is equal to

θ2(A, x, λ) = x
(
λ− 2x2

) (
λx2 − x3 − 1

) (
λ2 − λ− λx2 + x2

)
and hence θ2(A, 0, λ) = 0. It follows from Proposition 4.2.1 that the system is not super-reduced.

4.3.2 Reduction to the case of linearly dependent constant rows

Consider a non-simple matrix differential operator Dk of the form (4.6) with a leading coefficient
matrix D(x) ∈ An. We show in this subsection how operator Dk can be reduced, without
affecting the multi-index α(Dk), to another operator to which one can apply Proposition 4.3.1,
that is, the associated matrix pencil of which has linearly dependent constant rows. We proceed
in a similar way as in [58]. At first, we investigate the case where the matrix pencil associated
with operator Dk has the particular block structure

Lk(λ) =

Iq λ+N11
0 0 0

N21
0 Ir−q λ+N22

0 N23
0

N31
0 N32

0 N33
0

 , (4.15)

where q ∈ {0, . . . , r}, N11
0 , N22

0 and N33
0 are square matrices respectively of size q, r − q and

n− r, and
rank

(
N32

0 N33
0

)
< n− r. (4.16)

104 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

We show that by multiplying Dk from both sides by appropriate invertible matrices, we get an
operator whose associated matrix pencil has linearly dependent constant rows. Secondly, we
explain how we can transform operator Dk into another one having an associated matrix pencil
of the form (4.15) with condition (4.16) satisfied.

Proposition 4.3.2. Consider a non-simple matrix differential operator Dk = D(x)ϑk+N(x) ∈
K[[x]][ϑk]n×n with D(x) ∈ An and let r denote rank(D(0)). Assume that the matrix pencil Lk(λ)
associated with Dk is of the form (4.15) with condition (4.16) satisfied. By multiplying Dk on
the left by

S(x) = diag(x−1 Iq, Ir−q, In−r), (4.17)

then on the right by
T (x) = S−1(x)C, (4.18)

where C is a suitable invertible constant matrix of the form

C =

Iq A B
0 Ir−q 0
0 0 In−r

 ,

one gets an operator D̃k satisfying α(D̃k) = α(Dk) and whose associated matrix pencil has
linearly dependent constant rows.

Proof. If q = 0 then the constant rows of the matrix pencil Lk(λ) given in (4.15) are already
linearly dependent and hence nothing has to be done. Otherwise, partition matrices D(x) and
N(x) into blocks of the same sizes as those of Lk(λ) given in (4.15), i.e.,

D(x) =

D11 D12 D13

D21 D22 D23

D31 D32 D33

 and N(x) =

N11 N12 N13

N21 N22 N23

N31 N32 N33

 ,

where D11, D22 and D33, respectively N11, N22 and N33, are square matrices of respective size
q, r− q and n− r (the dependence on x has been omitted in the notation of the blocks Dij and
N ij for brevity). Set Dk = S(x)Dk S−1(x) = D(x)ϑk +N(x), where S(x) is the matrix defined
in (4.17). We have

D(x) =

 D11 x−1D12 x−1D13

xD21 D22 D23

xD31 D32 D33


and

N(x) = S(x)N(x)S−1(x) + S(x)D(x)ϑk
(
S−1(x)

)
=

 N11 + xkD11 x−1N12 x−1N13

xN21 + xk+1D21 N22 N23

xN31 + xk+1D31 N32 N33

 .

Since Lk(λ) is of the form (4.15), the blocksD12, D13, N12 andN13 are of positive valuations and
hence the matrices D(x) and N(x) have entries in K[[x]]. Set D1j = x−1D1j and N1j = x−1N1j

for j = 2, 3. The matrix pencil Lk(λ) associated with operator Dk is then equal to

Lk(λ) =

Iq λ+N11
0 + δk,0 Iq D

12
0 λ+N

12
0 D

13
0 λ+N

13
0

0 Ir−q λ+N22
0 N23

0

0 N32
0 N33

0

 .

4.3. Direct approach for computing k-simple forms 105

To bring it back to the form (4.7), we will multiply operator Dk on the right by the constant
invertible matrix

C =

Iq −D12
0 −D13

0

0 Ir−q 0
0 0 In−r

 . (4.19)

This gives rise to an operator D̃k = D̃(x)ϑk + Ñ(x) whose leading coefficient matrix D̃(x)
belongs to An. Moreover, the diagonal entries of D̃(x) and D(x) have the same valuations
which implies that the multi-index α(D̃k) is equal to α(Dk). Now, the matrix pencil L̃k(λ)
associated with D̃k is given by

L̃k(λ) = Lk(λ)C =

Iq λ+N11
0 + δk,0 Iq N

12
0 −N11

0 D
12
0 − δk,0D

12
0 N

13
0 −N11

0 D
13
0 − δk,0D

13
0

0 Ir−q λ+N22
0 N21

0

0 N32
0 N33

0


and has linearly dependent constant rows from (4.16). Thus, the proposition is proved.

Lemma 4.3.2. Under the assumptions of Proposition 4.3.2, let ν be an integer greater than or
equal to |α(Dk)| and let Dk|ν = D(x)|ν ϑk +N(x)|ν denote the operator Dk truncated at order ν.
Computing matrices S(x) and T (x) as in Proposition 4.3.2 and the operator S(x)Dk|ν T (x) can
be done using O(ν n3) operations in K.

Proof. We have just to study the cost of the product Dk|ν C, where C is given by (4.19) and Dk =
S(x)Dk|ν S

−1(x) with S(x) given by (4.17). This needs at most 2n q (n − q) ν multiplications
in K. As q ≤ r < n, we find O(ν n3) operations in K.

Now it remains to explain how any non-simple matrix differential operator can be reduced
to another operator with same multi-index α and whose associated matrix pencil is of the form
(4.15), with condition (4.16) satisfied. This can be done using only constant transformations as
shown in the following proposition.

Proposition 4.3.3. Let Dk = D(x)ϑk +N(x) ∈ K[[x]][ϑk]n×n be a non-simple matrix differen-
tial operator having a leading coefficient matrix D(x) in An. There exist two invertible constant
matrices S, T ∈ GLn(K) such that the operator SDk T satisfies α(SDk T) = α(Dk) and has an
associated matrix pencil of the form (4.15), with (4.16) satisfied.

Proof. If the constant rows of the matrix pencil Lk(λ) associated with Dk are linearly dependent
then Lk(λ) is already of the form (4.15) with q = 0 and condition (4.16) satisfied. In this case,
we have S = T = In. Suppose now that Lk(λ) is given in (4.7) and that its constant rows are
linearly independent. Since Dk is non-simple, Lk(λ) is then singular for all λ ∈ C. In particular,
for λ = 0, the constant matrix

L(0) = N(0) =
(
N11

0 N12
0

N21
0 N22

0

)
is singular as well. Therefore, there exists a nonzero row vector u =

(
u1 u2 · · · un

)
∈ K1×n

such that uL(0) = 0. As the constant rows of Lk(λ) are supposed to be linearly independent,
one component of u with index i ∈ {1, . . . , r} is necessarily nonzero. Swapping the rows and
columns of Dk of index 1 to r, we can achieve i = 1. Furthermore, without any loss of generality,
we will assume that u1 = 1. Multiply operator Dk on the left by

S1 =


1 u2 u3 · · · un

1
1

(0)
. . .

1



106 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

and let D̂k = D̂(x)ϑk + N̂(x) denote the resulting operator. It follows that the first row of
N̂(0) is equal to uN(0) = uL(0) = 0. Note here that the leading coefficient matrix D̂(x) of D̂k
may not be in An since it could happen that for some j ∈ {2, . . . , r}, we have v(D̂(1, j)) = 03.
Therefore, multiply D̂k on the right by

T1 =



1 −u2 · · · −ur 0 · · · 0
1

. . .
1

1

(0)
. . .

1


and put D̃k = D̂k T1 = D̃(x)ϑk + Ñ(x). We have D̃(x) ∈ An, α(D̃k) = α(Dk) and the first row
of Ñ(0) is zero. The matrix pencil L̃k(λ) associated with D̃k is then of the form

L̃k(λ) =

 λ 0 0
Ñ21

0 Ir−1 λ+ Ñ22
0 Ñ23

0

Ñ31
0 Ñ32

0 Ñ33
0

 .

We draw attention that D̃k is also non-simple since L̃k(λ) = S1 Lk(λ)T1. Now, if the rows of
the submatrix

(
Ñ32

0 Ñ33
0

)
are linearly dependent then L̃k(λ) has the form (4.15) with q = 1

and condition (4.16) holds. Otherwise, due to the structure of L̃k(λ), we can deduce that the
submatrix (

Ir−1 λ+ Ñ22
0 Ñ23

0

Ñ32
0 Ñ33

0

)
is singular. One can therefore continue the process and increment q by 1. Thus, after at
most r successive iterations of the process, we obtain an equivalent non-simple operator whose
associated matrix pencil is either of the form (4.15) with q < r and condition (4.16) occurs, or
q = r which means that it is of the form(

Ir λ+W1 0
W2 W3

)
. (4.20)

As the matrix in (4.20) is singular and the first diagonal block Ir λ+W1 is regular, the submatrix
W3 is necessarily singular. Consequently, the matrix in (4.20) has the form (4.15) with q = r and
condition (4.16) is satisfied. Finally, the matrices S and T we are seeking for are the product of
permutation matrices and upper constant matrices.

The procedure described in the proof above produces an operator having an associated
matrix pencil in the form (4.15) with a strictly lower triangular matrix N11

0 . However, to apply
Proposition 4.3.2, N11

0 needs not to be in this form.

Lemma 4.3.3. Let Dk = D(x)ϑk +N(x) be a non-simple matrix differential operator having a
leading coefficient matrix D(x) in An. Let ν be an integer greater than or equal to |α(Dk)| and
let Dk|ν = D(x)|ν ϑk +N(x)|ν denote the operator Dk truncated at order ν. Computing matrices
S and T as in Proposition 4.3.3 and the operator SDk|ν T , whose associated matrix pencil is of
the form (4.15) with (4.16) satisfied, can be done using O(nω+1 + ν n3) arithmetic operations in
K.

3This occurs when uj 6= 0.

4.3. Direct approach for computing k-simple forms 107

Proof. Computing an operator such that its associated matrix pencil is of the form (4.15) with
(4.16) satisfied requires at most r steps where r = rank(D(0)) < n. At each step i, we consider
an (n − i + 1) × (n − i + 1) matrix pencil and compute a vector in the left nullspace of this
matrix evaluated at λ = 0. This can be done using O((n− i+ 1)ω) operations in K. Therefore,
the total cost is

r∑
i=1

(n− i+ 1)ω ≤ r nω < nω+1.

Let now D0
k denote the operator Dk|ν . At each step i, we form two constant matrices Si and Ti,

each of them is the product of elementary matrices one of them being a permutation matrix,
and compute the operator Dik = SiDi−1

k Ti. This requires at most 2 ν (n − i)n multiplications
in K. Thus, the final operator SDk|ν T is obtained after at most

r∑
i=1

2 ν (n− i)n = 2 ν n
r∑
i=1

(n− i) < 2 ν n2r < 2 ν n3

operations in K. Now it remains to compute the costs of constructing matrices S and T . Matrix
S, respectively T , is the product of at most r matrices Si, respectively r matrices Ti. Due to
the particular structures of these matrices, computing matrix T requires at most n

∑r−1
i=1 (r −

i) multiplications in K which is bounded by n3 multiplications whereas computing matrix S
costs nothing. Consequently, the total cost of computing S, T and SDk|ν T is O(nω+1 + ν n3)
operations in K.

4.3.3 An example

Consider the matrix differential operator given by

D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 x 0
0 0 0 0 x3

ϑ+


0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

1− x2 0 0 1 −x
x3 − x 0 0 1− x2 0

 . (4.21)

One can easily check that the matrix pencil associated with D

L(λ) =


λ 0 0 1 0
0 λ 0 0 1
0 1 λ 0 0
1 0 0 1 0
0 0 0 1 0


is singular therefore D is not simple. Moreover, Proposition 4.3.1 cannot be applied to D since
the constant rows of L(λ) are linearly independent. So let us first reduce operator D to another
one whose associated matrix pencil is of the form (4.15) with 1 ≤ q ≤ 3 and for which condition
(4.16) is satisfied. To achieve this, we will follow the steps of the proof of Proposition 4.3.3.
The left nullspace of matrix L(0) contains the row vector u =

(
1 0 0 0 −1

)
. So define the

matrix S1 by

S1 =


1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

108 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

Here, the matrix T1 appearing in the proof of Proposition 4.3.3 is equal to I5. Multiplying D on
the left by S1, we find

D̃ = S1D =


1 0 0 0 −x3

0 1 0 0 0
0 0 1 0 0
0 0 0 x 0
0 0 0 0 x3

ϑ+


x− x3 0 0 x2 0

0 0 0 0 1
0 1 0 0 0

1− x2 0 0 1 −x
x3 − x 0 0 1− x2 0


whose associated matrix pencil

L̃(λ) =


λ 0 0 0 0
0 λ 0 0 1
0 1 λ 0 0
1 0 0 1 0
0 0 0 1 0


has the form (4.15) with q = 1 and condition (4.16) satisfied since

rank
(

0 0 1 0
0 0 1 0

)
= 1 < n− r = 2.

We can now apply Proposition 4.3.2 to the operator D̃. Let

S(x) = diag
(
x−1, 1, 1, 1, 1

)
and compute D = S(x) D̃ S−1(x). We find

D =


1 0 0 0 −x2

0 1 0 0 0
0 0 1 0 0
0 0 0 x 0
0 0 0 0 x3

ϑ+


x− x3 + 1 0 0 x 0

0 0 0 0 1
0 1 0 0 0

x− x3 0 0 1 −x
x4 − x2 0 0 1− x2 0

 .

Here, the matrix C defined in (4.19) is the identity matrix since the leading coefficient matrix of
D is already in A5. Now the constant rows of the matrix pencil associated with D are linearly
dependent hence Proposition 4.3.1 can be applied to D. This results in the operator

1 0 0 0 −x2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 −x2

0 0 0 0 x3

ϑ+


x− x3 + 1 0 0 x 0

0 0 0 0 1
0 1 0 0 0

1− x2 + x− x3 0 0 x −1
x4 − x2 0 0 1− x2 0

 (4.22)

which is simple since the determinant of its associated matrix pencil is equal to λ2(λ+ 1). The
latter operator is equivalent to the operator D given by (4.21) by means of the two matrices

Sf =


1
x 0 0 0 − 1

x
0 1 0 0 0
0 0 1 0 0
0 0 0 1

x − 1
x

0 0 0 0 1

 and Tf = diag(x, 1, 1, 1, 1).

4.4. Algorithm and complexity estimation 109

Finally, it is worth mentioning that the system defined by the operator given in (4.22), written
in the form

ϑ(y(x))−


−1 0 0 −x−1 0
0 0 0 0 −1
0 −1 0 0 0

1 + x2 0 0 −x−1 1
−−1+x2

x 0 0 −1+x2

x3 0

 y(x) = 0, (4.23)

is not Moser-reduced and hence not super-reduced. Indeed, using Moser’s algorithm [77], one
can compute a system gauge-equivalent to (4.23) having a Poincaré-rank equal to 2 while the
Poincaré-rank of System (4.23) is 3. Consequently, our approach computes 0-simple forms which
are not necessarily super-reduced.

4.4 Algorithm and complexity estimation

Combining the results of Propositions 4.3.1, 4.3.2 and 4.3.3, we derive the following algorithm
which has been implemented4 in Maple.

Algorithm SimpleForm

Input: The coefficient matrices D and N of the operator Dk = Dϑk +N given by (4.6)
truncated at order ν ≥ |α(Dk)|.

Output: Four matrices U, V, D̃ and Ñ with U ∈ K[x−1]n×n and V ∈ K[x]n×n both
invertible, D̃ = UDV mod xν+1 and Ñ = U(N V +Dϑk(V)) mod xν+1 such
that the operator D̃ ϑk + Ñ is k-simple.

Initialization: Put U = In, V = In, D̃ = D, Ñ = N and L̃ = D̃0 λ+ Ñ0;

While L̃ is singular do
1. Compute two constant matrices S, T ∈ GLn(K) as in Proposition 4.3.3 such that

the matrix pencil S L̃ T is of the form (4.15) with (4.16) satisfied;
2. Let D̃ = S D̃ T and Ñ = S Ñ T ;
3. Let U = S U and V = V T ;
4. Compute two matrices S ∈ K[x−1]n×n and T ∈ K[x]n×n as in Proposition 4.3.2;
5. Let D̃ = S D̃ T and Ñ = S

(
Ñ T + D̃ ϑk(T)

)
;

6. Let U = S U and V = V T ;
7. Compute two matrices S ∈ K[x−1]n×n and T ∈ GLn(K) as in Proposition 4.3.1;
8. Let D̃ = S D̃ T and Ñ = S Ñ T ;
9. Let U = S U and V = V T ;
10. Let L̃ = D̃0 λ+ Ñ0;

end do;
Return U , V , D̃|ν and Ñ|ν ;

Proposition 4.4.1. Algorithm SimpleForm stops after at most |α(Dk)| calls of the While
loop, where Dk denotes the operator given in input.

Proof. In each passage through the While loop, the value of |α(D̃ ϑk+Ñ)| decreases at least by
1. This only happens at Step 8 (see Proposition 4.3.1). Consequently, the algorithm stops either

4The code is available at http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html

110 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

before carrying out |α(Dk)| calls of the While loop or after the α(Dk)th call where we have
|α(D̃ ϑk + Ñ)| = 0. This means that D̃0 = In and hence D̃ ϑk + Ñ is necessarily k-simple.

In order to study the arithmetic complexity of the algorithm above, we give first a lower
bound on the valuation of the output U .

Lemma 4.4.1. The valuation of the output U of Algorithm SimpleForm is greater than or
equal to − |α(Dk)|, where Dk denotes the operator given in the input.

Proof. Let S1, S2 and S3 denote the matrix S computed respectively in Steps 1, 4 and 7.
In one passage through the While loop, matrices S1 and S2 act only on the first r (r =
rank(D̃0)) rows of the operator D̃ ϑk + Ñ whereas the matrix S3 acts only on its last n − r
rows. Moreover, since v(S3) ≤ v(S2), the valuation of the product S3 S2 S1 is then equal to
that of S3. Thus, the valuation of the output matrix U is greater than or equal to the sum
of the valuations of the matrices S3 constructed during the algorithm. Let D̃k denote the
operator D̃ ϑk + Ñ just before Step 8 of the algorithm. According to Proposition 4.3.1, matrix
S3 satisfies v(S3) = −

∣∣∣α(D̃k)
∣∣∣ +

∣∣∣α(S3 D̃k T)
∣∣∣, where T is the matrix computed in Step 7.

Since the multi-index α is unchanged in Steps 1 to 7 of the algorithm, the output matrix U
satisfies then v(U) ≥ − |α(Dk)| + |α(U Dk V)|. Now, we have |α(U Dk V)| ≥ 0, so we find
v(U) ≥ − |α(Dk)|.

As for the output matrix V , we can say that deg(V) ≤ |α(Dk)|, where Dk denotes the
operator given in input.

Proposition 4.4.2. Algorithm SimpleForm uses at most O
(
nω+1 |α(Dk)|+ ν n3 |α(Dk)|

)
op-

erations in K.

Proof. According to Lemma 4.3.3, Steps 1 and 2 can be done in at most O
(
nω+1 + ν n3

)
op-

erations in K. From Lemma 4.3.2, Steps 4 and 5 cost at most O
(
ν n3

)
operations in K. From

Lemma 4.3.1, Steps 7 and 8 cost at most O
(
n3 + ν n2

)
operations in K. It remains to study the

cost of Steps 3, 6 and 9. Due to the particular structure of matrices S and T and to the fact
that the valuation of matrix U is always bounded by − |α(Dk)| and the degree of matrix V is
always bounded by |α(Dk)|, the cost of Steps 3, 6 and 9 is bounded by O

(
n3 |α(Dk)|

)
operations

in K. Since ν ≥ |α(Dk)|, one passage in the While loop costs then O
(
nω+1 + ν n3

)
operations

in K. As it is repeated at most |α(Dk)| times (see Proposition 4.4.1), Algorithm SimpleForm
returns a k-simple operator using O

(
nω+1 |α(Dk)|+ ν n3 |α(Dk)|

)
operations in K.

Remark 4.4.1. If An denotes the set of invertible matrices M of K[[x]]n×n which satisfy in
addition to properties 1 to 3 on page 98 the following property

4. ∀ i = 1, . . . , n and j = 1, . . . , n such that i 6= j, v(M(i, j)) > v(M(j, j)),

then an analogous result to that in Proposition 4.3.1 can be stated on the constant columns of

the matrix pencil Lk(λ) given by (4.7), i.e., on the columns of the submatrix
(
N12

0

N22
0

)
. Hence,

one has a variant of Algorithm SimpleForm which consists first in eliminating all the linear
dependencies between the constant rows and between the constant columns of the associated
matrix pencil then applying Propositions 4.3.3 and 4.3.2 and so on. This variant could be more
efficient in practice but its complexity estimation is the same as Algorithm SimpleForm above.

Remark 4.4.2. Given a linear differential system D(y(x)) = D(x)ϑ(y(x)) + N(x) y(x) = 0
with D(x) ∈ An and N(x) ∈ K[[x]]n×n, Algorithm SimpleForm applied to D allows to detect
whether the point x = 0 is a regular or an irregular singularity of the system D(y(x)) = 0.
Indeed, let L̃(λ) denote the matrix pencil associated with the simple operator D̃|ν ϑ + Ñ|ν

4.5. Preservation of the simplicity 111

produced by the algorithm. Hence, System D(y(x)) = 0 has a regular singularity at x = 0 if
and only if deg(det(L̃(λ))) = n. This occurs only if

∣∣∣α(D̃|ν ϑ+ Ñ|ν)
∣∣∣ = 0.

Remark 4.4.3. Given a linear differential system of the form (4.1), it is well known that the
polynomials qi in (4.2) are determined by the coefficients A0, A1, . . . , Anp−1 of the system matrix
A(x), see [7, 13]. So let ν ≥ np denote the number of coefficients in the expansion of A(x) taken
into account and let k be a fixed integer between 0 and p. Writing System (4.1) in the form
Dk(y(x)) = D(x)ϑk(y(x)) + N(x) y(x) = 0 as explained in the proof of Lemma 4.2.1, we find
that |α(Dk)| is lower than or equal to n p. Thus, computing a k-simple form of System (4.1)
using Algorithm SimpleForm can be done in O

(
ν p n4

)
operations in K, while using the super-

reduction algorithm [58], it can be done in O
(
ν p n4 min{n− 1, p}

)
operations in K (see [25]).

Consequently, our complexity analysis shows that our algorithm gains the factor min{n− 1, p}
with respect to the super-reduction. This can be explained by the fact that the super-reduction
produces k-simple forms for all k = 0, . . . , p while our algorithm produces a k-simple form for a
single integer k between 0 and p.

4.5 Preservation of the simplicity

We consider a non-simple matrix differential operator of K[[x]][ϑk]n×n of the form

Dk = D(x)ϑk +N(x),

with D(x) ∈ An and for i = 1, . . . , n, min{v(D(i, .)), v(N(i, .))} = 0. We assume that the
operator Dk written respectively with ϑk+j , for j = 1, 2, . . ., is simple (see below). The purpose
of this section is to show that Algorithm SimpleForm applied to the operator Dk returns
an equivalent k-simple operator without affecting the simplicity with respect to ϑk+j , for
j = 1, 2, In other terms, the output operator is also simple with respect to ϑk+j for
j = 1, 2,

Let us clarify what we mean by the expressions: the operator Dk written with ϑk+j is simple
or the operator Dk is simple with respect to ϑk+j . First, we mean by the operator Dk written
with ϑk+j the operator Dk+j derived from Dk as follows. For i = 0, . . . , j, define the integer ni
by the number of rows of D(x) of valuation i and let γi =

∑i
s=0 ns. In particular, n0 denotes

the rank of D(0) unlike the previous sections where it was denoted by r. The operator Dk+j is
defined as the operator obtained by multiplying Dk on the left by the matrix

Uj(x) = diag
(
xjIn0 , x

j−1In1 , x
j−2In2 , . . . , x Inj−1 , In−γj−1

)
. (4.24)

We have then

Dk+j = Uj(x)Dk = Uj(x)D(x)ϑk + Uj(x)N(x) = Dj(x)ϑk+j +Nj(x), (4.25)

where Nj(x) = Uj(x)N(x) and Dj(x) = x−jUj(x)D(x) ∈ An. Thus, we will say that the
operator Dk written with ϑk+j is simple or the operator Dk is simple with respect to ϑk+j if
the operator Dk+j defined in (4.25) is simple with respect to ϑk+j , that is, if the matrix pencil
Dj(0)λ+Nj(0) is regular. In the sequel, we denote by Lk(λ), respectively Lk+j(λ), the matrix
pencil associated with Dk, respectively with Dk+j defined in (4.25). The matrix pencil Lk+j(λ)
is equal to

Lk+j(λ) = Dj(0)λ+Nj(0) = diag
(
Iγj , 0n−γj

)
λ+ diag

(
0γj−1 , In−γj−1

)
N(0). (4.26)

112 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

Example 4.5.1. Consider the non-simple matrix differential operator

D =


1 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x2

ϑ+


x− 2x2 1 1 0

0 −x3 0 −2
3x 0 −x− 1 1
0 0 1 1− x3

 . (4.27)

Here, the integers ni defined as above are equal to n0 = 1, n1 = 2, n2 = 1 and ni = 0 for i ≥ 3.
Thus, the operator D written with ϑ1 is equal to

D1 = diag(x, 1, 1, 1)D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x

ϑ1 +


x2 − 2x3 x x 0

0 −x3 0 −2
3x 0 −x− 1 1
0 0 1 1− x3


whose associated matrix pencil

L1(λ) =


λ 0 0 0
0 λ 0 −2
0 0 λ− 1 1
0 0 1 1

 (4.28)

is regular. Hence, the operator D defined in (4.27) is simple with respect to ϑ1. Similarly, the
operator D written with ϑ2 is equal to

D2 = diag(x2, x, x, 1)D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ϑ2 +


x3 − 2x4 x2 x2 0

0 −x4 0 −2x
3x2 0 −x2 − x x

0 0 1 1− x3

 .

The matrix pencil associated with D2

L2(λ) =


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 1 λ+ 1

 (4.29)

is regular and hence the operator D is also simple with respect to ϑ2. For j ≥ 3, Operator D is
always simple with respect to ϑj since Lj(λ) = I4 λ. �

Remark 4.5.1. A matrix differential operator Dk = D(x)ϑk + N(x) with D(x) ∈ An is not
necessarily simple with respect to ϑk+j for every integer j ≥ 1. For example, the matrix
differential operator defined by

D1 =

1 0 0
0 x2 0
0 0 x2

ϑ1 +

0 0 1
0 2 1
1 0 0


is not simple with respect to ϑ2.

