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FACULTÉ DES SCIENCES ET TECHNIQUES
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Francis CALMON Mâıtre de Conférence HDR, INSA de Lyon Rapporteur
Dominique DALLET Professeur, ENSEIRB, Bordeaux Examinateur
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Over the last decade, more and more wireless communication devices enter our life,

such as mobile phones, Bluetooth, Wi-Fi, WiMAX, RFID, etc. At the same time the

researchers and engineers continue to work on these devices to improve the data transfer

rate and minimize their size. These devices often operate at a high frequency from several

hundreds MHz to tens of GHz with an integration of thousands of transistors.

In these wireless communication devices, a radio frequency (RF) transceiver is indis-

pensable to realize the high speed data transfer, and a stable periodic signal in the RF

transceiver is essential to provide a timing basis for the purpose of frequency synthesis,

frequency demodulation, etc. Among all the techniques that can provide that timing

basis, phase lock technique is for now the most widely used means.

This phase lock technique, realized by phase-locked loop (PLL) which is basically a

close-loop frequency control system, dates from 1930s. At that time, PLL was first used to

extract the audio signal from the modulated carrier. Although this synchronous technique

was very efficient, the realization of a such circuit at the era of electronic tube was very

expensive. The massive use of PLL circuit begins with the development of the monolithic

integrated circuit. At the same time, the phase locked principle has extended from AM and

FM demodulation to many synchronization applications such as clock recovery, frequency

synthesis, clock generation in microprocessor, DTMF/FSK decoder, etc.

Recently more and more PLL circuits are implemented in a high-level integration SoC

(System-on-Chip) structure to achieve a smaller size. The design and verification of such

circuits need a rigorous simulation and optimization method. The actual commonly used

simulation methods are based on two types of algorithms: time domain analysis (shooting

method) and frequency domain analysis (Harmonic balance). The former is suitable for

the analog low-frequency signal and the digital signal, and the latter is preferable for the

RF high-frequency continuous wave signal. The PLL circuits, however, covers all these

types of signals: analog low-frequency signal (in loop filter, charge pump), digital signal

(in frequency divider, phase-frequency detector) and RF continuous wave signal (in VCO).

It therefore poses a great challenge for the existing analysis methods. Moreover, the PLL

constitutes a stiff system with widely separating time constants spreading from hundreds

of Hz to tens of GHz, which make the traditional analysis methods more difficult and

sometimes impractical.

Generally, the verification of the PLL circuit will involve the following main aspects:

• Large signal steady state response

• Noise characteristics (phase noise, deterministic noise)

• Dynamic performances (lock time, hold range, capture range, etc)
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The conventional approach is to analyze them through a transistor-level simulation,

which comprises all the implementation details of the PLL. However, this approach may

encounter very huge difficulties due to the complexity of the PLL circuit. Consequently,

all figure-of-merits of the PLL are not fully verified, and the time spent on the verification

can be extremely long. Therefore, an appropriate block-level simulation approach is often

necessary, which is aimed to bypass some implementation details of the PLL circuit while

retaining the main characteristics.

This thesis is involved in this context. It is aimed to bring forward some new algo-

rithms and models which allow an accurate and fast analysis and verification of the PLL

characteristics.

The thesis is organized as follows:

Chapter 1 presents fundamentals of the PLL circuit and its basic characteristics, which

constitute the objects for the analysis techniques presented in the subsequent chapters.

Chapter 2 deals with the large-signal steady-state response of the PLL. First, the

problem of the transistor-level verification is presented: long simulation time, large mem-

ory consummation. After introducing the principal existing methods, we present a new

method to compute the large-signal steady-state solution in a piecewise and iterative way.

The piecewise flexibility introduced by the new method, along with a careful considera-

tion of the block interface conditions, provides very efficient and accurate solutions for

the PLL steady-state response.

Chapter 3 is dedicated to the noise analysis of the PLL. We first introduce the noise

characteristics of the PLL and the existing analysis methods. Then, based on the new

steady-state method of chapter 2, we have proposed a new modeling for the PLL building

blocks, which allows the computation of the random phase noise and the deterministic

noise of the PLL rapidly and accurately.

Chapter 4 deals with the simulation of the PLL dynamic performances. The difficulties

here is how to retain the main characteristics of the PLL without losing the simulation

precision. Once again, based on the piecewise steady-state method proposed in chapter 2,

we propose a modeling methodology of the various blocks, which allows an accurate and

fast simulation of the important dynamic characteristics of the PLL. A comparison with

the transistor-level simulation has shown an enormous speed-up factor with virtually the

same accuracy and detail level.

In the end, we make a summary on the main contributions of this thesis work, and

present the perspectives.
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1.1 Introduction

This chapter is focused on the fundamentals of the PLL: its operations, performances,

building blocks and basic characteristics, which define the basis for the modeling and the

simulation of the PLL in the following chapters.

At the beginning of the chapter, some fundamental notions on the PLL and its appli-

cations are introduced, and key characteristics of the PLL are described. Next, the main

building blocks of the PLL are presented: VCO, loop filter, frequency divider, and espe-

cially phase/frequency detector. Then, a brief simplified description of the PLL operation

is given with the help of the transfer function, from which some important concepts are

derived, such as type and order of the PLL, phase margin, etc. In the end, two typical

PLL structures and their characteristics are presented.

1.2 PLL basics

In this section, an overview of the PLL basics is given concerning the principles of the

PLL, its applications and two kinds of the PLLs: integer-N PLL and fractional-N PLL.

1.2.1 Principles

The PLL is a non-linear feed-back system in which the output signal is forced to track

the input signal frequency and phase. A basic PLL has three components, as showed in

Fig. 1.1.

• Phase detector (PD)

• Low Pass Filter (LFP)

• Voltage-Controlled Oscillator (VCO)

Fig. 1.1: Basic structure of the PLL

The operation of the PLL is described as follows [1] [2]: PD compares the phases of

its two signals; the reference signal vin and the feedback signal vfb produced by the VCO;



Chapter 1: Fundamentals of the PLL 8

and then generates a signal representing the phase difference ∆φ of the two input signals,

called the phase error. The phase error is then filtered by the low-pass filter, and applied

to the input of the VCO. The input voltage of the VCO vc adjusts the VCO frequency

in the direction of reducing the phase error ∆φ until it becomes zero or a small constant

value. When the transient stage dies away, we say that the PLL is in the locked state.

Based on the above description, we can observe two different states of the PLL: the

locked state and the unlocked state. In the locked state, the signals in the PLL are

periodic, and the output frequency is constant. While in the unlocked state, the PLL

changes its frequency and phase continuously, and always searches for a stable equilibrium.

Accordingly, we use two different types of characteristics to describe the performances

of the PLL: unlocked and locked state characteristics. The unlocked state is characterized

by the following characteristics, called the dynamic performances:

• Lock time: time needed for the PLL to return to the locked state (Ref. Chapter 4)

• Capture range: frequency range within which the PLL can lock on from an unlocked

state (Ref. Chapter 4)

• Hold range: frequency range within which the PLL can maintain its phase tracking

(Ref. Chapter 4)

The locked state is characterized by the following performances:

• Phase noise (in the frequency domain) or jitter (in the time domain): phase pertur-

bation at the output of the PLL (Ref. Chapter 3)

• Deterministic noise or Spur: perturbation at the output of the PLL occurring at

the reference frequency and its harmonic frequencies (Ref. Chapter 3)

• Phase margin: parameter describing the stability of the PLL (Ref. Chapter 1)

The details of these characteristics of the PLL will be discussed throughout the rest

of this thesis.

1.2.2 Applications

The PLL is widely used in many fields. One of the most important applications is the

frequency synthesis. The frequency synthesizer can generate a signal whose frequency is

a multiple of a reference frequency [3]. In the emission-reception chain, the frequency

synthesizer is often used as a LO, showed in Fig. 1.2.
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Fig. 1.2: Application of the frequency synthesizer: GSM900

The reference clock TCXO produces a stable but low frequency called reference fre-

quency at the input of the synthesizer. The synthesizer then delivers a clock signal whose

frequency is a multiple of the reference frequency.

To generate a high frequency at the output of the synthesizer, a frequency divider is

added in the feedback loop, as shown in Fig. 1.3.

Fig. 1.3: Diagram of the frequency synthesizer

Hence, the output frequency of the synthesizer can be described by the following

equation:

fout = n · fref (n ≥ 1) (1.1)

The division ratio may be fixed or programmable, integer or fractional, depending on

the requirement of the design. The division ratio n may take large value; this ranges from

2 to several thousands.

The input of the synthesizer is often realized by a crystal oscillator, for example, TCXO

(Temperature Compensated Crystal Oscillator), which can generate a very stable clock

signal with little noise. However, its output frequency is generally very low compared

with LO frequency needed for RF applications.

Recently, new techniques are developed for frequency synthesis, like DLL (Delay lock

loops) [4] and DDS (Direct Digital Synthesizer) [5]. We will not consider these mostly

digital technique in this thesis.

For the frequency synthesizer, a very low phase noise is highly required, because the
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phase noise brought into the emission-reception chain can dramatically deteriorate the

performance of the system. At the same time, the dynamic performance of the synthesizer

is very crucial too, because if the communication channel changes, the synthesizer should

jump from one frequency to another specified frequency within a short time interval.

For the other applications of the PLL, the key characteristic could be either phase noise

or dynamic performances. For example, for a frequency hopping system which switches

its carrier rapidly among many frequency channels, the most critical characteristic is the

lock time. Yet for a satellite communication, where the signal noise ratio or SNR of the

input signal is very small, one requires the PLL to generate the smallest noise possible.

In this case, the specification about the phase noise will be the emphasis of the design.

Frequency demodulation is another application of the PLL. Illustrated in Fig. 1.4, the

output voltage of the filter represents in fact the input frequency of the PLL. Therefore, if

there is any frequency variation at the input of PD, PLL should react rapidly and adjust

the VCO frequency to track the input frequency. Hence the PLL should have a good

dynamic performance.

Fig. 1.4: Application of the PLL: frequency demodulation

The other applications of the PLL include the clock and data recovery circuit, the

phase demodulation, the processor clock generation, etc.

The PLLs can be classified into wide band PLLs and narrow band PLLs [2] [6], depend-

ing on the loop bandwidth. As we will see from chapter 3 and 4, the loop bandwidth of the

PLL has important impacts on the phase noise as well as on the dynamic performances

of the PLL.

The loop bandwidth affects the contributions to the output noise of the various blocks

of the PLL; the intrinsic phase noise of the VCO is largely attenuated in the loop band-

width and kept unchanged outside the bandwidth; on the contrary, the noise of the

divider/PD is much filtered outside the loop bandwidth. As a result, by altering the

bandwidth of the PLL one can optimize the noise performance of the PLL.

With regard to the dynamic performance, a large bandwidth allows reducing the lock

time and accelerating the response to the input variation.
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In the table 1.1, the advantages and the disadvantages of the wide band and narrow

band PLL are compared, and their appropriate applications are also indicated.

Performances Applications Narrow Band Wide band

Short lock time
Frequency hopping, Frequency
demodulation

- +

Attenuate the noise
from the input or
within the bandwidth

Communication by satellite
where the SNR (Signal noise
ratio) is small

+ -

Attenuate the noise out-
side the bandwidth

VCO with a poor noise spectrum
outside the bandwidth

- +

Fine and precise fre-
quency synthesis

Frequency synthesis with nu-
merous communication channels,
GSM

+ -

Tab. 1.1: Applications of the wide band PLL and narrow band PLL

For the purpose of the stability, the bandwidth of the PLL is often designed to be

1/10 of the reference frequency or smaller, which directly impacts on the PLL dynamic

performances.

As a result, it’s very difficult to satisfy the phase noise specification, the stability and

the dynamic performances at the same time. On one side, the narrow bandwidth allows

eliminating the perturbation within the bandwidth, i.e., the noise from the reference

signal and the PD/divider, whereas it also limits the dynamic performance of the PLL

and increases the lock time. On the other side, the wide bandwidth allows the PLL to

track closely the reference variation, but it introduces more perturbation from the phase

detector, producing ripples at the VCO input. A compromise between the noise and the

dynamic performance can be found with a fractional PLL, whose division ration is no

longer an integer, but a fraction, as will be introduced in the following section.

1.2.3 Integer-N PLL and fractional-N PLL

The PLL with an integer division ratio is referred to as an integer-N PLL, while the PLL

with a fractional division ratio is called a fractional-N PLL or simply a fractional PLL.

To see how a fractional-N PLL can reduce both the lock time and the phase noise of

the PLL, first take an example of an integer-N PLL based frequency synthesizer, whose

output frequency is:

fout = N · fref (1.2)

With an integer-N PLL, the channel spacing has to be an integer multiple of the

reference frequency. To vary the output frequency fout from 800 MHz to 806 MHz with a
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2MHz channel spacing, the maximal reference frequency is fref = 2MHz. The division

ratio N should then change from 400 to 403, as shown in the table 1.2. The bandwidth

of the PLL will be 200 kHz, if it’s designed to be 1/10 of the reference frequency.

Channel 1 2 3 4

fout (MHz) 800 802 804 806
N(Integer) 400 401 402 403
fref (MHz) 2 2 2 2

Tab. 1.2: Example of a frequency synthesizer realized by an integer-N PLL

On the other hand, if one uses a fractional-N PLL to realize the same channel spacing,

we have more choice for the reference frequency and division ratio. An example is showed

in the table 1.3, where the reference frequency is set to 8MHz and the division ratio

varies from 100 to 100.75.

Channel 1 2 3 4

fout (MHz) 800 802 804 806
N(Fractional) 100 100.25 100.5 100.75
fref (MHz) 8 8 8 8

Tab. 1.3: Example of a frequency synthesizer realized by a fractional-N PLL

Consequently, some interesting results can be found. First of all, the increase of the

reference frequency (by 4 times) leads to an increase in the bandwidth, which is favorable

for the short lock time. Secondly, as we will see from the chapter 3, the noise contribution

from the PD and the divider is proportional to N . In this example, N decreases 4 times,

meaning that the noise contribution of the PD or the divider will reduce by 12 dB. Thirdly,

as we explained before, the VCO noise contribution within the bandwidth can be well

attenuated. So the increase of the loop bandwidth will allow more VCO noise to be

eliminated. Finally, as we can see from the above table, the frequency resolution is no

longer equal to the reference frequency, but a fraction of the reference frequency. Hence,

with the fractional division a finer frequency resolution can be realized at lower division

ratio and higher reference frequency.

The divider of the fractional-N can be realized by a common divider plus an accumu-

lator [6] [7] . A prescaler is used to change its modulo between N and N + 1. So at the

output of the divider, the average division ratio is a real number between N and N + 1,

depending on how many times N appears. If the probability for N is p (0 < p < 1), then

the average division ratio can be expressed like below:

n = N · p+ (N + 1) · (1 − p) = N + f (1.3)
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where f is a fraction.

However, the sudden change of the division ratio between N and N + 1 causes quan-

tification noise. Some techniques are proposed to compensate quantification noise, but

the result is not always satisfying. A better solution is to use the Σ∆ converter, which

can eliminate the quantification noise by a noise shaping mechanism. The details of the

Σ∆ converter can be found in many bibliographies [8] [9] [10].

1.3 Building blocks of the PLL

After introducing the basic concepts of the PLL, we look into the structure of the PLL,

and briefly describe the main building blocks in the PLL: VCO, frequency divider, phase

detector and loop filter.

1.3.1 VCO

A VCO is an essential element of the PLL, which generates an output signal whose

frequency is variable in terms of the input voltage. The output voltage of VCO can be

roughly as below [1] [11] [12]:

y (t) = A cos (ω0t+ φ (t)) = A cos

(

ω0t+

∫ t

0

g (τ, Vin) dτ

)

(1.4)

where A is the amplitude, Vin is the VCO input voltage, and ω0 is the free angular

frequency when Vin = 0. The function g (τ, Vin) represents the non-linear relationship

between Vin and the output frequency of the VCO, as illustrated in Fig. 1.5. In the

ideal case, the function g (τ, Vin) is linear and time-invariable, which can be expressed like

below:

g (Vin, τ) = KvcoVin (1.5)

where Kvco (rad/s/V) is the static frequency sensitivity.

Considering the equations (1.4) and (1.5), we have:

φ (t) =

∫ t

−∞

KvcoVin (τ) dτ (1.6)

Through Laplace transform of the equation (1.6), we get the transfer function of the

VCO:
φ (s)

Vin (s)
=
Kvco

s
(1.7)
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Fig. 1.5: Static voltage - frequency relationship of the VCO

According to the equation (1.6), the phase of the VCO depends not only on the actual

value of the input voltage, but also on its previous value.

The characteristics of the VCO may include:

• Phase noise

• Frequency sensitivity

• Tuning frequency range

• Output signal power

• Pulling: frequency sensitivity with the output load variation

• Pushing: frequency sensitivity with the source voltage variation

• Power consumption

To avoid the pulling effect and generate a proper output power, a buffer circuit is

inserted at the output of the VCO circuit [13]. The buffer circuit has a good reverse

isolation and a high impedance. It can also isolate the VCO from the on-chip noise.

In general, there are two types of VCOs: those using a resonator to select the oscillation

frequency (e.g., LC-VCO) and those operating on the relaxation principle (e.g., ring

VCO). The details of the realization of the VCO can be found in the bibliographies

[11] [12] [14].

1.3.2 Divider

If the division ratio is an integer, the VCO output frequency can be expressed by fvco =

fref ·N . To realize this, a divider with the variable modulo is often used. [2] [7]

As illustrated in Fig. 1.6, the divider is composed of 3 parts:
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Fig. 1.6: Frequency divider with the integer and programmable division ratio

• A prescaler which divides the input frequency by P or P+1 according to the control

signal

• A counter C which divides the frequency by C

• A counter S which selects the frequency channel and divides the frequency by S,

where S is determined by the input digital signal and can vary from 0 to the maximal

number of channel Smax. (S < C)

The behavior of this divider is briefly described as follows: when the modulo of the

prescaler is set to be P + 1, the counter C and the counter S accumulate and it spends

(P + 1) · S cycles to make the counter S becomes full first. Then the modulo is switched

to P , and it takes another P · (C−S) cycles to make the counter C become full. In total,

a complete divider output cycle contains N input cycles with N equal to:

N = (P + 1)S + P (C − S) = P · C + S (1.8)

With this programmable integer divider, the VCO frequency vary from P ·C · fref to

(P · C + Smax) · fref .

To drive the succeeding circuit, a buffer circuit is added at the output stage of the

divider [15]. The buffer circuit is generally realized by an emitter-follower , whose input

impedance is very high [16].
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1.3.3 Phase detector

An ideal phase detector can produce a signal whose magnitude is proportional to the

phase difference of the input signals. The signal representing the phase difference can be

a voltage or a current, depending on the structure of the phase detector.

In general, there exist two types of structure for the phase detector:

• PD (Phase detector): the phase difference is represented by the average output

voltage of the PD.

• PFD (Phase Frequency Detector) + CP (Charge pump): the phase difference is

represented by the average output current of the CP.

Next, we introduce respectively these two structures of phase detector and their ad-

vantages and disadvantages.

1.3.3.1 PD

A PD can be realized by an analog circuit (e.g., mixer), a digital XOR circuit, or a RS

latch circuit, which are briefly described below. [1] [7] [11] [17]

A. PD with Mixer

If the two inputs of the PD are sinusoidal, they can be expressed as v1 =

V1 cos (ωt+ φ1) and v2 = V2 cos (ωt+ φ2). If one neglects the high-frequency compo-

nent of the output signal which is afterward eliminated by a low-pass filter, the output of

the mixer can be approximated as:

V = v1 · v2 ≈
kV1V2

2
cos (φ1 − φ2) =

kV1V2

2
cos (∆φ) (1.9)

When ∆φ lies in the vicinity of ±π/2, the relationship between the output V and the

phase difference ∆φ becomes nearly linear, as showed in Fig. 1.7. This means the two

input signals of the PD should have a phase shift of ±π/2 to make the PLL locked, hence

V =
kV1V2

2
(∆φ± π/2) (1.10)

B. PD with XOR circuit

As known, the output of the XOR circuit is high if the states of the two inputs are

different. The characteristic of the XOR circuit as phase detector is illustrated in Fig.

1.8:
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Fig. 1.7: Characteristic of the mixer as phase detector

Fig. 1.8: Characteristic of the XOR circuit as phase detector

Hence, the gain for this phase detector is:

KD = Vdd/π (1.11)

The linear range of this characteristic is between 0 and π and the equilibrium point is

located at ∆φ = π/2.

C. PD with a RS latch circuit

The most simple sequential phase detector can be realized by the RS latch. The latch

works on the signal edge instead of state. A valid edge at the input of the latch leads to

a state change at the output of the circuit. Therefore, the relationship between the phase

difference and the output is showed in Fig. 1.9. The curve is linear in the range [0, 2π].

[18]

Therefore, the gain of this phase detector is:

KD = Vdd/2π (1.12)

Compared with the XOR circuit, the linear range of the sequential circuit is larger

([0, 2π] vs. [0, π] ). The equilibrium point locates at the middle of the linear range where

∆φ = π.
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Fig. 1.9: Characteristic of the sequential phase detector

1.3.3.2 PFD

The structure of the PFD+CP is depicted in Fig. 1.10. In the next two sections, we

describe roughly the PFD and the charge pump. The use of a charge pump along with

the passive filter forms an type II PLL, which has advantages such as large hold range,

zero static phase error, etc. More details can be found in [2] [19].

Fig. 1.10: PFD+CP+Filter

The topology of a typical PFD is illustrated in Fig. 1.11. The circuit includes two

D-latches and one AND gate. The D-latch changes its logic state along with the edge of

the input signal but it’s not sensitive to the duty cycle of the input signal. The input

terminal D is connected to the logic 1.

The behavior of the PFD follows some simple principles: A valid REF signal edge sets

the signal UP to high state; A valid DIV signal edge sets the signal DOWN to high state;

When UP and DOWN are at the high state simultaneously, the PFD is reset to zero; Two

consecutive REF or DIV signal edges will maintain the output states of UP or DOWN.

As a result of the above principles, the pulse width of one output signal (UP or DOWN)

is proportional to the phase error, and another output signal is a glitch.

The duty cycle of the signal UP or DOWN is the ratio of the pulse width to the period

of the signal, denoted as dup and ddn (0 < dup < 1, 0 < ddn < 1). It’s necessary to define
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Fig. 1.11: Topology and the ideal behavior of the PFD

a net duty cycle d: d = dup − ddn (−1 < d < 1). As we can see, the phase difference in

the range [−2π, 2π] can be represented directly by the net duty cycle multiplied by 2π.

∆φ = 2π · d (1.13)

A. State diagram

In the ideal case, the behavior of the PFD can be illustrated by the state diagram in

Fig. 1.12. The three possible states of the PFD are NUL, UP and DN.

Fig. 1.12: State diagram of the PFD: ideal case

From Fig. 1.12 we can see that the Div edge always tries to drive the state towards

DN, whatever the initial state is UP, NUL or DN. For example, DN → (Div) → DN,

NUL → (Div) → DN, UP → (Div) → NUL → (Div) → DN. In contrast, the REF edge

tends to drive the state towards UP. Ideally, the state CLR (Up=1 and Down=1) is

neglected because it is transient and very short.
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B. Characteristic of the PFD and dead zone

In the ideal case, the relationship between the phase difference and the net duty cycle

of the PFD is shown in Fig. 1.13.

