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Introduction

In the recent years the use of planar antenna arrays in telacaication systems has become
an important issue. Such arrays are used for telecommiondatsks in civilian services like
mobile telephone systems as well as in military applicatiltke radar remote sensing. During
the last decade the use of antenna arrays has become ddsahiaaerospace industry. For
instance, the use of arrays is vital for different applicatsystems in satellites. Furthermore,
in the aircraft industry particularly the need of confornaatenna arrays for communication
applications in fuselage has risen in order to diminish dgmamic drag, to avoid the use of
mechanical steering system and hence to reduce the weitia ahtenna system.

Furthermore, due to the recent tendancy of the developni@etoaircraft architecture and
new material applications, there is a need of performingdad accurate electromagnetic com-
patibility (EMC) analyses in order to detect possible iat#ions between the antenna systems
and the irregularly shaped antenna bearers. Consequpatbljel to the latter development
the demand for robust but simple modelling techniques fohsiructure adaptable arrays has
increased. There exist methods for modelling and analysisngar antenna arrays. Other pro-
cedures for handling curved arrays like approximatingrtbehaviour with planar subarrays
have been developed. Additionally, methods that calcuigtgously conformal antenna arrays
exists. But all these existing methods have disadvantégebkuige calculation times, high need
in memory capacity, inaccurate correction factors,andrsatluat retard the analysis of large
conformal arrays in a fast and accurate way.

During the realization of a european project for satelldenmunication, the research de-
partment Innovation Works (IW) of the European Aeronautiefdhce and Space Company
(EADS) in France has been confronted with the latter coimgtra The necessity of an ade-
guate method for the analysis of large antenna array witledpeability of handling conformal
structured arrays due to fuselage integration has giveginotd different research studies on
that subject. The thesis work presented in this manus&ietribedded in one of such studies
and its main goal is the contribution to the far field modglof conformal arrays for EMC
applications in aerospace industry.

The present thesis work comprises the development of adwyethod for array analysis
and synthesis. The basic concept of the conceived methodislyse the radiating elements of
an array by performing a decomposition of the active radigategion in smaller discrete regions
that can be modelled by equivalent sources. These soureekesacribed by electrical currents
that are acquired by means of numerical techniques apmigdltime, for instance FDTD or
FIT, or by means of the cavity model. Furthermore, the metadulates the electromagnetic
far field of an antenna array by applying analytical radmatiormulae on the obtained active
region of the entire array. The calculation of far field qutzes like directivity and radiation
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pattern have been implemented. Moreover, the developeaonietlows to analyse planar and
conformal arrays as well as large arrays. In addition tq thatconceived method allows array
synthesis by means of an optimization approach based orsatiergenetic algorithm.

Therefore, the thesis work is divided in three parts thatpaesented in six chapters. The
first part handles the development of the array simulatiohdod is presented in three chapters.
The first chapter introduces the reader to antenna and dreayyt There, different principles
and equations, starting from electromagnetic wave theondyeading at antenna array theory,
are presented. The second chapter comprises the existingrizal techniques for antenna
and array analysis with main emphasis on numerical teclesidor conformal antennas. In
the third chapter the development of the hybrid method isgmted and explained. There, the
reader is introduced to the equivalent sources approachsaagblication to the array elements.
Therefore, the applied formulae and the algorithms of thiedanctions are given. Moreover,
the generation of the required currents by means of methgolged to volume and with the
help of the cavity model is explained. This chapter inclust@se standard validation examples
as well as the algorithm structure.

The second part of the thesis work concerns the realizafitrearray synthesis approach.
This part is presented to the reader in two chapters, thehfaurd fifth of this thesis work.
In the fourth chapter several existing synthesis techridoeplanar and conformal arrays are
summarised. In this introduction to array synthesis maipleasis is placed on conformal arrays
and on large arrays. Furthermore, the genetic algortithonageh is presented to the reader in
detail. The respective implementation of the genetic atlgor by defining the probabilistic
constants and the error function is described in the fifttptdra In addition to that, standard
validation examples are given to the reader.

