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PREFACE 

General characteristic 

Present work has experimentally-theoretical character. The theoretical part of 

it is dealt with analysis of optical properties of basic types of microstructured wave-

guides based on most effective methods of numerical simulations. In the experimen-

tal part of the work a possibility of a practical application of active BF with large 

mode area (LMA) in creation of an effective and singlemode fiber laser is demon-

strated. 

Theme relevance 

A rush development of a new field in a fiber optics ―Microstructured Optical 

Fibers‖ (MOF) showed the big prospects in applying such structures in different 

fields of science and technology. Optical properties of MOF hardly depend on its 

geometry, but an analytical solution of electrodynamics tasks arising in each case 

generally seems not possible. That’s why an important task here is implementation of 

methods for MOF computational modeling. 

From the other hand, a structure of BF was not optimized to have minimal wa-

veguide losses in no papers in detail. Besides, wasn’t paid a proper attention to a 

question of which mode is fundamental in the hollow and all-solid BF and why. In-

sufficient, for our mind, optical properties of BF having cladding structure differing 

from quarter wave when a cladding period is appreciably greater than wavelength 

were investigated. From view of the aforesaid it seems actual a revision of BF analy-

sis in general with an aim to generalize it to the wider range of possible cladding 

structures and to develop an optimization method for them.  

An analysis of 2-D structures assumes larger costs of a computing time in con-

trast to Bragg structures. One of known from literature methods – a multipole method 

allows a computational time minimizing due to taking into account cylindrical geo-

metry and symmetry of the task. With help of this method a possibility of an effective 

analysis of basic MOF types appears. That is demonstrating in this work by the ex-

ample of optical properties investigation of tellurite holey fibers (tellurite HF). The 
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reason to use namely the tellurite glass as a material for holey fibers is determined by 

its higher refractive index and also its higher nonlinear properties in comparison to 

the silica glass.  

Finally, one of the perspective trends in MOF utilization is a possibility of 

LMA MOF creation. Recently, it was shown that the arising problem of singlemode-

ness of the output irradiance with the simultaneous low bend sensitivity is possible to 

solve with helps of bragg waveguides. Then the actual and important task is the crea-

tion of fiber laser based on large mode area bragg fiber with the similar structure and 

to investigate of its potential and properties. 

 

Main aims 

The main aim of the theoretical part of the work is numerical modeling and 

the analysis of optical properties of main MOF types such as bragg fibers and 2-D 

structures on the example of tellurite HF. The aim of the experimental part of the 

work is the investigation of the active large mode area BF and creation the fiber laser 

based on it. 

Main problems 

Aims of the work were achieved by solving of following problems: 

1. Realization of numerical methods for modeling BF and 2-D structures by the 

example of HF. 

2. The theoretical analysis of ARROW (Anti Resonant Reflection Optical Wa-

veguides) BF 

3. The theoretical analysis of HF optical properties by the example of wave-

guides based on the tellurite glass. 

4. The development of the method for optimization of geometric parameters of 

BF for obtaining waveguide structures with lowest waveguide losses. 

5. The creation of the fiber laser based on large mode area BF 
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Scientific novelty 

- the original method of finding of the BF cladding structure that has lowest 

optical loss for the given wavelength was proposed and realized  

- the necessity of taking into account all complex resonators composing a mul-

tilayer cladding at the optical loss spectrum analysis of the ARROW BF was shown 

- optical properties of holey fibers based on tellurite glass were investigated 

theoretically by means of the multipole method 

- modal properties of the active BF with considerable contents of Yb ions in the 

core were investigated theoretically and experimentally 

- the effective and singlemode generation in the fiber laser based on the clad-

ding pumped active LMA BF was obtained for the first time 

 

Practical significance 

The optimization method suggested allows projecting both hollow and solid 

core BF with lowest optical loss. 

The multipole method realized, with taking into account all inaccuracies that 

were made by the authors of this method in their original work
1
, allows calculating 

optical properties of MOF (in particular, of photonic bandgap fibers with the hollow 

or solid core) quite quickly and precisely. Method capabilities are demonstrated by 

the example of the HF made of tellurite glass. The calculations results allow to prop-

erly selecting MOF geometrical parameters to obtain desired optical properties such 

us spectral position of the dispersion zero point, singlemodeness regions etc. 

The fiber laser based on solid core active LMA BF and realized to the best of 

our knowledge for the first time was demonstrated a potential possibility and perspec-

tives for using such LMA BF as active medium for compact high-power fiber lasers. 

 

 

 

                                           
1
 T.P. White, B.T.Kuhlmey, R.C.McPhedran, "Multipole method for microstructured optical fibers. I. Formu-

lation", J.Opt.Soc.Am. B, 19, 10 (2002). 
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Defending regulations 

- The method developed for the optimization of BF cladding that allows to de-

sign structures with lowest waveguide losses at the given wavelength, 

- The analysis of optical properties of ARROW BF showing that it’s necessary 

to take into account all complex cladding resonators instead of resonances of the only 

one, closest to the core, high-index layer,  

- The analysis of optical properties of 2-D MOF on example of tellurite HF by 

means of the multipole method, 

- The created fiber laser based on the cladding pumped active LMA BF and 

with the effective singlemode generation. 

 

Work approval 

The results of investigations developed in the present thesis were published in 

four papers, one pre-print, were reported on four international conferences: European 

Conference on Optical Communication ECOC-2007 (Germany, Berlin, 2007),  The 

European Conference on Lasers and Electro-Optics and the International Quantum 

Electronics Conference CLEO-2007 (Germany, Munich, 2007), Institute of Electrical 

and Electronics Engineers / Laser & Electro-Optics Society Winter Topical Meetings 

IEEE/LEOS-2008 (Italy, Sorrento, 2008), Photonics Europe-2008 (France, Stras-

bourg), and also on FORC RAS seminars. The work ―Fiber laser based on large mode 

area Bragg Fiber‖ being a part of the present thesis shared a 2-3 place on a competi-

tion between works of young scientists of FORC RAS. 

 

Work structure 

Thesis is consisting of an introduction, four chapters, a conclusion and a bibli-

ography.  The work is developed on 90 pages of a typewritten text, is consisted of 32 

figures. The bibliography is consisted of 157 items.  

 

Chapter I. Overview 

http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/IEEE
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This chapter is introduction into a field of fiber optics, connected with the mi-

crostructured optical waveguides (MOF). Brief survey of a history of appearance and 

MOF development are represented and the classification of their basic groups is con-

ducted at first. Then physical principles, which lie in a basis of their waveguide prop-

erties for each MOF group are explained. Also the overview and classification of 

MOF types and subgroups are conducted and their unique properties differed from 

properties of step index fibers are examined with describing basic fields of its appli-

cations existed at present. 

 

I.1 Introduction 

I.1.1 History of the origin of new branch in fibre optics “Microstructured 

Optical Waveguides” 

It’s possible to say without overstatement that one of most important human 

achievements in twenties century became creation of optical fiber waveguides. After 

presenting glass fiber waveguide with optical losses about 20 dB/km in 1970 year by 

Corning Glass Works company [11] rapid development of fiber optics was initiated. 

Since then and up to now optical losses practically reached its fundamental level 

around 0.15 dB/km. 

From 70th and up to 90th years of last century it was not pay proper attention 

for a possibility of creation waveguides with principally different waveguide mechan-

isms probably due to a great advance achieved. In particular, appeared works [12; 13] 

theoretically demonstrated the possibility of light guiding in, so called, Bragg fibers 

where main  waveguide mechanism instead of total internal reflection was construc-

tive interference occurring with reflection on periodically layered cladding structure. 

Realization of the idea about creation of the medium in which bandgap would 

be exist in electromagnetic eigen photon states connected with works of Yablono-

vitch and John [14; 15] after a decade later. In these works they took mathematical 

apparatus of solid state physics for the solution of electrodynamic problems. Actual-

ly, it was demonstrated a possibility of ―complete‖ bandgap existing in two or three 
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dimensions in periodically layered medium with dielectric permittivity modulation 

period compared with the light wavelength from the optical range. Few years after 

practical realization of such structures that have been called ―photonic crystals‖ was 

initiated (see, for example, [16-18]). Besides, the recognition of the possible pros-

pects of applying such structures as the waveguide cladding appeared approximately 

in the same time. Broad possibilities of designing of optical fibers with unique prop-

erties immediately arisen.  Then these possibilities to govern many parameters of wa-

veguides, for example, dispersion, mode field diameter, numerical aperture, single-

mode behavior in considerably wider limits than those obtained with the aid of the 

standard step-index fibers, subsequently  caused an appearance of the entire branch in 

fiber optics – ―Microstructured optical fibers‖. A quantity of scientific groups, which 

began to investigate waveguides with new possibilities, increased each year in an 

avalanche, and at the beginning of 21 century a large variety of practical MOF reali-

zations already has been demonstrated. Let us further give classification and brief de-

velopment of different MOF types which was formed up to the present time. 
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I.1.2 Brief overview of MOF development 

1972, 1975 First description of bandgap arising for photons in periodically 

layered medium [19; 20] 

Ideas of: 

1976 bragg fiber [12], 

1987 photonic crystal [14; 15], 

1993 photonic bandgap fiber (PBGF) [21]. 

 

First fabrications of MOFs, demonstrations of their unique properties and crea-

tion of devices based on them: 

1996 holey fiber [22], 

1997 endlessly singlemode HF [23], 

1998 large mode area HF [24], 

1999 hollow core PBGF [25],  

1999 hollow core BF [26], 

1999 all-solid BF fabrication [27], 

2000 birefringent HF [28]. 

2000 Supercontinuum generation in HF [29] 

2000 Fiber laser based on HF [30] 

2002 HF with ultra flattened dispersion [31] 

2003  Large mode area fiber laser based on HF [32] 

2004 All-solid PBGF  [33] 

2005 Hollow core PBGF with low optical loss [34] 

2006 Large mode area BF [35] 

2006 Kagome-type MOF [36] 

2006 Q-switched fiber laser based on all-solid PBGF [37] 

2007 Cladding pumped large mode area fiber laser based on all-solid BF [7] 
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I.1.3 Classification of MOF types 

  

 

Fig. 1: Classification of MOF types 
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There are three basic MOF groups (Fig.1) 

  

I. Holey fibers (HF) – 

Waveguides with the solid glass core which refractive index are more than 

―average‖ refractive index of the cladding claddcore nn   due to a presence of   air in-

clusions in the cladding. The main waveguide mechanism is frustrated total internal 

reflection. 

 

II. Waveguides based on photonic band gap, or photonic bandgap fibers 

(PBGF) – 

Waveguides with the core which refractive index are lower than ―average‖ re-

fractive index of the cladding claddcore nn   (hollow core fibers, in particular). The 

main waveguide mechanism here is defined by ―bragg‖ reflections from the micro-

structured cladding, or, in other words, when there is a bangap in photon eigen fre-

quencies. .  

III. Waveguides with low density of cladding states  – 

Waveguides with hollow core, but waveguide mechanism is defined due to fact 

that core mode not interacted with cladding modes because of their low density. At 

the same time there is no bandgap in photon states and that distinguishes this wave-

guides from waveguides of group II. 

 

Varieties of MOF from group I: 

- Endlessly singlemode HF 

- Large mode area HF 

-  Highly nonlinear HF 

- Polarisation maintaining HF 

- Multicore fibers 

 

Group II divided in two subgroups: 



17 

 

- One dimensional PBGF, i.e. Bragg fibers: 

- Hollow core BF 

- All-solid BF 

- Two dimensional PBGF: 

- Hollow core 2-D PBGF 

- All-solid 2-D PBGF 

Finally, group III is consisted of MOF with cladding having Kagome-type  lat-

tice. 

I.1.4 Holey fibers 

A holey fiber has the glass core enclosed in the cladding made of the same 

glass with air holes lowering cladding ―average‖ refractive index with respect to the 

core. That’s why the main waveguide mechanism is almost the same as in step index 

fibers. 

A quantity of core guiding modes of such fiber is determined only by the value 

of the ratio (d/), whered –is a diameter of air inclusions and   - a distance between 

their axes (i.e. pitch). In this case a periodicity of air inclusions displacement is not 

obligatory [38], because the main factor here is ―average‖ cladding refractive index 

value. Existing of air holes allows refractive an increasing of the refractive index con-

trast more than order of magnitude compared with standard glass step index fibers. 

This fact principally determines the new properties of HF distinguishing it from the 

usual optical waveguides. 

Possibility of flexible manipulating of dispersion properties with helps of geo-

metry parameters is unique. Such fibers can have anomalous dispersion in much 

shorter wavelength range [39; 40], its absolute value can be more than magnitude 

larger [41; 42] compared with step-index fibers. And the dispersion wavelength de-

pendence, in principle, can be quite weak in the broad spectral range [43; 44]. 

Another one important property of HF is the fact that they be able to supporting 

only one mode in the very broad spectral range, which practically coincides with the 
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range of transparency of a quartz glass, so called ―endlessly singlemode‖ waveguides 

[23]. 

Singlemode waveguide regime can be realized with large or small effective 

mode area. Large mode area HF can be used for high peak power transmission [24]. 

While in HF with the small mode field diameter role of nonlinear effects is notably 

increasing compared with standard waveguides and it can be useful, for example, in 

optical parametric amplifiers creation or in supercontinuum generation [29; 45-47]. 

Often HF has hexagonal symmetry of the holes displacement in the cladding. 

That’s why the fundamental mode is twofold degenerate and one needs to break 

symmetry for artificial birefringence inducing. This can be done either by replacing 

two opposite holes to the holes of the larger diameter [48], or by using elliptically 

shaped holes [49] instead of circular ones. In these cases birefringence can reaches 

values of in order of magnitude higher than in usual PANDA constructions. At the 

same time the temperature sensitivity can be more than ten times smaller [50], or 

even absent [51] making such HF very important for practice.  

 One more variety of HF are the multicore-fibers [52] with two or more sin-

glemode cores, not concentrically located in the general case, in the common or 

double cladding. After core doping by active ions such multicore-waveguides can be 

used as fiber amplifiers or the powerful lasers with pumping into the cladding [53; 

54]. After arranging cores on the sufficiently small distance, their interacting core 

guided modes are sensitive to the bends, which is successfully applying in the bend-

ing sensors [55]. 

I.1.5 Photonic bandgap fibers 

Origin of the complete ―stop band‖ in the spectrum of electron eigenstates in a 

crystal is caused by presence of a strict periodicity of the crystal lattice in all three di-

rections. Propagation of the electron with energy, which falls into the ―stop band‖, is 

impossible in this structure. Physically this means that for a de Broglie wave, which 

corresponds to electron with this energy, the atomic lattice will work as ―ideal‖ ref-
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lector, i.e., all reflections from atomic layers will be summarized in phase – this is so-

called ―Bragg reflection‖. 

There proved to be possible [56] to realize structures similar to crystalline 

atomic lattices in the optical wavelength range also. In this case for photons the pe-

riodically structured dielectric medium with the lattice period compared with the wa-

velength of light is the analog of the periodic potential for electrons. Such structures 

were called ―photon‖ crystals (PC). Introducing linear defect into this three-

dimensional structure we obtain that irradiation with the frequency which falls into 

―photon stop band‖ can exist only in the limits of this defect, and the PC cladding is 

effective reflector for the irradiation.  Thus, this structure can work as waveguide for 

irradiation with frequencies which fall in corresponding ―photon stop bands‖. There-

fore such waveguide structures were called photonic bandgap fibers (PBGF). 

Two subgroups of PBGF are distinguished with respect to cladding geometry. 

 

I.1.5.1 Bragg fibers  

Waveguides where cladding represented by well-known in optics multilayered 

dielectric mirror are related to the first subgroup. Here, photonic band gap is formed 

in the radial direction for the specific wavelength. In other words, such cladding is 

representing by itself 1-D photonic crystal. Its mirror properties are defined by Fres-

nel reflection from dielectric boundaries of the multilayer structure with alternating 

values of permittivity with following constructive interference of reflected waves. 

The reflection from multilayer dielectric mirrors formally resembling x-ray scattering 

phenomenon in crystals and is described by Bragg condition. That’s why waveguides 

with multilayered, periodical claddings and with a core made of optically less dense 

material (in particular, air) was called ―bragg‖ [13]. Typically, as for all PBGF, the 

irradiation with frequencies only from specific spectral ranges can propagate in the 

core of waveguides with multilayer cladding structure. And contrary, there are exist-

ing only specific bragg waveguiding structures where light with the given wavelength 

can propagate with quite low losses. Hence, not for arbitrary widths (even if they are 
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compatible with the wavelength) of layers of the periodical cladding irradiation can 

be effectively localized in the core.   

