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Résumé 

Pour faire face à  l'évolution grandissante de services de plus en plus exigeants en termes de 

débits et de  fiabilité sur les canaux de communication sans fil, des recherches récentes en 

théorie de l'information montre que des gains importants en capacité et en  fiabilité peuvent 

être obtenus en exploitant la diversité spatiale. A cette fin, cette technologie, très connue sous 

le nom de MIMO, consiste à disposer de plusieurs antennes à la fois à l’émetteur et au 

récepteur. La technologie MIMO offre un certain nombre d'avantages qui nous aident à lutter 

contre les contraintes imposées par la limitation de puissance, la rareté de la bande passante et 

les phénomènes de trajets multiples. 

Le codage temps-espace en bloc est l'une des techniques les plus utilisée en STC (Space Time 

Coding). Il est utilisé pour améliorer les performances des systèmes MIMO. Il tire au mieux 

parti de la diversité spatiale et temporelle et peut éventuellement fournir des gains de codage. 

Les codes temps-espace en bloc peuvent fournir un gain de diversité sur un système non codé 

sans sacrifier la bande passante et ainsi augmenter le taux de transmission efficace ainsi que la 

capacité potentielle du système.  

Pour combattre certains inconvénients des Space-Time Block Codes (STBC’s) orthogonaux 

classiques, en particulier la perte de rendement dès que le nombre d’antennes d’émission est 

supérieur à deux, des STBC’s algébriques ont été construits à partir d’architectures en 

couches qui offrent des rendements de transmission optimaux et une diversité maximale, 

indépendamment de la constellation et du nombre d’antennes d’émission et de réception.  

Toutefois dans certaines applications, il peut ne pas être réalisable ou rentable d'équiper les 

appareils de poche de petite taille et des capteurs de réseau avec du matériel supplémentaire 

RF. Pour faire face à ce problème, la diversité coopérative par le biais de la technique de 

relais peut être utilisée en considérant les relais à proximité des nœuds comme un réseau 

virtuel d’antennes. Grâce à la présence de ces relais, les nœuds dans un réseau distribué 

peuvent coopérer ensemble pour la transmission et le traitement de l'information en créant des 

liens MIMO indépendants. 

A cause de la différence entre les différentes distances entre les noeuds de relais et les noeuds 

de réception dans un système de communications coopératives distribuées, tous les codes dits 

à taux plein perdent leur fiabilité (à savoir le gain de diversité) en raison de la nature 

asynchrone de la transmission. Pour éviter ce décalage de synchronisation certains auteurs ont 

proposé l'utilisation de bandes de garde entre les transmissions successives. Cette technique 
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peut être applicable pour les codes de courte longueur, mais pour de longs mots de code, 

l'utilisation de bandes de garde réduit considérablement le taux de codage.  

En travaillant sur cette contrainte de délai pour les codes TAST, Damen et Hammons ont 

introduit une nouvelle classe de codes TAST qui sont robustes en terme de retards et donc 

adaptés aux réseaux coopératifs asynchrones. Ces codes préservent leur propriété de rang 

plein pour des retards arbitraires en réception sur les différentes lignes de la matrice de 

codage.  

Bien que les codes distribués TAST mis en place par Damen et Hammons peuvent atteindre le 

maximum de diversité pour un profil de délai arbitraire, leur longueur temporelle n’est pas 

optimisée et peut s’avérer prohibitive. Pour aller plus loin dans le travail de Damen et 

Hammons, notre travail principal de cette thèse a consisté à construire des codes distribués 

TAST qui pourraient absorber des retards arbitraires et offrir de meilleurs taux de codage avec 

une longueur minimale. Nos codes proposés sont simples à construire, tolérants en terme de 

retard, et possèdent une longueur minimale au regard de la taille de la constellation et du 

nombre d'antennes d’émission et de réception.  

Nous présentons différentes techniques pour la construction de codes TAST tolérants en 

retard. Les analyses mathématiques suivies par des simulations réalisées confirment que nos 

codes à longueur minimale dépassent les performances des codes existants dans la littérature 

sans pour autant sacrifier la complexité de décodage.  
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Abstract 

To meet the challenges of rapid growing demands for high data rate and reliability over 

wireless communication channels, recent research in information theory proves that large 

gains in capacity and reliability can be achieved by exploiting the spatial diversity. For this 

purpose the appealing technology is to have multiple antennas both at transmitter and 

receiver, popularly known as MIMO.  The MIMO technology offers a number of benefits that 

help us to combat against the constraints imposed by power limitation, scarce frequency 

bandwidth and multi-path fading.  

Space-time block coding, one of the STC techniques, is used to improve the performance of 

MIMO systems. It takes advantages of the spatial and temporal diversity as well as coding 

gain. STBCs can provide diversity gain over an uncoded system without sacrificing the 

bandwidth and increase the effective transmission rate as well as the potential system 

capacity.  

To overcome certain draw backs of conventional orthogonal STBCs, algebraic STBCs were 

constructed from layering/threaded architecture which offer full rate and maximum diversity 

irrespective of signalling constellation and number of transmit and receive antennas. 

 However in certain applications, it may not be feasible or cost effective to equip the small 

pocket size handsets and censor networks with the additional RF hardware. To deal with this 

problem the cooperative diversity delivered by relaying technology may be benefited by 

considering the nearby relay nodes as virtual antennas array. By the virtue of this idea, the 

nodes in a distributed network may cooperate together for transmission and processing of 

information by generating independent MIMO like channel links between source and 

destination via the relay channels. 

Since the distances between different relay nodes and the receiving nodes in a distributed 

cooperative communication system may be different, therefore all well-known so-called full 

rate and fully diverse codes lose their reliability (viz. diversity and coding gain) due to the 

asynchronous nature of transmission. To avoid this destructive effect some authors have 

proposed the use of guard bands between successive transmissions. This technique may be 

applicable for short length codes, but for lengthy codewords, the use of guard bands 

drastically reduces the code rate. 
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Working on delay constraint of TAST codes, Damen and Hammons introduced a new class of 

TAST codes which are delay resistant and hence suitable for unsynchronized cooperative 

network.  These codes preserve their rank under arbitrary delays at the reception of different 

rows of the codeword matrices.  

Although the distributed TAST codes introduced by Damen and Hammons can achieve 

maximum diversity under arbitrary delay profile but their delay time is not gnarly.  Extending 

the work of Damen and Hammons, our principal work in this thesis is to build distributed 

TAST codes which could absorb arbitrary delays and offer better rates. Our proposed codes 

are simple in construction, delay tolerant under arbitrary delays, better in rates, feasible in 

term of constellation size, number of receive/transmit antennas, and decoding complexity. 

We introduce different techniques for constructing delay tolerant TAST codes. Mathematical 

analyses followed by computer simulations confirm that our codes with minimum code 

lengths outperform the existing codes in the literature without sacrificing decoding 

complexity and other nice characteristics.  
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General introduction 

The use of multiple-antennas at the transmitter and/or at the receiver in wireless 

communication systems has opened a new dimension in reliable communication by improving 

the system performances substantially. The idea behind MIMO is that the transmit antennas at 

one end and the receive antennas at the other end are connected and combined in such a way 

that the quality (the bit error rate, or the data rate) for each user is improved. The core idea in 

MIMO transmission is space-time signal processing in which signal processing in time is 

complemented by signal processing in the spatial dimension by using multiple, spatially 

distributed antennas at both link ends.  

Cooperative diversity [19] is benefited to compensate the use of multiple antennas at certain 

small devices. Another essential problem of the wireless channel is fading, which occurs as 

the signal follows multiple paths between the transmit and the receive antennas. Fading can be 

mitigated by diversity, which means that the information is transmitted not only once but 

several times, hoping that at least one of the replicas will not undergo severe fading. Diversity 

makes use of an important property of wireless MIMO channels: different signal paths can be 

often modelled as a number of separate, independent fading channels. These channels can be 

distinct in frequency domain or in time domain. Several transmission schemes have been 

proposed that utilize the MIMO channel in different ways, e.g. spatial multiplexing, space-

time coding or beamforming.  

Space time coding [15] has been found a promising technique where the numbers of the 

transmitted code symbols per time slot are equal to the number of transmit antennas. These 

code symbols are generated by the space time encoder in such a way that diversity gain, 

coding gain, as well as high spectral efficiency are achieved. 

If we put a view over the past history of space time coding system, this coding system has 

confronted different constraints during different times.  For example after the introduction of 

Alamouti code [34] in 1998, the main problem was the non-existence of full rate codes for 

more than two transmit antennas scheme. Quasi-Orthogonal Space Time Block Codes 

(QOSTBCs) [42] may achieve full rate for more than two transmit antennas schemes but they 

lose their diversity. Space time trellis codes [15], [49] were invented as a remedial work to 

overcome this problem but their high decoding complexity do not let them to be propitious 

codes. Linear Dispersion Space Time Block Codes (LDSTBCs) [46] are easy to encode and 
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decode but they do not respect the basic condition of orthogonality and are not feasible with 

respect to number of antennas.  

The discovery of TAST codes [63] was considered a great break through to be free from these 

constraints, but soon it was realized that all the powerful space time codes lose their 

credibility (i.e. diversity and coding gain) when used over asynchronous networks. This point 

is thoroughly explained in [69]. In fact in a delay constrained cooperative system the data 

from different relays reach the destination after different delays. It is shown in [69] that the 

received delayed distributed space-time block codes lose diversity for all well known codes. 

In [66] the authors study the effects of delay constraints over space-time trellis codes.  

In [69], delay tolerant distributed space-time block codes based on threaded algebraic space-

time (TAST) codes [63] are designed for unsynchronized cooperative network. The 

distributed TAST codes of [69] preserve the rank of the space-time codewords under arbitrary 

delays at the reception of different rows of the codeword matrices. 

The principal work of this dissertation focuses the issue of delay constraints in asynchronous 

cooperative networks. We propose different technique for constructing delay tolerant TAST 

codes which have the properties to sustain arbitrary delays. Our proposed codes retain to be 

fully diverse even under arbitrary delay profiles. The mathematical analyses followed by 

MATLAB simulations confirm that our proposed codes obtain better performances as 

compare to the codes introduced in [69]. We have also proposed a technique of block layering 

in TAST codes, in which a series of layers are embedded over a single Diophantine number, 

and as a result we get a better coding gain by lessening the number of layers. Working on 

space time coding we have introduced a technique for improving the spectral efficiency of 

STBC for four transmit antennas scheme. Along with reliability, confidentiality is also a main 

problem in communication systems. Encrypting the pseudo-noise sequences of CDMA arise 

serious problem of synchronization. To deal with this issue, we have proposed a relay channel 

where information is sent in different frequency bands. 

This thesis consists of five chapters and three appendices and is organized as follows:   

We start with the introduction and performance analysis of MIMO system in chapter 1. The 

fundamental limits on the capacity of SISO, SIMO, MISO and MIMO were derived and 

simulated.  

Broadcast nature of wireless communication system provides a potential resource for creation 

of third part’s cooperation for transmission of information between source and destination. 

Chapter 2 thoroughly explains this mechanism in cooperative communication system. 

Amplify and forward, and decode and forward strategies are discussed in detail both over 
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single and multiple-hops cooperative networks. At the end of this chapter half duplex and 

frequency division relay networks are also discussed briefly.  

Chapter 3 deals with space-time coding techniques and their performance in slow and fast 

fading MIMO channels. It provides a systematic discussion of different types of space time 

codes. Space-time block codes (STBCs) are particularly discussed at large extent. Alamouti 

code [34] which is considered as a milestone in the evolution of ST coding is also discussed 

as an example of STB codes. OSTBCs, QOSTBCs,[15] STTCs,[49] STTTCs, SOTTCs [55], 

LDSTBCs [46] and some more types of space time codes are presented and their performance 

is evaluated by simulations. A technique for improving the spectral efficiency of STBCs is 

also discussed in this chapter. 

Chapter 4 contributes as principal work in this thesis report. This chapter starts with the 

introduction of DAST [62] and TAST codes [63]. After achieving the maximum limit in code 

diversity and rate, delay constraint in asynchronous communication was another emerging 

problem to suspect the credibility of space time codes. In this chapter we propose different 

techniques and remedies to deal with this constraint. 

The last chapter briefly discusses the application of sphere decoder in multi-antennas 

scenarios.  

The detail derivation for performance analysis of space time codes over slow and fast fading 

channels are discussed in appendices A and B, respectively, and appendix C describes the 

trace criteria for construction of space time codes. 
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1.1  Introduction 

The use of multiple antennas at the transmitter and receiver in wireless communication 

systems, known as MIMO (multiple-input multiple-output) technology, has rapidly gained a 

lot of popularity since last decade due to its powerful performance enhancing capabilities [1]-

[3]. Communication in wireless channels is impaired predominantly by multi-path fading. 

Multi-path is the arrival of the transmitted signal at an intended receiver through different 

angles and/or different time delays and/or different frequency (i.e. Doppler) shifts due to the 

scattering of electromagnetic waves in the environment. Consequently, the received signals 

power fluctuates in space (due to angle spread) and/or frequency (due to delay spread) and/or 

time (due to Doppler spread) through the random superposition of the impinging multi-path 

components. This random fluctuation in signal level, known as fading, can severely affect the 

quality and reliability of wireless communication. Additionally, the constraints posed by 

limited power and scarce frequency bandwidth make the task of designing high data rate, high 

reliability wireless communication systems extremely challenging. 

MIMO technology is considered a breakthrough in wireless communication system design. 

The technology offers a number of benefits that help to meet the challenges imposed by both, 

the impairments in the wireless channel as well as resource constraints. In addition to the time 

and frequency dimensions that are exploited in conventional SISO (single-input single-output) 

wireless systems, the leverages of MIMO are realized by exploiting the spatial dimension 

(provided by the multiple antennas at the transmitter and the receiver).  

Figure 1.1 shows the performance of a MIMO system. In this figure the data rate versus the 

received signal-to-noise ratio (SNR) for an NR × NT (i.e. NR receive and NT transmit antennas) 

fading link with NR = 1, 2, 4 and NT  = 1 are analysed. The channel response is assumed to be 

constant for a given bandwidth of 100 KHz. Assuming a target receive SNR of 25 dB, a 

conventional SISO (i.e. NR = NT = 1) system can deliver a data rate of 0.7 Mbps. With NR = 2 

and 4 we can achieve data rates of 1.4 and 2.8 Mbps respectively. This increase in data rate is 

achieved for no additional power or bandwidth expenditure compared to a SISO system. 

Equivalently a SISO system can achieve the data rate of 2.8 Mbps with a receive SNR of 25 

dB if the bandwidth is increased from 100 KHz to 400 KHz, or alternatively, with the 
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bandwidth of 100 KHz if the receive SNR is increased to 85 dB. The result presented in this 

example is based on optimal transceiver design. 

 

Figure 1.1  Average data rate versus SNR for different antenna configurations. 

1.2  Benefits of MIMO technology 

The benefits of MIMO technology that help us to achieve such significant performance gains 

are array gain, spatial diversity gain, spatial multiplexing gain and interference reduction. 

1.2.1 Array gain 

Array gain is the increase in received SNR that results from the coherent combining effect of 

the wireless signals at the receiver. The coherent combining may be realized through spatial 

processing at the receive antenna array and/or spatial pre-processing at the transmit antenna 

array. Array gain improves resistance to noise, thereby improving the coverage 
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1.2.2  Spatial diversity gain 

As mentioned above, the signal level at the receiver in a wireless system fluctuates or fades. 

Spatial diversity gain mitigates fading and is realized by providing the receiver with multiple 

(ideally independent) copies of the transmitted signal in space, frequency or time. With an 

increasing number of independent copies (the number of copies is often referred to as the 

diversity order), the probability that at least one of the copies is not experiencing a deep fade 

increases, thereby improving the quality and reliability of reception. A MIMO channel with 

NT transmit antennas and NR receive antennas potentially offers NTNR independently fading 

links, and hence a spatial diversity order of NTNR. 

1.2.3  Spatial multiplexing gain 

MIMO systems offer a linear increase in data rate through spatial multiplexing [1]-[3], i.e., 

transmitting multiple, independent data streams within the bandwidth of operation. Under 

suitable channel conditions, such as rich scattering in the environment, the receiver can 

separate the data streams. Furthermore, each data stream experiences at least the same channel 

quality that would be experienced by a single-input single-output system, effectively 

enhancing the capacity by a multiplicative factor equal to the number of streams. In general, 

the number of data streams that can be reliably supported by a MIMO channel equals the 

minimum of the number of transmit and receive antennas, i.e. min{NT,NR}. The spatial 

multiplexing gain increases the capacity of a wireless network. 

1.2.4  Interference reduction and avoidance 

Interference in wireless networks results from multiple users sharing time and frequency 

resources. Interference may be mitigated in MIMO systems by exploiting the spatial 

dimension to increase the separation between users. For instance, in the presence of 

interference, array gain increases the tolerance to noise as well as the interference power, 

hence improving the signal-to-noise-plus-interference ratio (SINR). Additionally, the spatial 

dimension may be leveraged for the purposes of interference avoidance, i.e., directing signal 

energy towards the intended user and minimizing interference to other users. Interference 

reduction and avoidance improve the coverage and range of a wireless network. 
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In general, it may not be possible to exploit simultaneously all the benefits described above 

due to conflicting demands on the spatial degrees of freedom. However, using some 

combination of the benefits across a wireless network will result in improved capacity, 

coverage and reliability. 

1.3   MIMO channel and signal models  

We consider a communication system, where signals are transmitted from NT transmitters 

simultaneously. For example, in a wireless communication system, at each time instant t, 

signals i

tx    i = 1, 2, . . . , NT are transmitted simultaneously from NT transmit antennas. The 

signals are the inputs of a MIMO channel with NT outputs. Each transmitted signal goes 

through the wireless channel to arrive at each of the NR receivers. In a wireless 

communication system with NR receiver antennas, each output of the channel is a linear 

superposition of the faded versions of the inputs perturbed by noise. Each pair of transmit and 

receive antennas provides a signal path from the transmitter to the receiver. The coefficient 

,j ih is the path gain from transmit antenna i to receive antenna j. Figure 1.2 depicts a baseband 

discrete-time model for a flat fading MIMO channel. 

 

 

Figure 1.2  MIMO channel model 
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Based on this model, the signal j

tr , which is received at time t at antenna j, is given by 

 

                   ,

1

TN
j i j

t j i t t

i

r h x n
=

= +∑  (1.1) 

 

where j

tn  is the noise sample of the receive antenna j at time t. Based on (1.1), a replica of the 

transmitted signal from each transmit antenna is added to the signal of each receive antenna. 

Although the faded versions of different signals are mixed at each receive antenna, the 

existence of the NR copies of the transmitted signals at the receiver creates an opportunity to 

provide diversity gain 

An important factor in the behaviour of the channel is the correlation between different path 

gains at different time slots. There are two general assumptions that correspond to two 

practical scenarios. First, we assume a quasi-static channel, where the path gains are constant 

over a frame of length T ′  and change from frame to frame, and as the second case, we 

consider a correlation between the fades in adjacent time samples. One popular example of 

such a second-order model is the Jakes model [4]. 

The value of T ′ dictates the slow or fast nature of the fading. If a block of data is transmitted 

over a time frame T that is smaller thanT ′ , the fading is slow. In this case, the fades do not 

change during the transmission of one block of data and the values of path gains in (1.1) are 

constant for every frame. On the other hand, in a fast fading model, the path gains may 

change during the transmission of one frame of data, T >T ′ . To form a more compact input-

output relationship, we collect the signals that are transmitted from NT transmit antennas 

during T time slots in a  TT N×  matrix  x, as follows: 

 

                   
,2

1,1 2,1 ,1

1,2 2,2

1, 2, ,

T

T T T

T

N N T N

x x x

x x x

x x x

… 
 … =  
 

…  

⋮ ⋮ ⋱ ⋮
x  (1.2) 

 

Similarly, we construct a RT N×  received matrix r that includes all received signals during T 

time slots: 
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1,1 2,1 ,1

1,2 2,2 ,2

1, 2, ,R R R

T

T

N N T N

r r r

r r r

r r r

… 
 … =
 
 …  

⋮ ⋮ ⋱ ⋮
r  (1.3) 

 

Then, assumingT T ′< , gathering the path gains in an R TN N× channel matrix H 

 

                   

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

T

T

R R R T

N

N

N N N N

h h h

h h h

h h h

… 
 … =  
 

…  

⋮ ⋮ ⋱ ⋮
H  (1.4) 

 

results in the following matrix form. 

 

                   = +r H.x N  (1.5) 

 

where N is the RT N×  noise matrix defined by 

 

                   

1,1 2,1 ,1

1,2 2,2 ,2

1, 2, ,R R R

T

T

N N T N

n n n

n n n

n n n

… 
 … =
 
 …  

⋮ ⋮ ⋱ ⋮
N  (1.6) 

 

Actually (1.4) is mathematical representation of the MIMO system depicted in figure 1.2, 

where the coefficient ,j ih denotes the SISO channel fading between the j-th (j = 1,2, . . . ,NR) 

receive antenna and the i-th (i = 1, 2, . . . , NT) transmit antenna. The column vector 

1, 2, ,[ , ,.... ]
R

T

i i i N ih h h=h is the single-input multiple-output (SIMO) channel produced by the i-th 

transmit antenna through the NR receive antennas. The row vector ,1 ,2 ,[ , ,.... ]
T

T

j j j j Nh h h=h is the 

multiple-input single-output (MISO) channel that represents the different NT paths arriving to 

the j-th receive antenna.  



Chapter 1                                                                                                    An overview of MIMO wireless systems  

Université de Limoges/Xlim 13 

The rank of the MIMO channel corresponds to the number of independent signals that one 

may safely transmit through the MIMO system. It is determined by the algebraic rank of the 

R TN N× channel matrix. A MIMO channel is said rank-deficient if R TN N> otherwise full 

rank.  

1.3.1 Independent identically distributed Rayleigh 

fading channel model 

The degree of correlation between the individual NTNR channel gains comprising the MIMO 

channel is a complicated function of the scattering in the environment and antenna spacing at 

the transmitter and the receiver. Consider a case where all elements at transmitter and receiver 

are collocated. In such a condition, all the elements of H will be fully correlated and identical, 

and the spatial diversity order of the channel will be one. Decorrelation between the channel 

elements will increase with antenna spacing. The typical antenna spacing required for 

decorrelation is approximately half of the wavelength. Under ideal conditions, when the 

channel elements are perfectly decorrelated, we have , . . .  (0,1) j ih i i d∼ CN . In other words, 

the real and imaginary parts of the path gains at each time slot are i.i.d. Gaussian random 

variables. Therefore, the distribution of the envelope of the path gains ,j ih , is Rayleigh, that 

is why the channel is called a Rayleigh fading channel. 

1.3.2 Time-selective fading and frequency-selective 

fading channel model 

As stated above, the fading is a time varying effect. This variation is characterized by the 

channel coherence time Tc , that serves as a measure of how fast the channel changes in time. 

In fact, the coherence time corresponds to the longest interval during which the channel is 

assumed to be constant. Let the time needed to transmit a symbol and a frame is denote by Ts 

and Tf  respectively. Using these parameters, different channel models could be distinguished. 

Ergodic: When Tc = Ts , the channel is said to be ergodic. In this case, each transmitted 

symbol is associated with a new realization of the channel. 
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Quasi-static: If the channel remains constant during one frame, i.e. Tc = Tf , the channel is 

called quasi-static. 

Block fading: When fading does not change during N frame transmissions, the channel is 

said to be block fading. In this case, Tc = NTf . Note that a quasi static channel is also a block 

fading channel with N = 1. 

In the wireless channel, the multi-path propagation leads to a time delay spread to receive the 

different paths. This spread is characterized in the frequency domain by the coherence 

bandwidth, Bc . Indeed, Bc is a measure of the range of frequencies over which the channel has 

approximately equal gain. 

When the signal bandwidth is comparable or less than Bc , all the frequency components of the 

transmitted signal undergo the same attenuation, the channel is said to be flat or non-

frequency selective fading. 

When the radio channel has different gains within the signal bandwidth, a frequency 

selective fading is experienced. 

1.3.3  Ricean fading channel model 

In the presence of a line of sight (LOS) component between the transmitter and the receiver, 

the MIMO channel may be modelled as the sum of a fixed component and a fading 

component [5], [6]. 

 

                   
1

1 1
Rice LOS Rayleigh

K

K K
′= +

+ +
H H H  (1.7) 

 

where [ ]
1

K
E

K
=

+
H H  is line of sight component of the channel and  

1

1 K
′

+
H  is the 

fading component, assuming uncorrelated fading. In (1.7) K ≥ 0 is the Ricean K-factor of the 

channel and is defined as the ratio of the power in the LOS component of the channel to the 

power in the fading component. When K = 0 we have pure Rayleigh fading. At the other 

extreme K = ∞ corresponds to a non-fading channel.  
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1.3.4  Discrete-time signal model 

Like SISO channels, the behaviour of the baseband system depends on the ratio of the signal 

power and the noise power. Therefore, multiplying the transmission power and noise by the 

same factor does not affect the characteristics of the system. A fair comparison between two 

systems consist of the same transmission power, despite the number of transmit antennas, and 

the same average received signal to noise ratio (SNR). Let us denote the average power of the 

transmitted symbols, i

tx , by Es  and assume that the variance of the zero-mean complex 

Gaussian noise is 0 / 2N  per dimension, that is , , 0[ { }] [ { }] / 2j i j iVar n Var n Nℜ = ℑ = . Then, the 

average receive SNR is 0/T sN E Nγ = . Since the performance is only a function of SNR, only 

the ratio of 0/sE N is important and not the separate values of Es and N0. Therefore, a 

normalization that removes one of these two values, i.e. Es or N0 is more compact and useful. 

One approach to achieve such normalization is to normalize the average transmission power 

to one. For example, the average power of the transmitted symbols is normalized to Es = 1/NT. 

In this case, if the variance of the noise samples is 1/(2 )γ  per complex dimension, i.e. 

0 1/N γ= , the average power of the received signal at each receive antenna is 1 and the 

received SNR is γ. 

Another approach for normalizing Es and N0 is to use a constellation with an average power of 

one for transmission symbols and unit-power noise samples. In this case, a normalization 

factor is considered in the input-output relationship of the MIMO channel as  

 

                   
TN

γ= +r H.x N  (1.8) 

 

where again γ is the received SNR. Note that (1.5) and (1.8) describe the same system despite 

the difference in their forms. The main difference between the two equations is the method of 

normalization.  
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1.4   MIMO channel diversity 

As mentioned above, the use of multiple antennas, sufficiently spaced to ensure independent 

fading between antennas, produces spatial diversity. This diversity is characterized by the 

number of independently fading branches, known as diversity order. Diversity order can be 

observed as the slope of the BER versus SNR curve.  

Two types of diversity are potentially provided by MIMO channels: 

Receive diversity: The use of multiple antennas at the receiver produces a receive-spatial 

diversity. The diversity order is equal to the number of receive antennas. 

Transmit diversity: It consists in sending the same information over different transmit 

antennas. The diversity order in this case is equal to the number of transmit antennas. Thus 

the diversity order in MIMO channels is equal to the product of the numbers of transmit and 

receive antennas.  

1.5   MIMO capacity 

To determine the capacity of a MIMO channel, we start with the classical information theory 

introduced by Shannon [7]. 

Let the random variables x and y be respectively the input and the output of a memoryless 

wireless channel. The observation of the channel output y gives us information about the 

variable x. 

The mutual information I(x ; y) is defined by the information theory to measure the amount of 

information that y contains about x. The maximization of the mutual information over all 

possible input distributions p(x) determines the maximum data rate that a channel can support 

without error, also known as channel capacity. The channel capacity is then measured in bits 

per channel use. Commonly, it is represented within a unit bandwidth of the channel and it is 

measured in bits/s/Hz. 

For a discrete memoryless channel, the channel capacity is defined as [8].  

 

                   
( )

max ( ; )
p

C I=
x

x y  (1.9) 
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With a power constraint of PT   at transmitter, (1.9) is written as 

 

                   
†( ), (

max ( ; )
Tp E P

C I
≤

=
x x x)

x y  (1.10) 

 

In literature, one can find enough works on MIMO channel capacity derivation in different 

scenarios.  In following sub-sections we find out MIMO capacity for different channel time 

variations (ergodic and non-ergodic) cases. 

1.5.1  Ergodic capacity 

To show the gain offered by the use of multiple antennas at both sides in terms of capacity, 

we begin with fundamental results derived for single antenna (SISO) or multiple antennas at 

one side (SIMO or MISO) wireless systems. 

In the following, we assume that the channel is ergodic and flat fading. Perfect Channel State 

Information (CSI) is available only at the receiver and the transmitter is constrained in its total 

power to TP  , i.e. †( ) TE P≤x x . The ergodic capacity is defined as the expectation of the 

instantaneous channel capacity (1.10) over the distribution of the elements of the channel 

matrix H  

 

                   { }†( ), ( )
max ( ; )

T

erg

p E P
C E I

≤
=

H
x x x

x y  (1.11) 

 

1.5.1.1 The SISO case 

 

For a memoryless SISO system (NT = NR = 1), the channel matrix H is reduced to a scalar 

complex variable h. The ergodic capacity is given by 

 

                   
2

( ), ( )

max ( ; )
T

erg

SISO h
p x E x P

C E I x y
≤

 =  
 

  (1.12) 

 

Assuming independent Rayleigh fading channel, the capacity (1.12) can be written as [5] 
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                   { }2

2log (1 )erg

SISO hC E hγ= +  (1.13) 

 

where  γ  denotes the average SNR per receive antenna. 

If we assume |h|
2
 = 1, the instantaneous capacity becomes 2log (1 )SISOC γ= + . It increases 

gradually with respect to the SNR, according to the logarithm of (1 )γ+ .  

When the channel gain amplitude |h| is Rayleigh distributed, |h|
2
 follows a chi-squared 

distribution with two degrees of freedom [9] which leads to an exponential distribution. 

Hence (1.13) can then be written as [5] 

 

                   { }2

2 2log (1 )erg

SISO hC E γ= + x  (1.14) 

 

where 2

2x  is a chi-square distributed random variable with two degrees of freedom. 

 

1.5.1.2 The SIMO case 

 

Consider a SIMO channel 1,1 2,1 ,1[ , ,...., ]
RNh h h=h  with a single transmit and NR receive 

antennas. The capacity under ergodicity assumption given by [5], [10], [11] is  

 

                   
2

2 ,1

1

log 1
RN

erg

SIMO j

j

C E hγ
=

   = +  
   

∑h
 (1.15) 

 

Like that of SISO case, if we assume that h satisfies ,1 1jh = , j = 1,2,….,NR, then the 

instantaneous capacity becomes 2log (1 )SIMO RC Nγ= + . Thus, the addition of receive antennas 

only results in a logarithmic increase of the capacity with the SNR. 

With optimal combining at the receiver, the capacity of a Rayleigh fading SIMO channel can 

be expressed as [10] 

 

                   { }2

2 2log (1 )
R

erg

SIMO NC E γ= +
h

x  (1.16) 
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where 
RN

2
x is a chi-squared distributed random variable with 2NR degrees of freedom. 

 

1.5.1.3 The MISO case 

 

We consider a MISO channel 1,1 1,2 1,[ , ,...., ]
TNh h h=h with  NT transmit antennas and a single 

receive antenna. The capacity for such a set up is given by [5], [10], [11] 

 

                   
2

2 1,

1

log 1
TN

erg

MISO i

iT

C E h
N

γ
=

   = +  
   

∑h
 (1.17) 

 

If 1, 1ih = , i = 1, ….,NT, then the instantaneous capacity is equal to 2log (1 )MISOC γ= + . There 

is no gain in capacity over a SISO channel. By comparing equations (1.15) and (1.17) and 

assuming the same total number of antennas, it is clear that CMISO is lower than CSIMO when 

CSI is not available at the transmitter. 

 

1.5.1.4 The MIMO case 

 

Let †( )E=Q x x be the covariance of the input signal. Then, the capacity is defined as the 

maximum of the mutual information between the input and output given a power constraint 

PT on the total transmission power of the input, i.e. ( ) TTr P≤Q , where ( )Tr Q is the trace of a 

matrix Q , then the average capacity of a random ergodic MIMO channel is given by [12]  

 

                   { }
( ); (

max ( ; )
T

erg

MIMO
p tr P

C E I
≤

=
H

x Q)
x y  (1.18) 

 

When the mutual information is maximized for a zero mean circularly symmetric complex 

Gaussian distributed input, the capacity is then given by [12]  
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                   †

2

1
log det

2R

erg

MIMO NC E
No

   = +   
   

H I H QH  (1.19) 

 

When no CSI is available at the transmitter, the available power PT can be uniformly 

distributed among the transmit antennas. For uncorrelated channel, the transmit covariance 

matrix is equal to 
T

T
N

T

P

N
=Q I , and the corresponding channel capacity becomes [5] 

 

                   †

2

0

log det
2R

erg T
MIMO N

T

P
C E

N N

    = +        
H

I H H  (1.20) 

 

Let  
02

TP

N
γ = be the average SNR per receive antenna. For optimal combining between NR 

antennas at the receiver, the capacity can be written as [10], [12] 

 

                   2log 1
R

erg

MIMO T N

T

C E N
N

γ   =   
   

H +
2
x  (1.21) 

 

By the law of large numbers, the term 
†

RN

TN
→H H

I  as NT gets larger and NR remains fixed 

[13]- [15]. Thus, as a result, the ergodic capacity becomes: 

 

                   ( )2log 1erg

MIMO RC N γ= +  (1.22) 

 

Hence, the capacity reaches an asymptotic value for a fixed NR. Then it will be 

unadvantageous to increase indefinitely the number of transmit antennas. 

The two figures given below are the simulation results for i.i.d. Rayleigh fading ergodic 

channels for different scenarios of (NT, NR) and different power allocation. The input variable 

x is supposed to be Gaussian distributed. When uniform power allocation is considered (1.20), 

figure 1.3 shows the channel capacity as a function of the average SNR per receive antenna, 
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γ . Clearly, the use of multiple antennas increases the achievable rates on fading channels. At 

moderate to high SNRs, the capacity of an NT = NR = 4 MIMO channel is about twice the 

capacity of a 2 2×  system and 4 times the capacity of a 1 1×  system. The slope of the capacity 

versus SNR is proportional to min(NT,NR). As shown above, the capacity of SIMO system is 

higher than MISO system for both cases 5T RN N+ =  and 3T RN N+ = . The capacity gain 

achieved by the following MISO systems: 2 1×  and 4 1× , over SISO system (1 1)×  is not 

significant.  

 

Figure 1.3  MIMO capacity on an i.i.d. Rayleigh fading ergodic channel 

(Gaussian input and uniform power allocation). 

 

Figure 1.4 compares the capacity observed with scheme of two power allocations, i.e. uniform 

power allocation and optimal power allocation based on water-filling algorithm. Both power 

allocations maintain the capacity proportional to the channel rank which is equal to 

min(NT,NR). 

However, an SNR gain is noticed while applying the optimal strategy. This gain is more 

significant at low SNR, especially for 4 4×  system. 
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Figure 1.4,  MIMO capacity on an i.i.d. Rayleigh fading ergodic channel, under  

uniform power allocation (unif),and optimal power allocation (wf).schemes  

 

Further analysis of the MIMO channel capacity can be conducted by applying the singular 

value decomposition (SVD) to the channel matrix H, interested reader is therein referred to 

[2], [12], [16]. 

1.5.2  Outage capacity 

In previous section, we discussed the capacity of MIMO channels when the channel is 

ergodic. But unfortunately for slow-varying or block fading channel, the ergodicity property 

is not respected and the classical capacity definition is no longer applicable. 

Actually in slow fading (quasi-static) channels, the coherence time Tc is much larger than the 

codeword duration T. The channel thereby remains constant over the duration of a codeword 

but changes independently from block to block. In such a scenario, the useful parameter for 

capacity measurement is the outage capacity introduced in [8], [10], [12]. 

 

                   P Pr[ ]out I R= <  (1.23) 
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where R is the rate at which reliable communication is possible and I is mutual information, or 

more precisely we can write 

 

                   P Pr[ ]out outC C= <  (1.24) 

 

Another way of defining the outage probability is to consider the event that the received SNR 

is below a certain threshold. 

 

                   Pr 2 1 Pr[ ]R

out SNR ThresholdP γ γ γ = < − = <   (1.25) 

 

The importance of the outage probability is that if one wants to transmit outC  bits/channel use, 

the capacity of the channel is less than outC with probability outP . In other words, such a 

transmission is impossible with probability outP . For a stationary channel, if we transmit a 

large number of frames with a rate of outC bits/channel use, the number of failures is outP  

times the total number of frames. On the other hand, since with a probability of 1 outP− , the 

capacity random variable is larger than the outage capacity, the value of the outage capacity 

outC guarantees that it is possible to transmit outC bits/channel use with a probability of 1 outP− . 

In what follows, we briefly discuss the outage capacity for different channel setup.  

1.5.2.1 The SISO case 

We consider the case when we have only one transmit and one receive antenna, 1T RN N= = . 

The received signal can be written as 

 

                   r hx n= +  (1.26) 

Let h be a zero mean Gaussian random variable with variance 1. Referring to (1.14), with the 

assumption that the fading is Rayleigh, the outage probability can be written as [17] 

 

                   ( ){ }2( ) log 1out

SISOP R P Rγ= + <x
2

2
 (1.27) 
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where x 2
2

 is a chi-square random variable with two degrees of freedom. To achieve one extra 

bit of capacity, one needs to increase the SNR by 3dB. 

By simple algebraic manipulation, (1.27) yields 

 

                   
2 1

( )
R

out

SISOP R P
γ

 −= < 
 
x
2

2
 (1.28) 

We get 

 

                   
2 1

( ) 1 exp
R

out

SISOP R
γ

 −= −  
 

 (1.29) 

At high SNR which gives 

 

                   
2 1

( )
R

out

SISOP R
γ
−≈  (1.30) 

 

We remark that the outage probability asymptotically decays as 1/γ . This channel has 

diversity order one. 

1.5.2.2 The SIMO case 

For the case of SIMO, the receiver is assumed to be equipped with an antenna array in order 

to increase the spatial diversity order of the channel. Here the transmitted vector is in fact a 

scalar and the channel is a column vector h with NR components. 

The received signal can be written as 

 

                   
RN x= +r h n  (1.31) 

 

Referring to (1.15), we may write the outage probability for the SIMO case as 

                   
2

2 ,1

1

( ) log 1
RN

out

SIMO j

j

P R P h Rγ
=

   = + <  
   

∑  (1.32) 
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Assuming independent Rayleigh fading, the capacity (1.32) can be written as [15] 

 

                   ( )2

2 2log 1
R

out

SIMO NC γ= + x  (1.33) 

 

where 2

2 RNx  is a chi-square random variable with 2NR degrees of freedom.  

The corresponding outage probability is given as 

 

                   
2 2 1

( )
R

out

SIMOP R P h
γ

 −= < 
 

 (1.34) 

 

Under Rayleigh fading with each gain, ,1 . . .  (0,1) jh i i d∼ CN  

 

                   

2

2

,1

1

RN

j

j

h
=

=∑h  (1.35) 

 

is the sum of the squares of 2NR independent real Gaussian random variables, each term 

2

,1jh being the sum of the real and imaginary parts of ,1jh . It is chi-square distributed with 

2NR degrees of freedom, and its PDF is given by [18, ch: 3] 

 

                   2

11
( )

( 1)!
RN x

p
R

x x e
N

− −=
−h

 (1.36) 

 

For small x, the probability density function of 
2

h   is approximately 

                   2

11
( )

( 1)!
RN

P h
R

x x
N

−≈
−

 (1.37) 

 

So we get 
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                   { }
1

2 1

0

1 1 1
( ) 1/

( 1)! !
R

R

N

N

R R

P h x x dx
N N

γγ
γ

−< ≈ =
−∫  (1.38) 

 

By applying (above) to the expression of the outage probability at high SNR, we get 

 

                   
( )2 1

( )
!

R

R

N
R

out

SIMO N

R

P R
N γ

−
=  (1.39) 

 

The outage probability asymptotically decays as 1/ RNγ , hence NR is the diversity order of this 

channel. 

Figure 1.5 shows the outage probability plotted against SNR for an outage capacity of Cout = 2 

bits/(s/Hz) for one transmit antenna and NR =2, 3, 4 receive antennas. 

 

 

Figure 1.5 Cout = 2 bits/(s/Hz); NR receive antennas, one transmit antenna. 
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1.5.2.3 The MISO case 

Similarly for a system with NT transmit antennas and one receive antenna, the received signal 

can be written as  

 

                   1 TNr n×= +h x  (1.40) 

 

the channel is a row vector h with NT components, which are assumed to be i.i.d. zero-mean 

Gaussian. The outage probability for the MISO case from equation (1.17) can be written as 

 

                   
2

2 1,

1

log 1
TN

out

MISO i

iT

P P h R
N

γ
=

   = + <  
   

∑  (1.41) 

 

Assuming independent Rayleigh fading, the capacity (1.41) can be written as [15] 

 

                   2

2 2log (1 ( / ). )
Tout T NP Nγ= + x  (1.42) 

 

where 2

2 TNx  is a chi-square random variable with 2NT degrees of freedom.  

The corresponding outage probability is given as 

 

                   2

2

2 1
T

R
out

MISO N TP P N
γ

 −= < 
 
x  (1.43) 

 

The same calculation as we did in case of SIMO, yields 

 

                   
( )2 1

( )
!

T
T

T

N
N R

Tout

MISO N

T

N
P R

N γ
−

=  (1.44) 

 

enlightening a transmit diversity order equal to NT 
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Figure 1.6 shows the outage probability plotted against SNR for an outage capacity Cout = 2 

bits/(s Hz) for NT = 2, 3, 4 transmit antennas and one receive antenna. As it is clear from 

above discussion that for a given outage capacity, a system with NT transmit antennas and one 

receive antenna requires NT times more signal-to-noise ratio to provide the same outage 

probability as a system with NR = NT receive antennas and one transmit antenna. This is due to 

the fact that the capacity formulas are derived for the same total transmission power in both 

cases. Mathematically, the 1TN ×  channel and the 1 RN× channel provide a similar capacity 

for R TN N=  if the transmitted power over each path is the same. However for a fair 

comparison, the total transmission power needs to be divided among the NT transmit antennas. 

Therefore, the received signal-to-noise ratio is affected by a factor of NT.  

 

 

Fig. 1.6, Cout = 2 bits/(s Hz); NT transmit antennas, one receive antenna. 

1.5.2.4 The MIMO case 

The calculation of the outage probability for the MIMO case is more difficult than for the 

previous case. In the MIMO case, the channel matrix H is an R TN N×  matrix with zero-mean 

Gaussian i.i.d. components. 

 Let q = min{NR,NT}. Then the outage probability is given by [17],[18] 
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                   2

2

1

( ) log 1
q

out

MIMO i

i

P R P R
M

γ λ
=

  = + <  
  

∑  (1.45) 

 

where  iλ  is the singular values of the matrix H. The MIMO channel exhibits q modes of 

transmission, each corresponding to an instantaneous SNR equal to 2( ) /i TNγλ .  

The channel diversity order obtained from the outage probability calculation in the MIMO 

case is NRNT. 