The third part of this thesis work comprises the applicabbthe developed analysis and
synthesis method. It is presented in the sixth chapter. elteartain application cases in re-
lation to future eletromagnetic compatibility studies inceaft industry have been regarded.
Several planar and conformal arrays, whose elements aeel lo&isa microstrip antennas pro-
posed and used in aircraft industry, are modelled and stedild he influence of the curvature
on the radiation characteristics is observed. Moreoverctiupling between the array elements
is regarded. Furthermore, optimization concerning sodemmposition, beam-steering and
beam-shaping have been performed. Focus has been givenitdltience of the curvature on
the optimization method. The yielded results are compai#ddtive ones obtained by means of
existing software.



Chapter 1

Theoretical foundations

The development of the method, algorithms and approximatia the present thesis work
are based on theory concepts. This used theoretical backgirromes from different fields

in physics and engineering. Specially from the domainstelatagnetic theory and antenna
theory several theorems, definitions and approaches haveused. Therefore, it is essential to
review the theoretical foundations applied for a betterausthnding of the present thesis work.

1.1 Electromagnetic wave theory

The following fundamental concepts describe the electgpraic phenomena from a "macro-
scopic" standpoint, which allows one to neglect the graraitacture of matter and charge. The
stationarity of matter in respect to the observer is alsarassl. [1], [2] and [3] can be cited as
main references.

1.1.1 The Maxwell Equations and the Equation of continuity

The Maxwell Equations are the basic principles of the etestignetic wave theory. Electro-
magnetic wave functions obey these equations whereveatigttheir derivaties are continuous
or discontinuous. The six quantities applied in the Maxwgjuations are the electric intensity
E, the magnetic intensitii, the electric flux densit), the magnetic flux densit, the electric
current densityl and the electric charge densjiy

1.1.1.1 The classical Maxwell Equations

The classicaMaxwell Equations in derivative forimave the following form

ﬁ 0B
OxE = —— 1.1
X P (1.1)
_ D -
OxH = —543 (1.2)
0B = 0 (1.3)
0-D P (1.4)
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ds

' >

C

Figure 1.1 : dl and d& on an open surface

The first equation in the latter set defines any temporal chafghe magnetic flux as an
voltage induction in a path around the flux. The second espaf the set reveals that a
temporal charge displacement in a path, represented beneatrally changing dielectric flux
density plus an current density, induces a magnetic inieasiound it. The third expression
states that the magnetic flux has no source: the magneticifiex have no beginning nor an
end. The fourth and last equation expresses that the eldicixi density has as a source: the
electric flux density lines start and end on a electric charge

More general and better known are some of the latter equaiidhey are integrated: the
first equation becomdzaraday’s law the secondmpere’s lawand the last oneGauss laws
for the magnetic and the electric field. Consequently, thleviang equations are thlaxwell
Equations in integral form

o [/~
_ _E/ B ds (L.5)

/

Aol = 2 D-ds+ [/ J-ds (1.6)
f x /0o []

B-ds = 0 (1.7)
fl
#5«13 - // odv (1.8)

In the first two equationdl stands for the path encircling the vecttsin an infinite open
surface as illustrated in 1.1. In the other two equat@goints outward from a closed surface
anddvis an infinite volume element envelopeddbg as depicted in figure 1.2.

The latter equation set is valid also for quantities thatrarvenecessarily "well-behaved".
Therefore, the integral alternatives of thiexxwell Equationsre more general then the differ-
ential ones.

1.1.1.2 Equation of continuity

The Maxwell Equations contain the information of consaorabf charge, which is usually
given by the following expression call&tuation of continuity
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ds

S

Figure 1.2 : dS on a closed surface

0.J=—— (1.9)

The latter equation states that charge can not be creat#iteniecan be destroyed. Conse-
guently, charge can only be transported. The integral fdrtheoEquation of continuityas the

following form
#j-dg— —3// dv (1.10)
- ot P '

1.1.1.3 Time harmonic quantities

The quantitiesE, H, D, B andJ were specified as complex variables in this section. This
handling assumes that their time variation is of harmomdkiFurthermore, the harmonic time
dependency can be expressed with the help of the complexerpal function. Thus each
guantity has the following form

E(w) = Eel™! (1.11)

In the latter expressiol represents the magnitude of the complex function. Theymtad
forms the complex phase. Moreoverstands for the angular frequency arfdr the time.