Fig. 1.13: Characteristic of the PFD: ideal case

The negative duty cycle means that the phase of the divider is ahead of that of the

reference. Ideally, when the phase difference is null, the duty cycle of the PFD should be

zero. Since the characteristic of the PFD is periodic outside the range [−2π, 2π], the net

duty cycle can be written as follows:

d = ∆φ%2π (1.14)

where % represents modulo.

Fig. 1.14: Characteristic of the PFD: dead zone

However, non-idealities of PFD and CP circuit cause an important defect known as

dead zone (shown in Fig. 1.14), which largely affects the performance of the PLL [2] [7].

The behavior of the dead zone is as follows: if the phase difference becomes very small,

the output of PFD almost does not vary with the phase difference. Hence, the PLL can

not adjust the frequency and phase of VCO. The PLL is thus becomes unstable and very

hard to enter the locked state.

C. Delay element

To solve the dead zone problem, a delay element is inserted after the AND gate, as

shown in Fig. 1.15. With this delay, the signals UP and DOWN do not return to zero

immediately after the signals REF and DIV become to the high state simultaneously. On
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the contrary, the signals UP and DOWN remain in high state long enough to avoid the

glitches. [2] [3] [11]

Fig. 1.15: Modified topology of PFD and the behavior of PFD

With the new structure of the PFD, the phase difference is no longer represented by

the pulse width of UP or DOWN, but by the edge difference between the edges of UP and

DOWN, as shown in Fig. 1.15. Moreover, the pulse width of UP and DOWN are always

greater than the delay time. The delay time can be set large enough by the designer, thus

the dead zone could be largely eliminated.

Note that the signals UP and DOWN being at high state simultaneously, means that

the two current sources of CP circulate simultaneously and no current should flow out

of the CP. Therefore, the two current sources should be designed perfectly symmetrical;

otherwise the current flowing into/out of the CP will discharge/charge the filter and create

the voltage ripple at the input of VCO.

Now we return to the state diagram of the PFD. With the delay element, the state

CLR (Up=1, Down=1) can no longer be ignored. So there will be four states to describe

the operation of the PFD, as shown in Fig. 1.16.

D. Hysteresis

Another important characteristic of the PFD is hysteresis [2] [20] [21], which is de-

scribed briefly below. When the phase difference ∆φ increases, the net duty cycle will

follow the trajectory shown in Fig. 1.17 (a). On the contrary, when ∆φ decreases, the

net duty cycle will follow another trajectory shown in Fig. 1.17 (b). The reason is that

the PFD interprets the phase relationship differently in these two cases [2]. The complete

characteristic of the PFD is illustrated in Fig. 1.18.



Chapter 1: Fundamentals of the PLL 22

Fig. 1.16: State diagram of the PFD : with delay element

Fig. 1.17: Illustration of the PFD hysteresis

Fig. 1.18: Hysteresis of the PFD



Chapter 1: Fundamentals of the PLL 23

E. Average duty cycle when the input frequencies are different

When the frequencies of REF and DIV are different, the pulse width of UP and DN

will change their values in each period, resulting in variable duty cycles. What we care

about is the average net duty cycle d̄, because the high-frequency component is eliminated

by the loop filter.

When the frequency of REF is slightly larger than that of DIV, ∆φ is positive and

the net duty cycle follows the sawtooth path located in the upper half plane of Fig. 1.18,

the average duty cycle is 0.5. On the contrary, if the frequency of REF is slightly smaller

than that of DIV, the average value of the duty cycle is -0.5. [21]

For the large frequency difference, d̄ depends only on one parameter: frequency ratio

between REF and DIV, as expressed by the following formula [22] :

d̄ =

{

1 − fdiv/2fref ... if fref > fdiv

fref/2fdiv − 1 ... if fref < fdiv

(1.15)

Fig. 1.19: Average net duty cycle in the case of large frequency error

Illustrated in Fig. 1.19, this formula shows that if fref >> fdiv, the edges of REF arrive

consecutively before a DIV edge arises, causing a net duty cycle close to 1, which allows

charging the filter with an important average current, then raising the VCO frequency

rapidly in order to catch up with the reference frequency fref . On the other hand, if

fref << fdiv, d̄ will approach -1.

1.3.3.3 Charge Pump (CP)

The charge pump mainly consists of two current sources controlled by switches. CP is

normally loaded with a filter to form an integrator with which the output current of the
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CP is converted into a voltage signal controlling the VCO. When the current flows into or

out of the filter, it charges or discharges the capacitors in the filter, and makes the VCO

control voltage vary with time, as shown in Fig. 1.20. [19]

Fig. 1.20: Charge pump and the time sequence of the signals

The two current sources are expected to be symmetrical. Ideally, when UP and DOWN

are in the high state simultaneously, there is no current flowing out of the CP. At the

output of the CP it’s the pulse width of current Icp that represents the phase difference.

Concerning the CP output current, what we care about is actually the continuous

component. So the average output current of the CP can be written as follows:

Icp (DC) =
∆φ

2π
Ip
cp (1.16)

where Ip
cp is the peak value of the CP output current, as shown in Fig. 1.20.

Hence, ideally the gain of the block PFD+CP can be considered as:

Kp =
Ip
cp

2π
(1.17)

However, it’s usually very difficult to design two perfectly symmetrical current sources.

The mismatch of the current sources will create a low-frequency voltage ripple at the input

of VCO, which is very likely to modulate with the high-frequency oscillation of VCO and

produce the deterministic noise which will be discussed in chapter 3.

1.3.3.4 Summary of phase detector circuits

As a summary of the above, we may say that the PFD+CP has superior advantages over

PD. One may consult the following references for more details: [2] [12] [23].
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• First, the PFD can detect the phase and the frequency at the same time, allowing

the PLL to lock more rapidly when the frequency difference is large.

• Secondly, only the input signal edges can take effect on the PFD output, while the

duty cycle of the input signal don’t have the influence on the PFD output, which

allows achieving a precise phase control.

• Thirdly, with the PFD+CP, while the PLL is in the locked state, the phase difference

can be nearly zero, instead of π or π/2.

• Finally, the linear range of the PFD is 4π([−2π, 2π]), larger than the any PD circuit.

In addition, the charge pump can be used to form a type II PLL, whose advantages

will be introduced in the section 1.4.1. In view of these advantages of the PFD+CP, the

rest of the thesis will consider mainly PFD+CP when the phase detector is involved.

1.3.4 Loop filter

The loop filter is used to smoothen the signal by eliminating the high-frequency component

and provide a slowly varying DC voltage to the input of the VCO. The input signal of

the loop filter is a current for the PFD+CP case or a voltage for the PD case.

Two types of filters are often used: the passive filter and the active filter. The passive

filter is simple, has low noise, but the output voltage range is fixed. The active filter can

adjust its output voltage range, but it’s more complex and produces more noise. The

characteristics of the passive filter are shortly introduced next. [2] [3] [24] [25]

The simplest passive filter is the 1st order filter consisting of a simple capacitor (Fig.

1.21(a)). But the single pole in its transfer function located on the imaginary axis makes

the PLL potentially unstable. If a resistance R1 is added in series with the capacitor C1

(Fig. 1.21(b)), one zero can be created on the negative axis, hence improving the stability

of the PLL. In practice, a 2nd order filter is often used (a capacitor added in parallel with

the RC branch, Fig. 1.21(d)) to attenuate the voltage ripple at the output of the filter.

The 3rd order filter (Fig. 1.21(e)) and the higher order filters are also used to get some

specific performances, for example, zero phase error when the input frequency ramps, the

attenuation of the noise from the reference, a sharper roll-off characteristic of the frequency

response, etc. However, increasing the filter order deteriorates the stability of the PLL

and makes the circuit more complex.

The mainly used passive filters are shown in Fig. 1.21, and the corresponding transfer

functions are presented in the equations below, which can be used to develop the transfer

function of the PLL in the section 1.4.1.
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(a) 1st order filter (b) 1st order filter (c) 1st order filter

(d) 2nd order filter (e) 3rd order filter

Fig. 1.21: Loop filter

◮ Transfer function of the first order filter in Fig. 1.21(a):

F (s) =
1

τ · s
(1.18)

where τ = C1. The pole is ωp = 0.

◮ Transfer function of the first order filter in Fig. 1.21(b):

F (s) = R1
1 + τrc · s

τrc · s
(1.19)

where τrc = R1C1. The pole is ωp = 0, and the zero is ωz = −1/τrc.

◮ Transfer function of the first order filter in Fig. 1.21(c):

F (s) =
1 + τ2 · s

1 + τ1 · s
(1.20)

where τ1 = (R1 +R2)C, τ2 = R2C. The pole is ωp = −1/τ1, and the zero is ωz = −1/τ2.

◮ Transfer function of the second order filter in Fig. 1.21(d):

F (s) =
1 + τrc · s

τcc · s (1 + τ2 · s)
(1.21)

where τrc = R1C1, τcc = C1 + C2, τ2 = R1C1C2/τcc. The poles are ωp1 = 0 and ωp2 =
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−1/τ2 = − (1/C1 + 1/C2) /R1, and the zero is ωz = −1/τrc.

◮ Transfer function of the third order filter in Fig. 1.21(e):

F (s) =
1 + τrc · s

s · τccc · (1 + s · τ3) (1 + s · τrc3)
(1.22)

where τrc = R1C1, τccc = C1 + C2 + C3, τ3 = R1C1C2/τccc, τrc3 = R3C3. The poles are

ωp1 = 0, ωp2 = −1/τ3, ωp3 = −1/τrc3, and the zero is ωz = −1/τrc.

1.4 Idealized description of the PLL: linear model

Now that we have briefly presented the main building blocks of the PLL, we will introduce

some idealized characteristics of the PLL, such the frequency response characteristic,

phase margin, etc. A more in-depth description of the PLL characteristics like the noise

behavior and the dynamic performances will be carried in chapter 3 and chapter 4.

As known, the PLL is a nonlinear circuit with a very complex electrical dynamics, so

a general analysis with a linear model is not feasible. Nevertheless, many characteristics

of the PLL can be well approximated by linear models, especially in the vicinity of the

locked state [2]. Linear models provide simple analysis tools that help to understand the

basic characteristics of the PLL.

One of the most useful linear analysis tools is the transfer function, which is based

on the Laplace transform of the input/output signals in the s-domain. As we will see

below, most of the important concepts of the PLL, such as type and order of the PLL,

phase margin, damping factor..., are derived from the definition of the transfer function.

In addition, the transfer function of the PLL is also a very good tool to model the noise

contribution of the different building blocks.

In this section, we give a concise introduction of the transfer function of the PLL, the

noise transfer function, and the two typical PLL structures: type II 2nd order PLL and

type II 3rd order PLL.

1.4.1 Transfer function of the PLL

A. Introduction

Generally, a transfer function describes the relationship between input and output

signals of a device in s-domain. If we express the voltage or current signals as x (t) =

X (t) cos (2πfxt+ φx (t)), for the PLL, the signal we are interested in is the phase rather
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than the voltage or the current waveform. This is because the intimate function of the

PLL is to process the phase of the signal rather than its waveform. Interestingly enough

the phase components of the signal are slowly varying variables of time in contrast to the

time constants of input and output voltages.

Considering the block diagram of the PLL shown in Fig. 1.22, the input/output signals

of each building block are defined in s-domain. The phase difference ∆Φ (s) is defined as

∆Φ (s) = Φref (s)−Φdiv (s). Note that the CP current and the VCO control voltage being

the input and output signals to a low-pass filter, only the low frequency components of

the signals are considered in the model.

Fig. 1.22: Block diagram of the PLL

Next, the transfer functions for each building block are briefly described.

PFD+CP: If the PLL is in the locked state, the ideal characteristic of the PFD+CP is

of the form:

Icp (s) = Kp · ∆Φ (s) (1.23)

where Kp (A/rad) is the static gain of the PFD+CP.

Filter: The loop filter can be expressed by the following relation:

Vc (s)

Icp (s)
= F (s) (1.24)

where F (s) is the trans-impedance function described in the section 1.3.4.

VCO: The transfer function of the VCO is given by the equation (1.7) rewritten below:

Φout (s)

Vc (s)
=
Kvco

s
(1.25)

where Kvco (rad/s/V) is the static frequency sensitivity regarding to the voltage change.

Divider: The relationship between the output phase and the input phase can be repre-

sented by the division ratio N :
Φdiv (s)

Φout (s)
=

1

N
(1.26)
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where N is the division ratio.

Now that the transfer functions of the building blocks are obtained, the transfer func-

tions for the open-loop and close-loop PLL can be derived as follows:

Forward transfer function of the PLL Gfwd (s), defined as:

Gfwd (s) =
Φout (s)

∆Φ (s)
=
KpKvcoF (s)

s
(1.27)

Transfer function for the feedback chain H (s):

H (s) =
Φdiv (s)

Φout (s)
=

1

N
(1.28)

Thus the open-loop transfer function (named also open-loop gain) Gopen (s) can be

obtained:

Gopen (s) =
Φdiv (s)

∆Φ (s)
= Gfwd (s) ·H (s) =

KpKvcoF (s)

N · s
(1.29)

And the close-loop transfer function (or close-loop gain) Gclose (s) is:

Gclose (s) =
Φout (s)

Φin (s)
=

Gfwd (s)

1 +Gfwd (s) ·H (s)
=

NKpKvcoF (s)

N · s+KpKvcoF (s)
(1.30)

Another useful transfer function is the error transfer function Gerr (s) which describes

the relationship between the phase difference and the input phase:

Gerr (s) =
∆Φ (s)

Φin (s)
=

1

1 +Gopen (s)
= 1 −

Gclose (s)

N
=

N · s

N · s+KpKvcoF (s)
(1.31)

Note that these transfer functions (Gopen (s), Gclose (s), Gerr (s)) of the PLL are very

useful to describe the basic characteristics of the PLL, like the type and order of the PLL,

the phase margin, etc, which will be introduced below.

B. Type and order of the PLL

The order of the PLL is defined by the number of poles in the close-loop transfer

function. In fact, as can be seen from the equation (1.25) there is always a pole in the

transfer function of the VCO. Therefore, a PLL with N th order filter is a (N + 1)th order

PLL.

The type of PLL is defined as the number of poles at the origin in the open-loop

transfer function, or the number of integrators in the loop [2]. Since the VCO naturally

offers a pole at the origin, the PLL is at least type I.
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The PLL with CP and the passive filter in Fig. 1.21(b) is type II, because the CP and

passive filter create a pole at the origin. On the contrary, a PLL with PD + filter is type

I, as the pole provided by the filter is nonzero. Nowadays most of the PLLs are type II,

because they have many advantages over the type I PLLs, such as zero phase error in the

case of frequency step of the reference signal, infinite DC gain, unlimited hold range and

capture range. More details can be found in the bibliographies [12] [26].

Note that the type of the PLL does not always equal to the order of the PLL. For

example, the PLL with the filter in Fig. 1.21(d) is 3rd order, but type II, because one of

the two poles of the filter is not located at the origin.

This type II 3rd order PLL is one of the most popular PLLs. Besides the advantages

of the type II PLLs mentioned above, the second pole located at the negative axis of

s-plan allows filtering the high-frequency fluctuation and offers a good trade-off between

the dynamic performances and the stability of the PLL behavior [17] . Some higher order

PLLs also can be found to achieve some specific goals but their use is very limited due to

the stability problem and the increase of the complexity. Hence in the following we focus

on the type II 3rd order PLL. On the other hand, the analysis of the type II 3rd order

PLL is usually carried as an extension to the type II 2nd PLL, because the type II 2nd

PLL is more easily represented mathematically, so in the following we will also introduce

the characteristics of the type II 2nd order PLL.

C. Phase margin of the PLL

Phase margin is a very critical parameter of the PLL which describes the degree of

stability of the PLL. The phase margin is defined on the basis of the open-loop transfer

function of the PLL, when the magnitude of the open-loop gain Gopen (s) equals to 1:

{

|Gopen (jωc)| = 1

φm = ∠Gopen (jωc) + 180◦
(1.32)

where ωc is named cross-over frequency, and φm is the phase margin of the PLL. Moreover,

ωc is often considered as the loop bandwidth of the PLL.

A PLL is stable if the phase margin is greater than 0, in another word, ∠Gopen (jωc)

is bigger than −180◦:
{

φm > 0

∠Gopen (jωc) > −180◦
(1.33)

Since Bode plots can illustrate the magnitude and the phase of the open-loop gain in

the same diagram, it is usually used to depict the phase margin of the PLL, as will be

shown.
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1.4.2 Noise transfer function

Fig. 1.23 shows the PLL diagram where the intrinsic noises of all blocks are indicated:
˜φvco phase noise source from VCO, ˜φdiv phase noise source from the divider, and ĩn current

noise source from PFD+CP.

Fig. 1.23: Diagram of the PLL and the noise sources

The noise transfer function describes the relationship between the noise source from

one block and the noise at the output of the PLL. It can be easily calculated, as shown

in Fig. 1.24.

Fig. 1.24: Noise transfer function for the different blocks

The total noise at the output of the PLL is the sum of all the noise contribution:

Noise (total) =
N
∑

n=1

(Sn · Fn) (1.34)
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where Sn is the noise power spectral density for one block and Fn is the corresponding

noise transfer function for this block.

The noise contribution of a block depends not only on the amount of the noise source,

but also the transfer function of the noise source. The latter, served as a filter, can

increase or decrease the noise contribution of a block.

The noise transfer function for the VCO is characterized by error transfer function of

the PLL Gerr (s) [24] [2], as shown in Fig. 1.24. It has a high-pass characteristic, i.e., the

VCO noise source at low frequency is attenuated.

However, the noise transfer functions for the PFD/CP and the divider are character-

ized by the close-loop transfer function Gclose (s), which is low-pass (see Fig. 1.24), and

the noise at high frequency could be filtered.

At low frequency the noise transfer functions for the PFD/CP and the divider are

proportional to the division ratio N. As a result, a reduction of N by 2 allows lowering

the noise contribution by 6dB.

1.4.3 Description of two typical PLL structures

As mentioned previously, the type II 2nd order PLL and the type II 3rd order PLL are the

most often used PLL structures, so we give a brief presentation on their characteristics.

First, the transfer functions for these two typical PLLs are developed, then the frequency

response and phase margin characteristics are briefly presented, which serve as a basis

for the PLL analysis in the following chapters.

A. Transfer functions for type II 2nd order PLL

The type II 2nd order PLL uses a loop filter shown in Fig. 1.21(b) whose block transfer

function F (s) is given by the equation (1.19). According to the definition of the open-

loop transfer function in the equation (1.29), the open-loop transfer function of the type

II 2nd order PLL is given by:

Gopen (s) =
KpKvcoR1

N
·
1 + sτrc

s2τrc

= K ·
1 + sτrc

s2τrc

(1.35)

where K is defined as:

K =
KpKvcoR1

N
(1.36)

With the definition of the closed-loop transfer function in the equation (1.30), the
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closed-loop transfer function of the type II 2nd order PLL is obtained as follows:

Gclose (s) = N
Ks+K/τrc

s2 +Ks+K/τrc

= N
2ζωns+ ω2

n

s2 + 2ζωns+ ω2
n

(1.37)

where the natural frequency ωn and the damping factor ζ determine the stability and the

dynamic performances of the PLL, and they are written by :

ωn =
√

K/τrc (1.38)

ζ =
1

2

√

K · τrc (1.39)

Finally, the error transfer function can be written by:

Gerr (s) =
s2

s2 +Ks+K/τrc

=
s2

s2 + 2ζωns+ ω2
n

(1.40)

B. Transfer functions for type II 3rd order PLL

The type II 3rd order PLL contains a loop filter illustrated in Fig. 1.21(d) with its

block transfer function F (s) expressed by the equation (1.21). In the same way, the

transfer functions can be obtained and written as follows:

Open-loop transfer function:

Gopen (s) =
KPKvco (τrcs+ 1)

Nτccs2 (τ2s+ 1)
(1.41)

Close-loop transfer function:

Gclose (s) = N
KPKvco (τrcs+ 1)

Nτccs2 (τ2s+ 1) +KPKvco (τrcs+ 1)
(1.42)

Error transfer function:

Gerr (s) =
Nτccs

2 (τ2s+ 1)

Nτccs2 (τ2s+ 1) +KPKvco (τrcs+ 1)
(1.43)

C. Frequency response characteristics of the two typical PLLs

Frequency response characteristics of the PLL are very useful to study the dynamic

performances and the noise characteristics of the PLL.

Based on the transfer functions presented in the previous section, the frequency re-

sponse characteristics of the PLL can be easily obtained. Replacing the parameter s in
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the transfer functions by jω, the frequency response of the PLL can be traced in the

frequency domain.

For the close-loop transfer function of the type II 2nd order PLL, its characteristic is

shown in Fig. 1.25, which has a low-pass characteristic. Consequently, the slow phase

variation at the input of the PLL can be transmitted to the output without attenuation

while the rapid phase variation is filtered. If one varies the damping factor ζ, a series of

curve can be shown in Fig. 1.25. Note that there is always peaking on the curve regardless

of the value of damping factor. The cause of the peaking is the presence of the zero 1/τrc

near the natural frequency ωn [27].

Fig. 1.25: Frequency response of the close-loop gain for the type II 2nd order PLL

Concerning the error transfer function Gerr (s), its characteristic is high-pass, as shown

in Fig. 1.26. Therefore, if the input phase of the PLL varies slowly, the phase error will

be small, thus the PLL will track closely the phase variation. Unlike the closed loop gain,

only when the damping factor ζ < 0.707, the peaking appears on the curve.

Fig. 1.26: Frequency response of Gerr for the type II 2nd order PLL

The asymptote of the curves Gclose (s) or Gerr (s) has a constant slope, which depends

on the degree of the denominator and the numerator. For the type II 2nd order PLL, the

slope of the asymptote is -10dB/dec for the close-loop gain, and +20dB/dec for the gain

Gerr (s).
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As for the type II 3rd order PLL, it has the similar low-pass characteristic for the

close-up transfer function Gclose (s) and the high-pass characteristic for the error transfer

function Gerr (s).

D. Phase margin of the two typical PLLs

Phase margin of the PLL is defined in the equation (1.32) and can be described by

Bode plots. Fig. 1.27 shows respectively Bode plots for the type II 2nd order PLL and

type II 3rd order PLL. At low frequency, the two PLLs have the same characteristic: the

slope is −20dB/dec, and the phase is about −180◦ since both of them are type II PLLs.

The presence of the third pole in the 3rd order PLL makes the curves different at high

frequencies, where the slope of the curve returns to −20dB/dec and the phase falls back

to −180◦. Phase margin of these two PLLs is marked on the graph. Phase margin also

have an influence on the lock time of the PLL. The details are presented in [3] [28].

Fig. 1.27: Bode plots for the type II 2nd order PLL and the type II 3rd order PLL

1.5 Conclusion

Phase-locked loop is one of the most complex circuits in the RFIC domain. The verifica-

tion of the PLL circuit becomes a great challenge due to its mixed (analog and digital)

circuit property and its non-linear characteristics. This chapter was dedicated to present

some important aspects related to the circuit structure and its non-linear characteristics,

which serve as a prerequisite to the modeling and the simulation of the PLL.
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To do so, the building blocks of the PLL are introduced along with their non-linear

characteristics, such as the dead zone of the PFD, the non-linear voltage-frequency rela-

tionship in the VCO, etc. Then, the idealized characteristics of the PLL are presented

based on the definition of the transfer function of the PLL, from which some important

concepts of the PLL are derived, such as type and order of the PLL, phase margin.