In what follows, we will show that by applying respectively Propositions 4.3.1, 4.3.2 and
4.3.3 to the operator Dk, we do not lose the simplicity with respect to ϑk+j for j = 1, 2,

First, we remark that

4.5. Preservation of the simplicity 113

Lemma 4.5.1. Given a non-simple matrix differential operator Dk = D(x)ϑk + N(x) with
D(x) ∈ An and assuming that Dk is simple with respect to ϑk+1, the integer n1 defined by the
number of rows of D(x) of valuation 1 is necessarily nonzero.

Proof. We will use the notation above. If n1 = 0, then n0 = γ0 = γ1 and the matrix pencils
Lk(λ) and Lk+1(λ) are respectively given by

Lk(λ) = diag(In0 , 0n−n0)λ+N(0) and Lk+1(λ) = diag(In0 , 0n−n0)λ+diag(0n0 , In−n0)N(0).

Since Dk+1 is simple (Dk is simple with respect to ϑk+1), the regularity of the matrix pencil
Lk+1(λ) implies that the submatrix of N(0) composed of rows and columns of index n0 + 1
to n is invertible. This implies that the matrix pencil Lk(λ) is necessarily regular which is
impossible.

We assume first that the constant rows of the matrix pencil Lk(λ), i.e., the rows of the
matrix N(0) = N0 of index n0 + 1 to n, are linearly dependent. Partition matrix N0 into blocks
N ij

0 with i, j = 0, 1, 2, where N00
0 , N11

0 and N22
0 are square matrices respectively of size n0, n1

and n− γ1. Hence, Lk(λ) has the block partition

Lk(λ) =

In0 λ+N00
0 N01

0 N02
0

N10
0 N11

0 N12
0

N20
0 N21

0 N22
0


with

rank
(
N10

0 N11
0 N12

0

N20
0 N21

0 N22
0

)
< n− n0.

Consequently, the matrix pencil Lk+1(λ) associated with Dk+1 has the block partition

Lk+1(λ) = diag(Iγ1 , 0n−γ1)λ+ diag(0γ0 , In−γ0)N(0)

=

In0 λ 0 0
N10

0 In1 λ+N11
0 N12

0

N20
0 N21

0 N22
0

 .

Since Lk+1(λ) is regular (Dk is simple with respect to ϑk+j for j = 1, 2, . . .), the submatrix(
N20

0 N21
0 N22

0

)
is then of full row-rank. Hence, swapping the rows and columns of Dk of

index n0 + 1 to γ1 = n0 + n1 (this operation does not affect the simplicity with respect to ϑk+j

for j = 1, 2, . . .), we can assume that the first row of(
N10

0 N11
0 N12

0

N20
0 N21

0 N22
0

)
can be written as a linear combination of the other rows.

Proposition 4.5.1. Let Dk be a non-simple matrix differential operator having a leading coef-
ficient matrix in An. Assume that Dk is simple with respect to ϑk+j for j = 1, 2, Moreover,
assume that the row of Lk(λ) of index n0 + 1 can be written as a linear combination of the rows
of index n0 + 2 to n. Let D̃k = D̃(x)ϑk + Ñ(x) denote the operator obtained after applying the
process described in the proof of Proposition 4.3.1 to Dk. Then, D̃k is also simple with respect
to ϑk+j for j = 1, 2,

Proof. The two operators D̃k and Dk are related by D̃k = S(x)Dk T , where S(x) is of the form

S(x) = diag
(
In0 , x

−1, In1−1, In−γ1
)
S1

114 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

with

S1 =


In0 0 0 0
0 1 u v
0 0 In1−1 0
0 0 0 In−γ1

 , (4.30)

where u ∈ K1×(n1−1), v ∈ K1×(n−γ1) and the row vector
(
1 u v

)
belongs to the left nullspace

of matrix (
N10

0 N11
0 N12

0

N20
0 N21

0 N22
0

)
,

and T is given by

T =


In0 0 0 0
0 1 −u 0
0 0 In1−1 0
0 0 0 In−γ1

 . (4.31)

Let D̃k+j denote the operator D̃k written with ϑk+j . We have D̃k+j = Ũj(x) D̃k with

Ũj(x) = diag
(
xjIen0

, xj−1Ien1
, xj−2In2 , . . . , x Inj−1 , In−γj−1

)
,

where the integers ñi denote the number of rows of D̃(x) of valuation i. Notice that ñ0 = n0 +1,
ñ1 = n1 − 1 and ñi = ni for i ≥ 2. Write

D̃k+j = Ũj(x) D̃k = Ũj(x) D̃(x)ϑk + Ũj(x) Ñ(x) = D̃j(x)ϑk+j + Ñj(x),

where D̃j(x) = x−jŨj(x) D̃(x) ∈ An and

Ñj(x) = Ũj(x) Ñ(x) = Ũj(x)S(x)N(x)T

= Ũj(x) diag
(
In0 , x

−1, In1−1, In−γ1
)︸ ︷︷ ︸

Uj(x)

S1N(x)T

= Uj(x)S1N(x)T,

where Uj(x), S1 and T are the matrices respectively given in (4.24), (4.30) and (4.31). Let
L̃k+j(λ) denote the matrix pencil associated with D̃k+j . We will show that L̃k+j(λ) is regular
for j ≥ 1. For this, we will distinguish two cases: j = 1 and j ≥ 2. For j = 1, we have

L̃k+1(λ) = D̃1(0)λ+ Ñ1(0) = diag(Iγ1 , 0n−γ1)λ+ diag(0n0 , In−n0)S1N(0)T.

Notice that

diag(0n0 , In−n0)S1 = S1 diag(0n0 , In−n0) and diag(Iγ1 , 0n−γ1) = S1 diag(Iγ1 , 0n−γ1)T.

Thus, L̃k+1(λ) can be written as

L̃k+1(λ) = S1 diag(Iγ1 , 0n−γ1)T λ+ S1 diag(0n0 , In−n0)N(0)T = S1 Lk+1(λ)T,

where Lk+1(λ) is the matrix pencil given in (4.26) for j = 1. Since Lk+1(λ) is regular (Dk is
simple with respect to ϑk+1), it follows that L̃k+1(λ) is regular as well and the operator D̃k is
simple with respect to ϑk+1. For j ≥ 2, we have

L̃k+j(λ) = D̃j(0)λ+ Ñj(0) = diag
(
Iγj , 0n−γj

)
λ+ diag

(
0γj−1 , In−γj−1

)
S1N(0)T

4.5. Preservation of the simplicity 115

with γj ≥ γj−1 ≥ γ1 = n0 + n1 = ñ0 + ñ1 ≥ n0 + 1. Thus, we have

diag
(
0γj−1 , In−γj−1

)
S1 = diag

(
0γj−1 , In−γj−1

)
= T−1diag

(
0γj−1 , In−γj−1

)
and diag

(
Iγj , 0n−γj

)
= T−1diag

(
Iγj , 0n−γj

)
T.

So, we have
D̃j(0) = diag

(
Iγj , 0n−γj

)
= T−1diag

(
Iγj , 0n−γj

)
T

and

Ñj(0) = diag
(
0γj−1 , In−γj−1

)
S1N(0)T = diag

(
0γj−1 , In−γj−1

)
N(0)T

= T−1diag
(
0γj−1 , In−γj−1

)
N(0)T.

Consequently, L̃k+j(λ) and Lk+j(λ) are related by

L̃k+j(λ) = T−1diag
(
Iγj , 0n−γj

)
T λ+ T−1diag

(
0γj−1 , In−γj−1

)
N(0)T = T−1Lk+j(λ)T.

Thus L̃k+j(λ) is regular since Lk+j is so, and the operator D̃k is simple with respect to ϑk+j .

Example 4.5.2. Consider the operator D given in (4.27). Its associated matrix pencil is given
by

L(λ) =


λ 1 1 0
0 0 0 −2
0 0 −1 1
0 0 1 1

 .

Remark that we have L(2, .) = −L(3, .) − L(4, .). Hence, following the process described in the
proof of Proposition 4.3.1, we construct two matrices S(x) = diag

(
1, x−1, 1, 1

)
S1 with

S1 =


1 0 0 0
0 1 1 1
0 0 1 0
0 0 0 1

 and T =


1 0 0 0
0 1 −1 0
0 0 1 0
0 0 0 1


such that D̃ = S(x)D T given by

D̃


1 0 0 0
0 1 0 x
0 0 x 0
0 0 0 x2

ϑ+


x− 2x2 1 0 0

3 −x2 x2 − 1 −x2

3x 0 −x− 1 1
0 0 1 1− x3


satisfies

∣∣∣α(D̃)
∣∣∣ = |α(D)| − 1. Operator D̃ written with ϑ1 in the form

D̃1 =


1 0 0 0
0 1 0 x
0 0 1 0
0 0 0 x

ϑ1 +


x2 − 2x3 x 0 0

3x −x3 x3 − x −x3

3x 0 −x− 1 1
0 0 1 1− x3


has an associated matrix pencil equal to

L̃1(λ) =


λ 0 0 0
0 λ 0 0
0 0 λ− 1 1
0 0 1 1

 .

116 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

One can easily check that L̃1(λ) = S1 L1(λ)T , where L1(λ) is given by (4.28). Similarly, operator
D̃ written with ϑ2 has an associated matrix pencil

L̃2(λ) =


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 1 λ+ 1


with L̃2(λ) = T−1 L2(λ)T , where L2(λ) is given by (4.29). For j ≥ 3, we have L̃j(λ) = I4 λ =
T−1 Lj(λ)T since Lj(λ) = I4 λ. �

Proposition 4.5.2. Let Dk be a non-simple matrix differential operator having a leading coeffi-
cient matrix in An. Assume that Dk is simple with respect to ϑk+j for j = 1, 2, Furthermore,
assume that the matrix pencil Lk(λ) associated with Dk is in the form (4.15) with condition
(4.16) satisfied. Let D̃k = S(x)Dk T (x), where S(x) and T (x) are respectively given by (4.17)
and (4.18) in Proposition 4.3.2. Then, D̃k is simple with respect to ϑk+j for j = 1, 2,

Proof. We will show that D̃k is simple with respect to ϑk+1. The simplicity of D̃k with respect
to ϑk+j for j ≥ 2 can be proved in a similar way. For the sake of clarity, we will partition Lk(λ)
into blocks as follows

Lk(λ) =


Iqλ+N00

0 0 0 0
N10

0 In0−qλ+N11
0 N12

0 N13
0

N20
0 N21

0 N22
0 N23

0

N30
0 N31

0 N32
0 N33

0

 ,

where 0 ≤ q ≤ n0, N22
0 and N33

0 are square matrices respectively of size n1 and n− γ1 and

rank
(
N21

0 N22
0 N23

0

N31
0 N32

0 N33
0

)
< n− n0.

In this case, the matrix pencil Lk+1(λ) given by (4.26) for j = 1 (associated with the operator
Dk+1 given by (4.25)) is of the form

Lk+1(λ) =


Iqλ 0 0 0
0 In0−qλ 0 0
N20

0 N21
0 In1λ+N22

0 N23
0

N30
0 N31

0 N32
0 N33

0

 .

Due to its particular block structure, the regularity of Lk+1(λ) implies that the submatrix(
In1λ+N22

0 N23
0

N32
0 N33

0

)
is regular as well. Now, the matrix pencil associated with the operator D̃k = S(x)Dk T (x) is of
the form

L̃k(λ) =


Iqλ+ ∗ ∗ ∗ ∗

0 In0−qλ+N11
0 N12

0 N13
0

0 N21
0 N22

0 N23
0

0 N31
0 N32

0 N33
0

 ,

where the ∗ denotes the remaining blocks of the matrix. Since α(Dk) = α(D̃k), the matrix pencil
associated with the operator D̃k written with ϑk+1 is given by

L̃k+1(λ) =


Iqλ 0 0 0
0 In0−qλ 0 0
0 N21

0 In1λ+N22
0 N23

0

0 N31
0 N32

0 N33
0



4.5. Preservation of the simplicity 117

and hence it is regular since the submatrix(
In1λ+N22

0 N23
0

N32
0 N33

0

)
remained intact.

Proposition 4.5.3. Consider a non-simple matrix differential operator Dk having a leading
coefficient matrix in An. Assume that Dk is simple with respect to ϑk+j for j = 1, 2, Let S
and T be the two invertible constant matrices computed as in the proof of Proposition 4.3.3 such
that the matrix pencil associated with D̃k = SDk T is of the form (4.15) with condition (4.16)
satisfied. Then, D̃k is simple with respect to ϑk+j for j = 1, 2,

Proof. From the proof of Proposition 4.3.3, we deduce that the matrices S and T are of the form

S =
(
S1 S2

0 In−n0

)
and T =

(
S−1

1 0
0 In−n0

)
,

where S1 ∈ GLn0(K) and S2 ∈ Kn0×(n−n0). Put D̃k = SDk T = D̃(x)ϑk + Ñ(x), where
D̃(x) = S D(x)T and Ñ(x) = S N(x)T . Let D̃k+j denote the operator D̃k written with ϑk+j .
Since α(D̃k) = α(Dk), then we have D̃k+j = Uj(x) D̃k with Uj(x) defined in (4.24). Write
D̃k+j = D̃j(x)ϑk+j + Ñj(x) with D̃j(x) = x−jUj(x) D̃(x) ∈ An and Ñj(x) = Uj(x) Ñ(x). The
matrix pencil associated with D̃k+j is equal to

L̃k+j(λ) = D̃j(0)λ+ Ñj(0) = diag(Iγj , 0n−γj)λ+ diag(0γj−1 , In−γj−1)S N(0)T.

As γj ≥ γj−1 ≥ γ0 = n0, it follows that

diag(0γj−1 , In−γj−1)S = diag(0γj−1 , In−γj−1) = T−1diag(0γj−1 , In−γj−1)

and
diag(Iγj , 0n−γj) = T−1 diag(Iγj , 0n−γj)T.

Thus, we have L̃k+j(λ) = T−1 Lk+j(λ)T , where Lk+j(λ) is the matrix pencil given by (4.26)
associated with Dk+j . Hence, the operator remains simple with respect to ϑk+j for j ≥ 1.

Example 4.5.3. Consider the non-simple matrix differential operator given by

D =


1 0 0 0
0 1 0 0
0 0 x 0
0 0 0 x

ϑ+


1 + x 0 2x 0

1 1 x2 + x3 0
0 5x 1 1
0 1 0 x3 + 2x

 .

The matrix pencil associated with the operator D written with ϑj (for j ≥ 1) is equal to

Lj(λ) =


λ 0 0 0
0 λ 0 0
0 0 λ+ 1 1
0 1 0 λ

 if j = 1,

and Lj(λ) = I4 λ if j ≥ 2. Hence, D is simple with respect to ϑj for j ≥ 1. Following the
construction in the proof of Proposition 4.3.3, we get two matrices

S =


1 −1 0 1
0 1 0 −2
0 0 1 0
0 0 0 1

 and T =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



118 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

such that the operator

D̃ = SD T =


1 0 0 x
0 1 0 −2x
0 0 x 0
0 0 0 x

ϑ+


x x 2x− x2 − x3 x3 + 2x
1 0 x2 + x3 −2x3 − 4x
0 5x 1 1
0 1 0 x3 + 2x


has an associated matrix pencil of the form (4.15) with q = 2 and condition (4.16) satisfied. The
matrix pencil associated with the operator D̃ written with ϑj is equal to

L̃j(λ) =


λ 0 0 0
0 λ 0 0
0 0 λ+ 1 1
0 1 0 λ

 if j = 1,

and L̃j(λ) = I4 λ if j ≥ 2. One can easily check that the relation L̃j(λ) = T−1 Lj(λ)T for j ≥ 1
is well satisfied. �

By combining the results of Propositions 4.5.1, 4.5.3 and 4.5.2, we obtain the following
theorem.

Theorem 4.5.1. Let Dk = D(x)ϑk + N(x) ∈ K[[x]][ϑk]n×n be a matrix differential operator
having a leading coefficient matrix D(x) in An. If Dk is simple with respect to ϑk+j for j =
1, 2, . . ., then Algorithm SimpleForm applied to Dk returns an operator which is simple with
respect to ϑk and to ϑk+j for j = 1, 2,

4.6 An example

We end with an example recapitulating all the notions viewed in this chapter.

Consider the system of first-order linear differential equations given by

ϑ(y(x)) +


0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

1− x2 0 0 0 −x
− 1
x2 + 1 0 0 1

x3 − 1
x

2
x

 y(x) = 0 (4.32)

having a Poincaré-rank equal to 3. The slopes of the Newton polygon of System (4.32) are then
rational numbers between 0 and 3. Write System (4.32) in the form

D(y(x)) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 x3

ϑ(y(x)) +


0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

1− x2 0 0 0 −x
x3 − x 0 0 1− x2 2x2

 y(x) = 0. (4.33)

In the sequel, we would like to compute an operator equivalent to D which is simple with respect
to ϑi for i = 0, 1, 2, 3 and hence determine all integer slopes of the Newton polygon of (4.32).
Remark first that the operator D written respectively with ϑ1 and ϑ2 is not simple, but written

4.6. An example 119

with ϑ3, it is so. Secondly, Algorithm SimpleForm applied to D given in (4.33) returns the
operator 

1 0 0 0 −x2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 x2

ϑ+


x− x3 + 1 x2 0 0 −2x

1− x2 1 0 0 −1
0 0 0 1 0
0 0 0 0 1

x3 − x 1− x2 0 0 2x

 .

which is simple with respect to ϑ but neither simple with respect to ϑ1 nor with respect to ϑ2.
To achieve our purpose, we will proceed as follows. Operator D written with ϑ3 is equal to

D3 = D3(x)ϑ3 +N3(x) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

ϑ3 +


0 0 0 x3 0
0 0 0 0 x3

0 x3 0 0 0
x3 − x5 0 0 0 −x4

x3 − x 0 0 1− x2 2x2


and it is simple with respect to ϑ3 since the determinant of its associated matrix pencil is equal
to λ5 (this implies that 3 is not a slope of the Newton polygon of (4.32) since the determinant
has only 0 as root). Write D3 with ϑ2 (ϑ3 = xϑ2) as follows D3 = xD3(x)ϑ2 + N3(x), then
simplify by x the rows of index 1 to 4 of the operator so that all rows of the operator can be of
valuation 0. We find

D2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 x

ϑ2 +


0 0 0 x2 0
0 0 0 0 x2

0 x2 0 0 0
x2 − x4 0 0 0 −x3

x3 − x 0 0 1− x2 2x2


which is not simple with respect to ϑ2 but simple with respect to ϑ3 (D2 written with ϑ3 is the
operator D3 which is simple with respect to ϑ3). Applying Algorithm SimpleForm to D2, we
find the equivalent simple operator

D̃2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

ϑ2 +


x2 0 0 x2 0
0 x2 0 0 x
0 x2 x2 0 0

x2 − x4 0 0 x2 −x2

x3 − x 0 0 1− x2 2x


which is simple with respect to respectively ϑ2 and ϑ3 (see Theorem 4.5.1). The determinant of
the matrix pencil associated with D̃2 is equal to λ5 and hence the integer 2 is not a slope of the
Newton polygon of (4.32). Since ϑ2 = xϑ1, the operator D̃2 can be written with ϑ1 as follows

x 0 0 0 0
0 x 0 0 0
0 0 x 0 0
0 0 0 x 0
0 0 0 0 x

ϑ1 +


x2 0 0 x2 0
0 x2 0 0 x
0 x2 x2 0 0

x2 − x4 0 0 x2 −x2

x3 − x 0 0 1− x2 2x

 .

Simplifying the rows of index 1 to 4 of the latter operator by x, we find the operator

D1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 x

ϑ1 +


x 0 0 x 0
0 x 0 0 1
0 x x 0 0

x− x3 0 0 x −x
x3 − x 0 0 1− x2 2x



120 Chapter 4. On k-Simple Forms of First-Order Linear Differential Systems

which is simple with respect to ϑ2 and ϑ3 (since D̃2 is so) but not simple with respect to ϑ1.
Again, by applying Algorithm SimpleForm to D1, we obtain the equivalent operator

D̃1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

ϑ1 +


2x 0 x 0 0
0 2x 0 1 0

x− x3 0 2x 0 −1
0 0 0 x 1

x3 − x 0 1− x2 0 2


which is simple with respect to ϑ1, ϑ2 and ϑ3. The determinant of the matrix pencil associated
with D̃1 is equal to λ3 (λ+ 1)2 which means that 1 is a slope of the Newton Polygon and System
(4.32) has two irregular solutions of the form

y(x) = exp
(∫

−1
x2

+ . . .

)
z(x),

where the dots stand for terms of valuation higher than −2 and z(x) ∈ K[[x1/r]]5[log(x)] with
r ∈ N∗. Now write D̃1 with ϑ. After simplifying the first row of the operator by x, we find

D0 =


1 0 0 0 0
0 x 0 0 0
0 0 x 0 0
0 0 0 x 0
0 0 0 0 x

ϑ+


2 0 1 0 0
0 2x 0 1 0

x− x3 0 2x 0 −1
0 0 0 x 1

x3 − x 0 1− x2 0 2

 .

Now, Algorithm SimpleForm applied to D0 gives rise to the operator D̃0 = D̃(x)ϑ + Ñ(x),
where

D̃(x) = diag(1, 1, 1, x, x)

and

Ñ(x) =


2 x2 + 3 x3 − 3 x + 1 x

“
x + 6 x2 − 6

”
−x2 + 12 x3 − 12 x + 2 4 + 2 x2 − 6 x3 + 9 x −5− x2 + 3 x3 − 3 x

1− x2 − 4 x3 + 4 x 2 x2 − 8 x3 + 8 x + 1 −5 + 8 x2 − 16 x3 + 16 x −4− 6 x2 + 8 x3 − 12 x 6 + 3 x2 − 4 x3 + 4 x

x3 − x 2 x3 − 2 x + 1− x2 5− 4 x + 4 x3 − 3 x2 −x
“
−3 + 2 x2 − 2 x

”
−1− x + x3 − x2

0 0 0 x 1

x2
“
−1 + x2

”
2 x4 − 2 x2 + x− x3 −4 x2 + 4 x4 + 3 x− 3 x3 −1 + 3 x2 − 2 x4 − 2 x + 2 x3 2− x2 + x4 + x− x3


which is simple with respect to ϑi for i = 0, 1, 2, 3. The determinant of the matrix pencil
associated with D̃0 is equal to (λ+ 2)2 (λ+ 3). Hence System (4.32) has 5 formal solutions, two
of them are irregular solutions and the three others are regular. In this example, the Newton
polygon of System (4.32) have only integer slopes.

Conclusion and Perspectives
of Part I

In this part of the thesis, we have developed direct approaches for computing regular formal
solutions of linear differential systems of arbitrary order in a neighborhood of a singularity. Our
algorithms treat simple systems and are in particular valid for systems of the first kind. Thus,
the problem of computing regular solutions of higher-order simple linear differential systems has
been completely solved.

For non simple linear differential systems, we have proposed two algorithms computing aux-
iliary simple linear differential systems from which one can recover the regular solutions of the
non simple ones. The first algorithm LinSubs computes a linear substitution y(x) = T (x) z(x)
with invertible matrix T (x), when it exists, yielding a simple system. The second algorithm
EG_DV is a differential variant of the EG’-algorithm [4]. The latter algorithm presents two
essential drawbacks: the first is that it only works on systems with polynomial coefficients and
the second is that the order of the output system is, in general, higher than that of the input
one. It would be interesting in the future to look for algorithms treating the general case, i.e.,
systems with formal power series coefficients, and computing equivalent simple systems without
increasing the order.

Then, we were interested in computing k-simple differential systems of first-order. The
k-simple forms are useful in the determination of the integer slopes of the Newton polygon
of systems of the form ϑ(y(x)) = A(x) y(x) with A(x) ∈ K((x))n×n and in the computation
of the regular solutions and rational solutions [14] as well. The classical approach (before
this thesis) for computing k-simple forms is using the super-reduction algorithm [58]. Here,
we have proposed a direct method for their computation. While our approach allows to
classify the singularity as a regular or an irregular one, some questions concerning it re-
main however hung: what can we say about the Katz invariant of the system? How, by
taking interest of this approach, we can determine the nature (integer or not) of the Katz
invariant? What is the analogue, in our approach, of the Moser-reduction [77] regarding the
Katz invariant? In other words, how, by using our approach, we can find the smallest inte-
ger greater than the Katz invariant? We plan to address these questions in our future researches.

Note that the algorithms presented in this part have been all implemented in Maple5 and
a study of their arithmetic complexities have been provided.

In the future, we intend to investigate a possibility of developing direct algorithms handling
higher-order linear differential systems and computing the other type of formal solutions at a
singularity, the irregular solutions. A first step toward this would be the generalization of the
concept of k-simple forms to higher-order differential systems and the development of efficient
algorithms for their computations. We are interested as well in the global analysis of linear
differential systems of higher-orders, such as proposing direct methods for computing rational
and polynomial solutions. We have already considered this problem and we have noted that
the method in [14] can be generalized to higher-order differential systems. But, a prerequisite
condition for this method is to have simple forms, so we have to solve the problem of simplicity
first. Another direction could be to focus on the problems of divisibility and factorization of
higher-order matrix differential operators.

5The programs are available at http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html.

121

Part II

Reduction Algorithms for Linear
Differential-Algebraic Equations

123

Chapter 5

Reduction Algorithms for Linear
Differential-Algebraic Equations of

First-Order

Contents
5.1 Introduction . 125
5.2 Review of Harris et al. algorithm . 127

5.2.1 Step 1: normalization . 128
5.2.2 Step 2: algebraic reduction . 128
5.2.3 Step 3: differential row-reduction . 129
5.2.4 Step 4: differential column-reduction . 130

5.3 A new reduction algorithm . 130
5.3.1 Row-reduction . 131
5.3.2 Column-reduction . 133
5.3.3 Decoupling differential and algebraic equations 134
5.3.4 Application: classification of singularities. 136

5.1 Introduction

In this chapter, we will focus on the study of linear differential-algebraic equations (DAEs) of
first-order of the form

L(y(x)) = A(x) y′(x) +B(x) y(x) = f(x), (5.1)

where x is a complex variable, A(x) and B(x) are m × n matrices of analytic functions, y(x)
is an unknown n-dimensional vector and the right-hand side f(x) is a m-dimensional vector of
analytic functions. We are interested in the local analysis of such systems at the point x = 0,
and therefore we can suppose, without loss of generality, that the entries of A(x), B(x) and f(x)
are formal power series at x = 0.