Nevertheless that theoretical investigation of such structures was initiated at the 

end of 1970 years its experimental realization has been accomplished only quite re-

cently. For example BF with the hollow core was realized in work [26] and in [27] 

was realized BF with the solid core for the first time in both cases. 

BFs with the hollow core are of interest mainly by their possibility to almost 

entirely eliminate influence of a material on waveguide properties of the fiber struc-

ture. Optical losses in hollow BF are still appreciable for the light wavelength from 

the telecommunications range. But such waveguides already has losses lower than 

material losses by an order of magnitude at the generation wavelength of CO2 laser 

[57]. From the other hand a mode with lowest losses in hollow BF is nondegenerate 

TE01 mode that excludes an influence of polarization mode dispersion. Also in such 

waveguides it’s possible to realize regimes where the dispersion reaches high abso-

lute values [58] that can be applied for a dispersion control in different devices. 

Also at present a great interest for researches offering BF with the solid core. 

For example in [35] the possibility of reducing a bent sensitivity (compared with step 

index and holey fibers) while keeping the mode field diameter unchanged was shown. 

In BF with the solid core also is possible to obtain large absolute dispersion values 

[59]. 

I.1.5.2 Two dimensional PBGF  

The second subgroup of PBGF is consisted of waveguides with the core made 

of optically less dense material than ―average‖ refractive index of the cladding 

formed by periodically arranged holes (or dielectric rods). Such arrangement of holes 

in cladding is forming the photonic bandgap in a transverse direction for the given 

wavelength. Such cladding represents the 2-D photonic crustal. The core here can be 

either hollow, or solid like in BF. 
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A) Hollow 2-D PBGF 

In PBGF with the hollow core a localization of light is provided by bragg ref-

lection from the microstructured cladding (from air holes in this case) with following 

constructive interference, like in BF. Loss mechanisms have many common proper-

ties with hollow BF. One mechanism of waveguide losses here is finite cladding 

structure of waveguide along radius and its decreasing to the some necessary level 

can be provided by addition of corresponding amount of layers with holes into the 

cladding structure. 

For arising of another loss mechanism in PBGF corresponds the interaction of 

the ―defect‖ core mode with ―surface‖ modes [56] (pp. 73–76), [60] (pp. 210–215).  

―Surface‖ modes are guided modes within bandgap localized in a glass materi-

al that surrounds the hollow core. Interaction of surface modes with the core mode 

leads to its dispersion curves anticrossing and, hence, to appearance of high loss re-

gions [61]. 

However, it seems that taking into account all mechanisms described above 

isn’t a sufficient condition for ensuring the low loss level in such structures. It is con-

sidered that a main contribution to optical losses in hollow PBGF brings a scattering 

on roughness that appears on air/glass boundaries due to frozen capillary waves 

which are thermally induced while a drawing process [34]. 

Thus, the loss level in hollow PBGF existing at presents not allowing of its uti-

lization as a transmission medium in long haul telecommunications. 

However, as in BF case, there are some fields where effective use of hollow 

PBGF already is possible. For example they can be used as waveguides that delivers 

high power of industry lasers (CO2, Nd
3+

 solid-state) [62; 63], as optical sensors when 

core is filled by gas [63; 64]. Dispersion properties of PBGF allow them to use in opt-

ical amplifiers schemes, for chirped pulses recompression etc. [65] 

B) All-solid 2-D PBGF  

Such PBGF represents by itself the structure with the solid core and with the 

cladding composed by periodically arranged dielectric rods with higher refractive in-
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dex. The physical mechanism of photonic bandgap creation here is well described by 

Anti Resonant Reflection Optical Waveguide (ARROW) model [66- 68]. High index 

rods effectively reflect light to the core if they are in antiresonance and contrary, al-

low light to leaks out from the core when they are in resonance.  Photonic states of 

the individual rod considered as the separate step index waveguide are either its 

guided modes or leaky modes (analytical extension of guided modes below cut-off). 

Leaky modes of separate rods interacting with each other create a ―photonic 

band‖ which center is some specific mode of individual rod.  The photonic bandgap 

lies in between two neighbor photonic bands.  

Like all PBGF waveguides, all-solid PBGF have the same set of unique proper-

ties – dispersion, spectral, and modal. However they have one important advantage – 

whole silica construction with all consequences, such as simpler drawing process, 

splice, doping and bragg gratings writing that makes them more adapted for use in 

practice in fiber lasers and amplifiers than less mechanically stable holey structures. 

Also it was shown that all-solid 2-D PBGF can be less bend sensitive than step-index 

waveguides [69]. 

I.1.6 Waveguides with low density of cladding states. 

To the third group of MOF we can relate waveguides where usual hexagonal-

like cladding lattice is changed to Kagome type lattice. Kagome lattice represents 

structure made of intersections of three sets of parallel lines where triangles which are 

result of these intersections have common points only in apexes (Fig.1). Silica edges 

of such triangles have a width in order of a micron and interspaces are filled with air. 

There are no band gaps in the cladding of such structure, but density of photon-

ic states is so low, that the core mode doesn’t interact with cladding modesthrefore 

providing its localization in the core [70]. 

A transmission spectrum can be considerably wider in this case than in hollow 

PBGF [36]. At the same time losses are quite low and high loss ranges here are de-

fined only by resonances of silica ―edges‖ [71].  In [72] perspectives of using of such 

structures as waveguides in middle infrared range was shown.  
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Chapter II. Analysis of optical properties of Bragg Fibers 

In this Chapter the electrodynamic problem of propagation of light in a fibre 

with a cladding made of coaxial dielectric layers with alternating values of the refrac-

tive index is solved. A method is described for determining the structure of the multi-

layer cladding of a fibre having the minimal optical loss of the guided radiation for a 

particular mode. Differences in the optimization of  hollow and solid core BF were 

described. Losses in a fibre with a cladding with quasi-periodic layer thicknesses are 

calculated and the dispersion properties of the fibre are analysed. The analysis is per-

formed for the lowest TE and TM modes and for the lowest hybrid mode. 

Main results of this Chapter are published in works [1; 6]. 

 

II.1 Introduction 

It is accepted that the first theoretical study of a dielectric Bragg waveguide in 

the visible and IR spectral ranges was performed in [13]. Only the lowest of the TE 

modes was analysed and it was pointed out that BFs are potentially efficient mode 

filters and, therefore, they can operate in the single-mode regime even at large core 

diameters. At the same time, optical losses in BFs were not calculated and only the 

general scheme was proposed, which can be used in principle to calculate them. Later 

[73], concrete and rather pessimistic data about losses in BFs were reported. The au-

thors of [73] explained large losses in hollow BFs (more than 10
6
 dB/km) by the im-

possibility to provide the high efficiency of radiation coupling into a fiber. Because 

of the absence of data on the fiber structure, the wavelength of guided radiation, and 

the mode type, it is impossible to verify the results obtained in [73]. 

In [74], the optical properties of a hybrid mode (the HE11 mode, according to 

the author) of a BF made entirely of silica were calculated. The author of [74] con-

cluded based on his calculations that it is this mode that should have the highest Q 

factor, and to achieve optical losses smaller than 0.1 dB/km, it is sufficient to have 
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eight layers in the cladding, which in this case had the refractive-index contrast in 

neighbouring layers equal to 0.022. 

In [75], a model BF was studied which contained 100 dielectric layers of thick-

ness 1 µm with alternating refractive indices 51.11 n  and 49.12 n  (the refractive in-

dex of the fibre core was 10 nn   and the radius of the core cross section was varied 

from 2.5 to 3.25 m). The main conclusions of paper [75] are that the TE modes 

should have the lowest optical losses in a glass BF, while the TM modes should have 

the highest losses (optical losses for hybrid modes are intermediate), which obviously 

contradicts to results [74]. 

In [76], the TE modes of a composite BF with a hollow core and a large refrac-

tive-index contrast in cladding layers 31 n  and 5.12 n  were analysed in the asymp-

totic approximation of large arguments of cylindrical functions (plane wave approxi-

mation). The layer thicknesses were set equal to 0.13 and 0.265 m, respectively, and 

the core radius was 1 m. The distributions of the longitudinal magnetic and azimu-

thal electric components of the lowest TE were found. It was pointed out that in the 

case of such a large refractive-index contrast in layers, the field amplitudes should 

decease with increasing the radial coordinate so rapidly that the optical loss related to 

radiation fiber modes ~ 0.2 dB/km can be achieved by using only twenty pairs of 

structure layers. 

Note that multilayer dielectric waveguides were studied earlier in the micro-

wave range in the plane wave approximation in paper of Russian researchers [77-81]. 

The theory developed in [81] was applied to the optical range as well and, unlike pre-

vious papers, it was found that the EH11 mode should have the lowest losses. 

The transfer matrix method described in [82] for analysis of Bragg reflectors of 

cylindrical walls is analogous to the known method for plane multilayer mirrors [83]. 

The method allows one to find the geometrical parameters of the structure most effi-

ciently reflecting cylindrical waves. It is pointed out that the method can be used to 

analyze multilayer cylindrical waveguides; however, concrete results are absent. 
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The waveguiding possibilities of a hollow BF with the refractive indices 

6.41 n  and 59.12 n  in a broad IR range (5—16 m) were demonstrated in [26]. As a 

rule, dielectrics with considerably different permittivities also have different coeffi-

cients of thermal expansion. It is rather difficult to fabricate a multilayer structure 

from such dielectrics in the technological process including the drawing of fibers 

from preforms. In [26], fibers were fabricated by depositing the components of a 

coaxial structure in layers (polymer and tellurium layers) on the external surface of a 

silica capillary followed by the dissolving of the later in hydrofluoric acid. The fabri-

cated waveguide was not subjected to drawing and had, as a result, a comparatively 

large diameter of a hollow core, which was equal to the external diameter of the glass 

capillary (1.92 mm). It is obvious that this technology cannot be used to fabricate 

long waveguides. The investigations of this BF showed the presence of the transmis-

sion band between 8 and 11.5 m, whose width was independent of the angle of inci-

dence of radiation on the cladding, and also a comparatively small decrease in trans-

mission even at a small radius of fibre bending (~ 1 cm). 

Silica Bragg fibres were fabricated comparatively recently. In [27; 84], fibres 

with three pairs of coaxial glass layers and a glass core with the refractive index low-

er than those of cladding layers were studied. The length of fibres studied in [26; 27; 

84] did not exceed, as a rule, ~ 1 m, so that experimental data on losses and other 

quantitative parameters of the fibres were absent. 

Later [57], however, comparatively long (several metres) hollow BFs with a 

large permittivity contrast in layers were fabricated by using a chalcogenide glass 

As2Se3 with the refractive index of ~ 2.8 and a thermoelastic polymer with the refrac-

tive index of ~ 1.55, which had matching thermal properties. These fibres had differ-

ent geometrical parameters (core diameter and thickness of a multilayer cladding) for 

different transmission ranges. In particular, BFs with the hollow core diameters 

700—750 m had the main transmission band in the wavelength region from 10 to 11 

m (the second transmission band was at ~ 5 m). The optical losses at the CO2 laser 

wavelength 10.6 m were 0.95 dB/m, which is considerably smaller than optical 
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losses in As2Se3 (~ 10 dB/m) and is many of orders of magnitude smaller than optical 

losses in polymers. 

After 2000, many papers devoted to theoretical and experimental studies of 

BFs were published (see, for example, [35, 85-110]). However, in none of the papers 

the fiber structure was optimized in detail to achieve minimal optical losses. It is 

possible that for this reason the optical properties of BFs were estimated quite diffe-

rently in different papers, both rather optimistically [74; 89] and, on the contrary, 

pessimistically (for example, [73]). In our opinion, it is not definitely clear so far 

which of the modes in hollow and glass BFs is fundamental [75; 108; 109]. This situ-

ation stimulated us to reconsider this problem as a whole and to analyse the proper-

ties of BFs based on somewhat different concepts. 

 

II.2 Theoretical part 

The mechanism of formation of guided radiation in BFs, which differs from 

that inherent in usual fibers, should result in the different formulation of the problem 

of analyzing their properties. Instead of searching for the field distribution in a fiber 

with a preliminarily specified light-guiding structure, as is done for usual two-layer 

fibers and most of the theoretical studies of BFs, we will find, on the contrary, the 

structure of a fiber in which the field should not only satisfy the boundary conditions 

but also should be maximally localized in an optically less dense core. 

II.2.1 Main equations and their solutions 

We start, as usual, from Maxwell’s equations, by representing them in the form 

of wave equations. We assume that light propagates in a dielectric medium with the 

magnetic susceptibility equal to unity everywhere and the permittivity  invariable in 

time and uniform in each of the layers of the fibre cladding (step radial profile of the 

distribution of ). The time dependences of the electric 0E


 and magnetic 0H


 compo-

nents of the field can be written in the form tieEE 


0  and tieHH 


0 .  
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Then, the vectors E


 and H


 in fibre cladding layers and core satisfy the wave 

equations 
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
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Then we take into account the translation invariance of the field along its prop-

agation direction z. This will define the dependence of field components on the longi-

tudinal coordinate in the form of a factor  ,exp zi  where  is the phase propagation 

constant (i.e. longitudinal component of the wave vector – the complex variable in 

general case).  

Now let us represent each of vectors E


and H


 by the sum of the longitudinal 

and the transverse components  

   ,exp zizeeE zt 


  

   ,exp zizhhH zt 


  

(where z

 - a unit vector of the z-axis), and we found that any of  longitudinal 

components of the field ze or zh  (denoted by Q) validating the equation 

  .02  Qk j                                   (1*) 

Here 222222 )/2(/   jjj nck , jk  - transversal component of the wave 

vector (also is the complex variable in a general case)  in a material of the waveguide 

with the refractive index jjn  ;  /20 k  - wave number of free space;   - wave-

length of light in vacuum; 
2

2

z


  - transversal Laplace operator. The relation of 

transversal and longitudinal components is defined by Maxwell equations [111]. 

Equations (1*) for the longitudinal field components Ez and Hz (denoted by Q) 

in the cylindrical coordinate system (r,,z) have the known form 
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We assume that the cladding permittivity, which is uniform along z and , has 

only two values alternating in cladding layers. 

Under these assumptions, the solution of (2) has the form:1 
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,)sincos)(( 21

ziemGmGrRQ                    (3) 

where m – is the azimuthal parameter (for axially symmetric fibres, m is an in-

teger, including zero);
21,GG - are integration constants; R(r) – is the radial part of the 

coordinate dependence of Q. 

For the function R(r), we obtain from (2) the Bessel equation 
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j     (4) 

where 222222 )/2(/   jjj nck ; 
jk  – are the transverse components of 

wave vectors in media with refractive indices jjn  ;  - is the radiation wave-

length in vacuum. 

The solution of (4) in the general case is a combination of two linearly inde-

pendent cylindrical functions. It is known that there exist several such combinations. 

Before choosing a particular solution of (4), note the following. 

We will assume that the fibre core has the refractive index 0n  and the refractive 

indices of alternating coaxial cladding layers are 1n  and 2n , and for definiteness 

1n  2n  0n . Assume also that material losses in the fibre are absent  2,1,0;0Im  jn j . 

In such a multilayer structure, numerous, both natural and quasi-natural waves can be 

excited. The natural waves are defined as slow waves with a discrete spectrum ap-

pearing due to total internal reflection and localised in optically dense cladding lay-

ers. The fields of quasi-natural, the so-called rapid waves are formed due to frustrated 

total internal reflection for cladding layers and are localised in the fibre core [81]. It 

is these radiation modes, which have the absolute maxima of the field components in 

the core but also possess some radiation losses, which we are interested in. The enve-

lopes of radial distributions of the field components of such modes should be func-

tions of r rapidly deceasing in magnitude. Only if this condition is fulfilled, the clad-

ding properties of a mirror can be manifested. It is also clear the value of 

22

0

2

0 )/2(   nk  should be positive ( 0k  is the transverse wave number in the fibre 

core). Otherwise, the argument rk0  of cylindrical functions in the solution of (4) 
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proves to be imaginary, and the solution itself is represented only by one modified 

Bessel function of the first kind )( 0rkIm , which monotonically increases with #r and 

has no the absolute extremum in the core (the second linearly independent cylindrical 

function )( 0rkKm  of the imaginary argument has a singularity for r = 0 and should be 

excluded from consideration). It follows from the above discussion that the main dif-

ference of a BF from a usual two-layer fibre is that the value of the effective mode 

refractive index  2/n  in the usual fibre lies between the refractive indices of the 

fibre core and cladding, whereas this value for the BF should be smaller than the re-

fractive index of the optically less dense core material, i.e. n  0n   (for a hollow BF, 

n 1.0). 