We have seen that the PLLs can be classified into narrow-band PLL and wide-band

PLL, and their key characteristics could be low phase noise or specific dynamic per-

formance, or both. In addition, the large-signal steady-state response under the lock

condition is also an important characteristics of the PLL. The simulation and modeling

of the above three characteristics are of high interests to the designers, and constitute the

main targets of this thesis, which will be respectively presented in the next three chapters.
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[25] Z. Madini, “Caractérisation et modélisation des dynamiques non linéaires dans les
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2.1 Introduction

As indicated in chapter 1, the PLL is a crucial circuit in the transceiver and it influences

greatly the performance of the communications system. The main characteristics of the

PLL include:

• Large signal steady-state response;

• Noise characteristics, such as phase noise, deterministic noise;

• Dynamic performances, e.g., lock time, capture range, hold range, etc.

As known, the steady-state solution is a prerequisite for small-signal noise analysis,

which means that the noise analysis of the PLL should be performed in the presence of

the large-signal steady-state solution [1]. Therefore in this chapter we discuss the large

signal steady-state response of the PLL under locked condition, which serves as basis for

the noise analysis of the PLL to be outlined in chapter 3.

Regarding the steady-state analysis, it is very important since the accuracy of the

steady-state solution affects the calculation of the noise of the PLL. In addition, it is

often very difficult to make the PLL get into the locked state due to the long transition

time and the huge memory necessary to make the simulation converge [2]. That is why a

quick and accurate simulation method is always in need.

In this chapter, first the steady-state of the PLL is introduced and a summary is made

about the existing steady-state simulation methods. Then, a new method is proposed

which considers the non-ideal effects of the PLL and uses an iterative algorithm to achieve

good simulation accuracy. With the new method the simulation time is largely shortened

thanks to a hierarchical approach. The whole procedure of the new method is presented,

and is verified step by step on a circuit example. Finally, the simulation results are shown

and compared with the conventional transistor level simulation method.

2.2 Steady-state of the PLL

In this section, we briefly review the steady-state of the PLL, and indicate the possible

simulation methods.

In electronics, a steady-state occurs in a circuit when all the transients die away [3].

There are different types of steady-state in the electronic circuits. The first one is the DC

steady-state, whose solution is a time-invariant equilibrium point. The second one is the

periodic steady-state, which consists of a linear combination of a DC offset and a number
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of harmonically related sinusoids. The periodic steady-state exists in both autonomous

circuits (e.g. oscillator) and forced circuits with periodic excitation.

If a non-linear circuit is driven by periodic sources at non harmonically related frequen-

cies, the circuit will have a quasi-periodic response. A quasi-periodic response consists

of a linear combination of different fundamental frequencies and their harmonics. The

periodic steady-state is a special case of the quasi-periodic steady-state.

As for the steady-state of the PLL circuit, its operating point may not be invariant

over time, but periodic or sometimes chaotic [4]. Moreover, certain types of PLL don’t

have a steady-state solution, such as the Sigma−Delta fractional-N PLL (which gener-

ates randomly a signal at the output of the divider), the CDR circuits (Clock and Data

Recovery circuits), and the PLL with a dead zone. In this chapter, we’ll address the PLLs

which have a steady-state solution, primarily the integer-N PLL.

Generally, most of the analog circuits can reach the periodic steady-state or quasi-

periodic steady-state from an initial condition, assuming that the excitation signals are

periodic or quasi-periodic. So it is possible to calculate the steady-state response of the

circuit using transient simulation, like SPICE approach or some other equivalent methods.

It merely needs to solve the differential equations of the circuit from an arbitrary initial

condition until the transient behavior disappears.

However, SPICE method becomes impracticable if the ratio between the highest fre-

quency and the lowest frequency in the response is too large, because in that case the

time step will be so small that the computation would be very costly.

The SPICE approach is based on direct time domain integration, there are many

other methods for calculating the steady-state solution more effectively, either in the time

domain (Time Shooting method) or in the frequency domain (Harmonic balance), which

will be introduced in the next section. A careful association of these simulation methods

is necessary to analyze the steady-state of the PLL as well as the building blocks of the

PLL.

2.3 General steady-state analysis method

To analyze the steady-state of the PLL and the behavior of its building blocs, some

efficient methods are indispensable, which will be briefly introduced in this section.

Time domain integration, time Shooting method and harmonic balance are widely

used in most commercial simulators, and they are very powerful to analyze the periodic

or quasi-periodic signal in the microwave circuits.
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2.3.1 Time domain integration

Time domain integration (TDI) method [3] [5] [6] is based on the discretization of the

device constitutive equation in the time domain, as shown in Fig. 2.1. After discretiza-

tion of the ordinary differential equation (ODE), the circuit becomes resistive at each

moment tn. The complexity of equations depends on the discretization method (Forward,

Backward, Euler, Gear. . . ) [7]. A variable time step is usually necessary to achieve an

acceptable accuracy and to speed up the simulation as well.

Fig. 2.1: Discretization of the basic component: the capacitor

The resolution of the equations starts at the initial condition where t = t0. Once a

solution is found at a sampling point, it proceeds to the next point after controlling a

local truncation error. When the transient dies out, the steady-state of the circuit can

finally be obtained.

Waiting for the transient to die out can require prohibitive memory resources and

excessive simulation time. To accelerate the onset of the steady state, time domain

Shooting method was developed [3], as introduced below.

2.3.2 Time domain Shooting method

Traditional time domain integration method solves initial-value problems, while time

Shooting method solves boundary-value problems. Time Shooting method allows com-

puting the periodic steady state response more efficiently by reducing the transient phase.

Considering the steady state solution over one period [t0, tM ], its state variables can be

written as x (t0), x (t1), ... , x (tM). So the periodic steady state solution satisfies the

two-point boundary constraint:

x (t0) = x (tM) (2.1)
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The variable x (tM) can be expressed as an explicit function of x (t0), named state

transition function:

x (tM) = θ (x (t0) , tM − t0) (2.2)

Combining equation (2.1) with equation (2.2), we get the following equation which

can be then resolved by the Newton-Raphson method.

x (tM) = θ (x (t0) , tM − t0) − x (t0) = 0 (2.3)

The time domain Shooting method is mostly suitable to the digital and low-frequency

application. As the frequency range increases, the simulation of distributed elements poses

modeling and accuracy problems, hence the frequency domain method is developed, and

the most effective one is Harmonic balance.

2.3.3 Harmonic balance

Harmonic balance (HB) method [8] [9] is now implemented in most of RF simulators.

It is a numerical method for calculating the steady-state of the non-linear circuit. HB

can rapidly find the steady-state and represent the results precisely for the periodic or

quasi-periodic signals.

The principle of the HB is described as follows (Fig. 2.2): the circuit to be analyzed is

divided into a linear network and a non-linear network, which connect each other by the

forward and reverse Fourier transform (FT and FT−1). The linear network is analyzed

in the frequency domain, while the non-linear network is easier to be calculated in the

time domain. As soon as the current and voltage are identical on both sides of the two

network interfaces, a solution is found.

The resolution process of the HB is iterative: first it gives some estimation values to

the interface currents on the side of the linear network. After the associated voltages

at the interface of the linear network are calculated in the frequency domain, they are

transformed in the time domain. These voltages values are then used to calculate the

current of non-linear network in the time domain. Then, the currents obtained are trans-

formed in the frequency domain, and compared with estimate current values in the linear

network. If they are identical at all the frequency harmonics, the resolution process is

over. Otherwise, the previous estimation is optimized and the resolution process restarts.

The use of efficient Krylov projection algorithm has made HB an efficient simulation

method even for very large circuit including tens of thousands of transistors. The accuracy

is in general better than time domain Shooting method.
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Fig. 2.2: Harmonic balance method

However, critical convergence problems can arise when simulating highly non-linear

and digital circuits like frequency divider, PFD and charge pump. It is therefore necessary

to assist harmonic balance with a prior transient analysis over a number of signal periods.

2.3.4 RF circuit Simulators

Here we briefly list some commercial RF circuit simulators in which harmonic balance or

time domain Shooting method is employed (Tab. 2.1). Almost all RF circuit simulators

use Harmonic balance, and some simulators implement two simulation methods (HB and

time domain Shooting) to better adapt to the simulation requirements.

Simulator Company Environment 1st tech. 2nd tech.

SpectreRF Cadence ADE PSS(Shooting) HB
GoldenGate Agilent ADE Carrier(HB) Shooting

ADS Agilent ADS HB –
RFDE Agilent ADE HB –

Eldo RF Mentor Graphic DA-IC HB –

Tab. 2.1: RF circuit simulators

2.4 Existing PLL steady-state analysis method

As indicated previously, if the PLL has a steady-state, it can be analyzed with harmonic

balance or Shooting method presented above. In this section, some existing methods
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about the PLL simulation based on harmonic balance and Shooting method are concisely

introduced. These methods may include:

• Brute force transistor-level simulation of the PLL

• Controlled brute force transistor-level simulation of the PLL

• Hierarchical simulation of the PLL

2.4.1 Brute force transistor-level simulation of the PLL

The simplest approach to calculate the steady-state of the PLL is the direct simulation

at the transistor-level, which is referred to as brute force transistor-level simulation. This

simulation can be done with Shooting method (PSS in the simulator SpectreRF [10]) or

with the harmonic balance analysis “Harmonic balance” in the simulator ADS [11], or

“Carrier analysis” of the GoldenGate simulator [12]). A transient simulation prior to HB

or Shooting simulation is generally necessary in order to put a good initial condition for

steady state analysis.

The idea behind the brute force transistor-level simulation is to leave the PLL to

approach the steady-state on its own, and then use Shooting or HB method to refine

the solution. However, in most cases it is difficult to do this for the following reasons:

First, the PLL consists of two different circuits: analogue circuits (VCO, filter) and digital

circuits (frequency divider, PFD), which makes the simulation of the PLL very complex.

Second, the time constants in the PLL vary widely: the high frequency of the VCO’s

carrier is much larger than the loop bandwidth of the PLL, especially for a PLL with

large division ratio. The simulation of such circuit requires a costly computation with

much smaller time step over a wide time span called stabilization stage. Finally, to

track the reference phase as accurately as possible, the PLL being very sensitive to the

phase changes, it requires a very small time step. In fact, conversely for HB or Shooting

analysis, it requires a large number of harmonics. The more number of harmonics is need,

the smaller is the convergence valley. Consequently, the more memory would be spent

with either Shooting or HB method.

In summary, the complexity of the brute force simulation of the PLL is proportional

to the number of nodes of the circuit and the number of harmonics. Table 2.2 shows an

example of the brute force transistor-level simulation for some simple PLL circuits. It’s

obvious that the simulation CPU time increases along with the division ratio (N), the

number of nodes, the number of harmonics (NH) and the circuit stabilization time.

As said, the stabilization time is always needed to make the PLL approach the locked

state. As described in the section 2.3.3, the resolution of the Harmonic balance begins at
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Ckt N
Num. of
nodes

NH
Circuit stabi-
lization time

Stabilization
simulation time

HB/Shooting
simulation time

I 2 120 128 2 us 11.6 min 0.9 min
II 4 132 128 3 us 19.2 min 3.1 min
III 8 217 128 4 us 45.8 min 3.5 min
IV 16 217 256 5 us 63.5 min 21.5 min
V 32 229 256 13 us 137.4 min 26.6 min
VI 56 229 512 20 us 213.6 min 59.1 min

Tab. 2.2: Brute force transistor-level simulation. N: Division ratio; NH: Number of harmonic

the estimation of the currents flowing into/out of the linear network. In fact, the more

accurate the estimation is, the less number of iterations will be needed to converge. To

make a good estimation, it’s necessary to run the transient simulation sufficiently long

until the transient significantly dies away, as shown in Fig. 2.3. The same is also true for

Shooting method.

Fig. 2.3: Evolution of the VCO control voltage

In summary, the brute force transistor-level simulation is too slow, and is not conve-

nient to verify the complex PLL with a large transistors count and division ratio.

2.4.2 Controlled brute force transistor-level simulation of the

PLL

As seen from above, the long stabilization time is an obstacle to the brute force simulation

of the PLL. To shorten this stabilization time, a number of techniques have been derived to

constrain the transient analysis so that it gets quicker to the PLL locked state. Especially,

these techniques have been systematized recently by G. Estep et al. [13], and an efficient

transient control process has been proposed, as described below.



Chapter 2 : Steady-state Analysis of the PLL 50

Recall that when the PLL is in the locked state, its output frequency and the phase

shift with respect to the reference are constant. In general, the nominal output frequency

of the PLL is known a priori. So the question becomes how to make the output frequency

of the PLL move from an initial value to the nominal frequency as fast as possible. Once

this target is achieved, the output frequency of the PLL is almost constant and the PLL

gets into the lock process, in which the PLL can get locked quickly by varying primarily

the phase shift. Since the PLL in the lock process is very close to the locked state, this

may constitute a good estimation to HB or Shooting analysis, and bring about an easier

convergence of the simulation.

In order to make the PLL output frequency move quickly from an initial value to the

nominal frequency, the process depicted in Fig. 2.4 is proposed.

Fig. 2.4: Controlled brute force transistor-level simulation of the PLL

A forced DC voltage Vdc is connected to the input of the VCO through a switch, which

is used to control the VCO output frequency. When the VCO input voltage is forced to

a fixed value, the output frequency will move instantaneously to the specified frequency

on the static voltage-frequency characteristic of the VCO.

At the input of the PFD, the reference signal can be delayed to modify the phase shift

between VCO and the reference signal. A trigger signal is applied to the VCO in order to

start the oscillation at an adequate time instant. However, being an autonomous circuit,

the VCO can start the oscillation on its own due to the numerical noise. Therefore, it’s

impossible to predict when the VCO begins to oscillate. To make the VCO start the

oscillation at a specified time, the trigger implements a “kick-start” principle (Fig. 2.5)

[14]. For a LC-VCO, the trigger can be simply a current source (1mA, 0.1ns duration)

in parallel with the inductor. For the ring oscillator, it is preferable to force one or two

internal nodes of the circuit to high/low state at the beginning of the simulation.
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Fig. 2.5: Start of the oscillation of the VCO with an external stimulation

The details of the method are described as follows:

1. Provided that the nominal output frequency of the PLL is known, according to the

static voltage-frequency characteristic of the VCO, the nominal control voltage of

the VCO can be easily obtained.

2. Adjust the delay time of the reference signal, and the VCO trigger time to give an

appropriate phase shift between the reference and the VCO.

3. Force the VCO control voltage with the nominal control voltage obtained in step 1

(i.e., turn on the switch), and do a Transient simulation for several periods so that

the VCO output signal propagates to the divider output. Save the simulation results

as initial conditions for the next simulation.

4. Remove the forced voltage source (i.e., turn off the switch), and do another Transient

simulation based on the above initial condition, and let the PLL approach the locked

state on its own. Save the results as an estimation of the next step.

5. Simulate the PLL with HB or Shooting using the previous estimation. If the analysis

is converged, the steady-state of the PLL is found.

The simulation with controlled brute force method is fast, and the result obtained

from HB analysis is precise. However, the final HB simulation time carried over the full

PLL circuit is directly proportional to the division ratio. Hence the method is practically

limited to PLL with division ration less than 100. Beyond that, the simulation time and

the memory become prohibitive. In addition, the method requires a good approximation

of the lock phase difference between the reference and the feedback to ensure a quick

convergence. And this parameter is usually unknown to the designer.
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2.4.3 Hierarchical simulation of the PLL

An alternative to the brute force transistor-level approach presented above is the hierar-

chical simulation approach. With this approach the circuit is broken into functional pieces

for which the simulations are carried separately; then a top level simulation is carried to

check the consistency of the block interfaces conditions.

An extensive number of works have been presented following this principle, which

are usually termed as behavioral modeling/simulation techniques [1] [15] [16] [17]. By

breaking the PLL into smaller pieces, the size of the simulated problems is reduced and

each block can be simulated with an appropriate time rate and an appropriate algorithm

or simulation tool. Doing so, the explosion of simulation time with PLL large division

rank can be theoretically overcome. A very comprehensive description of this approach is

given by K. Kundert in reference [1]. The difficulty with this approach however is that,

to insure a consistent result accuracy, the top level simulation must consistently check

the block interfaces loading conditions. And this is unfortunately not a trivial problem,

especially as the PLL blocks have widely spaced time constants and deliver signals with

power spectrum ranging from DC to the high frequency harmonics of the VCO. Hence

most authors adopt the assumption of idealized block terminations, i.e., ideal square

wave input and infinite load impedance (Fig. 2.6). This assumption results in hazardous

simulation accuracy. Such a hierarchical simulation is therefore good for specification

and top-down design phase, but not valuable for bottom-up verification, especially as the

designs get more and more complex.

Fig. 2.6: Hierarchical simulation with the idealized block loading conditions

In this work we will reconsider a hierarchical simulation approach and propose a

simulation and modeling strategy that accurately and effectively account for the interface

conditions of the blocks, in order to provide a PLL simulation accuracy that is identical

to brute force transistor level simulation.
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2.5 Proposed method

As indicated in the previous section, the classical hierarchical method does not take into

account the effects of the load impedance imperfections and the waveform distortions of

the input signals, so the precision of the simulation is hazardous and does not fit well

the transistor-level simulation. In this section, a new method is proposed considering the

above effects, and an iterative algorithm is utilized to achieve a good precision and a quick

convergence of simulation.

First, some principles of the new methods are introduced, then a general algorithm is

presented, which is then described in detail. After that, the proposed method is verified

by some examples of the PLL circuits and the simulation results are compared with the

brute force transistor-level simulation.

2.5.1 Fundamentals of the proposed method

The diagram of the PLL is illustrated in Fig. 2.7. As seen from the diagram, the PLL

forms a loop of 4 interconnected two-port blocks: VCO (B(1)), frequency divider or FD

(B(2)), PFD/CP(B(3)), and the low-pass filter or LPF (B(4)). For the convenience of

the technique to be described, the PFD and CP are grouped into a single block, and the

reference source is considered as an internal signal to the block PFD/CP (B(3)).

Fig. 2.7: Diagram of the PLL

In fact, in the close loop, each bloc B(p) (p = 1, 2, 3, 4) is loaded by its succeeding

block B(p + 1) and serves as load to its preceding block B(p − 1), as illustrated in Fig.

2.8. The input voltage / current of the block B(p) is denoted vin (p, t) / iin (p, t), and its

output voltage is denoted vout (p, t). The load impedance of the block B(p) is denoted

Zout (p, k), where k represents the harmonic order of the frequency f = k ·fref . The input
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impedance of the block B(p+1) Zin (p+ 1, k) is defined as below :

Zin (p+ 1, k) =
Vin (p+ 1, k)

Iin (p+ 1, k)
(2.4)

where Vin (p+ 1, k) and Iin (p+ 1, k) are Fourier transforms of vin (p, t) and iin (p, t).

Therefore, under lock condition, the output signal of the block B(p): vout (p, t) equals

the input signal of its succeeding block B(p+1): vin (p+ 1, t). Also, the load impedance of

the block B(p): Zout (p, k) equals to the input impedance of its succeeding block B(p+1):

Zin (p+ 1, k).

Fig. 2.8: Interconnection of the blocks and the definition of the signals

From the viewpoint of a given block B(p), the internal structures of B(p − 1) or

B(p + 1) are not of importance and can be regarded as black boxes. Given the input

signal vin (p, t) or iin (p, t), and the load impedance Zout (p, k), the response of block B(p)

can be calculated without any information loss in the conditions shown in Fig. 2.9.

vin (p, t) and Zout (p, k) will be termed the loading conditions of the block B(p).

Fig. 2.9: Simulation of a block with the input signal and the load impedance

Thus, provided that the loading conditions of each block are known, the simulation of

a close-loop PLL can be conducted as the simulation of the 4 individual blocks.

Therefore, the loading conditions vin (p, t) and Zout (p, k) become the unknown of our

system, and will be computed iteratively until the convergence criterion is fulfilled. The

corresponding algorithm will be presented in the next section.
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To set the input signal of the block B(p), a voltage/current source substitution

technique should be used. This technique, introduced below, allows saving the output

voltage of the preceding block B(p − 1) and then reusing it as a voltage source at the

input of the block B(p).

Introduction of voltage/current source substitution technique

Before going to the general algorithm of the proposed method, we briefly introduce

the voltage/current source substitution technique, as illustrated in Fig. 2.10 below.

Fig. 2.10: Mechanism of the voltage substitution

Considering the assumption of a periodic steady-state operating point of the PLL, any

node voltage or pin current can be represented by the Fourier series:

x(t) =
K
∑

k=0

X̂k · exp (j(2πkft+ Pk)) (2.5)

where X̂k is the magnitude of the signal, f the fundamental frequency, Pk the phase, and

K number of harmonics.

Fourier series decomposition is very convenient for the method to be outlined, as we

can save the spectrum of the voltage/current of a signal and then reuse it in the form of

a voltage/current source for another circuit.

This voltage/current source substitution technique is available in most commercial

simulators, like GoldenGate (COMBVS / COMBCS source [12]), and ADS / RFDE (

V spectrumDataset / I SpectrumDataset source: frequency spectrum defined in dataset

[11] ). This technique will be used in the proposed algorithm in the following section.
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2.5.2 Algorithm presentation

2.5.2.1 Introduction

Based on the principles described in the previous section, a general algorithm is derived,

as presented below.

Fig. 2.11: Block diagram of the PLL for the proposed algorithm

Considering the PLL loop depicted in Fig. 2.11, where the input and output signals

of each block are indicated, the general algorithm of the new method follows the process

below:

• A cut C is made on the PLL loop at any of the points P1 ,P2, P3, P4.

• Let vin (R, t) be the voltage applied to the right of the cut C and vout (L, t) the

voltage measured at the left of the cut C, as illustrated in Fig. 2.12.

• Next, starting from the right of the cut point with the excitation vin (R, t), each

block is simulated at a time, with its output serving as the input for the succeeding

block. An entire iteration is completed when we have computed the output at the

left of the cut point vout (L, t) .

• We now observe that the loop equilibrium is reached when vout (L, t) = vin (R, t).

We therefore have defined a non-linear algebraic equation, which we will call the PLL

lock equation, from which the steady-state condition can be computed:

{

F (vin (R, t)) = vout (L, t) − vin (R, t) = 0

0 ≤ t <∞
(2.6)

Now the question is, where to place the cut point in the loop?

In fact, equation (2.6) will be resolved by an iterative technique, as such it is important

to select a point where a good estimation of vin (R, t) can be easily obtained.
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Fig. 2.12: Block diagram of the PLL with arbitrary cut

Then looking at the PLL structure, it’s obvious that the cut should be placed at the

input of the VCO. The reasons are as follows:

• Under locked condition, the VCO input voltage is merely a DC voltage.

• The nominal value of the VCO input voltage is easily obtained from the static

frequency-voltage characteristic.

Doing so, the PLL lock equation writes:

{

F (vin(1, t)) = vout (4, t) − vin (1, t) = 0

0 ≤ t <∞
(2.7)

where vout (4, t) is the filter output voltage, and vin (1, t) is the VCO input voltage.