1.6  Conclusion 

In this chapter, we discussed the fundamental limits on the capacity of MIMO channels for 

both single and multi-user systems. We briefly discussed the ergodic and outage capacity 

gains for different channel set up and realized their performances by simulation results.  

The capacity gains derived for such systems can be realized in some cases, but realistic 

assumptions about channel knowledge and the underlying channel model can significantly 

mitigate these gains. 

For single-user systems the capacity under perfect CSI at the transmitter and receiver is 

relatively straightforward and predicts that capacity grows linearly with the number of 

antennas. However backing off from the perfect CSI assumption makes the capacity 

calculation much more difficult, and under such scenarios the capacity gains highly depend on 

the nature of the CSI, the channel SNR, and the antenna element correlations. 

One of the main constraints of MIMO system is the installation of more than one antenna over 

a small pocket size mobile apparatus. The broadcast nature of wireless channels helps us to 

overcome this problem by the introduction of relay networks. In next chapter we study the 

effects of relay networks which provide us a MIMO-like channel link between source and 

destination via relay nodes, to be considered as a set of distributed antennas in MIMO 

communication system.  
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2.1 Introduction  

In traditional communication systems data transmissions take place directly between the 

transmitter and the receiver. No user solicits the assistance of others. However, in a general 

communication networks, there are many intermediate nodes that might be requested for help 

in transmitting the source message to the intended destination. For example in wireless 

networks, when one node broadcasts its messages, all nearby nodes overhear this 

transmission. Processing and forwarding these messages to the intended destination, system 

performance, whether it be throughput, lifetime, or coverage area, can be improved. Such a 

communication system where the intermediate nodes (generally called as relays) cooperate 

with source in transmitting his message to the intended destination, is called cooperative 

network, and for the first time, was introduced by Van der Meulen [19] in 1968. 

Figure 2.1 represents a simple cooperative network in which the source node transmits a 

signal to the destination node via the relay node. The link between the source and the relay 

and the relay and the destination is commonly referred to as the relay link whereas the link 

between the source and the destination is referred as direct link. 

 

Figure 2.1  A single node relay network 

Now the question arises that how cooperative communications in wireless networks are 

possible. Note that the wireless channel is broadcast by nature. This implies that many nearby 

nodes or users can “hear” and receive transmissions from a source and hence can help the 

source for better transmission if needed. In other words, the broadcast nature, long considered 

as a vast waste of energy causing interference to others, is now regarded as a potential 

resource for possible assistance. For example, it is well known that the wireless channel is 

quite bursty, i.e. when a channel is in a severe fading state, it is likely to stay in the state for a 

while. Therefore, when a source cannot reach its destination due to severe fading, it will not 

Source 

Relay 

Destination 
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be much helpful to keep trying by leveraging repeating transmission protocols such as 

automatic repeat request (ARQ). If a third party that receives the information from the source 

could help via a channel that is independent from the source–destination link, the chances for 

a successful transmission would be brighten, thus improving the overall performance. 

In fact after the emergence of MIMO technology with the constraint of installing multiple 

antennas on pocket size mobile handsets, the relaying technology has gained much attention 

by considering these nodes as a set of distributed antennas in MIMO communication system. 

Adopting this point of view, nodes in the network may cooperate together for distributed 

transmission and processing of information. Indeed, cooperative communications can be 

thought of as a generalized MIMO concept with different reliabilities in antenna array 

elements by generating independent MIMO-like channel links between a source and 

destination via the introduction of relay channels. This idea of using the broadcast nature of 

the wireless channels to make communicating nodes help each other, implementing the 

communication process in a distribution fashion, and gaining the same advantages as those 

found in MIMO systems has birth various new communication techniques that improve 

communication capacity, speed, performances and coverage area.  

In this chapter, we study the effects and performance enhancing capacity of relay networks by 

using different protocol operations over single and multi-hop relaying system. We provide 

capacity limits both for half and full duplex mode of communication. At the end of this 

chapter we provide a technique of information hiding over orthogonal Gaussian relay channel. 

2.2 Network performance analysis through 

channel capacity 

For the sake of completeness and ease to understand, we put a bird eye view over information 

theory which is an important tool in analysing the achievable rates and performances of a 

communication network. The information theory deals with the information provided by the 

outcome of a random variable. 

Suppose that X and Y are two random variables representing the input and output of a 

communication channel, respectively.  

The information provided by the outcome x of a discrete random variable X is defined as [8] 
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1

( ) log log Pr[ ]
Pr[ ]

XI x X x
X x

= = − =
=

 (2.1) 

 

where Pr[ ]X x=  is the probability of the outcome X x=  

It is clear to judge that, rarer is event, the more information it provides. Since the 

communication process is inherently a process relating more than one random variable (e.g. 

the input and output of a channel), so it is important to define a magnitude relating the 

information shared by two random variables. This magnitude is the mutual information, 

which for two discrete random variables X and Y is defined as 

 

                   
Pr[ , ]

( ; ) Pr[ , ]log
Pr[ ]Pr[ ]x X y Y

X x Y y
I X Y X x Y y

X x Y y∈ ∈

= == = =
= =∑∑  (2.2) 

 

where Pr[ , ]X x Y y= =  is the joint probability mass function and Pr[ ]X x=  and Pr[ ]Y y=  

are marginal probability mass functions. 

According to Bayes theorem, the mutual information can be written as 

 

                   
Pr[ | ]

( ; ) Pr[ , ]log
Pr[ ]x X y Y

X x Y y
I X Y X x Y y

X x∈ ∈

= == = =
=∑∑   (2.3) 

Furthermore, we can write 

( ; ) Pr[ ] Pr[ , ] Pr[ , ]log Pr[ | ]
x X y Y x X y Y

I X Y X x X x Y y X x Y y X x Y y
∈ ∈ ∈ ∈

= − = = = + = = = =∑ ∑ ∑∑  

            Pr[ ]log Pr[ ] Pr[ , ]log Pr[ | ]
x X x X y Y

X x X x X x Y y X x Y y
∈ ∈ ∈

= − = = + = = = =∑ ∑∑  (2.4) 

The first term in (2.4) is called the entropy of the random variable X 

 

                   ( ) Pr[ ]log Pr[ ]
x X

H X X x X x
∈

= − = =∑  (2.5) 

and the second term in (2.4) can be written in term of the conditional entropy of X 

 

                   ( | ) Pr[ , ]log Pr[ | ]
x X

H X Y X x Y y X x Y y
∈

= − = = = =∑  (2.6) 
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Considering (2.1), the entropy of the random variable can also be read as the mean value of 

the information provided by all its outcomes. Likewise, the conditional entropy can be 

regarded as the mean value of the information provided by all the outcomes of a random 

variable (X) given than the outcome of a second random variable (Y) is known, or in other 

words how much uncertainty about a random variable (X) remains after knowing the outcome 

of the second random variable (Y). Therefore, the mutual information in (2.4) can now be 

written as 

                   ( ; ) ( ) ( | )I X Y H X H X Y= −  (2.7) 

In information theory, one of the main measures of performance is the capacity of the system. 

When the random variations of the channel are stationary and ergodic process, it is possible to 

consider the traditional notion of capacity as introduced by Claude Shannon [7]. In this case, 

coding is assumed to be done using arbitrary long blocks. The capacity of an AWGN channel 

over fast fading, when the receiver has perfect channel information is given as [20]  

                   

2

0

log 1
h P

C E
N

  
 =  + 

    
 (2.8) 

where [ ]E ⋅   is expectation operator, P is the power of transmitted signal, 0N is the variance of 

noise and 
2

h is the envelope of the channel attenuation.  

Although the notion of Shannon capacity is quite useful, but there are some other design 

parameters where the assumptions of using arbitrary long codes or that the channel is a 

stationary and ergodic random process do not hold. In such cases, Shannon capacity may not 

yield useful results. For example, in the case of a non-ergodic slow fading channel following a 

Rayleigh distribution, the Shannon capacity is arbitrary small or zero. This is because of the 

fact that the channels are affected by deep fades realizations. Therefore, for such cases it is 

more appropriate to consider the notion of outage capacity, as discussed in previous chapter. 

The outage capacity is tied to the concept of an outage event. From an information theory 

point of view, an outage event is defined as the set of channel realizations that cannot support 

reliable transmission at rate R. In other words, the outage event is the set of channel 

realizations with an associated capacity less than the transmit rate R. Now considering a setup 

that leads to (2.8) corresponds to a non-ergodic channel, the outage condition for a realization 

of the fading can be written as 
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 (2.9) 

From here, the outage probability is calculated as the one associated with the outage event 

                   

2

0

Pr log 1out

h P
P R

N

  
 =  +  <

    
 (2.10) 

Once we have introduced the concepts of outage event and outage probability, the outage 

capacity, outC , is defined as the information rate that can be reliably communicated with a 

probability 1 Prout−  ,i.e.  

                   Pr[ ] Pout outC C≤ =  (2.11) 

where C is the Shannon capacity associated with the channel 

Equivalently the outage probability may be defined as in (1.25) 

 

                   Pr 2 1 Pr[ ]R

out SNR ThresholdP γ γ γ = < − = <   (2.12) 

2.3 Basic model of relay channel 

A cooperative communication takes place in two phases. In both phases users transmit signals 

through orthogonal channels by using TDMA, FDMA, or CDMA. In this section we consider 

a simple single relay model as depicted in figure 2.2. 

 

Figure  2.2 A simple cooperative model 
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1,2h  2,3h  

1,3h  
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In phase-I: the source broadcasts its information to both, the destination and the relay. The 

received signals at the destination 1,3y  and at the relay 1,2y  can be expressed as 

                   1,3 1 1,3 1,3y P h x n= +  (2.13) 

and 

                   1,2 1 1,2 1,2y P h x n= +  (2.14) 

where P1 and P2 are transmitted powers from the source and the relay, respectively, x is 

transmitted symbol, 1,3n  and 1,2n are additive noises, and h1,3 and h1,2 are channel coefficients 

from source to the destination and to the relay, respectively, and are modelled as zero mean 

complex Gaussian random variables with variance 2

1,3σ  and 2

1,2σ , respectively. The noise term 

n1,3 and n1,2 are zero mean complex Gaussian random variables with variance N0. 

In phase-II: the relay forwards a processed version of the source’s signal to the destination, 

and this can be represented as 

                   2,3 2,3 1,2 2,3( )y h q y n= +  (2.15) 

where ( )q ⋅ is the process performed at the relay. 

2.4 Cooperation protocols 

A key aspect of the cooperative communication is the processing of the signal received from 

the source node at the relay. There are different processing schemes resulting in different 

cooperative communications protocols. Cooperative communications protocols can be 

generally classified into fixed relaying schemes and adaptive relaying schemes. In fixed 

relaying, the channel resources are divided between the source and the relay in a fixed 

(deterministic) manner. In a fixed amplify-and-forward (AF) relaying protocol [21], the relay 

simply scales the received signal and transmits an amplified version of it to the destination. 

Another possibility of processing at the relay node is to decode the received signal, re-encode 

it and then transmit it to the receiver. This kind of relaying is referred a fixed decode-and-

forward (DF) relaying protocol [21]. Fixed relaying has the advantage of easy 

implementation, but the disadvantage of low bandwidth efficiency. This is because half of the 

channel resources are allocated to the relay for transmission, which reduces the overall rate. 

This is true especially when the source-destination link is not very bad in a sense that the 



Chapter 2                                                       Introduction and performance analysis of cooperative relay networks 

Université de Limoges/Xlim 39 

destination can decodes the source message correctly without the help of relay and hence the 

relay’s transmission will be useless. Adaptive relaying technique which comprises selective 

and incremental relaying may compensate this problem to some extent.  

In selective relaying, if the signal-to-noise ratio of the received signal at the relay exceeds a 

certain threshold, the relay performs decode-and-forward operation on the message, otherwise 

it remains idle. Moreover, if the source knows that the destination does not decode correctly, 

then the source may repeat to transmit the information to the destination or the relay may help 

in forwarding the information, which is termed as incremental relaying. In this case, a 

feedback channel from the destination to the source and the relay is necessary. 

In literature one can find numerous cooperation protocols introduced by different researchers. 

To discuss each and every protocol is beyond the scope of this report, in what follows, we 

elaborate two principal protocols from fixed relaying scheme and two from adaptive relaying 

scheme.  

2.4.1 Fixed cooperation strategies 

2.4.1.1 Amplify and Forward (AF) strategy 

In an AF relaying, the relay amplifies the signal received from the source and forwards it to 

the destination ideally to equalize the effect of the channel fade between the source and the 

relay. The relay does that by simply scaling the received signal by a factor that is inversely 

proportional to the received power, which is denoted by [20] 

                   2

2

1 1,2 0

P

P h N

α =
+

 (2.16) 

The signal transmitted from the relay is thus given by 
1,2yα and has the same power as that of 

the source. To calculate the mutual information between the source and the destination, we 

need to calculate the total instantaneous SNR at the destination. The SNR received at the 

destination is the sum of the SNRs from the source and the relay. The SNR from the source 

link is given by 

 

                   
2

1,3 1,3SNR hγ=  (2.17) 
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where  
1 0/P Nγ =  

Now we calculate the received SNR from the relay link. In phase-II the relay amplifies the 

received signal and forwards it to the destination with transmitted power P2. The received 

signal at the destination in phase-II from (2.15) and (2.16) can be written as 

                   2

2,3 2,3 1,2 2,3
2

1 1,2 0

P
y h y n

P h N

= +
+

 (2.18) 

where 
2,3h  is the channel coefficient from the relay to the destination and 

2,3n  is an additive 

noise. More specifically, the received signal 
2,3y  in this case is 

 

                   1 2

2,3 2,3 1,2 2,3
2

1 1,2 0

PP
y h h x n

P h N

′= +
+

 (2.19) 

where 

                   2

2,3 2,3 1,2 2,3
2

1 1,2 0

P
n h n n

P h N

′ = +
+

 (2.20) 

 

Assume that the noise terms 
1,2n  and 

2,3n  are independent then the equivalent noise 
2,3n′  is a 

zero-mean, complex Gaussian random variable with variance. 
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 (2.21) 

 

This is due to fact that the relay amplifies not only the received signal, but the noise as well. 

The destination receives two copies of the signal x through the source and relay links. There 

are different techniques to combine the two signals. The optimal technique that maximizes the 

overall signal-to-noise ratio is the maximal ratio combiner (MRC). Note that MRC combining 

requires a coherent detector that has knowledge of all channel coefficients. We know that the 

SNR at the output of the MRC is equal to the sum of the received SNRs from both branches. 
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With knowledge of the channel coefficients 
1,3h ,

1,2h  and 
2,3h  the output of the MRC detector 

at the destination can be written as 

 

                   
1 1,3 2 2,3y a y a y= +  (2.22) 

 

The combining factors 1a and 2a should be designed to maximize the combined SNR, which 

can be done by formulating an optimization problem and selecting these factors 

correspondingly. An easier way to design them is by resorting to signal space and detection 

theory principles [6]. Since, the AWGN noise terms span the whole space, to minimize the 

noise effects the detector should project the received signals 
1,3y  and 

1,2y  to the desired signal 

spaces. Hence, 
1,3y and 

1,2y  should be projected along the directions of 
1,3h  and 

2,3h 1,2h , 

respectively, after normalizing the noise variance terms in both received signals. Therefore, 

1a  and 2a  are given by [20]. 
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By assuming that the transmitted symbol x in (2.13) has average energy 1, the instantaneous 

SNR of the MRC output is 

 

                   1 2Γ = Γ + Γ  (2.24) 
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1 1 1,3

1 2

1 0

a P h

a N
Γ =  

                        

2

1 1,3

0

P h

N
=  (2.25) 
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and 
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a N
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2 2

1 2 1,2 2,3

2 2

0 1 1,2 2 2,3 0

1 PP h h

N P h P h N
=

+ +
 (2.26) 

From the above, the instantaneous mutual information as a function of the fading coefficients 

for AF strategy is given by 

 

                   ( )1 2

1
log 1

2
AFI = + Γ + Γ  (2.27) 

 

Substituting for the values of the SNR of both links, we can write the mutual information as 

 

                   ( )2 2 2

1,3 1,2 2,3

1
log 1 ( , )

2
AFI h f h hγ γ γ= + +  (2.28) 

where 

                   ( ),
1

xy
f x y

x y+ +
≜  (2.29) 

The outage probability can be obtained by averaging over the exponential channel gain 

distribution, as follows 

 

                   [ ] ( )1,3 1,2 2,3

2 2 2

, , 1,3 1,2 2,3

1
Pr log 1 ( , )

2
AF h h hI R E h f h h Rγ γ γ < = + + <  

 (2.30) 

 

Calculating the above integration, the outage probability at high SNR is given by [20], [22]. 
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                   [ ] ( )
22 2 2

1,2 2,3

2 2 2

1,3 1,2 2,3

2 1
Pr

2

R

AFI R
σ σ

γσ σ σ

 +  −
 <     
≃  (2.31) 

 

where, the multiplicative factor of 2 in 2R is because half of the bandwidth is lost in 

cooperation by allocating them to the relay. The outage expression decays as  2γ −  which 

means that the AF protocol achieves diversity 2. 

Figure 2.3 shows the simulation results of outage probability versus SNR in dB for a fixed 

rate of 2 bps/Hz, for an AF protocol. For comparison we have included the simulation result 

of direct transmission. The channel variance 1,3σ  between source and destination is taken as 1, 

whereas for source-relay and relay-destination as 0.5. The noise variance is one. One can see 

from the graph that AF protocol achieves a diversity of 2. 
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Figure 2.3 Outage probability versus SNR 

In figure 2.4 the outage probability is depicted versus spectral efficiency in bps/Hz for a fixed 

SNR of 40 dB. The reason for selection of such a high SNR is to study the effect of increasing 

the rate making it free from the effect of SNR. It is clear from the graph that the performance 

degrades with increasing R, but it degrades faster for AF because of the inherent loss in the 

spectral efficiency. At high enough R, direct transmission becomes more efficient than 

cooperation. 
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Figure 2.4 Outage probability versus spectral efficiency 

Symbol Error Rate (SER) Analysis for AF Protocol 

The SER of an uncoded M-PSK and M-QAM modulations can be written as [20], [23] 

 

                   
( 1) /

20

1
( ) exp  

sin

M M
PSK

PSK

b
d

π ρρ θ
π θ

−  Ψ − 
 ∫≜  (2.32) 

 

                   ( ) ( )2 2( ) 4 ) 4 )QAM QAM QAMKQ b K Q bρ ρ ρΨ −≜  (2.33) 

 

where ρ  is SNR, and 2sin /( / )PSKb Mπ= , ( )1 1/K M= − , 3 /( 1)QAMb M= − , and Q is the 

Gaussian Q-function. 

From (2.26), the instantaneous SNR 2Γ  can be tightly upper bounded as 

 

                   

2 2

1 2 1,2 2,3

2 2 2 2

0 1 1,2 2 2,3

1 PP h h

N P h P h
Γ ≤ Γ

+
ɶ ≜  (2.34) 
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Now if we approximate (2.24) as 1 2Γ ≈ Γ + Γɶ , then for an M-PSK modulation, the conditional 

SER of an AF cooperation system with the channel coefficients 1,3h , 1,2h  and 2,3h  can be 

written as 

 

                   1,3 1,2 2,3, ,

PSK PSK ( )
h h h

P = ψ Γ  (2.35)  

Similarly in case of M-QAM, it is written as 

 

                   1,3 1,2 2,3, ,

QAM QAM ( )
h h h

P = ψ Γ  (2.36) 

 

Now substituting (2.32) into (2.35), and (2.33) into (2.36), the conditional SER for AF 

cooperation for M-PSK and M-QAM modulations respectively, can be expressed as 

 

                   1,3 1,2 2,3
( 1) /, , 1 2

PSK 20

( )1
exp

sin

M Mh h h PSKb
P d

π
θ

π θ
−  Γ + Γ≈ − 

 
∫

ɶ
 (2.37) 

 

                   ( ) ( )1,3 1,2 2,3, , 2 2

QAM QAM 1 2 QAM 1 24 ( ) 4 ( )
h h h

P KQ b K Q b≈ Γ + Γ − Γ + Γɶ ɶ  (2.38) 

Now let us denote the moment generating function (MGF) of a random variable Z as  

 

                   ( ) exp( ) ( )Z s sz Pz z dz
∞

−∞
= −∫M  (2.39) 

for any real number s. By averaging the conditional SER in (2.37) and (2.38) over Rayleigh 

fading channels 1,3h , 1,2h  and 2,3h , we get the SER of AF cooperation with M-PSK and M-

QAM in term of MGF 
1
( )sΓM  and 

2

( )sΓɶM , as follows [20]: 

 

                   
1 2

( 1) /
PSK PSK

PSK 2 20

1

sin sin

M M b b
P d

π
θ

π θ θ
−

Γ Γ
   ≈    
   ∫ ɶM M  (2.40) 

 

                   
1 2

2
/ 2 / 4

QAM QAM

QAM 2 20 0

4 4

2sin 2sin

b bK K
P d

π π
θ

π π θ θΓ Γ

     
≈ −     

    
∫ ∫ ɶM M  (2.41) 
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As the term 
2

1 1 1,3 0/P h NΓ =  has an exponential distribution with parameter 2

0 1 1,3/( )N Pσ , the 

MGF of 1Γ  can be simplified as 

 

                   
1 2

1 1,3

0

1
( )

1

s
sP

N

σΓ =
+

M  (2.42) 

As we can see that the expression (2.34) is harmonic mean of two random variables 

2

1 1,2 0/P h N  and 
2

2 2,3 0/P h N , hence the MGF of 2Γɶ  may be calculated as [24].  
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β β β ββ β β β
β β β β β β β β β β β βΓ

  + − ++= ×    + + + + + + + + +  
ɶM

            
1 2 1 2

2 1

1 2 1 2

21 5
2, ; ;

2 2 2

s
F

s

β β β β
β β β β

 + − +
+   + + +  

 (2.43) 

 

where 2

1 0 1 1,2/( )N Pβ σ= , 2

2 0 2 2,3/( )N Pβ σ= and 2 ( , ; ; )F ⋅ ⋅ ⋅ ⋅ is the Gauss hypergeometric function. 

The SER of AF cooperation systems with M-PSK and M-QAM modulations can be tightly 

approximated as [20] 

 

                   
2

0

2 2 2 2

1 1,3 1 1,2 2 2,3

1 1 1
s

VN
P

b P P Pσ σ σ
 

≈ +  
 

 (2.44) 

 

where in case of M-PSK 

2 4
sin sin

3( 1)

8 4 32

M M MV
M

π π

π π
−= + −  and PSKb b=  and in case of M-QAM 

23( 1)

8

M K
V

M π
−= +  and  / 2QAMb b= . For detail and proof the interested reader is referred to 

[20]. 

Figure 2.5 shows the comparative graph of the simulation results between SER derived in 

(2.40) and tightly approximation in (2.44). For simulation we have assumed that  1 / 2 / 3P P =  

and 2 / 2 / 3P P = , where 1 2P P P= + , and 2 2 2

1,3 1,2 2,3 1σ σ σ= = = , 0 1N =  
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Figure 2.5  The SER and the upper bound comparison for AF cooperation using QPSK  

2.4.1.2  Decode and Forward (DF) strategy  

In this strategy of relaying, the relay node decodes the received signal, re-encode it, and then 

transmit it to the destination. If the decoded signal at the relay is denoted by x̂ , the 

transmitted signal from the relay can be denoted by 2
ˆP x  given that x̂  has unit variance. 

Note that the decoded signal at the relay may be incorrect. If an incorrect signal is forwarded 

to the destination, the decoding at the destination is meaningless. It is clear that for such a 

scheme the diversity achieved is only one, because the performance of the system is limited 

by the worst link from the source–relay and source–destination. This is the main draw back of 

DF relaying because forwarding erroneously detected signals to the destination may cause 

error propagation that can decline the system performance. The mutual information between 

the source and the destination is limited by the mutual information of the weakest link 

between the source–relay and the combined channel from the source–destination and relay–

destination. More specifically, the mutual information for DF transmission in terms of the 

channel fades can be written as 

                   ( ) ( ){ }2 2 2

1,2 1,3 2,3

1
min log 1 , log 1

2
DFI h h hγ γ γ= + + +  (2.45) 
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where the “min” operator takes into account the fact that the relay only transmits if decoded 

correctly, hence the performances is limited by the weakest link between the source 

destination and source–relay. 

The outage probability for DF relaying scheme is given by Pr[ ]DFI R< . By simple algebraic 

manipulation, we may write 

 

                   { } 2
2 2 2

1,2 1,3 2,3

2 1
min ,

R

h h h
γ

−+ <  (2.46) 

 

The outage probability can be written as: 

 

2 2 2
2 2 2 2

1,2 1,2 1,3 2,3

2 1 2 1 2 1
Pr[ ] Pr Pr Pr

R R R

DFI R h h h h
γ γ γ

     − − −< = < + > + <     
     

 (2.47) 

 

Since the channel is Rayleigh fading, the above random variables are all exponential random 

variables with parameter one. Averaging over the channel conditions, the outage probability 

for DF strategy at high SNR is given by 

 

                   
2

2

1,2

1 2 1
Pr[ ]

R

DFI R
σ γ

−< ≃  (2.48) 

 

Figure 2.6 shows the simulation result of outage probability versus SNR for a fixed rate of 2 

bps/Hz for a DF scheme. The channel variance 1,3σ  between source and destination is taken as 

1, whereas for source-relay and relay-destination as 0.5. The noise variance is one. It is clear 

from the graph that the diversity order of DF scheme is one, i.e. no diversity gain. 

In figure 2.7 the outage probability is depicted versus spectral efficiency in bps/Hz for a fixed 

SNR of 40 dB. One can see that the performance degrades with increasing R. Again in term of 

diversity DF do not have any advantage. To gain diversity, selective DF strategy can be 

preferably.  
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Figure 2.6 Outage probability versus SNR 
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Figure 2.7 Outage probability versus spectral efficiency 
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Symbol Error Rate (SER) analysis for DF protocol 

In Phase-II, if the relay is able to decode the transmitted symbol correctly, then the relay 

forwards the decoded symbol with power P2 to the destination, otherwise it remains idle. The 

received signal at the destination in this case can be represented as 

 

                   2,3 2 2,3 2,3y P h x n= +ɶ  (2.49) 

 

where 2 2P P=ɶ  if the relay decodes and forwards the transmitted signal, otherwise 2 0P =ɶ . For 

practical applications, one may predefine a certain SNR threshold at relay. Of course selection 

of higher threshold at the relay assures the detection error propagation near to zero. For 

example figure 2.8 shows DF performances with different SNR thresholds at the relay where 

system performance improves by increasing the SNR thresholds. 

 

Figure 2.8  Performance analysis with different SNR threshold 

 

With knowledge of the channel coefficients from source and destination links, the destination 

detects the transmitted symbols by combining the signals transmitted by the source (2.13) and 

the relay (2.49).The combined signal at the MRC detector can be written as 
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1 1,3 2 2,3y a y a y= +  (2.50) 

 

where the factor a1 and a2 are determined such that the SNR of the MRC output is maximized, 

and are given by *

1 1 1,3 0
/a P h N=  and  *

2 2 2,3 0/a P h N= ɶ . 

With the assumption that the transmitted symbol x in (2.13) and (2.49) has average energy 1, 

the SNR of the MRC output is given by 

 

                   

2 2

1 1,3 2 2,3

0

P h P h

N

+
Γ =

ɶ
 (2.51) 

 

Now if we use M-PSK modulation in DF system with the instantaneous SNR Γ in (2.51), the 

conditional SER of the system with the channel coefficients 1,3h , 1,2h  and 2,3h  can be written as 

 

                   1,3 1,2 2,3, ,

PSK PSK ( )
h h h

P = ψ Γ  (2.52) 

 

In case of M-QAM modulation, it can be expressed as  

 

                   1,3 1,2 2,3, ,

QAM QAM ( )
h h h

P = ψ Γ  (2.53) 

 

As discussed above there are two possible cases at relay, i.e.  

� It decodes correctly, 2 2P P=ɶ . 

� It cannot decode, and goes idle, 2 0P =ɶ  

The chances of incorrect decoding at the relay for an M-PSK/M-QAM symbols are 

( )2

PSK / QAM 1 1,2 0/P h NΨ  and the chances for correct decoding are ( )2

PSK / QAM 1 1,2 01 /P h N− Ψ . 

Taking into account the two cases, i.e. (i) 2 2P P=ɶ  and (ii) 2 0P =ɶ , we calculate the conditional 

SER in (2.52) as 
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∫ ∫  

          

2 2 2
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1 1
exp 1 exp

sin sin

M M M Mb P h P h b P h
d d
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π π
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    + − × − −
    

    
∫ ∫  

 (2.54) 

 

Since the fading channels 1,3h , 1,2h  and 2,3h  are independent of each other, and  

 

                   
2PSK 1

220
PSK 10

0 2

1
exp ( )

sin
1

sin

h

b P z
P h z dz

b PN

N

σθ
θ

∞  
− = 
  +

∫  (2.55) 

 

hence if we average the conditional SER in (2.54) over Rayleigh fading channels 1,3h , 1,2h  and 

2,3h  with variances 1,3σ , 1,2σ  and 2,3σ , respectively, we get the SER of DF cooperation with 

M-PSK as follows: 

 

2 2 2 2 2

PSK 1 1,3 PSK 1 1,2 PSK 1 1,3 PSK 2 2,3 PSK 1 1,2

PSK 1 1 1 12 2 2 2 2

0 0 0 0 0

1 1 1 1 1 1
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b P b P b P b P b P
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σ σ σ σ σ
θ θ θ θ θ

           
= + + + + + × − +                                 
G G G G

 (2.56) 

 

where 

 

                   
( 1) /

1
0

1 1
( ( ))

( )

M M

x d
x

π
θ θ

π θ
−

= ∫G  (2.57) 

 

Similarly for M-QAM 
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2 2 2 2 2

QAM 1 1,3 QAM 1 1,2 QAM 1 1,3 QAM 2 2,3 QAM 1 1,2

QAM 2 2 2 22 2 2 2 2
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 (2.58) 

 

where 
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/ 2 / 4
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4 1 4 1
( ( ))

( ) ( )

K K
x d d
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π π
θ θ θ

π θ π θ
= −∫ ∫G  (2.59) 

Upper bound for DF cooperation with M-PSK 

Removing the negative term in (2.56), we get 
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G G G  (2.60) 

 

One can see that by putting 2sin 1θ =  in RHS of above inequality, we get maximum value. 

Hence substituting  2sin 1θ =  into (2.60), we get 
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 (2.61) 

Similar proof can be derived for QAM modulation. 

Theorem: The SER of DF cooperation systems with M-PSK or M-QAM modulation can be 

upper bounded as 

 

         

2 2

1 1,2 2 2,3 00

2 2 2 2

0 1 1,3 0 1 1,2 0 2 2,3

( 1) ) (2 1)( 1)

( )( )( )
s

MbP M bP M NM N
P

M N bP N bP N bP

σ σ
σ σ σ
+ − + −−≤

+ + +
 (2.62) 

where PSKb b= for M-PSK signals and QAM / 2b b=  for M-QAM signals. 
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Figure 2.9 shows the comparative performance of the simulation between the SER (2.56) and 

upper bound (2.62). For simulation we have assumed that  1 / 2 / 3P P =  and 2 / 2 / 3P P = , 

where 1 2P P P= + , and 2 2 2

1,3 1,2 2,3 1σ σ σ= = = , 0 1N =  

 

Figure 2.9  The SER and the upper bound comparison of DF cooperation with QPSK 

2.4.2 Adaptive cooperation strategies 

Fixed relaying suffers from deterministic loss in the transmission rate, for example, there is 

50% loss in the spectral efficiency with transmissions in two phases. Moreover, fixed DF 

relaying suffers from the fact that the performance is limited by the weakest source-relay and 

relay-destination channels which reduces the diversity gains to one. To overcome this 

problem, adaptive relaying protocols can be used to improve the inefficiency. In following 

two sub-sections, we briefly define selective DF and incremental relaying. 

2.4.2.1 Selective DF strategy 

In a selective DF relaying scheme, if the SNR of a signal received at the relay exceeds a 

certain threshold, the relay decodes the received signal and forwards the decoded information 

to the destination. On the other hand, if the channel between the source and the relay suffers a 
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severe fading such that the SNR falls below the threshold, the relay remains idle. Selective 

relaying improves the performances of fixed DF relaying, as the threshold at the relay can be 

determined to overcome the inherent problem in fixed DF relaying in which the relay 

forwards all decoded signals to the destination although some decoded signals may be 

incorrect. In [20] it was proved that at high SNR selective DF achieves same diversity gain as 

AF relaying. 

2.4.2.2  Incremental relaying 

For incremental relaying, it is assumed that there is a feedback channel from the destination to 

the relay. The destination sends an acknowledgement to the relay if it was able to receive the 

source’s message correctly in the first transmission phase, so the relay does not need to 

transmit. This protocol has the best spectral efficiency among the previously mentioned 

protocols because the relay does not always need to transmit, and hence the second 

transmission phase becomes opportunistic depending on the channel state condition of the 

direct channel between the source and the destination. In incremental relaying, if the source 

transmission in the first phase was successful, then there is no second phase and the source 

transmits new information in the next time slot. On the other hand, if the source transmission 

was not successful in the first phase, the relay can use any of the fixed relaying protocols to 

transmit the source signal from the first phase. The transmission rate in incremental relaying 

is random. If the first phase was successful, the transmission rate is R,  if the first transmission 

was in outage the transmission rate becomes R/2 as in fixed relaying. 

2.4.3 Multi-hop cooperative communication 

In previous sections, we discussed some frequently used cooperative communication 

strategies with single hop between source and destination. In this section we discuss two main 

protocols i.e. decode and forward, and amplify and forward protocols in multi-hop scenario. 

We derive SERs for both cases and present the simulation results. 

2.4.3.1 Multi-hop decode and forward strategy 

We consider an arbitrary N-relays wireless network, where information is to be transmitted 

from a source to a destination. Due to the broadcast nature of the wireless channel, some 
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relays can overhear the transmitted information and thus can cooperate with the source to 

send its data. The wireless link between any two nodes in the network is modelled as a 

Rayleigh fading channel with additive white Gaussian noise.  

We further assume that the relays are spatially well separated so that the channel fades for 

different links are assumed to be statistically independent. The additive noise at all receiving 

terminals is modelled as zero-mean, complex Gaussian random variables with variance N0. 

For medium access, the relays are assumed to transmit over orthogonal channels, thus no 

inter-relay interference is considered in the signal model. 

We consider a selective DF protocol at the relaying nodes by predefining a certain threshold. 

Each relay can measure the received SNR and forwards the received signal if the SNR is 

higher than the threshold. For mathematical tractability of symbol error rate calculations we 

assume the relays can judge whether the received symbols are decoded correctly or not, and 

only forward the signal if decoded correctly otherwise remains idle. 

In multi-hop cooperative relaying scenario various possibilities for cooperation among the 

relays arise. A general scenario is denoted by ( )C n (1 1)n N≤ ≤ − , in which each relay 

combines the signals received from the n previous relays and the source. 

Figure 2.10 shows a cooperative scenario for ( 1)C N − environment, where each relay 

combine the signals received from the source and n  previous relays. Another possible 

scenario is (1)C  depicted in figure 2.11, where each relay combines the signals received from 

the source his immediate neighbour.  

The (1)C scenario is simple to analysis and has been well explored in literature, for example 

[25], [26]. Therefore in what follows, we discuss ( 1)C N −  scenario as illustrated in fig. 2.10. 

In ( ),  1 1C n n N≤ ≤ −  scenario, each relay decodes the information after combining the 

signals received from the source and the previous n relays. The cooperation protocols have 

(N+1) phases. In phase-I the source transmits the information and the received signal at the 

destination and i-th relay can be modelled respectively, as.  

 

                    1,3 1 1,3 1,3y P h x n= +  (2.63) 

                   1,2 1 1,2 1,2i i i
y P h x n= +                1 i N≤ ≤   (2.64) 
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Figure 2.10 Cooperation under C(N-1) scenario: the (k+1)-th relay combines the signals 

received from the source and all of the previous relays. 

    

 

Figure 2.11 Cooperation under C(1) scenario: the (k+1)-th relay combines the signals received  

from the source and the k-th relay. 
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In (2.63) and (2.64), 1P  is the power transmitted at the source, x  is the transmitted symbol 

with unit power, 2

1,3 1,3(0, )h CN σ∼  and  2

1,2 1,2(0, )
i i

h CN σ∼  are the channel fading coefficients 

between the source and the destination, and i-th relay, respectively, and 2( , )α σCN  denotes a 

circularly symmetric complex Gaussian random variable with mean α  and variance 2σ . 1,3n  

and 1,2i
n  denote the AWGN from source to destination and source to i-th relay. In phase-II, if 

the first relay decodes correctly, it forwards the decoded symbol with power P1 to the 

destination, otherwise it remains idle. 

In general, during phase ,  2m m N≤ ≤ , the m-th relay combines the received signals from the 

source and the previous min( , 1)n m −  relays using an MRC as follows.   

 

                   
1

* *

2 1 1,2 1,2 2 ,2 2 ,2

max(1, )

ˆ
m m m i m i m

m

i

i m n

y P h y P h y
−

= −

= + ∑  (2.65) 

 

Note that max(1, )m n− function is used to make sure that if m < n, then the combining starts 

at the first relay. 

In (2.65) the 2

2 ,2 2 ,2(0, )
i m i m

h CN σ∼ is the channel fading coefficient between the i-th and the 

mth relays, and the term 2 ,2i m
y  denotes the signal received at the m-th relay from the i-th relay, 

and can be modelled as 

                   2 ,2 2 ,2 2 ,2
ˆ

i m i m i miy P h x n= +  (2.66) 

where ˆ
iP  is the power transmitted at relay i in phase (i + 1), and  ˆ

i iP P=  if relay i correctly 

decodes the transmitted symbol, otherwise ˆ 0iP = . The m-th relay uses 2m
y in (2.65) as the 

detection statistics. If relay m decodes correctly it transmits with power ˆ
m mP P=  in Phase 

(m+1), otherwise it remains idle. Finally, in phase (N+1), the destination coherently combines 

all the received signals using an MRC as follows 

 

                   * *

3 1 1,3 1,3 2 ,3 2 ,3

1

ˆ
i i

N

i

i

y P h y P h y
=

= +∑  (2.67) 
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total transmitted power is fixed as 1 1

N

ii
P P P

=
+ =∑  

Symbol Error Rate (SER) performance analysis 

We present the SER performance analysis for a general cooperative scheme ( )C n , 

1 1n N≤ ≤ − , both for M-PSK and M-QAM modulation system. 

As stated above each relay has two states, whether it decodes correctly or not. 

We define a 1 l× , 1 l N≤ ≤  vector lS  to represent the states of the first l relays for a given 

transmission. The k-th entry of the vector lS  denotes the state of the k-th relay as follow 

 

                   
1              if relay  decodes correctly

[ ]
0             otherwise                       1

l

k
k

k l


=  ≤ ≤

S  (2.68) 

 

Since the decimal value of the binary vector lS  can take any value from 0 to 12l− , for 

convenience we denote the state of the network by an integer decimal number. Let 

 

                   ( ), , , ,[1], [2],......, [ ]z l z l z l z l l=D D D D  (2.69) 

 

be the 1 l× binary representation of a decimal number z, with , [1]z lD  being the most 

significant bit. So ,N z N=S D  indicates that the k-th relay, 1 k N≤ ≤ , is in state 

,[ ] [ ]N z Nk k=S D . 

We consider a general cooperation scheme ( )C n , 1 1n N≤ ≤ − , in which the k-th (1 )k N≤ ≤  

relay coherently combines the signals received from the source along with the signals 

received from the previous min( , 1)n k − relays. The state of each relay in this scheme depends 

on the states of the previous n relays, i.e. whether these relays have decoded correctly or not. 

This is due to the fact that the number of signals received at each relay depends on the number 

of relays that decoded correctly from the previous n relays. Hence, the joint probability of the 

states is given by 

              ( ) ( [1]) ( [2] /( [1]).... ( [ ] / [ 1],..., [ ])N N N N N N NP P S P S S P S N S N S N n= − −S  (2.70) 
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Conditioning on the network state, which can take 2N  values, the probability of error at the 

destination given the CSI can be calculated using the law of total probability as follows: [20] 

 

                   
2 1

, ,

0

( | )Pr( )

N

e N i N N i N

i

P Pr e
−

=

= = =∑ S D S D  (2.71) 

 

where, e denotes the event that the destination decoded in error. 

The destination collects the copies of the signal transmitted in the previous phases using MRC 

(2.67) and the resulting SNR at the destination can be computed as 

 

                   

22

1 1,3 , 2 ,3

1

3

0

[ ]
j

N

j i N

j

P h P D j h

SNR
N

=

+
=

∑
 (2.72) 

 

where , [ ]i ND j  takes value 1 or 0 and determines whether the j-th relay has decoded correctly 

or not. The k-th relay coherently combines the signals received from the source and the 

previous n relays. The resulting SNR can be calculated as 

 

                   

1 22

1 1,2 , 2 ,2

max(1, )

2

0

[ ]
k j k

k

j i N

j k nn

k

P h P D j h

SNR
N

−

= −

+
=

∑
 (2.73) 

 

If M-PSK modulation is used, with instantaneous SNR Γ , the SER with the CSI from (2.32) 

can be written as 

 

                   
( 1) /

PSK
PSK PSK 20

1
( ) exp

sin ( )

M M b
P d

π
θ

π θ
−  Γ= ψ Γ − 

 
∫≜  (2.74) 

where 2

PSK sin ( / )b Mπ= . 

In case of M-QAM modulation the corresponding conditional SER from (2.33) can be written 

as 
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                   ( ) ( )2 2

QAM QAM QAM QAM( ) 4 4P KQ b K Q b= ψ Γ Γ − Γ≜  (2.75) 

 

where 1 1/K M= −  and QAM 3/( 1)b M= − , and ( )Q x  is the complementary distribution 

function (CDF) of the Gaussian distribution. 

In what follows, we mainly focus M-PSK modulation and the same procedure can be 

straightforwardly applied to M-QAM modulation.  