It is easy to see that the condition 2

0k 0 is fulfilled for purely imaginary values 

of the propagation constant ; however, they are of no interest because for such  

there is no wave propagating along z. 

It is clear that the complete absence of radial energy transfer would be corre-

sponded to a structure representing an ideal cylindrical mirror. It is known that in this 

case a standing wave is formed along the radial coordinate, while the absence of en-

ergy transfer in it means that the time-averaged radial component rS of the Poynting 

vector S

  HE


Re  is zero. Recall that the electric energy in a standing wave com-

pletely transforms to the magnetic energy during a quarter of the period of electro-

magnetic oscillations and during the next quarter – vice versa, the magnetic energy 

transforms to the electric energy. In this case, the energy migrates from the antinodes 

of the electric field to the phase-shifted (by 2/ ) antinodes of the magnetic field and 

backward. The energy flux through the nodes of the electric and magnetic fields is 

identically zero (i.e. at any arbitrary instant of time). Each layer of the medium of op-

tical thickness /4 from a node of the electric field to the nearest node of the mag-

netic field does not exchange energy with the environment. In a real, not ideally re-

flecting multilayer structure of a finite thickness (with a finite number of layers), a 

―quasi-standing‖ wave is formed, which is a superposition of a standing wave and a 
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wave travelling in the radial direction and determines optical losses. In other words, 

we define the ―quasi-standing‖ wave as a wave with the radial energy flux somewhat 

different from zero. In this respect, we can say only about a partial localisation of 

light in the BF core. Therefore, in the general case even in the absence of material 

losses in fibre layers, the propagation constant  is a complex quantity with the posi-

tive imaginary part. This imaginary part in turn should be a function of the radiation 

wavelength and the number of dielectric layers in the fibre cladding. 

Each BF structure has the maximum reflectance of a cladding at a specific 

wavelength 0  of guided radiation. The shift of any side of 0 , as a decrease in the 

number of layers in the cladding, leads, as will be shown below, to an increase in 

Im , increasing thereby optical losses (the real part of the exponent in the factor 

)ImRe(   izzi ee ) increases. Below, it makes sense to analyse only BF structures with 

Im << Re ; therefore, the condition n  0n  should be fulfilled for  2/Ren  with 

good accuracy. 

According to the above consideration, we will write the solution of (4) in the 

form of a linear combination of linearly independent Bessel and Hankel functions of 

the first kind, which gives for Q: 

   ,)()(sincos),,( )1(

2121

zi

mm ekrHCkrJCmGmGzrQ     (5) 

where 21,CC  - are two additional integration constants. For the time depend-

ence of the field components that we use (~ tie  ), the Hankel function )1(

mH  deter-

mines a wave diverging from the symmetry axis. The superposition of the standing 

and travelling waves instead of the functions mJ  and )1(

mH  can be, of course, also de-

scribed by other pairs of linearly independent cylindrical function, in particular, )2(

mH  

and )1(

mH  or, as in [13], by mJ  and mN  ( mN  is the Neumann function). 

Taking into account that )()1( krHm
 has a singularity at r = 0, it is necessary to as-

sume that 02 C  for the cladding region in (5). 

We further assume that the layered part of the cladding is surrounded by a very 

thick dielectric layer with the refractive index 2n  (or 1n ). Based on physical consid-
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erations, the solution of (5) in this region should be represented only by the function 

)1(

mH  (assuming that 01 C ). Indeed, here in the absence of interfaces between differ-

ent media, there are no reflections of light and only diverging waves can exist. The 

latter statement is true if either the thickness of the external non-layered part of the 

cladding is infinite or the field intensity in it small. In reality, the entire glass struc-

ture of a fibre is covered with a protective jacket made of polymers or other materials 

(in particular, metals). Therefore, the reflection of light from the additional glass—

protective jacket interface should be taken into account in the number of cases [110]. 

The necessity of fulfilment of boundary conditions for any values of the azi-

muthal coordinate   determines the constants 1G  and 2G  in (3) and (5), which are not 

arbitrary in this case. In other words, the solutions of (2) represent two variants of de-

pendences on transverse coordinates (or two classes of waves) containing simultane-

ously either upper or lower trigonometric functions in braces in the expressions 
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where A, B, C, and D are arbitrary constants. 

By defining Ez and Нz in the form (6), we find with their help from Maxwell’s 

equations the rest of the field components. Thus, the solution of equations (1) is rep-

resented by two sets of relations in accordance with the two possible variants of solu-

tions (6): 
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where the subscript j = 0, 1, 2 according to the definition of 
jk  and 

jn ; 

  /c n ; and the common factor )exp( zi  for all field components is omit-

ted in (7). The subscript i of integration constants indicates that the corresponding so-

lution belongs to the i-th layer so that ii rrr 1 , where ir  are coordinates of the inter-

faces between layers with different refractive indices, i = 1, 2,…N; N is the number 

of interfaces equal to the doubled number of layers with the high refractive index 1n , 

if the non-layered part of the cladding has the refractive index 2n ; when this part has 

the refractive index 1n , N is larger by unity; 1rr   corresponds to the core region. The 

prime at cylindrical functions means differentiation with respect to the argument. So-

lutions (7) are classified so that  n  and  n  correspond to the group with upper 

and lower, respectively, trigonometric functions in braces at the right. 

The boundary conditions to which the solutions of the electrodynamic problem 

should satisfy require the continuity of the filed components   HHEE zz ,,,  tangen-
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tial to medium interfaces. It follows from (7) that in the general case (m0) these 

boundary conditions have the form 
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Where 
ljjl rkx  ; 

lppl rkx  ; the subscripts j and p correspond to two media sepa-

rated by a cylindrical interface of radius lr . In this case, the inmost interface has the 

radius 1r , so that 
0kk j   and 

1kkp   in it. Then, for 2l , 
21, kkkk pj  , and for  l>2 

values of 
jk  and 

pk  alternate. 

II.2.2 Dispersion equations 

Boundary conditions (8) are a system of 4N linear homogeneous algebraic 

equations for 4N integration constants ;,...,, 110 NAAA  ;,...,, 21 NBBB  ;,...,, 110 NCCC  

NDDD ,...,, 21  (recall that  00 DB 0 in the fibre core and 0 NN CA  behind the lay-

ered structure). The nontrivial solution of this system exists if only its determinant is 

zero. The zero determinant represents a nonlinear dispersion equation determining the 

dependence of   on  (or ) for the known fibre geometry (the known coordinates 

lr ) or, vice versa, the equation relating the propagation constant  with the structure 

geometry for fixed . Let us find this dispersion equation. 
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The calculation of the 4N4N determinant for large values of N is quite time-

consuming. However, in our case the calculation is simplified and is reduced to op-

erations with quadratic 4 x 4 matrices. Indeed, boundary conditions (8) can be written 

in the matrix form 
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where  
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xi
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              (10) 

is the 4 x 4 matrix; k is the line number; and s is the column number. By using 

(8), it is easy to show that matrix elements in (10) are 
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The elements of the matrix )( lrM  are also presented in [13]. However, the ma-

trix elements presented in [1] for 0m  are incorrect, and we present here correct ex-

pressions. 

One can see that the transformation (9) of the field components is performed at 

each of the interfaces of the layered structure. By starting from the fibre core and per-

forming these transformations he required number of times, we obtain  
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for an arbitrary l-th layer, where M is determined by the product of cofactors of 

type (10) and is also a 4 x 4 matrix )(...)()( 11 rMrMrMM ll   . 

For Nl  , matrix relation (12) is equivalent to a system of four linear homoge-

neous algebraic equations for constants NN DBCA ,,, 00 . Their nontrivial solution exists 

only under the condition 

,013313311  mmmm      (13) 

where ksm  are the elements of the matrix М in (12) for Nl  . 

The obtained dispersion equation (13) is the required one. It satisfies the gen-

eral boundary conditions and is valid for any geometry of a layered cladding and all 

the modes, both eigenmodes (cladding modes) and radiation modes (core modes). 

Our problem now is to select from a set of solutions (7) satisfying general con-

ditions (8) the solutions for which the cladding has the maximum reflection at a 

wavelength of 0 . 
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We begin with the analysis of the simplest the TM- and TE-mode families. 

These symmetric modes in (6)—(8), (11) correspond to m = 0, and only three com-

ponents among a total set of field components (7) are nonzero. In particular, we have 

for the TM modes (upper trigonometric functions) 
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and for the TE modes (lower trigonometric functions), 
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The boundary conditions for these modes also have the simpler form than (8) 
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for the TM modes and 
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for the TE modes. Unlike (8), conditions (16) and (17) are the systems of 2N 

linear homogeneous algebraic equations for 2N constants NN BBAAA ,...,,,...,, 1110   or 

,,...,, 110 NCCC NDD ,...,1 , respectively. 
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The matrix )( lrM  for the TM modes in (9) and (10) is the 2 x 2 matrix of the 

form 
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where the matrix elements  ksm   have the form 
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Instead of (13), the dispersion equation takes the form 

,011 m      (20) 

where 11m  - is the element of the product matrix )()( 1rMrMM N  for factors 

of type (18). 

For the TE modes, we obtain the same equations as (18)—(20); however, the 

ratio 
pj  /  in expressions for the elements of the matrix )( lrM  in (18) and (19) 

should be replaced by unity. 

II.2.3 Principles of optimization of multilayered BF structure  

Note first that the Floquet—Bloch theorem in the cylindrical geometry, which 

is used, as rule, to analyse periodic structures, can be applied only in the asymptotic 

approximation [76]. The field components in the rectangular geometry are deter-

mined by the combinations of trigonometric functions with the invariable spatial pe-

riod. Therefore, such a periodic structure can be described as a whole by using the 

Floquet—Bloch theorem. However, in the cylindrical geometry the field is repre-

sented by cylindrical functions with a period depending on the radial coordinate. 

Therefore, the thicknesses of layers of a multilayer BF cladding with alternating val-
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ues of the refractive index should be the functions of this coordinate. In the general 

case the structure is quasi-periodic and only at large arguments of the functions the 

thicknesses of layers become asymptotically almost equal in each of the two their se-

quences. This specific feature of the cylindrical geometry should be taken into ac-

count in the rigorous consideration of this problem. 

In the absence of material losses, optical losses in a fibre (due to radiation 

modes) and the degree of light localisation in the fibre core are determined by the ra-

dial component of the Poynting vector rS . Therefore, the minimisation of rS  is the 

most natural way for obtaining the optimal geometry of a multilayer cladding. It is 

possible, for example, to require the maximum reflection of light from each of the 

layer interfaces. This method assumes the determination of total reflection (transmis-

sion) both in all previous (with respect to the symmetry axis) and all structure layers 

behind this interface. This method for calculating reflection and transmission in a 

multilayer coaxial structure is described in most detail probably in [112]; however, 

the optimisation of the structure geometry for obtaining maximum reflection was not 

discussed in this paper (see also [82]). In addition, it is clear that minimal optical 

losses can be also found by minimising the radial energy flux propagating behind the 

layered cladding for r> Nr  and explicitly determining radiation losses. 

It seems that the two above-mentioned methods for minimising rS  are equiva-

lent; however, we will not prove it, but simply will use the second method. 

It was shown in papers [13; 75; 89; 95; 97; 98] that an important property of 

BFs is that they can be used as efficient mode filters and the 01TE  mode in hollow BFs 

should have the highest Q factor. The latter is confirmed by the results of our calcula-

tions presented below. Therefore, when we are dealing with the optimisation of the 

multilayer structure of hollow BFs, it is reasonable to optimise it only for the lowest 

of the TE modes. The rest of the modes in this optimised BF should have considera-

bly higher losses. 
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Let us write the expression for the time-averaged radial component of the en-

ergy flux vector  2/Re  zr HES   for the TE modes on the last interface Nr  of the lay-

ered cladding. This expression follows from (15), (17)—(19) and has the form 

       ,Im
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  (21) 

where 21m  - is the element of the product matrix )()( 1rMrMM N   for factors 

of type (18); 2krx NN   for even N and 1krx NN   for odd N. Because  Nr rS  is the func-

tion of coordinates of all layer interfaces, the optimisation of the cladding structure 

for obtaining the minimum radial energy flux is equivalent to the determination of the 

minimum of the right-hand side of (21) over N variables Nrrr ,...,, 21 . It is possible to do 

it in a standard way by setting equal to zero all the first-order partial derivatives from 

(21) with respect to ir  (the necessary but not sufficient condition for the existence of 

the multidimensional extremum of the function). The system of homogeneous 

nonlinear equations for Nrrr ,...,, 21  obtained in this way should be closed with disper-

sion equation (20). 

II.2.4 Genetic algorithm in the task of BF optimization 

The solution of such a system of equations for high enough N is, as a rule, a 

challenging independent problem. We preferred another method and found the mini-

mum of rS  with the help of the so-called genetic algorithm (see, for example, [113]), 

which is based on a direct analogy of the optimisation process with selection proc-

esses occurring in nature. The genetic algorithm operates by the ―populations‖ of po-

tential solutions, by applying the survival principle to them and taking part in the 

formation of the ―descendants‖ of the most adapted solutions. The adaptability of 

each of the potential solutions is determined by the value of its target function [in or 

case, (21), (20)] estimating the difference of this solution from the required result. 

The higher the adaptability of the solution, the higher probability that the useful fea-

tures of the descendants obtained with the help of this solution and determining the 

adaptability will be manifested greater. ―The vector of variables‖ in the genetic algo-
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rithm plays the same role as a genotype in biology. The algorithm does not require 

the knowledge of the relief of a multidimensional surface on which an extremum is 

sought, it can come from local extrema, can be simply realised, does not require large 

computational resources and has been already tested by solving many problems (see 

details in [113]). 

Thus, the optimal geometry of a BF is determined in the following way. The 

radius of the fibre core 
1r  and the values of 210 ,, nnn ,N are assumed known for the 

specified wavelength 0  of guided radiation in the fibre. By using the genetic algo-

rithm, the minimum of function (21) of variables ,,...,, 32 Nrrr  is sought when equa-

tion (20) is valid (optimisation of the BF to the TE mode). To each value of  , its 

own optimal geometry of the layered structure of the cladding corresponds, and there-

fore the propagation constant is included to the list of variables to be optimised. The 

solution of the problem should be the choice of the values of Nrrr ,...,, 32 ,  Im,Re , 

which, on the one hand, would provide the absolute minimum of function (21) and, 

on the other, satisfy equation (20). In this case, because Eq. (20) for an arbitrary ge-

ometry ( Nrrr ,...,, 32 ) has a set of roots  , the root with the smallest possible value of 

Im corresponds to the lowest  TE01 mode of a hollow fibre. 

 

II.2.4.1 Definition of ”initial” values of layers coordinates for hollow BF in 

optimization  procedure for TE-mode  

 

Not also that the genetic algorithm operates the better, the smaller the region of 

changing the variables of the function being optimised. In other words, both the ini-

tial values of coordinates Nrrr ,...,, 32  and Re  should be closer as possible to their real 

values. The condition Im =0  corresponds, as mentioned above, to the presence of a 

standing wave along the cross-section radius, when the time-averaged radial energy 

flux is zero for all values of r, which is possible only for a cladding consisting of the 

infinite number of alternating layers. To find the approximate parameters of the struc-

ture of a multilayer BF with a finite number of cladding layers under the condition 
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Im << Re , when the radial energy flux is generally speaking nowhere equal to 

zero, we will assume, nevertheless, that 
rS =0 at all the nodes tangential to the inter-

faces of the field component layers. This means that we assume that the cladding of a 

real fibre consists of the infinite number of layers. We place the layer interfaces at the 

same nodes. The latter is achieved by solving the system of coupled equations fol-

lowing from (15) for the case of TE modes: 
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Equations (22) can be solved in real quantities (in this case, 0Im  ) and the 

first of them, for the known 1r , gives 
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where 83171.31   is the first nonzero root of the function )(1 xJ . 

According to (12) and (18), coefficients 1C  and 1D  in the second relation in 

(22) are 
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where 11m  and 21m  are defined by expressions (19). 

By substituting the expressions for 1C , 1D , and nRe  in the condition 02 zH  = 

0, we obtain the equation for 2r  in the form 



42 

 

   111210 rkNrkJ     .0210111  rkNrkJ    (24) 

 

Similarly, from the relation for 3E  in (22) we obtain the equation 

   220321 rkNrkJ     0321220  rkNrkJ ,   (24а) 

from which 3r  can be determined from already known nRe  and 
2r , etc. 