1.1.1.4 The generalized current concept

Due to the fact that in the present thesis work the Maxwelldigus will be applied on sources,
it is necessary to generalize the current concept. Thergdbasides taking the electric displace-
ment currently = % and the conduction curred into account for the total electric current,
this new concept will consider the impressed curdnfhe same goes for the "magnetic cur-
rents™: besides the "magnetic displacement curriit’= %—'tg, the impressed magnetic current
M; is considered as contribution to the total magnetic currenaddition to that, it have to be
said, that this impressed currents represent energy sywtéch are seen as the cause of the
field. The following expressions show the new current cohcep
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—

Jotal = o +Jdc+J; (1.12)
. B -
Miotal = 3t + M; (1.13)

The latter currents can be found in any electric or magnetauit. For example in an
electric circuit an impressed currefitof the source produces a conduction curi&rthrough
a resistor and a displacement curréptthrough a capacitor. Similar happens in a magnetic
circuit: an impressed magnetic currdvitof the circuit source generates an electric current that
causes a magnetic displacement curhgte.g. in a wired magnetic core.

1.1.1.5 The generalized harmonic Maxwell Equations

The latter new current concept enhances the generalityedfitixwell Equations. Furthermore,
the definition of the tim-varying electromagnetic fields mse-harmonic ones symplifies the
time derivatives in the Maxwell Equations. Consequentlg,Maxwell Equations can be written
in the following generalized way

OxE = —joB+ M (1.14)
OxH = joD+J+3 (1.15)
0-B = pm (1.16)
0-D Pe (1.17)

In the latter equation sepn and pe stand for the magnetic and electric charge density,
respectively. Moreover, assuming that these volumic asagge time harmonic variant quan-
titues, the Equation of Continuity takes the following form

0.-J= —jwpe (1.18)

In the present thesis work all field quantities are of comgdexi and their harmonic time
dependency is understood. Consequently, the fa@tbris omitted at all field equations and
field functions.

1.1.2 Constitutive relationships

The Constitutive relationshiptogether with the Maxwell Equations complete the informmati
about the behaviour of electromagnetic waves in free spagdénaany homogeneous material.
These relations specify the characteristic of the mediuwhicth the electromagnetic wave
functions exist. Th&onstitutive relationshipare the following

D = g(wE (1.19)
B = uwH (1.20)
J = oe(wE (1.21)
M Om(w)H (1.22)
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In this set of equations is the permittivity,u the permeabilityge and oy, the electric and
magnetic conductivity of the medium. All these parameteesad complex kind and depend
on the characteristic of the medium. The variatdetands for the angular frequency. The
relationship between the angular frequency and the freguisngiven by the expressian =
2mf.

1.1.3 The wave equation for time-harmonic electromagnetitields

The generalized Maxwell equations are first-order coupétigl differential equations, which
describes the behaviour of time-harmonic electromagfietits. For each of these fields these
eguations can be uncoupled by certain transformationdigiggla second order partial differ-
ential equation. The latter resulting equation is knownheswave equation. Consequently,
the electromagnetic fields are solutions to the Maxwell &goa and to their respective wave
equations. Therefore, it is essential to define the diffeveave equations that describe time
varying electromagnetism. Departure for this aiming aseNtaxwell Equations set itself.

Furthermore, the solution for the resulting wave equattarsbe calculated by two differ-
ent paths. The first path is to integrate directly the eleatdurce current densityto obtain
the electric field intensit§ or alternatively the magnetic source current denbityo get the
magnetic field intensitii . Although this procedure needs only one step to get thetetifield,
the realization is rather complicated due to the difficuttyreating integrands. The other alter-
native, which is a two step procedure, is more like to be usedtd the simpler handling of the
integrands. In this second path the respective magnettowpotential for an electric current
source is calculated by integration as first. Sequentiatyobtain the electric field density via a
differentiation of the vector potential. Alternativelfag vector potential for a magnetic current
source can be obtained, and from it the respective magneiticdensity can be calculated.

In the present thesis work the second version to obtain #ereimagnetic fields has been
used. Therefore, it is necessary to obtain the magnetiovpotential by solving the inhomo-
geneous wave equation stated before. The electric and i@agriensities are calculated later
on with it.