From (2.70) for a given network state ,N i N=S D , the conditional SER at the destination can 

be computed as 

 

                   , PSK 3Pr( | ) ( )N i Ne SNR= = ψS D  (2.76) 

 

From (2.73) the conditional probability that the k-th relay is in state , [ ]i ND k given the states of 

the previous n relays by ,

n

k iP is computed as follow 

 

, , , , ,Pr( [ ] [ ] | [ 1] [ 1],..., [ ] [ ] [ ])n

k i N i N N i N N i N i NP S k D k S k D k S k n D k n D k n= − = − − = − = −≜  

         
PSK 2 ,

PSK 2 ,

(  ,    if [ ] 0

1 (  if [ ] 1

k

k

n

i N

n

i N

SNR D k

SNR D k

ψ == 
− ψ =

 (2.77) 

 

To compute the average SER, we need to average the probability in (2.71) over all channel 

realizations, i.e. SER ( ) [ ]eP n E P= . Using (2.70), (2.76), and (2.77), SER ( )P n can be expanded as 

 

                   
2 1

SER PSK ,

0 1

( ) ( )

N N
n

d k i

i k

P n E SNR P
−

= =

 = ψ 
 

∑ ∏  (2.78) 

 

Since the channel fades between different pairs of nodes in the network are statistically 

independent by the virtue that different nodes are not co-located, the quantities inside the 

expectation operator in (2.78) are functions of independent random variables, and thus can be 

further decomposed as 
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                   [ ]
2 1

SER PSK ,

0 1

( ) ( )

N N
n

d k i

i k

P n E SNR E P
−

= =

 
 = ψ  

 
∑ ∏  (2.79) 

 

Note that (2.79) is equivalently applicable for M-QAM modulation system by replacing the 

function PSK ( )ψ ⋅ by QAM ( )ψ ⋅  

Since the channels between the nodes are modelled as Rayleigh fading channels, the absolute 

norm square of any channel realization ,j ih between any two nodes j and i in the network has 

an exponential distribution with mean 2

,j iσ . Hence, ( )qE γ ψ   can be expressed as 

 

                   [ ( )] ( ) ( )u uE f d
γ

ψ Γ = ψ Γ Γ Γ∫  (2.80) 

 

where ( )f Γ  is the probability density function of the random variable Γ , and u  is 1or 2 for 

M-PSK and M-QAM respectively. If Γ  is an exponentially distributed random variable with 

mean Γ  , then it can be shown that [ ]( )uE ψ Γ  is given by [20]  

 

                   
2

[ ( )] 1
sin ( )

u
u u

b
E F

θ
 Γψ Γ = + 
 

 (2.81) 

 

where ( )uF ⋅  and the constant ub  are defined as 

 

                   
( 1) /

1
0

1 1
( ( ))

( )

M M

F x d
x

π
θ θ

π θ
−

= ∫                                 1 PSKb b=  (2.82) 

 

and 

                   
2

/ 2 / 4

2
0 0

4 1 4 1
( ( ))

( ) ( )

K K
F x d d

x x

π π
θ θ θ

π θ π θ
= −∫ ∫          

QAM

2
2

b
b =  (2.83) 

 

In order to get the SER formulation in above expressions, two special properties of the 

Gaussian Q-function are needed as follows [20] 
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2

/ 2

20

1
( ) exp

2sin ( )

x
Q x d

π
θ

π θ
 

= − 
 

∫  (2.84) 

 

                   
2

/ 4
2

20

1
( ) exp

2sin ( )

x
Q x d

π
θ

π θ
 

= − 
 

∫  (2.85) 

for 0x ≥   

 

Averaging over all the Rayleigh fading channel realizations, the SER at the destination for a 

given network state ,i ND  is given by 

 

                   

22
, 2 ,31 1,3

3 2 2
10 0

[ ]
( ( )) 1 1

sin ( ) sin ( )

j

N
u i N ju

u u

j

b D j Pb P
E SNR F

N N

σσ
θ θ=

   
  ψ = + +         

∏  (2.86) 

 

Similarly, the probability that the k-th relay is in state , [ ]i ND k  given the states of the previous 

n relays is given by 

 

                   ( ), ,[ ] [ ]n n

k i k i NE P B D k=  (2.87) 

 

where ( )n

kB ⋅  is defined as  

                   

22 1
, 2 ,21 1,2

2 2
max(1, )0 0

22 1
, 2 ,21 1,2

2 2
max(1, )0 0
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1 1
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1 1 1
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i
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j kk

k
u i N ju

u

j k n

n

k
k

u i N ju

u
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x
B x

b D j Pb P
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−
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   
  + +         
=

=
   
  − + +         

∏

∏
f 1x










 =

 (2.88) 

 

So we conclude that the SER of an N-relay DF cooperative diversity network using protocol 

( )C n , 1 1n N≤ ≤ −  for M-PSK and M-QAM can be written as 
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N
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u i N ju k n

u k i N

i j k

b D j Pb P
P n F B D k

N N

σσ
θ θ

−

= = =

   
  = + +         

∑ ∏ ∏  (2.89) 

where   (.)uF  and (.)n

kB  are defined in (2.82) and (2.88), respectively. 

 

To evaluate performance analysis, we consider two cases in figure 2.12 for (1)C scenario 

using Q-PSK modulation. Firstly under the assumption that the relays correctly judge whether 

the received signal is decoded correctly or not i.e. no error propagation (NEP), as analysed 

above. Secondly we predefine a certain threshold and each relay compares the instantaneous 

received SNR to the threshold and decides whether to forward the received signal or not i.e. 

error propagation (EP). In simulation the threshold is taken as 3 dB. For sake of simplicity we 

restrict up to three relays. 

Figure 2.13 depicts the comparative performance between ( 1)C N −  and (1)C strategies both 

for Q-PSK and 16-QAM modulation. For sake of simplicity we limit N to 3. It can be seen 

from the graph that there is a very small gap between the SER performance of scenarios C(1) 

and C(N − 1), and that they almost merge together at high enough SNR. This confirms that 

utilizing scenario C(1) can deliver the required SER performance for a fairly wide range of 

SNR.  

 

Figure  2.12 SER versus SNR for 3-different scenarios 
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Figure 2.13, Comparison between C(1) and C(N-1) for QPSK and 16-QAM for N = 3 

2.4.3.2 Multi-hop amplify and forward strategy 

Recall that in AF scheme, the relay scales the received version of the signal and transmits an 

amplified version to the destination or to next relay in case of multi-hop relays. As contrast to 

DF protocol, an AF protocol does not suffer from the error propagation problem because the 

relays do not perform any hard-decision operation on the received signal. An AF strategy in a 

multi-hop scenario is depicted below in figure 2.14. 

 

 

Figure 2.14 Multi-hop AF system model. 
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As we saw from the previous section that in multi-hop scenario more than one relaying 

strategy is possible. For example in DF strategy we studied two cases as depicted in figure 

2.10 and 2.11. Similarly in case of AF, two strategies are possible. In first scenario, each relay 

forwards only the source’s signal to the destination and in second scenario each relay 

forwards a combined signal from the source and the previous relays.  

Here we discuss only the first case because the second case is not of much importance as in 

that case the relay combines the same signal in different phases and as a result noise 

propagation problem causes severe degradation in the system performance [20]. 

In first scenario, the cooperation is done in two phases as highlighted in figure 2.14 by dot and 

ray lines. In phase-I, the source broadcasts his information to the destination and N relays 

nodes whereas in phase-II each relay forward the received signal to destination. 

The received signal at the destination and i-th relay in phase-I can be respectively written as 

 

                   1,3 1 1,3 1,3y P h x n= +  (2.90) 

 

                  1,2 1 1,2 1,2i i i
y P h x n= +  (2.91) 

 

for 1,2,...,i N= , where 1P  is the transmitted source power, 1,3n  and 1,2i
n  denote the AWGN at 

the destination and  i-th  relay respectively, 1,3h  and 1,2i
h  are the channel coefficients from the 

source to the destination, and i-th relay, respectively. In second phase of transmission, each 

relay re-transmits an amplified version of the received signal to the destination. The relays 

amplify the received signal by a factor that is inversely proportional to the received power at 

i-th relay as given in (2.16). The received signal at the destination in phase-II from i-th relays 

can be represented as  

                   2 ,3 2 ,3 1,2 2 ,3
2

1 1,2 0

i i i i

i

iP
y h y n

P h N

= +
+

 (2.92) 

where iP  is the i-th relay node power. The channel coefficients 1,3h , 1,2i
h and 2 ,3i

h are modelled 

as zero-mean, complex Gaussian random variables with variances 2

1,3σ , 2

1,2i
σ  and 2

2 ,3i
σ  

respectively. 
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The noise terms are modelled as zero-mean, complex Gaussian random variables with 

variance 0N . Jointly combining the signal received from the source in phase-I and those from 

the relays in phase-II, the destination detects the transmitted symbols by the use of MRC. 

Symbol Error Rate (SER) performance analysis 

Like DF strategy, here we also try to derive SER expression with M-PSK and M-QAM 

signals. With the knowledge of the Channel State Information (CSI), the output of the MRC 

detector at the destination can be written as 

 

                   3 1 1,3 2 ,3

1
i

N

i

i

y y yα α
=

= +∑  (2.93) 
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 
 +
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 (2.94) 

If we assume that the transmitted symbol x  has an average energy of 1, then the SNR at the 

MRC detector output is 

                   3 1

1

N

i

i=
Γ = Γ + Γ∑  (2.95) 

where 
2

1 1 1,3 0/P h NΓ =  , and  

                   

2 2

1 1,2 2 ,3

2 2

0
1 1,2 2 ,3 0

1 i i

i i

i

i

i

PP h h

N P h P h N
Γ =

+ +
 (2.96) 

The instantaneous SNR iΓ can be tightly upper bounded as 

                   

2 2

1 1,2 2 ,3

2 2

0
1 1,2 2 ,3

1 i i

i i
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i

i

PP h h
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which is the harmonic mean of  
2

1 1,2 0/
i

P h N  and 
2

2 ,3 0/
iiP h N . The SER of M-PSK and M-

QAM conditional on the CSI are defined in (2.74) and (2.75), respectively. 

Let us denote the MGF of a random variable Z as [20] 

                   ( ) exp( ) ( )Z ZM s sz P z dZ
∞

−∞
= −∫  (2.98) 

Averaging the conditional SER over the Rayleigh fading channels, the SER of the M-PSK 

signals and M-QAM signals can be given, respectively, as 
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The MGF of sΓ  is same as given in (2.42), and to get the MGF of iγɶ , we suppose that 1X  

and 2X  are two independent exponential random variables with parameters 1β  and 2β  

respectively, and 1 2

1 2

X X
Z

X X
=

+
 is the harmonic mean of 1X  and 2X , then the MGF of Z is 

 

                   
2 2

1 2 1 2 1 2 1 2

2 3

1 2

( ) ( ) 2 ( )
( ) ln

4
Z

s s s
M s

β β β β β β β β
β β

+ + + + + + ∆= +
∆ ∆

 (2.101) 

where  2 2

1 2 1 2( ) 2( )s sβ β β β∆ = + + + +  

 

With 2

1 0 1 1,2/
i

N Pβ σ=   and 2

2 0 2 ,3/
iiN Pβ σ=  at high SNR, for any relay both 1β  and 2β  go to 

zero, and ∆  goes to s. Thus, the MGF in (2.101) can be approximated as 
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2

1 2 1 2

2
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( ) lnZ
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M s

s s

β β β β
β β

+≈ +  (2.102) 

 

At enough high SNR, the MGF can be further simplified as [24] 

                   1 2( )ZM s
s

β β+≈  (2.103) 

Substituting the above MGF approximation into (2.99), we conclude that: 

at enough high SNR, the SER of AF cooperative protocol with N relay nodes employing M-

PSK or M-QAM signals can be approximated as: 
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where in case of M-PSK, PSKb b=  and  
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and in case of M-QAM, QAM / 2b b=  and  
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Figure 2.15 shows the performance of the AF relaying protocol with QPSK modulation up to 

three relay nodes in different channel conditions. From the graph one can observe that AF 

protocol achieves full diversity of order N+1. 
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Figure 2.15 SER performances for QPSK constellation with equal power 

2 2 2

1,3 1,2 2 ,3( 1, 1, 1)
i i

σ σ σ= = =  

2.5  Half duplex Gaussian relay channels 

In previous sections, we assumed that the relays are full-duplex. Although it is possible to 

design full duplex RF radios, but the design of such radios need precise and expensive 

components. In this section, we consider a half-duplex relay and study the impact of half-

duplex operation on relaying protocols and achievable rates.  

We consider a discrete memoryless communication system where the intermediate relay node 

operates in TDD mode when transmitting and sending in same frequency band.  

For sake of simplicity we consider a half-duplex relay network with single hop relay node, 

although same idea can be extended to multi-hop relay networks. We model a half-duplex 

operation using the state variable Q that controls the relay operation. Q takes the value q1 if 

the relay is listening and q2 if the relay is transmitting. We also consider fixed protocols, in 

which the relay listens for a fixed time interval fraction t (0 1)t≤ ≤  and then transmits in the 

remaining portion (1 )t− as shown in figure 2.16. 
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Figure 2.16, two-modes of operation 

 

According to [25] the rate   

    { 1 2 1 1 3 2 2
,0 1
max min ( ; / ) (1 ) ( ; | , ),DF
t t

R tI X Y q t I X Y X q
≤ ≤

= + −  

                             }1 3 1 1 2 3 2( ; / ) (1 ) ( , ; / )tI X Y q t I X X Y q+ −  (2.107) 

 

is achievable for a fixed input distribution and a fixed t, can be maximized over all input 

distributions, [0,1]t ∈ . The first term in (2.107) is the sum of two mutual information 

expressions. The first one indicates the amount of information the relay can decode in t 

fraction of the time. The second is the mutual information the destination collects from the 

source during the time when the relay is transmitting. The second term in (2.107) is also a 

sum of two terms, the first of which is the mutual information at the destination while the 

relay is silent, and the second is the rate at which the source and the relay can together send in 

1-t fraction of time. Like full-duplex case, if the half-duplex relay channel is physically 

degraded, then the above rate is capacity achieving. 

The real Gaussian noise half duplex relay channel is very similar to the full-duplex case, but 

in half-duplex case the relay cannot transmit and receive at the same time. So we can write 

                   2,1 1,2 1,1 2,1Y h X N= +  (2.108) 

                   3,1 1,3 1,1 3,1Y h X N= +  (2.109) 

When the channel is in q1 state, and  

 

                   3,2 1,3 1,2 2,3 2,2 3,2Y h X h X N= + +  (2.110) 

S 

R 
R 
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When the channel is in q2 state. 

 

Note that the second number in subscript in (2.108) - (2.110) show the channel state q1 and q2. 

where 1,2h , 1,3h and 2,3h  are channel fading from source to relay, source to destination and relay 

to destination, respectively, and are assumed to be constant. 2N  and 3N  are AWGN at relay 

and destination respectively. 

For Gaussian half duplex relay channel the DF achievable rate becomes [28] 
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 (2.111) 

 

In AF strategy, the relay simply scales 2Y  according to its own power constraint and forwards 

2 2X Yα=  to the destination, where ( )2

2 1,2 1/ 1P h Pα ≤ + . Assuming α is equal to its upper 

bound, the AF protocol achieves the rate [25] 
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log 1

4 1
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h P h P
R h P

h P h P

 
 = + +
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 (2.112) 

2.6  Cryptographic relay networks 

When talking about relay networks although cryptography seems somewhat alien but yet it 

possesses some interesting applications in this field. Particularly the encryptions of PN 

sequences in Spread Spectrum (SS) communications birth certain problems that seek its 

solution in relay networks. In fact the classical PN sequences used in spread spectrum have 

short periodic sequences with small periods, and are repeated as many times as needed. This 

property of PN sequences is used to synchronize the transmission by the search of peaks of 

correlations [31], [32]. But unfortunately when someone wants to encrypt the PN sequences, 

he/she will lose this basic and necessary property.  
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In what follows, we propose the use of a relay network with orthogonal channels from the 

source to relay, and from the source/relay to the receiver. In other words source-relay link 

uses a different frequency band from the source-destination and relay-destination link. 

The basic principle of an ordinary Direct Sequence Spread Spectrum (DSSS) communication 

which takes binary data sequences and multiplies it by a higher rate pseudorandom binary 

sequence is depicted below in figure 2.17. 

 

 

Figure 2.17  Spread spectrum operation 

 

If we denote the data bit duration of DSSS signal as  bT  , then the data waveform can be 

represented as  

                   ( ) nd t d=  , with  ( 1)b bnT t n T≤ < +  and { }1, 1nd ∈ −  (2.113) 

where ( nd ) is the binary data sequence. For example in figure 2.17, ( nd ) =1,-1,-1..... 

For simplification, we use { }1, 1−  in lieu of{ }0,1 . 

For practical application, the data clock and the PN sequence clock must be synchronized, 

moreover the bit duration bT  must be the multiples of the chip duration cT . The ratio 

/b cN T T=  is referred as the spreading factor. For example in figure 2.17 N = 8 and PN 

sequence is (1,-1,-1,1,-1,1,1,-1.......). 

Tb 

Tc 
Data 

PN Sequence 

Data × PN 
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We assume that the data ( )tD d=  is transmitted with bit duration bT  and the data ( )tD d′ ′=  

with chip duration cT , where D′  is obtained from D by repeating each bit td , N times.  

Then the data transmitted is  PNC D′= ×  with chip time cT .  

To recover the original message, the receiver multiplies C by the pseudorandom sequence PN 

in order to get D′  and then decodes D. 

 

Figure 2.18 Spread spectrum signal spreading below noise level 

 

Spread spectrum communication owns many advantages. For example the frequency band is 

much larger and the power density of the signal is much lower as compare to an ordinary 

signal. The signal is more resistant to interferences, because after multiplication by the PN 

sequence, these interferences look like white Gaussian noise. Figure 2.18 represents a signal 

view of SS communication. 

As one can see from the figure that the power density is smaller than the noise density, 

therefore it becomes difficult to detect the signal without multiplication by the PN sequence. 

The spread spectrum techniques are particularly used in Code Division Multiple Access 

(CDMA) where each user has its own PN sequence, which allows them to transform the 

signals of other users into white noise. Another advantage of the spread spectrum is the fact 

that it is possible to use it with a very low SNR by increasing the value of N. It can make the 

signal undetectable if the PN sequence is not known to compute the cross-correlation. 

Therefore to make the communication absolutely secure one may desire to encrypt the PN 

sequence. 
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Spread Spectrum and cryptography 

In symmetric cryptography (i.e. cryptography with a secret key shared by the sender and the 

receiver), there are two methods of encryption, i.e. the block ciphers and the stream ciphers. 

In this sequel we consider the latter. The principle is very simple. We use modulo 2 addition 

of a random symbol tk  to each symbol td  of the binary data. 

Now let the 

              Message is denoted by  1( )n

t tM d ==  

              Shared secret key:          1( )n

t tK k ==  , and 

              Cryptogram                   1( )n

t t tC d k == ⊕  (2.114) 

To recover the source message M, receiver needs to compute C K⊕ . If the secret key is 

randomly chosen and used only once (e.g. one-Time Pad) then such a method is absolutely 

secure. However it is not possible to use a secret key having the same size as the message. So 

we replace the random sequence K by a sequence generated by a pseudorandom generator 

initialized by a smaller key.  

We further propose that instead of adding a random sequence with good cryptographic 

properties to the data before transmission, we use directly such a pseudorandom sequence as 

PN sequence of spread spectrum.  

Suppose we want to transmit the message ( )tM d= with a spreading factor  /b cN T T=  and a 

PN sequence ( )tS s= , then the transmitted cryptogram will be C M S′ ′= ⊕ , where M ′  is the 

message M with N repetition of each bit ( )/t t N
d d

  
′ = . 

Another advantage of our this approach is that since the energy of the spread signal is lower 

than the energy of the ambient noise, so it becomes nearly impossible to recover the 

cryptogram C M S′ ′= ⊕  without the knowledge of S. Indeed, the correlation of the received 

signal with S is needed to eliminate the ambient noise.  

However, the main draw back of such a system is the problem of synchronization, as 

indicated above. In what follows, we propose some solutions to deal this issue.  

In ordinary cryptography, a cryptogram sent over the channel is not secret. However in some 

particular cases, one may want not only to have a cryptographic secure transmission but also 

to keep it secret. One method to achieve this goal is to use the proposed communication with 

a large signal spectrum spreading N to mask the message inside the ambient noise. However, 
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by doing so the problem of synchronizations cannot be avoided. A second solution lies in 

masking the secret SS signal with a classical unimportant communication. The secret signal is 

then synchronized with the classical communication. This method is more robust than the 

classical steganography. Because even the secret signal is detected, it is not possible to 

recover the initial message without the knowledge of the PN sequence.  

As an example, let the non-secret communication is denoted by 

                   ( )nM D=  , { }0,1nD ∈  (2.115) 

and the transmitted signal is represented by 

                   ( ) cos( ( ) )t A t D tω πΦ = +  (2.116) 

where,  A= amplitude of the signal, 1/ω  = is the frequency of the signal, and  ( ) nD t D=  with 

/ bn t T=    . Now let the hidden message 

                   ( )nm d= , { }0,1nd ∈  (2.117) 

is transmitted with amplitude α , chip times ct  a divisor of bT  and bit chip bt  a multiple of 

bT . The pseudorandom sequence is denoted by ( )nk , { }0,1nk ∈   

Hence the secret communication is represented by  

                   ( ) cos( ( ( ) ( ) )t t d t k tφ α ω π= + +  (2.118) 

where ( ) nd t d= with / bn t t=     denotes instantaneous hidden message, ( ) nk t d ′= with 

/ cn t t′ =     denotes PN sequence, α  = amplitude, and 1/ω  = is the frequency of the signal. 

Combining (2.116) and (2.118), the transmitted message can be written as 

                   ( ) ( ) ( )X t t tφ= Φ +  with Aα <<  (2.119) 

The receiver uses the known message to synchronize the communication, recovers the signal 

( )tΦ  and then recovers the secret message using the classical spread spectrum methods. Note 

that the secret message is smaller than the noise and is not detectable if the PN sequence is not 

used to compute the correlation. For external viewers, the transmitted message looks like a 

slightly perturbed in amplitude BPSK signal.  
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                   ( ) ( ( )) cos( ( ) )t A t t D tε ω πΦ = ± +    ,      0 ( )tε α≤ ≤  (2.120) 

However, again the main problem with this method is that if an error occurs on message M, 

this error induces a very high noise on /b cT t  chips, and equivalent may induces some errors 

on secret message m.  

To overcome this problem we use orthogonal relay channels where the two messages are 

transmitted orthogonally in different frequency bands. 

Hence the transmitted messages (2.116) and (2.118) can be written as, respectively 

                   ( ) cos( ( ) )t A t D tω πΦ = +  (2.121) 

                   ( ) sin( ( ( ) ( )) )t t d t k tφ α ω π= + +  (2.122) 

With a small abuse of the notation, we denote the source message as X1, and the orthogonal 

components as X Φ  and Xφ . 

Definition 1 : A discrete memoryless relay channel denoted by 1 2 3 2 1 2( , ( , / , ),p y y x x×X X  

3 2 )×Y Y consists of a sender 1 1X ∈X , a receiver  3 3Y ∈Y , a relay sender 2 2X ∈X  , a relay 

receiver 2 2Y ∈Y , and a family of conditional probability mass function 3 2 1 2( , / , )p y y x x  on 

3 2×Y Y , one for each  1 2 1 2( ,x x )∈ ×X X . 

Definition: 2  A discrete memoryless relay channel is said to have orthogonal components if 

the sender alphabet 1 φΦ= ×X X X  and the channel can be expressed as 

3 2 1 2 3 2 2 2( , | , ) ( | , ) ( | , )p y y x x p y x x p y x xφΦ= for all 2 3 2 2 3 2( , , , , )x x x y yφ φΦ Φ∈ × × × ×X X X Y Y . 

The capacity of such a relay channel with orthogonal components is given by [33]  

 

Fig 2.19. Frequency division AWGN relay channel  
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               { }
2 2 2

2 3 2 2 3 2
( ) ( | ) ( | )

max min ( , ; ), ( ; | ) ( ; | )
p x p x x p x x

C I X X Y I X Y X I X Y X
φ

φ
Φ

Φ Φ≤ +  (2.123) 

For proof we use max-flow min-cut upper bound [21] 

                   { }
1 2

1 2 3 1 3 2 2
( , )
max min ( , ; ), ( ; , | )
p x x

C I X X Y I X Y Y X≤  (2.124) 

We show that any R<C is achievable using the generalized block Markov encoding scheme. 

Substituting 1 ( , )X X XφΦ=  and assuming joint probability mass function of the form 

2 2 2( ) ( | ) ( | )p x p x x p x xφ Φ  , we get 

                                 1 2 3 2 3( , ; ) ( , , ; )I X X Y I X X X Yφ Φ=  

                                                    2 3 3 2( , ; ) ( ; | , )I X X Y I X Y X XφΦ Φ= +  

                                                      2 3( , ; )I X X YΦ=  

and 

                             1 3 2 2 3 2 2( ; , | ) ( , ; , | )I X Y Y X I X X Y Y XφΦ=  

                                                        2 2 3 2 2( , ; | ) ( , ; | , )I X X Y X I X X Y X Yφ φΦ Φ= +  

                                                        2 2 2 2 3 2 2( ; | ) ( ; | , ) ( , ; | , )I X Y X I X Y X X I X X Y X Yφ φ φΦ Φ= + +  

It follows that 2 2( , )X X X YφΦ → →  form a Markov chain 

                                          2 2 3 2 2( ; | ) ( , ; | , )I X Y X I X X Y X Yφ φΦ= +  

                                             2 2 3 2 2 3 2 2( ; | ) ( | , ) ( | , , , )I X Y X H Y X Y H Y X X X Yφ φΦ= + −  

It follows that 2 2 3( , ) ( , )X Y X X Yφ Φ→ →  form a Markov chain 

                                                 2 2 3 2 2 3 2( ; | ) ( | , ) ( | , )I X Y X H Y X Y H Y X Xφ Φ= + −  

                                                 2 2 3 2 3 2( ; | ) ( | ) ( | , )I X Y X H Y X H Y X Xφ Φ≤ + −  

                                                 2 2 3 2( ; | ) ( ; | )I X Y X I X Y Xφ Φ= +  

Thus we showed that 

                             { }
2

2 3 2 2 3 2
( , , )
max min ( , ; ), ( ; | ) ( ; | )

p x x x
C I X X Y I X Y X I X Y X

φ
φ

Φ
Φ Φ≤ +  (2.125) 
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2.7  Conclusion 

Cooperative communication system is a communication paradigm that generalizes MIMO 

communications to much broader applications. In this system, the terminals dispersed in a 

wireless network cell can be thought of as distributed antennas. Through cooperation among 

these nodes, MIMO-like gains can be achieved by increasing the diversity gains of the 

system. In literature one can find numerous cooperative protocols proposed by different 

authors. In this chapter we mainly focused on two principal cooperative strategies, i.e. decode 

and forward, and amplify and forward from fixed relaying concept and selective DF and 

incremental strategy from adaptive relaying concept. We computed exact SER for DF and AF 

strategies, both over single and multi-hop scenarios. We described the performance of these 

algorithms through calculating outage capacity and characterizing diversity gains. The 

performance of adaptive relaying techniques in general outperforms the fixed relaying 

techniques because of the extra information utilized in implementing the protocols, for 

example, knowledge of the received SNR in selective relaying and the feedback from the 

destination in incremental relaying. On the other hand, fixed relaying techniques are simple to 

implement.  

The multi-hop cooperative strategies consist of schemes in which each relay can combine the 

signals arriving from an arbitrary but fixed number of previous relays along with that received 

from the source. We derived exact SER expressions for DF and AF cooperation schemes both 

for M-PSK and M-QAM modulations. At high SNR, the performance of a simple cooperation 

scenario in which each relay combines the signals arriving from the previous relay(s) and the 

source is asymptotically exactly the same as that for the most complicated scenario in which 

each relay combines the signals arriving from all the previous relays and the source. 

In this chapter, we also studied the capacity analysis for a half duplex Gaussian relay channels 

operating in TDD mode when transmitting and sending information in same frequency band. 

Although the capacity of such a relay channel is less than the capacity of full duplex relay 

channel, however the lower bound on the capacity show that even it can gain higher capacity 

with respect to direct link. 

At the end of this chapter we introduced a technique of cryptography in cooperative 

communication system. Actually our cryptographic system in a conventional communication 

system encountered the problem of synchronization. To seek the solution of this problem we 
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proposed a frequency division AWGN relay channel where the information is sent 

orthogonally in different frequency bands. 

As discussed in chapter 1, to meet our fast growing demands for reliable communication, the 

use of multiple antennas at transmitter and receiver is inevitable. But without the presence of 

some efficient protocols, one cannot fully exploit the benefits tendered by a MIMO system. 

Until now it is believed that space time coding system is most pertinent and ideal technique to 

be used to exploit the available resources in a MIMO system. So in forthcoming chapter we 

study different techniques for construction of space time codes for getting maximum diversity 

and rates over the MIMO channels. 
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3.1 Introduction 

In chapter 1, we showed that the information capacity of wireless communication systems can 

be increased considerably by employing multiple transmit and receive antennas. For a system 

with a large number of transmit and receive antennas and an independent flat fading channel 

known at the receivers, the capacity grows linearly with the minimum number of antennas. 

An effective and practical way to approach the capacity of MIMO wireless channels is to 

employ Space-Time (ST) coding [34], [35]. Space-time coding is a coding technique designed 

for use with multiple transmit antennas. Coding is performed in both spatial and temporal 

domains to introduce correlation between signals transmitted from various antennas at various 

time periods. The spatial-temporal correlation is used to exploit the MIMO channel fading 

and minimize transmission errors at the receiver. Space-time coding can achieve transmit 

diversity and power gain over spatially uncoded systems without sacrificing the bandwidth. 

There are various approaches in ST coding structures, including Space Time Block Codes 

(STBCs), Space-Time Trellis Codes (STTCs), Super Orthogonal Space-Time Trellis Codes 

(SOSTTCs) and Space-Time Turbo Trellis Codes (STTTCs). A central issue in all these 

schemes is the exploitation of multi-path effects in order to achieve high spectral efficiencies 

and performance gains.  

In this chapter, we study and evaluate error probability upper bounded over flate fading 

Rayleigh channels. These bounds will provide us a better orientation for designing space time 

codes with high performances. We also study different aspects of design criteria for space 

time codes. We provide some construction techniques for achieving better diversity, 

maximum rate and spectral efficiency. We present a technique to enhance the spectral 

efficiency of STBCs. At the end of this chapter, we provide the simulation results for the 

performance of some interesting type of space time codes, e.g. STBCs, STTCs, and SOTTCs. 

3.2  Basic concept in space-time coding system  

We consider a baseband space-time coded communication system with TN  transmit and NR 

receive antennas, as shown in figure 3.1 
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Figure 3.1 Space time coding system 

 

The transmitted data are encoded by a space-time encoder. At each time instant t, a block of m 

binary information symbols, denoted by 

 

                   1 2, ,....., m

t t t tc c c =  c  (3.1) 

 

is fed into the space-time encoder. The space-time encoder maps the block of m binary input 

data into NT modulation symbols from a signal set of 2mM =  points. The coded data are 

applied to a Serial-to-Parallel (S/P) converter producing a sequence of TN  parallel symbols, 

arranged into an 1TN × column vector: 

 

                   1 2, ,...., T
T

N

t t t tx x x =  x  (3.2) 

 

where ( )T⋅ denotes the transposition. The TN  parallel outputs are simultaneously transmitted 

by NT-different antennas, whereby symbol i

tx , 1 Ti N≤ ≤ , is transmitted by antenna i and all 

transmitted symbols have the same duration of SecT . The vector of coded modulation symbols 

from different antennas, as shown in (3.2), is called a space-time symbol.  

The MIMO channel with TN  transmit and NR receive antennas can be represented by an 

R TN N×  channel matrix Ht.  
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where ,

t

j ih  represents the fading attenuation coefficient for the path from transmit antenna i to 

receive antenna j at time t.  

In the analysis, we assume that the fading coefficients ,

t

j ih  are independent complex Gaussian 

random variables with zero mean and variance 1/2 per dimension, implying that the 

amplitudes of the path coefficients are modelled as Rayleigh fading. In terms of the 

coefficient variation speed, we consider fast and slow fading channels. For slow fading, it is 

assumed that the fading coefficients are constant during a frame and vary from one frame to 

other. In a fast fading channel, the fading coefficients are constant within each symbol period 

and vary from one symbol to another. 

At the receiver, the signal at each of the NR receive antennas is a noisy superposition of the NT 

transmitted signals degraded by channel fading. At time t, the received signal at antenna j , 

1, 2,... Rj N= , denoted by j

tr  is given by 

 

                   ,

1

TN
j t t j

t j i i t

i

r h x n
=

= +∑  (3.4) 

 

where j

tn  is the noise component of receive antenna j at time t, which is an independent 

sample of the zero-mean complex Gaussian random variable. 

We represent the received signals from NR receive antennas at time t by an 1RN × column 

vector as 

                      1 2, , , R
T

N

t t t tr r r =  …r  (3.5) 

and the noise at the receiver can be described by an 1RN × column vector as: 

                   1 2, , , R
T

N

t t t tn n n =  …N  (3.6) 
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So the received signal vector can be represented as 

 

                   t t t t= +r H x N  (3.7) 

 

We assume that the decoder at the receiver uses a maximum likelihood algorithm to estimate 

the transmitted information sequence and that the receiver has ideal CSI on the MIMO 

channel whereas the transmitter has no information about the channel. At the receiver, the 

decision metric is computed based on the squared Euclidean distance between the 

hypothesized received sequence and the actual received sequence as 

 

                   

2

,

1 1

ˆ
R TN N

j t i

t j i t

t j i

r h x
= =

−∑∑ ∑  (3.8) 

 

The decoder selects a codeword with the minimum decision metric as the decoded sequence. 

3.3  Performance analysis of space-time codes 

In the performance analysis we assume that the transmitted data frame length is L symbols for 

each antenna. We define an TN L×  space-time codeword matrix, obtained by arranging the 

transmitted sequence in an array, as  

 

                   [ ]

1 1 1

1 2

2 2 2

1 2

1 2

1 2

, , ,

T T T

L

L

L

N N N

L

x x x

x x x

x x x

 
 
 = =
 
 
  

…

…
…

⋮ ⋮ ⋱ ⋮

…

X x x x  (3.9) 

 

where the i-th row 1 2, , ,i i i i

Lx x x =  …x  is the data sequence transmitted from the i-th transmit 

antenna, and the t-th column 1 2, , , T
T

N

t t t tx x x =  …x  is the space-time symbol at time t. 
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The Pairwise Error Probability (PEP) ( )ˆ,P X X  is the probability that the decoder selects as 

its estimate an erroneous sequence ( )1 2
ˆ ˆ ˆ ˆ, , , L= …X x x x whereas the transmitted sequence was 

in fact ( )1 2, , , L= …X x x x . In maximum likelihood decoding, this occurs if 

                   

2 2

, ,

1 1 1 1 1 1

ˆ
R T R TN N N NL L

j t i j t i

t j i t t j i t

t j i t j i

r h x r h x
= = = = = =

− ≥ −∑∑ ∑ ∑∑ ∑  (3.10) 

The inequality (3.10) is equivalent to 

 

                   ( ) ( ) ( )
2

*

, ,

1 1 1 1 1 1

ˆ ˆ2
R T R TN N N NL L

j t i i t i i

t j i t t j i t t

t j i t j i

h x x h x x
= = = = = =

 
ℜ − ≥ − 
 

∑∑ ∑ ∑∑∑n  (3.11) 

 

where ℜ means the real part of a complex number. 

Assuming that perfect information is available at the receiver, for a given realization of the 

fading variable matrix sequence ( )1 2, , , L= …H H H H , the term on the right hand side of 

(3.11) is a constant equal to ( )2 ˆ,hd X X  and the term on the left hand side of (3.11) is a zero 

mean Gaussian random variable. ( )2 ˆ,hd X X  is the modified Euclidean distance between the 

two space-time codeword matrices X and X̂ , given by 

 

                   ( ) ( )2 2

1

ˆ ˆ, ,
L

h h t t

t

d d
=

=∑X X x x  

                                  ( ) 2

1

ˆ.
L

t t t

t=
= −∑ H x x  

                                ( )
2

,

1 1 1

ˆ
R TN NL

t i i

j i t t

t j i

h x x
= = =

= −∑∑∑  (3.12) 

The PEP conditioned on H is given by 

 

                   ( ) ( )2

0

ˆ ˆ, | ,
2

s
h

E
P Q d

N

 
=   

 
X X H X X  (3.13) 
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where Es is the energy per symbol at each transmit antenna and Q(x) is the complementary 

error function defined by 

 

                   
2 21

( )
2

t

x
Q x e dt

π
∞ −= ∫  (3.14) 

 

By using the inequality 

 

                   
2 21

( ) , 0
2

xQ x e x−≤ ≥  (3.15) 

The conditional PEP (3.13) can be upper bounded by 

 

                   ( ) ( )2

0

1ˆ ˆ, | exp ,
2 4

s
h

E
P d

N

 
≤ − 

 
X X H X X  (3.16) 

3.3.1 Slow fading channels 

In case of slow fading channels, the fading coefficients of the channel are constant during a 

frame length L. It means the fading ,

t

j ih  does not depend on temporal superscript t, i.e. 

,

t

j ih = ,j ih during the transmission of one frame.  

So the expression (3.12) for calculating Euclidean distance between two sequences of space 

time codes can be written as: 

 

                   ( ) ( )
2

2

,

1 1 1

ˆ ˆ,
R TN NL

i i

h j i t t

t j i

d h x x
= = =

= −∑∑∑X X  (3.17) 

 

Let B is defined as codeword difference matrix between two sequences of space time symbols 

X and X̂ : 
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                   ( )
1 1 1 1 1 1

1 1 2 2

2 2 2 2 2 2

1 1 2 2

1 1 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ,

ˆ ˆ ˆT T T T T T

L L

L L

N N N N N N

L L

x x x x x x

x x x x x x

x x x x x x

 − − −
 − − − = −
 
 

− − −  

…

…

⋮ ⋮ ⋱ ⋮

…

B X X X X =  (3.18) 

 

Now the matrix A, called as distance matrix with T TN N× dimension, can be constructed as 

[15], [16]  

 

                   ( ) ( ) ( )†ˆ ˆ ˆ, , . ,=A X X B X X B X X  (3.19) 

 

where †( )⋅ denotes the conjugate transpose.  

If we denote r
A

 as the rank of matrix A, then matrix A contains exactly TN r−
A

 zero 

eigenvalues iλ . At high SNR, the upper bound on PEP becomes: 

 

                   

Diversity order1

1 0

Coding gain

ˆ( , )
4

Rr N

r r
s

i

i

E
P

N
λ

−

=

 
  
 ≤  
  
  

∏


���



���


A

A A

X X  (3.20) 

 

Detail is deferred to Appendix-A 

Note that in case of slow fading channel the diversity order of the system is equivalent to 

Rr N
A

. The matrix ˆ= −B X X  has the same rank r
A

 as that of matrix A. Furthermore, the 

coding gain (independent of SNR) is determined by the r
A

order root of the product of 

nonzero eigenvalues iλ  of A. In case if Tr N=
A

, the product of eigenvalues 
1

r

ii
λ

=∏ A

 is also 

equivalent to determinant of matrix A. 
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3.3.2 Fast fading channels 

In case of fast fading channel, the channel fading coefficients ,

t

j ih  varies from one symbol to 

other. Let ˆ( , )Hd X X  be the Hamming distance between two sequences X and X̂ of length L.  

 

                   
1

ˆ ˆ( , ) ( , )
L

H t t

t

d h
=

=∑X X x x  (3.21) 

 

where h is defined as 

 

                   
ˆ0     if  

ˆ( , )
1     otherwise

t t

t th
=

= 


x x
x x  (3.22) 

 

Furthermore, note that the product distance 2

Pd  is defined as to be the Euclidean product 

distance between space time symbols of two sequences of length L when these symbols are 

different. So the product distance can be written as 

 

                   
2

2 2

11 1
ˆ ˆ

ˆ ˆ ˆ( , ) ( , )
T

t t t t

NL L
i i

p E t t t t

it t
x x x x

d d x x
== =

≠ ≠

 
= = − 

 
∑∏ ∏X X x x  (3.23) 

 

At high SNR, the error probability bound can be simplified as (for proof see Appendix-B) 

 

                   ( )
Diversity order

ˆ( , )

ˆ1/ ( , )
2

0
Coding gain

ˆ ˆ( , ) ( , )
4

H R

H

d N

d
s

p

E
P d

N

−
 
 ≤  
  


�����



���


X X

X X

X X X X  (3.24) 

The term ˆ( , )H Rd NX X  is the diversity gain of the system obtained over Rayleigh fast fading 

channel. The coding gain (independent of SNR) is determined by the ˆ( , )Hd X X order root of 

the product distance 2 ˆ( , )Pd X X . 
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3.4 Space-time code design criteria 

3.4.1 Rank and determinant criteria 

Taking into account the error rates, as discussed above, Tarokh et al. [35] developed two 

criteria for analysing the performance of the codes by optimizing the probability of error in a 

slow fading channel. The two criteria are, rank and determinant criteria. 

From rank criterion, we determine maximum diversity of the code. In section (3.3.1) in case 

of slow fading channel we showed that the diversity factor depends the product of the 

minimum rank and the number of receive antennas, Rr N
A

. Hence to maximize the diversity 

order means that the space time code ˆ( , )A X X  should be of full rank, i.e.  Tr N=
A

. Note that 

the difference matrix B has also same rank rA as that of matrix A. In addition, to minimize the 

error probability, the minimum product of nonzero eigenvalues 
1

r

i
iλ

=∏  of 

matrix ˆ( , )A X X along the pairs of codewords with the minimum rank should be maximized.  

Similarly, with assumption that the matrix ˆ( , )A X X  is of full rank, the product of the nonzero 

eigenvalues 
1

r

i
iλ

=∏  or equivalently the determinant of the matrix ˆ( , )A X X will help us to 

maximize the coding gain of the code. 

Note that 
1

r

i
iλ

=∏ is the absolute value of the sum of determinants of all the principal r r×
A A

 

cofactors of matrix ˆ( , )A X X [16].  

The two criteria for slow Rayleigh fading channels can be summarized as follow: 

• Rank criteria: The matrix ˆ( , )B X X should be of full rank for all pair of possible 

sequences of symbols X and X̂ . In this way a maximum diversity of NTNR can be 

achieved. 

• Determinant criteria: For a maximum diversity code, the minimum determinant of 

the matrix ˆ( , )A X X calculated over all possible sequences of symbol X and X̂ should 

be maximize. Denoting this parameter by det ( )min A , the error probability (3.20) for 

slow fading channel, can be simplified as 
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1/

min 0

ˆ( , ) ( )
4

det
T R

T
N N

N

sE
P

N

−
  ≤   
   

X X A  (3.25) 

3.4.2 Hamming and product distance criteria  

In (3.24) it was shown that code diversity depends on the product of number of receive 

antennas and hamming distance ˆ( , )Hd X X  between the sequence X and X̂ . Therefore to 

maximize the diversity, one must maximize the distances between all possible sequences X 

and X̂ . Another factor to be kept in mind while designing space time codes is the coding gain 

which also needs to be maximized, can be determined by the product distance 2 ˆ( , )pd X X . 

Shortly, the space-time codes design criteria for fast fading as proposed by Tarokh [35] is 

summarized as follow: 

• Distance criteria: The minimum Hamming distance ˆ( , )Hd X X  between any two 

sequences of symbols X and X̂  should be maximized. 

• Product distance criteria: The minimum product distance 2 ˆ( , )pd X X  between any 

two sequences of symbols X and X̂  should be maximized. If we denote the minimum 

product distance by 
min

2 ˆ( , )pd X X , then PEP can be written as [36] 

 

                   ( )
min

min

min

ˆ( , )
ˆ1/ ( , )

2

0

ˆ ˆ( , ) ( , )
4

H R

H

d N
d

s
P

E
P d

N

−
 

≤  
 

X X
X X

X X X X  (3.26) 

 

One can see that increasing the number of receive antennas may help to alleviate the 

probability of error. 