By solving successively equations (22), the ―starting‖ values of variables re-

quired for the genetic algorithm are found. From a set of solutions with increasing 

values of each of the equations of type (24) and (24a), we choose the value of the de-

sired coordinate that is closest to the required value corresponding to the particular 

optical thickness of the cladding layer (for example, the quarter-wavelength one or 

more). 

In the large argument approximation, we can use the asymptotic form of cylin-

drical functions [114]. In this case, Eq. (24), for example, proves to be equivalent to 

the equation    02/sin 121  rrk . It follows from this that    .2/12 112 kprr   . By 

using (23), we obtain 
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As a result, we have 
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 .,...3,2,1p   (26) 

Note that the same expression (26) is obtained by using the well-known result 

[83], which is the condition of the maximum reflection of light from a plane—

parallel plate of thickness h )( 1 ii rr , 

 
,

cos4

12 0

n

p
h









, 

where   is the angle between the wave vector in a layer and the normal to its bound-

ary, and n is the refractive index of the layer material. In particular, for the cladding 

layer closest to the fibre core, we have 1nn   in the latter relation and 
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    21101

2

10 2//1cos rnnn   . 

Recall, however, that expression (26) is approximate and corresponds (as in 

[83]) to a planar geometry (asymptotics of cylindrical functions). 

One can see that the thickness of the first layer of the cladding in asymptotics 

is approximately proportional to an odd number of 4/0  (this result is approximate 

due to the presence of the third, generally speaking, small term in brackets). In this 

case, depending on the refractive-index contrast, the proportionality coefficient can 

be noticeably greater than unity, i.e. the real thickness of layers can exceed by several 

times 4/0  in vacuum, which is important for practical realisation of quarter-

wavelength structures. 

A similar dependence also takes place for optically less dense layers. In par-

ticular, to obtain the approximate value of 3r  in (24a), it is simply necessary to make 

the replacements ,32 rr   ,21 rr   21 nn   in (26). 

The method for determining initial values of nRe  and ir  described above is 

most efficient and allows one to obtain the values of variables that are very close to 

real ones. The genetic algorithm further ―corrects‖ these values and finds their set 

providing, together with the required minimal nIm , the global minimum of )( Nr rS and 

satisfying equation (20). 

To determine other radiation modes in a fibre optimised for the 01TE  mode, the 

found geometry of the fibre is fixed. Then, the next root of Eq. (2) closest to the value 

of   for the 01TE  mode will define the 02TE  mode (this root has a greater value of 

Im  than the first root), the root following after the second root (with greater Im ) 

will define the 03TE  mode, etc. It is clear that this sequence of roots should be found 

from the dispersion equation only without using the genetic algorithm. 

By using the dispersion equation for the TM modes in the same fibre optimised  

to the 01TE  mode, all the sequence of the complex propagation constants of the nTM 0  

modes can be also determined. Similarly, by replacing Eq. (20) by dispersion equa-



44 

 

tion (13), hybrid modes can be found. In this paper, we performed some calculations 

only for the lowest hybrid modes with the azimuthal parameter m = 1. 

 

II.2.4.2 Definition of ”initial” values of layers coordinates for solid core BF in 

optimization  procedure for hybrid HE11 mode  

 

However, the optimisation of the structure of a BF with a glass core is some-

what complicated because the fundamental mode in such BFs is not the 01TE  mode 

but the doubly degenerate lowest hybrid 11HE  mode (see below). The start values of 

variables for optimisation are found here also from the condition that the radial com-

ponent of the Poynting vector vanishes at all the interfaces in the layered cladding. In 

particular, in the same approximation 11HE , the equality   01  rrSr  and the independ-

ence of 
rS  of the azimuthal angle   for all r specify the relation between amplitudes 

in expressions for the field components, for example, in (12) and also allow one to 

determine nRe from the equation 
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It is easy to see that this equation can be quite accurately replaced by the equa-

tion   ,0100 rkJ  because, as a rule, ,1/Re 0 nn  and    10101 / rkrkJ <1. 

Unlike (24) and (24a), the equations for determining coordinates of layer inter-

faces in the cladding, which also follow from equations,   0 ir rrS  ),...,3,2( Ni   

have a more complicated form. However, in the approximation of low-contrast re-

fractive indices in cladding layers, these equations are reduced to expressions of type 

(24), (24a), and at the large arguments of cylindrical functions – to (26). In particular, 

the equation for determining 2r has the form 

   110211 rkNrkJ     .0211110  rkNrkJ
   (28) 

Note that the procedure somewhat similar to the approximate method for de-

termining the fibre structure geometry described above was applied in paper [87] 
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where the authors determined the thickness of cladding layers by dividing intervals 

between the neighbouring roots of functions  xJ 0  and  xJ1
 by the values of the 

transverse wave number .jk  corresponding to the given layer. Note, however, that 

such an approach cannot be used to optimise BFs for the TE or TM modes.  

II.2.5 Some remarks concerning the optimization procedures of BF with the 

large core radius.  

In a BF with a large core radius, when the arguments of cylindrical functions in 

the cladding are large, the period of a photonic crystal (the sum of thicknesses of two 

adjacent layers) in the entire cladding becomes approximately the same, and the op-

timisation of such BFs is reduced to the determination of the optimal values of the pe-

riod and the thickness of layers in them. This does not mean, however, that the num-

ber of variables in the optimisation procedure noticeably decreases. Indeed, each ad-

ditional layer in the cladding causes the redistribution of the field in the fibre and the 

corresponding change in the optimal geometry of the entire structure. It is obvious 

that the period changes with increasing N the stronger the lower the value of #N it-

self. In other words, for large N, when the field behind the layered cladding becomes 

small, both the period and nRe  virtually become independent of N. As a result, the 

dependence )(Re Nn  has the form of a function saturating with increasing N. 

Waveguide losses continue to decease with increasing N. 

If necessary, the approach described above can be used to optimise the BF 

structure for any mode. However, it is not obvious that this mode will ―survive‖ upon 

excitation of such a BF. It is most likely that some modes will propagate in the fibre 

with lower losses. 
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II.2.6 Definition of the fundamental mode in hollow core and solid core BFs. 

After the consideration of various methods for optimising BFs with hollow and 

glass cores, it is pertinent to discuss in more detail the question of which of the BF 

modes is fundamental. According to the definition of the fundamental mode as a 

mode with the lowest optical losses in a given fibre, either the 01TE  or 
11HE  mode can 

be the fundamental mode in a BF. Let us present some relevant arguments. 

On the one hand, it follows from (23) and (27), for example, that for any BF 

structure with a fixed 
1r , the 

11HE  mode has the greatest real part of the propagation 

constant among all the modes. Indeed, from approximate equation (27) (   0100 rkJ ), 

we have with good accuracy for HEnRe  
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where 40483,22   is the first root of the function )(0 xJ . By comparing (23) 

with (29), we see that HEnRe > TEnRe . It also follows from this that the transverse com-

ponent of the wave vector of the 11HE  mode is the smallest, while the angle of its in-

cidence on the core—cladding interface is the largest of all the angles of incidence of 

the guided modes in the fibre. 

On the other hand, the dependence of the Fresnel coefficient R
2
 of light power 

reflection from the plane interface between different media on the incident radiation 

polarisation is well known [83]. Indeed, if the electric vector of a wave is perpendicu-

lar to its plane of incidence, the dependence of R
2
 on the angle of incidence θ has the 

form of a monotonically increasing (up to unity) function. But if the electric vector of 

the wave is parallel to the plane of incidence, the function R
2
(θ), which also increases 

up to unity, is nonmonotonic and passes through the zero minimum at the Brewster 

angle. As a result, although both these dependences begin at the same point (for θ = 

0) and terminate at the same point (for θ = 2/ ), the reflection coefficient is every-

where higher for the first polarisation than for the second one (except the two ex-

treme points). 
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To use the result from [83], we will assume with good approximation that the 

01TE  and 
11HE  modes are plane waves and the core—cladding interface is a plane. 

Note also that the fields of TE modes have only the azimuthal electric component, 

which is perpendicular to the plane of incidence of light on the first cladding layer, 

and therefore are not subjected to the Brewster effect. However, the 
11HE  mode field 

consists of two fields with orthogonal polarisations, and the second of these compo-

nents (parallel) should be reflected weaker than the first one. Despite the grazing in-

cidence of the 
11HE  mode, the presence of this radiation component reduces the total 

Fresnel reflection of the 11HE  mode from the cladding, so that the 01TE  mode proves to 

be the fundamental mode of the fibre. The general polarisation properties of Fresnel 

reflection mentioned above depend considerably on the contrast between refractive 

indices of the core and the first cladding layer. For comparatively high contrasts (for 

example, for hollow BFs), the dependences of the reflection coefficient on the angle 

of incidence for two polarisations noticeably differ (Fig. 2a), and the 01TE  mode is re-

flected most strongly from the cladding, being the fundamental mode in this case. 

The 11HE  mode, in which a part of energy corresponds to polarisation parallel to the 

plane of incidence, is reflected worse as a whole and to a great extent is refracted to 

the cladding. If the contrast of refractive indices of the fibre core and cladding is 

small  1,0n  the influence of polarisation effects is considerably reduced and de-

pendences of the reflectance on the angle of incidence for both polarisations become 

close, having small values of R
2
 up to angles ~ 70

 о
 (Fig. 2b).  

In this case, the advantages of the 01TE  mode over the 11HE  mode are lost to a 

great extent. 
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The analysis performed above, which was based on the consideration of inter-

action of light with only one interface, is, of course,  approximate, however, it com-

paratively simply explains the essence of the phenomenon. To obtain the quantitative 

relation between losses for the 01TE  and 11HE  modes at a low refractive-index contrast, 

it is necessary, of course, to take into account all other interfaces between cladding 

layers. Here, it is probably important that the angle of incidence of the 11HE  mode 

(which is the fundamental mode in this case) on the layered structure is the greatest. 

In this case, losses for the 01TE  mode can be comparable with those for the 11HE  mode. 

For the illustration of the described above influence of the refractive index con-

trast on the core-cladding interface on definition of the fundamental mode in BF loss 

spectrums were calculated for the hollow and for the solid core BFs. In this case the 

contrast value of 714.0n (as on Fig.2a) was related to the hollow core BF and the 

contrast value 057.0n  (as on Fig.2b) was related to the solid core BF.  

Corresponded RIPs are presented on Fig.3. Let us note that the geometry for 

the hollow core BF was chosen optimal for the hybrid HE11 mode (by means of pro-

        

а) 

б

) 

Fig. 2: Dependences of the power coefficient of reflection from the interface 

of two media on the angel of incidence of light polarised in the plane of incidence 

(dashed curves) and in a plane perpendicular to the plane of incidence (solid 

curves). The contrast of the refractive indices of the media is   121 /nnnn  , 

( 1n > 2n ), а) 714.0n , b) 057.0n . 
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posed in II.2.4.2 scheme) and the geometry for the solid core BF – optical for the 

TE01 mode (by means of proposed in II.2.4.1 scheme). 

Calculated losses spectrums are shown on Fig.4. It is clearly that in case of the 

hollow BF the losses for HE11 mode are higher than for the TE01 mode despite the 

fact that the geometry was chosen optimal for the HE11 mode. And here the funda-

mental mode is TE01 mode as expected. Similarly, in case of the solid core BF the 

losses for the TE01 mode are higher than for the HE11 mode despite the fact that here 

the geometry was chosen optimal for the TE01 mode.  And now the fundamental 

mode is the HE11 mode. 
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Fig. 3: RIPs of BFs that were used in the illustration of influence of the refractive in-

dex contrast at the core-cladding interface. 

Dashed line –RIP for the hollow BF   )45.1 ,5.3  ,1( 714.0/ 210101  nnnnnnn    

Thick solid line –RIP for the solid core BF 

   057.0/ 101  nnnn )45.1 ,538.1  ,45.1( 210  nnn . Geometries were chosen when 

wavelength was fixed at 0=1.55 m 
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II.2.7  Losses in BF 

By changing the wavelength to both sides of 0  for any of the radiation modes 

at a fixed geometry, the dependences )(Re   and )(Im   are determined. The mode 

dispersion is found from the first of them. Calculations in the complex plane allow us 

to take into account both material losses (by introducing the imaginary parts depend-

ing on   to expressions for the refractive indices 210 ,, nnn  of the structure) and the 

material dispersion by assuming that the real parts of 210 ,, nnn  depend on  . Optical 

losses   are defined as losses of the radiation intensity, i.e.    /Im4Im2 n . 

Thus, losses in the units of dB/km can be found from the known relation (see, for ex-

ample, [115]) 

,Im
lg104 10

n
e









    (30) 

where   is expressed in m. One can see from (30) that, for example, to losses 

~ 1 dB/km at   = 1.5 m, very low values of nIm correspond (~3·10
-11

). This justifies 

with a great margin the applicability of the approximation  nRe >> nIm  used every-

where. 

Fig. 4: Waveguide losses for BFs from Fig.3  

a)waveguide losses in the hollow BF  b) waveguide losses for the solid core BF 

dashed lines always are corresponded to the TE01 mode 
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Note that the radial distributions of the field components for modes in a BF are 

presented below in the normalised form. In the case of hybrid odes, the relation be-

tween 0A and 0C  required for normalisation is presented below. 

II.3 Results of calculations and discussion 

 

The optical properties of guided radiation in BFs are analysed in the literature 

based on the geometry of the multilayer fibre cladding used in each of the studies. 

The thickness of cladding layers is, as a rule, close to the quarter-wavelength one and 

is estimated by assuming the grazing incidence of light on the core—cladding inter-

face. In this approximation, the relation between the thickness 1h  of denser layers and 

the thickness 2h  of less dense layers has the form (see, for example, [89]) 

.
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n

h

h
     (31) 

The geometrical parameters of a BF can be determined more accurately by 

solving equations of type (22). We will show below that the deviations of the layer 

thickness from the quarter-wavelength one appearing due to approximations can 

sometimes noticeably affect optical losses in BFs.      

II.3.1 Optimization of well-known from literature structures 

We will illustrate the results of optimisation of the BF geometry by comparing 

them with the data known from the literature. The optical properties of a BF with a 

hollow core of large radius and a large refractive-index contrast in periodic layers of 

the cladding were calculated in [89]. The fibre parameters were N = 17, 0  1.55 

m, 1r  = 13.02 m, h1 = 0.09444 m (n1 = 4.6), and h2 = 0.33956 m (n2 = 1.6). The 

minimal waveguide losses calculated for the 01TE  mode in this fibre were ~ 6·10
-4

 

dB/km (this minimal value should correspond to the wavelength 0 , whereas in [89] 

it corresponds for unknown reason to   ≈1.66 m). By using the same initial values 

of Nnnr ,,, 211 , and 0  as in [89] and optimising the cladding structure geometry, we 
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obtained h1 = 0.086375 m and h2 = 0.3085 m and minimal losses ~ 2.9·10
-4

dB/km 

at 0  = 1.55 m. This example convincingly demonstrates a strong dependence of 

waveguide losses on the periodic cladding structure geometry – the change in the 

layer thickness only by 10% reduces losses more than by half. 

Note that waveguide losses characterise the degree of localisation of radiation 

guided in the fibre core. In the given case, waveguide losses are very small and the 

degree of light localisation is so high that material losses in cladding layers can be 

neglected with high accuracy. 

There also exist papers in which the geometry of a multilayer cladding is very 

close to optimal; however, as a rule, the authors do not substantiate the choice of this 

geometry. For example, the parameters of a hollow BF in [95] were N = 32, 0 = 1 

m, r1 = 1.3278 m, h1 = 0.2133 m (n1= 1.49) and h2 = 0.346 m (n2 = 1.17). For 

the 01TE  mode in this fibre, the authors calculated 8104226,1891067,0  in  ( = 

776.4 dB/km), whereas for the geometry optimised by us (h1 = 0.2146, h2 = 0.3241 

m) for the same parameters, we obtained  = 600 dB/km for this mode (i.e. losses 

were smaller only by ~ 30%). A similar result was obtained for another variant of the 

fibre with r1 = 1.8278 m calculated in [95] (other parameters were the same). In this 

case, the difference between optimised and non-optimised losses for the 01TE  mode 

was also small (~ 32%). The found values of nRe , as expected, coincided with good 

accuracy with the values calculated by expression (23). 

Note also that calculations in [95] were performed by using the above-

mentioned model [112]. If we calculate n  for the periodic structure geometry used in 

[95] without the optimisation procedure, the results will exactly coincide with those 

obtained in [95]. This confirms the expressed assumption about the equivalence of 

our method for the calculation of the BF modes by using 4 x 4 matrices and the 2 x 2 

matrix method applied in [112]. 