The aim is to develop an algorithm which computes a system equivalent to (5.1) to which
the classical theory of ordinary differential equations (ODEs) is applicable.

Linear DAEs of the form (5.1) have been intensively studied from a numerical point of
view. Traditionally, they have been tackled using the notion of differential index [46] (a range
of alternative index definitions exist as well, see for example [67, 89] and references therein).
Generally speaking, most authors try to extract the underlying ODE which is a system of
ordinary differential equations of first-order expressing y′ in terms of y and x, computed by
differentiating (5.1) successively and then using only algebraic manipulations. The number
of differentiations of the initial DAE required to generate the underlying ODE is called the
differential index.

125

126 Chapter 5. Reduction Algorithms for Linear DAEs of First-Order

In [67], the authors considered DAEs of the form (5.1) with continuous coefficient matrices
on a real closed interval. They proposed a set of local characterizing quantities and developed an
algorithm reducing (5.1) to an equivalent1 one, with a very special structure, allowing to answer
the questions on the existence and the uniqueness of solutions of the initial DAE. Another
algorithm, improving the one of [67] and treating the DAEs on all their definition interval,
has been presented in [87, 88]. However, the size of the system during execution of the latter
algorithm might increase.

In [52], the authors considered DAEs of the form (5.1) with coefficient matrices holomorphic
at x = 0 and were interested in the existence of solutions of such systems and in the number of
solutions which are holomorphic at x = 0 or have at most a pole at x = 0. They developed an
algebraic algorithm reducing the DAE (5.1) to a sequence of first-order systems of ODEs and
algebraic systems of lower sizes with some necessary conditions on the right-hand side. We will
review this algorithm in more details in Section 5.2.

In this chapter, motivated by the work of Harris et al. [52], we use a different strategy:
using the terminology of matrix differential operators, we compute a sequence of left- and right-
transformations in order to obtain a new operator having decoupled differential and algebraic
parts. Our contribution is then reflected in the development and the implementation in Maple
of a new reduction algorithm which, for a given operator L = A(x) ∂ + B(x) ∈ K[[x]][∂]m×n

with ∂ = d
dx

, returns an operator L̃ = S LT of the form

L̃ =

Ã11(x) ∂ + B̃11(x) 0 0
0 B̃22(x) 0
0 0 0

 ∈ K[[x]][∂]m×n, (5.2)

where S and T are two unimodular matrix differential operators, and Ã11 and B̃22 are invertible
matrices over K((x)). Hence, the DAE (5.1) is reduced to L̃(z(x)) = f̃(x), where y(x) = T (z(x))
and f̃(x) = S(f(x)). Decomposing z(x) and f̃(x) into blocks of the same partition as L̃ in (5.2),
i.e.,

z(x) =

z1(x)
z2(x)
z3(x)

 and f̃(x) =

f̃1(x)
f̃2(x)
f̃3(x)

 ,

L̃(z(x)) = f̃(x) can then be written as two separate problems, possibly of lower size than (5.1):

1. one being purely differential: Ã11(x) z′1(x) + B̃11(x) z1(x) = f̃1(x),

2. and the other one being purely algebraic: B̃22(x) z2(x) = f̃2(x),

together with some necessary conditions on the right-hand side expressed by f̃3(x) = 0. We
conclude the chapter by exploring the notion of singularities associated with system (5.1) (see
also [87]).

The content of this chapter constitutes a part of the published paper [20]. The second part
of [20] concerning the second-order case has been omitted since linear DAEs of arbitrary order
will be treated in the next chapter.

Notation and Terminology. The notation ∂ stands for the standard derivation d
dx of K((x))

(K being a subfield of C). For M ∈ K((x))m×n, we will use sometimes the notation M ′ for dM
dx .

In this chapter and the next one, we are interested in applying to an arbitrary matrix differential
1Equivalence means that there is one-to-one correspondence of their solutions.

5.2. Review of Harris et al. algorithm 127

operator L elementary row operations and elementary column operations of the second type (see
Subsection 3.6.1 of Chapter 3). From now on, we omit the expression “of the second type” for
sake of brevity.

We recall that a square matrix differential operator S of K((x))[∂]m×m is unimodular (i.e.,
has a two sided-inverse in K((x))[∂]m×m) if it can be expressed as a product of elementary
operations. Finally, two matrix differential operators L and L̃ of K((x))[∂]m×n are said to be
equivalent if there exist two unimodular matrix differential operators S ∈ K((x))[∂]m×m and
T ∈ K((x))[∂]n×nsuch that L̃ = S LT.

5.2 Review of Harris et al. algorithm

The algorithm proposed by Harris et al. in [52] reduces a non-homogeneous linear differential-
algebraic equations of first-order into a sequence of first-order linear systems of ordinary dif-
ferential equations and linear algebraic systems of lower sizes with some necessary conditions
on the right-hand sides. In this section, we will review this algorithm by adapting it to matrix
differential operators of first-order with formal power series coefficients of the form

L = A(x) ∂ +B(x), (5.3)

where A(x), B(x) ∈ K[[x]]m×n. Following the steps detailed in [52], we will construct two
unimodular matrix differential operators S and T such that the output operator S LT is, up to
a permutation, a block diagonal matrix differential operator having at most a diagonal block of
the form (

xpIq ∂ +D(x) 0
0 0

)
, (5.4)

where p ∈ N, q ∈ N∗ and D(x) is a square matrix with formal power series coefficients. Its other
diagonal blocks are of the form (

0 C(x)
0 0

)
, (5.5)

where C(x) is an invertible matrix with formal power series coefficients.

Remark 5.2.1. The matrix in (5.4), respectively in (5.5), may of course have one of the following
forms:

xpIq ∂ +D(x),
(
xpIq ∂ +D(x) 0

)
, or

(
xpIq ∂ +D(x)

0

)
,

respectively C(x),
(
C(x)

0

)
, or

(
0 C(x)

)
.

The aim of our presentation is twofold: on the one hand, we would like to raise awareness of
this algorithm, as we have not found references to it within the Computer Algebra community.
On the other hand, our description of this algorithm as a series of reversible transformations on
the input operator L given by (5.3) makes easier to understand the method. This presentation
also makes it particularly suitable for an implementation in a Computer Algebra system.

The following lemma constitutes an essential step in Harris et al. algorithm.

Lemma 5.2.1. Let A be a matrix of K[[x]]m×n. It is always possible to construct two invertible
matrices S ∈ K[[x]]m×m and T ∈ K[[x]]n×n such that S AT has one of the forms(

Ã 0
0 0

)
,

(
0 Ã
0 0

)
,

(
0 0
Ã 0

)
, or

(
0 0
0 Ã

)
, (5.6)

where Ã ∈ K[[x]]r×r is an invertible matrix with r being the rank of A.

128 Chapter 5. Reduction Algorithms for Linear DAEs of First-Order

Proof. The proof is similar to that of [52, Lemma 1].

Note that the matrices S and T in Lemma 5.2.1 may be chosen so that Ã = xkIr with k ∈ N.
In what follows, we will present the different steps of the algorithm of [52]. For ease of

presentation, we will continue using the same symbols L,A,B,m, n etc, for the different steps
whenever no confusion arises. We will denote by r(L) the rank of the leading coefficient matrix
of the operator L, i.e., for L given by (5.3), r(L) is by definition equal to rank(A).

5.2.1 Step 1: normalization

The first step is a normalization step achieved by applying Lemma 5.2.1 to the leading coefficient
matrix A of the operator L given by (5.3). Let S ∈ K[[x]]m×m and T ∈ K[[x]]n×n be such that
S AT = diag

(
xkIr, 0

)
where k ∈ N and r = rank(A) ≤ min{m,n} . Thus, L is equivalent to the

operator

S LT =
(
xkIr ∂ +B11 B12

B21 B22

)
, (5.7)

where B11 ∈ K[[x]]r×r and B22 ∈ K[[x]](m−r)×(n−r). We will refer to the form given by the right-
hand side of (5.7) as a normalized form. After computing a normalized form, the algorithm
proceeds to Step 2.

5.2.2 Step 2: algebraic reduction

Assume that L is in normalized form as in the right-hand side of (5.7). If B22 = 0, we go to Step
3. Otherwise, we apply Lemma 5.2.1 to B22 and obtain two matrices S ∈ K[[x]](m−r)×(m−r) and
T ∈ K[[x]](n−r)×(n−r) such that S B22 T = diag

(
0, B̃33

)
with B̃33 an invertible matrix of size

a (0 < a ≤ min{m − r, n − r}). Thus, multiplying L on the left and the right respectively by
diag(Ir, S) and diag(Ir, T), we find

L̃ =

xkIr ∂ +B11 B̃12 B̃13

B̃21 0 0
B̃31 0 B̃33

 ∈ K[[x]][∂]m×n. (5.8)

The latter operator can be further simplified using the transformations

S1 =

Ir 0 −B̃13 B̃
−1
33

0 Im−r−a 0
0 0 Ia

 on the left and T1 =

 Ir 0 0
0 In−r−a 0

−B̃−1
33 B̃31 0 Ia

 on the right.

This allows to eliminate B̃13 and B̃31 in (5.8). Thus, we get an operator of the form

L = S1 L̃ T1 =

xk Ir ∂ +B11 − B̃13 B̃
−1
33 B̃31 B̃12 0

B̃21 0 0
0 0 B̃33

 .

Let α = min
{
v
(
B11 − B̃13 B̃

−1
33 B̃31

)
, v
(
B̃12

)
, k
}

and multiply L on the left by
diag(x−α Ir, Im−r) . We findxqIr ∂ + B̂11 B̂12 0

B̃21 0 0
0 0 B̃33

 =
(
L11 0
0 B̃33

)
(5.9)

5.2. Review of Harris et al. algorithm 129

where q = k−α, B̂11 = x−α
(
B11 − B̃13 B̃

−1
33 B̃31

)
and B̂12 = x−α B̃12. The operator to consider

now is L11 ∈ K[[x]][∂](m−a)×(n−a) which is in normalized form (5.7) with B22 = 0 and hence
we proceed to Step 3. Note that here we have simplified the presentation of [52] by combining
Steps I (ii) and I (iii) in [52, Section 3].

5.2.3 Step 3: differential row-reduction

We can now assume that L is of the form

L =
(
xqIr ∂ +B11 B12

B21 0

)
∈ K[[x]][∂]m×n. (5.10)

If B21 = 0, then we go to Step 4. Otherwise, we compute two matrices S ∈ K[[x]](m−r)×(m−r)

and T ∈ K[[x]]r×r as in Lemma 5.2.1 such that S B21 T = diag
(
B̃31, 0

)
where B̃31 is an invertible

matrix of size s (0 < s ≤ r). Then, put

L = diag
(
T−1, S

)
Ldiag(T, In−r) =

(
xq Ir ∂ + xq T−1T ′ + T−1B11 T T−1B12

S B21 T 0

)
,

where T ′ = dT
dx . Let β = min

{
v
(
xq T−1T ′ + T−1B11T

)
, v
(
T−1B12

)
, q
}
and multiply L on the

left by diag
(
x−βIr, Im−r

)
. Partition the resulting operator into blocks compatible with the

partition of diag
(
B̃31, 0

)
, i.e.,

L̃ = diag
(
x−β Ir, Im−r

)
L =


xq−β Is ∂ + B̃11 B̃12 B̃13

B̃21 xq−β Ir−s ∂ + B̃22 B̃23

B̃31 0 0
0 0 0

 .

Now, since B̃31 is invertible, then by left-multiplication, we can eliminate all the blocks above
B̃31. This can be made by multiplying L̃ on the left by

S̃ =


0 Ir−s −B̃21B̃

−1
31 0

Is 0 −xq−β
(

(B̃−1
31)′ + B̃−1

31 ∂
)
− B̃11B̃

−1
31 0

0 0 Is 0
0 0 0 Im−r−s


and we obtain 

0 xq−βIr−s ∂ + B̃22 B̃23

0 B̃12 B̃13

B̃31 0 0
0 0 0

 =

 0 L12

B̃31 0
0 0

 .

The operator to consider now is L12 which is in normalized form of smaller size than the initial
operator L given by (5.10) and satisfies r(L12) < r(L). The algorithm now proceeds recursively
to Step 2.

Thus, after successive applications of Steps 2 and 3, we either find an operator of the form
(5.10) for which B21 = 0, in which case, we proceed to Step 4 or an operator of order zero in
which case the algorithm terminates.

130 Chapter 5. Reduction Algorithms for Linear DAEs of First-Order

5.2.4 Step 4: differential column-reduction

We can assume now that we have an operator of the form

L =
(
xpIr ∂ +B11 B12

0 0

)
. (5.11)

If B12 = 0, then the algorithm is completed. Otherwise, let S, T such that SB12T = diag
(
0, B24

)
where B24 is an invertible matrix of size b > 0. Put L = diag(S, Im−r)Ldiag

(
S−1, T

)
and

partition L into blocks compatible with the partition of diag
(
0, B24

)
, i.e.,

L = diag(S, Im−r)Ldiag
(
S−1, T

)
=
(
xp Ir ∂ + xp S (S−1)′ + S B11 S

−1 S B12 T
0 0

)

=

xp Ir−b ∂ +B11 B12 0 0
B21 xp Ib ∂ +B22 0 B24

0 0 0 0

 ∈ K((x))[∂]m×n.

Now, multiply the first r rows of L by a suitable power of x to get an operator with coefficients
in K[[x]], i.e.,

L̃ =

xq Ir−b ∂ + B̃11 B̃12 0 0
B̃21 xq Ib ∂ + B̃22 0 B̃24

0 0 0 0

 ∈ K[[x]][∂]m×n,

where q ∈ N and B̃24 is an invertible matrix. Let S̃ be the constant permutation matrix and T̃
the unimodular matrix differential operator defined as below

S̃ =

Ir−b 0 0
0 0 Im−r−b
0 Ib 0

 and T̃ =


Ir−b 0 0 0

0 Ib 0 0
0 0 In−r−b 0

−B̃−1
24 B̃21 −B̃−1

24

(
xq Ib ∂ + B̃22

)
0 Ib

 ,

then S̃ L̃ T̃ is of the form

S̃ L̃ T̃ =

xqIr−b ∂ + B̃11 B̃12 0 0
0 0 0 0
0 0 0 B̃24

 =
(
L11 0 0
0 0 B̃24

)
.

Therefore, we consider now the operator L11 which is of the form (5.11) but of smaller size and
r(L11) < r(L). We repeat successively this step until we find an operator of the form (5.11) for
which B12 is either a zero matrix and hence the algorithm is completed, or an invertible matrix
in which case, after a right multiplication by a suitable unimodular matrix differential operator,
we get an operator of order zero upon which the algorithm terminates.

5.3 A new reduction algorithm

Inspired by the work of Harris et al. [52], we will develop in this section a new reduction algorithm
which computes an operator of the form (5.2), equivalent to L = A(x) ∂ +B(x) ∈ K[[x]][∂]m×n.
This algorithm organizes the steps of the algorithm in [52] in two main stages: treating the rows of
L (only left-multiplications are authorized), and treating its columns (only right-multiplications

5.3. A new reduction algorithm 131

are authorized). Our approach as presented below is simpler than that of Harris et al. and uses
a weaker version of Lemma 5.2.1. It is essentially based on the computation of left and right
nullspaces of rectangular matrices which makes it suitable for a generalization to systems of
higher-order as we will see in the next chapter.

Our algorithm consists in applying alternatively row-reduction and column-reduction as de-
scribed below until we find an operator equivalent to L which satisfies some properties allowing
the decoupling.

5.3.1 Row-reduction

Multiplying operator L = A∂ + B on the left by a suitable matrix of GLm(K((x))), we can
assume that the leading coefficient matrix A is in the block partition

A =
(
A11 A12

0 0

)
,

where A11 ∈ K[[x]]r×r and r = r(L) = rank(A). Write B = (Bij)i,j=1,2 decomposed into blocks
as matrix A. The operator to consider is then of the form

L = A∂ +B =
(
A11 ∂ +B11 A12 ∂ +B12

B21 B22

)
. (5.12)

Lemma 5.3.1. Given a matrix differential operator L of the form (5.12), assume that

rank
(
A11 A12

B21 B22

)
< rank

(
A11 A12

)
+ rank

(
B21 B22

)
. (5.13)

Then, there exists a unimodular matrix differential operator S such that r(SL) < r(L).

Proof. Equation (5.13) is equivalent to saying that there exists i ∈ {1, . . . , r} such that

A(i, .) =
r∑

k=1
k 6=i

αk A(k, .) +
m−r∑
j=1

βj B(r + j, .),

where αk, βj ∈ K((x)) and at least one of the βj is nonzero (since the nonzero rows of A are
supposed to be linearly independent). Let S be the matrix differential operator obtained from
the identity matrix of size m by replacing the ith row by(

−α1 · · · −αi−1 1 −αi+1 · · · −αr −β1 ∂ · · · −βm−r ∂
)
.

Note that S is unimodular since a left-multiplication by S consists in performing a series of
elementary row operations. Multiplying L on the left by S leaves the rows of index k 6= i
unchanged and replaces the ith row by

A(i, .) ∂ +B(i, .)−
r∑

k=1
k 6=i

αk (A(k, .) ∂ +B(k, .))−
m−r∑
j=1

βj (∂(B(r + j, .)) +B(r + j, .) ∂) =

B(i, .)−
r∑

k=1
k 6=i

αk B(k, .)−
m−r∑
j=1

βj ∂(B(r + j, .)),

as if we replace the ith row of A by a zero row and that of B by B(i, .) −
∑r

k=1
k 6=i

αk B(k, .) −∑m−r
j=1 βj ∂(B(r + j, .)). Hence, we have r(SL) < r(L).

132 Chapter 5. Reduction Algorithms for Linear DAEs of First-Order

We repeat successively Lemma 5.3.1 until we find an operator equivalent to L of the form

L̃ = Ã ∂ + B̃ =

(
Ã11 ∂ + B̃11 Ã12 ∂ + B̃12

B̃21 B̃22

)

with
(
Ã11 Ã12

)
of size q × n, where q = r(L̃) ≤ r(L) (i.e., it has full row-rank), and

rank

(
Ã11 Ã12

B̃21 B̃22

)
= rank

(
Ã11 Ã12

)
+ rank

(
B̃21 B̃22

)
. (5.14)

The final sub-step of the row-reduction consists in multiplying L̃ on the left by a convenient ma-
trix of GLm(K((x))) to eliminate all the linearly dependent rows in

(
B̃21 B̃22

)
. The resulting

operator is said to be row-reduced.

Example 5.3.1. Consider the matrix differential operator of first-order

L = A(x) ∂ +B(x) =



1 1− x 2− x 0 −1
0 1 0 0 1
x 1 1 0 x

1 + x 1− x 3− x 0 x− 2
2 + 2x 4− 2x 6− 2x 0 2x− 2

1 −x 2− x 0 −2

 ∂ +



0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
1 0 2 0 −2
1 x 2 + x 2 −2
1 1 3 0 −2

 .

(5.15)
A basis of the left nullspace of A is given by the rows of the matrix−1 1 −1 1 0 0

−2 0 −2 0 1 0
−1 1 0 0 0 1

 .

Thus, multiplying operator L on the left by the invertible matrix

S =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−1 1 −1 1 0 0
−2 0 −2 0 1 0
−1 1 0 0 0 1


yields the operator

L̂ = Â(x) ∂ + B̂(x) =



1 1− x 2− x 0 −1
0 1 0 0 1
x 1 1 0 x

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∂ +



0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
1 0 2 0 −2
1 x 2 + x 0 −2
1 1 3 0 −2


to which Lemma 5.3.1 can be applied (here r(L̂) = 3). Indeed, the following relation

Â(1, .) = Â(2, .) + 2 B̂(4, .)− B̂(5, .)

5.3. A new reduction algorithm 133

is satisfied. Thus, the leading coefficient matrix of the operator obtained by multiplying L̂ on the
left by the unimodular matrix differential operator

S1 =



1 −1 0 −2 ∂ ∂ 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


will have its first row equal to zero. Permuting the first three rows, S1 L̂ is equivalent to

L̃ = Ã(x) ∂ + B̃(x) =



0 1 0 0 1
x 1 1 0 x

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∂ +



0 0 0 1 0
0 0 0 0 0
0 1 1 0 0
1 0 2 0 −2
1 x 2 + x 0 −2
1 1 3 0 −2


which satisfies the condition (5.14). Here, we have decreased the value of r(L) by one since
r(L̃) = 2 < r(L) = 3. The last step now consists in multiplying L̃ on the left by

S2 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −x −1 1 0
0 0 −1 −1 0 1


to eliminate the linearly dependent rows in the second block row of B̃(x). We finally obtain the
row-reduced operator

L = S2 L̃ = A(x) ∂ +B(x) =



0 1 0 0 1
x 1 1 0 x

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∂ +



0 0 0 1 0
0 0 0 0 0
0 1 1 0 0
1 0 2 0 −2
0 0 0 0 0
0 0 0 0 0

 . (5.16)

�

5.3.2 Column-reduction

Assume now that the matrix differential operator L = A∂ + B is in the form (5.12) with(
A11 A12

)
of size q × n and r(L) = q. Let T1 be an invertible matrix such that

Ã = AT1 =
(
Ã11 0
0 0

)
with Ã11 a q × q invertible matrix. Denote AT ′1 + B T1 by B̃ =

(
B̃ij

)
i,j=1,2

. Hence, L is

equivalent to

L̃ = LT1 =

(
Ã11 ∂ + B̃11 B̃12

B̃21 B̃22

)
. (5.17)

The following lemma can be proved similarly to Lemma 5.3.1.

134 Chapter 5. Reduction Algorithms for Linear DAEs of First-Order

Lemma 5.3.2. Given a matrix differential operator L̃ of the form (5.17), we assume that

rank

(
Ã11 B̃12

0 B̃22

)
< rank

(
Ã11

)
+ rank

(
B̃12

B̃22

)
.

Then, there exists a unimodular matrix differential operator T2 such that r
(
L̃ T2

)
< r
(
L̃
)
.

Applying successively Lemma 5.3.2, we find an equivalent operator

L = A∂ +B =
(
A11 ∂ +B11 B12

B21 B22

)
where A11 is of size q × r

(
L
) (

r
(
L
)
≤ q = r

(
L̃
))

satisfying

rank
(
A11 B12

0 B22

)
= rank

(
A11

)
+ rank

(
B12

B22

)
(5.18)

Finally, we multiply L on the right by a matrix of GLn(K((x))) to cancel all linearly dependent

columns of

(
B

12

B
22

)
. The resulting operator is said to be column-reduced.

Example 5.3.2. Consider the first-order matrix differential operator L given by (5.16). Working
with the columns as explained above, one can obtain the unimodular matrix differential operator

T =


1 −1 −1 0 −2x
0 x 0 0 −3x
0 0 x 0 3x
0 −x ∂ 0 1 x ∂ + 1
0 0 0 0 2x


so that

LT =



0 0 0 0 0
x 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∂ +



0 1 0 1 0
0 1 1 0 0
0 x x 0 0
1 −1 2x− 1 0 0
0 0 0 0 0
0 0 0 0 0

 (5.19)

is column-reduced. �

5.3.3 Decoupling differential and algebraic equations

As we have seen, each time Lemma 5.3.1 or Lemma 5.3.2 is applied, the rank of the leading
coefficient matrix of the operator decreases by one. Hence, after carrying out a finite number of
times row- and column-reductions2, L will be equivalent to matrix differential operator which is
simultaneously row and column reduced. The latter operator is a block diagonal one diag

(
L̃1, 0

)
with L̃1 of size p× s of the form

L̃1 =

(
Ã11 ∂ + B̃11 B̃12

B̃21 B̃22

)
, (5.20)

2We will see in the next chapter that this is after at most the second application of row-reduction.

5.3. A new reduction algorithm 135

where Ã11 is a d× d invertible matrix,

rank

(
Ã11 0
B̃21 B̃22

)
= p (5.21)

and

rank

(
Ã11 B̃12

0 B̃22

)
= s. (5.22)

Since Ã11 is invertible, Equation (5.21), respectively Equation (5.22), implies that B̃22 has full
row-rank, respectively full column-rank. Consequently, B̃22 is invertible and p = s.

Now, using the fact that B̃22 is invertible, it is easy to decouple the operator L̃1. Indeed,(
Id −B̃12 (B̃22)−1

0 Ip−d

)
L̃1

(
Id 0

−(B̃22)−1B̃21 Ip−d

)
=

(
Ã11 ∂ + B̃11 − B̃12 (B̃22)−1B̃21 0

0 B̃22

)
.

Multiplying the latter operator by a suitable power of x, we can assume that its coefficients
belong to K[[x]]. This leads to the following theorem.

Theorem 5.3.1. Given a linear DAE of the form (5.1), there exist two unimodular matrix
differential operators S ∈ K((x))[∂]m×m and T ∈ K((x))[∂]n×n that transform (5.1) into a
decoupled system of the form

L̃(z) =

Ã11 ∂ + B̃11 0 0
0 B̃22 0
0 0 0

z1

z2

z3

 =

f̃1

f̃2

f̃3

 , (5.23)

where L̃ = S LT ∈ K[[x]][∂]m×n, Ã11 and B̃22 are both invertible, y = T (z) and f̃ = S(f).

If f̃3 = 0 in (5.23), then the system (5.23), respectively System (5.1), is consistent. If
moreover rank(Ã11) + rank(B̃22) < n, then the component z3 can be chosen as an arbitrary
vector function and hence the dimension of the affine solution space of (5.23) is infinite.

Example 5.3.3. We continue our reduction process on the operator L given by (5.15). Operator
(5.19) is equivalent, up to a permutation, to

x 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∂ +



0 1 1 0 0
0 1 0 1 0
0 x x 0 0
1 −1 2x− 1 0 0
0 0 0 0 0
0 0 0 0 0


which is also row-reduced. Thus, multiplying the above operator on the left and on the right
respectively by 

1 0 − 1
x 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 and


1 0 0 0 0
1

2x 1 0 0 0
−1
2x 0 1 0 0
−1
2x 0 0 1 0
0 0 0 0 1

 ,

136 Chapter 5. Reduction Algorithms for Linear DAEs of First-Order

we end up with the decoupled operator

Lf =



x 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∂ +



0 0 0 0 0
0 1 0 1 0
0 x x 0 0
0 −1 2x− 1 0 0
0 0 0 0 0
0 0 0 0 0

 .