3.4.3 Trace criteria  

Trace is another important parameter in designing powerful space time codes. In fact the sum 

of all eigenvalues of a square matrix equal to the sum of all the elements on the main 

diagonal, which is called the trace of the matrix,  and is given by [38]. 
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                   ( )( )
1 1

ˆ,
Tr N

i,i

i

i i

tr Aλ
= =

= =∑ ∑
A

A X X  (3.27) 

 

where ,i iA are the elements on the main diagonal of matrix ˆ( , )A X X . Since 

 

                   , *

1

ˆ ˆ( )( )
L

i j i i j j

t t t t

t

A x x x x
=

= − −∑  (3.28) 

 

Substituting (3.28) into (3.27), we get  

 

                   ( )( ) 2

1 1

ˆ ˆ,
TN L

t t

i i

i t

tr x x
= =

= −∑∑A X X  (3.29)  

 

(3.29) shows that the trace of matrix ˆ( , )A X X is equivalent to the squared Euclidean distance 

between the codewords X and X̂ , i.e. 

 

                   ( )( ) ( )2
2

1 1 1 1

ˆ ˆˆ, ,
r r L L

t t

ii i i E t t

i i t t

tr A x x d
= = = =

= = − =∑ ∑∑ ∑
A A

A X X x x  (3.30) 

 

Detail are deferred to Appendix-C 

We summarize the trace criteria as follow: 

• Trace criteria : For a large number of antennas, typically 4T RN N ≥ , the minimum 

trace of the matrices ˆ( , )A X X  among all possible sequences of symbols X and 

X̂ should be maximized. 

Here one can see that this criteria does not depend the type of channel, viz fast fading or slow 

fading channels, then the hypothesis are used for elimination the attenuation coefficient of the 

channel. Note that the term ( )2
2

1

ˆ ˆ
TN

t t

i i E t t

i

x x d x x
=

− = −∑  in (3.30) can also be found in the 

formula of product distance (3.23). So we can say that the codes having large trace may also 

have large product distance, and can offer a good performance over fast fading channels.  
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3.5  Space time block codes 

In space time block coding system, the modulated symbols are split into packets of P size, and 

regrouped into an TN P×  coding matrix X, where NT is the number of transmit antennas. The 

first Space Time Block Code (STBC) is the well known Alamouti code [34]. This code has 

two transmit antennas and may have one or more than one receiver antennas. Symbols are 

transmitted in orthogonal blocks. In following subsections we study in detail the structure of 

Alamouti code, and present some other orthogonal and non-orthogonal STBCs. 

3.5.1 Orthogonal space time block codes 

In this section we study the design of STBCs having NT transmit antennas and NR receive 

antennas. Orthogonal codes achieve maximum diversity of NRNT, maximum coding gain, and 

highest possible throughput [35]. In 1998 Alamouti [34] developed such an Orthogonal Space 

Time Block Code (OSTBC) with two transmit antennas. 

In what follows, we discuss in more detail different types of orthogonal space time coding 

system.  

3.5.1.1  Alamouti code 

The Alamouti code [34] is historically the first and the most well-known space-time code 

which provides full transmit diversity for a system with two transmit antennas. It is also well 

known for its simple structure and fast ML decoding. 

We consider a modulation signal constellation S having 2
m
 points. At each time interval, the 

binary signal encoder takes m bits of source information to generate a complex system ix S∈ . 

For example in case of Q-PSK constellation, in each symbol interval, the encoder takes 2 bits 

of source information to generate a complex system ix  belonging to (1, 1, )j j− −  

Then in each encoding operation, the ST encoder takes a block of two modulated symbols x1 

and x2 and maps them to two transmit antennas according to following codeword matrix. 

 

                   

*

1 2

*

2 1

x x

x x

 −
=  
 

X  (3.31) 
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The encoders outputs are transmitted in two consecutive transmission period from two 

transmit antennas. During the first transmission period, two signals x1 and x2 are transmitted 

simultaneously from antenna one and two respectively. In second transmission period, *

2x−  is 

transmitted from antenna one and *

1x  from antenna two. 

It is easy to see that the two columns/rows of X are orthogonal. This design scheme is also 

called the 2 2×  orthogonal design. Further more, with the power constraints
2 2

1 2 1x x+ = , X 

is actually a unitary matrix with determinant 1. 

Figure 3.2  Alamouti transmit scheme 

 

In other words, the code matrix has the property 

 

                   

2 2

1 2†

2 2

1 2

0
.

0

x x

x x

 +
 =
 + 

X X  

                              ( )2 2

1 2 2x x= + I  (3.32) 

 

where I2 is 2 2×  identity matrix, and †( )⋅ is the Hermitian transpose. 

3.5.1.2 Simple decoding 

The Alamouti scheme is applicable for a system with two transmit and NR receive antennas. 

We assume that the channel fading coefficients are constant during the transmission of a 

block of two symbols. 

Let ,1jr  and ,2jr  be the signals received by receiving antenna j at time t and t+T respectively. 

where, T denotes the symbol duration. So we have 

 

Source 
Information 

Tx 1 

Binary signal 
encoder 

Space-Time  encoder 
*

1 2

1 2 *

2 1

[  ]
x x

x x
x x

 −
→  

 
 

1 2[  ]x x  

2 *

2 1[   ]x x x=  

1 *

1 2[   - ]x x x=  

Tx 2 
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                   ,1 ,1 1 ,2 2 ,1. .j j j jr h x h x n= + +  

                   * *

,2 ,1 2 ,2 1 ,2. .j j j jr h x h x n= − + +  (3.33) 

 

where ,j ih  , i=1,2 and j=1,2,.….,NR  is the channel fading coefficient from transmit antenna i 

to receiving antenna j and ,1jn  , ,2jn  are the AWGN from receiving antenna j during time 

instant t and t+T, respectively. Equation (3.33) can be written in matrix form as 

 

                   

*

1 2

1 2 1 2 1 2*

2 1

j j, j, j, j, j, j,

x x
r   r h   h n   n

x x

 −
     = = +      

 
r  (3.34) 

 

Note that 

 

                   * * * *

,2 ,2 1 ,1 2 ,2. .j j j jr h x h x n= − +  (3.35) 

 

Equivalently we can write as  

 

                   
,1 ,1,1 ,2 1

* ** *
,2 ,2,2 ,1 2

j jj j

j

j jj j

r nh h x

r nh h x

     ′ = = ⋅ +     −       
r  

 

                   j
′ = ⋅ +r H x N  (3.36) 

 

Multiplying (3.36) by †ΗΗΗΗ  on left, we get  

 

                   † †. .j N′ = +H r H H x  

                           ( )2 2

,1 ,2 .j jh h N= + +x  (3.37) 
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Assume that all the signals in the modulation constellation are equiprobable, a maximum 

likelihood decoder choose a pair of signal 1̂x  and  2x̂  from the signal modulation constellation 

to minimize the distance metric 

 

                   ( )
2

2
2 21

,1 ,1 ,2

12

ˆ
ˆ argmin .

ˆ

RN

j j j
S j

x
r h h

x ∈ =

  
= = − +  
   

∑ ɶ
x

x x  (3.38) 

 

where †.j j
′=ɶr rΗΗΗΗ  

Considering a memoryless source information, the modulated symbols 1x  and 2x  are 

independent to each other, we can separately decode each of the symbols by calculating 
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ˆ

ˆ
ˆ
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N

j j j
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r h h x
x

x
r h h x

∈ =

∈ =

  
− +  

    = =       − +    

∑

∑

ɶ

ɶ

x  (3.39) 

3.5.1.3 Performance of Alamouti code  

Due to the orthogonality between the sequences transmitted from the two transmit antennas, 

the Alamouti encoding scheme can achieve a gain of maximum diversity equal to NT.NR =2NR. 

Let us consider any two distinct code sequences X and ′X  generated by the inputs 1 2( , )x x  

and 1 2( , )x x′ ′ , respectively, where 1 2 1 2( , ) ( , )x x x x′ ′≠ . So the codeword difference matrix B is 

given by 

 

                   ( )
* *

1 1 2 2

* *

2 2 1 1

,
x x x x

x x x x

′ − − +′  ′ ′− − 
B X X =  (3.40) 

 

Since the rows of the codeword matrix X are orthogonal, the rows of the codeword difference 

matrix B are also orthogonal. The distance matrix A is given by 
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         ( ) ( ) ( )
2 2

1 1 2 2†

2 2

1 1 2 2

0
, , . ,

0

x x x x

x x x x

 ′ ′− + −
′ ′ ′  = =

 ′ ′ − + − 
A X X B X X B X X  (3.41) 

 

Since 1 2 1 2( , ) ( , )x x x x′ ′≠ , it is clear that the distance matrix A is full rank equal to two. In other 

words, the Alamouti scheme can achieve a gain of maximum diversity of NT.NR = 2NR. The 

determinant of difference matrix A is given by 

 

                   ( ) 2 2 2

1 1 2 2det , ( )x x x x′ ′ ′= − + −A X X  (3.42) 

 

It is obvious from distance matrix (3.41) that for the Alamouti scheme, the codeword distance 

matrix has two identical eigenvalues. These common eigenvalues ( )1/ 2

1 2 det ( , )λ λ= = A X X  

is equal to the minimum squared Euclidean distance of the signal constellation. This implies 

that for the Alamouti scheme, the minimum distance between any two transmitted code 

sequences remains the same as in the uncoded system. Therefore, the Alamouti scheme does 

not provide any coding gain relative to the uncoded modulation scheme, i.e. 

 

                   
1/ 2

1 2

2

( )
1c

u

G
d

λ λ= =  (3.43) 

 

The performance of the Alamouti code on slow Rayleigh fading channels is evaluated by 

simulation in figure 3.3. One receive antenna and a system of Q-PSK constellation is taken 

into account for the simulation. We further assumed that fading from each transmit antenna to 

each receive antenna is mutually independent and that the receiver has the perfect knowledge 

of the channel coefficients. 

One can see from the figure that the performance of Alamouti code with two transit antennas 

is better than that with a single transmit antenna. At a BER of 310−  
the Alamouti code 

outperform by a gain of about 11dB.  
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Figure  3.3  Performance of Alamouti code 

 

To conclude our discussion on Alamouti code, we can say that Alamouti code has two 

important properties.  

• Simple decoding: Each modulated symbol can be decoded separately by simple 

maximum likelihood decoder. 

• Maximum diversity: The Alamouti code satisfies rank criteria, hence may offer a 

maximum diversity gain. 

3.5.2 Extended orthogonal STBCs  

The key of success of Alamouti code lies in the property of its orthogonality between the 

sequences of signals transmitted from two transmit antennas. In [35] the scheme of encoding 

of orthogonal design was generalized for any number of transmit antennas by compromising 

with the code rate. In [37] it was proved that rate one codes do not exist for generalized 

complex orthogonal designs. However recently some authors have proved that it is possible to 

construct rate one code irrespective of number of transmit antennas or input alphabet size at 

the cost of decoding complexity and/or diversity order. We talk in more detail about such 

codes in forthcoming sections. 
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3.5.2.1 STBC encoder 

Figure 3.4 represents the structure of a STBC encoder. In general a STBC is defined by an 

TN P×  transmission matrix X. Where NT represents the number of transmit antennas and P 

represents the number of time periods for transmission of one block of coded symbols. 

We assume that the signal constellation consists of 2
m
 points. In each encoding operation, a 

block of Km information bits are mapped into the signal constellation to select K modulated 

signals 1 2, ,..., Kx x x , where each group of m bits selects a constellation  signal. 

 

Figure 3.4 STBC encoder 

 

The K modulated signals are encoded by a STBC encoder to generate NT parallel signal 

sequences of length P according to the transmission matrix X. These sequences are 

transmitted simultaneously through NT transmit antennas in P time periods. In STB coding 

system, the number of symbols the encoder takes as its input in each encoding operation is K. 

The number of transmission periods required to transmit the space-time coded symbols 

through the multiple transmit antennas is P. In other words, there are P space-time symbols 

transmitted from each antennas for each block of K input symbols. 

The rate of a STBC is defined as the ratio between the number of symbols the encoder takes 

as its input and the number of space-time coded symbols transmitted from each antenna. It is 

given by 

                   
K

R
P

=  (3.44) 

The spectral efficiency of the STBC is given by 

 

                   
Km

P
η =   bits/s/Hz (3.45) 

Source 
Information Modulator 

STBC Encoder  

   Matrix (NT× P) 

1
x  

⋮  
1 2[ , ,..., ]Kx x x  

TNx  
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or more precisely 

 

                   b s

s

r r mR Km

B r P
η = = =  (3.46) 

where rb and rs are bit and symbol rates, respectively and B is the bandwidth. 

The elements of the codeword matrix X are linear combination of K modulated symbols 

1 2, ,....., Kx x x  and their conjugates * * *

1 2, ,....., Kx x x . In order to achieve the maximum diversity of 

NT , the transmission matrix X is constructed based on orthogonal designs such that [35]. 

 

                   ( )2 2 2†

1 2 TK Nc x x x⋅ = + + +⋯X X I  (3.47) 

where c is a constant. 

The i-th row of X represents the symbols transmitted from the i-th transmit antenna 

consecutively in P transmission periods, while the j-th column of X represents the symbols 

transmitted simultaneously through NT transmit antennas at time j. 

Note that orthogonal designs are applied to construct STBC. The rows of the transmission 

matrix X are orthogonal to each other. This means that in each block, the signal sequences 

from any two transmit antennas are orthogonal. For example, if we assume that 

,1 ,2 , 1( , ,....... )i i i i p Px x x x ×= ∈ℂ  is the transmitted sequence from the i-th antenna, i =1,2,…., NT, 

we get 

 

                   { }*

, ,

1

0, , , 1, 2, ....,
P

i j i t j t T

t

x x i j i j N
=

⋅ >= ⋅ = ≠ ∈∑< x x  (3.48) 

 

where, xi .xj shows the inner product of the sequences xi and xj. This condition of orthogonality 

(3.48) enables us to have a communication system with maximum transmit diversity for a 

given number of transmit antennas. In addition, it allows the receiver to decouple the signals 

transmitted from different antennas by simple ML decoder, based on linear processing of the 

received signals. 

Based on type of signal constellation, STBCs can be classified into STBCs with real signals 

and STBCs with complex signals.  
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3.5.2.2  STBCs for real signal constellations 

An OSTBC is said to be real if all its coefficients in matrix X are real. i.e. 

                   ( )† 2 2 2

1 2 ........
Tk Nc x x x⋅ = + + +X X I  (3.49) 

where  kx ∈ℝ  with 1 k K≤ ≤   and   c ∈ℝ  

Let 
TNX denote the codeword matrix X having NT transmit antennas. For sake of simplicity 

we consider STBCs with a square matrices i.e. P = NT. An OSTBC with minimum possible 

block length P and corresponding STBC is called delay-optimal [35].  

For any arbitrary real signals constellation, such as M-ASK, space-time block codes with 

T TN N×  square transmission matrix 
TNX  exist if and only if the number of transmit antennas 

NT = 2, 4, or 8 [35]. These codes are of full rate R = 1 and offer the full transmit diversity of 

NT. The transmission matrices are given by [16] 

                   1 2
2

2 1

x x

x x

− =   
X  (3.50) 

For NT = 2 transmit antennas 

                   

1 2 3 4

2 1 4 3
4

3 4 1 2

4 3 2 1

x x x x

x x x x

x x x x

x x x x

− − − 
 −=  − 

−  

X  (3.51) 

For NT = 4 transmit antennas 

                   

1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6

4 3 2 1 8 7 6 5

8

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

− − − − − − − 
 − − − 
 − − −
 − − − =
 − − −
 

− − − 
 − − −
 

− − −  

X  (3.52) 

For NT = 8 transmit antennas. 
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It is desirable to construct full rate code 1R =  transmission schemes for any number of 

transmit antennas, since full rate codes are bandwidth efficient. In general, for NT transmit 

antenna, the minimum value of transmission periods P to achieve the full rate is given by [16] 

                   4min(2 )c dP +=  (3.53) 

where the minimization is taken over the set 

                   0                 0 4         and 8 +2 Tc d c d N≤ ≤ ≤ ≥  

For NT ≤ 8, the minimum values of P are given in table 3.1 

 

Table 3.1 (values of P for different NT) 

NT 2 3 4 5 6 7 8 

P 2 4 4 8 8 8 8 

 

These values provide guidelines to construct full rate STBCs. A full rate and full diversity 

space time block code for 3 transmit antennas is 

                   

1 2 3 4

3 2 1 4 3

3 4 1 2

x x x x

x x x x

x x x x

− − − 
 = − 
 − 

X  (3.54) 

3.5.2.3 STBCs for complex signal constellations 

An orthogonal space time block code is said to be complex if certain coefficients of matrix X 

are complex. i.e. 

                   ( )2 2 2†

1 2 TK Nc x x x⋅ = + + +⋯X X I  (3.55) 

where     kx ∈ℂ  with 1 k K≤ ≤   and   c ∈ℝ  

The Alamouti code is unique STBC with an T TN N×  complex transmission matrix to achieve 

the full rate [38]. If the number of the transmit antennas is larger than two, the code design 

goal is to construct high rate complex transmission matrices with low decoding complexity 
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that achieve full diversity. In addition, similar to real orthogonal designs, the value of P must 

be minimized in order to minimize the decoding delay.  

For an arbitrary complex signal constellation, there are STBCs that can achieve a rate of 1/2 

for any given number of transmit antennas. Following are two OSTBCs complex matrices 

which could attain a maximum rate of 3/4 [35]. 

                   

* * *

1 2 3 3

* * *

2 1 3 3

* * * *

3 3 1 1 2 2 1 1 2 2

2 2

2 2

( ) ( )

2 22 2

x x x x

x x x x

x x x x x x x x x x

 
 −
 
 
 = − 
 

− − + − − + + 
 
 

X  (3.56) 

 

                   

* * *

1 2 3 3

* * *

2 1 3 3

* * * *

3 3 1 1 2 2 1 1 2 2

* * * *

3 3 1 1 2 2 1 1 2 2

2 2

2 2

( ) ( )

2 22 2

( ) ( )

2 22 2

x x x x

x x x x

x x x x x x x x x x

x x x x x x x x x x

 −
 
 
 − 

=  
− − + − − + + 

 
 − − − − − − − + 
  

X  (3.57) 

Another example of rate 3/4 space-time block code with three transmit antennas over complex 

signal constellations given in [39] is: 

 

                   

* *

1 2 3

* *

2 1 3

* *

3 1 2

0

0

0

x x x

x x x

x x x

 
 = − − 
 − 

X  (3.58) 

 

As mentioned above that rate 1/2 codes exist for any number of transmit antennas [35], such a 

code is given below for three transmit antennas. 

 

                   

* * * *

1 2 3 4 1 2 3 4

* * * *

2 1 4 3 2 1 4 3

* * * *

3 4 1 2 3 4 1 2

x x x x x x x x

x x x x x x x x

x x x x x x x x

 − − − − − −
 = − − 
 − − 

X  (3.59) 
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Table 3.2 provides maximum possible code rates for complex orthogonal design for different 

transmit antennas. 

 

Table 3.2 (Possible code rates wrt to number of transmit antennas) 

No. of transmit 

 antennas (Nt) 

Symbols (K) Block length (P) Rate (K/P) 

NT = 2 

NT = 3 

NT = 4 

NT = 5 

NT = 6 

NT = 7 

NT = 8 

NT = 9 

NT = 10 

NT = 11 

NT = 12 

NT = 13 

NT = 14 

NT = 15 

NT = 16 

NT = 17 

NT = 18 

2 

3 

6 

10 

20 

35 

70 

126 

252 

462 

924 

1716 

3432 

6435 

12870 

24310 

48620 

2 

4 

8 

15 

30 

56 

112 

210 

420 

792 

1584 

3003 

6006 

11440 

22880 

43758 

87516 

1 

3/4 

3/4 

2/3 

2/3 

5/8 

5/8 

3/5 

3/5 

7/12 

7/12 

4/7 

4/7 

9/16 

9/16 

5/9 

5/9 

 

In [40], the authors developed an algorithm for systematic construction of high rate complex 

OSTBCs for any number of transmit antennas. 
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3.5.2.4 Performance of STBCs 

The performances of different space time block codes given in (3.31, 3.56 ,3.57) over fast 

Rayleigh fading channel are shown in figure 3.5, using a single receive antenna. To have 

same spectral efficiency of 3 bits/s/Hz, we use 8-PSK modulation for a code with 2 transmit  

 

Figure 3.5 Performance of OSTBC with a spectral efficiency of 3 bits/s/Hz in slow fading 

channel 

 

antennas and 16-QAM modulation is used for code rate of 3/4 for three and four transmit 

antennas. At a BER of 510− , the code with four antennas obtains a gain of about 7dB and 4.5 

dB as compare to the codes with two and three antennas, respectively. The simulation results 

show that increasing the number of transmit antennas can provide a significant performance 

gain. The increase in decoding complexity for STBCs with a large number of transmit 

antennas is very little due to the fact that only linear processing is required for decoding. 

3.5.2.5 Efficiency bound limit of OSTBCs  

From above discussion, we observed that the maximum code rate for complex signal 

constellation is possible only in case of two transmit antennas. In case where we have more 

than two transmit antennas, it has been proved in [41] that the maximum rate for a square 
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matrix is 3/4. Xue-Bin in [37] has also proved that the maximum rate for any STBC with NT 

transmit is  

 

                   0
max

0

1

2

n
R

n

+=  (3.60) 

where      0

1

2

TN
n

+ =   
 

 

In general, we always try to construct a code having maximum rate. As these codes have a 

longer block length P, so this is not practically possible that the receiver should wait until the 

end of transmission of P symbols to start decoding. In other words larger block length 

increases the receiver delay time. For example a particular OSTBC having a rate of 9/16 for 

16 transmit enumerated in table 3.2 has a block length of 22880. 

In the following section, we see that relaxing the constraint of orthogonality of the codes, we 

can get STBCs with better rate at the cost of diversity order. 

3.5.3 Quasi-orthogonal STBCs  

The main characteristics of an orthogonal design are their simple separate decoding, full rate 

and full diversity. But unfortunately one can not have all these three properties for more than 

two transmit antennas scheme. Therefore in a system with more than two transmit antennas, 

we have to sacrifice one or the other of these nice characteristics. Quasi Orthogonal Space-

Time Block Codes (QOSTBCs) introduced by Jaffarkhani [42], is a class of STBC which 

offers full rate at the cost of decoding complexity. In QOSTBCs decoding is done 

independently in pairs of symbols. 

Here we lay down the basic idea of Jaffarkhani for constructing a code for four transmit 

antennas using the code structure of Alamouti. We consider the transmission of a block 

having four symbols, x1, x2, x3 and x4. We use a pattern very like that of Alamouti for 

encoding these four symbols in pair, and we get following two generator matrices. 

 

                   
*

1 2
12 *

2 1

x x

x x

 −=  
 

X      and        
*

3 4
34 *

4 3

x x

x x

 −=  
 

X  (3.61) 
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Applying Alamouti code for second time over these two matrices, we get another code matrix 

for four transmit antennas as follow: 

 

                   
*

12 34

*

34 12

x x

x x

 −=  
 

X  (3.62) 

 

Expanding (3.62) we get 

 

                   

* *

1 2 3 4

* *

2 1 4 3

* *

3 4 1 2

* *

4 3 2 1

x x x x

x x x x

x x x x

x x x x

 − −
 − − 

− − 
 
 

 (3.63) 

 

One may notice that the rows of (3.63) are not orthogonal to each other. For example the first 

and last rows and the second and third rows of matrix are not orthogonal. That is why it is 

called quasi orthogonal code. The decoding is done in pair of symbols rather than separate 

symbol. x1 is decoded with x4, and x2 is decoded with x3. 

Therefore now we can say that the code given in (3.63) for four transmit antennas is also full 

rate, but unfortunately its diversity is not maximum. 

To get maximum diversity, different constellations for different transmit signals can be used 

[15]. For example in case of QPSK constellation, the signal x3 and x4 are rotated by / 4π  

before transmission. To get maximum diversity, there are many different techniques of signal 

rotation discussed in [43], [44] and [45]. Note that such type of codes can be constructed for 

large number of transmit antennas using same technique. 

3.5.4 Linear dispersion space time block codes 

A linear code is defined as a set of codewords that are linear in the scalar input symbols. Since 

linear codes are easier to encode and decode, so one may desire to use linear codes for 

information transmission, but unfortunately the linearity of STBCs are limited to certain 

number of transmit and/ or receive antennas. In previous sections, we saw that full rate linear 

codes are available only for two transmit antennas. For higher number of transmit antennas, 
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full diversity OSTBCs may be constructed but they do not attain full rate. On the other hand 

QOSTBCs may achieve full rate but they lose their maximum diversity. In [46] Hassibi and 

Hochwald find out the remedy of this problem by introducing Linear Dispersion Space Time 

Block Codes (LDSTBCs). LDSTBCs do not respect the constraint of orthogonality and are 

designed for specific number of receive antennas. 

Complex valued TN T× spatio-temporal matrices { }
1

K

k k =
A are used to spread the input 

information symbols over NTT spatio-temporal dimensions. The real and imaginary part of 

each input symbol kx  is modulated separately with the matrices kA  and / 2k K+A . Define 

k ks x= ℜ  and / 2k K ks x+ = ℑ  where1 k K≤ ≤ . The modulated matrices are summed to obtain the 

TN T×  codeword X as follows: 

                   ( )
/ 2

/ 2

1 1

K K

k k k K k k k

k k

x x s+
= =

= ℜ + ℑ =∑ ∑X A A A  (3.64) 

The number of modulation matrices K is usually upper bounded by the total number of spatio-

temporal degrees of freedom 2NTT.  When 2 TK N T< , the modulation matrices can be 

designed to be orthogonal, however for optimal capacity performance, in general 

2 TK N T= and the modulation matrices are not orthogonal. 

For example using the dispersion technique, the matrix given in (3.63) can be re-written as: 

1

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

A

 
 
 =
 
 
 

, 2

0 0 0 0

1 0 0 0

0 0 0 1

0 0 0 0

A

 
 
 =
 −
 
 

, 3

0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0

A

 
 − =
 
 
 

, 4

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

A

 
 
 =
 
 
 

 

 

5

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

A

 
 
 =
 
 
 

 6

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

A

− 
 
 =
 
 
 

, 7

0 0 1 0

0 0 0 0

0 0 0 0

0 1 0 0

A

− 
 
 =
 
 
 

 8

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

A

 
 − =
 −
 
 

 

 

Of course the construction of such dispersion matrices is the main headache in generalization 

of orthogonal codes. In [47] Health and Paulraj have also discussed some other types of linear 

dispersion codes. 
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3.5.5 Spectral efficient STBCs  

As we saw that in previous sections our main focus was on the design of space time codes 

offering full rate and/or maximum diversity. In this section we address spectral efficiency of 

the codes and propose some technique to ameliorate the spectral efficiency of STBCs having 

four transmit antennas. Here we may add that same technique may be straightforwardly 

extended for higher number of transmit antennas. Our proposed scheme carries more 

information symbols in each transmission block as compare to his brother code, and yet 

retains the property of simple decoding.  

We define the code efficiency η as the ratio of the number of useful bits and the total number 

of bits in that codeword matrix. To make it clear, consider the following codeword matrix for 

four transmit antennas 

                   

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

x x x x

x x x x

x x x x

x x x x

 
 − − 
 − −
 − −  

 (3.65) 

The useful symbols are enumerated in first row of (3.65) whereas all other symbols are 

redundant and completely depend on four useful symbols. So the code efficiency is 

4 /16 0.25η = = . Full efficient code 1η = , is only possible when the redundant symbols 

would have dual functionality i.e. at the same time they could be used as redundant symbols 

and as well as information symbols. But as our original data is random, so the probability of 

getting such a code pattern is  8 32 92 / 2 0.6 %−=   which is too small and practically near to 

zero probability.  

In what follows, we discuss two simple techniques for improving code efficiency η.  

3.5.5.1 Bit efficient technique  

If we write codeword matrix (3.65) by its corresponding bit representation by assuming, 

0

1

jx e π= , 2
2

j

x e
π

= , 3

jx e π= and  
3

2
4

j

x e
π

=   , we get 

 



Chapter 3                                                                      Space time coding performance analysis and design criteria 

Université de limoges/Xlim 111 

                   

00 01 11 10

10 00 01 11

00 10 00 10

01 00 10 00

 
 
 
 
 
 

 (3.66) 

 

This technique is very similar to [48], which was developed for increasing the spectral 

efficiency of Alamouti code [34]. The original data stream is divided into group of nine bits. 

The first eight bits are arranged as useful bits in matrix form as in (3.66) and for the 

transmission of ninth bit, we use two different 4-PSK constellations as shown below in 

figures 3.6 and 3.7. For example if ninth bit is 1, we choose the constellation A, shown in  

 

figure 3.6, otherwise constellation B shown in figure 3.7. It turns out that the transmission 

matrix has the same format as that of (3.66) but now each transmission block contains nine 

information bits instead of eight. So the code efficiency increases to 9/32 = 0.28125. As the 

code efficiency increases by a single bit we call this technique, Bit Efficient Code (BEC). 

3.5.5.2 Symbol efficient technique  

In this technique we divide the source binary data in to group of ten bits and then convert 

them into two binary substream by a serial to parallel converter.  For simplicity we show these 

five, 2-bits parallel bit stream by 1 2 3 4 5[     ]x x x x x . 

Before and after passing the symbols through signal constellation we tally the fifth symbol 

with other four symbols by its corresponding bit representation and find out the symbol which 

is same as fifth symbol. In case if there are more than one matching symbol, then we take the 

first one and in case if there is no any matching symbol then we ignore the fifth symbol for 

that specific transmission. For transmission of fifth symbol, we use same technique of two 

00 

00 

11

ya 

11

ya 

10 
10 

01 

01 

Fig 3.6 QPSK constellation ‘A’  
Fig 3.7 QPSK constellation ‘B’  
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constellations as above. We assume that in each block of transmission we find a matching 

symbol. In this case the code efficiency increases to 10/32 = 0.3125. As the code efficiency is 

increased by a symbol, we call this technique as Symbol Efficient Code (SEC).  

Let { }5 1 2 3 4   s x x x x∈   denotes the fifth symbol and  { }1 2 3 4   ,x x x x A B∈  

Then the transmission matrix (3.65) can be represented as: 

 

                   

5 5 5 5

5 5 5 5

5 5 5 5

5 5 5 5

2 2 2 2
1 2 3 4

2 2 2 2
2 1 4 3

2 2 2 2
3 4 1 2

2 2 2 2
4 3 2 1

j s j s j s j s

j s j s j s j s

j s j s j s j s

j s j s j s j s

x e x e x e x e

x e x e x e x e

x e x e x e x e

x e x e x e x e

π π π π

π π π π

π π π π

π π π π

 
 
 
 − −
 
 − − 
 
− −  

 (3.67) 

 

At the receiving end, 5s  is decided by the location of  1,..., 4
i

r =  which is closer to the decision 

boundary. Maximum likelihood decoding of  1,..., 4
i

s =  can be decoupled  

 

                   
5

2

2ˆ arg min
j s

i i i
s

s r s e
π

∈

  = − 
  

A
 (3.68) 

 

The minimum Euclidean distance between two QPSK constellations is the same as that of 

8PSK constellation. Therefore in worse case the BER performance of the efficient STBC will 

be slightly worse due to additional error in fifth bit/symbol, as compare to 8PSK modulation. 

But on the contrary, if the recovery of fifth symbol/bit is perfect i.e. the number of errors 

related to fifth symbol/bit is zero, then the selection of the QPSK constellation at the receiver 

is always correct, and the minimum Euclidean distance turns out to be the same as that of a 

QSPK constellation. Thus in the best case, the BER performance of efficient STBC will be 

slightly better as compare to ordinary STBCs. 

Simulation result in figure 3.8 shows that our proposed code outperforms conventional 

STBCs. Table 3.3 shows some specific results of neat comparison between STBCs, BEC-

STBCs, SEC-STBCs over QPSK modulation.  
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Table 3.3 (Performance of different coding schemes) 
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Figure 3.8  Performances of SEC STBC and STBC  

3.6  Space time trellis codes 

Space-time block codes can achieve maximum possible diversity with simple decoding, and 

are much attractive because of their simple structures. However, STBCs have the demerit that 

they do not provide coding gain, and non-full rate space-time block codes introduce 

bandwidth expansion. 

In this section, we discuss Space Time Trellis Codes (STTCs) which combine the modulation 

and trellis coding to transmit information over multiple transmit antennas and MIMO 

channels. STTCs was first introduced by Tarokh,et al.[38]. Now they have been widely 

Scheme Efficiency R bits/s/Hz BER 

4-QPSK 

4-PSK SEC 

4-PSK BEC 

8-PSK 

0.25 

0.282 

0.32 

0.25 

2 

2.25 

0.5 

3 

Low 

 

 

High 
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discussed and explored in literature. STTCs simultaneously offer a substantial coding gain, 

spectral efficiency, and diversity improvement on flat fading channels. 

3.6.1 STTC encoder 

In space time trellis codes, the encoder maps binary data to module symbols, where the 

mapping function is described by a trellis diagram. 

In figure 3.9, we illustrate an example of STTC with two transmit antennas. 

 

Figure 3.9  4-state STTC using 4-PSK with 2 transmit antennas, and r =2 bits/s/Hz 

 

The STTCs that send b bits/s/Hz of information, 2
m 

branches leave every state. A set of 2
m
 

pairs of indices next to every state represents the 2
m 

pairs of symbols for 2
m
 outgoing branches 

from top to bottom. For example, figure 3.9 illustrates a rate one space-time trellis code to 

transmit r = 2 bits/s/Hz. The code uses a 4-PSK constellation, i.e. m = 2, that includes indices 

0, 1, 2, 3 to represent 1, j, −1, −j, respectively 

The encoder takes m = 2 bits as its input at each time. There are 2
m
 = 4 branches leaving from 

each state corresponding to four different input patterns. Each branch is labelled by 

1 2 1 2 /  t t t tx x y y  where  1

tx  and 2

tx are a pair of encoder input bits and 1

ty and 2

ty  represent two 

coded QPSK symbols transmitted through antennas 1 and 2, respectively. The row listed next 

to a state node in figure. 3.9 indicates the branch labels for transitions from that state 

corresponding to the encoder inputs 00, 01, 10, and 11, respectively 

For example if we want to transmit the binary input sequence 

00/00  01/01  10/02  11/03 

00/10  01/11  10/12  11/13 

00/20  01/21  10/22  11/23 

00/30  01/31  10/32  11/33 

St+1 

0 

1 

2 

3 

St 
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              [10 01 10 11 00 01.......]x =  

the successive transitions between the states of encoder are: 

                 ......→ → → → → →0 2 1 2 3 0 1  

So the symbols transmitted from first antenna are: 

                     0, 2, 1, 2, 3, 0…… 

and the symbols transmitted from second antenna are: 

                     2, 1, 2, 3, 0, 1…….. 

Although the code has been designed manually, there is a logic behind it that guarantees full 

diversity. All branches diverging from a state contain the same symbol for the first antenna 

while all branches merging to a state contain the same symbol for the second antenna. Using a 

similar method, one can manually design full rate full diversity STTCs for other constellations 

and trellises [16]. 

All the codes proposed in [16], [28] are represented over trellis structure. Of course such type 

of code structure is easy to understand for small state STTCs but could be much difficult for 

the codes having large number of states. Working on this problem, in 2000, Baro et al.[49], 

developed STTCs in matrix form. So by the dint of this technique of code construction, it is 

possible to represent STTCs in general form for any number of transmit antennas. Figure 3.10 

depicts a view of such a STTC. 
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The encoder takes a block of m bits as input and v memory blocks of m bits ( 2mv  states). The 

k-th input sequence 1 2( , ,..... ,...) , 1, 2,...k k k k

tx x x x k m= =  is passed to the k-th shift register and 

multiplied by an encoder coefficient set. The multiplier outputs from all shift registers are 

added modulo 2m , giving the encoder output 1 2( , ,..., )TNy y y y= . The connection between the 

shift register elements and modulo 2m  adder can be described by the following matrix [36]  

 

                   

1 1 1 1

1,1 ,1 1, 1 , 1

1,1 ,1 1, 1 , 1

1,1 ,1 1, 1 , 1

... ... ...

...

... ...

...

... ... ...T T T T

m v m v

k k k k

m v m v

N N N N

m v m v

g g g g

G g g g g

g g g g

+ +

+ +

+ +

 
 
 
 =
 
 
 
 

⋮ ⋮

⋮ ⋮

 (3.69) 

 

where ,  ,   1....   , =1,2,...,  , =1,2,....,k

i j Tg k N j mv i m=  is an element of the 2m -PSK constellation 

and mv is the memory order of the k-th shift register. 

The encoder output at time t for transmit antenna k, denoted by k

ty can be computed as 

 

                   
1

1

,

1 1

       mod 2
m v

k t j k m

t i i j

i j

y x g
+

− +

= =

=∑∑  (3.70) 

 

For example, the code presented by trellis diagram in fig. 3.9 can be written in matrix form as: 

 

                   
0 0 2 1

2 1 0 0
G

 
=  
 

 (3.71) 

 

and the corresponding diagram is depicted in figure 3.11 

As we said above that initially the encoder will be in zero state, so it means at the beginning 

of transmission all the four states are filled with zero. As an example we use the same binary 

input sequence, as we did above.  

i.e.          [10 01 10 11 00 01.......]x =  

and the output symbols are: 
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                                [ ] [ ]1 2

1 1 1 0 0 0       mod 4 0 2Ty y G= =  

                                [ ] [ ]1 2

2 2 0 1 1 0       mod 4 2 1Ty y G= =  

                                [ ] [ ]1 2

3 3 1 0 0 1       mod 4 1 2Ty y G= =  

                                [ ] [ ]1 2

4 4 1 1 1 0       mod 4 2 3Ty y G= =  

                                [ ] [ ]1 2

5 5 0 0 1 1       mod 4 3 0Ty y G= =  

                                [ ] [ ]1 2

6 6 0 1 0 0       mod 4 0 1Ty y G= =  

 

So it is shown that trellis codes can be represented in matrix form as well. 

 

 

Figure 3.11  4-PSK STTC encoder with 2 transmit antennas 

3.6.2 STTC decoder  

The maximum-likelihood decoding finds the most likely valid path that starts from state zero 

and merges to state zero after L time interval 

We assume that the received signals from receive antenna j at time interval L are ,t jr , 

1,2,...,t L= . Similar to the case of Trellis Coded Modulation (TCM) the Viterbi algorithm 

can be used for the ML decoding of STTCs. Suppose at receiver we have complete CSI, if the 

estimated symbols transmitted from NT antennas at time instant t are : 1 2
ˆ ˆ ˆ, ,...,

T

t t t

Ns s s ,  the 

corresponding branch metric is given by: 
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2

, ,

1 1

ˆ
R TN N

t t

t j i j i

j i

r h s
= =

−∑ ∑  (3.72) 

 

Then, the path metric of a valid path is the sum of the branch metrics for the branches that 

form the path. The most likely path is the one which has the minimum path gain. The ML 

decoder finds the set of constellation symbols that construct a valid path and solves the 

following minimization problem: 

 

                   
{ }

2

, ,

1 1 1

min
R T

i

N NL
t t

t j i j i
s

t j i

r h s
= = =

−∑∑ ∑  (3.73) 

3.6.3 Performance of STTCs 

After introduction of STTCs by Tarokh [38], many researchers have worked on this area for 

obtaining better performances. Most of the researchers have focused to determine new STTCs 

optimized on slow fading channels. Some authors have developed codes with better coding 

gain than that introduced in [38], under the rank criteria. In 2001 Chen [50] carried out a 

research on STTCs over slow fading channels meeting the condition of trace criteria. Here we 

may add that the criteria of trace do not depend on type of channel. So it means that the codes 

of Chen in slow fading channels are as optimal as in fast fading channels. The codes of 

Firmanto-Vuceutic [51] are also result of a systematic research according to Hamming 

distance and product distance criteria, which are criteria for code construction on fast fading 

channels. 

In following tables we have enumerated some codes, their principal characteristics and 

authors’ names developed for two transmit antennas with QPSK constellation. Tables 3.4, 3.5 

and 3.6 contain STTCs of 4, 8 and 16 states respectively. In these tables the necessary  

parameters of the codes performances like their minimum rank (Rank), minimum determinant 

(Det), minimum Hamming distance (dH), minimum product distance 2( )pd , minimum trace 

(Trace) are enumerated. To help us to better understand the impact of these different 

parameters on codes’ performance, we have simulated these codes over fast and slow fading 

channels. Simulation results are provided in next section. 
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Table 3.4      8-States QPSK STTCs with two transmit antennas 

Code No. of 
States 

Generating matrix Rank Det 
Hd  2

pd  Trace 

Tarokh 

[38] 

 

8 
0 0 2 1 0 2

2 1 0 0 0 2

 
 
 

 
 

2 

 

12 

 

2 

 

16 

 

8 

Yan 

[52] 

 

8 
0 2 1 0 2 0

2 1 0 2 2 0

 
 
 

 
 

2 

 

16 

 

3 

 

24 

 

10 

Baro 

[49] 

 

8 
2 0 2 1 0 2

2 1 0 0 0 2

 
 
 

 
 

2 

 

12 

 

2 

 

32 

 

8 

Firmanto 

[51] 

 

8 
2 0 1 1 0 2

2 2 2 3 0 0

 
 
 

 
 

2 

 

8 

 

2 

 

48 

 

10 

Jung-Lee 

[54] 

 

8 
2 0 2 3 0 2

2 1 0 2 0 2

 
 
 

 
 

2 

 

12 

 

2 

 

32 

 

8 

Yi Hong 

[53] 

 

8 
1 2 2 3 0 0

2 0 0 1 0 2

 
 
 

 
 

2 

 

16 

 

2 

 

24 

 

10 

Chen 

[50] 

 

8 
2 2 2 1 0 0

2 0 1 2 0 2

 
 
 

 
 

2 

 

8 

 

2 

 

48 

 

12 

 

Table 3.5     16-States QPSK STTCs with two transmit antennas 

Code No. of 
States 

Generating matrix Rank Det 
Hd  2

pd  Trace 

Tarokh 

[38] 

 

16 
0 0 2 1 0 2

2 1 0 2 2 0

 
 
 

 
 

2 

 

12 

 

3 

 

16 

 

8 

Yan 

[52] 

 

16 
0 2 1 1 2 0

2 2 1 2 0 2

 
 
 

 
 

2 

 

32 

 

3 

 

64 

 

12 

Baro 

[49] 

 

16 
1 2 2 0 0 2

2 0 1 2 2 0

 
 
 

 
 

2 

 

20 

 

3 

 

48 

 

12 

Firmanto 

[51] 

 

16 
2 0 1 0 0 2

0 2 2 1 2 2

 
 
 

 
 

2 

 

20 

 

3 

 

64 

 

14 

Jung-Lee 

[54] 

 

16 
2 0 2 3 3 2

2 1 0 2 2 2

 
 
 

 
 

2 

 

16 

 

3 

 

32 

 

10 

Yi Hong 

[53] 

 

16 
2 0 2 3 2 2

2 2 1 2 0 2

 
 
 

 
 

2 

 

32 

 

3 

 

64 

 

12 

Chen 

[50] 

 

16 
2 1 2 1 2 3

0 2 2 3 0 2

 
 
 

 
 

2 

 

8 

 

3 

 

128 

 

16 
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Table 3.6     4-States QPSK STTCs with two transmit antennas 

Code No. of 
States 

Generating matrix Rank Det 
Hd  2

pd  Trace 

Tarokh 

[38] 

 

4 

0 0 2 1

2 1 0 0

 
 
 

 
 

2 

 

4 

 

2 

 

4 

 

4 

Yan 

[52] 

 

4 

2 0 1 2

2 2 2 1

 
 
 

 
 

2 

 

8 

 

2 

 

16 

 

8 

Baro 

[49] 

 

4 

2 0 1 3

2 2 0 1

 
 
 

 
 

2 

 

8 

 

2 

 

8 

 

6 

Vucetic 

[16] 

 

4 

2 0 1 0

2 2 0 1

 
 
 

 
 

2 

 

8 

 

2 

 

8 

 

6 

Firmanto 

[51] 

 

4 

2 3 0 2

2 1 2 1

 
 
 

 
 

2 

 

4 

 

2 

 

24 

 

10 

Jung-Lee 

[54] 

 

4 

2 0 3 2

2 2 1 2

 
 
 

 
 

1 

 

0 

 

2 

 

16 

 

8 

Yi Hong 

[53] 

 

4 

0 2 2 3

2 2 1 2

 
 
 

 
 

2 

 

8 

 

2 

 

16 

 

8 

Chen 

[50] 

 

4 

0 2 1 2

2 3 2 0

 
 
 

 
 

2 

 

4 

 

2 

 

24 

 

10 

 

3.6.3.1 Performance of STTCs in slow fading 

channels 

Here we illustrate the simulation results of performances of different STTCs discussed in 

previous sections. We suppose a quasi static slow Rayleigh fading channel. The different 

channel coefficients are complex Gaussian random variable, fixed during the transmission of 

a data frame. The frame length taken for simulation is 130 symbols.  