As another example we compare our results with calculations [98] of the low-

est modes and their losses in a hollow BF with a cladding consisting of four pairs 
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(N = 8) of layers made of Si (n1 = 3.5) and 43NSi  (n2 = 2.0). The authors of [98] calcu-

lated optical losses in the wavelength range from 1.5 to 1.7 m in a BF fibre with the 

core radius r1 = 7.5 m and cladding layer thicknesses h1 = 0.11 m and h2 = 0.21 

m. By optimising the geometry of this fibre, we obtained h1 = 0.1157 m and h2 = 

0.235 m by assuming that 0  = 1.7 m. This wavelength corresponds to the mini-

mum of losses 62.0 dB/cm in the dependence presented in [30]. Our calculations 

give   0  0.57 dB/cm. 

So far we considered fibres with claddings made of quarter-wavelength dielec-

tric layers or having a similar structure. Such BFs have a transmission band with two 

bands with very large losses located on each side of it. The width of the long-

wavelength band is infinite, whereas the short-wavelength band has a finite spectral 

width. In such fibres optimised to the specified wavelength 0 , radiation at  > 0 can-

not propagate, and transmission bands exist only at shorter wavelengths. In the termi-

nology of photonic crystals, transmission bands of BFs correspond to the so-called 

photon-forbidden bands in which light cannot propagate across the periodic structure 

of a photonic crystal and propagates only over its defects (in our case, a defect is the 

BF core). A photonic crystal is transparent in other spectral ranges, light is not re-

flected from the cladding and is not localised in the core, corresponding to BF bands 

with large losses. 

II.3.2 Optical properties of ARROW BF 

In the short-wavelength spectral region, where the conditions 1r >  and 

21 hhh  >  are fulfilled, new properties of BFs are manifested, which are not typi-

cal for quarter-wavelength structures. Planar waveguides with a large cladding period 

proposed earlier [116; 117; 66] were called ARROW (anti-resonant reflecting optical 

waveguide). They differ from waveguides with a quarter-wavelength layer cladding 

by a weak dependence of the spectral position of maxima of waveguide losses on h 

down to the radiation wavelength h . As a whole it is assumed that the spectral pa-

rameters of an ARROW are mainly determined by the parameters of a layer closest to 
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the core with a large refractive index (by its thickness and the refractive-index con-

trast in layers). 

The properties of ARROWs are explained by the fact that the structure layers 

can be compared with Fabry—Perot (FP) resonators (or their cylindrical analogue). 

Indeed, it is clear from physical considerations that if the fibre cladding has spectral 

regions resonant with the given radiation wavelength, the radiation will be distributed 

in the fibre cross section so that its great fraction will be localised in these resonance 

regions. As a result, the resonance spectral bands (modes) of the FP cladding corre-

spond to a weak transmission of light in the fibre because the redistribution of the ra-

diation field due to its localisation in resonance regions reduces the radiation intensity 

in the core. And vice versa, the absence of resonances in the cladding corresponds to 

the spectral bands with the maximum transmission (hence the name ARROW for 

waveguides of this type). Physically, the resonance bands are related to a standing 

wave in a FP resonator. 

 

II.3.2.1 Influence of coupled resonators on loss spectrum of ARROW BF 

 

In the general case the transmission spectrum of an ARROW should be deter-

mined by the resonance properties of optically denser and less dense cladding layers. 

Moreover, natural resonances (modes) are inherent both in a cladding period repre-

senting a complex FP resonator, which contains two dielectric media, and in a com-

bination of many closely spaced layers. The number of possible resonators rapidly 

increases with increasing N. The discrete eigenfrequencies (modes) of each complex 

resonator do not coincide in the general case with frequencies for individual layers 

and frequencies of other resonators. Therefore, the cladding can have a considerable 

number of resonance frequencies in a particular spectral range. The resonance fre-

quencies of individual layers can be easily estimated analytically, whereas the deter-

mination of the eigenfrequencies of multilayer resonators is a more complicated prob-

lem, which is beyond the scope of our paper.  
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Thus, the quarter-wavelength structure of the cladding corresponds to the ab-

sence of FP resonances when the ARROW transmission is maximal. If the thickness 

of layers is a multiple of even numbers of a quarter of the wavelength (of integers of 

half-waves), the conditions of FP resonances are realised, and an ARROW with such 

a structure does not virtually transmit radiation. The intermediate values of layer 

thicknesses correspond to intermediate regions between bands with high and low 

ARROW losses. 

Radiation mode losses rapidly decrease with increasing the number of layer pe-

riods, but, as mentioned above, the addition of these new periods does not change the 

spectral position of maxima of losses in fibres if h > . 

The properties of planar ARROWs considered above also inherent in cylindri-

cal waveguides, which were studied in a number of papers (see, for example, [93; 94; 

99]). The theoretical analysis of BFs of the ARROW type does not differ in principle 

from our analysis presented above. Therefore, we will not consider them as a separate 

class of BFs, but simply will illustrate their properties by a number of examples. 

Thus, Fig. 5 presents the transmission spectrum of an ARROW with arbitrarily 

chosen parameters. Resonance conditions for an optically dense layer (with 1n ) have 

the form mhk 11  (here, ...3,2,1m ) is an integer of radiation half-wavelength fitting 

in the resonator length 1h . By using (25), we find for the TE modes the approximate 

resonance wavelengths in optically dense cladding layers 
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The wavelengths )(

,1

a

m  corresponding to the absence of resonances in these lay-

ers (anti-resonance) are also well described by (32) with the replacement 2/1mm . 

One can see from Fig. 5 that the spectrum has several forbidden bands (bands 

with small losses) even within a range of moderate width and all the resonances de-

termined from (32) fall into ARROW bands with the smallest transmission. Note at 

the same time that not all anti-resonances of the first cladding layer determined by 

(32) correspond to photon-forbidden bands. Thus, according to Fig. 5, the loss level 
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at wavelengths ;583.1)(

8,1 a  ;415.1)(

9,1 a  ;168.1)(

11,1 a  075.1)(

12,1 a  m corresponding to 

anti-resonances in (32) with m=8,9,11,12 is 2·10
4
-5·10

5
  dB/km, whereas these losses 

at other resonances (m=7,10,13 с ;795.1)(

7,1 a  ;28.1)(

10,1 a  995.0)(

13,1 a  m) are 6—7 or-

ders of magnitude lower.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Such a difference can be explained only by the fact that at wavelengths close to 

anti-resonances with m = 8, 9, 11, and 12 there exist resonances (cladding modes) in 

other, more complex resonators, which were mentioned above. The interaction of 

these cladding modes with the anti-resonances of the first layer leads, as a rule, to the 

spectral shift of the low-loss bands with respect to its position predicted by expres-

sion (32). For example, the expected loss minimum at 583.1)(

8,1 a m appears at a 

wavelength of 1.625 m. A similar behaviour is observed for anti-resonances at m = 

Fig. 5: Calculated transmission spectrum for the TE01 mode in an ARROW;   

0n 1; 1n 3.5; 2n 1,5; 221  hh  m; 1r 4 m; N =20. 
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9, 11, 12. As a result, not all the optical properties of an ARROW are found to be de-

termined by the parameters of only one first layer. 

The FP resonances of optically less dense ARROW layers (with 
2n ) can affect 

the width of bands with large losses. Indeed, the positions of these additional reso-

nances, similarly to (32), can be found from the expression 

 
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nnh
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




  ...3,2,1p  .   (33) 

One can see from (33) and Fig. 5 that the resonance wavelengths 
p,2  for the 

given particular parameters of the fibre are close to the corresponding 
m,1  and fall 

into the same minimal transmission ARROW bands. But even all resonances (32) and 

(33) cannot completely explain the calculated spectrum. Spectral bands with high 

losses should be determined by some other resonances (modes) which can be caused, 

for example, by the presence of more complex resonances in the structure, which 

were neglected in the model. 

Because the analysis of the spectrum as a whole in Fig. 5 is quite complicated, 

we consider one of the anti-resonance bands (photon-forbidden bands) with minimal 

losses at 28.1)(

10,1 a m at the enlarged wavelength scale (Fig. 6). The shape of this 

curve is typical for the wavelength dependence of the 01TE  mode losses in BFs. The 

ARROW properties are discussed below by the example of this forbidden band. 

Fig. 7 presents the radial distributions of one of the two field components ( zH ) 

determining the radial energy flux (waveguide losses)  2/Re  zr HES   in a hollow 

ARROW. The distributions are presented at the points of the spectrum (see Fig. 5) 

with minimal losses in the photon-forbidden band shown in Fig. 6 and at one of the 

points in the high-loss band adjacent to this band.  
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Fig 6: Photon-forbidden band in an ARROW with minimal losses at 

28.1)(

10,1 a m (see Fig.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can see from Fig. 7a that in the ―anti-resonance‖ case, neither of the clad-

ding layers contains an integer of radiation half-wavelengths. However, despite com-

paratively low losses in the fibre, the field amplitudes in layers closest to the fibre 

  а) 

 b) 

Fig. 7: Radial distributions of Hz normalised to the maximum for the mini-

mal losses in an ARROW at 28.1)(

10,1 a  m (a) and for large losses at 

344.110,1   m (b) (see Fig. 5). 

 

11/4 

10/4 
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core are large enough. This can indicate that although the cladding geometry, which 

we have chosen arbitrarily, gives minimal losses at a wavelength of 1.28 m, it does 

not exactly correspond to the quarter-wavelength structure for this wavelength and 

can be in principle optimised. The optimisation should reduce the field amplitude in 

the cladding and losses. The latter assumption is confirmed by calculations from 

which it follows that the decrease in the thickness of cladding layers down to the op-

timal value 1.976 m reduces losses at least by a factor of one and a half.  

The radial distribution of the second field component  E  determining 
rS  ex-

hibits a similar behaviour. The field distribution for the resonance wavelength m,1  

1.344 m (m=10) presented in Fig. 7b shows that the field is indeed concentrated to a 

great extent in cladding layers. In this case, the thickness of each optically dense 

layer fits ten half-wavelengths, as should be in the resonance case. One can also see 

that layers with the smaller refractive index 2n  do not contain an integer of half-

wavelengths and resonances are absent, which follows, by the way, from (33). Note, 

however, that the field amplitudes decrease nonmonotonically both in optically 

denser and less optically dense layers. In our opinion, this is explained by the fact that 

each of the layers, being an independent FP resonator, also serves as a component of 

a number of complex resonators consisting of several successive layers. Because the 

eigenfrequencies of such numerous resonators are different, the total contribution of 

these frequencies to the resonance response of each cladding layer to the given radia-

tion wavelength is also different. 

We see that there exist a number of spectral properties of ARROWs that can be 

explained only by considering the influence of composite resonators forming the 

cladding. Their substantial role is indirectly confirmed in paper [110] where it was 

shown that the resonance properties of a new layer added to the cladding structure 

(although with parameters different from those of regular cladding layers) considera-

bly changed the ARROW spectrum. 

Microstructure fibres of different types, in which instead of coaxial cladding 

layers with a high refractive index 1n  the cylindrical rods of radius R>  with the 
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Fig. 8: Wavelength dependence of the real part of the 

effective mode refractive index in the photon-forbidden band 

in Fig. 6 (the TE01 mode). The boundaries of the photon-

forbidden band are shown by dashed straight lines. 

 

same refractive index 
1n  are located around the optically less dense core, have spec-

tral properties similar to those of ARROWs. The positions of resonance spectral 

bands in such structures are related to the cut-off wavelengths of the eigenmodes of 

the rods in the cladding photonic crystal [33; 34; 118-121]. 

II.3.3 Calculation of dispersion in BF 

As for the group velocity dispersion in BFs, by assuming that the material dis-

persion is absent, we are dealing with the waveguide dispersion only. This dispersion 

is completely determined by the properties of a particular photon-forbidden band. 

The dispersion parameter D is defined as 
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i.e. the photon-forbidden band is characterised by the dependence  nRe . 

The effective mode refractive index for the photon-forbidden band under study 

(see Fig. 6) is presented in Fig. 8.  
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The straight dashed lines show the boundaries of the photon-forbidden band. 

The strong interaction of modes in the fibre core with cladding modes (resonances of 

all possible FP resonators in the cladding) leads to numerous ―anti-crossings‖ of the 

dispersion curves of interacting modes, one of which is shown near a wavelength of ~ 

1.25 m.  The boundaries of the photon-forbidden band are determined by the loci of 

the anti-crossings. A similar dependence for the 
11HE  mode is located somewhat 

higher than the dependence shown in Fig. 8 (but, of course, lower than the unit level), 

while the dependence for the 02TE  mode is located lower. However, these modes have 

considerably higher optical losses than the 01TE  mode, and we will not discuss them 

here. 

The mode dispersion  D  calculated from (34) by using the function  nRe  in 

Fig. 8 is presented in Fig. 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Fig.9:Dispersion parameter D calculated for mode 01TE  in photonic-

bandgap showed on Fig.6. Inset a): here showed the dispersion para-

meter D in the range ofизображена дисперсионный параметр D в 

области приемлимых 
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Fig.9: Dispersion parameter D calculated for mode 01TE  in the pho-

tonic-bandgap showed on Fig.6.  

Inset a): here is showed the dispersion parameter D in the wavelength 

range of 1.27-1.295 µm corresponded to waveguide losses ≤ 1 dB/m  
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This dependence is also typical for BFs and is characterised by very large abso-

lute values of dispersion near the boundaries of the photon-forbidden band, but unfor-

tunately they are characterised by very large optical losses. At the same time, disper-

sion values in the region of acceptable losses are still large, as the inset in Fig. 9 

shows. This property of BFs can be used to control dispersion in various optical de-

vices. 

Recall now that we calculated the dependence  nRe  by neglecting the mate-

rial dispersion. In the spectral region where hollow BFs have low optical losses, the 

wavelength dependence of the material refractive index can be neglected because the 

fraction of light propagating in the cladding material is quite small. At the same time, 

the spectral position of the zero dispersion in glass BFs can be found sufficiently ac-

curately only by taking into account the material dispersion. 

II.4 Conclusions 

We have considered in detail one of the most efficient methods for calculating 

the optical properties of Bragg optical fibres. The method can be used not only to find 

the mode composition of radiation, optical losses and dispersion in fibres with the 

specified geometry of a multilayer cladding but, in conjunction with the genetic algo-

rithm, also to determine the optimal cladding structure providing minimal optical 

losses at a particular wavelength. It has been explained simply which of the modes 

should be fundamental in BFs with high and low contrasts between refractive indices 

of the fibre core and cladding. The possibility of using BFs as efficient mode filters is 

confirmed, especially, in the case of a high refractive-index contrast. Such BFs with a 

hollow cladding can have in principle very low optical losses for the fundamental 

ТЕ01 mode. The basic properties of BFs of the ARROW type have been described 

and it has been shown that these properties are determined not only by the parameters 

of the cladding layer nearest to the core but also by resonances of the cladding as a 

whole and of layered resonators comprising the cladding. Interest in BFs of the AR-

ROW type is caused by practical considerations because it is possible to fabricate fi-
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bres with comparatively broad transmission bands (a few tens of nanometres) with 

acceptable optical losses (see, for example, Fig. 6). 

Note that, being potentially single-mode and guiding only one cylindrically 

symmetric and nondegenerate ТЕ01 mode, hollow BFs are not subjected to the influ-

ence of the polarisation mode dispersion. 
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Chapter III. Analysis of optical properties of 2-D MOF 

In present Chapter the analysis of optical properties of 2-D MOF is carried out. 

At the beginning the multipole method chosen for analysis was described sequentially 

and quite detailed. Then a concrete MOF type was investigated by means of this me-

thod. Namely, dispersion characteristics and waveguide losses of HF with the solid 

core made of tellurite glass were calculated.  An influence of geometric parameters 

on optical properties was investigated. Finally, conditions of a singlemode regime 

realization in tellurite HF were obtained.  

Main results of this Chapter were published in following works: [2; 3; 5]. 

 

III.1 Introduction 

The theoretical analysis of optical properties of microstructured fibers, as of 

many other problems of electrodynamics, is based on the solution of Helmholtz wave 

equation for longitudinal components of the field. There are several semi-analytic 

methods for its solution, which use the expansion of the general solution in different 

bases of orthogonal functions. In particular, bases of trigonometric functions are used 

in the plane wave expansion method [122], the bases of orthogonal polynomials, for 

example, Hermite - Gaussian polynomials [123], etc. However, to obtain good con-

vergence of the solution, many harmonics should be taken into account in its expan-

sion, which deteriorates the calculation efficiency (its rate and accuracy). The number 

of harmonics in the expansion can be substantially reduced (thereby increasing the 

calculation efficiency) taking into account the fact that, as a rule, the elements of a 

structure under study have the circular symmetry. 