1.1.3.1 The homogeneous vectorial wave equation

The mathematically easiest way to obtain a wave equatian fhee Maxwell equations is by
simplifying them with the following asumptions. The regiahere the wave should propragate
is considered to be source free, linear and homogeneousurBestree region means thiand

M are zero. In this regioa, € andp are independent ¢E , I:|| and of the geometrical position.
In addition to that, th&Constitutive relationshipsequations (1.19) to (1.22), are applied to the
Maxwell Equations. Thus the first and the second expressitresimplified equation set have
now the following form

OxE = —jouH (1.23)
OxH = jueE (1.24)
O-H =0 (1.25)
0-E 0 (1.26)
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Using the curl operator on the first equation of the lattey et following expression is
obtained

OxOxE=—joud xH (1.27)

In the right side of this equation the curl B can be replaced by the second equation of
the latter simplified equation set (1.24). Transfering igbtrside of this equation to the other
afterwards, the following expression is gained

OxOxE—wueE =0 (1.28)

Finally, applying the mathematical simplification for theutble curl expression and using
the fourth expression in the simplified Maxwell equation®2€), the homogeneous complex
vector wave equation is acquired

[(PE+K’E=0  with k?=cwpe (1.29)

k is the frequency dependant wave number. Furthermore, ifdinee procedure is done
starting with the second simplified equation (1.24), afseg replacing the right side of the
resulting equation with first simplied expression (1.23) amplifying with fourth expression
(1.26), another homogeneous wave function is derived Mitfs equation variable.

PH+k®H=0  with k®=wpe (1.30)

1.1.3.2 The vector potential and the inhomogeneous wave eajion

For the derivation of the inhomogeneous wave equation, rtfieite region observed is con-
sidered to be field free and homogeneous and to have only atireglisource. This means
that there exist no conduction current and no impressed eti@grurrents. Consequently, the
generalized Maxwell Equations have the following form, veie J stands for the source or
impressed current

OxE = —jwB (1.31)
OxH = juD+J (1.32)
0B = 0 (1.33)
0-D = p (1.34)

The vector potential is deduced mathematically from thesawéll Equations. Due to the
homogeneous media, the divergence of the magnetic flux ithitteexpression becomes zero.
Hence the magnetic fluE can be represented by the curl of another vector functiorictwh
satisfies the non-divergence Bf

0-B=0-OxA=0 (1.35)

This vector function is the magnetic vector potenfialHence the magnetic flug can be
defined by the following equation

B=0OxA (1.36)
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UsingA the magneti¢d can be new defined like in the following expression
1 .
H= nD x A (1.37)

If the new definition of the magnetic flug is introduced in the expression (1.31) of the
latter Maxwell Equations a new relationship is obtained

OxE=—jopdxA = Ox (E+ jwpA) =0

With the mathematical knowledge that any curl-free vectdhe gradient of an scalar po-
tential @g, the latter relationship between the magnetic vector piatie and the electric field
intensityE can be expressed by the following

E+jopA=—-00, = E=—jopA— O (1.38)

@, is an arbitrary electric scalar potential. Its definitiorderived by means of the next
steps. In the second expression of the Maxwell Equationd $22) the electric intensitl has
to be replaced with the later expression. In addition to, et magnetic intensitid has to be
described with the magnetic vector potenflal The respective mathematical transformations
are shown via the next set of equations

OxH = J+ jweE

D(L—llﬂx,&) = J+ joe(—0Pe — jwA)

O(0-A) —PA = —pJ+ jope(0Pe+ jwA)
PA+ICPA = —pJ+0(0-A+ joopede)

The defintion of the sought inhomogeneous wave equation lis mossible if the scalar
potential®e is defined in the following way

S 1 S
O-A+ joue®e =0 = Pe=——""-0-A (1.39)
) ° joue
This condition that has to be fulfilled in order to obtain thbeamogeneous wave equation
is called theLorentz condition The following expression shows the acquired inhomogerseio
vectorial wave equation, wherein the factois the wave number as previously found in the
homogeneous wave equation

PA+KCA= —uJ (1.40)

The latter equation is also called thkelmholtz Equatioror complex wave equation. The
functions that solve this equation are knownasse potentialsFurthermore, the electric field
can be calculated knowing the magnetic vector potentidl wit

. R 1 -
E=—joA+-—0O(0-A 1.41
j [oE (0-A) (1.41)
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1.1.3.3 Solution of the inhomogeneous vector potential wavequation

TheHelmholtz Equations an inhomogeneous partial differential equation of sdaander that
can be separated in its components like in the following

O°Ax+ KA = —p
D2A, + KA, = —,
%A+ K2A, = —pd, (1.42)
The set of differential equations can be solved separdb&pending on the boundary con-
ditions in the respective medium the solutions for each aomept can differ. In the following

case, it is assumed that the boundary conditions are the fearmécomponents. Hence one of
the inhomogeneous equation will be treated and solved.