Hence, solving system L(y) = f is reduced to solving a scalar linear differential equation and a
linear algebraic system of size 3. Finally, we note that the two operators Lf and L are connected
by Lf = Sf LTf with Sf and Tf two unimodular matrix differential operators respectively given
by

Sf =


− 1

x
2 ∂+1

x 1 2 ∂
x −∂

x 0
0 1 0 0 0 0
1 −2 ∂ − 1 0 −2 ∂ ∂ 0
−1 1 −1 1 0 0
−1− x 2x ∂ − 1 + x −1 2x ∂ − 1 1− x ∂ 0
−1 2 ∂ + 1 1 2 ∂ − 1 −∂ 1

 and Tf =


1 −1 −1 0 −2x
1
2 x 0 0 −3x
− 1

2 0 x 0 3x
1
2 ∂ −x ∂ 0 1 x ∂ + 1
0 0 0 0 2x

.
�

Example 5.3.4. We consider the linear DAE

L(y) =

 1 x 1 −x
x2 2 + x 0 0
0 0 0 0

 y′(x) +

0 0 0 0
0 0 1 + x −x
0 0 −1 x

 y(x) = f(x),

where f(x) is a 3-dimensional arbitrary vector. Applying our algorithm to L, we find

S =

 −x2 1 −7x−2x2−2+x3

−2−x+x3

−2− x+ x3 0 0
0 0 1

 and T =


−x 2+x

−2−x+x3 0 −1
1 −x2

−2−x+x3 0 0
x 1 x x ∂
1 0 1 ∂


and the decoupled operator L̃ = S LT is given by

L̃ =

(−x3 + x+ 2) ∂ 0 0 0
0 x2 x3 − x− 2 0
0 −1 0 0

 .

Here, the system is consistent for any right-hand side f(x). �

5.3.4 Application: classification of singularities.

Our reduction algorithm makes possible to extend the classification of the singularity at x = 0
(as regular or singular singularity) to linear DAEs since it reduces the problem to the ODE case.

Definition 5.3.1. Given an homogeneous linear DAE of the form (5.1), we say that the point
x = 0 is a regular singularity, if it is a regular singularity of Ã11(x) z′1(x) + B̃11(x) z1(x) = 0
and rank(Ã11)+ rank(B̃22) = n, where Ã11, B̃11 and B̃22 are given by (5.23). Otherwise, we say
that it is an irregular singularity.

Thus, by applying our reduction algorithm and using techniques developed for the ODEs
(e.g., using Moser’s algorithm [77] on the system z′1(x) + Ã−1

11 (x) B̃11(x) z1(x) = 0), we are able
to algorithmically decide whether a given homogeneous linear DAE has a regular or irregular
singularity at x = 0. However, it is currently an open problem how to algorithmically classify
singularities without this decoupling.

Chapter 6

On Simultaneous Row and Column
Reduction of Higher-Order Linear

Differential Systems

Contents
6.1 Introduction . 137
6.2 Row-reduction procedure . 138
6.3 Simultaneously row and column reduced forms 141

6.3.1 Simultaneous row and column reduction . 141
6.3.2 First-order matrix differential operators . 144

6.4 A second algorithm for simultaneous row and column reduction 145
6.5 Algorithms and complexity . 152
6.6 Reduction of higher-order linear differential systems 155

6.1 Introduction

We consider linear differential systems of the form

L(y(x)) =
∑̀
i=0

Ai(x) y(i)(x) = f(x), (6.1)

where x is a complex variable, Ai(x) ∈ K[[x]]m×n and f(x) ∈ K[[x]]m. Such systems arise
naturally in many applications such as multi-body systems, models of electrical circuits, robotic
modelling and mechanical systems (see [73, 82, 89] and references therein). A standard technique
for dealing with systems of the form (6.1) is to transform them to a system having the same
properties but which is in a “simpler” form where, for instance, a local analysis is more readily
determined.

One way for obtaining systems equivalent to (6.1) is by performing reversible row operations
on the matrix differential operator

L =
∑̀
i=0

Ai(x) ∂i.

As an example, the differential row Hermite normal form [49] results in a system having a
triangular form and hence it can useful for solving such systems. However, the differential
equations obtained are often of order higher than that of the original system. A second form,
the differential row Popov normal form [40], always yields a matrix differential operator of order
at most that of the original one. The utility of this form is that it can easily be transformed
into a first-order differential-algebraic equation. One can also obtain equivalent systems making

137

138 Chapter 6. Simultaneous Row and Column Reduction

use of both reversible row and column operations on L. The most extreme example of this is
the transformation of the matrix differential operator L to a diagonal form, called the Jacobson
normal form [70, 74]. The latter form reduces System (6.1) into a scalar linear differential
equation with, often, very large coefficients especially when the system is of large size. Hence,
from an algorithmic viewpoint, it is better to manipulate systems directly rather than to convert
them into scalar differential equations.

In this chapter, we give two algorithms for reducing systems (6.1) into a new form called
simultaneously row and column reduced form The first algorithm follows the techniques used in
Section 5.3 of the previous chapter while the second algorithm makes use of reduction techniques
used for matrix polynomial [28, 27, 78]. Both algorithms reduce orders in rows and columns
by carrying out of a series of elementary (block) row and column operations. These methods
are also extended to handle two-sided block Popov forms (see Definition 6.4.2), a special form of
matrix of differential operators which generalizes the Popov normal form. We give a complexity
analysis of our algorithms and also illustrate their use in the special case where the operator is
of first-order.

While we have chosen to focus our work on matrix differential operators with coefficients
in the domain of formal power series K[[x]], our methods easily extend to the field of rational
functions K(x). In fact, our algorithms are entirely algebraic involving only basic row and
column operations. Everything that we do can be done for the more general case of Ore matrix
polynomials having coefficients in the field of rational functions K(x).

The rest of the chapter is divided as follows. In Section 6.2, we review the notion of
row-reduction. In Section 6.3, we detail the concept of a simultaneously row and column
reduced matrix differential operator and we give a first algorithm for its computation. This
algorithm extends the one for first-order matrix differential operators presented in Section 5.3
of the previous chapter. In Section 6.4, we develop a second algorithm for the construction of a
simultaneously row and column reduced form. We also introduce the notion of a two-sided block
Popov form for a matrix differential operator and propose a procedure for its computation.
In Section 6.5, we give an algorithmic description and provide a complexity analysis for
the procedures developed in the previous section, while in Section 6.6, we discuss the reduc-
tion of higher-order differential systems into a purely algebraic part and a purely differential part.

This chapter is the subject of the paper [19].

Notation. For a nonzero matrix differential operator L, we denote by `c(L) its leading coef-
ficient matrix and by ord(L) its order. When L = 0, we set ord(L) = −∞ and `c(L) = 0.
If L can be partitioned into blocks Lij for 1 ≤ i, j ≤ k, then we denote by Li,∗ the ith
block row of L, i.e., Li,∗ =

(
Li1 Li2 · · · Lik

)
, and by L∗,j the jth block column of L. For

δ = (δ1, . . . , δn) ∈ (N ∪ {±∞})n\{±∞}n, we denote by |δ| the following sum
∑

1≤i≤n s.t. δi 6=±∞ δi.

6.2 Row-reduction procedure

In the case of a scalar differential operator, the leading coefficient, i.e., the coefficient of the
highest-order term, plays an important role in a number of tasks, as for example in singularity
analysis and finding local solutions. In the case of a matrix differential operator, this is more
complicated by the fact that there are many ways to define a leading coefficient, e.g., the matrix
of highest-order term, the matrix of highest row-order terms or the matrix of highest column-
order terms. Invertibility conditions are then important. A matrix differential operator having
an invertible leading row coefficient matrix is said to be in a row-reduced form [65] (a column-
reduced form for the corresponding notion on columns). More precisely,

6.2. Row-reduction procedure 139

Definition 6.2.1. Let L ∈ K[[x]][∂]m×n and let δi = ord(L(i.,)) for i = 1, . . . ,m.

1. δ = (δ1, . . . , δm) is called the row-order of L.

2. The leading row coefficient matrix of L is the m× n matrix with the (i, j) entry being the
coefficient of order δi of the (i, j) entry of L.

3. L is said to be row-reduced if the nonzero rows of its leading row coefficient matrix are
linearly independent over K((x)).

For computing a row-reduced form, we can make use of a procedure developed by Beckermann
and Labahn [28] for the commutative case of matrix polynomials (see also [65, page 386]) and
later generalized for Ore matrix polynomials in [27]. In this section, we will review this method
for use with matrix differential operators.

Lemma 6.2.1 ([27], Appendix). The rank1 of a row-reduced matrix differential operator is equal
to the rank of its leading row coefficient matrix.

The following lemma shows that any matrix differential operator can be transformed into a
row-reduced form by means of elementary row operations.

Lemma 6.2.2 ([27], Theorem 2.2). Let L ∈ K[[x]][∂]m×n be a matrix differential operator of
rank s ≤ min(m,n). There exists a unimodular matrix differential operator U ∈ K[[x]][∂]m×m

such that UL is of the form

UL =
(
L∗

0

)
,

where L∗ is a row-reduced matrix differential operator of size s× n such that ord(L∗) ≤ ord(L)
and all its rows are nonzero.

For the sake of completeness, we recall the proof of the lemma here.

Proof. If L is already row-reduced then U = Im and we are done. Otherwise, we may suppose,
without any loss of generality, that L has all its zero rows at the bottom of the matrix. In this
case, the leading row coefficient matrix of L is of the form(

L0

0

)
,

where L0 ∈ K[[x]]k×n denotes the leading row coefficient matrix of the first k rows of L (k ≥ s).
As L is not row-reduced, L0 is of rank less than k and hence we can find a nonzero row vector
v =

(
v1 v2 · · · vk

)
∈ K[[x]]1×k such that v L0 = 0. Select an index ν ∈ {1, . . . , k} such that

vν 6= 0 and δν = max{δi s.t. vi 6= 0}, where δ = (δ1, . . . , δm) denotes the row-order of L. Define
U1 = diag(U11, Im−k) with

U11 =



1
. . .

1
v1 ∂

δν−δ1 · · · vν−1 ∂
δν−δν−1 vν vν+1 ∂

δν−δν+1 · · · vk ∂
δν−δk

1

. . .
1


∈ K[[x]][∂]k×k.

1The row rank and column rank of a matrix differential operator are equal (cf. [38, Chap. 8, Th. 1.1]).

140 Chapter 6. Simultaneous Row and Column Reduction

Matrix U1 is unimodular and multiplying L on the left by U1 leaves the rows of index i 6= ν
unchanged and replaces the νth row by

k∑
i=1

vi ∂
δν−δiL(i, .) =

k∑
i=1

vi `c(L(i, .)) ∂ δν + terms of order less than δν

= v L0︸︷︷︸
= 0

∂ δν + terms of order less than δν .

Thus, the νth row of U1L has order less than the one of L. Repeating this process a finite
number of times, we get a unimodular matrix of differential operators U such that UL is of the
form

UL =
(
L∗

0

)
,

where L∗ is a row-reduced matrix differential operator of size m1 × n (m1 ≤ k) having only
nonzero rows. It remains to show thatm1 = s. According to [27, Lemma A.3], we have rank(L) =
rank(UL) = rank(L∗). On one hand, the rank of L∗ is equal to that of its leading row coefficient
matrix which is m1 (see Lemma 6.2.1). On the other hand, we have rank(L) = s and thus
m1 = s.

Algorithm Row-Reduction

Input: L ∈ K[[x]][∂]m×n a matrix differential operator of row-order δ = (δ1, . . . , δm).
Output: A row-reduced matrix differential operator L′ ∈ K[[x]][∂]m×n and a unimodular

matrix differential operator U ∈ K[[x]][∂]m×m such that L′ = UL.

Initialization: Let L′ = L and define L′0 as the leading row coefficient matrix of L′.
Let δ′ = (δ′1, . . . , δ

′
m) = δ and U = Im.

While the nonzero rows of L′0 are linearly dependent do
1. Compute v =

(
v1 v2 · · · vm

)
∈ K[[x]]1×m \ {0} in the left nullspace of L′0;

2. Select an index ν such that vν 6= 0 and δ′ν = max{δ′i ; vi 6= 0};
3. Let L′(ν, .) =

∑m
i=1 vi ∂

δ′ν−δ′i L′(i, .);
4. Let U(ν, .) =

∑m
i=1 vi ∂

δ′ν−δ′i U(i, .);
5. Update L′0 and δ′;

end do;
Return L′ and U ;

Proposition 6.2.1. Let L be a matrix differential operator of order ` and row-order δ. Algorithm
Row-Reduction returns a row-reduced matrix differential operator equivalent to L in at most
O(mn (|δ|+m) (m+ 3 `+ |δ|)) operations in K[[x]].

Proof. Computing an element in the left nullspace of the matrix L′0 ∈ K[[x]]m×n costs at
most O

(
m2 n

)
operations in K[[x]]. This gives the cost of Step 1. Since L′ has order al-

ways bounded by `, the cost of Step 3 is then O(mn`) operations in K[[x]]. From [27, The-
orem 2.2], we can deduce that the order of the multiplier U is always bounded by ` + |δ|,
and so for i = 1, . . . ,m, ord

(
∂ δ
′
ν−δ′i U(i, .)

)
≤ 2 ` + |δ|. Hence, Step 4 can be done in at

most O(mn (2 `+ |δ|)) operations in K[[x]]. Finally, as the While loop is repeated at most
|δ|+m− 1 times, we obtain a row-reduced matrix differential operator equivalent to L using at
most O(mn (|δ|+m) (m+ 3 `+ |δ|)) operations in K[[x]].

6.3. Simultaneously row and column reduced forms 141

Analogous definitions and results can also be stated for column-reduction (where now the
leading column coefficient matrix of the nonzero columns has full column rank). Thus, it is
possible to construct a unimodular matrix differential operator V ∈ K[[x]][∂]n×n such that LV
is column-reduced.

Remark now that if L ∈ K[[x]][∂]m×n is column-reduced, respectively row-reduced, and if
we multiply it on the left, respectively on the right, by an invertible matrix of K[[x]], it remains
column-reduced, respectively row-reduced.

Lemma 6.2.3. Let L ∈ K[[x]][∂]m×n be a matrix differential operator with L0 denoting its
leading column coefficient matrix. Let U ∈ K[[x]]m×m be an invertible matrix over K((x)).
Then, the column-order of L and that of UL are equal and the leading column coefficient matrix
of UL is UL0.

Proof. Without any loss of generality, we can assume that all the columns of L are nonzero.
The jth column of UL is indeed equal to U multiplied by the jth column of L, i.e.,

(UL)(., j) = UL(., j).

Let γj = ord(L(., j)) ≥ 0. Then L(., j) can be written as

L(., j) = `c(L(., j)) ∂ γj + terms of lower order,

with `c(L(., j)) 6= 0 (since all columns of L are assumed to be nonzero). Therefore,

(UL)(., j) = UL(., j) = U `c(L(., j)) ∂ γj + terms of lower order,

with U `c(L(., j)) 6= 0 since `c(L(., j)) 6= 0 and U is invertible. Thus, we have ord((UL)(., j)) =
ord(L(., j)) and `c((UL)(., j)) = U `c(L(., j)) which ends the proof.

Corollary 6.2.1. Let L ∈ K[[x]][∂]m×n be a matrix differential operator and U ∈ K[[x]]m×m,
respectively V ∈ K[[x]]n×n, be an invertible matrix over K((x)). If L is column-reduced, respec-
tively row-reduced, then so is UL, respectively LV .

6.3 Simultaneously row and column reduced forms

In this section, we introduce the concept of simultaneously row and column reduced matrix
differential operators and give a first method for transforming an arbitrary matrix differential
operator into a matrix having such a property. When applied to problems of the form (6.1),
one obtains a useful algebraic structure for system simplification. For example, when L is both
simultaneously row and column reduced and of first-order then System (6.1) can be decoupled
into a purely algebraic system and a purely differential one. For higher-order systems one can use
such a transformation to extract a purely algebraic part (if it exists) with a second component
easily transformable into a square system of ordinary differential equations of first-order (see
Section 6.6).

6.3.1 Simultaneous row and column reduction

Let L be an m × n matrix differential operator of order ` and rank s ≤ min(m,n). One can
imagine that to construct a simultaneously row and column reduced form equivalent to L, it
suffices to apply row-reduction to L followed by column-reduction to the resulting row-reduced
form. Unfortunately, this is not always true. In general, such a computation requires several
successive iterations of row-reduction and column-reduction as the example below shows. Note
that when applying row-reduction, respectively column-reduction, to L as in Lemma 6.2.2, the
value of |δ|, respectively the value of |γ|, may decrease but in the same time the value of |γ|,
respectively of |δ|, may increase.

142 Chapter 6. Simultaneous Row and Column Reduction

Example 6.3.1. Consider the matrix differential operator given by

L =

∂3 + x 2 ∂2 x2 + x
∂2 x ∂2 2x2 + 1
∂ x ∂ 1

 (6.2)

with row and column orders δ = (3, 2, 1) and γ = (3, 2, 0) respectively. Operator L is not row-
reduced since its leading row coefficient matrix1 0 0

1 x 0
1 x 0


is singular. Following the construction in the proof of Lemma 6.2.2, we multiply L on the left by

U1 =

1 0 0
0 1 −∂
0 0 1

 .

This gives rise to the matrix differential operator

L[1] = U1L =

∂3 + x 2 ∂2 x2 + x
0 −∂ −∂ + 2x2 + 1
∂ x ∂ 1

 . (6.3)

which is row-reduced with row and column orders given by δ[1] = (3, 1, 1) and γ[1] = (3, 2, 1)
respectively. Here we have

∣∣δ[1]
∣∣ < |δ| but ∣∣γ[1]

∣∣ > |γ|. In addition, L[1] is not column-reduced as
the resulting leading column coefficient matrix is given by1 2 0

0 0 −1
0 0 0

 .

Again, using the construction from Lemma 6.2.2, we multiply L[1] on the right by

V1 =

 2 0 0
−∂ 1 0
0 0 1

 ,

to obtain the column-reduced form

L[2] = L[1] V1 =

 2x 2 ∂2 x2 + x
∂2 −∂ −∂ + 2x2 + 1

−x ∂2 + 2 ∂ x ∂ 1

 (6.4)

with
∣∣δ[2]

∣∣ = |(2, 2, 2)| >
∣∣δ[1]

∣∣ and ∣∣γ[2]
∣∣ = |(2, 2, 1)| <

∣∣γ[1]
∣∣. Unfortunately, it is no longer

row-reduced so we are back to our first case. �

While a single call to row-reduction and then to column-reduction will not necessarily result
in a simultaneously row and column reduced form, it turns out that by repeating this process
a finite number of times we can always end up with a simultaneously row and column reduced
operator. We show this in the following proposition.

Proposition 6.3.1. Let L ∈ K[[x]][∂]m×n of order `. It is always possible to construct two
unimodular matrix differential operators U ∈ K[[x]][∂]m×m and V ∈ K[[x]][∂]n×n such that
ULV is a simultaneously row and column reduced operator.

6.3. Simultaneously row and column reduced forms 143

Proof. Let us show that by iterating successively row-reduction and column-reduction, we end
up with a simultaneously row and column reduced operator. For this, we consider the tuple

(r`, c`, r`−1, c`−1, . . . , r0, c0),

where, for i = 0, . . . , `, ri and ci denote the number of rows and columns of L of order i,
respectively with ri = 0, respectively ci = 0, if no such rows, respectively columns, exist. At
each step of a row-reduction and of a column-reduction, this tuple strictly decreases in the
sense of the lexicographic ordering. Indeed, one step of the row-reduction procedure consists
in replacing a row of order i either by a zero row or by a nonzero row of order at most i −
1. Let (r[1]

` , c
[1]
` , r

[1]
`−1, c

[1]
`−1, . . . , r

[1]
0 , c

[1]
0) and (r[2]

` , c
[2]
` , r

[2]
`−1, c

[2]
`−1, . . . , r

[2]
0 , c

[2]
0) denote the tuples

associated with the operators before and after this row operation respectively. Then, for k =
i+ 1, . . . , `, we have r[2]

k = r
[1]
k and c[2]

k = c
[1]
k but r[2]

i < r
[1]
i and c[2]

i ≤ c
[1]
i . This implies that

(r[2]
` , c

[2]
` , r

[2]
`−1, c

[2]
`−1, . . . , r

[2]
0 , c

[2]
0) <lex (r[1]

` , c
[1]
` , r

[1]
`−1, c

[1]
`−1, . . . , r

[1]
0 , c

[1]
0)

where <lex denotes lexicographic ordering. A similar result holds for column-reduction. Thus,
after a finite number of iterations of row-reduction and column-reduction, we get two unimodular
matrix differential operators U and V such that ULV is a simultaneously row and column
reduced operator.

We illustrate Proposition 6.3.1 with the following example.

Example 6.3.2. Consider the matrix differential operator L of order ` = 3 given by (6.2).
The tuple (r3, c3, r2, c2, r1, c1, r0, c0) associated with L is equal to (1, 1, 1, 1, 1, 0, 0, 1). The tuples
associated with the operators L[1] and L[2], obtained after applying row-reduction to L and then
column-reduction to L[1], are given by (1, 1, 0, 1, 2, 1, 0, 0) and (0, 0, 3, 2, 0, 1, 0, 0) respectively. We
do observe that

(0, 0, 3, 2, 0, 1, 0, 0) <lex (1, 1, 0, 1, 2, 1, 0, 0) <lex (1, 1, 1, 1, 1, 0, 0, 1).

We continue now the iteration of row-reduction and column-reduction. Applying row-reduction
to L[2] yields a the matrix

U2 =

1 0 0
0 x 1
0 0 1


such that

L[3] = U2 L
[2] =

 2x 2 ∂2 x2 + x
2 ∂ 0 −x ∂ + 2x3 + x+ 1

−x ∂2 + 2 ∂ x ∂ 1

 (6.5)

is row-reduced. Since U2 has polynomial entries, then, according to Corollary 6.2.1, L[3] is
simultaneously row and column reduced. So, for L given by (6.2), the iteration stops after
the second application of row-reduction. Remark that the tuple associated with L[3] given by
(0, 0, 2, 2, 1, 1, 0, 0) is, as expected, lower than the one associated with L[2] . Finally, L and L[3]

are related by ULV = L[3] with

U = U2 U1 =

1 0 0
0 x −x ∂ + 1
0 0 1

 and V = V1 =

 2 0 0
−∂ 1 0
0 0 1

 .

�

144 Chapter 6. Simultaneous Row and Column Reduction

A question naturally arises here: given a matrix differential operator L of size m × n and
order `, how many iterations of row-reduction and of column-reduction are needed to get a
simultaneously row and column reduced form equivalent to L? When the order ` of L is greater
than 2, the problem is still open. However, when ` = 1, we will show in the next subsection
that we need at most row-column-row reduction steps to get a simultaneously row and column
reduced operator equivalent to L.

6.3.2 First-order matrix differential operators

When L is a matrix differential operator of first-order, we have seen in Chapter 5 that computing
a simultaneously row and column reduced operator equivalent to L allows us to reduce the DAE
L(y(x)) = f(x) into an algebraic system and a first-order system of ODEs. In this subsection, we
show that by iterating successively row-reduction and column-reduction on a matrix differential
operator of first-order, we are assured of getting a simultaneously row and column reduced
operator after at most the second application of row-reduction.

Let L be a matrix differential operator of first-order and rank s. Apply row-reduction
to L followed by column-reduction to the resulting row-reduced operator. Operator L is then
equivalent to a block diagonal matrix differential operator diag

(
L[1], 0

)
with L[1] column-reduced

of size s× s and rank s of the form

L[1] =
(
A11 ∂ +B11 B12

B21 B22

)
,

where A11 is of size r[1]
1 × c

[1]
1 and of full column rank (so c[1]

1 ≤ r
[1]
1 ≤ s) and B22 of size r[1]

0 × c
[1]
0

(r[1]
0 = s − r[1]

1 and c[1]
0 = s − c[1]

1). Moreover, since L[1] is a square matrix, its leading column
coefficient matrix given by (

A11 B12

0 B22

)
is invertible which implies that B22 is of full row rank.

If c[1]
1 = s, then r[1]

1 = s and L[1] is of the form L[1] = A11 ∂+B11 with invertible matrix A11.
Hence, L[1] is simultaneously row and column reduced.

If c[1]
1 = 0, then r

[1]
1 = 0 (recall that r[1]

1 is the number of rows of L[1] of order 1). Thus,
L[1] is reduced to B22 which is, in this case, invertible (since it is square and of full row rank).
Hence, L[1] is simultaneously row and column reduced and we are done.

Otherwise, if 0 6= c
[1]
1 = r

[1]
1 6= s then A11 and B22 are both invertible (since they are square,

of full column rank and full row rank respectively) and hence L[1] is simultaneously row and
column reduced.

Finally, if 0 6= c
[1]
1 < r

[1]
1 , then A11 is rectangular of full column rank. It follows that the

rank of the leading row coefficient matrix of L[1](
A11 0
B21 B22

)
is necessarily less than s. This means that L[1] is not row-reduced. So let us apply row-reduction
to L[1]. In this instance, we will find that a unimodular multiplier U , such that UL[1] is row-
reduced, is necessarily of order 0, that is, U ∈ K[[x]]s×s. Indeed let (v1, v2) ∈ K[[x]]s×1 with v1

and v2 of sizes r[1]
1 × 1 and r[1]

0 × 1 respectively, such that

(v1, v2)
(
A11 0
B21 B22

)
= 0.

6.4. A second algorithm for simultaneous row and column reduction 145

We have then v2B22 = 0 which, since B22 is of full row rank, implies v2 = 0 and hence
v1 ∈ ker(A11). Thus, we construct an invertible matrix U1 ∈ K[[x]]s×s such that the operator
L[2] = U1L

[1] is of the form

L[2] =

(
Ã11 ∂ + B̃11 B̃12

B̃21 B̃22

)

with a c[1]
1 ×c

[1]
1 invertible matrix Ã11. As L[1] is column-reduced, then following Corollary 6.2.1,

L[2] is so. Now, the fact that L[2] is column-reduced with invertible matrix Ã11 implies that
B̃22 is also invertible and hence L[2] is simultaneously row and column reduced. Thus, we get a
simultaneously row and column reduced form after at most row-column-row reduction steps.

6.4 A second algorithm for simultaneous row and column reduc-
tion

In this section, we describe a second algorithm to convert a matrix of differential operator L
into one which is simultaneously row and column reduced. To achieve this, let us first give a
characterization of a simultaneously row and column reduced operator.

Proposition 6.4.1. Let L ∈ K[[x]][∂]m×n be a simultaneously row and column reduced matrix
differential operator of order `. One can permute the rows and columns of L so that it has the
block partition 

L11 · · · L1k 0
...

. . .
...

...
Lk1 · · · Lkk 0
0 · · · 0 0

 (6.6)

where the Lii’s are square matrices satisfying:

(a) `c(Lii) is invertible2,

(b) ord(Lii) > ord(Li+1 i+1) for all i = 1, . . . , k − 1,

(c) ord(Lij) ≤ ord(Lii) for all j < i and ord(Lij) < ord(Lii) for all j > i,

(d) ord(Lij) ≤ ord(Ljj) for all i < j and ord(Lij) < ord(Ljj) for all i > j.