At first time a similar technique was used in [124] where the field distribution 

in the system of two parallel cylinders was investigated. In [125] the problem of 

mode finding in the infinite array of hexagonally packed cylinders was considered. 

Further, in [126] the task was made more complicated and the system consisted of 

three parallel arranged cylinders with their cross-section centers lying in vertexes of 
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equilateral triangles was considered. However, in above mentioned tasks a specific 

notation for the general solution in the form of the cylindrical function expansion au-

thors were used without proof of its validity. Theoretical proof of the possibility for 

such representation of a general solution was proposed later in [127]. While develop-

ing the method in [128] a more general case when the cladding consists of few high-

index cylindrical inclusions was considered. And, finally, in [129; 130] a case of ho-

ley fibers with low-index (compared with a matrix refractive index) inclusions was 

investigated. Here the cylindrical functions expansion method (or multipole method) 

takes on its closed form.  

By means of the multipole method it’s possible to calculate structures consisted 

of the cylindrical elements having circular [129; 130] or elliptical [131] forms of 

transverse cross sections. Also it’s possible to place each element into its own ―local‖ 

cladding [132]. There are not imposed restrictions on a relative displacement of these 

elements in the transverse cross section so that one can analyze 2-D waveguide struc-

tures with arbitrary arrangement of circular holes generally speaking with different 

diameters. In this more general case the field in the arbitrary point of the cross section 

is represented by a sum of partial contributions from each of the different elements of 

the structure, while the symmetrical arrangement of holes allows one to consider the 

problem only within some sector of the fiber cross section. The required solution can 

be found by subjecting the field components to the boundary conditions at the inter-

faces between sectors. Depending on a symmetry class, the calculation rate can be in-

creased by several times compared to the general case. With slight modifications the 

methodology described in [129; 130] allows also to spread out the analysis to wave-

guides based on photonic bandgap both with hollow and solid cores.                                                                                                                                        
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III.2 Theoretical part 

III.2.1 Main equations and their solutions  

Geometry of the considered general task is shown on Fig. 10. It represents the 

transverse cross section of the waveguide in (x, y) plane. The waveguide is consi-

dered infinite along oz axis direction which is coincided with a light’s propagation 

direction. Thus the structure is representing by itself a circular glass rod with the re-

fractive index n and radius R0, which has N through cylindrical holes parallel to each 

other. 
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Fig. 10: General view of waveguide’s transverse cross section. Dashed 

curves – convergence regions for corresponding field expansions. Solid curves – 

physical boundaries.  QP=rj; SP=rl; OP=r. 
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The center of i-th cylinder has coordinates (ci,arg(ci)), diameter di, refractive 

index ni  (in case of holes filled with air 1in ). The region with holes (so called ―ma-

trix of refractive index n‖ further in text) has an external cladding (r > R0) made of a 

different material with the refractive index 0n . 

 As in the previous chapter we assume that light propagates in a medium 

with the magnetic susceptibility equal to unity everywhere and the dielectric constant 

  independent of time and homogeneous in each of the components of the fiber 

(glass, air, and cladding).  

Following a general course and designations of the Chapter 2, in further analy-

sis again we start from Maxwell equations represented in the form of wave equation 

for electromagnetic field: 

,0
2

2














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




H

E

c



          (1) 

III.2.2. General solution in the form of two equivalent expansions 

Let us represent ez and hz in the matrix near arbitrary i-th hole by means of  li-

near combination of fundamental solutions of the wave equation for the longitudinal 

components (formulae II.1*) in local coordinates with the center in a point with ra-

dius-vector lc


: 

llll crrr  ),( 


.                                           (2) 

At the same time for the electrical field we have:  

 
m

llm

El

mlm

El

mz imkrHBkrJAe )exp()]()([ )1(  ,      (3) 

where   2/1222

0  nkk ; )(xJm  and )()1( xHm
 - Bessel and Hankel functions of the 

first kind and m-th order, correspondingly. The magnetic field zh  has analogous form, 

but with the expansion coefficients Kl

m

Kl

m BA , . 

In (3) summands described by the bounded everywhere function )(xJ m can be 

interpreted as a part ElR  of the field ze  incident on to the l-th cylinder. The summand 
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with functions )()1( xHm
 (source’s summand) describing the field  ElO  scattering by the 

l-th cylinder.  In other words ElEl

z ORe  . 

The local expansion (3) is valid only in the annular region extended from the 

surface of l-th cylinder to the surface of its nearest neighbour (region (a) on Fig.10). 

The same expansion also describes the field around the cladding-matrix interface fur-

ther designated with index 0 (region (d) on Fig.10). The expression for the field 

which is valid in the all matrix region was proposed in [124], where a light propaga-

tion in an infinite medium with two parallel cylindrical rods was investigated. 

It was considered that the field in some region can be presented as a superposi-

tion of waves outgoing from all sources in this region (there were two cylinders in 

[124] etc). If waves originate from sources outside considered region then they de-

scribed by means of J-Bessel functions which have not  the source. 

When there are not two, but N cylindrical inclusions in a medium, then the 

field expansion is being written in a manner of [124] and it is:   

.)exp()())]arg(exp()([ 0

1

)1(

 
 m

m

E

m

N

l m

llm

El

mz imkrJAcrimrkHBe          (4) 

Each summand in the double sum, composed of a series in terms of m, de-

scribes the field of the outgoing wave  source of which is l-th cylinder.  The last 

summand with index 0 describes the field reflected from the matrix-cladding inter-

face. 

It is obvious, that in annular region around l-th hole where (3) is valid, both 

expansions (3) and (4) describe the same field. An equivalence of (3) and (4) will be 

used for a finding of coefficients at sources terms  lmB  in a text below. 

III.2.3. Obtaining multipole coefficients in fields expansions 

Let us use both the equivalence of expressions (3), (4) in a vicinity of the arbi-

trary l-th cylinder and the boundary conditions on mediums interfaces for finding 

multipole coefficients in the fields expressions.   
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Expressions (3) and (4) describe the same field in the annular region around the 

l-th cylinder. Therefore we can equate them. Thus, taking into account that the sum-

mands with  
jm krH )1(  disappears when j=l because they are common, we obtain the 

equation: 

              
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m imkrJAcrimkrHBimkrJA  expargexpexp 0

1

)1( 
  (5) 

All summands in (5) are related to different ―local‖ coordinate systems. That’s 

why in order to reduce the considered task to the eigenvalue problem let us transform 

these summands by help of Graf’s summation theorem for cylindrical functions (look 

for example [133], p. 993).  This question is discussed in more detail in works [3; 

129] from which we have following transformation of summands from (5):   

a) let us start from defining a contribution from the field scattered by the j-

th cylinder into the local, regular (without singularity) field in a vicinity of the l-th 

cylinder (curve (b) on Fig. 10). This contribution (the sum by m in the first summand 

on the right of (5)) has the form: 
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Introducing vector and matrix designations А
Elj

=  ,Elj

nA  B
Ej

=  ,Ej

mB  H
lj
=  ,lj

nm let 

us represent the bases transformation (7) in the matrix form:   

A
Elj

=H
lj
B

Ej
.     (8) 

b) by a similar way we will show that the contribution (curve (e) on Fig.10) 

into the regular field (external, having no sources field) incident on the l-th cylinder 

and creating due to presence of a outer cladding has the form:   
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and 
l0

=            .argexp10
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As a result of transformations of the clauses a) and b) all summands on the 

right in equation (5) are reduced to the coordinate system  llr ,  related with the arbi-

trary cylinder l and relatively of which the Fourier-Bessel expansion is considered. 

The equation (5) in this case in the annular region around the l-th cylinder (region (a) 

on Fig.10) with taking into account (8), (10) can be written in the form:   
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An analogous expression occurs also for the magnetic field’s component zh .  

 

c) For outgoing field from arbitrary l-th cylinder in a vicinity of the cladding-

matrix interface we have (curve (c) on Fig.10):   
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Therewith 
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The transformation (12) is the transformation of the field outgoing from the lo-

cal coordinate origin of an arbitrary cylinder to the field of an outgoing wave in the 

vicinity of the matrix-cladding interface.   

Summing a contribution from all cylindrical sources lets rewrite the firs sum-

mand in the expansion (4) in the form that is valid only in cladding (region (d) on 

Fig.10)   




N

l 1

О
El

=     
n

n

E

n inkrHB exp)1(0 O
E0

, where 

                               B
E0

=


N

l 1

B
E0l

=



N

l 1

0l
B

El
.    (14) 
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The analogous expression occurs also for the magnetic field’s component
zh .  

III.2.4 Dispersion equation  

Here, accounting of boundary conditions also can be made by means of a ma-

trix language but in slightly different way compared with Chapter 2.  For doing so, let 

us consider a cylinder having a circular shape of the transverse cross section and with 

radius a.  A refractive index of the cylinder material we have designated as n- , but a 

refractive index of the surrounding material as
n . Let’s represent the longitudinal 

components of the field ez and hz in the form of a Fourier-Bessel expansion as in (3) 

inside and outside from the cylinder:  

,)exp()]()([ )1(






 
m

m

E

mm

E

mz imrkHBrkJAe     (15) 

where the sign (-) is related to the region where r <a, and a sign (+) where r>a. 

The analogous expression occurs also for the magnetic field component
zh . 

Here 2/1222

0 )(  

 nkk , and an interpretation of the summand with J and H Bessel 

functions is given earlier. 

In the light of the said above, let’s introduce vectors for amplitudes of the field 

components A
E±   E

mA , A
K±   K

mA , B
E±   E

mB , B
K±   K

mB . On the cylindrical dielec-

tric interface a partial reflection and transmission of light occur.   And amplitudes of 

transmitted and reflected fields can be represented by matrix relations due to linear 

nature of Maxwell equations:    

    








BTΑRB

BRΑTΑ
~~~~~

~~~~~

,     (16) 

where 
Α
~

 and 
B
~

 - vectors with components (A
E±

,A
K±

) и (B
E±

,B
K±

), corres-

pondingly; )
~

,
~

(
~

,
~ 

TTRR  - inner and outer reflection (transmission) matrices of the 

cylinder. Let us note that transmission matrices are not necessitated in cases consi-

dered below.  
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Let’s obtain expressions for matrix elements 
RR
~

,
~  by means of boundary con-

ditions, i.e. continuity of the tangential field components on the two dielectric’s inter-

face.    

a) At first, we considering 0  K

m

E

m AA  (or Ã
+
=0), that corresponds to an 

absence of external field sources. In this case elements of the inner reflection matrix 


R
~

can be found (in particular, from the matrix-cladding interface).  At the same 

time, from general relations (16) (first of them) the summand having the transmission 

matrix falls out.   

And it’s possible to write: 

,  K

m

EK

m

E

m

EE

m

E

m BRBRA  

,  K

m

KK

m

E

m

KE

m

K

m BRBRA  

that corresponds to 

 

,





























-K

-E

-KK-KE

-EK-EE

-K

-E

B

B

RR

RR

A

A
 or ,

~~~   BRA   (17) 

 

where R
EE-

, R
EK-

, R
KE-

, R
KK-

 - diagonal matrices. Their m-th diagonal elements 

are follows:  

 

     ,1 222 







   mmmHHHHJHHJ
m

EE

m HJHmnnR 


 

  ,
21 2

0






  m

m

EK

m H
k

k

ak

m
R





        
         (18) 

,2 



  EK

m

KE

m RnR  

     .1 222 







   mmmJHHJHHHH
m

KK

m HJHmnnR 


. 

 Let’s note, that in [129] in the expression for KK

mR , the second summand 

in square brackets is incorrect because it has a positive sign.  
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 Earlier we considered that field amplitudes for the matrix-cladding inter-

face have index 0. That’s why the expression (17) in such designations we must write 

as follows:  

.
~~~ 000
BRA       (19) 

 A physical meaning of the last relation is so that the field 0~
B  created by 

all sources (i.e. by cylinders here) reflects by the cladding and gives the contribution 

into the regular field 0~
A  that is incident onto each of cylinders.   

b) Now we considering 0  K

m

E

m BB  (or 
B
~

= 0) in (16). In this case ele-

ments of the outer reflection (from the interface of the arbitrary cylinder) matrix 
R
~

 

are being founded. It’s clear that terms with Hankel functions H which are related 

with sources were not to be in inner regions of cylinders. The summand with the 

transmission matrix also falls out in the second relation of (16) when 
B
~

=0.     

Similarly to a) we can obtain: 

,  K

m

EK

m

E

m

EE

m

E

m ARARB  

,  K

m

KK

m

E

m

KE

m

K

m ARARB  

that as in (17) corresponds to:  

,









































K

E

KKKE

EKEE

K

E

A

A

RR

RR

B

B
 or   ARB

~~~
.      (20) 

Consequently we obtain that for the field scattered by the arbitrary cylinder m-

th diagonal elements of the matrices R
EE+

=  EE

mRdiag , R
EK+

=  EK

mRdiag  and so on, are 

following:    

     ,1 222 







   mmmJJJJJHHJ
m

EE

m HJJmnnR 


 

  ,
21 2

0






  m

m

EK

m J
k

k

ak

m
R






                (21)

 ,2 



  EK

m

KE

m RnR  

     .1 222 







   mmmJHHJJJJJ
m

KK

m HJJmnnR 


. 
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Let’s note again that few errors are committed in expressions for these matrix 

elements in [129]. So, there is 

mH  instead of using 

mJ -function in the second sum-

mand of the right-hand part of the expression for EE

mR  in [129].  The same misprint is 

in the second summand of the expression for KK

mR . In addition the sign of the value 

KK

mR  by itself is opposite.  

So, now we have all relations (11), (14), (19), (20) which are necessary for re-

ducing the considered task to the eigenvalue problem.  

At first, with taking into account introduced above vectors A
~

 and B
~

, the rela-

tion (11) which was found earlier we write in the following form:  






N

lj
j 1

~~~~~ 0l0jljl
ΑBΗΑ              (22)          

where  lj
H
~

diag( ,lj
H lj

H ), diagl0~ ( l0 , l0 ). 

The equation (22) represents by itself the system of N equations for amplitudes 

of fields in the vicinity of cylindrical elements of the structure.  These equations de-

fines the regular field incident onto the arbitrary l-th cylinder by means of fields am-

plitudes from all remaining sources (i.e. cylinders) and also with taking into account 

the contribution introduced by the reflection from the cladding ( 0
Α
~

). Let’s introduce 

matrices: 

,,...,1,

,])
~

(,...,)
~~

[(]
~

[
~

0
~~~

]
~

[]
~

[ 0201000

Njl

TTNTTlBllljll



 (,) , ) H  (  ]H[H,BB,ΑA
 

where upper index Т designates a matrix transpose.  

Then in consideration of all cylinders the equation (22) takes the form: 

0B0
ΑBHA
~~~
                 (23) 

Similarly, for the components 0~
B  of the field created by all sources in the vi-

cinity of cladding-matrix interface from the equation (14) we have:  

. , 

 B,BB
0

]
~

,...,
~~

[]
~

[
~

~~~~

0020100

0

1

0

NlB

B
N

l

ll




      (24) 
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Further, we designate  

l
обозн

R
~~ .


R  и )

~
,...,

~
,

~
( 21

.
N

обозн

RRRdiag . 

Then from (20) follows, that  

AB  . 

From (19) and (24) correspondingly we obtain:  

BRBRA
B00000 ~~~~~

 . 

After, in considering of (23) we have: 

)
~~~

( 0B0
ΑBHB  = )

~~~~
( 00

BRBH
B0 B . 

Or, by carrying out all terms into the left-hand side, finally we obtain required 

homogeneous system of algebraic equations on coefficients l
B
~

: 

                                      0)]
~~~~

([ 00  BBRH
B0 BI                            (25) 

The nontrivial solution of the system (25) corresponds to the field propagating 

along z direction. And this solution corresponds to guided (or may be leaky) modes of 

the considered waveguide because of this field exists in absence of external sources.  

The system (25) corresponds to the nontrivial vector B , under the condition of 

equality of the related determinant to zero. When geometry and wavelength are fixed 

this determinant depends only on the propagation constant or, that is equivalent, on 

the effective refractive index. Therefore, for a given waveguide a mode searching 

process is related with finding of zeros of complex function det( ) of complex vari-

able neff. 