Now for the resolution of the equation (2.7), it is important to notice that the lock

conditions in the PLL are achieved by the degree of freedom available in the VCO signal

phase. Indeed, because the VCO is an autonomous circuit, for a given input signal

vin (1, t), it accepts an infinite number of solutions that have the same waveform but

differ on the phase at the time origin. Thus the lock conditions are achieved by adjusting

both vin (1, t) and this free parameter.

Let us state this more quantitatively now. Under locked conditions or near locked

conditions, the VCO input signal is a periodic signal whose fundamental frequency is the

reference frequency fref , i.e.,

vin (1, t) =
∑

k

Vin (1, k) exp (j2πkfref t) (2.8)

When this signal is applied to the input of the VCO, the reference frequency mixes

with the self oscillation frequency of the VCO fvco, so the VCO output vout (1, t) is a

quasi-periodic signal with two fundamental frequencies fvco and fref .
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As a result, the output voltage of the VCO vout (1, t) can be expressed in the form of

a modulated signal:



















vout(1, t) =
∑

l

v̂out(1, l, t) exp (j2πlfvcot)

v̂out(1, l, t) =
∑

k

V̂out(1, l, k) exp (j2πkfref t)

fvco = N · fref

(2.9)

In fact, it is possible to obtain this kind of signal directly by simulating the VCO as

a self-oscillating mixer using harmonic balance.

However, since we are only looking at the PLL in the locked state, fvco equals the

reference frequency multiplied by the division ratio (fvco = fref ·N), so a single tone fref

will be enough for the HB analysis. As a result, the output voltage of VCO becomes

periodic with one fundamental frequency fref :

vout(1, t) =
∑

k

Vout(1, k) exp (j2πkfref t) (2.10)

Actually, since the VCO is an autonomous circuit, any phase shifted version of the

equation (2.9) along the frequency axis fvco is also an admissible solution. So let us define

∆φL the arbitrary VCO phase shift, and ∆TL the corresponding time shift, so we have:

∆φL = 2πfvco∆TL = 2πNfref∆TL (2.11)

From the above, the general form of the VCO output takes the following form:

vout (1, t,∆φL) =
∑

l

v̂out (1, l, t) exp (jl (2πfvcot− ∆φL))

=
∑

l

v̂out (1, l, t) exp (2πjlfvco (t− ∆TL))
(2.12)

The divider output voltage can be obtained as follows:

vout

(

2, t,
∆φL

N

)

=
∑

k

v̂out(2, k, t) exp

(

jk(2πfref t−
∆φL

N
)

)

=
∑

k

v̂out(2, k, t) exp (2πjkfref (t− ∆TL))
(2.13)

Note that the output phase of the divider follows the output phase of the VCO, and

this will in turn affects the PFD/CP output current and then the LPF output voltage

vout(4, t) . Because ∆φL is arbitrary and thus independent of the VCO input voltage
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vin (1, t), we now see that the equation (2.7) actually depends on two variables: the VCO

input voltage vin(1, t), and phase shift ∆φL. Equation (2.7) can then be rewritten as

follows:
{

FL (vin(1, t),∆φL) = vout(4, t) − vin(1, t) = 0

0 ≤ t <∞
(2.14)

Equation (2.14) defines the lock condition of the PLL, from which the steady-state

solution will be determined.

To solve the equation (2.14), we propose a piecewise simulation strategy, starting from

VCO (B (1)), sequentially, to LPF (B (4)). The simulation of a block B(p) assumes an

arbitrary load impedance profile Zout (p, k), p = 1, 2, 3, 4, k = 0, 1, 2, ...K, and the input

signal generated by the preceding block.

Doing so, we see that the lock conditions of the PLL are then obtained when the

following system of equations is fulfilled.







































Fouter (Zout(p, k), vin (1, t)) = Zin(p+ 1, k) − Zout(p, k) = 0

Finner (∆φL) = vout(4, t) − vin(1, t) = 0

Zin (p, k) =
Vin (p, k)

Iin (p, k)

p = 1, 2, 3, 4

k = 0, 1, 2, ...K

(2.15)

The overall resolution process of this equation set is then a two-tier equation solution

loop. The inner loop equation Finner (∆φL) solves for ∆φL, and the outer loop equation

Fouter (Zout(p, k), vin (1, t)) solves for vin(1, t) and the impedances Zout(p, k). The reso-

lution of the above equations follows an iterative procedure which is depicted in Fig.

2.13.

First we give an overview of the general algorithm. Then in the next subsection the

algorithm is simplified. After that, the detailed description is presented.

The algorithm begins with the estimation of the lock conditions described in the

equation (2.15):

• Estimation of VCO input voltage vin (1, t)

• Estimation of VCO phase shift ∆φL

• Estimation of load impedance of each block Zout (p, k) with p = 1, 2, 3, 4 and k =

0, 1, 2, ...K

With these estimations, the building blocks are sequentially simulated one by one.

First, the VCO is simulated with the estimated input voltage vin (1, t) and the estimated
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Fig. 2.13: Procedure of the proposed algorithm
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load impedance Zout (1, k), then its output voltage vout (1, t) is obtained. The output phase

of the VCO is shifted according to the estimated phase shift ∆φL, and the VCO voltage

becomes vout (1, t,∆φL), whose spectrum is saved and used as the input voltage source of

the divider. Then the divider is simulated using the voltage source substitution technique

and the estimated load impedance Zout (2, k). Its output voltage vout (2, t,∆φL/N) is

obtained and used as the input voltage of the PFD/CP. Next, the simulation of PFD/CP

is driven by the divider output voltage and loaded by the estimated Zout (3, k). The

simulation of PFD/CP is more complex than the simulation of the other blocks, and

it will be described in detail in the subsection 2.5.3.4. The output voltage of PFD/CP

vout (3, t) is then saved and sent to the input of the filter. After the filter simulation, one

verifies if the inner loop equation is satisfied. If not, the phase difference value ∆φL is

updated and the output phase of the VCO shifted accordingly and then sent to the input

of the divider. After that, divider, PFD/CP and filter are simulated again until the inner

loop equation is satisfied.

Once the inner loop equation is fulfilled, the outer loop equation is checked. If the

output loop equation is not solved, the load impedances of all blocks are updated as well

as the VCO input voltage vin (1, t). When these updates are done, a new iteration begins

from the VCO simulation until the satisfaction of the two loop equations.

Diagram 2.13 actually describes the resolution of a typical non-linear system of equa-

tion, and the resolution of which could theoretically be carried with Newton iteration.

This however would require the computation of substantially large and dense Jacobian

matrix for the outer loop equation, whose size is 4 times the number of harmonics in

the circuit. Fortunately enough, we have observed that the outer loop equation can be

made to converge very quickly with a simple fixed point iteration, provided that a good

estimate is given. This avoids the computation and factorization of the Jacobian. The

update of the VCO input voltage and load impedances at iteration i is obtained as:











vin (1, t)(i+1) = vout (4, t)i

Zout (p, k)(i+1) = Zin (p+ 1, k)(i) =
Vin (p+ 1, k)(i)

Iin (p+ 1, k)(i)

(2.16)

where the superscript i and i+ 1 represent the ith and (i+ 1)th iteration.

The inner loop equation, being a single variable equation in ∆φL, it can in turn be

efficiently resolved by either a Newton iteration or dichotomy.

Note that the inner loop includes the simulation of 3 blocks (FD, PFD/CP and LPF)

while the outer loop involves the four blocks. The inspection of the inner loop however

shows that under some assumptions easily verified, it can be simplified and reduced only
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to PFD/CP block simulation, as outlined below.

2.5.2.2 Simplified algorithm

According to the equation (2.13), the divider output voltage can be written as:

vout (2, t,∆TL) =
∑

k

v̂out (2, k, t) exp (j2πkfref (t− ∆TL)) (2.17)

Note that for convenience and without loss of generality, we express the reference

voltage with zero phase at time origin, i.e.,

vref (t) =
∑

k

V̂ref (k) exp (j2πkfref t) (2.18)

Hence, the phase shift between the reference and the feedback signals is simply:

∆φFB = 2πfref∆TL (2.19)

Comparing the equation (2.19) and (2.11), we have:

∆φFB = ∆φL/N (2.20)

According to the general algorithm presented in Fig. 2.13, if the inner loop equation

is not fulfilled, the phase shift ∆φL is updated and the output phase of the VCO is shifted

according to the new value of ∆φL. Then the divider is simulated with the phase-shifted

VCO output voltage. In fact, since the input signal of the divider is simply phase shifted,

the output of the divider will also be a simple phase-shifted version of previous divider

solution. Hence a phase shift ∆φL at the VCO output is equivalent to a phase shift

∆φL/N at the output of the divider. Therefore, we can eliminate the divider simulation

from the inner loop process and adjust directly the output phase of the divider with the

equivalent phase shift ∆φL/N , as illustrated in Fig. 2.14.

Furthermore, the simulation of the filter can also be removed from the inner loop

process if we make the reasonable assumption that LPF attenuates significantly the refer-

ence frequency and all its harmonics. With that assumption we then observe that under

the desired PLL lock conditions, both the LPF output voltage vout (4, t) and VCO input

voltage vin (1, t) are practically constant. So let us approximate them to DC signals for a
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Fig. 2.14: Simplified procedure of the proposed algorithm
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while:
{

vin (1, t) ≃ vDC
in (1) = vin (1, t)

vout (4, t) ≃ vDC
out (4) = vout (4, t)

(2.21)

On the other hand, the usual architecture of LPF circuits (see chapter 1), are such

that under DC conditions, the LPF output voltage is identical to the PFD/CP output

voltage, namely vout (3, t), thus:

vout (3, t) ≈ vout (4, t) = vDC
out (4) (2.22)

Hence, it is not necessary to simulate the LPF but consider only the PFD/CP. Under

these assumptions, the inner loop problem simplifies to

Finner (∆φL) = vout (3, t) − vin (1, t) = 0 (2.23)

The phase shift ∆φFB = ∆φL/N of the feedback signal is to be adjusted until the

above condition is satisfied. The resolution of the equation involves therefore only the

simulation of the PFD/CP block, and the lock condition is verified only on the average

value (DC component) of the output voltage (eq. (2.23)).

The simplified algorithm is then summarized in the diagram 2.14. Note that the

assumption for DC conditions at LPF input is made only within the inner loop process;

once the output from the PFD/CP is obtained, this assumption is relaxed, the real filter

conditions are simulated and the exact lock condition is verified in the outer loop process,

in order to guaranty an exact transistor level accuracy.

2.5.3 Algorithm description

In the previous section, the general algorithm is presented, in which several simulation

steps are involved. Basically, these simulation steps can be classified into the following

groups and will be described in detail in this section.

• Initial estimates (VCO input voltage, phase shift, load impedances)

• VCO / Divider simulation

• Inner loop process (including PFD+CP simulation)

• Outer loop process (including LPF simulation, complete inner loop and outer loop

equations check, VCO input voltage and output load impedances updates)
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2.5.3.1 Initial estimates

The following procedure describes the acquisition of initial conditions for VCO input

voltage, VCO phase shift and load impedances that guaranty a quick convergence of the

algorithms.

A. VCO input voltage

To find out the nominal value of VCO input voltage vin (1, t), the VCO is driven by a

DC voltage, and an HB analysis of the VCO is performed, sweeping the input DC voltage.

Then the voltage-frequency curve of the VCO is traced, as shown in Fig. 2.15. Since the

nominal frequency of the VCO is known a priori, the nominal value of v0 can be easily

found using a Newton iteration. The initial estimate of vin (t) is set then to vin (t) = v0,

∀t.

Fig. 2.15: VCO: search for the nominal control voltage from the voltage-frequency curve

B. Initial VCO phase shift

In the proposed algorithm, a zero phase is assumed to the reference signal and an

arbitrary phase shift ∆φL is considered for the VCO output, which results in a phase

shift ∆φL/N at the divider output. The estimation of the phase shift will depend on

the designer’s knowledge about the PLL circuit. Generally, for a charge-pump PLL, the

nominal phase difference is nearly zero [18], so ∆φL = 0 can constitute a good initial

value. In any case this initial value is not a critical parameter since it will be easily

adjusted in the inner loop resolution, as will be seen next.

C. Load impedances

A brief description of the various PLL blocks has been given in chapter 1. To estimate

the load impedance value of each block, the characteristics of each block are considered

below. Recall that the load impedances of four blocks are expressed by Zout(p, k) where

p = 1, 2, 3, 4, and k is the harmonic order of frequency f = kfref with k = 0, 1, 2, ...K.

1. VCO block: As indicated in chapter 1, a buffer circuit is usually added at the output

of the VCO, so the VCO is generally terminated by a high impedance. Therefore a
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good estimate for its load impedance is:

Zout(1, k) ≈ ∞ ... k = 0, 1, 2, ...K (2.24)

2. Divider block: Similarly to VCO, due to the buffer circuit at the output of the

divider, its load impedance is also usually very large, so a good estimate is:

Zout(2, k) ≈ ∞ ... k = 0, 1, 2, ...K (2.25)

3. PFD+CP block: The PFD+CP is terminated with a LPF with a cut-off frequency

well below the reference frequency. Hence a good estimate of its load impedance is:

Zout(3, k) ≈

{

∞ ... k = 0

0 ... k ≥ 1
(2.26)

4. LPF block: The load of low-pass filter is the VCO input. The input impedance of

the VCO at DC is close to the infinity, and at high frequencies it’s much larger than

the filter output impedance. Thus, the load impedance of the filter can be estimated

to:

Zout(4, k) ≈ ∞ ... k = 0, 1, 2, ...K (2.27)

2.5.3.2 VCO simulation

The VCO simulation bench is illustrated in Fig. 2.16. For the initial iteration, the input

voltage vin (1, t) is DC voltage as given by the estimate described in the above section,

and the load impedance is infinite, as above (eq. (2.24)). Therefore the HB analysis is

usually very fast.

In the subsequent iterations, vin (t) and Zout (1, k) are updated in the outer loop process

(section 2.5.3.5 B and section 2.5.3.5 C). The convergence is quickly obtained as we start

the simulation from the previous solution.

Fig. 2.16: VCO simulation bench
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2.5.3.3 Divider simulation

The divider simulation bench is illustrated in Fig. 2.17. The input voltage vin (2, t) is

given by the VCO output voltage vout (1, t) . With regard to the load impedance, it’s is

infinite for the initial iteration, as indicated in eq. (2.25). For subsequent iterations, it is

updated in the outer loop process (section 2.5.3.5 C).

Fig. 2.17: Divider simulation bench

2.5.3.4 Inner loop process

In this section we will describe the inner loop process. As depicted in Fig. 2.18, the inner

loop process involves the divider phase shift, the PFD/CP simulation, the average inner

loop equation check and the VCO phase shift update, . The PFD/CP simulation is the

critical part of the algorithm, the other parts are trivial. We will distinguish between the

initial iteration and the subsequent iterations.

Fig. 2.18: Resolution of the inner loop equation
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A. Initial iteration

In the initial inner loop iteration, the PFD/CP simulation is carried out with a load

impedance estimation profile indicated in equation (2.26), i.e., an open circuit at DC and

a short circuit for the reference frequency and its harmonics. Note however that because

the PFD/CP has a digital circuit behavior, it is necessary to assist Harmonic balance

simulation with a Transient analysis to achieve a fast convergence. Unfortunately, the

discrete impedance profile specified by equation (2.26) is not very practical for a Transient

analysis. The solution consists therefore in synthesizing this impedance profile by means

of an ideal DC voltage source that is constrained to have a zero average current flow (see

Fig. 2.19). Doing so results in a very effective Transient and HB simulation.

Fig. 2.19: Synthesis of PFD/CP load impedance profile by means of an ideal DC voltage source

Fig. 2.20: PFD+CP simulation bench in the initial iteration

Fig. 2.20 thus represents the circuit testbench for the PFD/CP simulation. The

output voltage of the PFD/CP is forced to the average of the estimated VCO input

voltage v0 = vin (1, t). An estimated phase shift ∆φL/N is affected to the FD output

signal vout (2, t,∆φL/N). The circuit is simulated with Harmonic balance, a current icp (t)

is measured at the CP output and the output impedance emulation is satisfied if the

average current icp (t) is zero. Observe that, in these conditions, the average inner loop

equation (2.23) is always satisfied, so that we have turned the inner loop constraint from

equation (2.23) to the following new equation:

Finner (∆φL) = icp (t) = 0 (2.28)

Equation (2.28) is a single variable equation in ∆φL, which can be resolved iteratively

with Newton-Raphson algorithm. Once the equation (2.28) is resolved, we can obtain the
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nominal VCO phase shift ∆φ∗
L as sketched in Fig. 2.21. Note that icp (t) is a periodic

function in ∆φL with a period N × 2π, as shown in Fig. 2.22.

Fig. 2.21: Relationship between the DC output current of CP and ∆φL/N

Fig. 2.22: Relationship between DC output current of CP and ∆φL/N - 2 periods

B. Subsequent iterations

In the subsequent iterations, one does no more need a Transient assistance to help

Harmonic balance analysis, since the results from the previous iteration will constitute

a good estimate to achieve a fast HB convergence. So we may directly terminate the

PFD/CP with the discrete load impedance profile Zout (3, k), as shown in Fig. 2.23. An

estimated phase shift ∆φL/N is affected to the FD output signal vout (2, t,∆φL/N). Upon

the convergence of Harmonic balance, one obtains the CP output voltage vout (3, t). The

original average inner loop equation (2.23), recalled below for convenience, is checked for

loop convergence.

Finner (∆φL) = vout (3, t) − vin (1, t) = 0 (2.29)

Note that the average CP output voltage vout (3, t) is also a periodic function of the

phase shift ∆φL of period N × 2π. Fig. 2.24 shows a typical plot of that relationship.

Interestingly one notices that this curve alternates between flat regions and narrow / steep

regions. For a good and stable PLL, the locking point ∆φ∗
L happens in the steep region,

so that any small phase deviation breaks the lock conditions and the loop restores back.

The frequency synthesis accuracy is therefore proportional to the slope of this plot.
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Fig. 2.23: PFD+CP simulation bench in the second and the following iterations

Fig. 2.24: Relationship between the DC output voltage of CP and ∆φL/N - 2 periods

A Newton-Raphson algorithm can also be used to solve equation (2.29) for ∆φ∗
L. This

is usually quickly performed because the previous loop iterations will provide a good

initial estimation, despite the Newton iteration convergence valley can be narrow here.

2.5.3.5 Outer loop process

The outer loop process involve many operations: LPF simulation, complete inter-loop and

outer-loop equation checks, VCO input and the four blocks load impedances updates, as

described below.

A. LPF simulation

The filter simulation is simple and does not pose any problem. The schematic is

illustrated in Fig. 2.25. The CP output voltage vout (3, t) drives the filter terminated with

estimated load Zout (4, k). The HB simulation is virtually instantaneous and provides the

voltage vout (4, t).

B. Complete inner loop and outer loop equations check

After the LPF simulation we are in a position to check the two loop equilibrium equa-

tions (eq. (2.15)). When these are satisfied we obtain the PLL solution with transistor-

level accuracy; otherwise we need to update the VCO input voltage vin (1, t) and the load
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Fig. 2.25: Loop filter simulation

impedances of all the four blocks Zout (p, k), p = 1, 2, 3, 4, k = 0, 1, ..., K as below, and

restart another iteration.

C. VCO input voltage and output load impedances updates

Recall that, given the phase shift ∆φ∗
L from the inner loop resolution, equation (2.15)

is a non-linear system of equations in 4×K + 1 unknowns. As stated, we have chosen to

resolve that with a fixed point iteration technique, which has shown good convergence in

this particular problem. Thus the updates at iteration i+ 1 express simply as:







































vin (1, t)(i+1) = vout (4, t)i

Zout (p, k)(i+1) = Zin (p+ 1, k)(i) =
Vin (p+ 1, k)(i)

Iin (p+ 1, k)(i)

p = 1, 2, 3, 4

k = 0, 1, ..., K

Zin (5, k) = Zin (1, k)

(2.30)

where the superscript i and i+ 1 represent the ith and (i+ 1)th iteration.

2.5.3.6 Discussion on the algorithm termination conditions

Because of the fixed point iteration updates (eq. (2.30)), at iteration i+ 1, the check on

the lock conditions (2.15) expresses as:

{

Fouter ( ) = Zin (p+ 1, k)(i+1) − Zin (p+ 1, k)(i) = 0

Finner ( ) = vout (4, t)(i+1) − vout (4, t)(i) = 0
(2.31)

Hence we may define an effective relative tolerance criterion εtol for stopping the

algorithm, i.e.,














∣

∣

∣

∣

Zin(p+ 1, k)(i+1) − Zin(p+ 1, k)(i)

Zin(p+ 1, k)(i)

∣

∣

∣

∣

< εtol

∣

∣

∣

∣

Vout(4, k)
(i+1) − Vout(4, k)

(i)

Vout(4, k)(i)

∣

∣

∣

∣

< εtol

(2.32)
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2.5.4 Numerical application – Step by step simulation of a PLL

In this section we present a numerical application of the proposed method. We will apply

step by step the algorithm onto a realistic PLL circuit to verify the effectiveness of the

proposed solution. The simulation process is recapitulated in Fig. 2.26, which consist in

simulating the PLL blocks one by one and checking for the interface consistency conditions

at the end of each algorithm cycle.

Fig. 2.26: Verification of the new method

The PLL circuit example is realized on CMOS technology with a division rank of 16

(Reference frequency = 38.88 MHz, output frequency = 622 MHz). It comprises 463 MOS

devices, and uses a PFD+CP structure and a passive 2nd order LPF.

The first thing to start with is the estimation of the nominal VCO input voltage.

Given a reference frequency of 38.88 MHz and a division rank of 16, the nominal output

frequency is to be 622 MHz. Then the static input-output characteristic of the VCO

is traced with HB to obtain the nominal VCO input voltage value. The VCO input-

output characteristic is shown in Fig. 2.27 and the nominal control voltage is found to be

v0 = 1.71V . For that nominal control voltage value, the VCO output voltage waveform

is shown in Fig. 2.28. Considering that waveform at the input of the FD, we obtain the

nominal divider output waveform shown in Fig. 2.29, which is nearly a square waveform.

The next stage is then to simulate the PFD+CP. For the initial iteration, it needs

to load a DC voltage of v0 = 1.71V at the output of PFD/CP and to drive its feedback

input with the nominal FD output waveform. Then we vary the feedback input phase
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Fig. 2.27: VCO input-output static characteristic

Fig. 2.28: VCO output voltage vout (1, t)

Fig. 2.29: Divider output voltage vout (2, t)
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∆φL/N and monitor the average output current icp (t). The characteristic icp (t) vs.

∆φL/N is shown in Fig. 2.30, the nominal phase shift ∆φ∗
L is found to be ∆φ∗

L = 1.33◦,

when the characteristic crossed the zero axis. For the subsequent iterations, the DC

voltage source is removed and replaced by a discrete load impedance profile Zout (3, k).

By varying the feedback input phase ∆φL/N , we monitor the average output voltage

vout (3, t). The characteristic vout (3, t) vs. ∆φL/N is shown in Fig. 2.31, the nominal

phase shift ∆φ∗
L = 1.33◦ is found when vout (3, t) = v0, and this is unchanged as to the

first iteration.