Figure 3.12 shows the simulation results of 4-state STTCs having two transmit antennas and 

with 1, 2 and 4 receive antennas, developed by Tarokh [38].  As we see from the graph that 

the code performance increases with increasing the number of receive antennas. Hence it can 

be deduced that the diversity of the system will increase with the performance of the code. 
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Figure 3.12  Performance of 4-states STTC in slow fading channel with two 

 transmit antennas and with 1, 2 and 4 receive antennas using QPSK. 

 

Figure 3.13 shows the simulation results of different STTCs with 4, 8 and 16 states and two 

transmit antennas, as proposed by Tarokh [38]. At the receiving end, we have two antennas.  
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Figure 3.13  Performance of 4,8 and 16-states STTC in slow fading channel with 

 two transmit antennas and two receive antennas using QPSK 
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One can see from the graph that the performance of the code increases with increasing the 

number of states. 

Figure 3.14 show the simulation results of different STTCs with 4-states proposed by 

different authors (listed in table 3.6) with a single receive antenna. All the codes simulated in 

figure 3.14 have same minimum rank of two but their minimum determinants are different. 

We simulated three codes and among them, the code of Baro [49] having highest determinant 

has a better performance than others. This confirms the rank and determinant criteria as 

discussed in section 3.4.1 for slow fading channels. From the figure, one can notice that the 

code of Chen [50] having 4-states is not optimal with a single receive antenna.  

The different codes listed in table 3.6 with 4-states are also simulated and tested with different 

number of receive antennas. Their simulation results are illustrated in figure 3.15. In this set 

up the Rr N
A

 product is superior or equal to 4. Therefore the codes with higher values of 

minimum trace offer better coding gains. So one can deduce that the code of Chen [50] with 

higher minimum trace have better performance.  

Figure 3.16 show the simulation results of 16-states STTCs proposed by Tarokh [38] and 

Chen [50] (table 3.5) with one and two receive antennas. Again we can observe that for two 

receive antennas, the code of Chen [50] following the trace criteria obtains a better 

performance over slow fading channels. 

 

Figure 3.14  Performance of 4-states STTCs in slow fading 

channel with a single receive antenna using QPSK 
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Figure 3.15  Performance of 4-states STTC in slow fading channel with 

different number of receive antennas using QPSK 

 

Figure 3.16  Performance of 16-states STTCs in slow fading channel using QPSK 
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3.6.3.2 Performance of STTCs in fast fading 

channels 

In this section we analysis the performances of STTCs over fast Rayleigh fading channels 

through computer simulation. The different channel coefficients are complex Gaussian 

random variables, and are assumed to be constant during a symbol time and vary from symbol 

to symbol. We consider a frame length of 130 symbols. 

Figure 3.17 illustrates the simulation results of different codes having 4-states as listed in 

table 3.6, with a single receive antenna. In this case, the different values of product distance 

2

pd  results different coding gain. Confirming the product distance criteria, the codes proposed 

by Chen [50] and Firmanto [51] have better performances on fast fading channels. 

Figure 3.18 combines the simulation results of different codes having 4-states (as listed in 

table 3.6) with 2 and 4 receive antennas. In this configuration the product Rr N
A  is greater or 

equal to 4. The codes with higher values of minimum trace have better coding gain. So we 

deduce that the code of Chen [50] and Firmanto [51] offer better performance. 

The performance graphs of different codes having 16-states (table 3.5) are depicted in figure 

3.19. Following the trace criteria, the code of Chen [50] using two receive antennas offers 

better performances. 

 

Figure 3.17  Performance of 4-states STTC in fast fading 

channel with a single receive antenna using QPSK 
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Figure 3.18  Performance of 4-states STTC in fast fading 

channel with 2 and 4 receive antennas using QPSK 

 

Figure 3.19  Performance of 16-states STTC in fast fading channel using QPSK 
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Concluding our discussion on construction criteria of space time codes, we can say that the 

performance curves of optimized codes following the trace criteria outperform both on slow 

and fast fading channels.  

3.7  Super orthogonal space time trellis codes  

As we saw from foregoing sections that the STBCs provide full diversity and small decoding 

complexity. STBCs have the advantage that they can be used as modulation scheme for a 

system with any number of transmit antennas but their negative aspect is that they do not 

provide coding gains. Another disadvantage of STBCs as discussed in section 3.5 is their non-

existence of full rate for every possible number of transmit antennas.  

On the other hand, STTCs can achieve full diversity and high coding gains at the cost of 

higher decoding complexity. 

In [55] Jaffarkhani proposed an idea of combining the principal advantages of these two 

coding schemes. He called it Super-Orthogonal Space Time Trellis Codes (SOSTTCs). The 

SOSTTCs are simply concatenation of outer trellis code with STBCs. Here we may add that 

each codeword generated by a STBC represents a point of MIMO constellation. In STTCs a 

point of MIMO constellation is represented by a vector of space time symbols whereas in 

SOSTTCs a point of MIMO constellation is represented by codeword matrix generated by 

STBCs 

The role of outer trellis code is to select one signal point from MIMO constellation points 

based on the current state and the input bits. In [56], it is shown that for slow fading channels, 

the trellis code should be based on the set partitioning concepts of Ungerboeck [57].  

The main idea behind SOSTTCs is to consider STBCs as modulation scheme for the trellis. 

Therefore we assign a STBC with specific constellation symbols, for example QPSK 

constellation, to all the transitions arising from a state of a given trellis. Therefore, in general 

for a TP N×  space-time block code, picking up a trellis branch from a state is equivalent of 

transmitting NT symbols from P transmit antennas in T time intervals. By doing so, it is 

guaranteed that we get the diversity of the corresponding STBC. 

In following section we discuss in detail SOSTTCs, their construction and performances. 
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3.7.1 Super orthogonal codes 

Alamouti code [34] is a well known example of a full-rate full-diversity complex STBC, 

which is defined by the following generator matrix 

                   ( ) 1 2

1 2 * *

2 1

,
x x

x x
x x

 
=  − 

G  (3.74) 

The code is designed for two transmit antennas and any number of receive antennas. Using a 

constellation with 2m  points, the code transmits 2m bits every two symbol intervals. For each 

block, 2m bits arrive at the encoder and the encoder chooses two modulation symbols x1 and 

x2. The encoder transmits x1 from antenna one and x2 from antenna two in first time interval. 

In second time interval, the encoder transmits *

2x−  from antenna one and *

1x  from antenna 

two. This scheme provides diversity gain, but no additional coding gain. 

There are other codes whose behaviours are similar to those of (3.74) for the same rate and 

number of transmit antennas. In fact multiplying an OSTBC codeword matrix with a unitary 

matrix births another OSTBC codeword matrix [15]. The set of all such codes which only use 

x1, x2, and their conjugates with positive or negative signs are listed below 

                    
1 2

* *

2 1

x x

x x

 
 − 

      
1 2

* *

2 1

x x

x x

− 
 
 

       
1 2

* *

2 1

x x

x x

− 
 
 

       
1 2

* *

2 1

x x

x x

 
 − 

 

                   
1 2

* *

2 1

x x

x x

− − 
 − 

   
1 2

* *

2 1

x x

x x

− 
 − − 

     
1 2

* *

2 1

x x

x x

− 
 − − 

    
1 2

* *

2 1

x x

x x

− − 
 − 

 (3.75) 

The union of all these codes is given the name “super-orthogonal code” and is denoted by C. 

Using just one of the constituent codes from C, for example the code in (3.74), one cannot 

create all possible 2×2  orthogonal matrices for a given constellation. To make this point more 

evident, let us concentrate on the BPSK constellation for now. We show that it is possible to 

build all possible 2×2  orthogonal matrices (whose elements are 1, -1 for case of BSPK) using 

two of the codes in C. For example, one can generate the following four 2×2constellation 

matrices using the code in (3.74)  
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1 1

1 1

 
 − 

       
1 1

1 1

− − 
 − 

     
1 1

1 1

− 
 − − 

        
1 1

1 1

− 
 
 

 (3.76)  

There are four other possible distinct orthogonal 2×2  matrices which are listed below: 

                   
1 1

1 1

− 
 
 

    
1 1

1 1

− 
 − − 

     
1 1

1 1

 
 − 

      
1 1

1 1

− − 
 − 

 (3.77) 

To create these four additional matrices (3.77), one can use the following code from the set C:  

                   
1 2

* *

2 1

x x

x x

− 
 
 

=  
1 2

* *

2 1

x x

x x

 
 − 

 . 
1 0

0 1

− 
 
 

 (3.78) 

Which represents a phase shift of the signals transmitted from antenna one by π. We denote a 

set including all 2×2  orthogonal matrices from (3.76) and (3.77) as 2O . By using more than 

one code from set C, we can create all possible 2×2  orthogonal matrices from 2O . Each 

codewords matrix of 2O  can be seen as a point in a MIMO constellation.  

Therefore, the scheme provides a sufficient number of constellation matrices to design a 

trellis code with the highest possible rate.  

As mentioned above that multiplying an orthogonal STBC by a unitary matrix from the left or 

right results in another orthogonal STBC. In what follows, we consider multiplying the 

generator matrix from the right by the following unitary matrix: 

                   
0

0 1

je
U

θ 
=  
 

 (3.79) 

Multiplying on right hand side of the OSTBC matrix by U results in rotation the symbols of 

the first column, preserving the property of orthogonalities. The matrix U itself is not an 

orthogonal matrix but it can be used to get other orthogonal matrices. In the following section 

we see how it is possible. 

A parameterized class of STBCs 

Considering the multiplication of the Alamouti code (3.74) from the right by the unitary 

matrix U (3.79), we obtain the following new orthogonal matrix: 
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                   ( ) ( ) 1 2

1 2 1 2 * *

2 1

, , , .

j

j

x e x
x x x x U

x e x

θ

θθ
 

= =  − 
G G  (3.80) 

 

Note that if 0θ =  we get the same code as given in (3.74). So, here we can write 

that 1 2 1 2( , ,0) ( , )x x x x=G G .  

Transmissions take place very similar to that of an ordinary OSTBC code, i.e. during first 

time interval, the symbols 1

jx e θ and 2x  are transmitted respectively from antenna one and two. 

In second time interval, the symbols *

2

jx e θ− and *

1x  are transmitted respectively from antenna 

one and two.  

We want that the multiplication of STBC matrix by U would not expand the constellation 

size, and all the modulated symbols should leave from same constellation as well. To have 

this property, the value of θ need to be well determined (i.e. θ should not take any value). In 

other words we should select the value θ, so ingeniously that whatever be the symbol from 

original constellation, his rotation by an angle of θ would not tweak it out of constellation. 

For example for an M-PSK, the constellation signals can be represented by 2 /j k Me π , 

0,1,...., 1k M= − , in this case, to avoid constellation expansion, one can pick 

2 /k Mθ π ′= where 0,1,.... 1k M′ = − ,[15]. By this selection, the resulting transmitted signals 

are also members of the M-PSK constellation. To be more specific, we use { }0,θ π∈ for 

BPSK modulation and { }0, / 2, ,3 / 2θ π π π∈  for QPSK modulation.  

By using 1 2( , ,0)x xG  and 1 2( , , )x x πG in case of BPSK constellation, one can generate all 

2×2  orthogonal matrices in 2O  as discussed above. In fact, 1 2( , ,0)x xG  represents the code in 

(3.74) and 1 2( , , )x x πG  represents the code in (3.78). The combination of these two codes 

coins the name “Super-Orthogonal Code” (SOC). 

In general, a SOC consists of the union of a few orthogonal codes, like the ones in (3.78). A 

special case is, when the SOC consists of only one orthogonal code, for example only 0θ = . 

Therefore, the set of orthogonal codes is a subset of the set of super-orthogonal codes. 

Obviously, the number of orthogonal matrices that a SOC provides is more than, or in the 

worst case equal to, the number of orthogonal matrices that an orthogonal code provides. 

Therefore, the super-orthogonal codes do not extend the constellation alphabet of the 
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transmitted signals, but expands the number of available orthogonal matrices. This is the main 

point of interest for constructing full rate and maximum diversity trellis codes  

3.7.2 Set partitioning for orthogonal codewords 

In this section we explain the basic principle of “set partitioning” for the codewords of an 

orthogonal code and show that how one can maximize the coding gain.  

Very similar to the set partitioning of the TCM proposed by Ungerboeck [57], we partition all 

the codewords of MIMO Constellation, which are orthogonal matrices generated by an 

OSTBC in various levels of subsets. In our case, each orthogonal matrix of the MIMO 

constellation correspond a modulated symbol of the constellation in case of TCM modulation. 

The main objective of set partitioning is to partition all sets of codewords in such a way that at 

each level of partition, the minimum Euclidean distance should increase.  

For a full diversity code, the coding gain corresponds to minimum determinant of the matrix 

( ) ( ) ( )†, , . ,i j i j i jA B B=X X X X X X  over all possible pairs of distinct codewords Xi  and Xj. 

In [15, ch: 3] , the author defines Code Gain Distance (CGD) between two codewords Xi and 

Xj as the determinant of the matrix, ( )( )det ,i jA X X . The author uses CGD in lieu of 

Euclidean distance, the later term was used in [57] for case of TCM. Here we may add that it 

is also possible to use minimum trace of ( ),i jA X X , i j≠   as the measuring parameter for set 

partitioning.  

 

3.7.2.1 Set partitioning for Alamouti code over 

BPSK constellation 

Here we give an example of set partitioning of the codewords created from Alamouti code 

(3.74) using modulated symbols from a BPSK constellation. The P set of these codewords 

is { }00 01 10 11, , ,=P X X X X , 

where 
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                   ( )00 1 2

1 1
1, 1

1 1
x x

 
= = = =  − 

X G  (3.81) 

                   ( )01 1 2

1 1
1, 1

1 1
x x

− 
= = = − =  

 
X G  (3.82) 

                   ( )10 1 2

1 1
1, 1

1 1
x x

− 
= = − = =  − − 

X G  (3.83) 

                   ( )11 1 2

1 1
1, 1

1 1
x x

− − 
= = − = − =  − 

X G  (3.84) 

 

To do set partitioning for set P, first of all we calculate ( )( )det ,i jCGD A= X X  between all 

the pairs of the elements of P. For example 

                  ( ) ( )01 10 01 10, det ,CGD X X A= X X  

                                            ( ) ( )†

01 10 01 10det= − −X X X X  

                                          
2 2 2 2

det .
2 2 2 2

−   
=    −   

 

                                          
8 0

det 64
0 8

 
= = 

 
 (3.85) 

 

The calculated result of CGD between all pairs of elements of P created from (3.74) are listed 

below in table 3.7 

 

Table 3.7    CGD between codewords 

CGD X00 X01 X10 X11 

X00 0 16 16 64 

X01 16 0 64 16 

X10 16 64 0 16 

X11 64 16 16 0 
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We can see from the table that the minimum CGD calculated between all the pairs of different 

elements of P is 16. 

According to principle of set partitioning, the set P should be partitioned in subsets in such a 

way that the minimum CGD calculated among all the pairs of the elements of the subset, 

should be maximum. So as first step, P is partitioned into two subsets P0 and P1, the only 

possible partition is to put the two codewords X00 with X11 in P0 and X01 with X10 in P1. With 

this process in first level of set partitioning, we get the largest CGD of 64. 

In second step of partitioning we again partition P0 and P1 in two subsets. At the end of 

second level of set partitioning, we get four subsets P00 , P11 , P01 and P10 with only one 

codeword per subset. 

The partition of P containing the codewords generated by Alamouti code (3.74) for a BPSK 

constellation is illustrated in figure 3.20.  

 

   

Figure  3.20  Set partitioning for BPSK modulation  

 

A more compact view of this set partitioning is given in figure 3.21. In this compact 

representation, instead of writing the codeword matrices at the root of the tree, we have just 

written a pair of BPSK indices for symbols x1 and x2 to be incorporated in codeword matrix.  
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Figure 3.21  A compact representation of set partitioning for BPSK  

 

In BPSK modulation, the index 0 represents the modulated symbol 1 whereas and the index 1 

represents the symbol -1. For example the codewords matrix  

 

                   ( )01 1 2

1 1
1, 1

1 1
x x

− 
= = = − =  

 
X G  (3.86) 

 

can be represented in a compact way by a pair of indices ‘01’ which corresponds to two 

modulated symbols x1 = 1 and x2 = -1 to incorporate in matrix (3.74)  

From the given set partition, we can construct trellis codes by respecting the following 

regulations very similar to that proposed by Ungerboeck [57]. 

� All subsets should be used an equal number of times in the trellis. 

� Transitions originating from the same state or merging into the same state in 

the trellis should be assigned subsets that are separated by the largest 

Euclidean distance. 

� Parallel
1
 paths, if they occur, should be assigned signal points separated by the 

largest Euclidean distance 

According to these rules, we construct a 4-states trellis code (given in fig 3.22) based on the 

set partitioning of figure 3.21. 

                                                 
1
 In a trellis, the parallel branches correspond to branches leaving from the same state of the encoder at time ‘t’ 

and arriving to same state at time t+1.  
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Figure  3.22, 4-state trellis set partitioning 

 

The rate of such a code is 0.5 bit/s/Hz using a BPSK constellation, and this code cannot 

transmit the maximum possible rate of 1 bit/s/ Hz. 

3.7.2.2 Set partitioning for Alamouti code over M-

PSK constellation 

In last section we laid down a simple strategy of set partitioning for Alamouti code using 

BSPK constellation. In this section we present a general technique of set partitioning for M-

PSK modulation. 

The best set partitioning is the one for which the minimum CGD of the sets at each level of 

the tree is maximum among all possible cases. To establish basic guidelines for partitioning 

the sets, one needs to develop formulas to calculate CGD. For an M-PSK constellation, let 

each signal be represented by 2 /j k Mx e π= , 0,1,..... 1k M= − . We consider two distinct pairs of 

constellation symbols ( 1 12 / 2 /1 1

1 2,j k M j l Mx e x eπ π= = ) and 2 22 / 2 /2 2

1 2,j k M j l Mx e x eπ π= = , and the 

corresponding 2×2  orthogonal codewords X1 and X2. The codeword difference matrix B 

between these two codewords can be written as: 

 

                   ( )
1 2 1 2

2 1 1 2

2 / 2 / 2 / 2 /

1 2 1 2 2 / 2 / 2 / 2 /
,

j k M j k M j l M j l M

j l M j l M j k M j k M

e e e e
B

e e e e

π π π π

π π π π− − − −

 − −
= − =  − − 

X X X X  (3.87) 

 

So the CGD is 

00 01  P P  

10 11  P P  

01 00  P P  

11 10  P P  
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                   ( )1 2det ,CGD A= X X  

                           ( ) ( )( )†

1 2 1 2det , . ,B B= X X X X  

                           ( ) ( )
2

2 1 2 1

2 2
4 2cos 2cosk k l l

M M

π π    = − − − −        
 (3.88) 

 

Here we have considered only one transition. However to calculate the minimum CGD of a 

trellis code, one needs to consider codewords that include more than one trellis transition. 

If we consider two codewords that diverge from state zero and remerge after P trellis 

transitions, the size of the corresponding difference matrix B is 2×2P. In fact, such a 

difference matrix B can be represented as the concatenation of P difference matrices 

corresponding to the P transitions that construct the path.  

For  p-th transition, let us denote the set of constellation symbols for the first codeword by  

( )1 1

1 2,
p

x x  = 1 12 / 2 /
( , )

p pj k M j l M
e e

π π
, 1, 2,...,p P=  and ( )2 2

1 2,
p

x x = 2 22 / 2 /
( , )

p pj k M j l M
e e

π π
 1, 2,...,p P=  

for the second codeword. We also define Bp as the difference matrix of the p-th transition and 

†.p p pA B B= .  For the above two codewords, for P transitions, we get   

 

                   [ ]1 2...... PB B B B=  (3.89) 

 

Using (3.89) one can calculate the matrix A as :   

 

                   
†

1

.
P

p

p

A B B A
=

= =∑  (3.90) 

 

Therefore, matrix A is still a 2×2diagonal matrix, i.e. 12 21 0A A= = . The CGD between the 

above codewords that differ in P transitions can be calculated as [36] 

 

                   ( ) ( )
2

2 1 2 1

1

2 2
det( ) 4 2cos 2cos

P
p p p p

p

A k k l l
M M

π π
=

     = − − − −          
∑  (3.91) 
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Note that (3.91) contains a sum of P non-negative terms. Therefore, the following inequality 

holds 

 

         ( ) ( )
2

2 1 2 1

1 1

2 2
det( ) 4 2cos 2cos det( )

P P
p p p p

p

p p

A k k l l A
M M

π π
= =

    ≥ − − − − =        
∑ ∑  (3.92) 

 

Based on the CGD calculated in (3.88) and (3.91), one can show that the coding gain of such 

a STTC is dominated by parallel transitions. So it justifies the need to maximize the CGD 

between codeword in each transition in trellis codes. The optimal set partitioning for QPSK is 

demonstrated in figures 3.23. For QPSK modulation, the indices 0,1,2,3 correspond to phase 

values 0,  / 2,    and 3 / 2π π π , respectively. 

It is clear from figures 3.21 and 3.23, that the minimum CGD increases (or remains the same) 

as we go down in the tree. The branches at each level can be used to design a trellis code with 

a specific rate. Higher coding gain necessitates the use of redundancy resulting in reduced 

rate. In the following section, we show how to design STTCs without sacrificing the rate 

 

 

Figure 3.23 Set partitioning for QPSK, each pair of numbers represents 

the pair of symbol indices in a STBC  
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3.7.3 Set partitioning for super-orthogonal codewords 

This section provides set partitioning for super-orthogonal codes and shows how to maximize 

the coding gain without sacrificing the rate. In constructing codes based on a super-orthogonal 

set, we assign a constituent STBC to all branches diverging from a state. The adjacent states 

are typically assigned to one of the other constituent STBC from the super-orthogonal code. 

Similarly, we can assign the same STBC to branches that are merging into a state. This allows 

us to assure that every pair of codewords diverging from (or merging to) a state achieves full 

diversity because the pair is from the same orthogonal code with same rotation parameter θ. 

Similar to the case of orthogonal designs, set partitioning is done in such a way that the 

minimum CGD should be maximized at each level of partitioning. This set partitioning should 

be done for all possible orthogonal 2×2codewords, for every possible rotation. In other 

words, we need to partition the set of all possible 2×2  matrices generated by the class of code 

in (3.80) with different rotation parameter θ. 

Following the design criteria proposed in [15, Ch: 3] to achieve full diversity, first, we 

partition the set of all codewords into subsets with the same rotation. It means, the first step of 

the set partitioning is only based on the rotation parameter θ. Then, we partition the set of all 

codewords with the same rotation parameter θ as we did for the case of orthogonal designs 

with 0θ = . In what follows, we show that optimal set partitioning for the set of codewords 

with different rotations results in the same set partitioning tree of section 3.7.2.1 with 0θ = . 

Similar to the case of 0θ = , we consider two distinct pairs of constellation symbols 

1 12 / 2 /1 1

1 2( , )j k M j l Mx e x eπ π= = and 2 22 / 2 /2 2

1 2( , )j k M j l Mx e x eπ π= = . We denote the corresponding 

codewords by 1

θ
X  and 2

θ
X , and the corresponding difference matrix by Bθ . For parallel 

transitions in a trellis, we have 

 

                   
1 2 1 2

2 1 1 2

2 / 2 / 2 / 2 /

2 / 2 / 2 / 2 /
.

j k M j k M j l M j l Mj j

j l M j l M j k M j k Mj j

e e e e e e
B BU

e e e e e e

π π π πθ θ
θ

π π π πθ θ− − − −

 − −
= = − − 

 (3.93) 

 

where U represents the rotation matrix in (3.79) and B is the difference matrix for 0θ =  in 

(3.87). To calculate the CGD, we need to compute matrix †.( )A B Bθ θ θ=  by using the 

relation. .B BUθ =  
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                   ( ) ( ) ( )† † † † †. . . . . . . .A B B BU BU BU U B B B Aθ θ θ= = = = =  (3.94) 

 

Therefore, det  det  AAθ = . So the CGD between two codewords is only function of the 

corresponding constellation symbols and will not change whatever be the value of θ. 

Therefore, the optimal set partitioning for 0θ = , presented in section 3.7.2.1, is equivalently 

optimal for other values of θ. 

Figure 3.24 illustrates the set partition of a super-orthogonal code for a BPSK modulation 

using rotation angle as 0 andπ . In this figure, instead of pair of indices for codeword symbols 

we have presented the equivalent 2×2  matrices. The superscripts in figure 3.24 represent the 

angle of rotation. Therefore, the left half of the tree of figure 3.24 is the same as that of the 

tree drew in figure 3.21 for 0θ = . Similarly, the right half of the tree in figure 3.24 is the 

same as that of the tree depicted in figure 3.21 for θ π= . Therefore we can equivalently 

consider fig. 3.21 as a compact representation of set partitioning of a super orthogonal code. 

 

 

Figure 3.24   Set partitioning of super-orthogonal codewords for BPSK, and 0,θ π=   

3.7.4  Super-orthogonal STTCs 

With the help of different examples, in this section we try to show how to use the proposed 

set-partitioning scheme to design full diversity, full rate space-time trellis codes. After the 

illustration of some examples, we lay down some general rules for construction of SOSTTCs 
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for a given trellis and required rate. In all examples of SOSTTCs illustrated below, we assign 

one subset Pi to each branch of the trellis. Each subset is composed of a certain number of 

2×2  orthogonal matrices. Equivalently, each subset corresponds to a rotation parameter and a 

set of possible symbol pairs. The superscript of the subset corresponds to the rotation 

parameter θ. If the superscript of the subset is θ, we transmit 1 2( , , )x x θG , i.e the STBC given 

in (3.80). The set of all the pairs of modulated symbols x1 and x2 for a given rotation 

parameter θ is the same as 0θ = . These subsets are presented in section 3.7.2 and are 

depicted in figures 3.21 and 3.23. For example, 10Pπ  for QPSK modulation corresponds to 

matrix 1 2( , , )x x πG  and the subset P10 in figure 3.23.  

 

Figure 3.25  A 2-states SOSTTC with BPSK, r =1 bits/s/Hz 

 

The left hand side view of figure 3.25 depicts an example of SOSTTC using a 2-states trellis 

with BPSK modulation. This trellis code is constructed from set-partitioning technique given 

in figure 3.24. For a transition from one state to other of the trellis, all the parallel branches 

with their associated subsets, where each subset contains a single codeword, are explicitly 

mentioned. The RHS view of figure 3.25 shows an equivalent and more compact view of the 

code. In this figure, each branch of the trellis which has a subset of two associated codewords 

represents two parallel branches. 

In figure 3.26 we have given an example of SOSTTC with 4-states using BSPK and QPSK 

modulation. The figure contains two different representation of the same code. In LHS view, 

the STBCs 1 2( , , )x x θG  are explicitly mentioned and the subsets are shown in figure 3.21 for 

BPSK modulation and in figure 3.23 for QPSK modulation. In RHS part of the same figure, 

the rotation parameters are indicated in superscripts of the corresponding subset.  
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Figure 3.26  4-states SOSTTC , r =1 bits/s/Hz using BPSK and r = 2 bits/s/Hz using QPSK 

 

In this example, when we use a BPSK modulation with the corresponding set partitioning 

presented in figure 3.21, the rate of the code is 1 bit/s/Hz. We use 1 2( , ,0)x xG  when departing 

from states zero or two, and 1 2( , , )x x πG  when departing from states one or three. Here we 

add that this code uses eight possible 2×2 orthogonal matrices instead of four in case of trellis 

code of figure 3.22. The minimum CGD of such code is 64, as indicated in figure 3.21. 

Now if we use a QPSK modulation, with the corresponding set partitioning in figure 3.26, the 

result is a four-state SOSTTC code with a rate of 2 bits/s/Hz. The minimum CGD in this case 

will be 16 which is greater than 4.  

Some degrees of freedom in choosing the rotations and the sets exist in design of SOSTTCs. 

In other words the codes based on different choices of the rotation parameters and the sets, 

may give the same coding gain. For example, the code with 8-state and 3 bits/s/Hz, depicted 

on LHS of figure 3.27 provides same performances as that of sketched on RHS in same 

figure. This is due to the fact that the number of available 2 2×  orthogonal matrices is more 

than what we needed. One limitation in picking different options is the possibility of a 

catastrophic code. To avoid a catastrophic code, a change of a few input bits should not create 

an infinite number of different symbols. In other words, the same input bits should not create 

the same codeword when starting from different states. To achieve this goal, either the 

rotation parameter θ assigned to different states should be different or the assigned subsets 

should be different. 

One strategy is to pick up a small number of rotation parameters for creating the required 

number of orthogonal matrices and then making a permutation in subsets when same rotation 
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parameter is assigned to various states (figure 3.27, LHS). Another strategy of construction is 

to select a different rotation parameter for each state. Hence there is no need of permutation of 

subsets (figure 3.27, RHS). For designing a SOSTTC with higher states, if it possible to 

combine these two strategies, and by doing so one should be careful to select appropriate 

angles to avoid small CGD. 

 

Figure   3.27  A 8-states SOSTTC , r =3 bits/s/Hz using 8-PSK  

3.7.5 Encoding and decoding 

So far we have considered SOSTTCs for two transmit antennas. Every path in the trellis 

corresponds to a block of two symbols for transmission over two time slots. Therefore, if a 

data frame includes 2Lm bits, L orthogonal blocks corresponding to 2L symbols are 

transmitted. We assign same rotation parameter θ to the branches leaving from a state of 

trellis, and this parameter should be predefined. We consider that the transmission of a frame 

always start at state zero and return to state zero at the end.  

We use the notation, { }1, 2,...,l L∈ to index the transmission of l-th orthogonal block. To 

transmit 2m bits of block l, first of all we select two symbols 1

lx
 
and 2

lx  from the constellation 

using the 2m input bits. For example in case of QPSK, { }1 2, 1, , 1,l lx x j j∈ − − . The rotation 
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parameter used to transmit l-th block is denoted by lθ . The selected symbols and the rotation 

parameter are used for transmission over two time slots. During the first time slot, the 

symbols 1

ll jx e θ and 2

lx  are transmitted from the first and second transmit antennas, 

respectively. Then, at the second time slot, the other two symbols *

2( )
ll jx e θ− and *

1( )lx  are 

transmitted from the first and second transmit antennas, respectively. Similar to the case of 

STTC, the ML decoding finds the most likely valid path that starts from state zero and merges 

to state zero. 

Let  1,

l

jr  and 2,

l

jr  be the received signals at receive antenna j, at the two time slots of block l. 

we have 

                   
1, ,1 1 ,2 2 1,

* *

2, ,1 2 ,2 1 2,( ) ( )

l

l

l l j l l

j j j j

l l j l l

j j j j

r h x e h x n

r h x e h x n

θ

θ

 = + +


= − + +

 (3.95)  

where ,j ih  are channel coefficient from transmit antenna i to receive antenna j, ,

l

i jn  represents 

noise samples for block l. The Viterbi algorithm can be used for the ML decoding of 

SOSTTCs.  

In each transition from one state to other in the trellis of SOSTTC, we find various parallel 

braches. For example we consider a case of 2-state trellis with two parallel branches. All the 

parallel branches of transition from state 1

ls  and 2

ls  at instant l leading to state 1

1

ls + and 1

2

ls +  are 

well indicated in figure 3.28., where a, b and c, d are the calculated branch metric for the 

parallel branches of transition from 1

ls and 2

ls  to 1

1

ls +  respectively.  

 

Figure 3.28  2-states trellis with two parallel branches  
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Let 1

lM be the cumulative metric at node 1

lS and 2

lM at node 2

lS , therefore if we want to search 

the cumulative metric 1

1

lM + at node 1

1

lS + we can calculate in following two ways : 

                   1- 1

1 1 1 2 2min( , , , ) 4 sums and 3 comparisonsl l l l lM M a M b M c M d+ = + + + + ⇒  

                   2- 1

1 1 2min( min( , ), min( , )) 2 sums and 3 comparisonsl l lM M a b M c d+ = + + ⇒  

One can observe that calculating cumulative metric at node 1

1

lS +  using the second method 

needs less operation as compare to first method. In each state of decoding, to reduce the 

decoding complexity first of all we find out the best branch from all parallel branches of the 

transitions, i.e. the branch with smallest branch metric. Then, Viterbi algorithm uses this 

branch to calculate cumulative metric to find out most likely path in the trellis. 

As a general case, the branch metric corresponding to l-th block is given by 

 

                   
2 2ˆ ˆ* *

1, ,1 1 ,2 2 2, ,1 2 ,2 2

1

ˆ ˆ ˆ ˆ( ) ( )
R

l l
N

l l j l l l j l

j j j j j j

j

r h x e h x r h x e h xθ θ

=

− − + − −∑  (3.96) 

 

Expanding the branch metric in (3.96) and removing the constant terms results in the 

following branch metric: 

 

         

( )
,1 ,2 ,1 ,2 ,1

,2 ,1 ,2

ˆ ˆ ˆ* * * * * * *

1, 1 1, 2 1, 1 1, 2 2, 2

1

2
2 2 2ˆ* * * * *

2, 1 2, 2 2, 1 1 2 ,1

1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

R
l l l

j j j j j

R
l

j j j

N
l l j l l l l j l l l l j

j j j j j

j

N
l l l l j l l i i

j j j j

j i

r h x e r h x r h x e r h x r h x e

r h x r h x e r h x x x h

θ θ θ

θ

− − −

=

= =

− + + + −

+ − + + +

∑

∑∑
 (3.97) 

 

This expression is divided in two parts. The first part depends only on 1̂

lx  

 

            [ ( )
,1 ,2

2
2 2ˆ* * *

1 1 1, 1 2, 1 1 ,1

1 1 1

ˆ ˆ ˆ ˆ( ) 2 ( )
R R

l

j j

N N
l l l l j l l l

j j j

j j i

J x r h x e r h x x hθ−

= = =

= − ℜ + +∑ ∑∑  (3.98) 

 

and the second part depends only on 2
ˆlx  
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            [ ( )
,2 ,1

2
2 2ˆ* * *

2 2 1, 2 2, 2 2 ,1

1 1 1

ˆ ˆ ˆ ˆ( ) 2 ( )
R R

l

j j

N N
l l l l l l j l

j j j

j j i

J x r h x r h x e x hθ−

= = =

= − ℜ + +
∑ ∑∑  (3.99) 

 

The first state finds out the pair ( 1̂

lx , 2
ˆlx ) from all the parallel branches which minimize the 

function l l

1 2 1 1 2 2
ˆ ˆ ˆ ˆ( , )= ( )+ ( )l l l l lJ x x J x J x . 

After finding the best parallel branch of all transitions, the ML decoder finds the most likely 

path in trellis. The path metric of a valid path is the sum of the branch metrics for the 

branches that form the path. The most likely path is the one which has the minimum path 

gain. The ML decoder finds the set of constellation symbols 1 2
ˆ ˆ( , )l lx x , 1,2,...,l L= , which 

constructs a valid path and solves the following minimization problem: 

 

                   ( )
1 1 2 2
1 2 1 2 1 2

1 2
ˆ ˆ ˆ ˆ ˆ ˆ, , , ,... ,

1

ˆ ˆmin ,
L L

L
l l l

x x x x x x
l

J x x
=
∑  (3.100) 

 

Shortly, the decoding is done in following two steps 

 

� Find out the best branch among all parallel transitions in the trellis 

� Search for the best path with the smallest path metric among all valid paths. 

3.7.6 Extension to more than two antennas 

In this section, we extend the general approach for designing SOSTTCs to more than two 

transmit antennas.  

 

3.7.6.1 Real constellations 

 

As we discussed in section 3.5.3 that rate one real T TN N×  orthogonal design only exists for 

2,4,8TN = . An example of a 4 4×  real orthogonal design is given in (3.51). To expand the 

orthogonal matrices, similar to the case of two antennas in (3.80), we use the following phase 

rotations: 
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              ( )

31 2 4
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31 2 4
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2 1 4 3

1 2 3 4 1 2 3 4
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4 3 2 1

, , , , , , ,

jj j j
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x e x e x e x e

x e x e x e x e
x x x x

x e x e x e x e

x e x e x e x e
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θθ θ θ
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θ θ θ θ

 
 − − =
 − −
 
− −  

G  (3.101) 

 

Since the constellation is real, for example BPSK or PAM, and we do not want to expand the 

constellation symbols, we pick 0,iθ π= , where 1, 2,3,4i = . This means that we only 

potentially use a sign change for each column. Note that (3.51) is a part of the super-

orthogonal sets which can be obtained in (3.101) for 1 2 3 4 0θ θ θ θ= = = = . 

Similar to the case of two transmit antennas, we use CGD instead of Euclidean distance to 

define a set partitioning. An example of set partition using BPSK constellation is shown 

below in figure 3.29. 

The group of binary numbers given at the roots of the tree, represent 4 indices of transmitted 

symbols. At the first level of partitioning, the highest minimum CGD that can be obtained is 

4096, which is obtained by creating subsets P0 and P1 with transmitted symbol elements 

differing at least in two positions. At the last level of partitioning, we have eight sets P000, 

P001, P010, P011, P100, P101, P110, and P111 with two elements per set that differ in all positions. 

The resulting minimum CGD is 65536.  

 

 

Figure 3.29   Set partitioning for BPSK. Each group of binary numbers represents the 

four symbols indices in a STBC with four transmit antennas 

 

For constructing codes based on super-orthogonal sets, we use the same rule as we developed 

for case of two antennas. We assign a constituent STBC to all branches leaving from same 

0P  
1

P  

00
P  

01
P  

10
P  11

P  

GCD 
Minimum 
 
256 

4096 

P  

4096 

000
P  001

P  

0000,1111 0011,1100 

010
P  

011
P  100

P  101
P  

110
P  

111
P  

0110,1001 0010,1101 0100,1011 0001,1110 0101,1010 

65536 

0111,1000 



Chapter 3                                                                      Space time coding performance analysis and design criteria 

Université de limoges/Xlim 146 

state. The adjacent states are typically assigned to one of the other constituent STBC from the 

super-orthogonal codes. Similarly, we can assign the same STBC to the branches that are 

merging into a state.  

Figures 3.30 and 3.31 show the examples of two-state and four-state SOSTTC, respectively, 

for transmitting r = 1 bit/s/Hz using BPSK constellation.  

 

Figure  3.30  A  2-states code, four transmit antennas;  r =1 bits/s/Hz (BPSK) 

 

Figure  3.31  A  4-states code, four transmit antennas;  r =1 bits/s/Hz (BPSK) 

3.7.6.2 Complex constellations 

As we discussed in section 3.5.3 that the complex OSTBCs with maximum rate of one is only 

the Alamouti code [34]. Rate 3/4 codes are there for 3 and 4 transmit antennas. In this section, 

we discuss how to design full rate complex SOSTTCs for more than two transmit antennas. 

Like that of real constellation, we use the rotation parameter to increase the number of 

orthogonal matrices. We use the following rotations: 

1 2 3 4 0 1( , , , ,0,0,0,0)       x x x xG P    P  

1 2 3 4 1 0( , , , ,0,0,0,0)       x x x xG P    P  

1 2 3 4 0 1( , , , , ,0,0,0)       x x x x πG P    P  

1 2 3 4 1 0( , , , , ,0,0,0)       x x x x πG P    P  

1 2 3 4 0 1( , , , ,0,0,0,0)       x x x xG P    P  

1 2 3 4 1 0( , , , , ,0,0,0)       x x x x πG P    P  
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 (3.102) 

 

Again, we only use rotations that do not expand the constellation. For example, in case of 

QPSK modulation, 1 2 3 4, , ,θ θ θ θ  can only be limited to 0, / 2, ,3 / 2π π π . We can systematically 

design rate 3/4 SOSTTCs for any trellis and complex constellation through set partitioning 

and assigning sets to different branches of the trellis.  

The nice structure of SOSTTCs makes it possible to design rate one codes for specific 

trellises. An example of such a code for four transmit antennas can be seen in [15]. In 

constructing said code, the author in [15] proposes that instead of assigning the same STBC to 

all the branches leaving a given state, different STBCs belonging to a set of super orthogonal 

codes should be assigned to the branches leaving from the same state. 

Another method to design full-diversity, rate one codes for more than two transmit antennas is 

the use of QOSTBCs. Such a method of code construction is called Super-Quasi-Orthogonal 

Space Time Trellis Code (SQOSTTC). For detail examples on SQOSTTCs, the reader is 

referred to [58] and [59] where SQOSTTCs for three and four transmit antennas, respectively 

have been discussed in detail. 

3.7.7 Performance analysis of SOSTTCs 

In this section we illustrate the simulation results of SOSTTCs with two transmit antennas and 

one receive antenna. A slow Rayleigh fading channel has been taken into account. Therefore, 

the channel coefficients are independent complex Gaussian random variables and fixed during 

the transmission of one frame. In analyzing the performances of such codes, simulations are 

driven for the Frame Error Rate (FER) as a function of received SNR. Then we compare the 

obtained results with performances of STTCs. In all simulations we have considered a frame 

length of 130 symbols.  