 In practice, a treatment of quite complex structures with large amount of holes 

is necessary as a rule. Sometimes an increasing of the field expansion order is re-

quired while varying of geometrical parameters (hole diameter, pitch, etc.). In these 

cases difficulties in numerical calculation arise. Namely, the determinant dimension 

is increasing because of dim( ) = cNM )12(2  , whereM - field’s expansion order, 

cN - amount of cylinders. If the considered structure having symmetry then taking this 

into account allows us to use a group theory methodology. At first it’s possible to ca-

tegorize modes of the structure with respect to its symmetry classes and degeneracy 

and at second to decrease the determinant dimension. This allows to investigate more 
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complex structures using personal computer. More detailed explanation of the me-

thod of using symmetry in calculations is given in works [3; 130] on the example of a 

structure having 
6C  symmetry group. 

 

III.3 Optical properties of holey fibers based on tellurite glass  

 

General overview of HF and their possibilities was done in Chapter 1, and here 

we will concentrate on the analysis of optical properties of tellurite HF.   Dispersion 

properties, waveguide losses, conditions of obtaining of the singlemode regime of 

light propagation in such waveguides are investigated in depending on geometrical 

parameters of the structure – total amount of holes, their size and pith between them.  

The Te02 glass used in holey fibers studied in the paper is quite promising for 

fiber optics. First, its refractive index is greater approximately by a factor of one and 

a half than that of a silica glass (see, for example, [134]) and, therefore, the cladding-

core contrast n  is greater, which simplifies the control of chromatic dispersion. 

Second, tellurite glasses also have higher nonlinear properties (the third-order suscep-

tibility of some of them can be ~ 40 times higher than that for silica glasses [135]), 

which makes holy fibers promising for the use in various nonlinear radiation frequen-

cy converters. Note also that the melting temperature of tellurite glasses is much low-

er [134] than that of silica glasses, which can be important for the manufacturing 

technology of fibers. 

Although at present the material optical losses in tellurite glasses (~ 1 dB/m 

[134]) still greatly exceed their assumed low fundamental losses, a study of the opti-

cal properties of tellurite fibers is of current interest in connection with the expected 

progress in technologies. 
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III.3.1 Waveguide’s geometry 

The cross section of a typical microstructure fiber considered here is shown in 

Fig. 11. The fiber is a circular glass rod with the refractive index n and radius R0, 

which has N through cylindrical holes of diameter d (the same for all the holes in our 

case). The arrangement of holes in the cross section of typical microstructure fibers 

corresponds to the hexagonal symmetry with the distance   between the centers of 

the adjacent holes. The central region in this symmetric structure, where a hole is ab-

sent, and its nearest surrounding play the role of the fiber core. In practice, the glass 

rod has an external cladding (r > R0) made of a different material with the refractive 

index .extn  Usually 0R  is considerably exceeding sizes of nonuniformities  

( 0R >> ). Therefore calculations are carried out with good approximation in 

assumption that .0 R   
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Fig. 11:  Cross section of a holey fiber (in this example, with two 

rows of holes around the fiber core). 
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III.3.2 Analysis of dispersion properties 

Of all the tellurite glasses we considered a particular glass of the 0,8TeO2-

0,2WO3  chemical composition (the numerical coefficients denote molar fractions). 

The material dispersion of this glass determined by the Sellmeyer dependence 

   ,/1//1/)( 222  EDCBAn        (26) 

is known [136]. Here, A=2.4909866; B=1.9515037; C=5.6740339·10
-2

; 

D=3.0212592; E=225; and the wavelength is measured in micrometers. 

Roots of the dispersion equation were calculated in complex plane. For its nu-

merical solution it’s necessary to truncate field expansions (3) i.e. ],...,0,...,[ MMm  . 

A criterion for a truncation error is numerical difference of expansions (3) and (4) on 

cylindrical interfaces. An amount of accountable terms increases with increasing of 

holes diameters as it follows from [130]. A value of M is chosen based on analysis of 

an error arising while truncation of series in fields expansions on cylindrical func-

tions. This error was analyzed by means of comparing expansions (3) and (4) which 

must coincide in the limit when M . In [130] a conclusion was made that M must 

exceed approximately in 1.5 times a largest argument of used Bessel functions. Then 

cylindrical functions in last terms will have power law providing a fast convergence 

with increasing of m. The largest argument of used Bessel functions is ,1 ak  where 

  0

2/122

101 ,)( knnkk eff   , 1n refractive index of a matrix glass, a hole’s radius.  

In case of tellurite fibers and wavelength for example assumed to be 1.55 m then the 

real part of 1k  ~ 2 that’s why for radii  a  ~ up to 2 m the value of M=5 can be not 

increased. 

The following method was used for the plotting of dispersion curves. The ef-

fective refractive index )( 0effn  
was found for desired mode at some fixed wave-

length 0 . Then the effective index was founding at wavelength 00 ,    , 

where )( 0effn was using as a first approximation. The rest effective indices at the wa-

velengths ,...3,2,0  mm 
 were found doing in exactly the same way varying over 

all demanded spectral range.  



79 

 

In this case, because no data on the spectral dependence of optical losses in tel-

lurite glasses are available in the literature, the material losses were neglected, and 

the values of 
effnIm  

obtained in the solution were completely determined by wave-

guide losses. In the future, when the reliable experimental data of material losses will 

be obtained, these losses can be readily taken into account by introducing the imagi-

nary part into dependence (26). 

The group velocity gv  

                                      

,
Re

Re

1














d

nd
n

c

v eff

eff

g

                      

(27)

 

and the dispersion parameter D 

,
Re

2

2





d

nd

c
D

eff
                (28) 

were found from the calculated real part 
effnRe while the waveguide losses (in dB/km) 

were calculated from the expression 

effnek Imlg20 0   [137],              (29) 

where k0 is measured in km
-1

. 

It is obvious that the main optical properties of holey fibers made of tellurite 

glass and of holey silica fibers should be qualitatively similar. However, from the 

practical point of view it is important to have an idea of their quantitative difference. 

This difference is illustrated by the calculated optical characteristics of tellurite holey 

fibers presented in Figs 12-16. 

One of the most important features of holey fibers is a strong dependence of 

their dispersion properties on the structure geometry. Of no less interest is also their 

ability to maintain the single-mode propagation of radiation in a much broader spec-

tral range than in conventional fibers. In this case, the cross-section area of the field 

mode can be varied in a very broad range. 

Fig. 12 presents the spectral dependences of the effective mode refractive in-

dex
effnRe , the group velocity, and the dispersion parameter for the fundamental mode 



80 

 

of fibers with different geometries. One can see, in particular, that the greater is the 

air content in the cladding than the greater is the difference of dispersion properties of 

the fiber from those of the bulk glass. This difference is increasing with the wave-

length of light. The latter is clear, because the longer is the wavelength, the less sensi-

tive is irradiation to structural inhomogeneities when the fiber geometry is being 

fixed. In this case, the field is more and more homogeneously distributed in the clad-

ding whose refractive index tends to some averaged value determined by the relative 

content of air. Correspondingly, the refractive-index contrast of the fiber core and 

cladding monotonically increases with increasing . An vice versa, the shorter is the 

wavelength (  is smaller than the characteristic size of structural inhomogeneities), 

the stronger is the field localization in glass regions of the fiber (mainly due to TIR) 

and the weaker is its penetration into air holes. The effective refractive index gradual-

ly approaches the refractive index of the glass, resulting in a decrease in the con-

trast n . However, this does not lead in the limit to the loss of waveguide properties 

of the structure because, as the values of n  and   decrease simultaneously, the di-

mensionless characteristic parameter V of the fiber tends to a constant value. 

One can see from Fig. 12b that the zero value of the material chromatic disper-

sion in a tellurite glass corresponds to a considerably longer wavelength (~ 2.2 m) 

than for a silica glass. In fibers, the waveguide dispersion is added to the material 

dispersion, and the zero value of D, as in the case of holey silica fibers, shifts to the 

blue.  
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 Fig. 12: Spectral dependencies of the effective refractive index 
effnRe  (a), the dispersion 

parameter D (b), and the ratio cvg / of the group velocity to the speed of light in vacuum (c) on the 

air content in the fiber cladding (the /d ratio) for a holey fiber with three rows of holes around the 

fiber core for   = 2.3 m. The calculations are presented for the fundamental mode of the fiber. The 

solid thick curves show the dependences corresponding to the purely material dispersion (26) for a 

bulky glass. 

(a) 

(b) 

(c) 
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III.3.3 Waveguide losses 

The number of rows (layers) of holes around the fiber core (two or more) al-

most does not affect the dispersion characteristics of fibers; however, it affects consi-

derably the waveguide losses. The value of these losses is demonstrated in Figs 13 

and 14. In particular, one can see from Fig. 13 that the waveguide losses rapidly de-

crease with increasing the air content in the cladding (with increasing the /d ratio), 

large distances between the holes being preferable at fixed d. Figure 14 shows losses 

in fibers with two and three rows of holes. The qualitative result of this comparison is 

obvious in advance and is determined by the air content in the cladding. Our calcula-

tions show that the waveguide losses in a fiber with three rows of holes are so small 

that the total losses, even in the case of expected low material losses, will be deter-

mined by the latter. Therefore, it seems unlikely that tellurite holey fibers with three 

rows of holes will be required. 
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Fig. 13:  Dependences of the waveguide losses on the distance   between the 

centers of the adjacent holes for different ratios /d  holey fibers with 

two rows of holes. The calculations were performed (the radiation wave-

length  = 1.55 m 
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III.3.4 Singlemode and multimode regions 

To find the region of variation of geometrical parameters of tellurite glass ho-

ley fibers in which the single-mode propagation of radiation can be realized, we plot-

ted the dependences of losses for the fundamental and first higher modes of the fiber 

on the distance between the centers of adjacent holes for different ratios /d . The 

results of some calculations are presented in Figs 15-17. 

Figure 15 shows the change in the intensity of the fundamental mode of the fi-

ber (the real part of the longitudinal component of the Poynting vector) with decreas-

ing the parameter . One can see that, beginning from some values < , the 

process of delocalization and disappearance of the mode gradually develops. For the 

most descriptive presentation of this process, the most optimal scales for the mode 

intensity and the transverse dimensions of the mode field were used in each picture. 

Fig. 14: Waveguide losses for the fundamental mode of a holey tellurite glass fi-

ber with two (upper straight line) and three (lower straight line) rows of 

holes as functions of the radiation wavelength. The curves are obtained for 

=2.5 m and /d = 0.5. 
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Fig. 15: Dependence of the fundamental mode intensity in a tellurite HF with two 

rows of holes on the ratio /  for /d =0.6 and  1.55 m. 
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Fig. 16: Same as in Fig. 15, but for the next (after the fundamental) mode. 



86 

 

Figure 16 shows a similar behavior for the first of the higher modes of the fi-

ber. By comparing Figs 15 and 16, we see that the higher modes are delocalized noti-

ceably faster than the fundamental mode (the range of variation in the parameter   

required for delocalization is noticeably narrower). The effective refractive index 

effn for higher modes decreases faster with increasing   than that for the fundamental 

mode, these modes are no longer guided in the fiber and the fiber becomes single-

mode. On a Figure 17 results of parameters searching for investigated tellurite holey 

fiber that allowing the possibility of its working in singlemode and multimode re-

gimes are presented. One cans see that the singlemode region is quite wide as in ho-

ley fibers made of silica glass.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17:  Regions of the single-mode (I) and multimode (II) regimes of 

radiation propagation in a tellurite holey fiber with two rows of holes. The 

dashed straight line is the upper boundary of the single-mode regime region 

(delocalization of the fundamental mode). 
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III.4 Conclusions 

In this Chapter optical properties of fibers with the solid core and with 2-D 

photonic crystal cladding were investigated by means of the multipole method.  

For waveguides made of tellurite glass the influence of geometric parameters 

on optical properties of such structures was examined. The following results were ob-

tained:  

- a possibility of zero-dispersion point shifting both to the short-wavelength 

and to the long-wavelength spectral range compared with standard fibers.   

-a behavior of dependence of waveguide losses on pitch, on air filling ratio and 

on number of considered cladding layers were obtained  

-geometric parameters ranges were found where singlemode regime can be rea-

lized in wide spectral diapason 

Main advantages of the multipole method in the analysis of MOF were demon-

strated based on this work: 

-high accuracy of a calculated propagation constant and fields distributions 

with not great system resources requirements if the waveguide has appropriate clad-

ding layers (i.e. when material losses becomes predominating over waveguide losses)   

-symmetry of the structure taking into account while method realization there-

fore there are not questions about polarization degeneracy of the modes.  
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Chapter IV. High power Yb-doped fiber laser based on all-

solid LMA BF 

This chapter is devoted to creation of the fiber laser based on the active BF 

doped by Yb
3+

 ions and with pumping into the cladding. Investigations results of 

modal composition of the active BF and of an influence of the inaccuracy of the 

cross-section form on output intensity field pattern were presented. The mechanism 

that provides a singlemode lasing was described. Influence of the waveguide macro 

bending on form and quality of the mode shape of the output irradiance was investi-

gating. 

Main results of this chapter were published in following works: [8-10; 138]. 

 

IV.1 BF as LMA waveguides 

Creation of pulsed or continuous wave fiber lasers of high output power is re-

lated with a problem of initiation of undesirable nonlinear effects (mainly it’s Stimu-

lated Raman Scattering - SRS). Increase in SRS threshold necessitate the mode field 

diameter increasing [139] while simultaneous preserving a singlemodeness of the 

output irradiation. 

There are a variety of LMA waveguides constructions existing at present and 

used as active mediums in creation of fiber lasers. High-order modes filtration there 

is reached by different methods. In [140], for example, a multimode waveguide is 

coiled with the definite bent radius due to a fact that a critical bent radius  is smaller 

for the fundamental mode than for all high-order modes when a leakage into the 

cladding occurs. In [141] the helical core introduced additional losses for high-order 

modes was used [142]. In [143] a chirally-coupled core (i.e. straight core twisted by 

an additional core’s spiral) was used to filter high-order modes by means of an 

avoided interaction between high-order modes of main and additional cores. Using of 

active waveguides with negative contrast of refractive index in the core was shown in 

[144]. Singlemodeness in such fibers is achieved by a fact that the compensation of 
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the losses by the amplification occurs earlier for the fundamental ―leaky‖ mode than 

for the high-order modes.    

Holey fibers are used as LMA waveguides also. Here, increasing of the core 

diameter, while keeping the singlemodeness of an output irradiation, demands de-

creasing of the refractive index contrast on core/cladding interface as in case of using 

of standard step-index fibers. Hence, it appears that all these holey structures are too 

bent sensitive. Consequently all being created fiber lasers based on these holey wave-

guides become quasi-solid state.    

However, recently a possibility of reducing the bend sensitivity while preserv-

ing the mode field diameter with help of using of another type of MOF – a solid core 

BF was demonstrated in works [35; 145]. This led to formulation of task of realiza-

tion of the active BF with subsequent creation of the fiber laser based on the similar 

structure. 

IV.2 Geometry choosing for active LMA BF  

 

Geometry for the active BF is chosen quite similar to that used in work [35]. 

For the sake of simplicity, index of the core is chosen to be equal to that of the pure 

silica low-index layers. The high-index layers are GeO2-doped. Such preform can be 

made by the MCVD process. As the proposed fiber is a leaky waveguide, a trade-off 

regarding the modes’ attenuation coefficients must be found: the first Gaussian mode 

must exhibit low (<1 dB/m) loss while the HOMs must exhibit high (>100 dB/m) loss 

at a specified wavelength. This requirement can be fulfilled by engineering the index 

profile. Degrees of freedom are core diameter D, lattice constant Λ, thickness d and 

index contrast Δn of high-index layers and number N of bilayers. To optimize an in-

dex profile we need to choose core diameter as well as index in each section of the 

profile. For the high-power fiber laser application, D > 20 µm is chosen. Indices are 

chosen considering the MCVD process requirements (Δn < 0.05). At a specified wa-

velength λ, the radiation must resonate in the core. This leads to a certain value of the 

mode effective index (neff01) together with the transverse wavenumbers in the i-th 
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cladding layer βi =
2

01

2

0 neffnk i   . Under the quarter-wave stack condition, it is then 

straightforward to determine Λ and d. Then, the design space reduces to {D, Δn, N}. 