Without loss of generality the third equation from the lattet will be solved in the follow-
ing. Therefore, it is assumed that a z-directed gipole maiewhich is formed by a current
extending over an along the z-axis oriented lerigth situated at the coordinates origin

%A+ KPA, = —pd, (1.43)

In order to find a solution to the inhomogeneous equationsdiigtion of the homogeneous
case has to be calculated first. Consequently, the folloetption is analysed

O?A;+ KA, =0 (1.44)

Using spherical coordinates theoperator in the latter equation can be reshaped into

[02A, + K2A, =

10 rzaAZ(r)
r2or or

By realizing the derivations the following, the followingfférential equation is obtained

} +KA,=0 (1.45)

B2Au(r) | 20A(1)
or? r or

Mathematically, there exist two ansatz for that kind of&iéntial equation based on expo-
nential functions, these are

+KA; =0 (1.46)

— jkr
e}
Ay =01

r
e‘f’]kf
A22 =C

(1.47)
r

Thereink is the wave numbecg; andc; are constants that can be found using the boundary
conditions. The first ansatz represents an outward tragelliave, the second one an inward
travelling wave. Due to the fact that waves should propafaitely in the far field region
(r — ), the first ansatz is chosen



1.1. ELECTROMAGNETIC WAVE THEORY 11

efjkr

AZ - Azl - C]_ (148)

In order to obtain the value of the constamt the static case of the vector potential is
regarded. In this cade= 0 and therefore equation (1.43) becomes

%A, = —pd, (1.49)

The latter equation is equivalent to the Poisson’s equaiaican be solved by the following

function
u J,

Thus the value of the constantas= % and the solution for equation (1.43) is after (1.48)

the multiplication of the latter solution by the exponehtiamponent%"«. Taking into ac-
count that the dipole’s moment is described by the curdrémétead of the density, following
transformations are done and at the end a line integral iequiatobtained

B £ efjkr
Ar = 4Tr///vJZ r dv
B £ Se—]kl’

- 4Tr//sJZ r ds

— jkr
- %[/Cle dl’ (1.51)

r

In the latter transformatio8stands for a surface wrapping the volushandJ® is the current
density flowing at each surface segmddt Furthermore(C is a path enclosing the surfa&e
andl is the current in each infinite length elemeiiit over the patlC. If the line integral in the
latter formula is calculated and the dipole moment usedipwiohg result for the vector wave
equation of a z-oriented dipole of lendtkexcited by the curreritis acquired

pll e ikr
Ap=— 1.52
2T 4 x (1.52)
The vectorial solution to the inhomogeneous differentealation in (1.40) is given by the
following general equation
— jkr
A=—— J dv 1.53
anjJi o ( )

This expression for the magnetic vector potential dependmthe boundary and medium
conditions has to be adapted.

1.1.3.4 General solution for a radiating source in free-spee

The solution for the case of a in the cordinate origin sitdateurce with a z-directed dipole
moment in the latter paragraphs can be expanded to a gepkrabs where the currents po-
sition described by’ is somewhere in the coordinate system. Therefore, theteab&ectric
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field is obtained with the help of the general magnetic veptaential by the following formula

E(N) = @A) + o O0-AM)  with A /// 3 — e My (1.54)
r'is the vector towards the observation point. This equatestdbes the fields in free-space
caused by the source electric currdnt

1.1.4 Green’s functions

Green’s theoremésee Appendix A) have been used in order to solve field probiammechan-
ics and electromagnetics. Thereby the reciprocal probletheoconcerned problem is solved
and then reciprocity is applied. For example, a very commaseds to find out the electric
field E in a pointf in a certain region. Instead of finding the solution directlysource point
is positioned inf’ and its radiated field is called@reen’s functionG. Substituating the field
functions inGreen’s theorem for vector functiofsee appendix A, (B.6)) like in the following
A =E andB = G, we obtain a formula in order to obtafin ¥. The last steps denote that
the reciprocal problem to the original one was found. Cousatly, by solving it and using
reciprocity, the solution to the original task will be fou[g].