Conversely, a matrix differential operator of the form (6.6) satisfying conditions (a) to (d) above
is simultaneously row and column reduced.

Proof. Let L be a simultaneously row and column reduced matrix differential operator of order
`. We first sort the rows and columns of L in a decreasing order. Hence, the zero rows are at the
bottom of the matrix and the zero columns are at the end. The nonzero rows and columns of L
then form a square submatrix of full rank (this follows from the fact that L is simultaneously row
and column reduced and that the row rank and column rank are equal). For ease of presentation,
let us assume that L is a square matrix only consisting of these nonzero rows and columns and
having decreasing row and column orders.

For i = 0, . . . , `, let ri and ci denote respectively the number of rows and columns of L
of order i with ri = 0, respectively ci = 0, if no such rows, respectively columns, exist. For
i = −1, . . . , ` − 1, let ni = ri+1 + · · · + r` and n` = 0. Note that both r` and c` are nonzero
since L is of order `. Let L11 be the r` × c` submatrix of L composed of the first r` rows and c`

2This is equivalent to saying that Lii is row and column reduced with same row and column orders.

146 Chapter 6. Simultaneous Row and Column Reduction

columns of L. Then, the leading row and column coefficient matrices of L are respectively given
by (

`c(L11) 0
∗ ∗

)
and

(
`c(L11) ∗

0 ∗

)
.

Since L is simultaneously row and column reduced, these matrices are respectively of full row
rank and full column rank and so `c(L11) is square (thus, r` = c`) and nonsingular.

We assume now that rj = cj for j = `, . . . , i + 1 for a certain i ≤ ` − 1 and that Li, the
submatrix of L composed of the first ni rows and columns of L, can be decomposed into blocks

Li =

L11 · · · L1u
...

. . .
...

Lu1 · · · Luu

 , (u ≤ `− i)

all satisfying conditions (a) to (d) of the proposition (ord(Luu) ≥ i+ 1). Let us show now that
ri = ci. To achieve this, we will first show the following equivalence: ri 6= 0 ⇐⇒ ci 6= 0.
Assume that ri 6= 0 and ci = 0. It follows that the leading row coefficient matrix of L has the
form `crow(Li) 0

∗ 0
∗ ∗

 ,

where `crow(Li) denotes the leading row coefficient matrix of Li. This gives a full row rank
matrix of size ni−1×ni (since L is row-reduced) with ni < ni−1 = ni+ ri, a contradiction. Now,
using the fact that L is column-reduced and working similarly with the columns, we show that
ci 6= 0 =⇒ ri 6= 0. Thus, the equivalence above holds. Assume now that ri 6= 0. If ci < ri,
then, from the leading row coefficient matrix of L, we can extract a full row rank matrix of size
ni−1× (ni+ ci) with ni+ ci < ni+ri = ni−1, a contradiction. Hence, we have ri ≤ ci. Repeating
the argument using the fact L is column-reduced gives ci ≤ ri and so ri = ci. Let now Li−1

denote the ni−1 × ni−1 submatrix of L composed of the first ni−1 rows and columns of L. If
ri = 0 then Li−1 = Li. Otherwise, decompose Li−1 into blocks as follows

Li−1 =


L1u+1

Li
...

Luu+1

Lu+1 1 · · · Lu+1u Lu+1u+1

 =


L11 · · · L1u L1u+1
...

. . .
...

...
Lu1 · · · Luu Luu+1

Lu+1 1 · · · Lu+1u Lu+1u+1

 ,

where Lu+1,∗ ∈ K[[x]][∂]ri×ni−1 , L∗,u+1 ∈ K[[x]][∂]ni−1×ri and ord(Lu+1,∗) = ord(L∗,u+1) = i.
As Li and Li−1 are both row-reduced, it follows that ord(Lu+1u+1) = i and `c(Lu+1u+1) is
invertible (since it is square and of full row rank). Hence, the blocks of Li−1 satisfy conditions
(a) to (d) of the proposition. The process continues until rows and columns of lowest order are
reached.

We will now prove the converse. We consider a matrix differential operator of the form (6.6)
satisfying conditions (a) to (d). Its leading row coefficient matrix is then a lower block triangular
matrix whose diagonal blocks are `c(L11), . . . , `c(Lkk) and 0. From (b), we can deduce that the
leading row coefficient matrix is of full row rank. Using the same arguments on columns, we can
deduce that the leading column coefficient matrix is of full column rank. Hence, the operator is
simultaneously row and column reduced.

Example 6.4.1. Swapping the second and third rows of L[3] given by (6.5), we can partition the
resulting matrix differential operator into blocks 2x 2 ∂2 x2 + x

−x ∂2 + 2 ∂ x ∂ 1
2 ∂ 0 −x ∂ + 2x3 + x+ 1

 =

(
L̃11 L̃12

L̃21 L̃22

)
,

6.4. A second algorithm for simultaneous row and column reduction 147

all satisfying conditions (a) to (d) of Proposition 6.4.1. �

In the sequel, we will take advantage of the previous proposition to describe our second
algorithm for converting a matrix differential operator L into a simultaneously row and column
reduced one. More precisely, this algorithm brings the operator L into another one having the
form (6.6) and satisfying conditions (a) to (d) of Proposition 6.4.1.

By performing column operations, we can ensure that all zero columns of L are to the right
and that the nonzero columns are linearly independent. Furthermore, by applying Lemma 6.2.2,
we can ensure that the submatrix composed of these nonzero columns is in row-reduced form.
The remaining submatrix composed of the nonzero rows and columns is then nonsingular (i.e.,
square and of full rank). From now on, we will work with nonsingular matrix differential oper-
ators.

Proposition 6.4.2. Let L ∈ K[[x]][∂]m×m be a row-reduced nonsingular matrix differential
operator of order ` with rows sorted by decreasing order. We can construct an invertible matrix
V ∈ K[[x]]m×m such that

LV =

L11 · · · L1k
...

. . .
...

Lk1 · · · Lkk

 (6.7)

where the Lii’s are square matrices satisfying:

(a) `c(Lii) is invertible,

(b) ord (Lii) > ord (Li+1,i+1) for all i = 1, . . . , k − 1,

(c) ord (Lij) ≤ ord (Lii) for all j < i and ord (Lij) < ord (Lii) for all j > i.

Proof. For i = 0, . . . , `, let ri denote the number of rows of order i, with ri = 0 if no such rows
exist. For i = −1, . . . , ` − 1, let ni = ri+1 + · · · + r` and n` = 0. We will proceed recursively
starting with i = `. The strip of L composed of the first r` rows is row-reduced. Doing
elementary column operations on L (more precisely, multiplying L on the right by an invertible
matrix V` ∈ K[[x]]m×m), we can ensure that the square submatrix in rows and columns 1 to r`
has a nonsingular leading coefficient matrix and the lastm−r` columns of this strip have order at
most `− 1. Suppose now that we have already computed an invertible matrix Vi+1 ∈ K[[x]]m×m

such that the submatrix composed of the first ni rows of LVi+1 can be decomposed into blocks
satisfying conditions (a) to (c) above. Furthermore, suppose that ri 6= 0. We will now show
that there exists an invertible matrix Vi ∈ K[[x]]m×m such that the submatrix formed by the
first ni−1 rows of LVi can be decomposed into blocks satisfying conditions (a) to (c) of the
proposition. Let Ai+1 denote the square submatrix of LVi+1 composed of the first ni rows and
columns. Consider the strip of LVi+1 composed of rows ni + 1 to ni−1. Since LVi+1 and Ai+1

are both row-reduced3, it follows that the submatrix formed by columns from ni + 1 to m of
this strip is of order i and row-reduced, that is, its leading row coefficient matrix is of full row
rank. Carrying out elementary column operations on LVi+1, we can ensure that the square
submatrix Bi in rows and columns ni + 1 to ni−1 is of order i and has a nonsingular leading
coefficient matrix, and that the last m − ni−1 columns of this strip have order at most i − 1.
Note that the column operations performed above only require elements from K[[x]] as we are
always eliminating only by means of entries from the leading row coefficient matrix. Thus, there

3LVi+1 is row-reduced due to Corollary 6.2.1.

148 Chapter 6. Simultaneous Row and Column Reduction

exists an invertible matrix Wi ∈ K[[x]]m×m such the submatrix of LVi+1Wi composed of the
first ni−1 rows is of the form (

Ai+1 ∗ ∗
∗ Bi ∗

)
and has a leading row coefficient matrix(

`crow(Ai+1) 0 0
∗ `c(Bi) 0

)
.

Let Vi = Vi+1Wi. Thus, the first ni−1 rows of LVi can be decomposed into blocks satisfying
conditions (a) to (c) above. We continue then the process to reach the rows of lowest order.

Remark 6.4.1. For a given strip of same row order, the procedure requires that we ensure that
the ri × ri matrix starting at column ni + 1 has nonsingular leading coefficient and that the last
m−ni−1 columns of this strip have order at most i− 1. This can be accomplished by converting
the leading row coefficient matrix of this strip from columns ni + 1 to m (which is of full row
rank) into column echelon form.

Example 6.4.2. Applying the procedure described in the proof of Proposition 6.4.2 to a matrix
differential operator having blocks of orders 6, 4, 2 and 1 as in

6 6 6 6
4 4 4 4
2 2 2 2
1 1 1 1

 ,

the resulting orders would then become 
6 5 5 5
4 4 3 3
2 2 2 1
1 1 1 1

 .

�

Remark 6.4.2. Note that we can continue the process described in the proof of Proposition 6.4.2
(again working top to bottom) to eliminate the leading coefficient matrices of the blocks to the
left of any diagonal block so that these blocks have smaller order, that is, condition (c) is replaced
by

(c’) ord(Lij) < ord(Lii) for all j 6= i.

Example 6.4.3. Continuing with the previous example, we can use the leading coefficient ma-
trix in each diagonal block to reduce the orders of the blocks to the left. Thus, by performing
elementary column operations, the orders can be reduced to

6 5 5 5
3 4 3 3
1 1 2 1
0 0 0 1


if so desired. �

The construction in Proposition 6.4.2 does not necessarily result in a simultaneously row
and column reduced form. Fortunately, Proposition 6.4.1 provides the required orders for a
simultaneously row and column reduced matrix differential operator.

6.4. A second algorithm for simultaneous row and column reduction 149

Definition 6.4.1. Let L = (Lij)1≤i,j≤k ∈ K[[x]][∂]m×m be a matrix differential operator satisfy-
ing conditions (a) to (c) of Proposition 6.4.2. The defect of the block row Li,∗ for i = 1, . . . , k−1
is defined by

defect(L)i = max{ord(Lij)− ord(Ljj), j = i+ 1, . . . , k} .

Thus, a nonsingular row-reduced matrix differential operator L = (Lij)1≤i,j≤k satisfying
conditions (a) to (c) of Proposition 6.4.2 is simultaneously row and column reduced if and only
if defect(L)i ≤ 0 for i = 1, . . . , k − 1.

Proposition 6.4.3. Let L = (Lij)1≤i,j≤k ∈ K[[x]][∂]m×m be a row-reduced nonsingular matrix
differential operator satisfying conditions (a) to (c) of Proposition 6.4.2. Then, we can construct
a unimodular matrix U ∈ K[[x]][∂]m×m such that UL has the block partition

(
Lij
)

1≤i,j≤k, where
the blocks Lij are of the same size as the Lij’s and satisfy conditions (a) to (d) of Proposi-
tion 6.4.1.

Proof. Since L already satisfies conditions (a) to (c) of Proposition 6.4.2, it remains to perform
row operations so that the condition (d) of Proposition 6.4.1 can be also satisfied. This is
achieved by reducing the positive defects of the block rows of L to 0 proceeding from the bottom
to the top. Suppose that defect(L)i ≤ 0 for i = i0 + 1, . . . , k − 1 and defect(L)i0 > 0. We will
explain how one can lower the defect of the i0th block row of L. Let j0 be the smallest integer
j for which ord(Li0j) − ord(Ljj) = defect(L)i0 . We first lower the order of the block Li0j0 in
the following way. Compute the adjoint4 adj(`c(Lj0j0)) of `c(Lj0j0). Then replace the i0th block
row Li0,∗ of L by

det(`c(Lj0j0))Li0,∗ − `c(Li0j0) adj(`c(Lj0j0)) ∂ αLj0,∗, (6.8)

where α = defect(L)i0 . This is performed by multiplying L on the left by a unimodular ma-
trix differential operator in K[[x]][∂]m×m. Let L̃ =

(
L̃ij

)
1≤i,j≤k

denote the resulting matrix

differential operator. Then one can check that

ord(L̃i0j)− ord(L̃jj)
{
< defect(L)i0 for j ≤ j0
≤ defect(L)i0 for j > j0

,

and so, defect(L̃)i0 ≤ defect(L)i0 . Two cases then arise:

1. defect(L̃)i0 < defect(L)i0 , in which case we are done, or

2. defect(L̃)i0 = defect(L)i0 . In this case, the smallest integer j for which ord(L̃i0j) −
ord(L̃jj) = defect(L̃)i0 is greater than j0. Hence, the “value of j0” increases, and so
after a finite number of iterations, the defect of the i0th block row will decrease.

Iterating this process, we reduce all positive defects to zero and hence we get an operator with
block partition satisfying conditions (a) to (d) of Proposition 6.4.1.

Remark 6.4.3. The elimination step in equation (6.8) can be viewed as the block row operation
which replaces the i0th block row Li0,∗ of L by

Li0,∗ − `c(Li0j0) (`c(Lj0j0))−1 ∂ αLj0,∗.

However, for computational purposes it is better to work in the ring K[[x]] rather than in its
quotient field K((x)). Elimination in this case implies solving the linear system of equations

Xi0 `c(Lj0j0) = `c(Li0j0)
4The transpose of the cofactor matrix.

150 Chapter 6. Simultaneous Row and Column Reduction

for Xi0 a matrix of the same size as Li0j0. We can solve such a system and remain in the domain
K[[x]] by using fraction-free Gaussian elimination (see for example [48, Chapter 9]). However
this produces a solution for the system

det(`c(Lj0j0))Xi0 = `c(Li0j0) adj(`c(Lj0j0))

and hence replacing the i0th block row Li0,∗ of L is done via equation (6.8). We remark that in
order to minimize growth of coefficients for a given row - say row î of block i0 - one still needs to
remove common factors of the elimination terms, which in this case means removing the greatest
common factor of the terms in row î.

Example 6.4.4. Consider the matrix differential operator having order bounds
6 5 5 5
4 4 3 3
2 2 2 1
1 1 1 1


as in Example 6.4.2. Suppose that we have first reduced the defects of the third and then the
second block rows to 0 and get order bounds

6 5 5 5
4 4 2 1
2 2 2 1
1 1 1 1

 .

Let us now explain how to reduce the defect of the first block row i0 = 1. Assuming all orders
are attained, then the defect of the first block row is 4 and is attained for j0 = 4. We reduce the
order of block (1, 4) using the fourth block row. We obtain a matrix of orders of the form

6 5 5 4
4 4 2 1
2 2 2 1
1 1 1 1

 .

The defect of the first block row is now 3 and it is attained for j = 3, 4. We repeat the reduction
process, first by reducing the order of block entry (1, 3) using the third block row and then reducing
the order of block entry (1, 4) by the fourth block row. This gives a matrix having order bounds

6 5 4 3
4 4 2 1
2 2 2 1
1 1 1 1

 .

The first block row is now of defect 2. Thus, by continuing the process above, we reduce the defect
to 0 giving order bounds 

6 4 2 1
4 4 2 1
2 2 2 1
1 1 1 1

 .

�

We summarize our result in the following theorem:

6.4. A second algorithm for simultaneous row and column reduction 151

Theorem 6.4.1. Let L ∈ K[[x]][∂]m×m be a row-reduced nonsingular matrix differential oper-
ator. One can construct a unimodular matrix differential operator U ∈ K[[x]][∂]m×m and an
invertible matrix V ∈ K[[x]]m×m such that ULV has the block partition (Lij)1≤i,j≤k, where the
blocks Lij satisfy conditions (a) to (d) of Proposition 6.4.1.

More generally,

Theorem 6.4.2. Let L ∈ K[[x]][∂]m×n be a matrix differential operator. One can construct two
unimodular matrices U ∈ K[[x]][∂]m×m and V ∈ K[[x]][∂]n×n such that ULV has the form (6.6)
with conditions (a) to (d) of Proposition 6.4.1 satisfied.

We illustrate the second algorithm with the following example.

Example 6.4.5. We will apply here the second algorithm to the matrix differential operator
L given by (6.2). Notice that L is already column-reduced and hence it is of rank 3 (so L is
nonsingular). Applying row-reduction to L, we have got the row-reduced operator L[1] given by
(6.3) which is nonsingular as well. Furthermore, the latter operator partitioned into blocks as
follows

L[1] =

∂3 + x 2 ∂2 x2 + x

0 −∂ −∂ + 2x2 + 1
∂ x ∂ 1


satisfies already conditions (a) to (c) in Proposition 6.4.2. To obtain a simultaneously row and
column reduced operator, we need to reduce the order of the block in position (1, 2). We can
achieve this using the diagonal block (2, 2). Indeed, the defect of the first block row of L[1] is
equal to 1. Proceeding as in the proof of Proposition 6.4.3 and using elementary row operations,
we can replace L[1]

1,∗ by

xL
[1]
1,∗ −

(
2 0

)(0 1
−x −1

)
∂L

[1]
2,∗ =

(
x ∂3 + x2 2x ∂2 x3 + x2

)
−
(
2 ∂2 2x ∂2 + 2 ∂ 2 ∂

)
=
(
x ∂3 − 2 ∂2 + x2 −2 ∂ −2 ∂ + x3 + x2

)
.

Hence, L is equivalent to the operatorx ∂3 − 2 ∂2 + x2 −2 ∂ −2 ∂ + x3 + x2

0 −∂ −∂ + 2x2 + 1
∂ x ∂ 1

 =

(
L̂11 L̂12

L̂21 L̂22

)

which is simultaneously row and column reduced. Remark that the latter operator is different from
the simultaneously row and column reduced operator (equivalent to L) given in Example 6.4.1
obtained by applying iteratively the procedures row-reduction and column-reduction. They are
even of different orders. Nevertheless, we point out that the sum of the orders of diagonal
blocks L̂ii multiplied respectively by their size, i.e., ord(L̂11) + 2 ord(L̂22), is equal to the one
corresponding to the diagonal blocks found in Example 6.4.1, i.e., 2 ord(L̃11) + ord(L̃22). �

We will now define the two-sided block Popov form. We have called it so since it is similar
to the Popov form of Ore matrix polynomials (see for instance [40]).

Definition 6.4.2. Let L ∈ K[[x]][∂]m×m be a nonsingular matrix differential operator. We say
that L is in two-sided block Popov form if L has the block partition

L =

L11 · · · L1k
...

. . .
...

Lk1 · · · Lkk

 ,

where the Lii’s are square matrices satisfying:

152 Chapter 6. Simultaneous Row and Column Reduction

(a) `c(Lii) is invertible,

(b) ord(Lii) > ord(Li+1,i+1) for all i = 1, . . . , k − 1,

(c) ord(Lij) < ord(Lii) for all j = 1, . . . , k such that j 6= i,

(d) ord(Lij) < ord(Ljj) for all i = 1, . . . , k such that i 6= j.

Corollary 6.4.1. Let L ∈ K[[x]][∂]m×m be a row-reduced nonsingular matrix differential op-
erator. Then there exist a unimodular matrix differential operator U ∈ K[[x]][∂]m×m and an
invertible matrix V ∈ K[[x]]m×m such that ULV is in two-sided block Popov form.

Proof. From Remark 6.4.2, we can ensure that all blocks to the left of a diagonal block have
lower orders using only column operations. The procedure in the proof of Proposition 6.4.3 can
be extended to ensure that all the blocks above a diagonal one have lower orders as well.

Example 6.4.6. If our starting matrix was the one in Example 6.4.3 to which we applied the
same row operations as in Example 6.4.4, then we would have a matrix of orders bounded by

6 4 2 1
3 4 2 1
1 1 2 1
0 0 0 1

 .

If our procedure produced defects of −1 rather than 0 at every block row, then we would get
6 3 1 0
3 4 1 0
1 1 2 0
0 0 0 1


and hence the resulting matrix differential operator is in two-sided block Popov form. �

Corollary 6.4.2. Let L ∈ K[[x]][∂]m×n be a matrix differential operator. Then there exist
two unimodular matrix differential operator U ∈ K[[x]][∂]m×m and V ∈ K[[x]][∂]n×n such that
ULV = diag(L̃, 0), where L̃ is in two-sided block Popov form.

The difference between the two-sided block Popov form and the Popov form is that the
former is a square matrix operator obtained by performing elementary operations on both rows
and columns of the input operator, while the latter is, in general, rectangular computed by
working on either rows or columns of the input operator but not on both of them at the same
time.

6.5 Algorithms and complexity

In this section, we give the algorithmic descriptions of the methods described in Propositions
6.4.2 and 6.4.3 with their complexities.

6.5. Algorithms and complexity 153

Algorithm Block_Reduced_Form

Input: L ∈ K[[x]][∂]m×m a nonsingular row-reduced matrix differential operator of order `.
Output: An invertible matrix V ∈ K[[x]]m×m (over K((x))) and a matrix differential

operator L̃ s.t. L̃ = LV and L̃ can be partitioned into blocks L̃ij for 1 ≤ i, j ≤ k
satisfying conditions (a) to (c) of Proposition 6.4.2.

Initialization: Let V = Im and L̃ = L.
Let ri, for i = 0, . . . , `, denote the number of rows of L̃ of order i.
Define n` = 0 and ni =

∑`
j=i+1 rj for i = −1, . . . , `− 1.

1. Sort rows of L̃ in a decreasing order;
2. For i from ` by −1 to 0 do

2.1. Define L̃0 as the leading row coefficient matrix of L̃;
2.2. Let Bi denote the submatrix of L̃0 composed of rows ni + 1 to ni−1 and columns

ni + 1 to m;
2.3. Compute an invertible matrix Vi ∈ K[[x]](m−ni)×(m−ni) such that Bi Vi is in

column echelon form;
2.4. Let L̃ = L̃diag(Ini , Vi) and V = V diag(Ini , Vi);

end do;
3. Return V and L̃;

Proposition 6.5.1. Algorithm Block_Reduced_Form can be done using O
(
m3 `3

)
opera-

tions in K[[x]].

Proof. We first consider the cost of one passage of the For loop, say at index i ∈ {0, . . . , `}.
In this case, Step 2.3 requires at most O

(
ri (m− ni)2

)
operations in K[[x]]. In Step 2.4, the

product V diag(Ini , Vi) can be done in at most O
(
m (m− ni)2

)
operations in K[[x]]. In order to

determine the cost of the product L̃diag(Ini , Vi) we can write the operator L̃ as

L̃ = Ã`(x) ∂` + Ã`−1(x) ∂`−1 + · · ·+ Ã0(x),

where Ãj(x) ∈ K[[x]]m×m for j = 0, . . . , `, and then observe that

∂j diag(Ini , Vi) = diag

(
Ini ∂

j ,

j∑
s=0

(
j
s

)
∂s(Vi) ∂j−s

)
.

Thus, the cost of one product of the form Ãj(x) ∂j diag(Ini , Vi) is equal to the cost of j + 1
products of an m× (m− ni) matrix by an (m− ni)× (m− ni) matrix. Therefore, the product
L̃diag(Ini , Vi) can be done in at most O

(∑`
j=0(j + 1)m (m− ni)2

)
= O

(
m`2 (m− ni)2

)
oper-

ations in K[[x]]. Hence, one passage of the For loop can be done in at most O
(
m`2 (m− ni)2

)
operations in K[[x]]. Since m − ni ≤ m and the For loop is repeated ` + 1 times, Algorithm
Block_Reduced_Form returns V and L̃ using at most O

(
m3 `3

)
operations in K[[x]].

154 Chapter 6. Simultaneous Row and Column Reduction

Algorithm SRCR_Form

Input: L = (Lij)1≤i,j≤k ∈ K[[x]][∂]m×m a nonsingular matrix differential operator of order `
where the Lij ∈ K[[x]][∂]mi×mj satisfy conditions (a) to (c) of Proposition 6.4.2.

Output: A unimodular matrix differential operator U ∈ K[[x]][∂]m×m and a matrix
differential operator L̃ = (L̃ij)1≤i,j≤k ∈ K[[x]][∂]m×m where the blocks
L̃ij ∈ K[[x]][∂]mi×mj satisfy conditions (a) to (d) of Proposition 6.4.1 and
such that L̃ = UL.

Initialization: Let L̃ = L, respectively U = Im, partitioned into blocks (L̃ij)1≤i,j≤k,
respectively (Uij)1≤i,j≤k as L.

For i from k − 1 by −1 to 1 do
1. Define defect(L̃)i = max{ord(L̃ij)− ord(L̃jj), j = i+ 1, . . . , k};
2. Let W = Im partitioned into blocks (Wij)1≤i,j≤k as L̃;
3. While defect(L̃)i > 0 do

3.1. Define j0 = min
{
j ∈ {i+ 1, . . . , k}; ord(L̃ij)− ord(L̃jj) = defect (L̃)i

}
;

3.2. Define α = defect(L̃)i;
// We avoid fractions in elimination Steps 3.3 and 3.4

3.3. Let L̃i,∗ = det(`c(L̃j0j0)) L̃i,∗ − `c(L̃ij0) adj(`c(L̃j0j0)) ∂ αL̃j0,∗;
3.4. Let Wi,∗ = det(`c(L̃j0j0))Wi,∗ − `c(L̃ij0) adj(`c(L̃j0j0)) ∂ αWj0,∗;
3.5. Update defect(L̃)i;

end do;
4. Let U = W U ;

end do;
Return L̃ and U ;

Proposition 6.5.2. Algorithm SRCR_Form can be done using O
(
k3m3 `2

)
operations in

K[[x]] with k ≤ min{m, `+ 1}.

Proof. First, we note that, during the algorithm, the leading coefficient matrices of the diagonal
blocks L̃jj for j = 1, . . . , k remain unchanged. Therefore, we need only to compute once and for
all the determinants and the adjoints (hence the inverses) of the matrices `c(L̃jj) for j = 2, . . . , k.
The blocks L̃jj are of size mj × mj and so computing the determinants and adjoints can be
done in at most O

(∑k
j=2m

3
j

)
= O

(
m3
)
operations in K[[x]] since

∑k
j=2mj ≤ m. Let us now

study the cost of the While loop, starting with the cost of Step 3.3. Multiplying `c(L̃ij0) by
adj(`c(L̃j0j0)) can be done in at most O

(
mim

2
j0

)
operations in K[[x]]. Consider now the cost

of multiplying the operator ∂ αL̃j0,∗ on the left by the matrix `c(L̃ij0) adj(`c(L̃j0j0)). Note that,
since ord(L̃j0,∗) = ord(L̃j0j0), we have

ord(∂ αL̃j0,∗) = α+ ord(L̃j0,∗) = ord(L̃ij0)− ord(L̃j0j0) + ord(L̃j0,∗) = ord(L̃ij0).