Figure 3.32 shows the performance graph of the codes presented in figures 3.25 and 3.26, 

using BPSK modulation and the corresponding set partitioning of figure 3.21. Both of these 

codes are rate one and have a spectral efficiency of 1 bit/s/ Hz. 
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Figure 3.32  SOSTTC and STTC performance analysis at 1 bit/s/Hz  

using BPSK; two transmit and one receive antenna 
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Figure 3.33 SOSTTC and STTC performance analysis, 2 bits/s/Hz  

using QPSK, two transmit and one receive antenna 
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Figure 3.33 shows the simulation results of transmitting 2 bits/s/Hz using a QPSK 

constellation. In this figure, 2-state SOSTTC and 4-state SOSTTC, corresponding to the code 

in figures 3.25 and 3.26 respectively, are taken into consideration. In this figure we have also 

shown the result for a 4-state STTC proposed by Chen [50], which is considered the best 

STTC for two transmit antennas. 

3.8  Conclusions 

This chapter starts with the basic concept of space time coding. Different types and techniques 

for construction of space time codes are discussed in detail. Some examples of full rate, 

maximum diversity and higher spectral efficiency codes are also presented. From the upper 

bound expressions of the error probability theory, various criteria of space time codes 

construction over slow and fast fading channels are discussed. In case of slow fading 

channels, the construction criteria are rank and determinant criteria whereas in case of fast 

fading channels, the Hamming and product distance criteria are privileged. In case of large 

number of antennas, the criteria of trace is applicable for both slow and fast fading channels. 

The construction and performances of some codes like STBCs, STTCs and SOSTTCs 

LDSTBCs are discussed in detail. The STBCs can achieve a maximum diversity gain with a 

simple decoding but they do not offer coding gain. We also presented a technique for building 

spectrally efficient STBCs for four transmit antennas scheme.  

The STTCs offer a high coding gain, a good spectral efficiency and an improved diversity at 

the cost of complex decoding. The advantages of these two techniques can be combined to 

obtain a new class of code, i.e. SOSTTC. We also discussed the construction principle of 

SOSTTCs. The chapter is ended by presenting the simulation results of performances analyses 

for different space time codes. 

Although the space time codes can get maximum diversity and rates when used over a MIMO 

channels but unfortunately they may lose their credibility when used over relay networks. So 

in next chapter we develop different technique for construction of space time codes which 

offer same performance over relays networks as they would give over MIMO channels. 
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4.1 Introduction 

In chapter 3, we discussed in detail the construction criteria and the properties of orthogonal 

space time codes. The orthogonality of OSTBCs makes it possible to decouple different 

symbols at receiving end by simple ML decoding. But on the other hand simple ML decoding 

restricts the cardinality of transmitted symbols and imposes a limit on the performance of the 

codes. STBCs do not provide coding gain for more than two transmit antenna schemes, 

whereas STTCs confront the problem of decoding complexity. Linear Dispersion Space Time 

Block Codes (LDSTBCs) do not respect the condition of orthogonality and are not flexible in 

term of number of receive antennas.  

Layering architecture in space time coding [60], [61] has opened a new dimension in 

designing full rate and full diversity codes irrespective of number of transmit/receive antennas 

and signalling constellations. Diagonal Algebraic Space Time (DAST) codes [62] constructed 

from rotated constellation and Hadamard transformation, may achieve full rate and maximum 

diversity for 1, 2 and multiple of 4, number of transmit antennas. Threaded Algebraic Space 

Time (TAST) codes [60] [63] [64] may obtain a code rate R = NT and the diversity order 

equals to T RN N  for any number of transmit/receive antennas.  

In [66],[67] Y. Lie et al. proved that all the so-called fully diverse space time codes are 

fundamentally asynchronous and loose their reliability (viz. diversity and coding gain) at the 

reception when used over distributed cooperative networks. In [68], the authors proposed the 

use of guard bands between successive transmissions to avoid timing offset. The technique 

proposed by [68] may be applicable for short length codes, but for lengthy codewords, the use 

of guard bands dramatically reduce the code rate. In [69] Damen et al. extended the work of 

[63] and introduced the design of TAST codes for unsynchronized cooperative network. The 

distributed TAST codes of [69] preserve the rank of the space-time codewords under arbitrary 

delays at the reception of different rows of the codeword matrices. A lattice base decoder is 

used for decoding the delayed codewords, which is computationally more complex than the 

decoupled decoding. 

In this chapter we propose some easy and useful techniques for construction of delay tolerant 

TAST block codes which retain their maximum diversity under arbitrary delays at receiver. 

Our codes have simple structures and get better performance than existing codes in literature.  
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For the sake of completeness, we begin with some basic review over the construction of 

DAST and TAST codes from [62] and [63]. In section 4.2.3 we present a novel approach for 

construction TAST codes using fewer numbers of threads. Our principal work starts with the 

construction of delto code from section 4.4. The mathematical analyses followed by computer 

simulations confirm that our proposed codes obtain better performances as compare to the 

codes introduced in [69] and [80]. For example the error performance of our code proposed 

for three transmit antennas is improved by about 2 dB at the BER of 
510−
.  

4.2 Algebraic space time coding structure  

Conventional space time codes, discussed in last chapter, obtain full rate and maximum 

diversity for two transmit antennas schemes. For more than two transmit antennas they either 

lose the rate or diversity. With the help of algebraic codes, constructed from layering 

architecture, we can design full rate and full diversity space time codes for any number of 

transmit antennas. In fact in this architecture the individual SISO constituent encoders are 

combined in such a way that the composite space time code could achieve full spatial 

diversity for any number of transmit antennas. 

The layering concept in space time codes for the first time was introduced by G.J. Foschini in 

[60]. Figures 4.1 illustrate horizontal layering (H-BLAST) and diagonal layering (D-BLAST) 

architecture in space time codes, where each colour represents an independent encoder. A 

layer is defined as a part of transmission in which each time slot is allocated to at most one 

transmit antenna. In other words, at each time slot, only one of the transmit antennas is 

utilized by each layer. 

 

Figure 4.1(a)  Horizontal layering architecture in space time coding 
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Figure 4.1(b)  Diagonal layering architecture in space time coding 

 

To be more specific, a layer, in an TN T×  transmission resource array, is identified by an 

indexing set 
TN Tl I I⊂ ×  where (1,..., )

TN TI N=  and t-th-symbol interval on antenna a belongs 

to the layer if and only if ( , )a t l∈ . This indexing set must satisfy the requirement that 

if ( , )a t l∈ and, ( , )a t l′ ′ ∈ , then either  t t′≠ or a a′≠  (i.e., that a is a function of t ). 

A layer with full spatial span NT  and full temporal span l is known as thread [61]. To make 

the above argument more clear, we define a layer/thread li ( 1, 2,..., )i L=  of the codeword, the 

set of the matrix entries in positions 

                   ( ){ }1 1, :1
T

i N
l t i t t T= + − + ≤ ≤            for 1 i L≤ ≤  (4.1) 

where 
TN

⋅    denotes the modulo-NT operation and TL N≤  the total number of threads. An 

example for a system with four transmit antennas and four threads is provided in table 4.1.  

one  can see from the table that each layer extends to all available time slots. Therefore it is 

possible to provide maximum diversity. It is possible to use coding at each layer to improve 

the performance. In fact, since each layer includes transmission from different transmit 

antennas, a space time code can be utilized at each layer. 

 

 

 

 

 

 

Time slot Antenna 1 Antenna 2 Antenna 3 Antenna 4 

1 Thread 1 Thread 4 Thread 3 Thread 2 

2 Thread 2 Thread 1 Thread 4 Thread 3 

3 Thread 3 Thread 2 Thread 1 Thread 4 

4 Thread 4 Thread 3 Thread 2 Thread 1 
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Diagonal layering 
 

Table  4.1 Distribution of threads for a system with NT = L = 4 
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As an example one can see that in case of one thread L = 1, in (4.1) and T = NT , transmissions 

occur only on the principal diagonal of the T TN N× space time matrix. 

The main idea in layering architecture is to assign the constituent codes in each thread li to a 

different algebraic subspace through the appropriate selection of some algebraic numbers in 

such a way that at receiving end one can separate them easily. 

Now suppose that a 1K × information symbol vector 1( ,..., )T

Kx x=x , belong to a given 

alphabet KY   is mapped by a channel encoder γγγγ  into an 1TN T ×  output vector ( )γγγγ x  from 

the output alphabet  TN TS  (i.e. : TN TK →γγγγ Y S ). Then a space time Mapper MMMM  maps each 

encoded symbol vector ( )γγγγ x  to an TN T×  space time block code, ( ( ))=
x

B xγγγγMMMM  where NT 

encoded symbols ,i ts  (i=1,…,NT) are transmitted simultaneously from all transmit antennas at 

time t (t=1,…,T). There is a one to one correspondence between the information symbol 

vector x  and 
x

B . 

4.2.1  Diagonal algebraic space time block codes 

In [62], the authors have proposed a new family of linear STBCs by the use of rotated 

constellation and the Hadamard transformation, and named it as Diagonal Algebraic Space 

Time (DAST) block codes. The DAST block codes get a normalized rate of 1 symbol/s and 

achieve full diversity over NT transmit and NR receive antennas. The DAST block codes 

outperform the orthogonal ST codes for 2TN > . In fact DAST codes are constructed by 

sending the components of a rotated version of the information symbol vector over the 

diagonal of an T TN N×  ST codeword matrix. The rotated constellations guarantee the 

maximum diversity whereas Hadamard transformation the coding gains. DAST codes can be 

developed for 1, 2 and multiple of 4 number of transmit antennas. 

The idea behind the DAST code is not very difficult. First the DAST encoder selects a vector 

of NT modulated complex symbols 1 2, ,...,
T

T

Ns s s =  s . After multiply it with an NT  

dimension full rank rotation matrix M , we get the complex rotated symbols, =x Ms .The 

final DAST codewords are obtained after multiplication the rotated symbols by NT –

dimension diagonal matrix followed by the multiplication with NT –dimension Hadamard 

transformation. 
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Now if we put the above definition into mathematical form, a DAST code can be represented 

by the following generating matrix.  

                   

1

2

0 0

0 0
.

0 0

T T

T

N N

N

x

x

x

 
 
 =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

G H  (4.2) 

where 

                   1 2 1 2, ,..., . , ,...,
T T T

T T

N N Nx x x s s s   =   M  (4.3) 

and 
TNH  is an  T TN N×  Hadamard matrix. 

A 2 2×  Hadamard matrix has the following format 

                   2

1 1

1 1

 
=  − 

H  (4.4) 

Similarly higher dimension Hadamard matrices can be built by an easy method given below. 

                   
1 1

1

1 1

2 2

22 2

2 2

N NT T

N NT T

N NT T

− −

−

− −

 
= = ⊗ − 

H H
H H H

H H
 (4.5) 

where ⊗ denotes the Kronecker product. Here we may clear that the Hadamard transform is a 

real unitary transformation that exists for 1, 2 and all the dimensions multiple of 4, that is why 

DAST codes can be constructed for NT =2 , 4 and multiple of 4 transmit antennas 

In (4.3) 
TNM represent an T TN N×  orthogonal rotation matrix. This rotation matrix should be 

designed so ingenious that it could maximize the minimum product distance and obtain full 

diversity. For 2 and 4 transmit antennas following two rotation matrices for real constellation, 

proposed in [70] can be used  

                   2

0.5257 0.8507

0.8507 0.5257

 
=  − 

M  (4.6) 

 

                   4

0.2012 0.3255 0.4857 0.7859

0.3255 0.2012 0.7859 0.4857

0.4857 0.7859 0.2012 0.3255

0.7859 0.4857 0.3255 0.2012

− − 
 − − =
 
 − − 

M  (4.7) 
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Due to the lattice structure of the DAST block codes, the ML decoding can be implemented 

by the sphere decoder [73] at moderate complexity.  

Example 4.1 

As an example suppose that we have a system with two transmit antennas, then using M2 in 

(4.6) and 2H in (4.4), we get 

                   
1 1 2

2 1 2

0.5257 0.8507

0.8507 0.5257

x s s

x s s

= +
= − +

 (4.8) 

and 

                   
1 1

2

2 2

x x

x x

 
=  − 

G  (4.9) 

 

In figure 4.2, we have compared the performances of DAST code with that of Alamouti code 

with two transmit antennas and one and two receiver antennas using 4-QAM modulation. At 

the same spectral efficiency of 2 bits/s/Hz, the Alamouti scheme shows about 1dB of gain 

over the DAST code but in case of NT > 2, DAST code outperform orthogonal codes. For 

example in figure 4.3 we have evaluated the performance between DAST codes having a 

normalized rate of 1 symbol/s , and the orthogonal codes having a normalized rate of 1/2 

symbol/s with 4 transmit antennas and one receive antenna with different spectral efficiencies. 

 

Figure 4.2 Performances analysis of DAST code 
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Figure 4.3 Performances analysis of DAST code 

 

The two codes are compared at the same spectral efficiency. For example at a spectral 

efficiency of 2 b/s/Hz, the DAST code uses the normalized 4-QAM modulation, and the 

orthogonal code uses the normalized 16-QAM modulation. The DAST code has a gain of 

about 1 dB over the orthogonal code at 2 b/s/Hz. This gain is enhanced when increasing the 

size of constellation. For example, it reaches almost 5 dB at  4 b/s/Hz, and 16 dB at 8 b/s/Hz.  

4.2.2  Threaded algebraic space time block codes 

In [63] a novel class of space time coding system, known as Threaded Algebraic Space Time 

(TAST) code is proposed. In this coding technique different fully diverse SISO constituent 

codes iγ ’s are transmitted in different threads at different algebraic sub-spaces in such a way 

that the composite space time block code achieves the maximum diversity of NTNR and the 

rate equals to NT.  

In this technique of coding, the source information vector is first partitioned into a set of L 

disjoint component vectors ix , 1,...,i L= , L ≤ NT, where each vector ix  indicates a sub-space 

of the TAST code and is called a layer. Each layer ix  undergoes through an independently 
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DAST code with a rotation matrix Mi and constituent encoder iγ . Different layers are 

separated by appropriate algebraic number φ . The composite channel encoder γγγγ  will, 

therefore, consist of L constituent encoders 1 2, ,..., Lγ γ γ  operating on independent information 

streams, and there is a corresponding partitioning of the composite codeword ( )γγγγ x into a set 

of constituent codewords ( )i iγ x . Here we may add that higher rate code can be designed by 

increasing the number of threads. For L ≤ min(NR,NT), it is always possible to design a full-

diversity TAST code [61]. Therefore, to maximize the rate, a good choice for the number of 

threads is L = min(NR, NT). 

If we consider only one thread (i.e. L = 1), transmissions occur only on the principal diagonal 

of the T TN N×  space time matrix (see table 4.1). That is why it is said that TAST codes are 

scaled version of DAST codes with more than one thread.  

As stated in previous section, DAST codes are obtained by rotating an NT-dimensional 

information symbol vector 1 2, ,...,
T

T

Ns s s =  s by an T TN N×  rotation M in such a way that it 

maximizes the associated minimum product distance defined in [71]. 

                   
( ),

1

min
T

T

N

N i

i

d x
′ ′= − ≠

=

= ∏
x M s s s s

 (4.10) 

where s and ′s  belong to the considered multidimensional constellation (QAM or PAM). The 

rotation matrix M (complex or real) is constructed on an algebraic number field ( )θℚ  with θ  

an algebraic number of degree n. [70], [71] and [74] discuss the construction of such rotation 

matrices in detail. 

With an arbitrary number of threads, the TAST codes are constructed by transmitting a scaled 

DAST code in each thread, i.e. 

                   ( )i i i i i i iγ φ φ= =s x M s  (4.11) 

is transmitted over thread li , where Mi is an T TN N×  real or complex rotation that achieves 

full diversity as a DAST code, and the numbers iφ ∈ℂ , i =1,….L, are chosen to ensure full 

diversity and maximize the coding gain for the composite code. If same rotation matrix i.e 

1 2( ... )L= = = =M M M M  is used in all threads, the code is called symmetric TAST code, 

otherwise asymmetric. We denote the TAST codes by , ,TN L RT , where the subscript NT, L, R 



Chapter 4                                                                                                Construction of delay tolerant TAST codes 

Université de Limoges/Xlim 161 

denote number of transmit antennas, layers and code rate, respectively. Since the rate of 

symmetric TAST codes is L symbols per channel use, so one may denote the symmetric codes 

as , ,TN L LT . 

The algebraic numbers 1{ ,...., }Lφ φ , generally referred as Diophantine numbers, are chosen in 

such a way that the efficient separation of different layers at the receiver is assured.  

A TAST code , ,TN L LT  using the full diversity algebraic rotation matrix NTM , a QAM 

constellation carved from [ ]iℤ ,(ℤ  denotes ring of rational integers) and the Diophantine 

numbers  

                   { }1/ ( 1) /

1 21, ,....,T TN L N

Lφ φ φ φ φ −= = =  (4.12) 

achieves full diversity if  ie λφ = and 0λ ≠  is an algebraic number (i.e., φ  is transcendental). 

[63, th.2] 

To make above discussion more clear, here we provide some examples. 

Example 4.2 

                   

1 2 1 2

1 2 2 1

0 0
                 

0 0

Full diversity        Full diversity      Not full diversity 

x x x x

x x x x

     
⊕ ⇒     

       (4.13) 

One can see, the first two codeword matrices are fully diverse but when we combine them, the 

resultant codeword matrix loses its maximum diversity. If we separate the two threads by a 

Diophantine approximation as 

                   
1 2

2 1

x x

x x

θ
θ
 
 
 

 (4.14) 

then (4.14) will be fully diverse if { }21,θ are algebraically independent over the set containing 

x1, x2.  

Example 4.3 

Using the above guidelines for TASTBC construction for NT = 2 transmit and more than one 

receive antenna NR, we have L = 2 [15] 

                   
1 11 2 22

2 21 1 12

x x

x x

φ φ
φ φ
 
 
 

 (4.15) 



Chapter 4                                                                                                Construction of delay tolerant TAST codes 

Université de Limoges/Xlim 162 

where x11 and x12 belong to the first thread, and x21 and x22 to second thread, and 

                   
11 11

1 2

12 12

x s
x

x s

   
= =   
   

M  (4.16) 

and 

                   
21 21

2 2

22 22

x s
x

x s

   
= =   
   

M  (4.17) 

and 11 22,...,s s belongs to the constellation considered. The appropriate selection of M2 and iφ  

are the basic design parameters in construction of TASTBC. A good choice of M2 for complex 

symbols is the following matrix from [71] 

                   
/ 4

2 / 4

11

2 1

j

j

e

e

π

π

 
=  − 

M  (4.18) 

By choosing 1 1φ =  and 1/ 2

2φ φ= , we can pick up the best parameterφ  to maximize the coding 

gain. In this case, the coding gain distance is 

                   11 11 12 12 21 21 22 22min ( )( ) ( )( )CGD x x x x x x x xφ′ ′ ′ ′= − − − − −  (4.19) 

For QPSK, the optimal choice is / 6ie πφ = . Sphere decoding is used for decoding the 

transmitted symbols. 

Example 4.4 

For three transmit antennas, the number of threads depends on the number of receive 

antennas. For NR = 2 receive antennas, we have L = min(NT, NR) = 2 threads while for NR > 2 

receive antennas, we have L = 3 threads. 

For NT = 3 transmit and NR ≥ 2 receive antennas, the following TASTBC is proposed in [63], 

[15]. 

                   

1/3 2/3

11 21 31

2 /3 1/3

32 12 22

1/3 2/3

23 33 13

x x x

x x x

x x x

φ φ
φ φ
φ φ

 
 
 
 
 

 (4.20) 

where 

                   

1 1

2 3 2

3 3

i i

i i i

i i

x s

x x s

x s

   
   = =   
      

M              i=1,2,3 (4.21) 
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and 11 33,...,s s belongs to the constellation used. By using the algebraic rotation from [70], [71] 

and setting /12ie πφ = , the TAST code (4.20) get full diversity. 

For more examples on TASTBCs interested reader is referred to [63] 

In figure 4.4 we have simulated the performance of TAST code with two transmit and two 

receive antennas and compared it with the performances of LDSTBC [46] and V-BLAST [60] 

codes. One can see that that TAST code outperforms both codes.  

 

Figure 4.4 Performances analysis of DAST code 

4.2.3  Block layering approach in TAST codes 

The TAST codes discussed above is a powerful class of space time codes in which different 

layers are combined and separated by appropriate Diophantine numbers φ . In this section we 

present a technique of block layering in TAST codes. In this technique a series of layers (we 

call them block layers) has more than one transmit antenna at the same time instant. Therefore 

as a result we use less number of layers (Diophantine numbers) for four transmit antennas 

scheme, which enhances the coding gain for mentioned scheme. In each block layer we 

incorporate Alamouti transmit diversity scheme which decreases the decoding complexity. 

We start with basic simple Alamouti code. 
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1 2

1 * *

2 1

l

s s
A

s s
φ  

=  − 
               (4.22)              ,                 

3 4

2 * *

4 3

l

s s
A

s s
φ  

=  − 
 (4.23) 

           
5 6

3 * *

6 5

l

s s
A

s s
φ  

=  − 
              (4.24)             ,                   

7 8

4 * *

8 7

l

s s
A

s s
φ  

=  − 
 (4.25) 

 

For 1 l L≤ ≤        (L being the numbers of layers) 

It is not difficult to verify that considering any matrix from (4.22) to (4.25) results a simple 

Alamouti code. An additional advantage of such type of code structure is that they are flexible 

with respect to number of antennas. For example by simple reshuffles of (4.22) to (4.25) we 

get different structure of TAST codes for different set up of transmit/receive antennas. Below 

is a body of a simple program that might be used for this purpose. 

Let NT, NR, L, A, denote number of transmit antennas, number of receive antennas, number of 

layers, and number of Alamouti matrices (given in (4.22) to (4.25)) respectively. 

Initialization, NT, NR 

Condition (No.of transmit & receive antenna) 

Select (value for L and A) 

Process (build TAST codeword matrix with given no. of L ,and NT) 

end 

 

Note that for all the codes we consider Diophantine number lφ  in (4.12). 

In section 4.2.2 we demonstrated some examples of TAST codes, in what follows, we focus a 

special case for NT = 4 and L = 2.  

The necessary condition of layering concept that “more than one antenna cannot transmit 

symbols from a given layer at a given time instant” is relaxed. A group of transmit antennas 

may now belong to a series (block) of layers for a given symbol period. 

A block layer is indexed by a set b, { } { }1 2( , ) 1, 2,..., , ,...,T Tb a t N t t t= ∈ × , where a represents 

the transmit antenna and t the symbol interval. Like TAST codes [63], the idea is to map each 

block layer to a different subspace so that they are as far away from each other as possible. 

With the concept of block layers, the total number of layers becomes less and consequently 

fewer number of Diophantine numbers are required which increases the coding gain. Real or 

complex rotated symbols are used to further increase the coding gain. In each block we use 

Alamouti transmit diversity scheme that ensures simple decoding at the receiver. 

Combining (4.22) to (4.25), we get 
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1 1 2 2

, ,

2 4 1 3

( ) ( )

( ) ( )TN L L

A A

A A

φ φ
φ φ

=T  (4.26) 

or more precisely 

                   

1 1 1 2 2 3 2 4

* * * *

1 2 1 1 2 4 2 3

, ,

1 5 1 6 2 7 2 8

* * * *

1 6 1 5 2 8 2 7

TN L L

s s s s

s s s s

s s s s

s s s s

φ φ φ φ
φ φ φ φ

φ φ φ φ
φ φ φ φ

 
 − − =
 
 − −  

T  (4.27) 

One can see that codeword matrix (4.27) has the same structure as original Alamouti code. 

However, this representation clearly falls within the scope of the threaded coding framework. 

In (4.27) 1φ  and 2φ  are two Diophantine numbers and 1 2 8[ , ,..., ]s s s  is rotated information 

vector to be transmitted. Table 4.2 shows the distribution of the blocks layers for code 

structure derived in (4.27).  

The transmitted symbol lx  corresponding to source information symbol ls  over thl  block 

layer is  

 

                   ( )   ,  1,...,l l l l l l lx l Lφ φ= = =s x M s  (4.28) 

 

where L represents the total number of block layers and  

l l l=x M s  is the rotated information symbol vector, and 

lM  is an T TN N×  real or complex rotation matrix built  

on an algebraic number field θ( )ℚ  with θ  an algebraic 

 number of degree n.  

Decoding 

The received signal can be written as 

                   ,TN LY N= +HT  (4.29) 

where H is the R TN N×  complex Gaussian random channel matrix with element 

,  , 1,2,...,j i Rh j N=  and 1,2,..., Ti N= , and N is a complex Gaussian random noise vector. Let  

                   ( )Ty vec Y=  (4.30) 

be the operation that arranges the matrix TY  in one column vector by stacking its columns 

one after other, and let  

1 1 2 2 

1 1 2 2 

2 2 1 1 

2 2 1 1 

Table  4.2.(Threaded structure in TAST 

block layering  NT =4, L = 2) 
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                   1 2, ,....,
R TN Ny y y =  y  (4.31) 

Simplifying equation (4.28) and (4.29), we get 

                   Nφ′ ′ ′ ′= +y sΗ ΜΗ ΜΗ ΜΗ Μ  (4.32) 

where  

                   ′ =
M A

M
A M

 (4.33) 

where A is a 04×4 matrix, ′M  , φ ′  and ′ΗΗΗΗ  are respectively rotation, Diophantine and the 

channel matrices given in (4.33) , (4.34) and (4.37), and N is obtained by converting 

vec( )TN into column vector by stacking its columns one after other, and s is a vector carrying 

source information symbols. 

 

                   
1

2

φ
φ

φ
 ′ =  
 

 (4.34) 

where 

                   

1

*

1

1

*

1

1

1

*

1

1

*

1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

φ
φ

φ
φ

φ
φ
φ

φ
φ

=  (4.35) 

and 

 

                   

2

*

2

2

*

2

2

2

*

2

2

*

2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

φ
φ

φ
φ

φ
φ
φ

φ
φ

=  (4.36) 
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                   [ ]1 2=  h h′Η  (4.37) 

 

where  

                   

1

* *

1

1

2 3

* *

3 3 1,2,3,4
1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

ij ij

ij ij

ij ij

ij ij i
j

h h

h h
h

h h

h h

+

+

+ +

+ + =
=

  
  −  =   
   −   

 (4.38) 

 

                   

1

* *

1

2

3 2

* *

2 3 1,2,3,4
4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ij ij

ij ij

ij ij

ij ij i
j

h h

h h
h

h h

h h

−

−

− −

− − =
=

  
  −  =   
   −   

 (4.39) 

 

Note that 1h  and 2h  are stacked into column for different values of i. 

Figure 4.5 shows the simulation result of the proposed block layering scheme. For comparison 

we have included the results for TAST codes with two and four layers. For all cases the 

number of transmit and receiver antennas are taken as four. 

  

Figure 4.5 Comparison of different TAST codes 
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4.3 Construction of STBCs from cyclic division 

algebras 

Algebraic codes can also be constructed from cyclic division algebra. Cyclic division algebra 

is itself a vast field, so it is beyond the scope of this report to elaborate it in depth. In what 

follows, we put a bird eye view over the subject and for detail interested reader is referred to 

[17], [65]. 

In fact cyclic division algebra is particular family of division algebras which are built over the 

number fields, with base field ( )iℚ or ( )jℚ , with 2 1i = −  and 3 1j = , which are helpful in 

describing QAM or HEX constellations. 

Before starting our main topic of discussion, here we would like to lay down definitions of 

some basic terms which would help us to understand the main topic without any confusion. 

Number field: Let Q  denotes the set of rational numbers, which can be verified to be a field. 

Other fields can be built from Q . For example the element i, such that 2 1i = − , which is not 

an element of Q  can be used to build a new  field by adding i to Q , and is generally denoted 

by ( )iQ . Similarly adding i to ℝ  can create a new field ℂ . Where ℝ and ℂ  denote real and 

complex fields, respectively. 

Fields extension: Let F and K  be two fields. If ⊆F K , we say that K  is a field extension 

of F , and is denoted by /K F . 

Algebraic fields extension: If all element of K  are algebraic over F , we say that K  is an 

algebraic extension of F . Remember that an algebraic number r is a root of a non-zero 

polynomial equation with degree n , who does not satisfies any other similar equation of 

degree < n , 

Degree of Filed:  Let /K F  be a field extension. The dimension of K  as vector space over 

F  is called the degree of K  over F  , and is denoted by [ : ]K F .  

Galois group: Let 2 1X +  is a minimum polynomial of i over Q , and i is algebraic over Q . 

2 1X +  has exactly two embeddings, i.e. 2 1 ( )( )X X i X i+ = + − and both embeddings are also 

mapping from ( )iQ  to itself, in other words both roots of the minimal polynomial 

2 1X + belong to ( )iQ . Thus ( )/iQ Q  is called Galois extension. The two embeddings 1σ  and 
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2σ  of  ( )iQ  form a group of two elements where 2σ  is invertible. Such a group is called 

Galois group. One may have noticed that Galois group is generated by one element and all the 

other elements of the group are obtained as the power of one element of the group. Such a 

group is called cyclic.  A Galois cyclic group is denoted by σ〈 〉 , where σ  is generator of the 

group.  

4.3.1 Perfect STBCs 

Given a field F , let K be a cyclic extension of F of degree n such that its Galois group 

( )G Gal /= K F�is cyclic, with generator σ .  Then we define a non-commutative algebra  

( )A , ,/ σ γ= K�F  as 

                   1A 1. . ...... ne e .−= ⊕ ⊕ ⊕K K K  (4.40) 

Such that  

*γ ∈F (Non-zero elements of (resp. )F K , ne γ= , ,  ( )x xe e xσ∀ ∈ =K and ⊕  denotes the 

direct sum. 

Such an algebra is called a cyclic algebra [17] and algebra A encompasses the direct sum of 

copies ofK , which means that an elements x in the algebra is written as 

                   1

0 1 1... n

nx x ex e x−
−= + + +  ,            ix ∈K  (4.41) 

Now if we do left multiplication of an element of the algebra by x in the basis{ }2 11, , ,.., ne e e − , 

we get 

 

                   

2 1

0 1 2 1

2 1

1 0 1 2

2 1

2 3 4 1

2 1

1 2 3 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n n

n

n

n

n n n n

n

n n n

x x x x

x x x x

x x x x

x x x x

γσ γσ γσ
σ γσ γσ

σ σ γσ
σ σ σ

−
− −

−
−

−
− − − −

−
− − −

 
 
 
 
 
 
 
 

…

…

⋮ ⋮ ⋮

…

…

 (4.42) 

 

An example for n = 2 
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                   0 1 0 1( )( )xy x ex y ey= + +  

                      0 0 0 1 1 0 1 1x y x ey ex y ex ey= + + +  

                      0 0 0 1 1 0 1 1( ) ( )x y e x y ex y x yσ γσ= + + +  

                      0 0 1 1 0 1 1 0( ( ) ) ( ( ) )x y x y e x y x yγσ σ= + + +  

Since 2e γ= . We represent it in matrix form, in the basis { }1,e  as follows: 

                   
0 1 0

1 0 1

( )

( )

x x y
xy

x x y

γσ
σ

   
=    

  
 (4.43) 

One can see that the structure of (4.43) is same as that of Alamouti code. Of course this 

representation is within the framework of cyclic algebra. So the codebooks for two antennas 

yield: 

                   
0 1

0 1

1 0

( )
,

( )

T
x x

C x x
x x

γσ
σ

   = ∈  
   

K  (4.44) 

In general, if /K F�has degree n, each coefficient ix  of  
1

0

n i

ii
x e x

−

=
=∑   ( , 0,..., 1ix i n= − are 

coefficient of fieldF�) will encode n information symbols. Since the element Ax ∈  has n 

coefficients, it encodes n
2
 information symbols. Codes obtained from cyclic algebras are said 

to be full rate in the sense that they transmit n
2
 signals that encode n

2
 information symbols. In 

other words perfect codes have a diversity order of NTNR and a rate R = NT. Perfect codes 

possess another advantage that with an optimal choice of rotation parameter, their coding 

gains do not decrease with the size of constellation. Full rate perfect STBCs constructed from 

cyclic algebras are possible for 2 2×  , 3 3×  , 4 4×  and 6 6× systems. 

4.3.2 Golden code 

The golden code is 2 2×  perfect code, and was independently proposed by three groups, 

Dayal and Varanasi [75], Yao and Wornell [76] optimized the rotations and Diophantine 

numbers (i.e.  and θ φ ) in a general 2 2×  linear TAST code, whereas Belfiore et al. 

constructed the code from a cyclic division algebra [77]. The name golden was given because 

of the usage of golden number in its construction. 
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Let / ( )iℚK  be a relative extension of degree 2 of ( )iℚ  of the form ( ), 5= iℚK , then 

K can be represented as a vector space over ( )iℚ  [17] 

                   { }1 2 1 25  , ( )x x x x i= + ∈ℚK  (4.45) 

Its Galois group ( )Gal / σ= 〈 〉ℚK �  is generated by : 5 5σ → − . The correspondence 

cyclic algebra of degree 2 is  ( )A / ( , 5) / ( ), ,= i i σ γ= ℚ ℚK . 

With γ = i   and using a suitable ideal ⊆I OK , we get 

                   { }1 2 1 2, ( )x x x x iθ+ ∈ℚOK  (4.46) 

Before shaping, the codeword has the form as: 

                   
1 2 3 4

3 4 1 2( ( )) ( ( ))

x x x x

i x x x x

θ θ
σ θ σ θ

+ + 
 + + 

 (4.47) 

After rotation and normalization by factor of 
1

5
, weget 

                   
1 2 3 4

3 4 1 2

[ ] [ ]1

( )[ ( )] ( )[ ( )]5

x x x x

i x x x x

α θ α θ
σ α σ θ σ α σ θ

+ + 
 + + 

 (4.48) 

where 

� 1 2 3 4, , ,x x x x  are information symbols which can be taken from QAM constellation 

carved from  [ ]iℤ  

� 1i = −  

� 
1 5

1.618
2

θ += =  (Golden number) 

� 
1 5

( ) 1
2

σ θ θ−= = −  

� 1 ( ) 1 ( )i i iα θ σ θ= + − = +  

� ( ) 1 ( ) 1 ( )i i iσ α σ θ θ= + − = +  

Using the relation ( ) 1θσ θ = −  and ( ) 1θ σ θ+ =  we can write (4.48) as 
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1 2 3 4

3 4 1 2

[1 ( )] [ ] [1 ( )] [ ]1

[ ] [1 ( )] [1 ] [ ( ) ]5

i x i x i x i x

i x i x i x i x

σ θ θ σ θ θ
θ σ θ θ σ θ

+ + − + + − 
 − + + + + − 

 (4.49) 

The golden code is full rate (since it contains 4-information symbols) and fully diverse. The 

minimum determinant of the Golden code  
1

5
 

4.4  Delay tolerant distributed TAST codes 

In a distributed cooperative communication system, since the distances between the individual 

transmitting nodes and the receiving nodes may be different, so the performances of STBCs at 

receiving nodes may severely be degraded if timing synchronization is not assured. In this 

section we present some useful techniques for construction of TAST codes, which are delay 

tolerant and hence suitable to be used in distributed cooperative networks. Our proposed 

codes achieve full diversity for arbitrary number of relays, and arbitrary number of 

transmit/receive antennas and input alphabets. 

As we discussed in chapter 2, in a cooperative communication system, the communication 

between source and destination is modelled in two phases. 

In phase-I: the source sends information to intended destination and at the same time this 

information is also received by the relays.  

In phase-II: The relays help the source by forwarding or retransmitting the received 

information to destination. 

Relays use different protocols for processing and re-transmitting the received signal from 

source to destination [21]. In the sequel, we mainly focus on DF relaying protocol.  

Since the relay nodes use common time slots and frequency bandwidth for retransmissions of 

their signals, therefore the relays may expose to overlap both in time and frequency, i.e. each 

node transmits a distinctly coded bit stream, the superposition of which forms a space time 

code. In what follows, the design and performance analysis of such distributed STBCs will be 

our main focus.  

We assume the conventional MIMO system modelled with TN  transmit antennas 

corresponding to N relays and RN  receive antennas at the destination. At time instant t, the 

received signal can be expressed in vector notation as 
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                   t t t tr H x n= +  (4.50) 

where 1RN

tr
×∈ℂ  is received vector at time t, 1TN

tx ×∈ℂ  is modulated signal vector transmitted 

during the t-th symbol interval, R TN N

tH ×∈ℂ  is the channel matrix, and 1RN

tn ×∈ℂ  denotes 

AWGN. The TN T×  modulated space time codeword matrix x is transmitted over T symbol 

intervals by taking tx to be the t-th column of x. The channel is assumed to be quasi-static, i.e. 

the channel transfer matrix tH  is constant over a codeword interval but is random and 

independent from codeword to codeword. We further assume that no errors occur between 

source and relays. 

The nature of processing strategies at relays greatly impact the code design and decoding 

complexity. In the simplest case, the communication system design may be based on a 

postulated worst case in which the delay among different relay transmissions at the intended 

receivers extend the space time codeword transmissions using either arbitrary fill symbols or 

silent guard intervals to cover this worst case timing uncertainty [68]. If the maximum 

possible timing offset among the different relay’s transmissions is L symbol intervals and a 

pad of duration L′  symbols is used by each relay between its coded transmissions, then, as 

shown in figure 4.6(a), the different composite space time codewords never overlap in time. 

Each space time codeword can be decoded individually. For short STBCs, the significant rate 

loss induced by the use of fill symbols or guard intervals can be mitigated, as proposed in 

[68], by allowing the relays to transmit its coded streams one after another. Of course, for 

long block size the code rate loss is an open problem. Figure 4.6(b) depicts a view of 

transmission without guard intervals in which the composite space time codewords may 

potentially interfere with one another, so decoding is more complex.  

 

 

Figure 4.6(a) Transmission using pad between codes words 
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B1          B2 

         C1          C2 

         D1          D2 
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Figure 4.6(b) Transmission without pad between codes words 

4.4.1  Delay tolerance of space time codes 

Now let X  be a STBC for TN  transmit antennas and T channel uses, and assume that 1x  and 

2x are two distinct codewords of X . The diversity order of X  is minimum rank of the 

difference matrix 1 2−x x  over all pairs of distinct codeword in X . This condition is referred 

as baseband rank criterion [38].  

For our purpose, the transmitted symbols will be finitely generated from an underlying finite 

constellation using algebraic number field constructions. Let A  denote the two-dimensional 

constellation chosen from [ ]iℤ or [ ]jℤ , and let ( )i=ℚF or ( )jℚ denote the field of complex 

rational numbers and complex Eisenstein rational numbers
2
, respectively. Let ( )θF be an 

extension field of degree [ ( ) : ]θF F .Then the fundamental alphabet for our constructions is 

given by      

                   
1

0

 :
P

k

k k

k

s u uθ
−

=

 Ω = = ∈ 
 

∑ A  (4.51) 

 

where integer [ ( ) : ]P θ≤ F F . Each transmitted symbol x ∈ x  is from Ω  or, more generally, 

is from its image ( )f Ω under some specified one-to-one mapping :f Ω →ℂ .  

A space time code X  is τ -delay tolerant for the quasi-synchronous cooperative diversity 

scenario, if the difference between every nontrivial pair of codewords in X  retains full rank 

                                                 
2
 Eisenstein numbers are complex numbers of the form z = a+bw. Where a and b are integers and 

2 / 31/ 2( 1 3) iw i e π= − + =  

         A1          A2          A3 

         B1          B2          B3 

         C1          C2          C3 

D1          D2 D3 
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even though its rows are transmitted with arbitrary delays of duration at most τ symbols 

[69],[78].  

To make this definition more clear, suppose that an TN T×  modulated codeword matrix 

∈Xx , consisting of rows 1 2, ,....,
TNr r r , is transmitted cooperatively by N relays, whose 

various transmissions are received with delay profile 1 2( , ,... )
TNδ δ δ∆ = , where iδ denotes the 

relative delay of the signal received from the i-th relay as reference to the earliest received 

relay signal. This is equivalent to receive the max( )TN T δ× + matrix 

                   

max 11

max 22

max

1

2

NNT T

TN

r

r

r

δ δδ

δ δδ

δ δδ

−

−
∆

−

 
 
 

=  
 
 
  

0 0

0 0

0 0

⋮⋮ ⋮
x  (4.52) 

where iδ0 , 1,..., Ti N=  denotes an all-zero vector of length iδ  (0 means no transmission) and 

maxδ  denotes the maximum of the relative delays. Now, a space-time code X  is called τ -

delay tolerant if for all delay profiles ∆  with max ( )δ τ∆ ≤ , the effective space-time code ∆X  

achieves same spatial diversity as that of X . A space-time code is fully delay tolerant if it is 

delay tolerant for any positive integerτ . For ease to write from now on we use the term delto 

as short form for delay tolerant. 

To have a clearer concept on delay tolerant codes, consider the following 3 3×  STBC 

examples consisting of the BPSK modulated matrices [69] 

                   

(-1) (-1) (-1)

(-1) (-1) (-1)

(-1) (-1) (-1)

a b c

c a+c b

b b+c a+c

 
 =  
 
 

x                 , , (2)a b c GF∀ ∈  (4.53) 

By the Hammons–El Gamal binary rank criterion [79], the STBC achieves full spatial 

diversity since the corresponding unmodulated binary codewords are of full rank over the 

finite field GF(2) when nonzero.  

 

                   

a b c

c a c b

b b c a c

 
 = + 
 + + 

s  (4.54) 
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In particular, one notes that  det a b c ab ac bc abc= + + + + + +s , which is equal to zero if and 

only if 0a b c= = = . Suppose that, in the cooperative scenario, the first transmission (first 

row) is delayed by one symbol compared to the second and third transmissions. In this case, 

we say that the relative delay profile for these transmissions is (1,0,0)∆ = . Then the 

unmodulated binary codeword matrices effectively become 

                   

0

0

0

a b c

c a c b

b b c a c

∆

 
 = + 
 + + 

s  (4.55) 

Now suppose, 1a =  and 0b c= = , we get  

                   

0 1 0 0

0 1 0 0

0 0 1 0

∆

 
 =  
  

s  (4.56) 

One can see that (4.56) lost its rank from 3 to 2. Thus, this code is not delay tolerant. 

Similarly the TAST codes obtained from titled-QAM proposed by [76] lose their diversity 

when minimum delay is observed. The TAST codes constructed from cyclic algebra [17], [65] 

are also not delto. Consider the code given in (4.42)  

                   

2 1

0 1 2 1

2 1

1 0 1 2

2 1

2 3 4 1

2 1

1 2 3 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n n

n

n

n

n n n n

n

n n n

x x x x

x x x x

x x x x

x x x x

γσ γσ γσ
σ γσ γσ

σ σ γσ
σ σ σ

−
− −

−
−

−
− − − −

−
− − −

 
 
 
 
 
 
 
 

…

…

⋮ ⋮ ⋮

…

…

 (4.57) 

 

Consider 1 2 1.... 0nx x x −= = = yields codeword matrix of the form 

 

                   

0

0

1

0

0 0

0 ( ) 0

0 0 ( )n

x

x

x

σ

σ −

 
 
 
 
 
  

…

…

⋮ ⋮ ⋱ ⋮

…

 (4.58) 

 

Delaying the first row of (4.58) by one symbol interval produces codeword matrix of the 

following form 
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0

0

1

0

0 0 0

0 ( ) 0 0

0 0 ( )0
n

x

x

x

σ

σ −

 
 
 
 
 
  

…

…

⋮ ⋮ ⋱ ⋮ ⋮

…

 (4.59) 

 

Hence TAST codes constructed from cyclic algebra are also not delay tolerant. 