Fig. 2.30: Relation icp (t) vs. phase shift ∆φL/N

The first iteration of the algorithm is then terminated. For entering a new iteration,

we update the VCO input voltage and the load impedances of all blocs, as stated in

equation (2.30). At the end of each new iteration, we monitor the variations of the block

input impedances and the LPF output voltage, according to equation (2.32). Fig. 2.32

to Fig. 2.35 show in a logarithmic scale the evolution of the input impedances of the

various blocks with the iteration number. We then see that the algorithm converges very

quickly within 4 iterations. The variation of the LPF output voltage spectrum at each

loop iteration end is shown in Fig. 2.36, and it converges within 4 iterations too.

Fig. 2.37 shows the waveforms of the reference and the feedback signals of the

PFD under locked condition obtained with the proposed method. We see that they

are well synchronized. The zoom of the rising signal front (Fig. 2.38 ) shows that

the two input signals are time shifted by ∆TL = 95ps, corresponding to a phase
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Fig. 2.31: Relation vout (3, t) vs. phase shift ∆φL/N
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shift ∆φ/N = 1.33◦. Fig. 2.39 shows the reference signal and the feedback signal

obtained with the brute force transistor-level approach. This plot is indistinguishable

with the plot Fig. 2.37 from the proposed method. A zoom near the rising signal

front (Fig. 2.40) shows a time shift of ∆TL = 103ps (or ∆φ/N = 1.44◦). In fact

the new method tends to be however the most accurate, because each HB simulation

involves a single block at a time, thus a smaller number of devices and less numerical error.

Fig. 2.37: Nominal phase difference: new method

Fig. 2.38: Zoom of Fig. 2.37
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Fig. 2.39: Nominal phase difference: brute force simulation

Fig. 2.40: Zoom of Fig. 2.39
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Note that we have not so far completely automated the presented algorithm in the

form of a thorough program, so most of the steps described have been carried manually.

Though, we have carefully recorded the net simulation time necessitated in each step, and

these are listed in the table below. It is obvious that these simulation times should be

substantially lower on a completely automated process.

Simulation step Simulation time
Initial iteration 7.5 min

VCO input estimate 0.7 min
VCO simulation 0.98 min

FD simulation 2.15 min
Phase shift estimate (PFD+CP simul.) 3.5 min

LPF simulation 0.2 min
2nd iteration 5.8 min
3rd iteration 5.0 min
4th iteration 4.4 min
Total 22.7 min

Tab. 2.3: List of simulation time of each step

Most of simulation time is consumed in the FD simulation and the phase shift estimate.

During the phase shift estimate, the phase shift value has been updated 5 times before

the resolution of the average inner loop equation, which means simulating PFD+CP for 5

times. The subsequent iterations (2nd, 3rd, and 4th iteration) spend less simulation time

than the initial iteration because the Transient simulation is skipped.

◮ Comparison of the simulation time for some PLL circuits examples

We have carried the simulation of a number of PLL and compare the simulation time

with the brute force approach, as shown in Tab. 2.4. It shows that the proposed method

is much faster, especially as the division rank increases.

Ckt CMOS
count

Division
ratio

Simulation time
(new method)

Simulation time
(brute force approach)

I 463 16 22.7 min 85 min
II 491 32 24.8 min 163 min
III 320 40 20.5 min 430 min

Tab. 2.4: Comparison of the simulation time

◮ Discussion on the number of harmonics (NH)

The volume of the memory and the simulation time are proportional to the number of

harmonics. Since the number of harmonics is specified by the user, one always desires to

use a NH as small as possible. With the new method, it’s possible to verify whether the
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specified number of harmonic is sufficient or not. Of the four PLL blocks, PFD/CP is the

most sensitive to the number of harmonics. If the number of harmonics is not enough,

the simulation may will likely diverge or converge with an incorrect solution. Fig. 2.41

shows the relation between the CP output voltage and VCO phase shift ∆φL, and how

the number of harmonics can affect the simulation results. Therefore, the number of

harmonics should be increased whenever the vout (3, t) vs. ∆φL plot shows oscillatory

conditions.
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Fig. 2.41: Influence of the number of harmonics (NH) on the relation vout (3, t) vs. ∆φL/N :
NH is sufficient when NH = 768 and NH = 512, and NH is NOT sufficient when NH = 256.

2.6 Conclusion

The steady-state analysis of the PLL is very crucial and it’s the basis of the other analysis

of the PLL (phase noise, deterministic noise, dynamic performance). However, the steady-

state analysis of the PLL could be very difficult: on one hand, it’s not easy to bring the

PLL into the locked state since the transient stage can be very long, especially in the case

of a large division ratio; on the other hand, even if the PLL reaches the locked state, the

existing analysis methods can encounter critical convergence problems due to the large

number of harmonics and the size of the circuit.

In this chapter, we proposed a new simulation method at the transistor-level which

breaks the PLL in small pieces. The simulation with the individual block allows reducing
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the simulation size and accelerating the analysis. The accuracy of the simulation is insured

by a careful consideration of the block interface conditions to fulfill a transistor-level

accuracy. A speedup factor of many order in CPU time and memory volume is obtained

as compared with the classical brute force approach.

Now that we have developed a realistic solution for the steady state analysis of the

PLL, we are in a position to investigate the noise analysis solutions, which will be the

subject of the next chapter.
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3.1 Introduction

The PLL is supposed to provide a stable and precise frequency/phase. A perturbation in

phase can dramatically degrade the performance of the PLL. Generally, the noise of the

PLL comes from either the random source or the deterministic source [1]. The random

noise source can cause the phase noise in the PLL, and the deterministic source brings

about the deterministic noise.

Known as one of the most critical characteristics of the PLL, the phase noise is proba-

bly the most difficult to predict among all the characteristics of the PLL. On one hand, the

traditional analysis as SPICE can not calculate the noise in the PLL which is modulated

with the large periodic signals, and on the other hand, the other simulation methods at

the transistor-level also have difficulties to calculate the noise of the PLL due to the com-

plexity of the circuit [2]. Therefore the behavioral modeling at the block level is usually

necessary. To analyze the phase noise in an efficient way, the noise characteristics of each

building block of the PLL should be studied, and a noise analysis method adapted to the

specificities of the PLL is necessary.

The structure of this chapter is as follows:

First, the characteristics of the noise in electronic circuits are summarized. Then the

noise analysis of the PLL at the transistor-level is briefly presented, and the most used

methods are reviewed. Then we address the noise modeling at the block level, which is

often necessary due to the difficulties encountered in the transistor-level noise analysis. We

present the broad lines of the block-level modeling principles, and for each building block,

we propose a simple modeling approach that takes benefit of the steady-state method of

the previous chapter and accounts for the non ideal loading conditions of various blocks.

Both random noise and deterministic noise are taken into consideration. Finally, the

simulation results are presented and compared with the conventional methods.

3.2 Noise in the electronic circuits

This section aims to introduce the basic aspects of the noise in electronic circuits. First

the basics of the stochastic process are reviewed, and the random noise representation

method is introduced. Then the cyclo-stationary noise and AM / PM noise which are

critical to the understanding of the phase noise mechanism is briefly introduced.
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3.2.1 Random noise and deterministic noise

Two types of noise sources are in consideration: the random noise source produced inside

components, and the deterministic noise caused by the perturbation outside the device.

The first type of noise relates to the random agitation of electrical charges, leading to the

fluctuations in voltage or current. It may include thermal noise, shot noise and flicker

noise (1/f noise). The second type of noise, however, concerns the deterministic signals

generated by operations in different parts of the circuit, modulated or coupled with each

other. It may come from the power supply, substrate or the leakage current, etc.

In the context of the PLL, the random perturbation results in phase noise spectrum

distributed over a frequency range, while the deterministic perturbation produces the

noise at discrete frequencies points, basically the reference frequency and its harmonics,

as shown in Fig. 3.1.

Fig. 3.1: Phase noise and the deterministic noise of the PLL

3.2.2 Basic definitions of the random noise

In this section, some basic definitions of the random noise are introduced. The random

noise can be regarded as a stochastic process, which implies that several identical trials

can lead to slightly different results. Generally the stochastic process is described with

the statistical properties of all trials. In this section, first we review briefly the theory

of stochastic process, which is helpful to understand the mechanism of random noise,

described later in this section.

A stochastic process is defined by a set of time functions [1] [3]. Each of them cor-

responds to an individual trial, and constitutes a sample of stochastic process. The

statistical description of this time function is called the probability density. The random

noise can be characterized by the average of all the trials, or expectation, which is the
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limit of the overall average value when the number of trials increases and tends towards

the infinity.

In practice, the stochastic process is often described by the first moment (mean) and

the second moment (autocorrelation).

The mean of a process is represented by its expectation:

mX = E [X (t)] (3.1)

where mX : mean, E [·]: expectation operator, X (t): stochastic process.

The autocorrelation is a measure of similarity of the process at different time points,

which is defined as follows:

RX (t1, t2) = E [X (t1)X (t2)] (3.2)

To describe the noise in the non-linear circuits, the stochastic process presented below

is often used:

• Stationary process : the probability density is independent of the observation time or

it is invariable with the time shift.

• Wide-sense stationary process (WSS): only the mean and the autocorrelation are

invariable with the time shift, as defined below:

mX (t1) = mX (t2) (3.3)

RX (t1, t2) = RX (t1 + h, t2 + h) (3.4)

• Wide-sense cyclo-stationary process: the mean and the autocorrelation are periodic

with the period T :

mX (t+ T ) = mX (t) (3.5)

RX (t1 + T, t2 + T ) = RX (t1, t2) (3.6)

For a wide-sense stationary process, the autocorrelation depends only on the time shift

τ = t1 − t2. Hence, the equation (3.2) becomes the expression with one variable τ :

Rx (τ) = E [X (t)X (t− τ)] (3.7)
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3.2.3 Power spectral density of the noise

After introducing the notion of stochastic process, we address now the random noise n (t)

[1] [3], whose power can be measured by its variance:

var (n (t)) = E
[

n (t)2] (3.8)

Actually, the autocorrelation of n (t) is more often used to represent the power of

noise:

Rn (t, τ) = E [n (t)n (t− τ)] (3.9)

The formula (3.9) describes the noise in the time domain. In practice, the noise

distribution in the frequency domain is more often used, called PSD (Power Spectral

Density). When n (t) is a stationary process, then Rn (t, τ) is only a function of τ . And

with the help of Fourier Transform, the equation (3.9) can be expressed in the frequency

domain:

Sn (f) =

∫ +∞

−∞

Rn (τ) e−j2πfτdτ (3.10)

If the input X is a WSS process, and the system is stable, linear and time invariable

(LTI), the output Y is also a WSS process, whose PSD can be written as:

SY (f) = |H (f)|2 · SX (f) (3.11)

where H (f) is the transfer function of the LTI system, and SX (f) is the input PSD. The

equation (3.11) is essential to analyze the influences of a WSS noise on the LTI system.

3.2.4 White noise and colored noise

The white noise is a term commonly used by engineers. If the power spectral density is

constant for all frequencies, it is considered white.

The white noise is a WSS process with the mean equal to zero and PSD constant:

{

E [n (t)] = 0

Sn (f) = constant
(3.12)

In the time domain, the ideal white noise is a pulse τ = 0 and equal to zero for

τ 6= 0. Actually, the ideal white noise does not exist since it has an infinite power.

Nevertheless, the white noise is a practical way to represent a noise whose spectral density

is constant over a sufficiently large frequency range. Thermal noise and shot noise can
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be approximated by Gaussian white noise because their frequency limit is up to 1012 Hz,

which is well above the operating frequency of the common electric components.

However, if the noise spectral density is shaped by the filter, i.e., the PSD is a function

of the frequency, it is said that noise is colored [4], as illustrated in Fig. 3.2.

Fig. 3.2: Comparison between the white noise and the colored noise

3.2.5 Cyclo-stationary noise

The cyclo-stationary noise exists in the RF circuit, and plays a very important role in

understanding the phase noise in the PLL circuit.

The noise is cyclo-stationary if its autocorrelation Rn (t, τ) is periodic. If a noise

source is modulated by a periodic signal, it can generate the cyclo-stationary noise [4].

For example, shot noise mechanism in a transistor excited by a periodic signal produces a

cyclo-stationary noise. The cyclo-stationary noise occurs therefore when a periodic large

signal is applied to a non-linear circuit.

As stated above, the cyclo-stationary noise is the result of the modulation of the

periodic signal with the noise source. If n (t) is the noise andm (t) the periodic modulation

signal, then the modulated noise y (t) could be expressed as:

y (t) = m (t)n (t) (3.13)

The multiplication of the two terms corresponds to a convolution in the frequency
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domain, so the spectrum of y (t) is:

Y (f) =
+K
∑

k=−K

M (kf0)N (f − kf0) (3.14)

where k is an integer, f0 is the fundamental frequency of the periodic signal, M (f) and

N (f) are the Fourier transform of the m (t) and n (t).

Looking at the spectrum of Y (f) (Fig. 3.3), one can see that low-frequency noiseN (f)

is transformed to N (f − kf0), k = [−K,K], which locates around each harmonic of the

fundamental frequency. The noise around harmonics will correlate each other because

they come from the same source but shifted by kf0. These noises create the replicated

sidebands around each harmonic, as shown in Fig. 3.3. Therefore, the noise at a certain

frequency contains the contribution of all noise sources at frequency f ± kf0.

Fig. 3.3: Correlation in cyclo-stationary noise

3.2.6 AM noise and PM noise

The real signal is often described with the single sideband, so it needs to put the con-

jugation of the noise at negative frequencies to the positive frequencies. Thus the upper

sideband and the lower sideband correlate, as shown in Fig. 3.4 and Fig. 3.5.

If the sidebands and the carrier are treated as phasor, the noise can be separated into

AM noise and PM noise. Note that the decomposition of AM and PM noise is associated

to the carrier, therefore AM and PM noise are also named as carrier referred AM noise
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Fig. 3.4: Double sideband and single sideband

Fig. 3.5: Decomposition of AM noise and PM noise
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and carrier referred PM noise. Thus, the phasor of sideband noise may be added on the

phasor of carrier. The carrier phasor rotates at high frequency f0, while the sideband noise

phasor rotates at the frequency ∆f above and below the phasor carrier frequency [1] [4].

The negative frequency −∆f means that the phasor rotates in the opposite direction to

the frequency ∆f .

For an oscillator circuit, PM noise is much more important than AM noise, as we will

discuss in the following section.

In this section, the main characteristics of noise in the circuit were briefly introduced.

Next, we will describe how to analyze noise in the context of the PLL circuit.

3.3 Noise analysis of the PLL at the transistor level

Once the steady-state response of the PLL is determined, the noise analysis can be treated

as the perturbation of the steady-state solution through the linearization of the equilib-

rium point [2]. The principle of the noise analysis is:

1. Turn off all noise sources and calculate the large-signal steady-state solution.

2. Linearize the circuit around steady-state solution, apply the perturbation, and cal-

culate the output noise.

In this section, we review briefly the main existing noise analysis methods which are

performed at the transistor-level: conversion matrix, envelope transient and Monte Carlo.

3.3.1 Conversion matrix

The conversion matrix method is implemented in most commercial simulators.

As mentioned above, the sideband noises around different harmonics are correlated.

Therefore, the noise at a certain frequency depends on the signals and noise of all the

harmonics. The conversion matrix method can account for these correlations between

different harmonics. [5] [6]

To summarize this method, consider a two-port device, as shown in Fig. 3.6.

Assuming the steady-state of the two-port device has been determined, it can be

described as follows:

i2 (t) = f (v1 (t) , v2 (t))
FFT
⇔ I2 (fk) , k = 0, 1, 2..., K

I2 (fk) = F (V1 (f0) , ...V1 (fk) ..., V1 (fK) , V2 (f0) , ...V2 (fk) ..., V2 (fK))
(3.15)
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Fig. 3.6: Model for the noise analysis

Note that I2 (fk) at a frequency fk depends on V1 (fp) and V2 (fp) for all harmonics (p =

0, 1, 2..., K).

Then the noise will produce a small displacement of the steady-state solution as:

I2 (fk) + δI2 (fk) = F

(

V1 (f0) + δV1 (f0) , ...V1 (fk) + δV1 (fk) ..., V1 (fK) + δV1 (fK) ,

V2 (f0) + δV2 (f0) , ...V2 (fk) + δV2 (fk) ..., V2 (fK) + δV2 (fK)

)

k = 0, 1, 2..., K

(3.16)

Developing the Taylor series to the first order yields the following:

δI2 (fk) =
K
∑

p=0

∂I2 (fk)

∂V1 (fp)
δV1 (fp) +

K
∑

p=0

∂I2 (fk)

∂V2 (fp)
δV2 (fp) , k = 0, 1, 2..., K (3.17)

Consequently, the current variation δI2 (fk) for all the harmonics is represented in a

matrix form as:













δI2 (f0)

δI2 (f1)

...

δI2 (fK)













=



















∂I2 (f0)
∂V1 (f0)

∂I2 (f0)
∂V2 (f0)

...
∂I2 (f0)
∂V1 (fK)

∂I2 (f0)
∂V2 (fK)

∂I2 (f1)
∂V1 (f0)

∂I2 (f1)
∂V2 (f0)

...
∂I2 (f1)
∂V1 (fK)

∂I2 (f1)
∂V2 (fK)

..................
∂I2 (fK)
∂V1 (f0)

∂I2 (fK)
∂V2 (f0)

...
∂I2 (fK)
∂V1 (fK)

∂I2 (fK)
∂V2 (fK)



































δV1 (f0)

δV2 (f0)

...

δV1 (fK)

δV2 (fK)

















k = 0, 1, 2..., K

(3.18)

where C =

[

∂Ii (fk)

∂Vj (fp)

]

, i, j = 1, 2, k, p = 0, 1, ..., K is the conversion matrix. The matrix

C represents the current sensitivity on the voltage variation. By interconnecting the

conversion matrix of all the devices, the noise characteristics of the circuit can be obtained

by a linear analysis.
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3.3.2 Noise analysis based on envelope transient technique

Envelope transient method [7] [8] are very suitable to analyze modulated signal, which is

a combination of a high-frequency carrier and a low-frequency envelope. With envelope

transient, the carrier and the envelope are treated separately, which allows using fewer

sampling points and accelerating the simulation. The interesting thing about the noise

analysis using envelope transient technique lies on the fact that the noise source can be

regarded as modulation signal thus its amplitude/phase fluctuation can be easily com-

puted by the envelope transient analysis [9]. In this section, envelope transient technique

is briefly presented first, then noise analysis with envelope transient is introduced.

3.3.2.1 Introduction of envelope transient technique

Envelope transient method combines a transient analysis and a modified harmonic balance

analysis, so it is also referred to as mixed time-frequency analysis.

Envelope transient method can be considered as an enhanced version of harmonic

balance method. Generally, harmonic balance method allows simulating a periodic signal

with one tone or a quasi-periodic signal with two/several tones, in which cases the Fourier

coefficients are constant or periodic. However, when a carrier signal is modulated with an

arbitrary signal, the Fourier coefficients are arbitrarily time-varying. As a result, harmonic

balance method is no longer applicable, and envelope transient method should be used.

In fact, any signal in the circuit can be expressed in the form of a time varying complex

envelope:















z (t) =
∑

k

Ẑk (t) exp (jkω0t)

Ẑk (t) =
1

2π

∫ BW/2

−BW/2

Ẑk (Ω) exp (jΩt) dΩ
(3.19)

where ω0 is carrier frequency, BW is the largest bandwidth of modulation envelope.

Assuming the bandwidth of the modulation envelope is much lower than the carrier

frequency, the envelope varies slowly compared with the high-frequency carrier. Therefore,

a low sampling frequency is allowable. At each sampling point (or time step), a harmonic

balance analysis is performed. Then the low-frequency envelope waveform is treated by

time domain integration.

Envelope transient is a general purpose method than can apply to forced or au-

tonomous circuit with or without the presence of the noise.
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Fig. 3.7: Principle of envelope transient

3.3.2.2 Noise analysis using envelope transient technique

As known, the noise sources can be described by a summation of distinct sinusoids in the

following form: [9] [10] [11]











ns (t) =
H
∑

k=−H

N̂sk (t) exp (jkΩ0t)

N̂sk (t) = N+
k exp (jΩst) +N−

k exp (−jΩst)

(3.20)

where Ωs is noise sideband frequency, Ω0 is the fundamental frequency. Note that all the

harmonic frequencies are taken into account simultaneously, so the exchange of energy

among the harmonic frequencies are included in the analysis.

To carry out noise analysis, the circuit is perturbed around the noiseless steady-state

solution. Then a perturbation equation is obtained [9]. Since envelope transient treats

an arbitrary signal in the form of time varying phasor (amplitude, phase and frequency),

the noise perturbation is considered as one of the modulation signals.

Solving the perturbation equation, one gets the carrier referred amplitude perturbation

and the total phase perturbation in the time domain. Then the frequency spectrum of

above perturbations are obtained through Fourier transform, and the corresponding AM

noise and PM noise can be easily computed. With envelope transient method, one has

a direct access to the amplitude and phase modulation, so the AM and PM noise can

be explicitly separated. In addition, the absolute voltage noise spectrum can also be

calculated by solving the above perturbation equation.
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An extension of the envelope transient method to analyze the PLL using three time

scales (VCO frequency, reference frequency, and loop bandwidth) has also been proposed

in the reference [12], though it has been applied at behavioral level. The variables such as

phase difference, reference signal, VCO input voltage and CP output signal are expressed

in the form of time-varying phasor. The CP output signal depends on divider output

phase and reference signal. The derivative of phase difference (or frequency difference)

is described by a non-linear function of VCO input voltage. The noise perturbations are

described as a summation of pseudo-sinusoids, and a noise-perturbation equation in the

frequency domain is obtained to calculate the noise spectral density at the output of the

PLL.

3.3.3 Monte Carlo method

Monte Carlo method is the only method that does not treat the large-signal and the noise

separately [3]. The non-linear circuit equations contain the excitation signal and noise

sources, as shown in the equation below:

I (X, t) +
d

dt
Q (X) +B (X)U (t) = 0 (3.21)

where X is a stochastic process vector, which represents the nodal voltage, and U is a

vector representing the noise source in the circuit.

The method is based on a numerical integration of the non-linear equations to create

some sample path for the vector X. A random number generator is necessary to realize

the noise sources. Then the correlation and the spectral density can be calculated.

The advantage of this method is that a steady-state analysis is not a prerequisite, and

it does not assume the perturbation is sufficiently small compared with the large signals.

The disadvantage of the Monte Carlo method is the prohibitive memory and simulation

time, and also it uses a pseudo-random number generator, which may not produce a

sufficiently large sequence of independent number. If a circuit has many noise sources,

this can cause significant calculation errors.
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3.4 Noise modeling and analysis at the block level

3.4.1 Introduction

In the previous section we briefly introduced the noise analysis method at the transistor-

level. Indeed, the difficulties of the PLL transistor-level noise analysis are well known:

large memory resources, prohibitive simulation time, convergence problems with iterative

methods. Therefore, PLL modeling at block level, also termed behavioral modeling, is

usually necessary to overcome the above difficulties. The PLL modeling at block level

consists in simulating the building blocks of the PLL, creating the behavioral models and

then computing the overall PLL noise. Note that the PLL noise accuracy relies on the

behavioral model accuracy, so creating accurate block models is very critical for the PLL

noise analysis.

3.4.2 Behavioral modeling of the PLL blocks

To create the block models for the noise analysis, it needs first to define some important

notions about the behavioral modeling process, as follows:

• Access: it indicates the port property of the model: dipole, two-port...