Thus, the order of the operator ∂ αL̃j0,∗ is at most `. Therefore, the cost of multiplying ∂ αL̃j0,∗
on the left by `c(L̃ij0) adj(`c(L̃j0j0)) is equivalent to the cost of at most ` + 1 products of
an mi × mj0 matrix by an mj0 × m matrix with entries in K[[x]] which can be done using
O(mimj0 m`) operations in K[[x]]. Since the order of L̃i,∗ is always bounded by `, multiplying
the block row L̃i,∗ by det(`c(L̃j0j0)) in Step 3.3 can be done using at most O(mim`) operations

6.6. Reduction of higher-order linear differential systems 155

in K[[x]]. Thus, Step 3.3 can be done in at most O
(
m3 `

)
operations in K[[x]]. The cost of Step

3.4 is seen to be the cost of multiplyingWi,∗ by det(`c(L̃j0j0)) since the block rowWj0,∗ is always
equal to

Wj0,∗ =
(
0 · · · 0 Imj0 0 · · · 0

)
.

Let α0
i ≤ ` denote the defect of the block row Li,∗. Since Wj0,∗ is always of the form above,

the order of Wi,∗ is then bounded by α0
i . Thus, Step 3.4 costs at most O(mim`) operations in

K[[x]]. One passage of the While loop can then be done in at most O
(
m3 `

)
operations in K[[x]].

To reduce the defect of the ith block row to zero, Steps 3.1 to 3.5 are repeated at most (k− i)α0
i

times. Since (k − i)α0
i ≤ k `, Step 3 can be done in at most O

(
km3 `2

)
operations in K[[x]].

It remains to determine the cost of Step 4. Due to the particular structure of W , the product
W U can be reduced to replace the ith block row of U by

∑k
j=iWij Uj,∗ while keeping the other

block rows of U unchanged. Thus, we need to study the cost of
∑k

j=iWij Uj,∗. Remark that the
kth block row of U is always equal to

Uk,∗ =
(
0 · · · 0 0 0 · · · Imk

)
,

and so by induction we can show that for j = i+1, . . . , k−1, we have ord(Uj,∗) ≤
∑k−1

s=j α
0
s where

α0
s denotes the defect of the block row Ls,∗. Consider now the cost of multiplying operator Wij

by Uj,∗. Since Wij ∈ K[[x]][∂]mi×mj is of order bounded by α0
i ≤ ` and Uj,∗ ∈ K[[x]][∂]mj×m is

of order bounded by
∑k−1

s=j α
0
s ≤ k `, one product of the form Wij Uj,∗ costs at most O

(
km3 `2

)
operations in K[[x]]. Step 4 can thus be done in at most O

(
k2m3 `2

)
operations in K[[x]]. As

Steps 3 and 4 are repeated k− 1 times, the algorithm returns a simultaneously row and column
reduced operator equivalent to the input L using at most O

(
k3m3 `2

)
operations in K[[x]].

6.6 Reduction of higher-order linear differential systems

In this section, we consider a nonsingular matrix differential operator L which is simultaneously
row and column reduced. Consequently, L can be partitioned into blocks Lij for i, j = 1, . . . , k
satisfying conditions (a) to (d) of Proposition 6.4.1. We are interested in the case where Lkk has
order 0. In particular, we will show that when applied to linear differential systems of the form
(6.1) then the problem can be decoupled into separate purely differential and purely algebraic
problems.

Proposition 6.6.1. Let L be a nonsingular matrix differential operator partitioned into blocks
Lij with 1 ≤ i, j ≤ k and k ≥ 2 satisfying conditions (a) to (d) of Proposition 6.4.1. Assume
that ord(Lkk) = 0. Then, there exist two invertible matrices U and V with entries in K[[x]] such
that ULV is of the form

(
L̃ 0
0 Lkk

)
=


L̃11 · · · L̃1 k−1 0
...

...
...

L̃k−1 1 · · · L̃k−1 k−1 0
0 · · · 0 Lk k

 ,

where the blocks L̃ij satisfy conditions (a) to (d) of Proposition 6.4.1 and ord(L̃ii) = ord(Lii)
for 1 ≤ i ≤ k − 1.

Proof. Since we assume that ord(Lkk) = 0, Lkk is then an invertible matrix with entries in
K[[x]]. Hence, by means of elementary row and column operations, we can eliminate all the
blocks above and to the left of Lkk without affecting the orders of the diagonal blocks nor the
invertibility of their leading coefficient matrices.

156 Chapter 6. Simultaneous Row and Column Reduction

In the case of a linear differential system given by

L(y(x)) = f(x),

we can separate such systems into purely differential and purely algebraic systems. Indeed, using
Proposition 6.6.1, we see that the system can be transformed as{

L̃(w1(x)) = h1(x)
Lkk w2(x) = h2(x)

,

where (
w1(x)
w2(x)

)
= V −1y(x) and

(
h1(x)
h2(x)

)
= Uf(x).

Additionally, system L̃(w1(x)) = h1(x) can be converted into a first-order system of ordinary
differential equations as it is stated by the following proposition.

Proposition 6.6.2. Let L be a nonsingular matrix differential operator partitioned into blocks
Lij with 1 ≤ i, j ≤ k satisfying conditions (a) to (d) of Proposition 6.4.1. Assume that
ord(Lkk) > 0. For i = 1, . . . , k, let mi denote the size of the block Lii. The differential system
L(y(x)) = f(x) can then be converted into a first-order system of ordinary differential equations
of size

∑k
i=1mi ord(Lii)×

∑k
i=1mi ord(Lii).

Example 6.6.1. Suppose that L is of the form

L =
(
A11(x) ∂3 +B11(x) ∂2 + C11(x) ∂ +D11(x) B12(x) ∂2 + C12(x) ∂ +D12(x)

B21(x) ∂2 + C21(x) ∂ +D21(x) B22(x) ∂2 + C22(x) ∂ +D22(x)

)
where A11 and B22 are two invertible matrices of sizes m1 × m1 and m2 × m2, respectively.
Consider a differential system of the form L(y(x)) = f(x) with y(x) and f(x) partitioned into
blocks as L, that is,

y(x) =
(
y1(x)
y2(x)

)
and f(x) =

(
f1(x)
f2(x)

)
.

Then, L(y(x)) = f(x) can be converted into a system of ordinary differential equations of first-
order and size 3m1 + 2m2 of the form L̃(Y (x)) = G(x) with

L̃ =


Im1 0 0 0 0
0 Im1 0 0 0
0 0 A11(x) 0 B12(x)
0 0 0 Im2 0
0 0 0 0 B22(x)

 ∂ +


0 −Im1 0 0 0
0 0 −Im1 0 0

D11(x) C11(x) B11(x) D12(x) C12(x)
0 0 0 0 −Im2

D21(x) C21(x) B21(x) D22(x) C22(x)

 ,

Y (x) =


y1(x)
y′1(x)
y′′1(x)
y2(x)
y′2(x)

 and G(x) =


0
0

f1(x)
0

f2(x)

 ,

where y′′1 denotes the second derivative of y1. �

Conclusion and Perspectives
of Part II

In this part of the thesis, we have developed new two-sided row and column reduction algo-
rithms for matrix differential operators with formal power series coefficients. When applied to
linear differential-algebraic equations of arbitrary order, such a reduction decouples the input
system into separately differential and algebraic components. Our algorithm leads to a complete
mastering of the first-order case: reducing a linear DAE of first-order to a system of ordinary
differential equations of first-order and a system of algebraic equations. Our methods are entirely
algebraic and easily extend to Ore matrix polynomials having rational function coefficients.

The simultaneously row and column reduced form produced by these algorithms allows for
both conversion to a first-order system of ordinary differential equations and the extraction of
algebraic constraints. We have presented two algorithms for the computation of a simultaneous
row and column reduced form. The first, given in Section 6.3.1 of Chapter 6, does a series
of row-reduction and column-reduction as described in Section 6.2 of Chapter 6. However,
a row-reduction followed by a column-reduction can undo a row-reduction, and similarly for
a column-reduction followed by a row-reduction. Thus, while this approach is conceptually
simpler, it has the drawback that we were unable so far to determine a polynomial complexity
for the algorithm. It would be interesting in the future to have a closer and deeper analysis
of this algorithm in order to see whether it has polynomial complexity. Our second method,
algorithm SRCR_Form given in Section 6.5, has polynomial time complexity and is inspired
by techniques used for computing Popov forms. Nevertheless, the order of the output system can
in fact be higher than that of our first method, as we have seen in Example 6.4.5 of Chapter 6.
Next task to do is the implementation and comparison of these algorithms.

All our algorithms are defined on power series coefficients since we want to use them for
the analysis of the singularities of the systems. At present, the only methods for characterizing
singularities are developed for first-order systems of ordinary differential equations. Ultimately,
our goal is to be able to do a local analysis for higher-order differential systems and differential-
algebraic equations directly without the need for conversion to first-order ordinary differential
case. In order to accomplish this goal, we will need a generalization of the concept of Moser’s
reduction [77] and of super-reduction [58, 25] to higher-order differential systems. At present,
this remains an open problem. We expect that the first step in such a direction would be a
generalization of the Moser-reduction to linear differential-algebraic equations of first-order.

157

Résumé de la thèse

Dans cette thèse, nous considérons des équations différentielles matricielles de la forme

A`(x) y(`)(x) +A`−1(x) y(`−1)(x) + · · ·+A0(x) y(x) = f(x), (E.1)

où ` est un entier naturel non nul, x est une variable complexe, les Ai sont des matrices de
fonctions analytiques de taille m×n, f est un vecteur de fonctions analytiques de dimension m,
y est le vecteur d’inconnues de dimension n et y(i)(x) = diy

dxi
(x).

En fonction de la matrice de tête A`(x), on distingue deux classes :

• si A`(x) est une matrice carrée inversible, on parle alors de systèmes différentiels explicites
ou de systèmes d’équations différentielles ordinaires (ÉDO) linéaires.

• si A`(x) est une matrice carrée non inversible ou une matrice rectangulaire, on parle alors
de systèmes différentiels implicites ou de systèmes d’équations algébro-différentielles (ÉAD)
linéaires.

Les systèmes différentiels linéaires interviennent dans de nombreux problèmes en mathéma-
tiques : intégrabilité des systèmes dynamiques et hamiltoniens [6, 30], théorie de Galois dif-
férentielle (factorisation d’opérateurs différentiels scalaires [91, 98, 99] et résolution d’équations
différentielles à coefficients dans des extensions liouviliennes [43]) et etc. Ils apparaissent aussi
dans la modélisation mathématique de nombreux problèmes issus de la chimie, la physique, la
mécanique des fluides et la théorie de contrôle [34, 71, 73, 81, 82, 89]. L’exemple suivant provient
d’un problème de la mécanique des fluides.

Exemple 1. Les équations différentielles (2.17)-(2.19) de [71] donnent naissance au système
différentiel linéaire suivant : 0 0 0
−r2 0 0

0 0 0

y(3)+

mr 0 0
r 0 0
0 0 r

y′′+
 −m −r2 0
m2 r2 − 1 0 0
−1 0 1

y′+
−m3 r 0 0

0 mr3 Ra r3

0 0 −m2 r

y = 0,

(E.2)
où r est la variable indépendante, m et Ra sont 2 constantes du problème et y =

(
ψ p T

)T
est le vecteur d’inconnues. Comme la matrice de tête est non inversible, on a ainsi un système
d’équations algébro-différentielles linéaires d’ordre 3. Pour résoudre ce système, les auteurs de
[71] le transforment, par des éliminations différentielles, en une équation différentielle scalaire
linéaire d’ordre 6, puis appliquent la méthode de Frobenius [44, 94] pour résoudre cette équation.�

Cependant, il est intéressant du point de vue théorique et pratique de résoudre directement
les systèmes (E.1) sans les réduire en une équation différentielle scalaire. Ainsi l’objectif
principal de cette thèse est le développement de méthodes traitant directement les systèmes
différentiels linéaires (E.1). Nous étudions ces systèmes théoriquement et algorithmiquement :
nous implémentons des algorithmes en Maple et nous faisons une analyse de leur complexité
arithmétique. Nous nous intéressons plus particulièrement à l’analyse locale de ces systèmes
au voisinage d’un point x0 qui n’est pas une singularité essentielle pour les matrices Ai et le
vecteur f . Ainsi, nous supposons par la suite et sans aucune perte de généralité que x0 = 0,
Ai(x) ∈ K[[x]]m×n pour i = 0, . . . , ` et f(x) ∈ K[[x]]m, où K est un sous-corps du corps C des
nombres complexes. Pour les systèmes d’ÉDO linéaires, nous nous intéressons à la détermination
de la nature de la singularité (régulière ou irrégulière), au calcul des solutions formelles et etc.
Quant aux systèmes d’ÉAD linéaires dont l’étude est en général plus compliquée que celle des

159

160 Résumé de la thèse

systèmes d’ÉDO linéaires, nous proposons de les simplifier en vue de les résoudre.

Les systèmes d’équations différentielles ordinaires linéaires du premier ordre, généralement
donnés sous la forme

dy

dx
(x) = A(x) y(x) + b(x),

où A(x) ∈ K((x))n×n et b(x) ∈ K((x))n, ont été initialement étudiés théoriquement pour
démontrer l’existence de solutions formelles et déterminer leurs structures (voir [9] et ses
références). Récemment, les recherches se sont tournées vers le calcul efficace de ces solutions
[7, 58, 56, 13, 21, 85, 25]. De nombreux algorithmes ont vu le jour et ont été implémentés dans
des systèmes de Calcul Formel, comme Maple, Mathematica et Singular.

En ce qui concerne les systèmes d’équations différentielles ordinaires linéaires d’ordre
supérieur (E.1), l’approche classique consiste à les convertir en un système du premier ordre
de la forme

d

dx


y(x)
y′(x)
...

y(`−2)(x)
y(`−1)(x)

 =


0 In 0 · · · 0
0 0 In · · · 0
...

...
...

. . .
...

0 0 0 · · · In
Ã0(x) Ã1(x) Ã2(x) . . . Ã`−1(x)




y(x)
y′(x)
...

y(`−2)(x)
y(`−1)(x)

+


0
0
...
0

f(x)

 ,

où pour i = 0, . . . , `, Ãi(x) = −A−1
` (x)Ai(x), puis à appliquer les résultats et les algorithmes

élaborés pour les systèmes du premier ordre (voir par exemple [29, 66]). Mais, l’inconvénient
essentiel de cette approche est l’augmentation de la taille du problème ; pour un système
différentiel de taille n et d’ordre `, le système du premier ordre résultant est de taille n `.
Cependant, on trouve dans la littérature une autre approche pour traiter ces systèmes, dévelop-
pée par Abramov, Bronstein & Khmelnov (voir [1, 2, 4, 5]). Dans ces travaux, les systèmes
(E.1) sont transformés en des équations aux récurrences matricielles. Mais, cette approche est
restreinte au cas des systèmes différentiels à coefficients polynomiaux. On trouve également
dans la littérature quelques travaux directs comme par exemple dans [64, 79, 80], mais ceux-ci
ne traitent que des cas particuliers de systèmes (E.1). Ainsi, l’absence de méthodes abordant
directement tout système différentiel explicite (E.1) est la motivation majeure de cette thèse.

Considérons maintenant un système d’ÉAD linéaires du premier ordre de la forme

A(x) y′(x) +B(x) y(x) = f(x) (E.3)

avec A(x) une matrice rectangulaire ou une matrice carrée non inversible. Sans aucune perte de
généralité, nous pouvons supposer que A(x) est de la forme

A(x) =
(
A11(x) 0

0 0

)
,

où A11(x) est une matrice carrée inversible. Décomposons la matrice B(x) et les deux vecteurs
y(x) et f(x) sous la forme

B(x) =
(
B11(x) B12(x)
B21(x) B22(x)

)
, y(x) =

(
y1(x)
y2(x)

)
et f(x) =

(
f1(x)
f2(x)

)
.

Le système (E.3) peut ainsi être écrit{
A11(x) y′1(x) +B11(x) y1(x) +B12(x) y2(x) = f1(x),
B21(x) y1(x) +B22(x) y2(x) = f2(x),

(E.4)

Résumé de la thèse 161

i.e., comme un ensemble composé d’équations algébriques et d’équations différentielles, d’où
l’appellation systèmes d’équations algébro-différentielles. Cette classe de systèmes a été étudiée
du point de vue numérique (voir [46, 67, 88]), où l’étude est divisée en deux parties essentielles
: tout d’abord la recherche de valeurs initiales consistantes, puis le calcul des solutions. Comme
la plupart des solveurs numériques nécessitent des équations différentielles ordinaires, on essaye
alors d’extraire du système (E.3) une équation dite équation différentielle sous-jacente. Cette
dernière est un système différentiel explicite linéaire obtenu en dérivant successivement les équa-
tions algébriques de (E.4) puis en faisant des manipulations algébriques pour exprimer y′ en
fonction de y et de x. Le nombre de dérivations nécessaires pour l’obtention de l’équation sous-
jacente est appelé indice différentiel [46]. Il existe dans la littérature autres notions d’indices,
voir [67, 89, 90].

Quant aux systèmes d’ÉAD linéaires d’ordre supérieur, comme dans la théorie classique
des systèmes d’ÉDO linéaires, la méthode standard pour traiter ces systèmes consiste à les
transformer en un système d’ÉAD du premier ordre puis résoudre ce dernier. Mais contrairement
aux systèmes d’ÉDO, cette transformation en un système du premier ordre doit être effectuée
avec une grande délicatesse car elle peut conduire à des difficultés mathématiques et numériques
très importantes (voir [73]).

Du point de vue symbolique, on regarde les systèmes d’ÉAD linéaires en tant qu’opérateurs
différentiels matriciels appliqués au vecteur inconnu y(x) et on développe des algorithmes
qui agissent sur ces opérateurs pour les transformer en une forme plus simple, telle la forme
normale de Popov [40] (cette forme est utile pour exprimer les termes d’ordre supérieur en
fonction des termes d’ordre plus bas et par suite transformer une ÉAD d’ordre supérieur
en une ÉAD du premier ordre), la forme normale de Hermite [49] (une matrice triangulaire
supérieure dont l’ordre est en général plus grand que l’ordre de l’opérateur initial) et la forme
normale de Jacobson [38, 70, 74] (une matrice diagonale qui réduit le système différentiel en
une équation différentielle scalaire linéaire). Une implémentation des algorithmes calculant ces
formes normales est disponible dans Singular [51]. Dans cette thèse, nous nous intéressons
aux algorithmes qui découplent un système donné d’ÉAD linéaires en un système purement
différentiel et un autre purement algébrique.

Contenu de la thèse

Cette thèse est divisée en deux parties essentielles. Dans la première partie, qui est formée
des chapitres 1 à 4, nous proposons des méthodes directes pour calculer les solutions régulières
formelles des systèmes de la forme (E.1) avec m = n. Nous décrivons aussi une approche pour
le calcul direct des formes dites k-simples (k ∈ N) [14, 21, 85] des systèmes d’ÉDO linéaires du
premier ordre. Ces formes sont utiles pour le calcul des solutions formelles sans ramification.
La seconde partie, qui est composée des chapitres 5 et 6, porte sur les algorithmes de réduction
des équations algébro-différentielles linéaires. Nous proposons des algorithmes séparant la
composante algébrique de la composante différentielle.

En plus des résultats théoriques développés dans cette thèse, une autre contribution apparaît
dans l’implémentation en Maple de la majorité des algorithmes élaborés (les programmes
sont disponibles à http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html)
et dans l’étude de leur complexité arithmétique. Finallement, il est important de noter que
les algorithmes proposés dans la première partie de cette thèse peuvent être généralisés pour
manipuler les systèmes aux différences et aux q-différences linéaires.

Le matériel de cette thèse est organisé comme suit. Le chapitre 1 contient un rappel des
résultats classiques sur les matrices polynomiales [50, 65, 42, 104] que nous avons été amenés

162 Résumé de la thèse

à utiliser dans les chapitres suivants. Ce chapitre ne présente aucun contribution théorique,
cependant nous avons étudié la complexité arithmétique et implémenté les algorithmes que nous
utilisons dans la suite. Les cinq autres chapitres contiennent nos contributions. Nous résumons
ci-dessous le contenu de chacun.

Chapitre 2 : Solutions régulières des systèmes différentiels
linéaires d’ordre arbitraire de première espèce

Considérons un système d’ÉDO linéaires homogènes de la forme (E.1). Une base de son
espace de solutions formelles est formée de n ` solutions de la forme

yi(x) = exp(qi(x−1/ri))xλi zi(x1/ri), i = 1, . . . , n `

où ri ∈ N∗, qi(t) ∈ tK[t], λi ∈ K et zi(x1/ri) ∈ K[[x1/ri]][ln(x)]n. Une solution régulière formelle
de (E.1) est une combinaison linéaire de solutions de la forme

y(x) = xλ0 z(x), (E.4)

où λ0 ∈ K et z(x) ∈ K[[x]][ln(x)]n. Le point x = 0 est une singularité régulière de (E.1) si ce
dernier admet n ` solutions régulières linéairement indépendantes. Dans ce chapitre et le suivant,
nous abordons le problème du calcul des solutions régulières formelles d’un système de la forme
(E.1). Plus particulièrement, nous nous intéressons au calcul d’une base de l’espace des solutions
régulières formelles formée de solutions de la forme (E.4).

Pour des raisons de commodité, nous allons écrire le système différentiel considéré avec la
dérivation d’Euler ϑ = x d

dx . Ainsi, nous allons traiter un système de la forme

L(x, ϑ)(y(x)) = A`(x)ϑ`(y(x)) +A`−1(x)ϑ`−1(y(x)) + · · ·+A0(x) y(x) = 0, (E.5)

où pour i = 0, . . . , `, Ai(x) ∈ K[[x]]n×n et A`(x) est inversible.
Dans ce chapitre, nous supposons que A`(x) est inversible en x = 0, et nous faisons référence

au système (E.5) comme un système de première espèce. Dans ce cas, la singularité x = 0 est
une singularité régulière pour le système.

Lorsque n = 1 (une seule équation différentielle), dire que A`(0) est inversible est équivalent
à dire que A`(0) est non nul. Dans ce cas, l’exposant λ0 de toute solution régulière de la forme
(E.4) est choisi comme une racine d’un polynôme appelé polynôme indiciel. Parmi les méthodes
calculant les solutions régulières formelles d’une équation différentielle ordinaire scalaire, nous
citons la méthode de Frobenius [44, 37] et ses deux variantes, celle de Heffter [53] et celle de
Poole [86].

Dans ce chapitre, nous proposons deux méthodes pour calculer les solutions régulières
formelles d’un système de première espèce de la forme (E.5). La première méthode est in-
spirée par l’approche de Poole [86] dans le cas scalaire. L’idée à la base de cette méthode
est de regarder les solutions régulières (E.4) comme des séries en x dont les coefficients sont
polynomiaux en t = ln(x) (et donc ϑ = d

dt), c’est-à-dire, de la forme

y(x) = xλ0(U0(t) + U1(t)x+ · · ·+ Ui(t)xi + · · ·)

avec λ0 ∈ K, pour m ≥ 0, Um(t) ∈ K[t]n et U0 6= 0. Écrivons le système (E.5) en regroupant ses
termes suivant les puissances de x, c’est-à-dire,

L(x, ϑ)(y(x)) =
∞∑
j=0

xj Lj(ϑ)(y(x)) = 0,

Résumé de la thèse 163

où pour j ≥ 0,
Lj(λ) = A`,j λ

` + · · ·+A1,j λ+A0,j ,

Ai,j étant le coefficient de xj du développement de Taylor de Ai(x).
En injectant y(x) dans (E.5), nous trouvons

L0(ϑ)
(
xλ0 U0

)
= 0, (E.6)

et

∀ i ≥ 1, L0(ϑ+ λ0 + i)(Ui) = −
i−1∑
j=0

Li−j(ϑ+ λ0 + j)(Uj). (E.7)

Proposition 1. Le vecteur xλ0 U0 est une solution régulière du système L0(ϑ)(y(x)) = 0
si et seulement si λ0 est une valeur propre de la matrice polynomiale L0(λ), c’est-à-dire,
det(L0(λ0)) = 0, et U0 est de la forme

U0 =
k−1∑
i=0

vk−1−i
lni(x)
i!

,

où 0 6= v0, . . . , vk−1 ∈ Kn forment une chaîne de Jordan pour L0(λ) associée à la valeur propre
λ0, c’est-à-dire, satisfont

i∑
j=0

1
j!
L

(j)
0 (λ0) vi−j = 0, for i = 0, . . . , k − 1.

Nous remarquons ainsi que le déterminant de L0(λ) joue le même rôle que le polynôme indiciel
dans le cas scalaire. Notons que, comme nous considérons un système de première espèce, i.e.,
la matrice A`(0) est supposée inversible, le degré du déterminant de L0(λ) est égal à n `.

Une fois que le choix de λ0 et U0 est fait et que les Uj pour j = 1, . . . , i − 1 sont calculés
(ceux sont des vecteurs de polynômes en ln(x)), le coefficient Ui satisfait alors un système
différentiel linéaire non-homogène à coefficients constants dont le second membre est un vecteur
de polynômes en ln(x). La proposition suivante montre l’existence d’une solution polynomiale
en ln(x) de ce dernier système et donne une borne sur son degré.

Proposition 2. Le système (E.7) admet au moins une solution polynomiale en ln(x) de degré
p avec

d ≤ p ≤ d+ max
j
{κj},

où d désigne le degré en ln(x) du second membre de (E.7) et

κj =
{

multiplicité partielle de λ0 + i, si λ0 + i est une valeur propre de L0(λ),
0, sinon.

Pour résoudre les systèmes (E.6) et (E.7), nous réduisons le problème à la résolution de
systèmes algébriques linéaires ayant une structure par bloc très particulière. Nous obtenons
ainsi un algorithme qui, pour un système de première espèce donné de la forme (E.5), retourne
une base de son espace de solutions formelles. Nous donnons deux variantes de cet algorithme.
Dans la première variante, chaque solution xλ0U0 d’un système fondamental de solutions du
système L0(ϑ)(y(x)) = 0 est complétée pour former une solution du système (E.5). Dans la
seconde variante, nous regroupons les valeurs propres de la matrice polynomiale L0(λ) en des
ensembles disjoints de sorte que les valeurs propres appartenant à deux ensembles distincts ne
diffèrent pas d’entiers. Puis, pour chaque ensemble, nous calculons la solution régulière générale
de (E.5) générée par ces valeurs propres. Nous étudions la complexité arithmétique de cet
algorithme:

164 Résumé de la thèse

Proposition 3. Notre algorithme calcule la solution régulière générale jusqu’à l’ordre ν d’un
système de première espèce de la forme (E.5) en au plus O

(
n4 `3 ν2 + n6 `4

)
opérations dans K.