In what follows, we provide some easy and useful technique for constructing TAST codes 

which are delto for arbitrary delay profile.  

4.4.2  Construction of delto codes  

In this section we try to develop two useful techniques for construction of general STBCs 

based on threads that are delay tolerant. The constructed codes achieve maximal spatial 

diversity and are fully delto. They are also flexible with respect to signalling constellation, 

transmission rate, number of transmit and receive antennas, and decoder complexity. For most 

of the cases, we use the fundamental signalling alphabet Ω  derived from constellation A  in 

accordance with (4.51).  

A layer is a mapping strategy that assigns a particular transmit antenna to be used at each 

individual time interval of a code word [60]. A layer is called a thread when it spans in spatial 

and temporal dimensions in such a way that at each time instant: 1 t T≤ ≤  at most one antenna 

is used [61]. With a minor modification, we relax the condition of antenna usage at each time 

interval and allow signalling intervals to be empty, i.e. no symbol be transmitted from any 

antennas during certain signalling intervals.  

We use a technique very similar to that of Huffman (HM) binary tree. We develop a HM 

binary tree of 1TN +  nodes. We assume that nodes 2 (node 1 is discarded) to 1TN +  of the 

HM binary tree represents the rows 1 to TN of codeword matrix, respectively. We further 

assume that the weights or more precisely Hamming weights of nodes   1, 2, ..., 1i T
m i N= +  are 

such that 
11 ....

NT
i im m m

++ >> >  and 1 1T T TN N Nm m m− +> + + . With these assumptions, we may 

construct the HM tree in a straightforward manner starting from bottom node coming up to 

top node.  
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0 

0 

0 

1 

1 

1 

0 

1 m1=0 

m2=10 

m3=110 

m4=1110 

m5=1111 

m3 

m4 

m5 

m1 

m2 

As an example, consider the Huffman (HM) thread Λ defined for TN  transmit antennas, 

where  

                   
1 ( 1)

2 2 2

T

T

N
HM T T

N T

N N
T N

 + −   = × +         
 (4.60) 

For NT = 3 and 4, we draw the following two HM binary trees to obtain HM threads 

 

 

 

Figure 4.7(a) construction of HM binary                  Figure 4.7(b) construction of HM binary 

                      tree for 3 transmit antennas                                       tree for 4 transmit antennas 

 

Putting the obtained numerical values in matrix form in a row end-to-start manner by non-

zero elements, i.e. after discarding the first node of the tree, the mi+2-th row is started 

immediately from next column in which mi+1-th has its last non-zero element. The process is 

repeated till 1TNm + -th row. The empty positions are filled by zeros, for NT = 3 we get 

 

                   3

1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 1 1

HM

 
 Λ =  
  

 (4.61) 

 

and for NT = 4, we have 

 

                   4

1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1

HM

 
 
 Λ =
 
 
 

 (4.62) 
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As an alternate method, we can develop such type of codeword matrices by using the 

following expression, where the thread HMΛ  has ( , )i j entry as 

                   
( )2 ,71,       log 1

( , )
0 ,  otherwise

jif i j
i j

δ  = + +  Λ = 


 (4.63) 

where the Kronecker delta function is defined as 

                   ,7

1 ,  if 7

0 ,  otherwise
j

j
δ

=
= 


 (4.64) 

Lemma 1: Let HM= ΩΛX  denote the space time code in which the repetition code over 

alphabet Ω  is used over the thread  HMΛ , then X  achieves full spatial diversity and is fully 

delto.  

Proof: One can see that X  encompasses multiples of HMΛ , so all the differences between 

codeword in X  are multiples of HM

∆Λ , hence it is easy to show that HM

∆Λ  is of full rank for all 

delay profiles. One can see that regardless of delay profile ∆ size, the i-th row of HM

∆Λ  always 

contains the same number of ones as its position in that matrix. (i.e. im i= ) whereas the total 

number of nonzero elements in all lower numbered rows is ( 1) / 2i i − . Hence, for each i, there 

is a column in HM

∆Λ  for which the entry in the i-th row is 1 and all the elements above it are 

zeros. The set of these columns for 1i =  to NT  forms an T TN N×  submatrix that is lower-

triangular with ones on the diagonal. Since this submatrix has determinant 1, so we can say 

that HM

∆Λ  is of full rank.  

As we see from the codeword matrices (4.61) and (4.62) that any permutation of rows or 

columns may be done in HMΛ  to produce an equivalent thread yet preserving the properties of 

its parent code, deletion of rows in HMΛ  also would not affect the delto property.  

Now generalizing the obtained results over DAST codes [62], for 1, 2,...
T

HM

Nt T= . Consider 

:tf Ω →ℂ  be a one to one function, and we derive the corresponding thread function matrix 

( )xΛF  for thread HMΛ  by replacing the non-zero element in matrix HMΛ  by the function 

( )xΛF . For example for NT = 4, we have  
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1

2 3

4 5 6

7 8 9 10

( ) 0 0 0 0 0 0 0 0 0

0 ( ) ( ) 0 0 0 0 0 0 0
( )

0 0 0 ( ) ( ) ( ) 0 0 0 0

0 0 0 0 0 0 ( ) ( ) ( ) ( )

f x

f x f x
x

f x f x f x

f x f x f x f x

Λ

 
 
 =
 
 
  

F  

Lemma 2: let X  denote space time code of form ( )a aΛ= Fx  for some a ∈Ω . Then X  

achieves full diversity and is delto.  

Proof: If a and b are two distinct code word of X , then the difference codeword matrix 

( )f aΛ  and ( )f bΛ , will adopt the same form as HMΛ , by replacing 1 for 1, 2,...,
T

HM

Nt T=  by the 

difference matrix ( ) ( )t tf a f b− .  

Let an arbitrary delay profile ∆ be applied to the difference matrix ( ) ( )f a f bΛ Λ−  to produce 

the matrix ∆F , then as proved before the columns 1 2, ,...
TNt t t  in ∆F  form a lower triangular 

matrix with diagonal entries equal to ( ) ( )ti tif a f b−  for 1,2,..., Ti N=  and this matrix has 

determinant 

                   
1

( ( ) ( ))
T

i i

N

t t

i

D f a f b
=

= −∏  (4.66) 

Since all the functions 
it

f  are one to one, so the determinant D will be zero subject to 

condition if a = b, likewise ( )aΛF  will be equal to ( )bΛF  if  a=b. Therefore the matrix ∆F  is 

of full rank. 

Another Method 

The HM method for codeword matrices construction may be lethargic for large value of NT. 

As one can see from code structure, there is a large disparity or unevenness in usage of 

antennas. Here we develop another method of thread matrix construction in which each 

antenna is used for the same number of time. We call this technique of thread construction as 

Uniform Use (UU) generalized threads. In this particular scheme each transmit antenna is 

used twice per codeword. The two non-zero elements of the codeword matrix in row i  

( 1, 2,..., )Ti N=  are spanned by  22i

i

T

i
u

N

− 
= + 
 

3
, where u  is the number of zeros between 

two non-zero elements in row i . The first non-zero element in row i  lies in columns j  

according to table 4.3.  

                                                 
 
3
 For 4

T
N > , plus sign is replaced by minus sign. 

(4.65) 
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For example for NT = 3 and 4, we have the following two matrices, where 2
T

UU

N TT N=  

                   

0 1 1 0 0 0

0 0 0 1 0 1

1 0 0 0 1 0

UU

 
 Λ =  
  

 (4.67) 

                   

0 1 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 1

1 0 0 0 0 0 1 0

UU

 
 
 Λ =
 
 
 

 (4.68) 

The UU design is fully delto and offers full diversity. 

Equivalently we can construct such codeword matrices for UU threads as follow, where (i,j)th 

entry is defined as  

                   
mod 2

( , )

1 ,  if log

0 ,  otherwise

NT
del j

i j

i j δ  = +  Λ = 


 (4.69) 

where delmod is an ordinary modulo function, and is not taken into account when kronecker 

delta function jδ is active, and the Kronecker delta function is defined as 

                   
( 2) ,    

0 ,     otherwise

i i

j

P if P j
δ + =

= 


 (4.70) 

where, P is a vector of first T elements of safe prime numbers
4
. 

 

 

 

Lemma:3 Let UU= ΩΛX  be the 
T

UU

T NN T×  space 

time code in which the repetition code is used over 

the thread UUΛ . Then X  achieves full spatial 

diversity and is fully delto.    

Proof:  as one can see from code structure, it is easy to show that for any delay profile ∆, the 

i-th row of the thread matrix cannot be expressed as a linear combination of rows 1 through 

1TN − . 

                                                 
4
 A safe prime is a prime number of the form 2p + 1, where p is also a prime. For example first 7 Safe prime no. are [5,7,11,23,47,59,83]  

 

I/J 3TN =  4TN =  5TN =  

1 2 2 2 

2 4 4 6 

3 1 5 4 

4 - 1 5 

5 - - 1 

Table 4.3. (Positions of leading nonzero elements in  

respective UU threads matrices) 
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The two non-zero elements in i-th row are separated by u zero elements, where u given by: 

                   2

2

0 if  1

2 +1  if  

 2   if  2   

i

i T

i

T

i

u i N

i N

−

−

=
= =
 ≤ <

 (4.71) 

or more precisely 

                   22i

i

T

i
u

N

− 
= + 
 

 (4.72) 

Furthermore the leading non-zero element in row 1i  and 
TNi  always starts from column 2j and 

1j  respectively, whereas the second non-zero element of same rows lies in 2j  and 2 1TNj −  

respectively. Likewise for the rest of the rows the second non-zero elements lay in 

position ij ϖ+ , where ϖ is position of leading non-zero element in that row. 

We know that in the linear combination of even weight rows, if the leading non-zero element 

in row TN  lies in column ij , then there must be an odd number of rows having a non-zero 

element in column ij [69]. Therefore we say that our proposed codeword is fully delto.  

4.4.3 Construction of multiple thread delto code 

In previous section, we discussed different techniques for construction of single thread delto 

codes. To improve the rate of these codes, we combine multiple delay tolerant threads in 

single codeword matrices. There are more than one ways of packing such threads. Here we 

discuss two methods similar to [69], as follows: 

A-cyclic shift method 

This method has a very simple and interesting structure. We use to shift each column of 

thread matrix kΛ  ( )1, 2,..., Tk N= by one element in thread matrix 1k +Λ . We repeat the process  

till the last thread 
TNΛ .  

Let kΛ be thread k  for TN  transmit antennas and T vector channel uses. Then for NT = 4 and 

1 ( 1)

2 2 2

T

T

N
HM T T

N T

N N
T N

 + −   = × +         
, for thread matrix 1

HMΛ  , we get 
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                   1

1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1

HM

 
 
 Λ =
 
 
 

 (4.73) 

For ease to understand, we replace the non-zero elements in their respective locations by 

letters a, b ,c and d in 1Λ  to 4Λ  respectively. Hence the above codeword matrix is represented 

by:  

                   

1,1

2,2 2,3

1

3,4 3,5 3,6

4,7 4,8 4,9 4,10

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

HM

a

a a

a a a

a a a a

 
 
 Λ =
 
 
  

 (4.74) 

 

After making a shift by one element in each column in above codeword matrix, we get 

 

                   

1,7 1,8 1,9 1,10

2,1

2

3,2 3,3

4,4 4,5 4,6

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

HM

b b b b

b

b b

b b b

 
 
 Λ =
 
 
  

 (4.75) 

 

After making a shift by one element in each column in above codeword matrix, we get 

 

                   

1,4 1,5 1,6

2,7 2,8 2,9 2,10

3

3,1

4,2 4,3

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

HM

c c c

c c c c

c

c c

 
 
 Λ =
 
 
  

 (4.76) 

 

After making a shift by one element in each column in above codeword matrix, we get 

 

                   

1,2 1,3

2,4 2,5 2,6

4

3,7 3,8 3,9 3,10

4,1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

HM

d d

d d d

d d d d

d

 
 
 Λ =
 
 
  

 (4.77) 



Chapter 4                                                                                                Construction of delay tolerant TAST codes 

Université de Limoges/Xlim 184 

Equivalently we can construct such a codeword threads matrix 
T

HM

NΛ  by following expression 

 

                   
( )2 ,7

,

1,       od log
( )

0 ,  

TN j

i j k

if i Xm j k
a

otherwise

δ  = + +  = 


 (4.78) 

 

where Xmode is ordinary modulo function with a small difference that it replaces the output 

zero by TN  and the Kronecker delta function is defined as 

 

                    ,7

1      7

0,   
j

if j

otheriwse
δ

=
= 


 (4.79) 

 

From this packing of threads, we get an TN T×  space time code X  which transmits TN  

repetition codes simultaneously, one per thread by selecting the code codewords.  

 

                   1 1 2 2 .....
T TN Na a a= Λ + Λ + + Λx  (4.80)  

For  1 2, ,...,
TNa a a ∈Ω  arbitrary.  

For HM thread structure when NT = 4 and 
1 ( 1)

2 2 2

TN

T T
T

N N
T N

 + −   = × +         
 , by packing 

threads 1

HMΛ to 4

HMΛ  we get 

 

                   

a d d c c c b b b b

b a a d d d c c c c

c b b a a a d d d d

d c c b b b a a a a

 
 
 =
 
 
 

x  (4.81) 

Similarly for NT = 3, we have 

 

                   

a c c b b b

b a a c c c

c b b a a a

 
 =  
  

x  (4.82) 
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and when NT = 2, we have 

 

                   
a b b

b a a

 
=  
 

x  (4.83) 

 

For UU Threads 

UU threads can also be packed in the same way as we did above for HM threads. 

For  NT = 4 and T = 2NT, we may write (4.68) as: 

 

                   

1,2 1,3

2,4 2,6

1

3,5 3,8

4,1 4,7

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

UU

a a

a a
A

a a

a a

 
 
 = Λ =
 
 
  

 (4.84) 

 

                   

1,1 1,7

2,2 2,3

2

3,4 3,6

4,5 4,8

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

UU

b b

b b
B

b b

b b

 
 
 = Λ =
 
 
  

 (4.85) 

 

                   

1,5 1,8

2,1 2,7

3

3,2 3,3

4,4 4,6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

UU

c c

c c
C

c c

c c

 
 
 = Λ =
 
 
  

 (4.86) 

 

                   

1,4 1,6

2,5 2,8

4

3,1 3,7

4,2 4,3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

UU

d d

d d
D

d d

d d

 
 
 = Λ =
 
 
  

 (4.87) 

 

and packing all the four threads into a single codeword matrix, we get 
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b a a d c d b c

c b b a d a c d

d c c b a b d a

a d d c b c a b

 
 
 =
 
 
 

x  (4.88) 

For  NT = 3, we get 

                   

b a a c b c

c b b a c a

a c c b a b

 
 =  
  

x  (4.89) 

and  for  NT = 2, get 

 

                   
b a a b

a b b a

 
=  
 

x  (4.90) 

B. Algebraically packed multiple-threads method 

The codes constructed in section 4.4.2 are individually delto and fully diverse, but when they 

are packed together in a single codeword matrix in a way as we did above, it is not guaranteed 

that they are delto and fully diverse because the threads may interact in a detrimental way 

[69]. The remarkable work of El Gamal and Damen [63] can be used to make it sure that the 

packed codewords are delto and fully diverse.  

Let Λ  be the HM thread for NT transmit antennas and 
1 ( 1)

2 2 2

TN

T T
T

N N
T N

 + −   = × +         
 

vector channel uses. Let ,  :i jf Ω →ℂ  be a one-to-one function for each choice 1,2,..., Ti N=  

and 1, 2,...,j T= . For each thread kΛ , derived from Λ  in accordance with (4.78), form the 

threaded matrix function ( )k xF  whose ( , )i j th  entry is , ( ). ( , )i j kf x i jΛ  [69, th:12].  

Assuming φ  be an algebraic number of suitable degree over the number field ( )θF , we build 

an TN T×  space time code X  with TL N≤  active threads consisting of all modulated 

codewords of the form 

 

                   1

1 2 1 1 2 2( , ,..., ) ( ) ( ) .... ( )L

L L La a a a a aφ φ −= + + +F F Fx  (4.91) 

 

for 1 2, ,..., La a a ∈Ω arbitrary.  
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Then X  achieve full spatial diversity and is fully delto. 

Proof: Assume a and b are two distinct codewords and are subjected to the delay profile ∆. 

Then ∆
x  is given as  

                   ( ) ( )1 2 1 2, ,..., , ,...,L La a a a a a∆ ∆ ∆ ′ ′ ′= −x x x  

 

                      1

1

( , )
L

i

i i i

i

a aφ − ∆

=

′=∑ F  (4.92) 

 

where 

                   ( , ) ( ) ( )i i i i i i ia a a a∆ ∆ ∆′ ′= −F F F  (4.93) 

Let m denote the largest index for which m ma a′≠  but i ia a′=  for i m> . Then  

                   1

1

( , )
m

i

i i i

i

a aφ∆ − ∆

=

′=∑ Fx  (4.94) 

The non-zero elements in main diagonal form a submatrix, and are given by 

 

                   1

, ,( ) ( )
i i

m

i j m i j mf a f aφ −  ′−              for  1,2,..., Ti N=  (4.95) 

 

This sub-matrix has determinant  

 

                   ( )( 1)

, ,

1

( ) ( ) ( ) ( )
T

T

i i

N
N m

i j m i j m

i

D G f a f aφ φ φ −

=

′= + −∏  (4.96) 

 

where ( )G φ  is a polynomial in φ  over ( )θF  of degree ( 1)TN m< − . Since the functions , ii jf  

are all one-to-one and m ma a′≠ , (4.96) is a nontrivial polynomial in φ  of degree 

( 1)TN m − over ( )θF . 

By design choice, φ  is not the root of any nontrivial polynomial of degree ( 1)TN m −  over 

( )θF . Hence ( ) 0D φ ≠ , so the matrix is of full rank. We conclude that X achieves full 

spatial diversity and is fully delto. 



Chapter 4                                                                                                Construction of delay tolerant TAST codes 

Université de Limoges/Xlim 188 

Code rate 

In the multiple thread code construction, the rate of the space time code X  is given as [69]  

 

                   2log
PL

R
T

= A    bpcu (4.97) 

 

Thus we can make X  full rate by proper selection of parameters L and P for a given set of 

codes parameters NT, NR, and T. In other words, we make the modulation parameters flexible 

to match the specified spatio-temporal structure. This selection of modulation parameters can 

be done in different ways, a natural choice is to take L =min (NT,NR) and P=T.  

C. Packing of threads (when L < NT) 

In previous section, we developed a technique of packing the single thread codeword matrices 

into TL N=  threads codeword matrices. Selecting fewer threads than TN  may increase the 

spectral efficiency of the code without increasing the constellation size by reducing the code 

interval length, but for that we have to relax the condition of antenna usage per time unit 

within each thread. In this section we pack the threads in such a way that we allow the usage 

of more than one antenna per time unit within each thread.  

I. HM thread  

We denote the smallest code length for transmission of L threads from TN  transmit antennas 

by ,T

SHM

N LT . From section 4.4.2 we know that for HM threads the total number of channel uses is 

1 2 .... ( 1) / 2
TN T Tn n n N N+ + + = + , where  in i= .  

Now let 1 2, ,..., Lη η η  denote permutation assigning the values 1 2 ....
TNn n n+ + +  to the transmit 

antennas 1,2,..., TN  then according to [69], we may write 

 

                   
1 1

,
, ,..., 1,2,...,

1

min max ( )
T

L T

L
SHM

N L i
m N

i

T m
η η η

η
= =

 =  
 
∑  (4.98) 

From (4.98) for L=1 , we have. 

 

                   ,1T

SHM

N TT N=  (4.99) 
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and for L > 1, we have 

 

                   ,

1 ( 1)

2 2 2

T

T

N

T T
T

SHM

N L

T

N N
L N

T
N

   + −   × +            =  
 
  

 (4.100) 

For NT = 4 and L = 1 and 2, we have for example 

 

  4,1

0 0 0

0 0

0

SHM

a

a a

a a a

a a a a

 
 
 =
 
 
 

x        (4.101)            4,2

SHM

a b b b b

a a b b b

a a a b b

a a a a b

 
 
 =
 
 
 

x  (4.102) 

 

II- UU thread  

We denote the smallest code length for transmission of L threads from TN  transmit antennas 

by ,T

SUU

N LT . From section-4.4.2 we saw that for UU thread, the maximum expansion between 

two channel uses is: 2 1TN − . so we may deduce that 

 

                   ( ), 2 1
T

SUU

N L T

T

L
T N

N

  
= + −  

  
 (4.103) 

 

For NT = 4 and L = 1, we have for example:  

 

                   4,1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

SUU

a a

a a

a a

a a

 
 
 =
 
 
 

x  (4.104) 

 

For NT = 4,  L = 2 
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                   4,2

0 0 0

0 0 0

0 0 0

0 0 0

SUU

b a a b

a a b b

a a b b

a b b a

 
 
 =
 
 
 

x  (4.105) 

 

When NT = 4 and L = 4 

 

                   4,4

SUU

d a c c a b d b

c b d d b a c a

b c a a c d b d

a d b b d c a c

 
 
 =
 
 
 

x  (4.106) 

 

Example for NT = 3 and L = 3 

 

                   3,3

SUU

b a a c b

c b b a c

a c c b a

 
 =  
  

x  (4.107) 

 

Such type of codes will work efficiently for larger value of L. For smaller value of L, we can 

delete zero columns (i.e. columns whose all elements are zeros) in (4.104) and (4.105), even 

after amputation of these columns the obtained codes still retain their properties of full 

diversity and delto.  

4.4.4 Construction of delto codes with minimum 

length 

The delto codes discussed in previous sections have a codes length TT N> , therefore for 

large size TN  their performances may decrease. In this section we extend our work and 

propose a technique for constructing delto codes with minimum delay length TT N= . Our 

construction method is based on tight packing of the HM threads developed in subsection 

4.4.2. 
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In fact, an TN T×  MIMO codeword matrix is a strand of algebraic SISO codes separated by 

Diophantine numbers φ , and the difference between distinct T TN N×  submatrices is the 

diversity order of the codeword matrix [63, th: 4]. 

In [80], the authors show that the minimum length delto full diversity STBC X  can be 

constructed by multiplying the designed thread codeword matrix with an TN T×  matrix C, 

whose entries are re-arrangement of ∈c C , (C  being a full diversity one dimensional block 

code of length NTT ). 

Of course the main problem in designing such type of codes is the design of thread codeword 

matrix. In [80], the authors have proposed two types of such matrices for two and three active 

relays. In what follows, we discuss a new technique for construction of thread codeword 

matrices, and by simulation results at the end of this chapter, we show that our proposed 

codes get better performance than the codes presented in [80]. 

Construction of thread codeword matrix  

Recall from section 4.4.2 for HM generalized thread construction, here we develop a simple 

construction method for 
T

ML

N TT N=  as follows:  

� For row i , ( 2,..., )Ti N= , define a complex number φ  whose power of 2 is simple 

addition of non-zero elements of row i in HM single thread codeword matrix.  

� In the first row of HM single thread codeword matrix, the i -tuples of zeros above the 

non-zero elements in i-th row ( 2,..., )Ti N=  are replaced by 1iφ − . 

� Fill the empty positions by 1.  

For example for NT = 3, the 3

HMΛ matrix from (4.61) can be represented as 

 

                   

2

4

3

8

1

1 1

1 1

ML

φ φ
φ

φ

 
 Λ =  
 
 

 (4.108) 

 

For ease to understand, let ,i jα  represents the location of φ  in (4.108). 

We show that by an appropriate selection of parameters φ  and one dimensional codeC , the 

resulted space-time code X  is delto for every delay profile.  
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Now let Ξ  denote those NT-tuples of ,i jα in MLΛ , which are taken from different rows, and let 

maxαφ  be the highest number used, where max 2 TNα = .  

Lemma 4: Let ML= ΩΛX  denote the space time code in which the repetition code (with 

codewords of length 2

TN ) over alphabet Ω  is used as one dimensional SISO code in 

conjunction with thread MLΛ , then X  achieves full spatial diversity and is fully delto, if the 

following conditions are satisfied.  

�  φ  is chosen as an algebraic or transcendental number such that the numbers 

{ }max1, ,...,
αφ φ  are algebraically independent over the field ( )θF  that contains Ω  [74]. 

� The parameters ,i jα  are chosen such that the summation of the entries of every NT-

tuples in Ξ  is unique. 

Since the one-dimensional code C is a repetition code, it is sufficient to show that ML

∆Λ is full 

rank for every arbitrary delay profiles 1 2( , ,.., )
TNδ δ δ∆ = . To verify the diversity order of the 

code, we need to find out the largest square submatrix in ML

∆Λ which is full rank.  

� First column is chosen such that it contains a non-zero element in row NT. 

� j-th column is chosen such that it contains a power of φ  at i-th row ( , 2,..., 1)Ti j N= −  

� As the last step chose NT-th column (for which we have only one choice). 

� Arrange the columns in reverse order. 

As a result, the obtained T TN N×  submatrix has at least one thread L with all non-zero 

elements containing NT elements of power φ .  

If the sum of the powers of φ  in L threads is m , then the determinant of the submatrix is 

given by  

 

                   ( ) ( ) mdet D g φ φ= +  (4.109) 

 

where ( )g φ is a polynomial of φ  with degree less than or equal to maxα . Since m is unique, 

( )g φ  does not contain any term in mφ . Therefore, if the numbers{ }max1, ,...,
αφ φ  are 

algebraically independent over ( )θF , det(D) is not zero and the code achieves full diversity 
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for every delay profile. Due to the nice structure of our codes, we may use more than one 

method to verify the determinant of the largest T TN N×  submatrix, for example we can use 

(4.96) or the same proof as developed in lemma 1.  

Examples 

In this section we lay down some examples of delto distributed TAST codes. Like that of 

TAST codes [63], the construction of delto codes are carried out by appropriate selection of 

the SISO codes and the numbers φ . Full-diversity SISO codes over fading channels can be 

constructed by applying full-diversity unitary transformations to input signals drawn from 

lattices or multidimensional constellations carved from a ring. In [74], Damen et al. provided 

a systematic way of constructing T TN N×  fully diverse unitary transformations over the field 

that contains the elements of information symbols, as. 

                   .=X R U  (4.110) 

where R is the P×P discrete Fourier transform with entries 

 

                   ( , ) 1/ .exp( 2 .( 1).( 1) / )W k l P j k l Pπ= − − −        ,  , 1, 2,..,k l P=  (4.111) 

 

and U is a vector of the following form  

 

                   1/ 2/ ( 1) /diag[1, , ,..., ]P P P Pθ θ θ −U =  (4.112) 

 

where θ  is a transcendental or an algebraic number of suitable degree to guarantee the full 

diversity of the rotation [74].  

For NT = NR = L =2, P = T = 3, using HM thread construction guideline from section-4.5.2, we 

get delto distributed TAST code as follow 

                   
1 2 3

1 2 3

x y y

y x x

φ φ
φ
 
 
 

 (4.113) 

where 1 2 3( , , ) .Tx x x= =X RU  and 1 2 3( , , ) .Ty y y=Y = RV , ,U V are two 3 1×  vectors of QAM 

symbols and 3R  is optimal 3 3×  complex rotation according to (4.110). By setting 
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exp(2 /15)iφ π= , this code provides the rate of 2-QAM symbols per channel use and achieves 

a transmit diversity of 2 regardless of the delay profile. 

Another example is the well known Alamouti code, which is not delto, but its extension to 

HM threads makes it delto, as shown below in (4.114) 

 

                   

* *

1 2 2

* *

2 1 1

x x x

x x x

 − −
 
 

 (4.114) 

 

For NT = 3, NR = L = 2, P = T = 5, we have the SUU STBC (4.107) with codeword matrix 

 

                   

1 2 3 5

2 3 4

1 4 5

0

0 0

0 0

x y y x

x x y

y x y

φ φ
φ

φ φ

 
 
 
  

 (4.115) 

 

where 1 2 3 4 5( , , , , ) .Tx x x x x= =X RU  and 1 2 3 4 5( , , , , ) .Ty y y y y=Y = RV , ,U V are two 5 1×  

vectors of QAM symbols and 5R  is optimal 5 5×  complex rotation according to (4.110). By 

setting exp(2 / 25)iφ π= , this code provides the rate of 2-QAM symbols per channel use and 

achieves a transmit diversity of 3 regardless of the delay profile. 

In (4.115), the number of active threads L are less than the number of transmit antennas NT. 

One can re-construct (4.115) to get a delto distributed TAST code of smaller latency by 

reducing the number of zeros in transmission. 

Thus for NT = 3, NR = L = 2, P = 5 and T = 4, one has the STBC with codeword matrix 

 

                   

1 2 3

2 4 5

1 3 4 5

0

0

x y y

x y x

y x x y

φ φ
φ

φ φ

 
 
 
  

 (4.116) 

 

In this case, by setting exp(2 / 36)iφ π= , code (4.116) guarantees full diversity irrespective of 

the delay profile. This code provides the rate of 2.5-QAM symbols per channel use.  
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Although the above examples are independently deriven from the thread construction 

techniques discussed in section 4.4.2 and 4.4.3, they resemble to that of Damens’ codes 

designed in [69], and it was also confirmed by simulation results that they have exactly same 

performances as that of [69], but we hope that the simplicity in construction techniques of our 

codes may reduce hardware complexity. 

In section 4.4.4, we introduced a technique for T = NT codeword matrix construction. Where 

the information symbols are chosen from [ ]iℤ  for NT = 2 with a required full-diversity 

rotations of 4 4× , and [ ]jℤ  when NT = 3, with a required full-diversity rotations of size 9 9× .  

For NT = NR = T = 2, we get a delto STBC codeword matrix of the form  

                   
1 3

4

2 4

x x

x x

φ
φ

 
 
 

 (4.117) 

where 1 2 3 4( , , , ) .Tx x x x= =X R U , U is 4 1×  vectors of QAM symbols and 4R  is optimal 4 4×  

complex rotation according to (4.110). By setting exp(2 / 3)iφ π= , this code provides a rate of 

2-QAM symbols per channel use and achieves a transmit diversity of 2 regardless of the delay 

profile among its rows. 

The noiseless received signal from (4.117) can be written as:  

 

                   
1 3

2 2 4

2 4 2 2

.
.

.R RN N

x x

x x

φ
φ× ×

×

 
=  

 
Z H  (4.118) 

 

We remark that: 1 1 4 4 1(1,:) .x × ×= R U , 2 1 4 4 1(2,:) .x × ×= R U , 3 1 4 4 1(3,:) .x × ×= R U  and 

4 1 4 4 1(4,:) .x × ×= R U  with  4 1 1 2 3 4[ , , , ]Tu u u u× =U denoting the vector of transmitted QAM 

symbols. Hence, we have : 

                   
1 4 4 1 1 4 4 1

2 2 4

1 4 4 1 1 4 4 1 2 2

(1,:) . . (3,:) .
.

(2,:) . . (4,:) .R RN N

φ
φ

× × × ×
× ×

× × × × ×

 
=  

 

R U R U
Z H

R U R U
 

                          
1 4 4 1 1 4 4 1

4

1 4 4 1 1 4 4 1 2 2

2

(1,1) (1,2)

(2,1) (2, 2) (1,:) . . (3,:) .
.

(2,:) . . (4,:) .

( ,1) ( , 2)
R

R R N
N N

φ
φ

× × × ×

× × × × ×

×

 
    =     
 
  

⋮ ⋮

H H

H H R U R U

R U R U

H H

 (4.119) 
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This can be equivalently written in columns as : 

                   

1 4 4 1 1 4 4 1

4

1 4 4 1 1 4 4 1

1 4 4 1 1 4 4 1

1 4 4 1

(1,1) (1,1). (1,:) . (1,2). (2,:) .

(1, 2) (1,1). . (3,:) . (1, 2). . (4,:) .

( ,1) ( ,1). (1,:) . ( , 2). (2,:) .

( , 2) ( ,1). . (3,:) . ( , 2).

R R R

R R R

N N N

N N N

φ φ

φ

× × × ×

× × × ×

× × × ×

× ×

= +

= +

= +

= +

⋮

Z H R U H R U

Z H R U H R U

Z H R U H R U

Z H R U H
4

1 4 4 1. (4,:) .φ × ×R U

 (4.120) 

 

This can be summarized in matrix form as : 

 

                   

1 4 1 4 4 1

4

1 4 1 4 4 1

1 4 1 4 4 1

4

1 4 1 4

(1,1) ( (1,1). (1,:) (1, 2). (2,:) ).

(1, 2) ( (1,1). . (3,:) (1, 2). . (4,:) ).

( ,1) ( ( ,1). (1,:) ( , 2). (2,:) ).

( , 2) ( ( ,1). . (3,:) ( , 2). . (4,:) )

R R R

R R R

N N N

N N N

φ φ

φ φ

× × ×

× × ×

× × ×

× ×

= +

= +

= +

= +

⋮

Z H R H R U

Z H R H R U

Z H R H R U

Z H R H R 4 1. ×U

 (4.121) 

 

           

1 4 1 4

4

1 4 1 4

1 4 1 4

4

1 4 1 42. 1

(1,1) (1,1). (1,:) (1, 2). (2,:)

(1,2) (1,1). . (3,:) (1, 2). . (4,:)

( ,1) ( ,1). (1,:) ( , 2). (2,:)

( , 2) ( ,1). . (3,:) ( , 2). . (4,:)
R

R R R

R R RN

N N N

N N N

φ φ

φ φ

× ×

× ×

× ×

× ××

+  
   + 
  =
  + 
  +  

⋮ ⋮

Z H R H R

Z H R H R

Z H R H R

Z H R H R

4 1

2. 4

.

RN

×

×




 
 
 
 
 

U  (4.122) 

 

So, the transformation of the transmit constellation is obtained by multiplication with the 

equivalent matrix : 

                   

1 4 1 4

4

1 4 1 4

1 4 1 4

4

1 4 1 4

(1,1). (1,:) (1, 2). (2,:)

(1,1). . (3,:) (1, 2). . (4,:)

( ,1). (1,:) ( , 2). (2,:)

( ,1). . (3,:) ( , 2). . (4,:)

R R

R R

N N

N N

φ φ

φ φ

× ×

× ×

× ×

× ×

+ 
 + 
 =
 + 
 + 

⋮

H R H R

H R H R

B

H R H R

H R H R

 (4.123) 

Note that when the number of equations is less than the number of unknowns it is necessary to 

use a decision feedback equalization (DFE) to help the sphere decoding to converge. For 

example it is possible to proceed like this: 



Chapter 4                                                                                                Construction of delay tolerant TAST codes 

Université de Limoges/Xlim 197 

At each time the first nm transmitted symbols in a packet correspond to the last nm decoded 

symbols in the last packet. The matrix B can be partitioned in the following way: 

 

                   1 2 2 2 (4 ) 2 4[[ ] ,[ ] ]
R m R m RN n N n N× × − ×=B B B  (4.124) 

 

and the transmitted symbol vector can be partitioned as: 1 4 1[ ; ]
m mn n× − ×U = C D  ; where 1mn ×C  is 

the last nm decoded symbols in the last packet, we have thus : 

 

                   1 2. .= +Z B C B D  (4.125) 

 

and we can run the sphere decoding algorithm with the following transformation: 

1' .→ −Z Z B C and →U D  The new system involves the calculation of vector D of lower 

size and this can be done with the classical sphere decoding algorithm.  

In the case of delay tolerant TAST codes:  

We suppose that first row of codeword matrix (4.118) is delayed by one symbol period. In 

this case the new space time code can be written as: 

 

                   
1 3

4

2 4

0 .

. 0

x x

x x

φ
φ

 
 
 

 (4.126) 

 

The noiseless received signal can then be written:  

                   
1 3

3 2 4

2 4 2 3

0 .
.

. 0R RN N

x x

x x

φ
φ× ×

×

 
=  

 
Z H  (4.127) 

We can remark that: 1 1 4 4 1(1,:) .x × ×= R U , 2 1 4 4 1(2,:) .x × ×= R U , 3 1 4 4 1(3,:) .x × ×= R U  and 

4 1 4 4 1(4,:) .x × ×= R U . Hence, we have : 

 
1 4 4 1 1 4 4 1

3 2 4

1 4 4 1 1 4 4 1 2 3

0 (1,:) . . (3,:) .
.

(2,:) . . (4,:) . 0R RN N

φ
φ

× × × ×
× ×

× × × × ×

 
=  

 

R U R U
Z H

R U R U
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1 4 4 1 1 4 4 1

4

1 4 4 1 1 4 4 1 2 3

2

(1,1) (1,2)

(2,1) (2, 2) 0 (1,:) . . (3,:) .
.

(2,:) . . (4,:) . 0

( ,1) ( , 2)
R

R R N
N N

φ
φ

× × × ×

× × × × ×

×

 
    =     
 
  

⋮ ⋮

H H

H H R U R U

R U R U

H H

 

 (4.128) 

This can be equivalently written in column: 

 

         

1 4 4 1

4

1 4 4 1 1 4 4 1

1 4 4 1

1 4 4 1

4

1 4 4 1 1 4 4 1

(1,1) (1, 2). (2,:) .

(1, 2) (1,1). (1,:) . (1,2). . (4,:) .

(1,3) (1,1). . (3,:) .

( ,1) ( , 2). (2,:) .

( , 2) ( ,1). (1,:) . ( , 2). . (4,:) .

(

R R

R R R

N N

N N N

φ
φ

φ

× ×

× × × ×

× ×

× ×

× × × ×

=

= +
=

=

= +

⋮

Z H R U

Z H R U H R U

Z H R U

Z H R U

Z H R U H R U

Z 1 4 4 1,3) ( ,1). . (3,:) .R RN N φ × ×= H R U

 (4.129) 

 

This can be summarized in matrix form as : 

         

1 4

4

1 4 1 4

1 4

1 4

4

1 4 1 4

3. 1

(1, 2). (2,:)(1,1)

(1,1). (1,:) (1, 2). . (4,:)(1,2)

(1,3) (1,1). . (3,:)

( ,1) ( , 2). (2,:)

( , 2) ( ,1). (1,:) ( , 2). . (4,:)

( ,3) ( ,
R

R R

R R R

R N R

N N

N N N

N N

φ
φ

φ

×

× ×

×

×

× ×

×

 
  + 
 
  = 
 
 

+ 
 
 

⋮ ⋮

H RZ

H R H RZ

Z H R

Z H R

Z H R H R

Z H

4 1

1 4 3. 4

.

1). . (3,:)
RN

φ

×

× ×

 
 
 
 
 
 
 
 
 
 
  

U

R

 (4.130) 

For NT = NR = T = 3, we get delto STBC codeword matrix of the form from  

                   

2

1 4 7

4

2 5 8

8

3 6 9

x x x

x x x

x x x

φ φ
φ

φ

 
 
 
 
 

 (4.131) 

where 1 2 9( , ,....., ) .Tx x x= =X R U , U is a 9 1×  vector of information symbols belonging to a 

4-array constellation in [ ]jℤ  and 9R  is optimal 9 9×  complex rotation according to (4.110). 

By setting exp( /12)iφ π= , this code provides the rate of 3 symbols per channel use and 

achieves a transmit diversity of 3 regardless of the delay profile. 
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Simulation results 

Like that of TAST codes, we use sphere decoder for decoding our delto codes. In case of 

delay profiles where the received signals may contain some unknown equations, are dealt by 

the use of minimum mean square error-decision feedback equalization (MMSE-DFE) 

processing, as explained above and originally can be found in [81], [82].  

The simulation figures illustrated below show bit and symbol error rates as function of 

0/bE N  in decibels, which is adjusted as follows. 

                                                    10

0 0

10logb s

dB dB

E E
R

N N
= −  

where sE is the average signal energy per receive antenna and R is the code rate in bit per 

channel use (bpcu). 

Figure 4.8, shows the bit error rate (BER) and symbol error rate (SER) of the delto distributed 

TAST code of (4.113) with and with out delay. We repeat that the code parameters for the 

code (4.113) are NT = NR = L =2 and P=T = 3. In case of delay, the first row is shifted by one 

symbol right to the second row. 

 

Figure 4.8  Performance of the delto codeword matrix (4.113) with and with out delay  
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In figure 4.9, we simulated the bit error rate (BER) and symbol error rate (SER) performances 

of delto distributed TAST code (4.115) with and without delay. The code parameters of 

(4.115) are NT = 3, NR = L = 2, and P = T=5. For delay profile, the first row is shifted by one 

symbol right to the second row 

 

Figure. 4.9 Performance of delto codeword matrix (4.115) with and with out delay 

 

Figure 4.10 Performance of delto codeword matrix (4.116) with and with out delay 
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In figure 4.10, we considered the bit error rate (BER) and symbol error rate (SER) 

performances of delto distributed TAST code of (4.116) with and without delay. The code 

parameters of (4.116) are NT = 3, NR = L = 2, P = 5, and T = 4. For delay profile, the first row 

is shifted by one symbol right to the second row  

Figure 4.11 shows the bit error rate (BER) and symbol error rate (SER) performances for 

codeword matrix (4.117) without delay. The results are compared with the result of the well 

known golden code [77] and the code proposed in [80]. The associated code parameters of 

(4.117) are 2T RN N T= = = .  

 

Figure 4.11 Performances of delto codeword matrix (4.117) without delay (perfect 

synchronization) with two transmit two receive antennas (4 bpcu) 

 

Figure 4.12 shows the bit error rate (BER) and symbol error rate (SER) performances for 

codeword matrix (4.117) with delay. For delay case, we shifted the first row by one symbol 

interval as shown in (4.126). The results are compared with the result of well known golden 

code [77] and the code given in [80]. One can see that at high SNR’s our proposed codes 

(4.117) get better performances. 

Figure 4.13 shows the bit error rate (BER) and symbol error rate (SER) performances for 

codeword matrix (4.131) without delay. The associated code parameters (4.131) are NT =T= 3, 
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and NR = 2. The results are compared with the result of the code given in [80]. From the 

figure, one can observe that our proposed code get better performance by 0.5 dB at the BER  

of 310− .  

 

Figure 4.12 Performances of delto codeword matrix (4.117) with delay (asynchronous relays) 

with two transmit two receive antennas (8/3 bpcu) 

 

Figure 4.13 Performances of delto codeword matrix (4.131) without delay (perfect synchro:) 

with 3-transmit 2-receive antennas(8/3 bpcu due to DFE equalization) 
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Figure 4.14 shows the bit error rate (BER) and symbol error rate (SER) performances for 

codeword matrix (4.131) with delay. The code parameters for (4.131) are NT = T = 3, and 

NR=2. For delay case, we shifted the first row by one symbol interval. The results are 

compared with that of the code given in [80]. 

Figure 4.15 shows the bit error rate (BER) and symbol error rate (SER) performances for 

codeword matrix (4.131) with delay. Delay profile is obtained by shifting the first row in 

(4.131) by one symbol to the right of other rows. The associated code (4.131) parameters are 

NT= NR=T=3. The results are compared with that of the code in [80].  Our proposed delto 

distributed TAST code (4.131) get better performances of 1 dB at a BER of 510− . 