• Access variable: it defines the physical variable that can be accessed at the port of

the model: voltage, current, frequency, phase, etc.

• Large signal operating point: it defines the steady-state operating point.

• Small signal transfer (or sensitivity) matrix of the block: it describes the relationship

between small fluctuations at the block ports.

• Internal noise to the block: the noise generated within one block, it could be volt-

age/current noise or phase noise.

Now consider a N-port block which is described by a set of two access variables xi (t)

and yi (t), as illustrated in Fig. 3.8. The noise sources internal to the block are denoted

n̂j (t).

If the large signal steady state response of the block is obtained, and a small pertur-

bation is applied to the block, then this N-port block can be described by:











xi (t) = x̂i + δxi

yi (t) = ŷi + δyi

i = 1, ..., N

(3.22)
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Fig. 3.8: Model of a N-port block

where x̂i and ŷi represent the noiseless large signal operating point, δxi and δyi are the

small perturbations due to noise.

If we consider a voltage/current formalism (Fig. 3.9), equation (3.22) writes:











vi (t) = v̂i (t) + δvi (t)

ii (t) = îi (t) + δii (t)

i = 1, ..., P

(3.23)

Fig. 3.9: Model of a N-port block using a voltage/current formalism

Accounting the internal noise contributions, the port current ii (t) may be expressed

as:

ii (t) = fi (v1 (t) , ..., vP (t) , t) + ni (t) i = 1, ..., P (3.24)
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Since from eq. (3.23), δvi (t) is small, ii (t) can be expressed by a 1st order Taylor

series expansion:

ii (t) = fi (v̂1 (t) , ..., v̂P (t) , t) +
P
∑

j=1

∂fi

∂vj

· δvj (t) + ni (t) (3.25)

Noting that fi (v̂1 (t) , ..., v̂P (t) , t) corresponds to the large signal operating point îi (t),

we deduce the small signal perturbation mechanism as:









δi1 (t)
...

δiP (t)









=















∂f1 (t)

∂v1 (t)
· · ·

∂f1 (t)

∂vP (t)
...

. . .
...

∂fP (t)

∂v1 (t)
· · ·

∂fP (t)

∂vP (t)























δv1 (t)
...

δvP (t)









+









n1 (t)
...

nP (t)









(3.26)

Fig. 3.10: Norton equivalent circuit with noiseless circuit, noise sources and small signal per-
turbations at the block access

Equation (3.26) results in the Norton equivalent circuit depicted in Fig. 3.10, where

h (v̂1, ..., v̂P , t) =















∂f1 (..., t)

∂v1 (t)
· · ·

∂f1 (..., t)

∂vP (t)
...

. . .
...

∂fP (..., t)

∂v1 (t)
· · ·

∂fP (..., t)

∂vP (t)














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is the time varying impulse response of the circuit block, and (n1 (t) , ..., nP (t))T is the

equivalent Norton noise source. Note that (n1 (t) , ..., nP (t))T is the noise current flowing

at block terminals when these are shorted, i.e., δvi (t) = 0.

For each block of the PLL, we must determine the impulse response

(h (v̂1 (t) , ..., v̂P (t) , t)) and the Norton noise sources (n1 (t) , ..., nP (t)) seen at the block

access. Note that on one hand, a precise steady state analysis is needed to calculate the

impulse response h (v̂1 (t) , ..., v̂P (t) , t); on the other hand, a precise transistor-level noise

analysis is required in order to calculate the Norton noise sources at the block ports.

Indeed, the above process is mathematically accurate, but the impulse response is

usually very complex to draw. To make this process practical, it is therefore necessary to

consider some practical assumptions for each of the PLL blocks. Next, we will address

the noise modeling of the various PLL building blocks.

3.4.2.1 VCO

VCO is a two-port network as defined in Fig. 3.11, where vc (t), vo (t), ic (t) and io (t) are

respectively the input and output voltages and currents.

Fig. 3.11: VCO block: two port network

As indicated above, we must identify the equivalent impulse response h (v̂c (t) , v̂o (t) , t)

and the equivalent Norton noise sources as depicted in Fig. 3.12.

Fig. 3.12: VCO block: Norton equivalent circuit

As indicated above, the full extraction of h (v̂c (t) , v̂o (t) , t) and n1 (t), n2 (t) is indeed

very complex. Fortunately a full extraction is not necessary to capture the essential

characteristics of the VCO noise behavior in the PLL, as will be seen.
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Consider the noisy VCO output voltage:

vo (t) =
∑

k

(

V̂ o
k (t) + δV o

k (t)
)

exp
(

jk
(

φ̂o (t) + δφo (t)
))

It is known that for an oscillator, the amplitude perturbation δV o
k (t) is negligible,

especially for slowly varying perturbations. Therefore, once the steady-state parameters

V̂ o
k (t) and φ̂o (t) are determined (see chapter 2), the knowledge of the phase perturbation

δφo (t) is sufficient to describe the output signal. Taking this into consideration, we can

change the VCO output access formalism, from voltage/current formalism to the phase

domain formalism. Hence we obtain the mixed voltage-phase domain equivalent small

signal network depicted in Fig. 3.13.

Fig. 3.13: VCO model: I/V at the input and phase at the output

This kind of representation is interesting for the following reasons:

• Both δvc (t) and δφo are slowly varying signals, so we may efficiently use either time

or frequency domain simulation techniques;

• The relation between δvc (t) and δφo is practically quasi-static.

A huge amount of work has been devoted to the characterization of the above equiv-

alent network. A brief review of the main ideas and the principal works is given in the

Appendix I. In the following we present our proposed approach.

The previous works (Appendix I) on VCO modeling consider ideal block impedance

termination. The model we propose is in the continuity of the hierarchical steady-state

analysis technique presented in chapter 2, where the device is characterized under the

specific loading conditions obtained from the PLL steady-state regime.

Thus returning to Fig. 3.13, we first observe that the output port being characterized

in the phase domain, and the equivalent voltage drop is identically zero. We need therefore

to determine the input and output Norton sources nc (t), no (t) and the noiseless impulse

response below, which is only a single column.
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h (v̂c (t) , v̂o (t) , t) =







∂ic
∂vc

0

∂φo

∂vc

0






(3.27)

The first item
∂ic
∂vc

in this response is actually the time domain corollary of the con-

version matrix defined previously. However, as indicated, the VCO being terminated at

its input port by a low-pass filter, δvc (t) is a low frequency signal. Therefore
∂ic
∂vc

is in

fact the low frequency input admittance of the VCO, which is usually a simple parallel

RC network, i.e., Yin (ω) = Gin + jωCin. This can be obtained readily from Harmonic

balance sensitivity upon the steady-state regime.

The second term
∂φo

∂vc

is better expressed in the form:

∂φo

∂vc

=

∫ t

0

∂ωo

∂vc

dτ (3.28)

Since as said, δvc (t) is a low frequency signal, we will postulate that the oscillator

frequency ωo (t) is a static function of the control voltage, especially for small amplitude

variations. This assumption is practically true in bandwidth from the zero to 100MHz

where the noise analysis is usually desired. This has been verified for many oscillator

circuits, with Envelope transient analysis. Coefficient
∂ωo

∂vc

is also obtained readily from

Harmonic balance sensitivity upon the steady-state regime.

The two Norton noise sources nc (t), no (t) are correlated. However, since the VCO

output is in the phase domain formalism (i.e., shorted output port), only no (t) will

contribute to the output phase δφo (t). We can therefore ignore nc (t) and the correlation.

The source no (t) or more precisely the power spectral density Sno
(f) of no (t) can be

determined from a transistor-level noise analysis carried on the VCO, when it is terminated

on the loading conditions obtained from chapter 2. The equivalent network of the VCO

is then as depicted in Fig. 3.14. This equivalent network can be then easily implemented

in Verilog-A.

Fig. 3.14: VCO equivalent network
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3.4.2.2 PFD+CP

PFD+CP is a three-port block, as illustrated in Fig. 3.15: vref (t) and iref (t) are the

reference signals, vfb (t) and ifb (t) the feedback signals, vcp (t) and icp (t) the CP output

signals of PFD+CP.

Fig. 3.15: PFD+CP block

Similarly to the VCO, we need to determine the voltage-domain small-signal equivalent

network depicted in Fig. 3.16.

Fig. 3.16: PFD+CP block: voltage domain small-signal equivalent network

Similarly to the VCO, the full determination of the impulse response

h (v̂ref (t) , v̂fb (t) , v̂cp (t) , t) is complex and fortunately not necessary for an accurate noise

characterization. Indeed, if we consider the signals at the reference and feedback ports:

vref (t) =
∑

k

(

V̂ r
k (t) + δV r

k (t)
)

exp
(

jk
(

φ̂ref (t) + δφref (t)
))

vfb (t) =
∑

k

(

V̂ fb
k (t) + δV fb

k (t)
)

exp
(

jk
(

φ̂fb (t) + δφfb (t)
)) (3.29)

then we observe from the PLL operation that the amplitude perturbations δV r
k (t) and

δV fb
k (t) are negligible. Hence, similarly to VCO, once the steady-state coefficients V̂ r

k (t)

and V̂ fb
k (t) are determined, the knowledge of the phase perturbations δφref (t) and δφfb (t)
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is sufficient to describe the reference and feedback ports. The resulting mixed voltage-

phase domain equivalent network is then as depicted in Fig. 3.17.

Fig. 3.17: PFD+CP model: phases at the input and I/V at the output

For the PFD+CP block, it is of interest to consider δφref (t), δφfb (t) and δvcp (t)

as the independent variables. Hence since the reference and feedback ports are shorted

(phase-domain formalism), this leaves us with a single dependent variable δicp (t). Also

for the same reason, we may drop the Norton noise sources at the reference and feedback

ports, and retain only the noise source at CP output.

From the above, the block modeling reduces to the determination of the CP output

noise source ncp (t) and the impulse response below, which is a single line matrix.

h (v̂ref (t) , v̂fb (t) , v̂cp (t) , t) =











0 0 0

0 0 0
∂icp
∂φref

∂icp
∂φfb

∂icp
∂vcp











(3.30)

Equation (3.30) is the basis for most small signal PFD+CP models, though this is

usually not stated explicitly. Also the CP output conductance
∂icp
∂vcp

is usually ignored,

which may be a source of substantial error in noise analysis. Another usual limitation is

that the equation (3.30) is determined under idealized port loading conditions (i.e.: open

circuit at CP output port and ideal square wave signals at reference and feedback) [2]

[13] [14]. In our work, thanks to the hierarchical steady-state method of chapter 2, we

may effectively account for the real loading conditions and consider all the 3 terms of the

impulse response.

In this purpose, we note that, within the PLL loop, all the 3 variables δφref (t), δφfb (t)

and δvcp (t) are slowly time varying signals due to the loop filter. Hence we may postulate
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that, in this context,
∂icp
∂φref

,
∂icp
∂φfb

and
∂icp
∂vcp

are static characteristics, i.e.,

∂icp (t)

∂φref (t)
= αref

∂icp (t)

∂φfb (t)
= αfb

∂icp (t)

∂vcp (t)
= Gcp

(3.31)

The resulting equivalent circuit of the PFD+CP is depicted in Fig. 3.18, which can

be easily implemented in Verilog-A. The coefficients αref , αfb and Gcp are straightforward

sensitivity analysis results from Harmonic balance analysis. Note that the PFD+CP is

non-autonomous circuit, the two coefficients αref and αfb have identical amplitudes and

opposite signs, i.e.:

αref = −αfb = α (3.32)

where α is known as the PFD+CP gain.

Finally, the power spectral density Sncp
(f) of ncp (t) is also determined from the

transistor-level noise analysis carried on the PFD+CP, with the loading conditions in-

dicated above.

Fig. 3.18: PFD+CP equivalent network

3.4.2.3 Divider

Illustrated in Fig. 3.19, the divider is a two-port block with input and output variables:

vo (t), io (t), vd (t) and id (t).
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Fig. 3.19: Divider block: two-port network

Considering the input and output voltages expression:

vo (t) =
∑

k

(

V̂ o
k (t) + δV o

k (t)
)

exp
(

jk
(

φ̂o (t) + δφo (t)
))

vd (t) =
∑

k

(

V̂ d
k (t) + δV d

k (t)
)

exp
(

jk
(

φ̂d (t) + δφd (t)
)) (3.33)

Similarly to the previous blocks, once the steady-state response V̂ o
k (t), V̂ d

k (t) (k =

0, 1, ..., K) is obtained, we postulate that the amplitude perturbation δV o
k (t), δV d

k (t) is

negligible, and the divider response to noise is fully characterized by the input and output

signal phase perturbations δφo (t) and δφd (t).

Following the same reasoning as previously, and observing that

∂φd (t)

∂φo (t)
=

1

N
(3.34)

where N is the division rank, we readily end up with the equivalent phase domain network

depicted in Fig. 3.18.

Fig. 3.20: Divider equivalent network

Finally the only operation required here is to compute the PSD Snd
(f) of nd (t) using

a transistor-level noise analysis of the FD, with the loading conditions from the PLL

steady-state response.
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3.4.2.4 Low-pass filter

As indicated in chapter 1, the LPF circuit is usually simple passive structure that can

be efficiently simulated at the transistor-level, especially because this is traversed by a

low frequency signal. Using a transistor-level model maintains the accuracy of the LPF

simulation at the highest level.

3.4.3 Deterministic noise modeling

As already indicated, the deterministic noise may come from the PLL internal signals,

or from the external sources like the power supply and the substrate. Here we will only

consider the internal noise. This has many causes such as CP current mismatch, CP and

LPF leakage current, etc [15] [16]. All these causes lead to the perturbation of the VCO

control voltage and then have an impact on the VCO output by modulating the VCO

oscillation frequency. As illustrated in Fig. 3.21, the current mismatch of the CP causes

periodic ripple on the control line of the VCO. As a result, the ripple modulates the VCO

frequency and generates deterministic noise at F0 + k · Fref .

Fig. 3.21: Cause of the deterministic noise: current mismatch

As mentioned earlier, the deterministic noise is directly available from the steady-

state analysis of the PLL, using the techniques presented in chapter 2. However, because

the ripple in the VCO control voltage is usually small, the resulting accuracy on the

noise is highly subjected to the aliasing error in the Harmonic balance or truncation

error in Time shooting processes used to compute the steady-state response. A better

accuracy can be obtained by considering the VCO control ripple contribution to phase
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noise from a linear perturbation analysis. By doing so, we avoid the direct addition of

the small amplitude ripple to the large signal state, thus avoiding truncation and aliasing

errors. Another benefit of considering deterministic noise analysis as a small perturbation

analysis is the uniformity of noise analysis. Phase noise contributions from both random

and deterministic noise can be calculated using the same simulation models, as will be

shown.

Since the deterministic noise as illustrated above results from the high frequency com-

ponents present in the CP current, this can be effectively modeled as the deviation of the

CP output current from its average value.

Consider îcp (t) =
∑

k

Îcp
k exp (j2πkfref t) the current delivered by the CP, upon the

steady-state analysis of chapter 2. Because îcp (t) is a large signal with large amplitude

harmonic contents, it does not suffer aliasing and truncation errors. Hence it is calculated

with high accuracy. We thus express the deterministic current noise source as:

dcp (t) = îcp (t) − îcp (t) (3.35)

The power spectral density of the deterministic noise source is therefore:

Sdcp
(f) =

∑

k 6=0

Îcp
k · δ (f − k · fref ) (3.36)

Gathering the above with the small signal equivalent network of the PFD+CP block

obtained in section 3.4.2.2, we obtain the final equivalent network depicted in Fig. 3.22.

Fig. 3.22: PFD+CP equivalent network with deterministic source
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3.4.4 Overall block-level noise simulation

Using the small signal equivalent network derived in the preceding section, we are in

a position to simulate the PLL behavior as a response to a small perturbation of the

large signal steady-state equilibrium. We can therefore calculate the PLL noise response.

Because the block models have been drawn on the assumption of negligible amplitude

perturbation, we may compute the PM noise characteristics. The other small perturbation

characteristics of the steady-state regime (loop bandwidth and phase margin, presented in

chapter 1 / section 1.4.1), can also be computed with this model. The overall block-level

diagram for noise and small perturbation analysis of the PLL is shown in Fig. 3.23, where

• αref = −αfb = α: the PFD+CP gain

• ncp (t): Norton equivalent current source from random noise internal to PFD+CP

• dcp (t): Norton equivalent current source from deterministic noise internal to

PFD+CP

• Gcp: CP output conductance

•
∂ωo

∂vc

: VCO static frequency sensitivity

• Gin, Cin: Low frequency VCO input conductance and capacitance

• no (t): Norton equivalent phase source from random noise internal to VCO

• N : Division rank of FD

• nd (t): Norton equivalent phase source from random noise internal to FD

Fig. 3.23: Block-level PLL model for noise and small perturbation analysis
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3.4.5 Simulation results

The model in the above section has been implemented in Verilog-AMS [17] [18]. We have

carried the characterization of a number of PLL circuits and performed the noise analysis.

The result of our block-level approach is indistinguishable from the brute-force transistor-

level simulation, while the simulation time and memory usage are many orders lower.

As an illustration example, we have considered a PLL comprising 320 CMOS devices,

division rank = 40, the reference frequency fref = 264MHz. The noise characterization

of the various blocks and the overall noise results of the PLL are shown below.

3.4.5.1 Noise characterization of the various blocks

Fig. 3.24 to Fig. 3.26 show respectively the internal VCO phase noise power spectral

density (PSD), the internal divider phase noise PSD and the internal PFD+CP current

noise PSD.
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Fig. 3.24: Internal VCO phase noise PSD: Sno (f)
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Fig. 3.25: Internal divider phase noise PSD: Snd
(f)
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Fig. 3.26: Internal PFD/CP current noise PSD: Sncp (f)
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3.4.5.2 Simulation results of PLL phase noise

First we have ignored the deterministic noise and considered the reference port free of

noise, we thus obtain at the VCO output, the typical PLL output PSD shown in Fig.

3.27, which is compared with the result from the brute-force transistor-level simulation.

The simulation time for block-level is less than 2 hours. This time is essentially spent on

the block modeling process. The transistor-level simulation in turn requires about 2 days.
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Fig. 3.27: Phase noise of the PLL: Proposed method and brute force transistor-level simulation

Another important aspect of block-level simulation is that we may more easily isolate

the contribution of each block to the total phase noise, as shown in Fig. 3.28. We then

see that the PFD+CP is the largest noise contributor within the loop bandwidth, while

the VCO phase noise dominates outside the bandwidth. The divider and LPF noise

contribution is small.
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Fig. 3.28: Noise contribution of each block: proposed method

3.4.5.3 Simulation results of PLL deterministic noise

Finally we have incorporated the deterministic noise in the PLL model. The discrete PSD

of the CP current is shown in Fig. 3.29, and the resulting phase noise PSD at PLL output

including random and deterministic noise is shown in Fig. 3.30. The 3 visible spikes can be

compared with the power spectrum obtained from the transistor-level steady-sate analysis

in Fig. 3.31. We thus see that they match well, as shown in Tab. 3.1.

Fig. 3.29: Discrete PSD of the CP current: Sdcp
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Fig. 3.30: Deterministic noise: proposed model

Fig. 3.31: Deterministic noise: brute-force transistor-level simulation

Frequency Proposed method Brute force simulation

fref -61.18 dB -61.36 dB
2fref -72.21 dB -72.63 dB
3fref -80.43 dB -81.25 dB

Tab. 3.1: Deterministic noise: comparison between the proposed method and the brute force
simulation
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3.4.5.4 Simulation time comparison

With the proposed method, the overall simulation time is listed in Tab. 3.2 for a few PLL

circuits, and compared with the brute-force transistor-level simulation.

Circuit MOS device count Division ratio Proposed method Transistor-level

I 463 16 0.7 hours 3.8 hours
II 491 32 1.1 hours 5.4 hours
III 320 40 1.7 hours 48 hours

Tab. 3.2: Noise analysis time of the proposed method and the transistor-level simulation

3.5 Conclusion

In this chapter a noise analysis method concerning the random and deterministic phase

noise of the PLL is presented, which is built upon the hierarchical steady-state solution

obtained in chapter 2.

The block models are proposed in which the non-idealities of the PLL are taken into

account, such as output impedance of the charge pump, input impedance of the VCO,

and the non-ideal square wave signals at PFD ports.

The simulation results have shown that the proposed method is accurate and fast.
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4.1 Introduction

In the previous chapter, we have developed new models to analyze the noise of the PLL.

These models are valid only for small perturbations that maintain the PLL in the locked

state. For large perturbations that make the PLL wander back and forth between locked

and unlocked states, other models are necessary.

Take an example of a frequency synthesizer, and assume that it is initially in the locked

state. When the division ratio N changes, the PLL becomes momentarily unlocked and

it adjusts the VCO frequency until the divider output frequency catch up again with the

reference frequency. In this process, what we are interested in is how long it takes the PLL

to return to the locked state. When the PLL switches between the locked and non-locked

states, its behavior is characterized by what we will call the dynamic performances.

In this chapter we first introduce some basic concepts on the dynamic performances

of the PLL, such as the tracking and acquisition process. Then we review the closed-form

formulas used to calculate the lock time of the PLL. Although these simple methods are

useful in the PLL specification stage, they are not precise enough for the PLL design

verification. As a result, a simulation of the PLL is often necessary to precisely verify its

dynamic performances.

Then, we review some existing simulation methods based on the block-level modeling,

and propose a new modeling approach.

4.2 Principles

In this section, we present the basic concepts of the PLL dynamic performances, such

as tracking process and acquisition process, and the characteristics associated with these

processes, like hold range, capture range, lock time, etc.

4.2.1 Tracking process / Acquisition process

The tracking process describes how the PLL follows the variation of the reference signal.

First we denote fref the reference frequency , and fdiv the feedback frequency. Assume

that a PLL is initially in the locked state. If one varies fref smoothly and slowly, the PLL

can track this variation while remaining in the locked state. This is called tracking process,

which can be characterized by the hold range ∆ωH , within which the PLL remains in lock.

However, if one changes fref in an abrupt manner, in other words, if a frequency step is

applied to fref , the PLL is likely to remain in the locked state only if the frequency step
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does not exceed a limit, which is defined as the pull-out range ∆ωPO. One may easily

imagine that the pull-out range is smaller than the hold range.

The acquisition process describes how the PLL moves from the unlocked state towards

the locked state. While the feedback frequency fdiv approaches the reference frequency,

and arrives at a boundary, the PLL would become locked eventually. Within this boundary

the PLL is in the capture range ∆ωC , and the corresponding process is called pull-in

process, which is relatively slow. If the two frequencies continue to approach, then the PLL

would enter the lock range ∆ωL, within which the absolute value of the phase difference

would be less than 2π, the two frequencies are almost identical, and the PLL adjusts

primarily the phase for entering the locked state. This process is named lock-in process

in which the PLL can reach the locked state very quickly.

Generally, the capture range is smaller than the hold range. However, for the charge-

pump PLL, the capture range and the hold range are only limited by the VCO tuning

range, because the charge pump and the filter constitute an integrator whose DC gain

is almost infinite, hence generating a voltage which can cover the VCO tuning range, as

mentioned in Chapter 1. Therefore, the PLL can get locked from any frequency within

the VCO tuning range. In summary, we can get the following relationship between the

four frequency ranges, as shown in Fig. 4.1: [1]

∆ωL < ∆ωPO < ∆ωPI < ∆ωH (4.1)

Fig. 4.1: Relationship between the different frequency ranges

The estimation of these frequency ranges is often very difficult and not precise [1] [2].