Nous présentons aussi quelques tables de temps de calculs com-
parant l’implémentation en Maple de notre méthode (disponible à
http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html) avec deux autres
méthodes : celle présentée dans [5] qui réduit le problème du calcul des solutions régulières
des systèmes de la forme (E.5) à coefficients polynomiaux Ai(x) à celui du calcul des solutions
sous forme de séries de Laurent pour des équations aux récurrences matricielles (implémentée
dans le package LinearFunctionalSystems de Maple), et celle qui consiste à convertir
(E.5) en système du premier ordre de taille n ` puis appliquer l’algorithme de [21] (implémentée
dans le package Isolde de Maple). Les tableaux montrent l’efficacité de notre algorithme
spécialement sur des systèmes d’ordre ` ≥ 2.

La deuxième méthode que nous proposons dans ce chapitre pour calculer les solutions
régulières d’un système de première espèce de la forme (E.5) est une généralisation de la
méthode de Frobenius [44, 94]. Celle-ci a été généralisée aux systèmes du premier ordre dans
[92, 54, 56] et aux systèmes d’ordre supérieur dans [64, 80, 81], mais les travaux (sur l’ordre
supérieur) de ces derniers papiers ne traitent pas le cas général. Notre généralisation suit
les grands traits de la méthode dans le cas scalaire et utilisent des résultats classiques sur
les matrices polynomiales [50] (notamment les notions de multiplicités partielles et de racines
polynomiales) ce qui la distinguent des autres généralisations existantes.

Ce chapitre est un travail en collaboration avec M. A. Barkatou et T. Cluzeau et a été
publié dans [16] et une partie de [17, 18].

Chapitre 3 : Formes simples et applications au calcul des
solutions régulières

Ce chapitre est le sujet de l’article publié [18] en collaboration avec M. A. Barkatou et
T. Cluzeau.

Nous avons vu au chapitre précédent comment calculer les solutions régulières des systèmes
de première espèce. Dans ce chapitre, nous montrons comment calculer les solutions régulières
d’une classe de systèmes plus générale.

Nous considérons un système de la même forme que (E.5) mais nous supposons désormais que
A`(x) et A`(0) sont deux matrices quelconques (pas forcément inversibles). À un tel système,
nous associons la matrice polynomiale

L0(λ) = A`(0)λ` + · · ·+A1(0)λ+A0(0). (E.8)

Nous examinons tout d’abord le cas où la matrice L0(λ) est régulière, i.e., det(L0(λ)) 6= 0.

Définition 1. Un système de la forme (E.5), respectivement l’opérateur associé L(x, ϑ), ayant
une matrice polynomiale L0(λ) régulière est appelé système simple, respectivement opérateur
simple.

La notion de systèmes simples a été introduite par Barkatou dans [14] pour calculer les
solutions rationnelles des systèmes d’ÉDO linéaires du premier ordre à coefficients rationnels.
Puis, elle a été utilisée par Barkatou & Pflügel [21] dans le calcul des solutions régulières (toujours
pour des systèmes du premier ordre). La terminologie systèmes simples se justifie par le fait que
les polynômes indiciels de tels systèmes peuvent être facilement calculés.

Résumé de la thèse 165

Remarquons qu’un système de première espèce est nécessairement simple mais l’inverse n’est
pas toujours vraie. Soulignons aussi que la classe des systèmes simples peut contenir des systèmes
d’ÉAD, vu que la matrice de tête A`(x) n’est pas supposée inversible.

Nous montrons dans ce chapitre que les méthodes développées dans le chapitre 2 pour cal-
culer les solutions régulières formelles d’un système de première espèce restent valables pour les
systèmes simples et que :

Théorème 1. La dimension de l’espace des solutions régulières formelles d’un système différen-
tiel linéaire simple de la forme (E.5) est égale au degré du déterminant de la matrice polynomiale
L0(λ) donnée par (E.8).

Le théorème ci-dessus nous permet de déterminer la nature de la singularité x = 0 pour des
systèmes différentiels explicites simples :

Corollaire 1. Un système différentiel linéaire simple de la forme (E.5) ayant une matrice de
tête A`(x) inversible dans K((x))n×n a une singularité régulière en x = 0 si et seulement si le
système est de première espèce.

Une autre contribution de ce chapitre est l’étude de la complexité arithmétique de
l’algorithme développé dans [21] calculant les solutions régulières d’un système simple du
premier ordre. Ceci donne O

(
n4 ν2 + n5 ν

)
opérations dans K, où n désigne la taille du système

et ν désigne l’ordre auquel les solutions sont calculées. Le but de cette étude est de comparer,
du point de vue complexité, notre approche (la généralisation de la méthode de Poole) pour
résoudre directement un système simple de la forme (E.5) et celle qui consiste à transformer le
système (E.5) en un autre système du premier ordre de taille n ` puis utiliser l’algorithme de
[21]. Nous constatons que notre approche a une meilleur complexité quand ` est largement plus
grande que n.

Puis, nous examinons le problème du calcul des solutions régulières pour les systèmes non
simples, i.e., les systèmes de la forme (E.5) dont la matrice polynomiale L0(λ) est singulière
(det(L0(λ)) = 0). Comme les algorithmes décrits au chapitre 2 ne s’appliquent pas à ces sys-
tèmes, nous proposons alors de calculer un système différentiel linéaire simple L(x, ϑ)(z(x)) = 0
à partir duquel nous pouvons déduire les solutions régulières du système non simple. Afin de
garantir l’existence d’un tel système L(x, ϑ)(z(x)) = 0, nous supposons que la matrice de tête
A`(x) du système (E.5) est inversible dans K((x))n×n (i.e., nous ne considérons que des systèmes
différentiels explicites). Ceci implique que l’espace des solutions régulières formelles de (E.5) est
de dimension finie.

Le problème du calcul d’un système simple à partir duquel on peut retrouver les solutions
du système non simple L(x, ϑ)(y(x)) = 0 a déjà été étudié dans [21] (voir aussi [14]) pour le
cas des systèmes du premier ordre (` = 1) ; il a été montré qu’en utilisant l’algorithme de
la super-réduction [24, 25, 58], on peut construire deux matrices S(x) et T (x) inversibles dans
K((x))n×n telles que l’opérateur L(x, ϑ) = S(x)L(x, ϑ)T (x) est simple. Par conséquent, l’espace
des solutions formelles de L(x, ϑ)(y(x)) = 0 et celui de L(x, ϑ)(z(x)) = 0 sont isomorphes vu
que y(x) et z(x) sont reliés par y(x) = T (x) z(x) avec T (x) inversible.

En passant aux systèmes non simples d’ordre supérieur (` ≥ 2), il n’est malheureusement
pas toujours possible de trouver deux matrices inversibles S(x) et T (x) telles que l’opérateur
S(x)L(x, ϑ)T (x) est simple. En effet, nous montrons que, étant donné un système non simple
de la forme (E.5) avec n = ` = 2, si une base minimale à droite et une base minimale à
gauche [65, 42] de la matrice polynomiale L0(λ) donnée par (E.8) sont formées uniquement de
vecteurs non constants, alors pour toutes matrices S(x) et T (x) dans K((x))2×2, l’opérateur
S(x)L(x, ϑ)T (x) est toujours non simple. Pour cette raison, nous nous intéressons tout d’abord
à l’existence d’une substitution linéaire y(x) = T (x) z(x), où T (x) est une matrice inversible,

166 Résumé de la thèse

telle que le nouveau système différentiel satisfait par z(x) est simple. Nous donnons une condition
nécessaire sur l’existence d’une telle substitution linéaire :

Théorème 2. Étant donné un système non simple d’ÉDO linéaires de la forme (E.5), s’il
existe une matrice inversible T (x) ∈ K((x))n×n telle que le système L(x, ϑ)(z(x)) = 0, où
L(x, ϑ) = L(x, ϑ)T (x), est simple, alors les éléments d’une base minimale à droite de la matrice
polynomiale L0(λ) donnée par (E.8) sont tous des vecteurs constants.

En nous basant sur le théorème ci-dessus, nous développons un algorithme qui, soit décide
de l’existence d’une telle substitution linéaire et la calcule, soit montre qu’elle n’existe pas.
Dans ce dernier cas, nous proposons une variante différentielle de l’algorithme EG’ proposé
par Abramov, Bronstein & Khmelnov dans [4, Section 4]. Ce dernier algorithme qui est une
amélioration de l’algorithme EG décrit dans [1] ramène une équation aux récurrences matricielle
à une autre équation ayant sa matrice de tête, ou de queue, inversible. Dans ce chapitre, nous
adaptons cet algorithme à notre cas : nous partons d’un système différentiel linéaire ayant une
matrice polynomiale associée L0(λ) singulière et nous voulons calculer un autre système dont
la matrice polynomiale associée est régulière. Pour cela, nous avons besoin de supposer que le
système non simple L(x, ϑ)(y(x)) = 0 a des coefficients polynomiaux. L’algorithme applique une
série d’opérations élémentaires sur les lignes de l’opérateur L(x, ϑ) et retourne un système simple
à partir duquel les solutions régulières de L(x, ϑ)(y(x)) = 0 peuvent être déduites. Notons
que le système simple obtenu pourrait être d’ordre plus grand que celui de L(x, ϑ)(y(x)) = 0
et qu’il n’est pas forcément équivalent à L(x, ϑ)(y(x)) = 0 dans le sens où les espaces de
solutions formelles des deux systèmes peuvent ne pas être isomorphes ; quand ils ne le sont
pas, nous expliquons comment les solutions régulières du premier système peuvent être obtenues.

Une autre contribution de ce chapitre se présente par l’étude de la complexité arithmétique
des nouveaux algorithmes développés et leur implémentation en Maple.

Chapitre 4 : Sur les formes k-simples des systèmes différentiels
linéaires du premier ordre et leur calcul

L’idée à l’origine de ce chapitre provient du travail [85] de Pflügel.
Nous considérons un système d’ÉDO linéaires du premier ordre de la forme

ϑ(y(x)) = A(x) y(x) avec A(x) =
1
xp

(
A0 +A1 x+ · · ·+Ak x

k + · · ·
)
, (E.9)

où ϑ = x d
dx , p ∈ N et les Ai sont des matrices de taille n × n dont les entrées sont dans

K telles que A0 6= 0. Dans [85], afin de calculer les solutions formelles de (E.9), l’auteur est
amené à considérer des systèmes différentiels sous une forme un peu plus générale que (E.9). En
effet, pour un entier k ∈ {0, . . . , p − 1}, on définit la matrice D(x) = diag(xα1 , . . . , xαn) avec
αi = max{0,−k − v(A(x)(i, .))} , où A(x)(i, .) désigne la ième ligne de la matrice A(x). En
multipliant le système (E.9) à gauche par xkD(x), on obtient

Dk(y(x)) = D(x)ϑk(y(x)) +N(x)y(x) = 0, (E.10)

où ϑk = xk ϑ et N(x) = −xkD(x)A(x) ∈ K[[x]]n×n.
En étudiant l’action de l’opérateur Dk sur une solution de la forme y = exp

(∫
w
)
z avec

w =
λ0

xk+1
+ · · · ∈ K((x)),

Résumé de la thèse 167

et z ∈ K[[x
1
r]]n (r ∈ N∗) tel que z(0) 6= 0, on trouve

exp
(
−
∫
w

)
Dk(y) = (D(0)λ0 +N(0)) z(0) + · · · ,

où . . . représente des termes de valuation plus grande. Il en découle que si y = exp
(∫
w
)
z est

une solution of Dk(y) = 0, alors on a (D(0)λ0 +N(0)) z(0) = 0 ce qui donne les deux conditions
suivantes :

det(D(0)λ0 +N(0)) = 0 et z(0) ∈ ker(D(0)λ0 +N(0)).

Il est donc naturel par la suite de s’attendre à ce que les racines du déterminant du faisceau

Lk(λ) = D(0)λ+N(0)

jouent un rôle important dans la détermination des solutions formelles. Mais, il se peut bien
évidemment que le déterminant det(Lk(λ)) soit identiquement nul auquel cas on ne peut tirer
aucune information utile.

Un système de la forme (E.10) ayant un faisceau Lk(λ) régulier est appelé système k-simple ou
système simple par rapport à ϑk. Ainsi, la notion de k-simplicité vient comme une généralisation
de la notion de simplicité vue dans le chapitre précédent et dans [14, 21].

Il a été montré dans [85, Th. 3.3] que si le système (E.9) peut être écrit comme un système
k-simple de la forme (E.10) et si λ0 est une valeur propre du faisceau Lk(λ) de multiplicité
algébrique m, alors il existe m solutions formelles linéairement indépendantes de (E.9) de la
forme y = exp

(∫
w
)
z avec

w =
λ0

xk+1
+ · · · ∈ x−1K[x−1/r] (r ∈ N∗),

où . . . représente des termes de valuation plus grande, et z ∈ K[[x1/r]]n[ln(x)]. Par suite,
le déterminant de Lk(λ) joue le même rôle que les polynômes de Newton (ou les polynômes
caractéristiques) dans le cas scalaire.

Notons qu’un système de la forme (E.9) écrit comme dans (E.10) n’est pas toujours k-simple.
Cependant, il a été remarqué que les polynômes définis à partir d’une forme super-réduite
[58, 24, 25] (les formes super-réduites ne sont définies que pour les systèmes de la forme (E.9))
sont fortement reliés aux polynômes de Newton. Pflügel a montré dans [85] que si le système
(E.9) est super-réduit, alors il peut être écrit comme un système k-simple pour k = 0, . . . , p− 1.

Dans ce chapitre, nous considérons la classe des systèmes de la forme (E.10) avec k ∈ N, D(x)
et N(x) dans K[[x]]n×n telles que D(x) est inversible dans K((x))n×n (D(x) n’est pas forcément
supposée diagonale). Avant cette thèse, l’unique méthode qui existait pour calculer un système
k-simple équivalent à (E.10) (sans le réduire à une équation différentielle linéaire scalaire) était en
utilisant l’algorithme de la super-réduction. Mais, un système k-simple de la forme (E.10), écrit
sous la forme (E.9) (avec A(x) = −x−kD−1(x)N(x)), n’est pas nécessairement super-réduit.
Dans ce chapitre, nous supposons que la matrice de tête D(x) est de la forme D(x) = xαQ(x)
où α = (α1, . . . , αn) ∈ Nn tel que α1 ≤ · · · ≤ αn et Q(x) ∈ K[[x]]n×n (on peut toujours
ramener D(x) à cette forme en multipliant l’opérateur Dk à gauche et à droite par deux matrices
unimodulaires de K[[x]]n×n) et nous montrons que :

Théorème 3. Il existe deux matrices inversibles U(x) ∈ K[x−1]n×n avec U−1(x) ∈ K[x]n×n et
V (x) ∈ K[x]n×n avec V −1(x) ∈ K[x−1]n×n telles que l’opérateur U(x)Dk V (x) est k-simple.

Nous développons un algorithme, implémenté en Maple et disponible à
http://www.unilim.fr/pages_perso/carole.el-bacha/recherche.html, qui retourne

168 Résumé de la thèse

deux matrices U(x) et V (x) satisfaisant les propriétés du Théorème 3 en au plus
O
(
nω+1 |α(Dk)|+ ν n3 |α(Dk)|

)
opérations dans K, où α(Dk) =

∑n
i=1 αi et ν est l’ordre

de troncation des matrices D(x) et N(x). L’entier ν doit être choisi plus grand ou égal à
|α(Dk)|. Nous illustrons notre algorithme par des exemples clarifiant ses différentes étapes.

Notre démarche pour calculer deux matrices U(x) et V (x) comme ci-dessus repose sur le
traitement algébrique du faisceau Lk(λ) et procède d’une manière semblable à celle utilisée dans
[58].

Finalement, nous soulignons quelques caractéristiques de notre algorithme :

• Le système k-simple produit par notre algorithme n’est pas forcément super-réduit.

• Notre algorithme appliqué à Dk donné par (E.10) avec k = 0 nous permet de déterminer la
nature de la singularité x = 0. Il peut être ainsi considéré comme une approche alternative
à la réduction de Moser [77] pour déterminer la nature de la singularité x = 0.

• Notre approche appliquée à Dk donné par (E.10) préserve la simplicité par rapport à
ϑk+i pour i = 1, 2, En d’autres termes, si l’opérateur Dk écrit respectivement avec
ϑk+i pour i = 1, 2, . . . est simple par rapport à ϑk+i, alors après avoir appliqué notre
algorithme à Dk, l’opérateur retourné est aussi simple par rapport à ϑk+i pour i = 1, 2,

Chapitre 5 : Algorithmes de réduction pour les systèmes d’ÉAD
linéaires du premier ordre

Le contenu de ce chapitre constitue une partie du papier publié [20] en collaboration avec
M. A. Barkatou et E. Pflügel.

Nous étudions un système d’équations algébro-différentielles linéaires du premier ordre de la
forme

L(y(x)) = A(x) ∂(y(x)) +B(x) y(x) = f(x), (E.11)

où ∂ = d
dx , A(x) et B(x) sont dans K[[x]]m×n et f(x) dans K[[x]]m. Les questions qui nous

intéressent sur les systèmes d’ÉAD sont liées à la consistance du système, aux types de solutions
qu’ils admettent et à la manière de les calculer. Pour répondre à ces questions, une idée
naturelle est de réduire le système (E.11) à une forme standard qui pourrait être manipulée
par des techniques bien connues comme, par exemple, celles développées pour les systèmes
algébriques ou pour les systèmes différentiels ordinaires linéaires.

Indépendamment de leurs objectifs, la plupart des algorithmes symboliques ou numériques
manipulant les systèmes d’ÉAD linéaires du premier ordre (voir [47, 67, 88]) appliquent les
mêmes techniques :

• multiplier le système à gauche par une matrice inversible,

• dériver ses équations algébriques,

• faire un changement de variable y(x) = T (x) z(x) avec T (x) une matrice inversible.

Les opérations ci-dessus ne suffisent pas toujours pour découpler entièrement un système de
la forme (E.11) en un système d’ÉDO et un système d’équations algébriques. Cependant, en
regardant de plus près l’algorithme de Harris, Sibuya & Weinberg [52], nous avons remarqué
qu’en autorisant aussi des changements de variable de la forme y(x) = T (z(x)), où T est un
opérateur différentiel matriciel unimodulaire, nous arrivons à découpler entièrement le système.

Résumé de la thèse 169

Dans ce chapitre, nous étudions tout d’abord l’algorithme de Harris et al. [52]. Nous le
présentons d’une nouvelle façon en exprimant les opérations effectuées sur le système comme
une série de transformations à gauche et à droite sur l’opérateur différentiel matriciel L. Puis,
inspiré par ce dernier algorithme, nous donnons une nouvelle approche plus simple menant au
théorème suivant :

Théorème 4. Étant donné un opérateur différentiel matriciel L = A(x) ∂+B(x) ∈ K[[x]][∂]m×n,
il existe deux opérateurs différentiels matriciels unimodulaires S et T tels que L̃ = S LT est de
la forme

L̃ =

Ã11(x) ∂ + B̃11(x) 0 0
0 B̃22(x) 0
0 0 0

 , (E.12)

où Ã11 et B̃22 sont des matrices inversibles.

Ainsi le système d’ÉAD (E.11) peut être découplé en 2 systèmes :

1. le système d’ÉDO linéaires du premier ordre Ã11(x) z′1(x) + B̃11(x) z1(x) = f̃1(x),

2. le système d’équations algébriques B̃22(x) z2(x) = f̃2(x),

avec quelques conditions nécessaires sur le second membre exprimées par f̃3(x) = 0 pour assurer
la consistance du système. Ici, on a

y(x) = T

z1(x)
z2(x)
z3(x)

 et

f̃1(x)
f̃2(x)
f̃3(x)

 = S(f(x)).

Pour calculer la forme découplée (E.12), nous procédons comme suit. Nous commençons
par réduire l’opérateur différentiel matriciel L donné en entrée suivant les lignes en utilisant
la procédure décrite dans [27]. Ceci se traduit par une multiplication de L à gauche par un
opérateur différentiel matriciel unimodulaire convenable. Puis, nous suivons cette opération par
une réduction suivant les colonnes de l’opérateur obtenu. L’opérateur résultant est donc réduit
par rapport aux colonnes mais pas forcément par rapport aux lignes. S’il ne l’est pas, nous
ré-appliquons la réduction suivant les lignes et ainsi de suite jusqu’à ce que nous trouvons un
opérateur qui est simultanément réduit par rapport aux lignes et aux colonnes. Nous montrons
que ceci se produira après un nombre fini d’itérations. Finalement, par multiplication à gauche
et à droite par des matrices inversibles, nous obtenons un opérateur de la forme (E.12).

Chapitre 6 : Systèmes différentiels linéaires simultanément
réduits par rapport aux lignes et aux colonnes

Ce chapitre fait l’objet de l’article [19] en collaboration avec M. A. Barkatou, G. Labahn et
E. Pflügel.

Nous généralisons dans ce chapitre la méthode proposée dans le chapitre 5 (pour découpler
une ÉAD du premier ordre) aux systèmes d’ÉAD linéaires d’ordre supérieur de la forme (E.1).
Ainsi, nous agissons sur l’opérateur différentiel matriciel L définissant le système (E.1), i.e.,

L = A`(x) ∂` +A`−1(x) ∂`−1 + · · ·+A0(x),

afin d’obtenir un autre opérateur différentiel matriciel qui lui est équivalent et qui est simultané-
ment réduit par rapport aux lignes et aux colonnes. Ce dernier est d’ordre inférieur ou égal à
celui de L et a une structure par blocs très particulière comme le montre la proposition suivante :

170 Résumé de la thèse

Proposition 4. Un opérateur différentiel matriciel L ∈ K[[x]][∂]m×n est simultanément réduit
par rapport aux lignes et colonnes si et seulement si L a, à une permutation près, la partition
par blocs suivante : 

L11 · · · L1k 0
...

. . .
...

...
Lk1 · · · Lkk 0
0 · · · 0 0

 ,

où,

(a) pour i = 1, . . . , k, les Lii sont des opérateurs différentiels matriciels carrés ayant une
matrice de tête inversible et satisfont ord(Lii) > ord(Li+1 i+1),

(b) ord(Lij) ≤ ord(Lii) pour j < i et ord(Lij) ≤ ord(Ljj) pour i < j.

Construire un opérateur simultanément réduit par rapport aux lignes et aux colonnes a de
conséquences avantageuses sur le système différentiel qui lui est associé. En effet, il permet
de découpler ce dernier en un système purement algébrique, un système purement différentiel,
i.e., carré dont toutes les équations sont linéairement indépendantes, et quelques conditions
nécessaires sur le second membre. De plus, le système purement différentiel obtenu peut être
facilement réécrit comme un système différentiel explicite du premier ordre, et par suite, la
dimension de son espace de solutions formelles peut être déterminée et la classification de la
singularité x = 0 peut aussi être explorée.

Pour calculer une forme simultanément réduite par rapport aux lignes et aux colonnes, nous
proposons deux approches. La première approche consiste à appliquer alternativement une série
de réduction par lignes et réduction par colonnes jusqu’à trouver un opérateur qui est à la fois
réduit par rapport aux lignes et aux colonnes. Bien que cette méthode agisse sur les lignes
et les colonnes individuellement, l’opérateur obtenu a une structure par blocs. La deuxième
approche est inspirée des techniques utilisées pour calculer la forme normale de Popov dans le
cas commutatif (voir [78]) sauf que ici nous appliquons cette procédure à des blocs.

Finallement, nous notons qu’une forme simultanément réduite par rapport aux lignes et aux
colonnes est plus faible que les formes normales de Popov et de Jacobson.

Nous concluons ce résumé par un exemple illustrant le contenu de cette thèse.

Exemple 2. Nous considérons le système d’ÉAD linéaires donné par (E.2) et nous nous in-
téressons aux types de solutions que possède ce système. Tout d’abord, écrivons le sous la forme
L(y) = 0 où L est l’opérateur différentiel matriciel donné par

L =

 mr ∂2 −m∂ −m3 r −r2 ∂ 0
−r2 ∂3 + r ∂2 + (m2 r2 − 1) ∂ mr3 Ra r3

−∂ 0 r ∂2 + ∂ −m2 r

 .

Puis, utilisons l’algorithme développé au chapitre 6 pour rendre L simultanément réduit par
rapport aux lignes et aux colonnes. Nous obtenons ainsi l’opérateur

L̃ = S LT =

mr ∂2 −m∂ −m3 r −r2 ∂ 0
mr ∂2 −m∂ −m3 r −r3 ∂2 − 2 r2 ∂ +m2 r3 Ramr3

−∂ 0 r ∂2 + ∂ −m2 r

 ,

avec T = I3 et

S =

 1 0 0
r ∂ m 0
0 0 1

 .

Résumé de la thèse 171

Le système (E.2) est donc équivalent au systèmemr 0 0
mr −r3 0
0 0 r

 y′′ +

−m −r2 0
−m −2 r2 0
−1 0 1

 y′ +

−m3 r 0 0
−m3 r m2 r3 Ramr3

0 0 −m2 r

 y = 0,

qui est un système d’ÉDO linéaires du second ordre. On sait alors qu’il existe deux types de
solutions au voisinage de 0 : des solutions régulières et des solutions irrégulières. Comme l’étude
de cette thèse porte sur le calcul des solutions régulières, nous allons alors déterminer les solutions
régulières de ce système. Pour cela, écrivons le système ci-dessus avec la dérivation d’Euler
ϑ = x d

dx . Nous trouvonsm 0 0
m −r2 0
0 0 1

ϑ2(y) +

−2m −r2 0
−2m −r2 0
−1 0 0

ϑ(y) +

−m3 r2 0 0
−m3 r2 m2 r4 Ramr4

0 0 −m2 r2

 y = 0.

En calculant le déterminant de la matrice polynomiale L0(λ) associée à ce dernier système,
nous trouvons qu’il est non simple. En appliquant l’un des algorithmes élaborés au chapitre 3
pour calculer un système simple (ici nous utilisons l’algorithme EG_DV du chapitre 3), nous
obtenons le système de première espècem 0 0

0 −1 0
0 0 1

ϑ2(y) +

−2m −r2 0
0 0 0
−1 0 0

ϑ(y) +

−m3 r2 0 0
0 m2 r2 Ramr2

0 0 −m2 r2

 y = 0.