Figure 4.16 shows the bit error rate (BER) and symbol error rate (SER) performances for 

codeword matrix (4.131) without delay. In this case the associated code (4.131) parameters 

are NT= NR=T=3. The results are compared with that of the code in [80]. One can see that the 

error performance of our proposed delto distributed TAST code (4.131) is improved by about 

2dB at the BER of 510− . 

 

 

Figure 4.14 Performances of delto codeword matrix (4.131) with delay (asynchronous relays) 

with 3-transmit 2-receive antennas (3 bpcu due to DFE equalization) 
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Figure 4.15 Performances of delto codeword matrix (4.131) with delay (asynchronous relays) 

with three transmit three receive antennas (9/2 bpcu) 

 

 
Figure 4.16  Performances of delto codeword matrix (4.131) with out delay (perfect 

synchronization) with three transmit three receive antennas (6 bpcu) 
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4.5  Conclusion  

One of the recentl discussed problems of the cooperative communication is the 

asynchronization of the relaying nodes. Due to the asynchronous transmissions a traditionally 

designed structure of distributed space-time code is destroyed at the reception and it loses the 

diversity and coding gain. This point is thoroughly explained in [66]. In a delay constrained 

cooperative system, the data from different relays reach the destination after different delays. 

It is shown in [69] that the received delayed distributed space-time block code loses diversity 

for all well-known codes. The first reported delay tolerant codes for asynchronous cooperative 

network were proposed in [66]. In [69], delay tolerant distributed space-time block codes 

based on threaded algebraic space-time (TAST) codes [63] are designed for unsynchronized 

cooperative network. The distributed TAST codes of [69] preserve the rank of the space-time 

codewords under arbitrary delays at the reception of different rows of the codeword matrix. 

Within the framework developed in [69], we introduced some easy and useful techniques for 

the construction of delto distributed STBCs which are delto for arbitrary delay profile. Like 

their brethren codes, our proposed codes are flexible with respect to constellation size, 

number of receive/transmit antennas. We introduced two useful techniques for constructing 

threads codewords matrices. The packing of different threads into a single codeword matrix 

provides different codes structures to be used over cooperative networks with different setup 

of relays and antennas. In term of error rates, the codes with TT N>  developed in (4.113) to 

(4.116) do not outperform the codes introduced by Damen in [69] but we hope that their 

simple structures may reduce the hardware complexity. The codes with TT N=  developed in 

(4.117) and (4.131) outperform the existing codes in literature without sacrificing decoding 

complexity and other nice characteristics. For example the error performance of the code 

proposed in (4.131) is improved by about 2 dB at the BER of 510−  when NT = NR = 3, and 0.5 

dB at 310− when NT = NR = 2 as compared to most recent published delto codes in [80]. 

In the beginning of this chapter we briefly discussed DAST codes. For completeness we also 

discussed perfect and golden codes constructed from cyclic algebra. We have also introduced 

a block layering concept in TAST codes which gains better performance, in addition of 

reducing the decoding complexity.  



Chapter 4                                                                                                Construction of delay tolerant TAST codes 

Université de Limoges/Xlim 206 

Due to the lattice structure of algebraic space time codes, the ML decoding can be 

implemented by the use of sphere decoding, hence in next chapter we review the concept of 

sphere decoding, its complexity and performance.  

 

 



 

 

Chapter 5  
 

   Sphere decoding 
 



 

 



Chapter 5                                                                                                                                           Sphere decoding 

Université de Limoges/Xlim 209 

5.1 Introduction 

In communication systems where the signals are transmitted using digital modulation like 

QPSK or QAM, the signal space diagram forms a regular grid. On certain applications such a 

grid can be described with the help of lattice theory [83]. In doing so, the maximum-

likelihood detection is equivalent to the task of finding the closest point in a lattice.  

Actually the maximum likelihood decoder for multi-receivers operates by comparing the 

received signal vector with all possible noiseless received signals corresponding to all 

possible transmitted signals. Under certain assumptions, a receiver may achieve optimal 

performance in the sense of maximizing the probability of correct data detection. However, 

the complexity of this decoder increases exponentially with the number of transmit antennas, 

and hence makes its usage almost impossible for large array size and high order digital 

modulation schemes.  

The principal idea of the Sphere Decoder (SD) [84] is to reduce the computational complexity 

of the maximum likelihood detector by only searching over the noiseless received signals that 

lie within a hypersphere of radius d around the received signal. Normally SD algorithm is 

implemented as a depth first tree search, where each level in the search represents one 

transmit antenna's signal. Figure 5.1 depicts the tree of sphere decoding. If at a given level, a 

given branch exceeds the radius constraint, then that part of the tree is removed from further 

consideration. 

 

Figure 5.1 Sample tree generated to determine lattice points in a four dimensional sphere 

k = 1 

k = 2 

k = 3 

k = 4 
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5.2  Introduction to lattice 

The concept of lattice is very important in shape coded modulation (SCM). Talking loosely, a 

lattice is a set of points that have some regularness. For example figure 5.2 demonstrates two 

examples of general two dimensional lattices and are denoted by 2ℤ , where ℤ  shows the 

field consisting of integers and 2 is the dimension order of the lattice. 

Now let, 1 2, ,..., mh h h  be m linearly independent vectors of the n-dimensional Euclidean space 

nℝ ,  with  m n≤ . A lattice is the set Λ of vectors  

 

                   1 1 2 2 .... m mλ λ λ+ + +h h h ,    iλ ∈ℤ  with   i = 1,…,m (5.1) 

 

The set of vectors { }1 2, ,..., mh h h is called the basis of Λ , and the generator matrix of Λ is 

given by 

                   [ ]1 2.....T

mΛ =G h h h  (5.2) 

 

Hence for any point ∈ Λx , there exist a unique m∈ℤu  such that Λ=x uG  

 

Figure 5.2   2-dimensional lattices and their generator matrices. 

1 

1 

3

2
 

2 -Latticeℤ  Hexagonal lattice 

1 0

0 1

 
=  
 

G  
3

0
2

1
1

2

 
 
 =
 
 
 

G  
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5.2.1 Real representation of a complex system 

The lattices briefly discussed above are real, i.e. the points are taken from nℝ , whereas in a 

communication system, one usually has to deal with complex systems as well. To circumvent 

this contrariety, it is possible to use an equivalent real-valued model. Taking the complex 

valued n-dimensional model 

                   = +r Hx N  (5.3) 

the real model has 2n-dimensions and can be obtained by separating real and imaginary parts.  

 

                   
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ℜ ℜ ℑ ℜ ℜ       
= +       ℑ −ℑ ℜ ℑ ℑ       

r H H x N

r H H x N
 (5.4) 

5.3  System model 

We consider the multi-antenna system of NT transmitters and NR receivers over the Rayleigh 

fading channel, and for simplicity here we consider the case when  R TN N= . 

The received signal at each time instant is given by 

                   = +r Hx N  (5.5) 

where 1( ,...., )
T

T

Nx x=x denotes the transmitted vector which belongs to the QAM 

constellation carved from ( )iℤ , N is 1RN ×  complex column vector AWGN with a variance 

2σ per dimension.  

Equivalently, one can write the system (5.5) as  

                   ( ) ( )T T′  ℜ ℑ ≜r r r  

                      
( ) ( )

( ) ( )

T T

T T

 ℜ ℑ ′= + −ℑ ℜ 

H H
u N

H H
 

                       H
′= +uG N  (5.6) 

 

where [ ] 2
( ) ( ) TN= ℜ ℑ ∈ℤu x x    and  2( ) ( ) TNT T′  = ℜ ℑ ∈  ℝN N N  
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5.4  Sphere decoding algorithm 

Initially the sphere decoding algorithm was proposed to determine the shortest vector in a 

given lattice [84], [85]. Its applications in digital communication systems and vector 

quantization were introduced in [86] where the problem of decoding lattice codes over the 

Gaussian channel was shown to be equivalent of finding the shortest vector problem.  

In this sequel we consider the case that T RN N≤  within the framework provided by [87]. For 

the case when T RN N> , the interested reader is referred to [88]. 

The principle of the sphere algorithm is to search only those lattice points that lay in the 

jurisdiction of a sphere with radius d around the given vector r, thereby reducing the search 

space and, hence the required computations. Figure 5.3 shows a pictorial view of above 

definition. 

 

Figure 5.3.  Schematic of the SD, only the points inside the circle are searched 

 

Note that the lattice points will lie inside the sphere of radius d subject to condition, if 

                   
22d ≥ −r Hx  (5.7) 

Every T RN N× (with T RN N≤ ) channel matrix H with linearly independent columns can be 

factorized as [85] 

 

                   
 

=  
 0

R
H Q  (5.8) 

d 
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where Q is R RN N×  and orthogonal, R is T TN N× , upper triangular and 0 is an 

( )R T TN N N− × matrix of zeros. Further partitioning [ ]1 2  =Q Q Q , where 1Q  is R TN N×  and 

2Q  is ( )R R TN N N× − . We get  

 

                   

22
†

2 1

1 2 †

2

[   ]d
    ≥ − = −    

    0 0

R RQ
r Q Q x r x

Q
 

                        
2 2

† †

1 2= − +Q r Rx Q r  (5.9)  

 

where †( )⋅ denotes Hermitian matrix transposition. In other words 

 

                   
2 2

2 † †

2 1d − ≥ −Q r Q r Rx  (5.10) 

 

Note that the first term is independent of x, defining †

1=y Q r  and 
2

2 2 †

2d d′ = − Q r , the 

integer least square problem (5.7) is then reduced to the following integer least square 

problem:  

 

                   
22d ′ ≥ −y Rx  (5.11) 

 

(5.11) can expanded as 

 

                   

1,1 1, 2 1, 1 1,
1 1

2, 2, 1 2,2 2

1, 1 1,1 1

,

T T T

T T T T T TT T

T T T TT T

T TT T

N N N

N N N N N NN N

N N N NN N

N NN N

r r r ry x

r r ry x

r ry x

ry x

− −

− − − −− −

− − −− −

    
    
    
    ≈    
    
    
        

⋯

⋱ ⋮ ⋮ ⋮⋮ ⋮

 (5.12) 

 

Since R is upper triangular, we can write (5.11) as 
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2

2

,

1

T TN N

i i j j

i j i

d y r x
= =

′ ′≥ −∑ ∑  (5.13) 

 

where  ,i jr′  denotes an ( , )i j entry of R.  The above inequality can be expanded as 

 

                   
2 2

2

, 1 1, 1 1 1, ...
T T T T T T T T T T TN N N N N N N N N N Nd y r x y r x r x− − − − −′ ′ ′ ′≥ − + − − +  (5.14) 

 

The first term in (5.14) depends only on NT-th entry 
TNx  of lattice point x, the second term 

depends on the entries 1{ , }
T TN Nx x − , and so on.  

We can see that a necessary condition for Rx  to lie inside the hypersphere of a given radius d 

is  
2

2

,T T T TN N N Nd y r x′ ′≥ − , which is equivalent to the following condition for entry 
TNx : 

 

                   
, ,

T T

T

T T T T

N N

N

N N N N

d y d y
x

r r

   ′ ′− + +
≤ ≤   ′ ′      

 (5.15) 

 

where  ⋅   denotes rounding to the nearest larger element in the set of numbers that spans the 

lattice, and ⋅   denotes rounding to the nearest smaller element in the set of numbers that 

spans the lattice.  

Furthermore for each integer 
TNx  satisfying (5.15), define 

2
2 2

1 ,T T T T TN N N N Nd d y r x−′ ′ ′= − −  and 

1| 1 1,T T T T T TN N N N N Ny y r x− − −′= − , a stronger necessary condition can be found by looking at the 

first two terms in (5.14), which leads to 1TNx − belonging to the interval 

 

                   
1 1| 1 1|

1

1, 1 1, 1

T T T T T T

T

T T T T

N N N N N N

N

N N N N

d y d y
x

r r

− − − −
−

− − − −

   ′ ′− + +
≤ ≤   ′ ′      

 (5.16) 

 

Following the above procedure, we can obtain the intervals for 2TNx −  and so on until 1x . Then 

we would be able to determine all the lattice points in the hypersphere of radius d.  
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Algorithm 

   Input : R , d , r , †

1y Q r=   and [ ]1 2  Q Q Q=    

   Output  : x or null  

1. set k = NT  

    
2

2 2 †

2TNd d Q r′ = −  ,  | 1T T TN N Ny y+ =  

2.(set bounds for kx ) 

   
,T T

k

N N

d
z

r

′
=  

   | 1( ) ( )k k kUB x z y + = +  , | 1( ) 1k k kx z y + = − + −   

3.(increase kx ) 1k kx x= + . 

  If ( )k kx UB x≤  go to 5; else go to 4 

4.(increase k ) 

   1k k= + ;  

  if 1Tk N= +  terminate algorithm;   

    else go to 3   

5.(decrease k )  

   if 1k =  Go to 6 

  else 1k k= −  , | 1 ,1

TN

k k k k j jj k
y y r x+ = +

′= −∑  , 
2

2 2

1 1| 2 1, 1 1k k k k k k kd d y r x+ + + + + +′ ′ ′= − −    

  and go to 2. 

6. solution found. Save x and its distance from r,     

  
22 2

1 1 1,1 1TNd d y r x′ ′ ′− + −  and go to 3. 

 

The subscript | 1k k +  in above algorithm is used to denote the received signal ky  adjusted 

with the already estimated symbol components 1,..., Tk Nx x+ . To help us to understand the 

algorithm in a better way, we draw the flowchart of the algorithm in figure 5.4, followed by a 

work example. 
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Figure 5.4  Flowchart of SD algorithm 

 

Work example 5.1 

To have a better concept about SD, here we present a simple work example. Considering (5.7) 

and using BPSK modulation with level {1, 1}x ∈ −  for three binary input data, suppose we 

have channel matrix as 

0.97 0.09 0.29

1.51 1.68 1.13

1.41 1.14 0.4

− − − 
 = − − − 
  

H  

Input : R, d, y, Q 

k = NT 
2

2 2 †

2TNd d Q r′ = −  

| 1T T TN N Ny y+ =  

,/
T Tk N Nz d r′=  

| 1( ) ( )k k kUB x z y + = +   

 | 1( ) 1k k kx z y + = − + −   

1k k= −  

| 1 ,1

TN

k k k k j jj k
y y r x+ = +

′= −∑  
22 2

1 1| 2 1, 1 1k k k k k k kd d y r x+ + + + + +′ ′ ′= − −  

1k kx x= +  

Solution found 

update radius d 

1k k= +  

 k =1 

k=NT 

Terminate algorithm 

( )k kx UB x≤  

No 

No 

No 

Yes 

Yes 

Yes 
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and the output signal is 

0.747

2.49

2.40

 
 =  
 − 

r  

Searching for the most likely bit sequence using SD by taking its radius as d = 1 

The problem to be solved can be formulated as 

{ }2
ˆ argmin= −x r Hx  

Decomposing H in to QR factors 

 

0.425 0.838 0.341 2.28 1.85 1.12

0.661 0.545 0.515 0 0.84 0.37

0.618 0.006 0.787 0 0 0.367

−   
   = = − −   
   −   

H QR  

 

We search for all bit sequences for which  

                     
2

d− <r Hx  

From (5.9), the above equation can be written as 

 

2 2† † d′− = − <Q r Q QRx r Rx  

 

†

3.45

0.72

0.35

− 
 ′= = − 
 − 

Q r r  

 

Now we have 

 

2

1

2

3

3.45 2.28 1.85 1.12

0.72 0 0.84 0.37

0.35 0 0 0.367

x

x d

x

−     
     − − <     
     − −     
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From (5.14) we know 

 

2 2 2

3 2 3 1 2 3
0.35 0.367 0.72 0.84 0.37 3.45 2.28 1.85 1.12x x x x x x− + + − − − + − − − −  

For 3 bits sequence we may have 8 possible different sequences. 

Now we fix one bit position and see whether it exceeds the value of d or not. In case if any bit 

alone exceed d, then we do not further consider that bit and so we limit our search space. e.g. 

fixing x3 , we have 

 

                         
2

30.35 0.367 0.717

1

x

× 
 = × = − + = 
 − 

x   

 

This is less than d, so we save it and fix x2 or x1, and see whether it exceed the value of d or 

not. So in this way we test different sequences and discard the specific bit value not satisfying 

the condition. In this way our search space will be limited. 

For example 

 

1

1 2.76

1

− 
 − = 
 − 

 

 

has a value greater than d, so this cannot be a possible sequence, and is discarded. 

5.5  Sphere decoding of algebraic ST codes 

In this section we consider the sphere decoding of algebraic space-time (ST) codes 
,TN L

T  

discussed in previous chapter. 

The decoding is applied to the scheme where the number of receive antennas are equal to the 

number of transmit antennas, i.e. NR = NT. 
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The lattice sphere packing representation of the algebraic space-time codes is done in two 

steps: 

� Represent 
,TN L

T  by its equivalent uncoded system (NT , NR)→ (LNT , LNR),  

� Represent the resulted uncoded system by its lattice form (5.6): n = 2LNT. 

 

Example 5.2 

Consider the system with,   NT = NR = L = 2,  the received signal is given by 

 

                   
11 12 1 3

21 22 2 4

h h y y

h h y y

−   
= +   
   

r N  (5.17) 

 

where N is a 2×2 matrix of complex Gaussian noise and [ ]1 2 3 4 4
, , ,

TT Ty y y y y= = R x , 
4

R is 

optimal rotation matrix of dimension 4, and [ ]1 2 3 4, , , QAMx x x x x= ∈  the uncoded symbols 

vector. 

The equivalent uncoded system is given by 

 

                   

11 12

11 12

4

21 22

21 22

0 0

0 0
( ) . ( )

0 0

0 0

T T T

h h

h h
Vec R vec

h h

h h

 
 
  ′= +
 
 
  

r x N  

 

                              
4 4

( )T Tvec′= +H R x N  (5.18) 

 

where ( )Tvec r  is the vector representation of the matrix Tr  by putting all its columns one 

after another in one vector column.
4
′R  is the rotation matrix 

4
R  with the third line multiplied 

by -1. The received signal can be written as 

 

                   ( )T Tvec′ ′ ′= = +r r H x N  (5.19) 
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where 
4 4

′ ′=H H R  of rank 4 almost always, since the rank of 
4

H  is 4 almost always. 

Finally, the lattice sphere packing representation of the resulted system is given by 

 

                   ( )  ( )T T′′ ′ ′ ℜ ℑ ≜r r r  

                    
( ) ( )

( ) ( )

T T

T T

′ ′ ℜ ℑ ′′= + ′ ′−ℑ ℜ 

H H
u N

H H
 

                     ′ ′′= +
H

uG N  (5.20) 

 

where [ ] 2
( )  ( ) TLN= ℜ ℑ ∈ℤu x x  , and 2( )  ( ) TLNT T′′ ′ ′ = ℜ ℑ ∈  ℝN N N . The dimension 

increase for lattice representation is NT = 2 → 2LNT = 8. 

Work example 5.3 

Suppose a system with NT = NR = L = 2. The two threads are separated by the algebraic 

number iφ =  

The two binary symbols with possible values { 1,1}x ∈ −  are mapped into one thread. So in 

one block we may transmit 4 bits of information.  

The rotation matrix for two threads is  

 

       
1

1

i

i

 
=  
 

M  

 

and the channel matrix is assumed as  

 

0.58 0.37 0.32 0.37

0.061 0.56 0.27 0.55

i i

i i

− + − 
=  + − + 

H  

 

The threads are mapped as follows: 

 

Threads-I= {1, 2} meaning that in first interval, stream 1 is transmitted from antenna 1 and in 

the second interval from antenna 2. 
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Threads-II= {2, 1} meaning that in first interval, stream 2 is transmitted from antenna 2 and in 

second interval from antenna 1. 

Hence the matrix H for first thread is 

 

1

0.58 0.37          0

          0 0.051 0.56

0.32 0.37         0

        0 0.27 0.55

i

i

i

i

− + 
 + =
 −
 − − 

H  

 

and for second thread 

 

2

0.051 0.56        0

          0 0.58 0.37

0.27 0.55         0

         0        0.32 0.37

i

i

i

i

+ 
 − + =
 − −
 − 

H  

The combined matrix is 

 

0.58 0.37 0 0.051 0.56 0

0 0.051 0.56 0 0.58 0.37

0.32 0.37 0 0.27 0.55 0

0 0.27 0.55 0 0.32 0.37

i i

i i

i i

i i

− + + 
 + − + =
 − − −
 − − − 

H  

 

Rotation matrix for thread one and two is 

 

1 0 0 1 0 0

1 0 0 1 0 0

0 0 1 0 0 1

0 0 1 0 0 1

i i

i i

i i
i

i i

   
   − −   = =
   − 
    − −     

M  

 

Because of the structure of rotation, the data streams are arranged as 
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,1, 1

,1 ,1, 2

,2 ,2, 1

,2, 2

th bit

th th bit

th th bit

th bit

s

s
s

s

s

 
    = =      
  

s

s
 

Multipling the channel matrix H by rotation matrix M, we get 

 

0.58 0.37 0.37 0.58 0.56 0.051 0.051 0.56

0.051 0.56 0.56 0.051 0.37 0.58 0.58 0.37

0.32 0.37 0.37 0.32 0.55 0.27 0.27 0.55

0.27 0.55 0.55 0.27 0.37 0.32 0.32 0.37

i i i i

i i i i

i i i i

i i i i

− + − − − + − + 
 + − − − − + ′ = =
 − − − +
 − − − + + − 

H HM  

 

From section 5.2.1 matrix ′H can be converted into real form as 

 

              
8 8

( ) ( )

( ) ( )
real

×

′ ′ℜ −ℑ 
=  ′ ′ℑ ℜ 

H H
H

H H
 

                      

0.58 0.37 0.56 0.051 0.37 0.58 0.051 0.56

0.051 0.56 0.37 0.58 0.56 0.051 0.58 0.37

0.32 0.37 0.55 0.27 0.37 0.32 0.27 0.55

0.27 0.55 0.37 0.32 0.55 0.27 0.32 0.37

0.37 0.58 0.051 0.56 0.58 0.37 0.56 0.051

0.56 0.051 0

− − − − − −
− − − −

−
− − − −

=
− − − − − −
− − .58 0.37 0.051 0.56 0.37 0.58

0.37 0.32 0.27 0.55 0.32 0.37 0.55 0.27

0.55 0.27 0.32 0.37 0.27 0.55 0.37 0.32

 
 
 
 
 
 
 
 

− − 
 − − −
 
− − − −  

 

 

Then the above matrix is split into QR factors. 

The received vector r is also converted into real form as 

 

( )

( )
real

ℜ 
=  ℑ 

r
r

r
 

 

The search has now the form  
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2

d− <r Hx  

 

where x is calculated from =x Ms .  

Further calculation can be done in same way as we did in work example 5.1. 

5.6  Performance of sphere decoding 

For performance analysis of SD, we consider (5.5) and its equivalent lattice representation in 

(5.6). Performing SD needs additional operations to compute the QR factorization of matrix 

H. The additional computational complexity is O(n
3
) arithmetical operations [85],[89], where 

n = 2NT. Over a quasi-static fading where the channel is fixed during a long period of time, 

this additional computation is performed once at the beginning of each received block. 

In simulation we have considered the 16-QAM modulation. The average energy per bit is 

fixed to Eb = 1. The matrix H is modelled by independent Gaussian random variables of 

variance 0.5 per dimension. The curves are plotted as a function of SNR, and the variance σ
2
 

of the AWGN per dimension is adjusted by the formula 

 

                   2 10

2

10
2log (16)

av

SNR
T S

N E
σ

−

=  (5.21) 

 

where 
avS

E is the average symbol energy of the 16-QAM modulation, when Eb = 1.  

Fig. 5.5 shows the average symbol error rate of SD, ML and V-BLAST detector for the 

uncoded system with NT = NR = 2 and for the algebraic ST code with NT = NR = L = 2, using 

16-QAM modulation. One may notice both SD and ML have same performances and both of 

them outperform the V-BLAST decoder.  
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Figure 5.5: Performance analysis of different decoders 

5.7  Conclusion  

In this chapter we discussed the sphere decoding and its application generally in multiple 

antennas communication system and particularly in algebraic space time codes. The 

interesting point of SD algorithm is this, that it is independent of the size of the constituent 

QAM constellation. Hence, a very high throughput could be achieved along with ML 

performance. For performances analysis we simulated the performances of four decoders, 

including zero-forcing, V-BLAST [90], maximum likelihood and sphere decoding algorithm. 

The zero-forcing and V-BLAST decoder are simple decoders with low complexities. But their 

performances are low as compared to the maximum likelihood decoder, which in some sense 

is the optimal decoder, but it has high decoding complexity. The sphere decoding solves the 

intricate problems of decoding the algebraic space time codes up to dimensions LNT ≤ 16 [89]. 

The main advantage of sphere decoding is the achievement of the full diversity in a multi-

antenna system without adding any redundancy, and performing the ML decoding with low 

computational complexity. 
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Conclusions and Perspectives 

Recent advances in wireless communication systems show that the use of multiple antennas at 

both link ends can achieve impressive increases in overall system performances. Hence to 

meet the fast growing demand for high data rate and reliable communication, the use of 

multiple antennas both at transmitter and receiver has become inevitable. Since last decade 

MIMO technology has brought revolutionary changes in wireless communication systems. 

MIMO system provides high data rate by exploiting the spatial domain under the constraints 

of limited bandwidth and transmit power. Space-time coding [15] is a MIMO transmit 

strategy which exploits transmit diversity and high reliability. In literature one can find 

different space time coding techniques for different network topologies and schemes. Through 

out the evolutionary period both MIMO and space time coding systems have confronted 

numerous constraints and problems, and perhaps yet there is room for improvement and 

advancement. Initially full rate and full diversity space time codes were available only for two 

transmit antenna schemes, but today we have algebraic space time codes [62] which provide 

high performances irrespective of number of transmit/receive antennas. Cooperative diversity 

[19] is benefited to compensate the use of multiple antennas at certain small devices. After 

finding the solutions to get maximum diversity and full rate space time codes, delay 

constraints over asynchronous network is recent topic of discussion. 

 In fact in a delay constrained cooperative system the data from different relays reach the 

destination after different times, hence as a result all the so-called powerful space time codes 

lose their reliability if timing offset is not assured. This gloomy aspect of space time codes for 

the first time was studied in [67]. In [68] the authors propose the use of guard bands between 

successive transmissions. Obviously the technique proposed in [68] drastically reduces the 

code rates. In [69] delay tolerant distributed space-time block codes based on threaded 

algebraic space-time (TAST) codes [63] are presented for unsynchronized cooperative 

networks. The codes developed in [69] preserve the rank of the space-time codewords under 

arbitrary delays at the reception of different rows of the codeword matrices. 

In this work, we have proposed some easy and useful techniques for construction of delay 

tolerant space time block codes which are delay tolerant for arbitrary delays. We claim that 

our codes obtain better performances as compare to the codes introduced in [69]. But yet there 

is a big room for improvement, because we think that the construction of thread codeword 
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matrices for higher number of antennas may create some complexities. Therefore one should 

focus to construct simple and more efficient delay tolerant codeword matrices for larger 

number of antennas. Secondly, of course the construction of the codes having the property to 

retain the coding rate is a great challenge. Some type of advance timing protocols or artificial 

intelligent detectors at relays and receivers may be considered to study this blemishing aspect 

of the codes. Similarly the performances of delay non-constraint codes over trellis codes can 

be further improved by improving the structure of trellis codes in a way as we did in case of 

traditional space time trellis codes in chapter 3 by the introduction of super orthogonal trellis 

codes. 
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Appendix-A 

Slow fading channels 

In case of slow fading channels, the fading coefficients of the channel are constant during a 

frame length L. Its mean the fading ,

t

j ih  does not depend on temporal superscript t, i.e. 

1 2

, , , ,... L

j i j i j i j ih h h h= = = = , 1,2,...,
T

i N=  , 1, 2,...,
R

j N=  

Hence the expression for calculating Euclidean distance between two sequences of space time 

codes can be written as: 

 

                   ( ) ( )
2

2

,

1 1 1

ˆ ˆ,
R TN NL

i i

h j i t t

t j i

d h x x
= = =

= −∑∑∑X X  (A.1) 

 

Defining a matrix B as difference matrix between two sequences of space time symbols X 

and X̂ : 

 

                   ( )
1 1 1 1 1 1

1 1 2 2

2 2 2 2 2 2

1 1 2 2

1 1 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ,

ˆ ˆ ˆT T T T T T

L L

L L

N N N N N N

L L

x x x x x x

x x x x x x

x x x x x x

 − − −
 − − − = −
 
 

− − −  

…

…

⋮ ⋮ ⋱ ⋮

…

B X X X X =  (A.2) 

 

The square matrix A, which is called as distance matrix of 
T T

N N× dimension, is given by  

 

                   ( ) ( ) ( )†ˆ ˆ ˆ, , . ,=A X X B X X B X X  (A.3) 

 

where †( )⋅ denotes the conjugate transpose.  

It is clear that ˆ( , )A X X is non-negative definite Hermitian, as †ˆ ˆ( , ) = ( , )A X X A X X  and the 

eigenvalues of ˆ( , )A X X are non-negative real numbers, therefore, there exist a unitary matrix 

V and a real diagonal matrix D such that [4]. 

 

                   †ˆ( , ) =VA X X V D  (A.4) 
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The rows of 
T1 2 N

, ( , , . . . , )  V v v v are the eigenvectors of ˆ( , )A X X forming a complete 

orthonormal basis of an NT -dimensional vector space. The diagonal elements of D are the 

eigvalues 0, 1, 2,....,
i T

i Nλ ≥ = , of ˆ( , )A X X .  

The diagonal matrix is represented as 

 

                   

1

2

0 0

0 0

0 0
TN

λ
λ

λ

 
 
 =
 
 
  

…

…

⋮ ⋮ ⋱ ⋮

…

D  (A.5) 

 

Let ( ),1 ,2 ,
, ,.....,

Tj j j j N
h h h=h  represents the j-th row of the channel matrix H, Then PEP can be 

upper bounded to obtain the relation [4], [5] 

 

                   ( ) †

1 0

ˆ ˆ, | exp ( , )
4

RN

s
j j

j

E
P A

N=

 
≤ − 

 
∑X X H h X X h   

                                        
2

,

1 1 10

exp
4

R T TN N N

s
i j i

j i i

E

N
λ β

= = =

 
= − 

 
∑∑ ∑  (A.6) 

 

where Es is energy per symbol, and 
,

.
j i j i

β = h v  

Inequality (A.6) is an upper bound on the conditional PEP expressed as a function of 
,j i

β . If 

,j i
β  follows a Rayleigh distribution, the upper bound of the PEP becomes 

 

                   ( )
1

0

1ˆ,

1
4

R

T

N

N

Si
i

P
E

N
λ=

 
 
 ≤
 + 
 

∏X X  (A.7) 

Let r
A

 be the rank of matrix A. One can see that A possesses exactly 
T

N r−
A

 zero 

eigenvalues, hence at high SNR (A.7) can be written as 

                   

Diversity order
1/

1 0

Coding gain

ˆ( , )
4

Rr N

r
r

s
i

i

E
P

N
λ

−

=

 
  
 ≤  
  
  

∏


���



���


A

A
A

X X  (A.8) 
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Appendix-B 

Fast fading channels 

Now suppose that the channel fading coefficients ,

t

j ih  varies from one symbol to other. So the 

Euclidean distance ( )2 ˆ,
h

d X X  can be written as: 

 

                   ( ) ( )
2

2

,

1 1 1

ˆ ˆ,
R TN NL

t i i

h j i t t

t j i

d h x x
= = =

= −∑∑∑X X  (B.1) 

 

At each time t, we define a space time symbol difference vector ( )ˆ,t tF x x as 

 

                   ( ) 1 1 2 2ˆ ˆ ˆ ˆ, , ,......, T T
T

N N

t t t t t t t t
x x x x x x = − − − F x x  (B.2) 

 

Let us consider an 
T T

N N× matrix ( )ˆ,t t tC x x defined as 

 

                   ( ) ( ) ( )†ˆ ˆ ˆ, , . ,t t t t t t=C x x F x x F x x  (B.3) 

 

From (B.3) it is clear that the matrix ( )ˆ,t tC x x  is Hermitian. Therefore, there exist a unitary 

matrix Vt and a diagonal matrix Dt such that 

 

                   ( ) †ˆ. , .t t t t t=V C x x V D  (B.4) 

 

The diagonal elements of Dt are the eigenvalues, , 1,2,....,i

t T
D i N= , and the rows of 

{ }1 2, , ,...., TN

t t t t
V v v v  are the eigenvectors of ( )ˆ,t tC x x . 

In the case if ˆ
t t

=x x , then ( )ˆ,t tC x x  will be an all-zero matrix and all the eigenvalues ,i

t
D  

1,2,....,
T

i N= , are zero. If ˆ
t t

≠x x , the matrix ( )ˆ,t tC x x  will observe a single nonzero 

eigenvalue and the other NT − 1 eigenvalues are zero. 

Let 1

t
D  be the nonzero eigenvalue element which is equal to the squared Euclidean distance 

between the two space-time symbols 
t

x and ˆ
t

x . 
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221

1

ˆ ˆ
TN

i i

t t t t t

i

D x x
=

= − = −∑x x  (B.5) 

 

The eigenvector of ( )ˆ,t tC x x  corresponding to the nonzero eigenvalue 1

t
D  is denoted by 1

t
v . 

Let  

 

                   
,1 ,2 ,
, ,.....,

T

j t t t

t j j j N
h h h =  h  (B.6) 

 

be the j-th row of channel matrix H at t instant. 

Then the Euclidean distance between two distinct space time matrices can be written as 

 

                   ( ) 2
2

,

1 1 1

ˆ, .
R TN NL

t i

h j i t

t j i

d Dβ
= = =

=∑∑∑X X  (B.7) 

 

where 

 

                   , .t j i

j i t tβ = h v  (B.8) 

 

Since at each time t there is at most only one nonzero eigenvalue, 1

t
D , the expression (B.7) 

can be represented by 

 

                   ( ) 2
2

,1

1 1
ˆ

ˆ, .
R

t t

NL
t i

h j t

t j

d Dβ
= =

≠

= ∑ ∑
x x

X X  (B.9) 

 

Hence the conditional error probability can be upper bounded by 

 

                   ( ) 2 2

,1

1 1 0
ˆ

1ˆ ˆ, | exp
2 4

R

t t

NL
s

j t t

t j

E
P

N
β

= =
≠

 
 ≤ − −  
 

∑ ∑
x x

X X H x x  (B.10) 

 

We define ˆ( , )
H

d X X  as the Hamming distance between two codewords X and X̂ of length L. 
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1

ˆ ˆ( , ) ( , )
L

H t t

t

d h
=

=∑X X x x  (B.11) 

 

where h is defined as 

 

                   
ˆ0     if  

ˆ( , )
1     otherwise

t t

t th
=

= 


x x
x x  

 

In case, if 
,

t

j i
β   follows a Rayleigh distribution, we get 

 

                   ( )
ˆ( , )

2

1 0
ˆ

ˆ ˆ,
4

R

R H

t t

N

N d
L

s
t t

t

E
P

N

−
−

=
≠

 
  ≤ −      

 

∏
X X

x x

X X x x  (B.12) 

 

and the Euclidean distance ( )2 ˆ,
h

d X X  becomes [5] 

 

                   ( ) 2
2

11
ˆ

ˆ ˆ,
T

t t

NL
i i

P t t

it

d
==

≠

 
= − 

 
∑∏

x x

X X x x  (B.13) 

 

For small value of ˆ. ( , )
R H

N d X X  the inequality (B.12) at high SNR can be written as [4] 

 

                   ( )
Diversity order

ˆ( , )

ˆ1/ ( , )
2

0
Coding gain

ˆ ˆ( , ) ( , )
4

H R

H

d N

d
s

p

E
P d

N

−
 
 ≤  
  


�����



���


X X

X X

X X X X  (B.14) 
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Appendix-C 

Trace criteria  

Trace is also an important parameter to judge the power of space time codes. From appendix 

A, we know that the matrix A is Hermitian, and can written as  

 

                   †=A VDV  (C.1) 

 

where V is an 
T T

N N×  matrix of eigenvectors of A, and D is an 
T T

N N×  diagonal matrix 

comprising the real eigenvalues 
i

λ  of matrix A. 

Defining ( ),1 ,2 ,
, ,.....,

Tj j j j N
h h h=h  as the j-th

 
row of matrix H, the Euclidean distance between 

two symbol sequences can be written as 

 

                   

( ) ( )2 †

1

† †

1

ˆ ˆ, ,
R

R

N

h j j

j

N

j j

j

d
=

=

=

=

∑

∑

X X h A X X h

h VDV h

 

                                   

†

1

2

,

1 1

( ) ( )
R

R

N

j j

j

N r

i j i

j i

λ β

=

= =

=

=

∑

∑∑
A

h V D h V

 (C.2) 

 

where 
,

.
j i j i

β = h v  represents the product of row vector hj with the i-th column vector vi of V. 

Substituting (C.2) into (3.16) we get 

 

                   ( ) 2

,

11 0

ˆ, | exp
4

RN r

s
i j i

ij

E
P

N
λ β

==

 
≤ − 

 
∑∏

A

X X H  (C.3) 

 

As the channel coefficient 
,j i

h  are zero mean complex Gaussian variables, and 1/2 variance 

per dimension, it is possible to show that the coefficients  
,j i

β  follow Rayleigh distribution. 

Applying the central limit theorem, when 4
R

r N ≥
A

, the expression  
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2

,

1 1

RN r

i j i

j i

λ β
= =
∑∑

A

 (C.4) 

 

approaches a Gaussian random variable, D with mean  

 

                   
1

r

D R i

i

Nµ λ
=

= ∑
A

 (C.5) 

 

and the variance 

 

                   2 2

1

r

D R i

i

Nσ λ
=

= ∑
A

 (C.6) 

 

Hence the PEP can then be upper bounded by 

 

                   ( )
00

1ˆ, exp ( )
2 4

s
E

P D p D dD
N

∞  
≤ − 

 
∫X X  (C.7) 

 

where ( )p D  is the PDF of the Gaussian random variable D. 

 

We can derive [4], [5] 

 

                   ( )
2

2

2 0

0 0

41 1ˆ, exp
2 2 4 4

s
D D

s s
D D

D

E

E E N
P X X Q

N N

σ µ
σ µ

σ

 −   
  ≤ −        
 

 (C.8) 

 

Using inequality  

 

                   
2 21

( ) , 0
2

xQ x e x−≤ ≥  (C.9) 

 

We can get the following equation 
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                   ( )
10

1ˆ, exp
4 4

r

s
R i

i

E
P N

N
λ

=

 
≤ − 

 
∑

A

X X  (C.10) 

 

In order to minimize the error probability, the minimum sum of all eigenvalues of matrices 

ˆ( , )A X X  among all the pair of distinct codewords should be maximized. For a square matrix 

the sum of all the eigenvalues is equivalent to the sum of all the elements on the matrix main 

diagonal, which is called the trace of the matrix [4] and can be expressed as  

 

                   ( )( ) ( )2
2

1 1 1 1

ˆ ˆ ˆ, ,
r r L L

t t

ii i i E t t

i i t t

tr A x x d x x
= = = =

= = − =∑ ∑∑ ∑
A A

A X X  (C.11) 

 

It can be seen from (C.11) that the trace of matrix ˆ( , )A X X is equivalent to the squared 

Euclidean distance between the codeword X and X̂ . It is also important to note that the 

condition 4
R

r N ≥
A

 is verified for various MIMO systems. Most of the time, if 
T

r N=
A

, the 

condition 4
R

r N ≥
A

 can be transferred to 4
T R

N N ≥ .  
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Étude et construction de codes spatio-temporels algébriques dans le 
contexte des communications asynchrones par relais coopératif 

  
 

Résumé  
 

Une des spécificités des communications coopératives par relais sans fil est l’asynchronisme des transmissions. 

A cause de ces transmissions asynchrones, les méthodes de conception traditionnelles des codes espace-temps 

distribués sont à revoir si on veut conserver des codes à gains de diversité maximale. Pour éviter ce décalage de 

synchronisation certains auteurs ont proposé l'utilisation de bandes de garde entre les transmissions successives. 

Cette technique peut être applicable pour les codes de longueur courte, mais pour de longs mots de code, 

l'utilisation de bandes de garde réduit considérablement le taux de codage.  

En travaillant sur cette contrainte de délai pour les codes TAST, Damen et Hammons ont introduit une nouvelle 

classe de codes TAST qui sont robustes en terme de retards et donc adaptés aux réseaux coopératifs asynchrones. 

Ces codes préservent leur propriété de rang plein pour des retards arbitraires en réception sur les différentes 

lignes de la matrice de codage.  

Bien que les codes distribués TAST mis en place par Damen et Hammons peuvent atteindre le maximum de 

diversité pour un profil de délai arbitraire, leur longueur temporelle n’est pas optimisée et peut s’avérer 

prohibitive. Pour aller plus loin dans le travail de Damen et Hammons, notre travail principal de cette thèse a 

consisté à construire des codes distribués TAST qui pourraient absorber des retards arbitraires et offrir de 

meilleurs taux de codage avec une longueur minimale. Nos codes proposés sont simples à construire, tolérants en 

terme de retard, et possèdent une longueur minimale au regard de la taille de la constellation et du nombre 

d'antennes d’émission et de réception.  

Nous présentons différentes techniques pour la construction de codes TAST tolérants en retard. Les analyses 

mathématiques suivies par des simulations réalisées confirment que nos codes à longueur minimale dépassent les 

performances des codes existants dans la littérature sans pour autant sacrifier la complexité de décodage.  

 

Mots clés :  Algébrique STBC,  communication asynchrones,  code résistant au retard  

 
 

Study and construction of delay tolerant (delto) distributed TAST codes for 
cooperative wireless networks. 

 

Abstract 
 

One of the recent discussed problems of the cooperative communication is the asynchronization of the relaying 

nodes. Due to the asynchronous transmissions all traditionally designed structure of distributed space-time codes 

are destroyed at the reception and they loose their reliability (viz. diversity and coding gain). To avoid this 

destructive effect some authors have proposed the use of guard bands between successive transmissions. This 

technique may be applicable for short length codes, but for lengthy codewords, the use of guard bands drastically 

reduces the code rate. 

Working on delay constraint of TAST codes, Damen and Hammons introduced a new class of TAST codes 

which are delay resistant and hence suitable for unsynchronized cooperative network.  These codes preserve 

their rank under arbitrary delays at the reception of different rows of the codeword matrices.  

Although the distributed TAST codes introduced by Damen and Hammons can achieve maximum diversity 

under arbitrary delay profile but their delay time is not gnarly.  Extending the work of Damen and Hammons, our 

principal work in this thesis is to build distributed TAST codes which could absorb arbitrary delays and offer 

better code rates. Our proposed codes are simple in construction, delay tolerant under arbitrary delays, better in 

rates, feasible in term of constellation size, number of receive/transmit antennas, and decoding complexity. 

We introduce different techniques for constructing delay tolerant TAST codes. Mathematical analyses followed 

by computer simulations confirm that our codes with minimum code lengths outperform the existing codes in the 

literature without sacrificing decoding complexity and other nice characteristics.  

 

Keywords: Algebraic STBC, asynchronization communication, delay tolerant STBC 

 