In practice, a complete PLL simulation is needed to obtain these parameters accurately.
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4.2.2 Lock time

The lock time (named also settling time) is the time needed for a PLL output frequency

fvco to jump from one specified value f1 to another specified value f2 within a given

frequency tolerance ftol [2], as shown in Fig. 4.2.

Fig. 4.2: Lock time definition

For a 2nd order PLL, the lock time can be approximated as follows: [2]

Tlock =
1

ζωn

ln

(

1

ε
√

1 − ζ2

)

(4.2)

where ζ is the damping factor of the 2nd order PLL (defined in the equation (1.39) in the

chapter 1), fn is the natural frequency (defined in the equation (1.38) in the chapter 1),

ε represents a normalized frequency tolerance:

ε =
ftol

|f2 − f1|
(4.3)

In practice, a rule of thumb is often used to estimate the lock time of the PLL:

Tlock =
4

fc

(4.4)

where fc is the loop bandwidth of the PLL.

For the 3rd order PLL, the calculation of the lock time is more difficult since there is

no damping factor for the 3rd order PLL. Recently, a method [3] is proposed to define an

effective coefficient ζeff , and use it to express the lock time:

Tlock =
ln (1/ε)

fcζeff

(4.5)

Equation (4.2) to (4.5) are idealized figures useful for specification purpose. An accu-

rate simulation of the PLL is necessary to precisely calculate the dynamic performances
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during the design phase.

4.3 Existing simulation methods

An accurate calculation of the dynamic characteristics of the PLL can be obtained from a

brute-force transistor-level transient simulation of the PLL. But this is almost impractical,

as it is extremely time-consuming (from hours to days and weeks). Therefore the only

practical solution is to consider a block-level simulation. The accuracy of the block-level

simulation relies heavily on the accuracy of the block models.

Among all the blocks of the PLL, the most critical ones for modeling accuracy are

PFD+CP and VCO. We will briefly indicate the previous work in this area [4] [5] [6] [7],

before introducing our methodology.

4.3.1 PFD modeling

A number of approaches can be found for PFD or PFD+CP modeling. The simplest

approach is the mixer model, where the output is considered as a direct product of the

two input signals [1]. In this simple model the non-idealities at transistor level are ignored,

and the model does not apply to digital circuit.

The second most popular model is the one based on an idealized truth table [8] [9].

The model applies to the digital type PFD, but ignores the analog characteristics of the

signals. The accuracy of these types of models is limited and may not efficiently apply to

design verification.

The other models of PFD are derived from the analysis or the characterization of

the PFD at transistor-level, and they have considerations about the analog nature of the

signals. We will briefly describe two of them: one is based on duty cycle averaging and

the other is based on uniform time step sampling.

4.3.1.1 Average duty cycle model

As indicated in chapter 1, it is observed that when the frequency difference between the

two inputs of the PFD is large, the PLL starts by adjusting its frequency to approach the

locked state, so we call it the frequency mode. In this mode, the output current of the CP is

determined by the average duty cycle of the PFD output voltage which can be calculated

by the equation (1.15) in the chapter 1. When the two input frequencies become close,

the PLL starts adjusting its phase, and we call it the phase mode, in which the average
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duty cycle is about 0.5 or -0.5. Finally when the PLL is in the locked state, its nominal

duty cycle approaches zero. Unfortunately, the equation (1.15) can not explain how the

duty cycle changes from ± 0.5 to zero when the PLL gets into lock. The difficulty of the

modeling lies in how to combine these two distinct modes and deal with the transition

between them.

An interesting solution has been proposed by Jess Chen [4], which uses the reference

frequency and the divider frequency as its input values. A weighting factor k is introduced

to realize a smooth transition between the frequency mode and the phase mode. The

model is expressed by the equation (4.6).

duty cycle = k ·H + (1 − k)2

∫ t

0

(freq diff/2π)dτ (4.6)

where H represents the average duty cycle in the frequency mode, and the integration of

frequency difference freq diff represents the phase difference in the phase mode.

Fig. 4.3 illustrates the model as it transits between the two modes.

Fig. 4.3: Model of Jess Chen

Nevertheless, the value of the weighting factor k is empirical, so it may result in large

error if k is not well chosen. Moreover, the model uses an averaged value of duty cycle,

so the high frequency content of the output signal is ignored.
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4.3.1.2 Uniform time step sampling model

Perrot et al [5] proposes a PFD modeling method in which the continuous-time (CT)

output of the PFD is approximated by the discrete-time (DT) sequence using an area

conservation principle. The input signals of the PFD are sampled with a uniform time

step. For the rectangular pulses at edge boundaries, the pulse width varies between 0

and the sampling period. In the aim of reducing the quantization noise around the signal

edge, the DT value are not fixed to 0 and 1 but can vary between 0 and 1 depending

on the location of the transition edge. In order to precisely characterize the PFD, two

assumptions should be met: the sampling frequency is at least 100 times greater than

the bandwidth of the PLL; the sampling frequency is set to be an integer multiple of the

reference frequency.

However, the model for CP is a simplified one, and the dependence of the CP output

current on its output voltage is not taken into account.

4.3.2 VCO and VCO+divider modeling

As indicated in chapter 1, one of the reasons for the long simulation time is that the

VCO frequency is much higher than the reference frequency and the loop bandwidth.

Consequently, the transient simulation of the PLL is performed over a very long time

span with a very small time step.

One way to bypass the small time constant present at the VCO output is to consider

a single model for the VCO and the divider. Hence we have to deal with a block cascade

where the input signal (VCO control signal) and the output signal (divider output) are

all about the same time constant. The high frequency components from the VCO are

thus eliminated and the simulation speed is accelerated.

A number of works have been carried in this direction [5] [6] [7]. However, the proposed

solutions usually focus only on the output signal phase component and ignore the signal

waveform. Hence the effects due to the waveform analog distortion can not be accounted

for in the PLL simulation.

In the purpose of providing a more accurate simulation, in the next section we pro-

pose a modeling methodology for VCO+divider and PFD+CP that carefully consider the

analog aspects of the signals and their non-ideal loading conditions of the blocks.
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4.4 Proposed method

4.4.1 VCO+divider modeling

In this section, we will consider the VCO and the divider as a combined block and extract

a VCO+divider model, which is then verified in the PLL simulation.

4.4.1.1 Model derivation

As shown in Fig. 4.4, the VCO and the divider are combined into one block, whose input

and output signals are vc (t), ic (t), vd (t) and id (t).

Fig. 4.4: Definition of the input and output signals of VCO+divider block

It’s necessary to find the relationship between vc (t), vd (t), ic (t), id (t), i.e:

ψ (vc (t) , vd (t) , ic (t) , id (t) , t) = 0 (4.7)

1/ We assume that the divider load (i.e., the PFD feedback input) is a high impedance

(this has been shown in chapter 2) so that the divider output current can be ignored.

Hence only the output voltage vd (t) is of concern for this block modeling.

2/ We assume that because of the low cut-off frequency of the LPF, the VCO control

signal vc (t) contains only low frequency components; so it’s a slowly varying function of

time. Under this condition we may expect that the VCO output voltage expresses in the

following form:

vo (t) =
∑

k

V o
k (vc (t))exp

(

j2πk

∫ t

0

fo (vc (τ)) dτ

)

(4.8)

where V o
k (vc (t)) is the time varying Fourier coefficients, and fo (vc (t)) the time varying

oscillation frequency. Both V o
k (vc (t)) and fo (vc (t)) are slowly varying time functions,

and are static characteristics in terms of vc (t), i.e., implicit functions of time through

vc (t).
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Therefore the output signal of the divider can be expressed as:

vd (t) =
∑

k

V d
k (vc (t))exp

(

j2πk

∫ t

0

fo (vc (τ)) /Ndτ

)

(4.9)

where N is the division rank.

3/ We assume that the input impedance of the VCO is high at low frequency. Taking

account of that, the input current to the VCO ic (t) is negligible. This also is verified

from chapter 2. The above assumptions simplify the modeling problems, so that we have

only to find the relationship between vc (t) and vd (t).

Because V d
k (vc (t)) and fo (vc (t)) are static characteristics, they can be easily obtained

by considering a DC control voltage and sweeping its amplitude from zero to the maximal

admissible value. Fig. 4.5 illustrates the characteristic of fo (vc) for a typical VCO+divider

circuit; Fig. 4.6 and 4.7 show the characteristics of V d
k (vc) for the same VCO+divider

circuit. We may see that they are both smooth functions of vc, and this is usually the

case for most of applications. This interesting feature will allow us to use a low order

polynomial in model implementation.
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Fig. 4.5: vc vs. VCO output frequency fo (vc)
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4.4.1.2 Model implementation

Once the static characteristics V d
k (vc) and f0 (vc) are obtained by Harmonic balance, the

VCO+divider model can be easily implemented, e.g., in Verilog-A.



























vd (t) =
∑

k

[ak (t) cos (kφ (t)) − bk (t) sin (kφ (t))]

ak (t) = Re
[

V d
k (vc (t))

]

bk (t) = Im
[

V d
k (vc (t))

]

φ (t) =
∫ t

0
2πf0 (vc (τ)) /Ndτ

(4.10)

4.4.1.3 Model verification

To verify the accuracy and the efficiency of the proposed model, in this section we

will simulate the main dynamic performances of the PLL (lock time, hold range and

capture range) using the proposed VCO+divider model. As illustrated in Fig. 4.8,

the VCO+divider model is inserted into the PLL circuit to replace the transistor-level

VCO+divider circuit. The PFD+CP and the filter remain at the transistor-level, thus

their non-ideal characteristics like the CP output current mismatch and dead zone can

be included in the simulation. The PLL considered here is a CMOS PLL comprising 320

transistors, with a reference frequency of 264MHz and a division rank of 40.

Fig. 4.8: PLL simulation with the proposed VCO+divider model

Fig. 4.9 shows the lock time simulation. First the reference frequency fref is set to

the nominal value 264MHz, and the PLL is brought to lock. This takes about 0.4us. At

time t = 1us the reference frequency is made to suddenly jump from 264 to 271.75MHz,

and the PLL is again brought to lock. After that, at time t = 3us, the reference frequency

is set back to the nominal value and the PLL locks again. We may observe the lock time

for the up and down frequency jumps, which is about 0.6us in the two cases.

For measuring the capture and hold ranges, a practical way is to carry the experiment

illustrated in Fig. 4.10, where the reference frequency fref (t) is made to follow slowly

the indicated time trajectories. To determine the lower boundaries of the capture and

hold ranges, fref (t) is moved upward from outside into the capture range and then
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Fig. 4.9: Lock time simulation: waveform of fref and fdiv (First jump of fref : 264MHz →
271.75MHz, second jump of fref : 271.75MHz → 264MHz)

downward to outside the hold range. Similarly, for the upper boundaries, fref (t) is

moved downward from outside into the capture range and then upward to outside the

hold range. The boundaries are thus identified as the points from which fdiv (t) coincides

to or depart from fref (t) within a given tolerance ftol. Fig. 4.11 and Fig. 4.12 show

respectively the experiment for the lower and upper boundaries measurements for the

PLL considered. It shows a capture range [C1, C2] = [248MHz, 278.6MHz] and a hold

range [H1, H2] = [247.2MHz, 279.5MHz] for a tolerance 0.04%.

Fig. 4.10: Sweep fref to measure capture range and hold range
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Fig. 4.11: Lower boundaries of hold and capture range: (fref upward: 245MHz → 250MHz,
fref downward: 250MHz → 245MHz) - C1: lower capture boundary, H1: lower hold boundary

Fig. 4.12: Upper boundaries of hold and capture range: (fref downward: fref 282MHz →
277MHz, fref upward: 277MHz → 283MHz) - C2: upper capture boundary, H2: upper hold
boundary
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The HB simulation time necessary for the extraction of the VCO+divider model has

been 18 min. The PLL simulation time with the proposed VCO+divider model is listed

in Tab. 4.1. The table shows also the full PLL simulation at transistor-level under the

same conditions. In comparison, the simulation with the block level model is about 15-20

times faster than a full transistor-level simulation. The simulation results match is very

good, as will be shown in next section.

Simulation Full transistor-
level CPU time

Mixed transistor-level and
VCO+divider model CPU time

Lock time 20 hours 1.4 hours
Hold/capt. range(lower) 40 hours 2.1 hours
Hold/capt. range(upper) 52 hours 2.5 hours

Tab. 4.1: Simulation time comparison

4.4.2 PFD+CP modeling

4.4.2.1 Model derivation

As shown in Fig. 4.13, the PFD and the CP are combined in a single block. The three

ports signals are indicated in the figure.

Fig. 4.13: PFD+CP input and output signals

To model the block we need to find a concise relationship between the ports currents

and voltages, i.e.:

ψ (ir (t) , id (t) , icp (t) , vr (t) , vd (t) , vcp (t), t) = 0 (4.11)

In that purpose we will take consideration of the following specifics of the PFD oper-

ation in a PLL circuit.

The signals at the reference (REF) and divider (DIV) ports of the PFD are formed

by a series of pulses, whose shape is practically invariable with time, and only the pulse
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period and phase shift vary slowly with time. More precisely the signals may be expressed

as follows:

vr (t) =
∑

k

V r
k exp

(

jk
∫ t

0
2πfref (τ) dτ

)

=
∑

k

V r
k (k)exp (jkφref (t))

ir (t) =
∑

k

Ir
kexp

(

jk
∫ t

0
2πfref (τ) dτ

)

=
∑

k

Ir
k (k)exp (jkφref (t))

vd (t) =
∑

k

V d
k exp

(

jk
∫ t

0
2πfdiv (τ) dτ

)

=
∑

k

V d
k (k)exp (jkφdiv (t))

id (t) =
∑

k

Id
kexp

(

jk
∫ t

0
2πfdiv (τ) dτ

)

=
∑

k

Id
k (k)exp (jkφdiv (t))

(4.12)

where the set of the pulses generating Fourier coefficients
{

V r
k , I

r
k , V

d
k , I

d
k , k = 0,±1, ...,±K

}

are obtained from the steady-state PLL analysis

techniques of chapter 2.

From this observation, it is then apparent that as the dynamic analysis is concerned,

the knowledge of the two instantaneous phase φref (t) and φdiv (t) is sufficient to charac-

terize the REF and DIV ports. Therefore, we have reduced the number of variable in

equation (4.11) from 6 to 4. We need now to identify the relationship between φref (t),

φdiv (t), vcp (t) and icp (t), i.e.,

θ (φref (t) , φdiv (t) , icp (t) , vcp (t) , t) = 0 (4.13)

Fig. 4.14: PFD+CP model

The equivalent network representing equation (4.13) can then be sketched as in Fig.

4.14. Note that, similarly to the noise model approach in chapter 3, the CP port remains

under the voltage/current formalism, while the REF and DIV ports are in the phase-

domain formalism. Also note that in the phase-domain formalism the port is always

shorted (no voltage drop). Equation (4.13) is better expressed in the form of the hybrid

transfer characteristic below:
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

















icp (t) = Γ (φref (t) , φdiv (t) , vcp (t) , t)

fref (t) =
1

2π

dφref (t)

dt

fdiv (t) =
1

2π

dφdiv (t)

dt

(4.14)

Equation (4.14) is a quasi-static characteristic that we will show the identification

process in the next section.

4.4.2.2 Model identification

In the purpose of identifying the above model characteristic, let us observe some charac-

teristics of the PFD+CP operation. We consider the following three experiments where

the three state variables fref (t), fdiv (t) and vcp (t) are taken constant:

{

fref (t) = Fref , fdiv (t) = Fdiv, vcp (t) = Vcp

Fdiff = |Fdiv − Fref |
(4.15)

1. Experiment 1: Fref < Fdiv, with Fref = Q · Fdiff , Q ∈ N ;

2. Experiment 2: Fref < Fdiv, with Fref = ρ · Fdiff , ρ ∈ ℜ;

3. Experiment 3: Fref > Fdiv.

Experiment 1: Fref < Fdiv, with Fref = Q · Fdiff , Q ∈ N

First, when Fref < Fdiv with the reference frequency being a multiple of the frequency

difference, i.e., Fref = Q · Fdiff , Q ∈ N , the waveforms of the PFD input signals and the

CP output current icp are as drawn in Fig. 4.15. It shows that in each time span of 1/Fref

there is one and only one pulse of icp, because the rising edge of icp aligns always with

the rising edge of the signal REF . Now define T1 as the time length of a basic segment

(containing a logic 0 and a logic 1) of icp, thus T1 = 1/Fref . The pulse width of icp

varies gradually from one time span of T1 to the other T1. Note that the waveform of icp

repeats itself every time span T2. If one regards the signal icp within a time span T2 as an

envelope, then it’s easy to find T2 = 1/Fdiff . Hence for the case Fref = Q ·Fdiff , Q ∈ N ,

icp is periodic with its period equal to T2.

Actually, Fig. 4.15 is an idealized figure; the waveform obtained from a real transistor-

level simulation of a PFD+CP circuit with Fref < Fdiv ( Fref = 38MHz, Fdiv = 40MHz,

Fdiff = 2MHz and Fref = 19 · Fdiff ) is shown in Fig. 4.16. The waveform of the first

envelope is identical with that of the second envelope.
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Fig. 4.15: Input and output signals of PFD+CP: Fref < Fdiv, Fref = Q · Fdiff with Q = 4

Fig. 4.16: Waveform of icp: Fref < Fdiv, Fdiff = 2MHz and Fref = 19 · Fdiff
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Experiment 2: Fref < Fdiv, with Fref = ρ · Fdiff , ρ ∈ ℜ

If the reference frequency is not a multiple of the frequency difference, i.e., Fref =

ρ · Fdiff , ρ ∈ ℜ, the waveforms of the PFD input signals and the CP output current icp

are drawn in Fig. 4.17. It shows also as previously that in each time span 1/Fref there

is one and only one pulse of icp, so the length of the basic segment of waveform is also

T1 = 1/Fref . The waveform of icp does not repeat itself exactly in each time span of

1/Fdiff . However, icp still shows an envelope of 1/Fdiff , so we define the time length of

the envelope as T2 = 1/Fdiff .

Fig. 4.17: Input and output signals of PFD+CP: Fref < Fdiv, Fref = ρ · Fdiff with ρ = 3.8

In summary, from the above observation, an essential characteristic of the PFD+CP

can be drawn as follows:

The PFD+CP performs like a mixer: whatever the PFD input frequencies are,

the output current of CP icp takes the form of a modulated signal which consists

of two time constants: T1 (basic segment length of icp) and T2 (envelope of icp).

Accordingly, in the case where both the input frequencies and the output voltage vcp

are time-invariant, icp can be expressed like a modulated signal as below:















icp (t) =
K
∑

k=0

î+k (t) exp (2πjkFref t)

î+k (t) =
Q
∑

q=1

I+
kq (Vcp) exp (2πjqFdiff t)

(4.16)

where î+k (t) represents the complex envelope containing the low-frequency component

Fdiff , and I+
kq (Vcp) are the model kernels to be identified. These can be obtained from a

two-tone HB simulation or shooting simulation.
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To investigate the modulation characteristic of the PFD+CP, let’s observe Fig. 4.18

which describes the acquisition process of the PLL. During the process, Fdiff decreases

with time, which makes the envelope of icp become longer and longer. It can be seen

that each icp envelope segment coincides with a period of vcp. Finally when the PLL is

in the locked state (Fdiff → 0), the envelope segments of icp become infinitely long, and

vcp becomes constant.

Fig. 4.18: Evolution of the envelope of icp when the PLL approaches the locked state

Based on the above observation, we thus can see that in the configuration of arbitrary

time varying variables fref (t), fdiv (t), vcp (t), the CP output current expression can be

obtained as an extension of the equation (4.16), i.e:































icp (t) =
∑

k

î+k (t) exp (jkφref (t))

î+k (t) =
∑

q

I+
kq (vcp (t)) exp (jq (φdiv (t) − φref (t)))

φref (t) =
∫ t

0
2πfref (τ) dτ

φdiv (t) =
∫ t

0
2πfdiv (τ) dτ

(4.17)

Note that the kernel I+
kq (Vcp) is independent of the frequencies Fref and Fdiv where

it has been characterized because of the assumption of slowly time varying phase shift

(as compared to the PFD+CP time response). This assumption is well verified in practice.
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Experiment 3: Fref > Fdiv

In the above discussion, we have assumed Fref < Fdiv. However, if Fref > Fdiv, we

can observe a different characteristic of the PFD+CP, which is shown in Fig. 4.19.

Fig. 4.19: Input and output signals of PFD+CP: Fref > Fdiv, Fdiv = Q · Fdiff with Q = 4

We can see that the falling edge of icp aligns with the rising edge of the signal DIV ,

hence in each time span of 1/Fdiv there is one and only one pulse of icp. Since T1 is defined

as the basic segment of icp, we have T1 = 1/Fdiv. The time length of the envelope is still T2,

with T2 = 1/Fdiff . The above definitions are applicable to either Fdiv = Q ·Fdiff , Q ∈ N

or Fdiv = ρ · Fdiff , ρ ∈ ℜ. Therefore, by extension of equation (4.17), for the case

Fref > Fdiv, the characteristic of the PFD+CP writes:































icp (t) =
∑

k

î−k (t) exp (jkφdiv (t))

î−k (t) =
∑

q

I−kq (vcp (t)) exp (jq (φref (t) − φdiv (t)))

φref (t) =
∫ t

0
2πfref (τ) dτ

φdiv (t) =
∫ t

0
2πfdiv (τ) dτ

(4.18)

where î−k (t) is the complex envelope, and Î−kq its Fourier coefficients which can be

obtained by a two-tone simulation.

Finally, taking account of equations (4.17) and (4.18), the general expression of the

proposed PFD+CP model is:
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









































































icp (t) =
∑

k

îk (t) exp (jkφref (t))

îk (t) =
∑

q

Ikq (|∆φ (t)| , vcp (t)) exp (jq |∆φ (t)|)

Ikq (∆φ (t) , vcp (t)) =
1

2
(1 + sign(

d∆φ (t)

dt
))I+

kq (vcp (t))

+
1

2
(1 − sign(

d∆φ (t)

dt
))I−kq (vcp (t))

∆φ (t) = φdiv (t) − φref (t)

fref (t) =
1

2π

dφref (t)

dt

fdiv (t) =
1

2π

dφdiv (t)

dt

(4.19)

The model identification bench is as sketched in Fig. 4.20 and Fig. 4.21:

Fig. 4.20: Model identification bench: Fref < Fdiv

Fig. 4.21: Model identification bench: Fref > Fdiv

4.4.2.3 Model implementation and verification

Once the characteristics I+
kq (vcp) and I−kq (vcp) are acquired from a two-tone steady-state

simulation, the model expression can be implemented either in C code or in Verilog-A

using polynomial or spline interpolation.

The schematic of 4.22 has been then used to verify the model. The frequency values

of Fref and Fdiv used in this verification are different from the ones used to extract the

model. The CP output is set to a DC voltage.
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Fig. 4.22: Schematic to verify the PFD+CP model

In a first experiment, Fref and Fdiv are set to commensurate values Fref = 38MHz

and Fdiv = 40MHz (Fref = 19Fdiff ). Fig. 4.23 compares the model output with the

transistor-level simulation result. The zoom figure Fig. 4.24 shows that the two results

fit very well. The ringing on the PFD+CP model output current is due to the limited

number of harmonics used to create the model. The ringing can be reduced by increasing

the number of harmonics but at the price of slowing down the simulation speed. Note

however that the ringing is not critical to the PLL simulation accuracy as they are filtered

out by the LPF.