For such a triplet, attenuation coefficients of LP01 and LP11 modes are computed us-

ing the transfer matrix method. An example of results is shown in Fig. 18b for D = 20 

µm. Obviously, the attenuation coefficients of both modes decrease with N and Δn. A 

strong discrimination against HOMs will necessitate α11 > 100 dB/m while a quasi-

lossless propagation of LP01 is preferred. Graphically, we can determine that for D = 

20 µm, Δn = 0.015 and N = 3 are well suited. The bend influence was also computed 

using a full-vector finite element algorithm. A conformal transformation was applied 

to simulate the propagation in the bent fiber. A perfectly-matched layer was added to 

evaluate the radiation loss due to bend. The critical bend radius defined as the radius 

leading to a 3-dB/m loss for the fundamental mode was computed to 8 cm for the de-

sign proposed. This bend radius does not affect the effective mode area (~170 µm²). 

A preform was then manufactured and drawn down to the double-clad fiber. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.18: (a) Theoretical refractive index profile of solid-core BF. The 

design space includes the core diameter D, the cladding index contrast Δn, 

the number N of bilayers. Also reported is an example of electric field dis-

tribution (b) Attenuation coefficients computed when D = 20 μm for vari-

ous Δn in the range (0.005, 0.01, 0.015, 0.02) as functions of N. Hollow 

symbols: LP11, filled symbols: LP01 
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IV.3 Investigation of the active LMA BF 

Preforms of the active BF were created in Institute of Chemistry of High Purity 

Substances (ICHPS), Nizhny Novgorod. There were few collapsing regimes during 

preforms fabrication due to complexity of the active structure realization. Further, af-

ter drawing, samples were investigated and it was found that in some samples an 

axially symmetric geometry is broken: 

1. The first layer of the structure is deformed due to attempt to lower the pre-

form’s collapsing temperature (see Fig. 19). 

  

 

 

 

 

 

 

 

 

 

2. The dip in the core center arisen while the process of preform collapsing 

(see Fig.20).  

  

 

 

 

 

 

 

 

 

Fig. 19: SEM image of a fiber end-face with distorted first layer. In-set: A typical 

distribution of mode field intensity in this fiber (=1.06 µm)   

Fig. 20:  RIP in a sample with a dip in the core’s centre. In-set: A typical 

distribution of mode field intensity in this fiber (=1.06 µm)  
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3.  In the attempt of making the outer cladding in a shape of square (to break 

axial symmetry with the aim to increase pump mixing and hence pump ab-

sorption) the shape of cladding layers reproduced the outer cladding shape. 

(Fig. 21)    

 

 

 

 

 

 

 

 

 

 

 

In all three cases the fundamental Bragg mode is being broken and makes im-

possible obtaining of the singlemode lasing. 

 

 

 

 

 

 

 

                                                                                                                                                    

 

 

Fig. 21:  SEM image of a fiber end-face with a square-like shape of the outer clad-

ding. In-set: A typical distribution of mode field intensity in this fiber (=1.06 µm) 

Fig. 22:  RIP in the sample with the minimal dip in the core’s centre 

(on the right). SEM image of this sample (on the left). 
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However, for one more sample it was succeeded to maximally suppress the dip 

in the core without breaking of axial symmetry at the same time (see Fig. 22). 

Characteristics of the chosen sample are following (Fig. 23): 

• Preform was made by MCVD method 

• nBF ~ 15.10
-3  

(GeO2); 

•  [Yb
3+

] ~ 1 % by weight; 

•  whole doped core; 

For implementation of the cladding pumping the Bragg structure was placed 

into the outer cladding made of a reflecting polymer (NA=0.48).   

 

 

 

 

 

 

 

 

Appearance of the reflecting polymer leads to the double-clad structure - an or-

dinary multimode waveguide in general case. Hence we can’t talk about waveguide 

losses of the whole structure because now all modes become ―guided‖. Here wave-

guide losses of BF structure define the part of power in the core for the correspondent 

mode in the double-clad structure. Therefore it’s possible to associate for a concrete 

mode its part of power in the core with waveguide losses of the corresponded Bragg 

structure.  

 Experimental and theoretical RIP’s that were used in the estimation of wave-

guide losses of BF without reflecting polymer are shown on Fig. 24. 

 

 

 

Fig. 23:  RIP of the BF from 

Fig. 22 which is placed into an 

outer cladding made of reflect-

ing polymer 
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Calculated spectrums of waveguide losses of the fundamental mode HE11 and 

of the first high-order mode TE01 for the ideal RIP and for the RIP closest to the expe-

rimental one are shown on Fig.25. One can see from this figure that with taking into 

account the experimental RIP the loss ratio of the fundamental mode and of the first 

high-order mode increasing approximately in order and provided to be equal:  

Fig. 24:  

Solid thin curve – experimental RIP 

Dashed-dot curve – ideal theoretic RIP 

Solid thick curve – theoretical RIP maximally approximated to the experi-

mental one which was used in estimation of waveguide losses of BF from Fig. 22 

Dashed line was used for representing an axial component E  of an elec-

tric field. (a) – corresponds to the ideal RIP, (b) – corresponds to the RIP max-

imally approximated to the experimental one)  
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Results of calculations of overlap integrals of the fundamental and second 

mode with the doping region [146] are shown on Fig. 26. By comparing obtained re-

sults it’s possible to make a conclusion that the loss ratio of the fundamental and 

second mode equaled to 1/10 is related to 50% of power in the core for second mode 

and 87 % for the fundamental:   

 

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14
10

-1

10
0

10
1

10
2

, мкм

П
о
те

р
и
, 

д
Б

/м

 

 

HE
11

 ("реальный")

TE
01

 ("реальный")

TE
01

 ("идеальный")

HE
11

 ("идеальный")

 (µm) 

L
o

s
s
e

s
, 
d

B
/m

 

(“real”) 

(“ideal”) 

(“ideal”) 

(“real”) 



96 

 

 

Therefore even though the signal propagation out from the absorption band of 

Yb
3+

  will be in slightly multimode regime the assumption was made that in this case 

it’s possible to achieve singlemode lasing due to the selective amplification of the 

fundamental mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As example, in the work related with realization of the triple-clad LMA waveguide 

[146] the parts of power in the core 80 % for the fundamental mode and 60 % for 

second mode were provided the singlemode lasing.  

 

 

 

 

 

 

 

 

Fig. 26:  To the calculation of overlap integrals of mode’s (LP01 and 

LP11) fields intensities distributions with the doping region in BF from Fig.22 

Fig. 27:  Set-up scheme for observation of a mode composition in BF’s 

used in experiment 
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Actually, we observed the transverse field intensity distribution at the output of 

a short (2 m) piece of active BF in absence of pumping. The wavelength of the 

launched radiation was 1.064 µm. Results are shown in Fig. 27. It is obvious that the 

unpumped fibre is slightly multimode. 

IV.4 Experimental set-up 

 

Scheme of the experimental set-up is shown on Fig. 28.  The pump light was 

delivered by the multimode diode laser emitting at 975 nm with pigtail diameter of 

100 μm and NA of 0.22. Launching of pump power was carried out with a couple of 

8mm focal-length collimating lenses F1 and F2. Thanks to the high Yb
3+

 ([Yb
3+

] ~1 

% by weight) concentration, the short 2 m-long piece of fiber was used. The cavity 

mirrors were the dichroic mirror M1 with maximum reflectivity at signal wavelength 

(Rmax at =1060 nm, Tmax at =975 nm) and the cleaved output end of the fiber with 

reflectivity ~ 4 %. Laser and remaining pump beams were split at the output by using 

another dichroic mirror M3 (Rmax at =1060 nm, Tmax at =975 nm). 

It should be mentioned that any mechanical stresses on the fiber must be 

avoided when maintaining it on support plates. Otherwise such stresses disturbs the 

RIP and can lead to unwanted coupling between core mode and modes of cladding 

layers distorting the field intensity distribution of the output irradiance. 

 

Rmax@1060nm 
Tmax@980nm Rmax@975nm 

Tmax@1060nm 

Rmax@1060nm 

Tmax@975nm 

Pump diode 

@975nm 

Выходное излучение 

[Yb
3+

] Брэгг. световод 

~ 2 м 

M1 
M2 

M3 

Fig. 28:  Experimental set-up 

 

Output power 

Bragg Fiber ~ 2m 
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 IV.5 Experimental results 

 

In the realized scheme the laser generation in active cladding pumped BF was 

obtained for the first time. A view of working laser is shown on Fig. 29. 

 

 

 

 

 

 

 

 

 

 

 

The transverse distribution of the mode field intensity was observed on CCD-

camera. Typical intensity distribution in the lasing regime is shown on in-set to Fig. 

30. 

Thanks to the three-axis translation stage, the input mirror could be tilted. But 

mode field intensity pattern was never disturbed (compare for example with Fig. 27) 

and only decreasing in intensity was observed evidencing that high-order modes were 

not excited. Hence this was proving the singlemode behavior of the fabricated fiber in 

the lasing regime. Therefore the assumption about the selective amplification of the 

fundamental mode was proved experimentally. Launching efficiency reached 67% 

with respect to the launched power (Fig. 30). A generation spectrum at the output 

power of 3.3 W is shown on Fig.31.  

 

 

 

Fig. 29:  Working fiber laser based on 2 m length BF in experi-

mental scheme shown on Fig. 28. 
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At least, bend influence on mode shape and lasing efficiency was characte-

rized. It was proved that the lasing efficiency was decreasing no more than 10% 

down to the bent radius of 7.5 cm. There wasn’t observed any distortion of the trans-

verse distribution of the field intensity of output irradiation at the same time (Fig. 32). 

Fig. 31:  The generation spectrum on the output power of 3.3 W  

Fig. 30:  Slope efficiency measured with respect to the launched pump 

power. In-set: observed transverse distribution of the mode field intensity at the 

output of the 2 m-long straight fiber 
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For a very tight bend, we do observe the localization of energy towards outer of the 

bend. 

 

 

 

 

IV.6 Conclusions 

 In this chapter the laser generation in the fiber laser based on cladding 

pumped LMA (200 µm
2
 at 1.064 µm) BF was demonstrated for the first time accord-

ing to our data. It was shown that despite the investigated fiber is working in slightly 

multimode regime (calculated loss ratio between the second and fundamental modes 

are ~ 10; second mode was observed experimentally) the singlemode lasing regime is 

possible due to selective amplification of the fundamental mode. The lasing efficien-

cy of 67% with respect to the launched power was demonstrated. An influence of the 

fiber bent on lasing efficiency and on shape of transverse distribution of the mode 

field intensity was investigated. It was shown that the lasing efficiency was decreased 

no more than 10% down to the bent radius of 7.5 cm. Any distortion of the transverse 

distribution of the mode field intensity wasn’t observed at the same time.  

The obtained results allow to consider the using of BF as LMA waveguides 

very perspective in creation of high power fiber lasers . 

 

 

Fig. 32:  The transverse distribution of the mode field intensity 

a) The fundamental mode “unperturbed” by the bend with radius 7.5 cm;  

b) The fundamental mode perturbation induced by the bend with small radius 2.5 cm  
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Conclusion 

In the theoretical part of this dissertation work the optical properties of Bragg 

and Holey Fibers were analyzed. The most effective calculation methods are in detail 

presented and realized, which make possible to find the modal composition, optical 

losses and dispersion in such waveguide structures with the given cladding geometry. 

 For the Bragg Fibers the method of optimization, which gives the possibility to 

find the optimum structure of cladding ensuring minimum optical losses at the given 

wavelength was proposed and realized on the basis of the genetic algorithm. So from 

the simple considerations the basic criteria are established what mode must be basic 

in BS with the large and small contrast of the refractive indices of core and shell. Ba-

sic properties of ARROW BF are described and it is shown that only by parameters 

of the nearest to the core, high-index layer all these properties are not determined, but 

the role of resonances of the cladding as a whole and of its compound resonators 

proves to be essential.   

In case of Holey Fibers the properties of waveguide structures based on tellu-

rite glass were investigated.  The influence of geometric parameters on the optical 

properties of waveguide was calculated, the possibility of  zero-dispersion point shift 

to the required spectral range was shown. The behavior of waveguide losses with a 

change in the geometry was analyzed. And, finally, the region of geometric parame-

ters, where the realization of single-mode regime is possible, was defined. 

In the experimental part of the thesis the active (doped by Yb
3+

 ions with 

[Yb
3+

] ~ 1 % by weight) LMA (200 µm
2
 to 1.064 µm) BF was investigated. The fiber 

laser based on this BF with pumping into the cladding was realized and the laser gen-

eration was obtained for the first time to our knowledge in such type of fibers. It was 

shown that despite the fact that the investigated in passive regime waveguide works 

as slightly ―multimode‖ (calculated relation of the losses of the second and funda-

mental mode is 10; the second mode was observed experimentally) the single-mode 
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lasing is possible due to the selective amplification of the fundamental mode. The 

generation efficiency of 67% with respect to the launched power was demonstrated. 

The influence of bend on shape of the output mode field intensity and effectiveness 

of lasing was investigated, and it is shown that up to the bending radii 7.5 cm the 

generation efficiency decreases not more than by 10% and it was not observed distor-

tion in the form of the output mode field intensity. 
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Propriétés optiques de fibres optiques microstructurées et laser à fibre de Bragg à grande aire 

modale 

 

De nos jours, nous observons une augmentation constante de la quantité de publications liées aux 

fibres microstructurées (MOFs). Bien que les aspects fondamentaux de leurs propriétés soient sou-

vent éludés, leurs applications sont attrayantes pour de nombreux domaines de la science et la tech-

nologie en raison de leurs propriétés optiques uniques. Mon travail est consacré, d'une part à l'ana-

lyse comparative de certaines MOF bien connues à l'aide de différentes méthodes numériques et 

d'autre part, à la création expérimentale d'un laser à fibre monomode à grande aire modale (LMA) 

basé sur une fibre à bande photonique 1-D (fibre de Bragg, BF). Au cours de l'étude théorique, nous 

avons porté une attention particulière à l'étude de la structure de gaine. Nous avons en particulier 

montré le rôle de la réflexion radiale du champ sur l'interface silice polymère dans la hiérarchie des 

modes pour des fibres à cœur creux ou plein. Nous avons analysé en détail le cas des fibres, dites, 

Arrow (Antiresonant Reflection Optical Waveguides). Cette étude révèle comment décrire correc-

tement les pertes de confinement d'un éventail arbitraire de fibres ARROW. Nous avons constaté 

quelques inexactitudes dans des travaux antérieurs bien connus et nous avons alors mis en œuvre et 

appliqué la méthode multipôle à l'analyse de ce type de fibres. Nous avons étudié de plus, les pro-

priétés optiques de fibres microstructurées en verre de tellure au moyen de cette méthode. Finale-

ment, dans la partie expérimentale, nous avons étudié des fibres de Bragg dopées à l'ytterbium. 

Nous avons développé un laser basé sur cette fibre mis en œuvre un système de pompage par la 

gaine. Nous avons obtenu, pour la première fois, l'émission d'un faisceau monomode et démontré 

l'excellente résistance aux pertes par courbure de ce type de fibre en régime d'oscillation laser. 
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Fibre optique microstructurée, fibre de Bragg, fibre microstructurée en verre de tellure, grande aire 

modale, laser à fibre 

 

 

Optical properties of Microstructured Optical Fibers and fiber laser based on Large Mode 

Area Bragg Fiber 

 

Nowadays we observe a constant increasing of the amount of publications connected with Micro-

structured Optical Fibers (MOFs).  Nevertheless the unclear physical questions are still remaining 

in this field. From the other hand, applying of such structures is attractive in different fields of 

science and technology due to their unique optical properties. Our work is devoted to the theoretical 

analysis of some of the basic MOF types and to the experimental creation of fiber laser based on 

large mode area (LMA) 1-D photonic bandgap fiber (i.e. Bragg Fiber, BF). In theoretical part we 

developed the original method which allows to obtain the optimal cladding structures of Bragg Fi-

bers at the given wavelength. We showed how Fresnel reflection plays a role in the modes hierarchy 

in BF with the hollow and solid cores. We analyzed the case of, so called, ARROW (Antiresonant 

Reflection Optical Waveguides) BF in quite detail. The analysis showed how ones can properly de-

scribe the loss spectrum of an arbitrary ARROW BF. We found some inaccuracies in well-known 

original works and then realized the multipole method for analysis of 2-D MOFs. We investigated 

the optical properties of Holey Fibers based on perspective for fiber optics tellurite glass of con-

crete type by means of this method. In the experimental part we investigated the Yb-doped LMA 

BF. We created a fiber laser based on this fiber with pumping into the cladding. We obtained the 

efficient singlemode lasing with low bend sensitivity, to the best of our knowledge, for the first time 

in such type of fibers.  

 