Ce qui implique que la singularité x = 0 est une singularité régulière et par suite le système (E.2)
n’a que des solutions régulières. Finalement, en appliquant l’un des algorithmes du chapitre 2,
nous obtenons une base de l’espace des solutions formelles de (E.2) donnée aux pages 63 et 64.

�

Bibliography

[1] S. Abramov. EG - eliminations. Journal of Difference Equations and Applications, 5:393–
433, 1999. 6, 10, 41, 65, 86, 160, 166

[2] S. Abramov and M. Bronstein. On solutions of linear functional systems. In Proceedings
of the International Symposium on Symbolic and Algebraic Computation, pages 1–6. ACM
Press, 2001. 6, 41, 65, 86, 160

[3] S. Abramov and M. Bronstein. Linear algebra for skew-polynomial matrices. Rapport de
recherche 4420, INRIA, March 2002. 86

[4] S. Abramov, M. Bronstein, and D. E. Khmelnov. Regularization of linear recurrence
systems. Transactions of the A.M. Lyapunov Institute, 4:158–171, 2003. 6, 10, 41, 68, 79,
86, 121, 160, 166

[5] S. Abramov, M. Bronstein, and D. E. Khmelnov. On regular and logarithmic solutions of
ordinary linear differential systems. Computer Algebra in Scientific Computing, Lecture
Notes in Computer Science, Springer Verlag, 3718:1–12, 2005. 6, 7, 8, 41, 64, 160, 164

[6] A. Aparicio Monforte. Méthodes Effectives pour l’Intégrabilité des Systèmes Dynamiques.
PhD thesis, Université de Limoges, December 2010. 159

[7] D. G. Babbitt and V. S. Varadarajan. Formal reduction theory of meromorphic differential
equations: A group theoretic view. Pacific Journal of Mathematics, 109(1):1–80, 1983. 79,
111, 160

[8] W. Balser. Formal Power Series and Linear Systems of Meromorphic Ordinary Differential
Equations. Springer, 2000. 5, 7, 36, 40, 72

[9] W. Balser, W. B. Jurkat, and D. A. Lutz. A general theory of invariants for meromorphic
differential equations, Part I: Formal invariants. Funcialaj Ekvacioj, 22:197–221, 1979. 93,
160

[10] M. A. Barkatou. Contribution à l’Étude des Équations Différentielles et aux Différences
dans le Champ Complexe. PhD thesis, Institut National Polytechnique de Grenoble, June
1989. 5, 37, 94

[11] M. A. Barkatou. An algorithm for computing a companion block diagonal form for a
system of linear differential equations. Applicable Algebra in Engineering, Communication
and Computing, 4:185–195, 1993. 5, 39, 94

[12] M. A. Barkatou. A rational version of Moser’s algorithm. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 297–302. ACM Press,
1995. 5, 39, 97

[13] M. A. Barkatou. An algorithm to compute the exponential part of a formal fundamental
matrix solution of a linear differential system. Applicable Algebra in Engineering, Com-
munication and Computing, 8:1–23, 1997. 5, 94, 97, 111, 160

[14] M. A. Barkatou. On rational solutions of systems of linear differential equations. Journal
of Symbolic Computation, 28:547–567, 1999. 5, 6, 9, 10, 11, 97, 121, 161, 164, 165, 167

173

174 Bibliography

[15] M. A. Barkatou. Factoring systems of linear functional equations using eigenrings. In I. S.
Kotsireas and E. V. Zima, editors, Latest Advances in Symbolic Algorithms, pages 22–42.
World Scientific, 2007. 5

[16] M. A. Barkatou, T. Cluzeau, and C. El Bacha. Algorithms for regular solutions of higher-
order linear differential systems. In Proceedings of the International Symposium on Sym-
bolic and Algebraic Computation, pages 7–14. ACM Press, 2009. 9, 38, 164

[17] M. A. Barkatou, T. Cluzeau, and C. El Bacha. Frobenius method for computing power
series solutions of linear higher-order differential systems. In Proceedings of the Interna-
tional Symposium on Mathematical Theory on Networks and Systems, pages 1059–1066,
Budapest, Hungary, 2010. 9, 38, 164

[18] M. A. Barkatou, T. Cluzeau, and C. El Bacha. Simple forms of higher-order linear differ-
ential systems and their applications in computing regular solutions. Journal of Symbolic
Computation, 46(6):633–658, 2011. 9, 38, 68, 164

[19] M. A. Barkatou, C. El Bacha, G. Labahn, and E. Pflügel. On simultaneous row and column
reduction of higher-order linear differential systems. Journal of Symbolic Computation, doi:
10.1016/j.jsc.2011.12.016, 2011. 13, 138, 169

[20] M. A. Barkatou, C. El Bacha, and E. Pflügel. Simultaneously row- and column-reduced
higher-order linear differential systems. In Proceedings of the International Symposium on
Symbolic and Algebraic Computation, pages 45–52. ACM Press, 2010. 12, 126, 168

[21] M. A. Barkatou and E. Pflügel. An algorithm computing the regular formal solutions of a
system of linear differential equations. Journal of Symbolic Computation, 11:1–20, 1998.
5, 6, 7, 8, 9, 10, 11, 41, 64, 68, 69, 72, 73, 74, 75, 77, 95, 98, 160, 161, 164, 165, 167

[22] M. A. Barkatou and E. Pflügel. On the equivalence problem of linear differential systems
and its application for factoring completely reducible systems. In Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation, pages 268–275. ACM Press,
1998. 5

[23] M. A. Barkatou and E. Pflügel. The ISOLDE package. A SourceForge Open Source
project, http://isolde.sourceforge.net, 2006. 41, 64, 72

[24] M. A. Barkatou and E. Pflügel. Computing super-irreducible forms of systems of linear
differential equations via Moser-reduction: A new approach. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 1–8. ACM Press, 2007.
10, 11, 77, 95, 165, 167

[25] M. A. Barkatou and E. Pflügel. On the Moser- and super-reduction algorithms of systems
of linear differential equations and their complexity. Journal of Symbolic Computation,
44(8):1017–1036, 2009. 5, 10, 11, 77, 95, 98, 111, 157, 160, 165, 167

[26] M. A. Barkatou and F. Richard-Jung. Formal solutions of linear differential and difference
equations. Programming and Computer Software, 23(1):17–30, 1997. 5, 94

[27] B. Beckermann, H. Chen, and G. Labahn. Fraction-free row reduction of matrices of Ore
polynomials. Journal of Symbolic Computation, 41(5):513–543, 2006. 13, 86, 87, 138, 139,
140, 169

[28] B. Beckermann and G. Labahn. Recursiveness in matrix rational interpolation problems.
Journal of Computational and Applied Mathematics, 77:5–34, 1997. 138, 139

Bibliography 175

[29] R. Ben Taher and M. Rachidi. Linear matrix differential equations of higher-order and
applications. Electronic Journal of Differential Equations, 2008(95):1–12, 2008. 6, 160

[30] D. Boucher. Sur les Équations Différentielles Linéaires Paramétrées, Une Application aux
Systèmes Hamiltoniens. PhD thesis, Université de Limoges, October 2000. 7, 159

[31] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory.
Grundlehren der Mathematischen Wissenschaften 315, Springer-Verlag, Berlin, 1997. 89

[32] R. Byers, V. Mehrmann, and H. Xu. Trimmed linearizations for structured matrix poly-
nomials. Linear Algebra and its Applications, 429:2373–2400, 2008. 22

[33] G. Chen. Solutions Formelles de Systèmes d’Équations Différentielles Linéaires Ordinaires
Homogènes. PhD thesis, Université Joseph Fourrier - Grenoble I, February 1990. 94

[34] B. D. Choi, Y. C. Kim, and Y. W. Lee. The M/M/c retrial queue with geometric loss and
feedback. Computers Math. Applic., 36(6):41–52, 1998. 5, 159

[35] R. C. Churchill and J. J. Kovacic. Cyclic vectors. In Differential Algebra and Related
Topics, Proceedings of the International Workshop, pages 191–218, Rutgers University,
Newark, November 2002. River Edge, NJ, World Scientific Publishing Company. 39, 94

[36] T. Cluzeau. Algorithmique Modulaire des Équations Différentielles Linéaires. PhD thesis,
Université de Limoges, September 2004. 5, 39, 94

[37] E. Coddington and N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill
Book Company, Inc., New York, 1955. 5, 7, 36, 37, 38, 39, 40, 42, 57, 72, 162

[38] P. M. Cohn. Free Rings and their Relations. Academic Press, London & New York, 1971.
6, 86, 139, 161

[39] F. Cope. Formal solutions of irregular linear differential equations, Part II. Amer. J. Math.,
58:130–140, 1936. 39

[40] P. Davies, H. Cheng, and G. Labahn. Computing Popov form of general Ore polynomial
matrices. In Milestones in Computer Algebra, pages 149–156, 2008. 6, 137, 151, 161

[41] F. De Terán and F. M. Dopico. Sharp lower bounds for the dimension of linearizations of
matrix polynomials. Electronic Journal of Linear Algebra, 17:518–531, 2008. 22

[42] F. De Terán, F. M. Dopico, and D. S. Mackey. Linearizations of singular matrix polynomi-
als and the recovery of minimal indices. Electronic Journal of Linear Algebra, 18:371–402,
2009. 7, 10, 32, 161, 165

[43] A. Fredet. Résolution sous Forme Finie d’Équations Différentielles Linéaires et Extensions
Exponentielles. PhD thesis, École Polytechnique, November 2001. 159

[44] G. Frobenius. Über die integration der linearen differentialgleichungen mit veränder koef-
ficienten. Journal für die reine und angewandte Mathematik, 76:214–235, 1873. 7, 8, 37,
57, 159, 162, 164

[45] F. R. Gantmacher. Théorie des Matrices, I & II. Dunop, Paris, 1966. 17, 22, 32

[46] C. W. Gear. Differential-algebraic equation index transformation. SIAM J.
Sci. Stat. Comput., 9(1):39–47, 1988. 6, 125, 161

176 Bibliography

[47] C. W. Gear and L. R. Petzold. ODE methods for the solution of differential/algebraic
systems. SIAM J. Numer. Anal., 21(4):716–728, 1984. 12, 168

[48] K. O. Geddes, S. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer
Publishing, Boston, 1992. 150

[49] M. Giesbrecht and M. S. Kim. On computing the Hermite form of a matrix of differential
polynomials. In Computer Algebra and Scientific Computation (CASC) Workshop, Lecture
Notes in Computer Science 5743, pages 118–129, 2009. 6, 137, 161

[50] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New
York, 1982. 7, 8, 17, 19, 20, 21, 23, 25, 71, 161, 164

[51] G.-M. Greuel, V. Levandovskyy, and H. Schönemann. Plural. A Singular 3.0 subsys-
tem for computations with non-commutative polynomial algebras. Centre for Computer
Algebra, University of Kaiserslautern, http://www.singular.uni-kl.de, 2006. 6, 161

[52] W. A. Harris, Y. Sibuya, and L. Weinberg. A reduction algorithm for linear differential
systems. Funkcialaj Ekvacioj, 11:59–67, 1968. 13, 126, 127, 128, 129, 130, 168, 169

[53] L. Heffter. Einleitung in die Theorie der Linearen Differentialgleichungen. Teubner,
Leipzig, 1894. 7, 41, 162

[54] A. Hilali. Contribution à l’Étude des Points Singuliers des Systèmes Différentiels Linéaires.
PhD thesis, L’université scientifique et médicale de Grenoble, Avril 1982. 5, 8, 39, 40, 57,
164

[55] A. Hilali. Calcul des invariants de Malgrange et de Gérard-Levelt d’un système différentiel
linéaire en un point singulier irrégulier. Journal of Differential Equations, 69:404–421,
1987. 5, 97

[56] A. Hilali. Solutions Formelles de Systèmes Différentiels Linéaires au Voisinage d’un Point
Singulier. PhD thesis, L’université scientifique, technologique et médicale de Grenoble,
June 1987. 5, 7, 8, 39, 72, 97, 160, 164

[57] A. Hilali and A. Wazner. Un algorithme de calcul de l’invariant de Katz d’un système
différentiel linéaire. Annales de l’institut Fourier, 36(3):67–81, 1986. 5

[58] A. Hilali and A. Wazner. Formes super-irréductibles des systèmes différentiels linéaires.
Numerische Mathematik, 50(4):429–449, 1987. 10, 11, 12, 77, 95, 97, 98, 103, 111, 121,
157, 160, 165, 167, 168

[59] E. L. Ince. Ordinary Differential Equations. Dover Publications, Inc., 1926. 5, 37, 57

[60] A. Jameson. Solution of the equation AX+XB = C by inversion of an M ×M or N ×N
matrix. SIAM J. Appl. Math., 16(5):1020–1023, 1968. 40

[61] C.-P. Jeannerod and G. Villard. Straight-line computation of the polynomial matrix in-
verse. Research Report 2002-47, Laboratoire LIP, ENS Lyon, France, 2002. 53

[62] C.-P. Jeannerod and G. Villard. Asymptotically fast polynomial matrix algorithms for
multivariable systems. International Journal of Control, 79(11):1359–1367, 2006. 19, 33

[63] L. Jódar, R. Company, and E. Navarro. Laguerre matrix polynomials and systems of
second-order differential equations. Applied Numerical Mathematics, 15:53–63, 1994. 41

Bibliography 177

[64] L. Jódar and M. Legua. Solving second-order matrix differential equations with regular
singular points avoiding the increase of the problem dimension. Applied Mathematics and
Computation, 53:191–205, 1993. 6, 7, 8, 41, 57, 160, 164

[65] T. Kailath. Linear Systems. Prentice-Hall, 1980. 7, 10, 17, 32, 138, 139, 161, 165

[66] G. I. Kalogeropoulos, A. D. Karageorgos, and A. A. Pantelous. Higher-order linear matrix
descriptor differential equations of Apostol-Kolodner type. Electronic Journal of Differen-
tial Equations, 2009(25):1–13, 2009. 6, 160

[67] P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic equations
with variable coefficients. Journal of Computational and Applied Mathematics, 56:225–251,
1994. 6, 12, 125, 126, 161, 168

[68] P. Lancaster. Linearization of regular matrix polynomials. Electronic Journal of Linear
Algebra, 17:21–27, 2008. 21

[69] P. Lancaster and M. Tismenetsky. The Theory of Matrices, Second Edition: With Appli-
cations. Academic Press, London, 1985. 17, 22

[70] V. Levandovskyy and K. Schindelar. Computing diagonal form and Jacobson normal form
of a matrix using Gröbner bases. Journal of Symbolic Computation, 46(5):595–608, 2011.
6, 138, 161

[71] D. L. Littlefield and P. V. Desai. Frobenius analysis of higher order equations: Incipient
buoyant thermal convection. SIAM J. Appl. Math., 50(6):1752–1763, 1990. 5, 62, 159

[72] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of linearizations for
matrix polynomials. SIAM J. of Matrix Analysis and Appl., 28(4):971–1004, 2005. 21

[73] V. Mehrmann and C. Shi. Transformation of higher order differential-algebraic systems to
first order. Numerical Algorithms, 42:281–307, 2006. 5, 6, 137, 159, 161

[74] J. Middeke. A polynomial-time algorithm for the Jacobson form for matrices of differential
operators. Technical Report 08-13, Research Institute for Symbolic Computation (RISC)
Report Series, 2008. 6, 138, 161

[75] M. Miyake. Remarks on the formulation of the Cauchy problem for general system of
ordinary differential equations. Tôhoku Mathematical Journal, 32:79–89, 1980. 87

[76] T. Mora. Solving Polynomial Equation Systems I : The Kronecker-Duval Philosophy.
Encyclopedia of Mathematics and its applications 88, Cambridge University Press, 2003.
19

[77] J. Moser. The order of a singularity in Fuchs’ theory. Mathematische Zeitschrift, 72:397–
398, 1960. 5, 12, 39, 79, 97, 109, 121, 136, 157, 168

[78] T. Mulders and A. Storjohann. On lattice reduction for polynomial matrices. Journal of
Symbolic Computation, 35:377–401, 2003. 14, 138, 170

[79] E. Navarro, R. Company, and L. Jódar. Bessel matrix differential equations: Explicit
solutions of initial and two-point boundary value problems. Applicationes Mathematicae,
22(1):11–23, 1993. 6, 7, 41, 160

[80] E. Navarro, R. Company, and L. Jódar. Solving higher order Fuchs type differential systems
avoiding the increase of the problem dimension. International Journal of Mathematics and
Mathematics Sciences, 17(1):91–102, 1994. 6, 7, 8, 41, 57, 160, 164

178 Bibliography

[81] E. Navarro, M. V. Ferrer, and L. Jódar. A matrix method of Frobenius for solving implicit
second order differential systems. Analysis, 13:259–278, 1993. 5, 7, 8, 57, 159, 164

[82] A. Pantelous, A. Karageorgos, and G. Kalogeropoulos. Power series solutions for lin-
ear higher order rectangular differential matrix control systems. In 17th Mediterranean
Conference on Control and Automation, pages 330–335, Makedonia Palace, Thessaloniki,
Greece, 2009. 5, 137, 159

[83] E. Pflügel. An algorithm for computing exponential solutions of first order linear differ-
ential systems. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, pages 164–171. ACM Press, 1997. 5

[84] E. Pflügel. Résolution Symbolique des Systèmes Différentiels Linéaires. PhD thesis, Uni-
versité Joseph Fourrier, October 1998. 94, 95

[85] E. Pflügel. Effective formal reduction of linear differential systems. Applicable Algebra in
Engineering, Communication and Computing, 10:153–187, 2000. 5, 6, 10, 11, 94, 95, 96,
98, 160, 161, 166, 167

[86] E. G. C. Poole. Introduction to the Theory of Linear Differential Equations. Oxford
University Press, London, 1936. 7, 8, 37, 38, 49, 162

[87] M.-P. Quéré-Stuchlik. Algorithmique des Faisceaux Linéaires de Matrices, Applications à
la Théorie des Systèmes Linéaires et à la Résolution d’Équations Algébro-Différentielles.
PhD thesis, LMC-IMAG, 1996. 126

[88] M.-P. Quéré-Stuchlik and G. Villard. An algorithm for the reduction of linear DAE.
In Proceedings of the International Symposium on Symbolic and Algebraic Computations,
pages 223–231. ACM Press, 1995. 6, 12, 126, 161, 168

[89] S. Schulz. Four lectures on differential algebraic equations. Technical Report 497, The
University of Auckland, 2003. 5, 6, 125, 137, 159, 161

[90] C. Shi. Linear Differential-Algebraic Equations of Higher-Order and the Regularity or
Singularity of Matrix Polynomials. PhD thesis, von der Fakultät II - Mathematik und
Naturwissenschaften der Technischen Universität Berlin, July 2004. 6, 78, 161

[91] M. Singer. Testing reducibility of linear differential operators: A group theoretic perspec-
tive. Applicable Algebra in Engineering, Communication and Computing, 7(2):77–104,
1996. 159

[92] L. Sirovich. Techniques of Asymptotic Analysis. Springer-Verlag New York, Heidelberg,
Berlin, 1971. 8, 57, 164

[93] A. Storjohann and G. Villard. Computing the rank and a small nullspace basis of a
polynomial matrix. Research Report, LIP, ENS Lyon, France, 2005. 19

[94] E. Tournier. Solutions Formelles d’Équations Différentielles, le Logiciel de Calcul Formel:
DÉSIR, Étude Théorique et Réalisation. PhD thesis, L’université scientifique, tech-
nologique et médicale de Grenoble, April 1987. 5, 8, 57, 94, 159, 164

[95] H. L. Turritin. Convergent solutions of ordinary linear homogeneous differential equations
in the neighborhood of an irregular singular point. Acta Mathematica, 93:27–66, 1955. 93

[96] M. Van Barel and A. Bultheel. A general module theoretic framework for vector M-Padé
and matrix rational interpolation. Numerical Algorithms, 3:451–462, 1992. 33

Bibliography 179

[97] P. M. Van Dooren, P. Dewilde, and J. Vandewalle. On the determination of the Smith-
MacMillan form of a rational matrix from its Laurent expansion. IEEE Trans. Circuit
Systems, 26:180–189, 1979. 17, 26

[98] M. Van Hoeij. Factorization of differential operators with rational functions coefficients.
Journal of Symbolic Computation, 24:537–561, 1997. 159

[99] M. Van Hoeij. Formal solutions and factorization of differential operators with power series
coefficients. Journal of Symbolic Computation, 24:1–30, 1997. 159

[100] J. Von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, 2003. 1, 19

[101] W. Wasow. Asymptotic Expansions for Ordinary Differential Equations. Dover Publica-
tions Inc., New York, 1987. 5, 7, 36, 40, 93, 94

[102] J. Wilkening. An algorithm for computing Jordan chains and inverting analytic matrix
functions. Linear Algebra Appl., 427(1):6–25, 2007. 29

[103] W. Zhou and G. Labahn. Efficient order basis computation. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computations, pages 375–382. ACM Press,
2009. 33

[104] J. C. Zúniga. Algorithmes Numériques pour les Matrices Polynomiales avec Applications en
Commande. PhD thesis, Institut National des Sciences Appliquées de Toulouse, September
2005. 7, 17, 26, 27, 29, 32, 161

Résumé : Dans cette thèse, nous développons de nouvelles méthodes algébriques pour la réso-
lution d’une classe importante de systèmes d’équations différentielles linéaires d’ordre arbitraire.
De tels systèmes apparaissent dans de nombreuses disciplines scientifiques comme la chimie, la
physique, la mécanique et la théorie du contrôle.

Dans un premier temps, nous nous intéressons à l’analyse locale des systèmes d’équations dif-
férentielles linéaires ordinaires au voisinage d’une singularité. Nous développons des algorithmes
pour le calcul des solutions régulières formelles. Ces algorithmes sont directs, c’est-à-dire, ne
transforment pas le système en un autre du premier ordre et de taille plus grande. Nos approches
sont fondées sur l’utilisation des propriétés des matrices polynomiales dont le déterminant joue
le même rôle que les polynômes indiciels dans le cas scalaire. Puis, nous nous intéressons à
l’étude des formes dites k-simples d’un système différentiel linéaire explicite du premier ordre.
Ces formes donnent des informations sur les pentes entières du polygone de Newton du système
et permettent de calculer les solutions formelles sans ramification. Notre contribution se reflète
par le développement d’une méthode directe pour le calcul des formes k-simples.

Dans un second temps, nous étudions les systèmes d’équations algébro-différentielles linéaires.
De tels systèmes sont composés d’équations différentielles ordinaires couplées à des équations
purement algébriques. Nous proposons des algorithmes pour les découpler en une partie pure-
ment différentielle et une autre purement algébrique.

Une autre contribution de la thèse est l’étude de la complexité et l’implémentation en Maple
de nos divers algorithmes mis en œuvre.

Mots-clés : Équations différentielles matricielles, singularités, solutions formelles, calcul al-
gébrique, algorithmes de réduction.

Abstract: In this thesis, we develop new algebraic methods for solving an important class of
systems of linear differential equations of arbitrary order. Such systems appear in many scientific
disciplines such as chemistry, physics, mechanics and control theory.

Firstly, we are interested in the local analysis of systems of linear ordinary differential equa-
tions near a singularity. We develop algorithms for the computation of their regular formal
solutions. These algorithms are direct, i.e., do not reduce the system to another one of first-
order and larger size. Our approaches use properties of matrix polynomials whose determinant
plays the same role as indicial polynomials in the scalar case. Then, we are interested in the study
of the so-called k-simple forms of a linear differential system of first-order. These forms give in-
formation on the integer slopes of the Newton polygon of the system and allow the computation
of the formal solutions without ramification. Our contribution is reflected in the development
of a direct method for the calculation of k-simple forms.

Secondly, we focus on systems of linear differential-algebraic equations. Such systems are
composed of differential equations coupled with algebraic ones. We propose algorithms for
decoupling them into a purely differential part and a purely algebraic one.

Another contribution of the thesis is the study of the complexity and the implementation in
Maple of the algorithms developed.

Keywords: Matrix differential equations, singularities, formal solutions, computer algebra,
reduction algorithms.

	I Simple Forms and Regular Formal Solutions of Systems of Linear Differential Equations
	A Survey on Matrix Polynomials
	Regular matrix polynomials
	The Smith normal form and partial multiplicities
	Linearization
	Jordan chains and root polynomials
	Canonical sets of Jordan chains
	Efficient computation of a canonical set of Jordan chains
	Minimal bases of singular matrix polynomials

	Symbolic Methods for Computing Regular Solutions of Higher-Order Linear Differential Systems of the First Kind
	Introduction
	Local analysis of first-order linear differential systems
	Classification of singularities
	Computation of a fundamental solution matrix for systems of the first kind

	Existing methods for computing regular solutions
	Euler's matrix differential equations
	Non-homogeneous linear differential systems with constant coefficients
	Existence of polynomial solutions in t=log(x)
	Computation of the general polynomial solution in t=log(x)

	A direct method for computing regular solutions
	Description of the approach
	First version: using Jordan chains
	Second version: by packet

	Generalization of Frobenius' method
	First case
	Second case
	Summary and example

	Some comparison tests

	Simple Forms of Higher-Order Linear Differential Systems and their Applications in Computing Regular Solutions
	Introduction
	Regular solutions of simple linear differential systems
	Transformation to a first-order linear differential system: Algorithm of Barkatou-Pflügel
	Non-simple systems
	Reduction to the simple case by linear substitutions
	Necessary condition for the existence of a linear substitution
	Algorithm
	Reconstruction of the regular solutions

	A differential variant of the EG'-algorithm
	Definitions and preliminaries
	Algorithm
	Reconstruction of the regular solutions

	On k-Simple Forms of First-Order Linear Differential Systems and their Computation
	Introduction and motivation
	On k-simple linear differential systems and the super-reduction
	Definitions
	The notion of super-reduction

	Direct approach for computing k-simple forms
	Linearly dependent constant rows
	Reduction to the case of linearly dependent constant rows
	An example

	Algorithm and complexity estimation
	Preservation of the simplicity
	An example

	II Reduction Algorithms for Linear Differential-Algebraic Equations
	Reduction Algorithms for Linear Differential-Algebraic Equations of First-Order
	Introduction
	Review of Harris et al. algorithm
	Step 1: normalization
	Step 2: algebraic reduction
	Step 3: differential row-reduction
	Step 4: differential column-reduction

	A new reduction algorithm
	Row-reduction
	Column-reduction
	Decoupling differential and algebraic equations
	Application: classification of singularities.

	On Simultaneous Row and Column Reduction of Higher-Order Linear Differential Systems
	Introduction
	Row-reduction procedure
	Simultaneously row and column reduced forms
	Simultaneous row and column reduction
	First-order matrix differential operators

	A second algorithm for simultaneous row and column reduction
	Algorithms and complexity
	Reduction of higher-order linear differential systems

	Résumé de la thèse
	Bibliography