Fig. 4.23: icp : Comparison between PFD+CP model simulation and PFD+CP circuit simu-
lation, fref = 38MHz, fdiv = 40MHz

In a second experiment, we have considered two identical frequencies Fref = Fdiv =

38MHz. The output current is periodic with period 26.3 ns. There is also a very good

match with the transistor-level simulation shown in Fig. 4.25.
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Fig. 4.24: Zoom of Fig. 4.23

Fig. 4.25: icp: Comparison between PFD+CP model simulation and PFD+CP circuit simula-
tion, fref = fdiv = 38MHz
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4.4.2.4 Numerical application of proposed modeling approach

In this section we will carry a full PLL simulation in three configurations:

• CF1: full transistor-level simulation

• CF2: Mixed transistor-level (PFD+CP+LPF) and block level (VCO+divider) (Fig.

4.8)

• CF3: Full block level (Fig. 4.26)

The simulations have been carried with the same PLL as in the preceding section.

Fig. 4.26: PLL simulation with the configuration CF3

Fig. 4.27 shows the result for the lock time simulation, we observe a good match

between the three configurations.

Fig. 4.29 and Fig. 4.28 show the results for the hold and capture ranges. There is

also a good match between the three methods. The range boundaries obtained with the

three methods are identical. The results however diverge slightly outside the hold range;

the explanation could be the differences in time domain integration error control in the

simulation engine when the distance between fref and fdiv increases.

Comparison of the simulation time

Tab. 4.2 lists the simulation time for the three configurations. It shows a speed-up of

many orders using the configurations CF2 and CF3.

Simulation CF1: Full tran-
sistor level

CF2: Mixed tran-
sistor / block-level

CF3: Full
block level

Lock time 20 hours 1.4 hours 1.9 min
Hold/capt. range(lower) 40 hours 2.1 hours 2.7 min
Hold/capt. range(upper) 52 hours 2.5 hours 3.4 min

Tab. 4.2: Simulation time comparison between three methods
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Fig. 4.27: Lock time simulation - CF1: full transistor-level; CF2: Mixed transistor / block-level;
CF3: Full block level

Fig. 4.28: Lower boundaries of hold and capture range - CF1: full transistor-level; CF2: Mixed
transistor / block-level; CF3: Full block level; C1: lower capture boundary, H1: lower hold
boundary
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Fig. 4.29: Upper boundaries of hold and capture range - CF1: full transistor-level; CF2: Mixed
transistor / block-level; CF3: Full block level; C2: upper capture boundary, H2: upper hold
boundary

4.5 Conclusion

In this chapter, we have dealt with the simulation problems concerning the dynamic

performances of the PLL. First, some concepts of the dynamic performances of the PLL

are reviewed. It shows that a simulation of the PLL is usually necessary to predict and

verify the dynamic performances of the PLL. To avoid the difficulties in the transistor-level

simulation, the block-level simulation is needed to reduce the simulation time.

After reviewing existing simulation approaches, we have proposed block level mod-

els for the VCO+divider and the PFD+CP. These models rely on the availability of an

accurate PLL steady state analysis tool. The proposed models for either VCO+divider

or PFD+CP provide in an explicit way both voltage domain (i.e., voltage or current

waveform) and phase domain (i.e., time varying phase and frequency) information. They

therefore allow the block-level simulation to contain enough details on the dynamics of the

PLL. It is shown that the accuracy of the results obtained is very close to the transistor-

level simulation, and the simulation time is reduced by one or more orders of magnitude.

The proposed modeling approach has made it possible to simulate thoroughly and accu-

rately the dynamics characteristics (lock time, capture range and hold range) of a number

of the PLL circuits within minutes of simulation time where this would need hours or days

with the transistor-level simulation.
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In recent years, the design of the PLL circuits has experienced a rapid growth: new

circuit topologies are proposed and new implementation technologies are adopted. How-

ever, there is always a lack of an efficient simulation tool which allows the PLL designers

to analyze the critical characteristics of the PLL accurately and quickly. For this pur-

pose, the CAD engineers have taken great effort trying to provide efficient solutions to the

analysis of these PLL characteristics. Nevertheless, compared with the advances in PLL

design techniques, there exists a lag in PLL simulation and verification techniques which

is principally caused by the complexity of the PLL characteristics and lack of efficient

modeling method.

This thesis has been dedicated to the study of efficient solutions for the PLL simulation

and verification, and proposes new algorithms and modeling methods to calculate the

steady state response and predict the noise as well as dynamic performances of the PLL.

The main contributions of this thesis are summarized as follows:

• We have brought forward an efficient algorithm to compute the steady-state response

of the integer-N PLL. The proposed algorithm, totally at the transistor-level, allows

calculating the close-loop steady-state of the PLL very efficiently. The simulation con-

verges within very few iterations with a very short simulation time. The simulation

results are compared with the brute-force transistor-level simulation, and a good match

is found. The proposed algorithm offers an attractive choice for PLL designers to verify

efficiently the steady state response of the PLL.

• We have proposed models of the PLL building blocks to calculate the phase noise and

the deterministic noise of the PLL. Non-idealities of the PLL are taken into account,

such as the output impedance of the charge pump, input impedance of the VCO, etc.

The simulation time lies principally on the block modeling and the PLL noise simulation

is almost instantaneous. Hence as many frequency points as necessary can be considered

in the phase noise plot. Small perturbation stability analysis can also be carried with

these models.

• We have brought new VCO+divider and PFD+CP models to analyze the dynamic

performances of the PLL. These two models provide explicitly the PLL dynamics de-

tails both in voltage domain and in phase domain. The simulation with the new

proposed models can be accomplished within few minutes compared with hours and

days for the conventional transistor-level simulation. The proposed VCO+divider and

PFD+CP models offer the designers more flexibilities for the design verification with

mixed transistor-block-level or full block-level simulation. The models can achieve a

very fast simulation, which is very suitable for the sensitivity analysis about the tem-

perature or the supply voltage.
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Perspectives:

Although the simulation results obtained from the proposed methods have been very

encouraging, the simulation processes, however, are carried manually for the moment. It is

necessary to identify the PLL blocks, the stimulus and the probes at the interfaces, netlist

them separately, set the simulation control parameters, then run the block simulations one

by one, record the various results, gather them together, and finally generate Verilog-A

models and run noise and dynamic performances analysis. All these manipulations are

tedious and very time-consuming. Therefore, the perspective of this thesis is to automate

the proposed algorithm and model extraction procedures so that the simulation process

can be more easily carried. The users only need to provide some essential information of

the PLL (such as input/output ports of the blocks, nominal PLL output frequency and

division rank), and the rest of simulation work will be done automatically by a carefully

defined simulation process. This automation process is expected to be integrated into

a commercial RF simulator where a full verification of the PLL design can be carried

efficiently.

For limited time reason, we have not been able to consider the problem of factional-N

PLLs; the extension of the methods proposed in this work to factional-N PLLs is also one

of the perspectives of this thesis.
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Appendix $

Previous work on VCO noise modeling

A.1 Phase noise of oscillator

As known, the noise at the output of the oscillator is mainly the phase noise, which can

not be removed by a filter or amplitude limiter [1]. Hence it has an important influence

on the communication system.

In general, the oscillator output voltage can be expressed by:

Vout (t) = A (t) · f [ω0t+ φ (t)] (A.1)

where A (t) and φ (t) are functions of time. Due to the amplitude and phase perturbation,

the spectrum of output voltage exhibits a sideband around the oscillation carrier ω0, as

illustrated in Fig. A.1.

Fig. A.1: Influence of the phase noise on the output spectrum of the oscillator

In fact, the phase noise does not change the total signal power. What changes is only

the distribution of signal power [2]. If the phase noise becomes larger, the side band

spreads wider with a lower peak.

The phase noise can greatly degrade the performance of the receiver, especially when

there is a large interference near the useful signal, as shown in Fig. A.2. With a noiseless
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LO (local oscillator), the interfere near the useful signal can be easily removed by a low-

pass filter. However, with the existence of the phase noise in the LO, it’s hard to eliminate

it with a filter, and the performance of the system is degraded.

Fig. A.2: Influence of the phase noise on the performance of the receiver

Next, we briefly review the impulse response of the oscillator and the noise represen-

tation of the oscillator.

A.1.1 Impulse response to perturbation

Being autonomous circuit, the oscillator has some special characteristics, such as its im-

pulse response to the perturbation.

1. If the oscillator is disturbed in phase, the resulting phase deviation persists indefinitely

[1]. For an autonomous circuit, any time-shifted version of solution is the also a solution.

In others words, if the phase of the oscillator is shifted, the oscillator continues to work

as if nothing was disturbed except the phase shift. Therefore, there is no means to

correct the phase deviation, and the phase error may accumulate continuously. This

phase accumulation can be modeled by a step function, as shown in Fig. A.3, where

i (t) is the perturbation, and φ (t) is the resulting phase deviation.
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Fig. A.3: Impulse response of the phase

2. If an oscillator is disturbed in amplitude, the amplitude deviation will disappear along

with time [1]. Actually, there is a limitation mechanism in the oscillator which tends to

react against the amplitude variation. If we trace two state variables of the oscillator,

we get a state space of oscillator represented by a closed-loop path, named the limit

cycle, as illustrated in Fig. A.4. All the fluctuations tending to perturb the amplitude

of the oscillator will be attenuated by this mechanism, which is a natural consequence

of non-linearity of the oscillator.

Fig. A.4: Limit cycle of the oscillator

As mentioned above, the phase accumulation may be modeled by a step function s (τ).

Thus, the phase shift φ (t) due to the random perturbation u can be written as: [3]

φ (t) ∼

∫ +∞

−∞

s (t− τ)u (τ) dτ =

∫ t

−∞

u (τ) dτ (A.2)

and the power spectral density of the phase is given by:

Sφ (∆f) ∼
Su (∆f)

(2π∆f)2 (A.3)
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Equation (A.3) shows that near carrier frequency (i.e. ∆f → 0), the phase error tends

to infinity. Assuming that the perturbation u is constituted by white noise and 1/f noise,

thus its PSD is given by:

Su (∆f) ∼ 1 +
f0

∆f
(A.4)

where f0 is the oscillation frequency. Accordingly, the equation (A.3) becomes:

Sφ (∆f) ∼ n

(

1

∆f 2
+

fc

∆f 3

)

(A.5)

where n is a constant. This expression can explain the conversion of the white noise and

the 1/f noise: the white noise source is converted in the phase noise with the slope 1/f2,

while the 1/f noise source is converted into the phase noise with the slope 1/f3.

A.1.2 Noise representation

In fact, there are several ways to describe the phase noise of the oscillator:

• Sφ (∆ω) : spectral density of phase (unit: rad2/Hz)

• Sv (∆ω) : spectral density of voltage (unit: V 2/Hz)

• L (∆ω) : normalized spectral density of voltage: ratio between Sv (∆ω) and the carrier

power (unit: dBc/Hz)

For uniformity of the definition, L (∆ω), Sv (∆ω) and Sφ (∆ω) are defined as the PSD

with single sideband.

L (∆ω) is widely used since it is easy to measure with a spectrum analyzer. L (∆ω) is

defined by the ratio between the carrier power and the single sideband power at a offset

frequency ∆ω from the carrier frequency within a bandwidth of 1Hz, as shown in Fig.

A.5.

L (∆ω) = 10 · log

[

Psideband (ω0 + ∆ω, 1Hz)

Pcarrier

]

(A.6)

In fact, L (∆ω) contains the amplitude and phase variation. But for an oscillator, the

phase deviation is much larger than the amplitude deviation, so L (∆ω) is often used to

describe the phase noise. As L (∆ω) represents a ratio between the two power, and it is

measured in a bandwidth of 1 Hz, the unit of L (∆ω) is dBc/Hz. (dBc: dB relative to

carrier)

Concerning Psideband (ω0 + ∆ω, 1Hz), it is equal to the voltage density Sv (∆ω). Sim-

ilarly, Sv (∆ω) contains the amplitude and phase variation. The relationship between
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Fig. A.5: Definition of L (∆ω)

Sv (∆ω) and L (∆ω) is:

L (∆ω) =
Sv (∆ω)

Pcarrier

(A.7)

Unlike L (∆ω) and Sv (∆ω), the phase spectral density Sφ (∆ω) can not be observed

with a spectrum analyzer, because it characterizes the phase variation instead of the

voltage variation. As mentioned above, the phase variation is a random process and

is described by the autocorrelation, which resembles a power. That is why the unit of

Sφ (∆ω) is rad2/Hz.

The relation between L (∆ω) and Sφ (∆ω) has been proved as below: [4]

L (∆ω) =
1

2
Sφ (∆ω) (A.8)

A.2 Existing models

To compute the noise sources in the VCO, one uses either the noise analysis methods

presented in chapter 3 / section 3.3 or the empirical models / semi-empirical models

described below. The parameters in these models could be estimated by a rule of thumb

or experimented by a circuit simulation.

A.2.1 Leeson model

Leeson model [5] is a widely used empirical model based on a LTI (Linear Time Invariant)

assumption for the oscillator. Leeson model shows that the phase noise distribution is

composed of three parts: a part where the phase noise is a function of 1/f3, a part where

the phase noise is a function of 1/f2, and a part where the phase noise is independent of

frequency, as shown in Fig. A.6. Leeson model shows that the phase noise is inversely

proportional with the average power dissipation PS and the loaded quality factor QL. It
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predicts the phase noise of the oscillator as follows:

L{∆ω} = 10 · log

{

2FkT

PS

·

[

1 +

(

ω0

2QL∆ω

)2
]

·

(

1 +
∆ω1/f3

∆ω

)

}

(A.9)

• F is an empirical parameter.

• k is the Boltzmann constant.

• T is the absolute temperature.

• PS is the average power dissipated in the resistive part of resonator.

• ω0 is the oscillation frequency.

• QL is the effective quality factor of the resonator (also called loaded Q).

• ∆ω is the offset frequency from the carrier.

• ∆ω1/f3 is the corner frequency between 1/f3 and 1/f2 region.

Fig. A.6: Typical curve of the oscillator phase noise predicted by Leeson model

However, It is not obvious to estimate the empirical parameters F and ∆ω1/f3 in the

Leeson model. If these empirical parameters are not properly estimated, it may cause

large errors.

Recently, J.C. Nallatamby et al revisit the Leeson model and offer a new phase noise

analysis method for the feed-back oscillator, in which the empirical parameters are calcu-

lated explicitly [6]. For the Colpitts oscillator shown in Fig. A.7, its noise spectral density

is written by the equation (A.10).

S∆φout
= 2

〈

|In|
2〉

|V01|
2

1

C2
1

(

C1

C2

+ 1
)2

1

∆ω2
(A.10)
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Fig. A.7: (a) Schematic of an oscillator with noise, (b) Schematic of a Colpitts oscillator

where In is the noise source and V01 is the peak value of the carrier signal at the oscillation

frequency.

The Lesson model is also unable to explain the phenomena of noise conversion at low-

frequency: how does the low-frequency noise convert to the sideband noise around the

carrier? To try to answer this question, Hajimiri et al proposed a model based on the

LPTV (Linear Phase Time-Varying) analysis with ISF (Impulse Sensitivity Function),

which is presented afterwards.

A.2.2 Hajimiri model

The ideas of Hajimiri model [1] are based on the following hypothesis:

1. If an oscillator is disturbed in phase (Fig. A.3), the phase error persists indefinitely.

2. If an oscillator is disturbed in amplitude, the amplitude error will disappear along with

time.

3. The change in the amplitude or phase is dependent on the time when the perturbation

happens. On the one hand, if a perturbation occurs at the peak of voltage, it causes

the change only on the amplitude and no change on the phase. On the other hand, if

a perturbation occurs at zero crossing of the voltage, it causes change only in phase

and no change in amplitude. Therefore, a phase linear time-varying analysis (LPTV)

is proposed in the Hajimiri model.

Based on these ideas, Hajimiri et al treat the noise conversion in two sequential pro-

cesses. The first process concerns the conversion from the noise source to the phase

perturbation, while the second one is a phase modulation (PM), serving to transform the

phase perturbation to the output voltage, as shown in Fig. A.8. [1]
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Fig. A.8: Noise conversion: from noise source to the voltage output of the VCO

First, Hajimiri et al [1] show the relationship between a current noise source and the

resulting phase change. In fact, a linear relationship is found between the charge injected

into a circuit node and the resulting phase shift. The amount of the charge injected

represents the noise source. This linear relationship is critical to predict the phase noise

by avoiding the empirical parameters. Hajimiri et al describe that relationship by using

an ISF function (Impulse Sensitivity Function) that represents how much phase shift is

caused by a unity impulse. Given the ISF Γ(ω0τ), the phase shift can be calculated as

follows:

φ(t) =
1

qmax

∫ t

−∞

Γ(ω0τ) · i(τ)dτ (A.11)

where i(τ) is the noise current, and qmax is the maximal injected charge into the node.

The ISF function is periodic and dependent on time. It can be developed in a Fourier

series. Once the coefficients of the ISF cn (n = 0, 1, ...N) are determined, the conversion

from the current noise to the phase noise can be obtained, as shown in the following

equation:

φ(t) =
Incn sin(∆ωt)

2qmax∆ω
(A.12)

where In is the amplitude of the current noise and ∆ω is the offset frequency, qmax is the

charge injected into the node. Note that the phase shift is low-frequency because ∆ω

is the offset frequency. Accordingly, there will be two sidebands at ±∆ω in the power

spectral density of φ(t), denoted as Sφ(ω).

The second process is the phase-voltage transformation, which can be represented by

a transfer function with the phase shift as input. In fact, it is a phase modulation (PM),

in which the low frequency phase shift is transferred around the fundamental frequency.

As shown in Fig. A.9. The noise at the frequency nω0 ± ∆ω contributes the phase noise

by the coefficients cn.

Finally, the two processes are grouped and the power spectral density of the output

voltage is described by the coefficients of the ISF. Since the noise is mainly the phase

noise, the voltage spectral density obtained is equal to phase noise.
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Fig. A.9: Noise conversion in the Hajimiri model

L{∆ω} = 10 · log









−

i2n ·
∞
∑

n=0

c2n

8q2
max∆ω

2









(A.13)

One can observe the noise conversion from the equation (A.13): If the noise source in

contains a low-frequency noise in the form 1/fn, in the output phase noise spectrum it

may appear as 1/fn+2 region. For example, the noise sources in 1/f is converted to the

noise in the 1/f3 region. Also, the white noise source causes the region 1/f2 on the phase

noise spectrum. The equation (A.13) however can not explain for noise floor characteristic

of the oscillator (Fig. A.10) . It may be applied only at a few nodes of the circuit, as

the computation burden grows rapidly with the number of sources considered. Hence its

efficiency is limited for arbitrary oscillator topologies.
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Fig. A.10: Noise conversion

A.2.3 Demir model

Demir et al [7] bring forward a rigorous non-linear method to analyze the noise of any

kind of oscillator. A stochastic differential equation is derived for phase error α (t):

dα

dt
= vT

1 (t+ α (t))B (xs (t+ α (t))) b (t) (A.14)

where B (xs (t+ α (t))) b (t) represents the perturbation.

Demir et al claim that α (t) is a Gaussian random variable with its mean µ (t) = m

and its variance varies linearly with time:

σ2 (t) = ct (A.15)

According to the authors, one constant c is enough to characterize the spectrum of

phase noise:

L (∆f) =
f 2

0 c

π2f 4
0 c

2 + ∆f 2
(0 ≤ ∆f << f0) (A.16)

where ∆f is the offset frequency, f0 is the oscillation frequency.

In [8] an extension of this method for the colored noise is proposed, but uses an

empirical parameter for the asymptotic behavior of flicker source that has to be properly

estimated.
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Glossary

CAD Computer-Aided Design

CDR Clock and Data Recovery

CP Charge Pump

CR Carrier analysis

DLL Delay-Locked Loop

DSB Double-Sideband

DDS Direct Digital Synthesizer

FD Frequency divider

GSM Global System for Mobile communication

HB Harmonic Balance

ISF Impulse Sensitivity Function

LO Local Oscillator

LPF Low Pass Filter

LPTV Linear Phase Time-Varying

LTI Linear Time-Invariant

NH Number of Harmonics

PD Phase Detector

PFD Phase Frequency Detector

PLL Phase-Locked Loop

PM Phase Modulation

PPV Perturbation Projection Vector

PSD Power Spectral Density

PSS Periodic Steady State analysis

SNR Signal-to-Noise Ratio

SSB Single-Sideband

TCXO Temperature Compensated Crystal Oscillators

TI Time-domain Integration

TR Transient analysis

WSS Wide-Sense Stationary

V CO Voltage-Controlled Oscillator

XOR Exclusive OR logic
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Techniques de modélisation et de simulation pour la vérification précise de
PLLs à facteur de division entier

Résumé:

Cette thèse traite de la modélisation et simulation pour la vérification précise de PLLs à
facteur de division entier. Les principaux problèmes dans la vérification de la PLL tels que
la réponse d’état établi, le bruit aléatoire/déterministe, et les performances dynamiques
sont concernés, et l’objectif de cette thèse est de fournir de nouveaux algorithmes et
modèles permettant de prédire les principales caractéristiques de la PLL avec autant de
précision que la simulation au niveau transistor en utilisant beaucoup moins de temps de
simulation. D’abord, concernant le calcul de la réponse d’état établi de la PLL, nous avons
soigneusement examiner les conditions de charge aux interfaces des blocs et proposé un
algorithme itératif rigoureux qui permet d’obtenir une bonne précision et une convergence
rapide. Ensuite, pour prévoir le bruit de phase et déterministe de la PLL, des modèles
pour les blocs élémentaires sont proposés, basé sur la réponse d’état établi obtenu. Enfin,
l’analyse des performances dynamiques est étudiée. Nous proposons une méthodologie
de modélisation pour les différents blocs qui peut atteindre une accélération énorme avec
une précision comparable avec la simulation au niveau transistor.

Mots clés: Verrouillage de phase, réponse d’état-etabli, bruit de phase, bruit
déterministe, perforamance dynamique.

Modeling and simulation techniques for the accurate verification of
Integer-N PLLs

Abstract:

This thesis deals with the modeling and simulation of the Integer-N PLL circuits for the
purpose of an accurate and quick design verification. The main PLL verification issues
such as steady-state response, random/deterministic noise, and dynamic performances
are involved, and the objective is to provide new algorithms and models which allow the
prediction of the main characteristics of the PLL with the same precision of the transistor-
level simulation using much less simulation time. First, concerning the calculation of the
PLL steady-state response, we carefully consider the block interfaces loading conditions
and propose a rigorous iterative algorithm which allows achieving a good precision and a
quick simulation convergence. Then, to predict the phase noise and deterministic noise of
the PLL, block-level models for the PLL building blocks are brought forward, based on the
obtained steady state response. Finally the analysis of the PLL dynamic performances
is studied. We propose a modeling methodology for various blocks which can achieve
an enormous simulation speed-up with a precision comparable with the transistor-level
simulation.

Key words: Phase-locked loop, steady-state response, phase noise, deterministic noise,
dynamic performance.
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