In electromagnetics, the solution to such and other probisno solve second-order uncou-
pled partial differential equations that are derived forraXWell's equations with appropriate
boundary conditions. It would be desirable to obtain cleketh solutions, at least for some
problems and associated regions, in order to know the betaof the whole systems specially
at regions where rapid changes take place. The Green’sdamoethod allows to find out such
solutions.

It can be said that the Green'’s function is the impulse respan the transfer function of a
electromagnetic system. For a given problem it can takewuariorms: finite explicit functions,
infinite series of suitably chosen orthogonal functiontggnal forms. [2] and [3] are the main
references for the following summary in the present thesikw

1.1.4.1 General method

With the Green'’s function method a solution to the partiffedential equation is obtained using
an impulse function, mainly a Dirac delta, as the drivingdiion. The solution to this driving
function is given as the superposition of the impulse resp@olutions, the Green’s function,
with the Dirac delta source that in the limit simplifies ifseel an integral.

The procedure for the generation of a Green’s function fohrag-dimensional scalar
Helmholtz partial different equation like

02d(F) 4 K2d(F) = f(F) (1.55)

conditioned by a homogeneous boundary expressed by tlogvfol generalized function
d(T,

c1®(Fs) + Cza rs) _ 0 (1.56)

on
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uses théreen’s theoremésee appendix A) in order to obtain the desired Green'’s fonct
In the equation (1.56) that describes the boundatig,the vector towards a point on the surface
Sandn stands for a normal vector in outward direction. Moreoves,wanted Green'’s function
G has to satisfy the following partial differential equation

O2G(F,F') + K2G(F,F) = d(F —TF) (1.57)

Furthermore, it has to fulfill the generalized homogeneausbdary condition in the fol-
lowing way

c 0G(rs, )
T
In order to combine the available and obtained functiorey tlave to be transformed. First

step is to multiply equation (1.55) by the Green'’s funct@®(¥,r’) and then equation (1.57) by
®(1). The following statements are obtained

&G (M) + ~0 (1.58)

GI’O+KPG = fG (1.59)
PO%G + kDG = D(F—F) (1.60)

Substracting the latter equations from each other andratieg over a certain volume
the following new equation is created

//VCDB(F’—F”)dv— //V dev:///V((DDZG—GDZCD)dV (1.61)

Calculating the integration scalar functionwith the Dirac impulse the following statement
is obtained

O(F) = ///V £(F)G(F,7')dv+ /// NO2G(F,F) —G(F,7)TPd([M)dv (L.62)

Applying the second identity (B.3) on the last expressibrs tunction can be modified as
it follows

() = /// G(F,7) dv+7{ )OG(F,7') — G(F,7)O®(T))ds (1.63)
The last step to obtain the generalized formula for the agreknt of a Green'’s function for

a three-dimensional scalar Helmholtz equation is to im@nge the the arbitrary poirit with
the dummy variabl&

// F(P)G(T, T d\/+y{ P)O'G(F,7) — G(F,7)0 d(F))d< (1.64)

This formula can be simpified depending of the boundary d¢and of @ andG, as well as
thir derivatives in the surfacg
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1.1.4.2 The dyadic Green’s function

According to Balanis [2], vectors and dyadics describedimeansformations with a given or-

thogonal coordinate system symplifying the manipulatioinmathematical relations similar to

the use of tensors. Dyads satisfy a number of mathematmatiitees like cross and dot products,
differentiations, and integrations. Therefore, the usdyadics for electromagnetic problems,
wherein linear transformations take place between soamégields, is of great benefit.

Due to the vectorial character of the linear transformationElectromagnetics Dyads are
used to represent the Green'’s function adequately. Thé@ofor an electromagnetic problem
is given frequently in the following form

h(F) = ///V f(r) R G(F,7)dV (1.65)

h is the solution functionf is the source function. Hence the dyadic Green’s funoBon
embraces all scalar Green’s functions that transform thecedield components. Consequently,
the Dyadic Green’s function has the following form

— GXX ny GXZ
GZX Gzy c;ZZ

The elementss;; of the dyad represent the scalar Green'’s functions. Fumthes, the fact
that its elements show symmetry propertizg = Gj; reflects the reciprocity theorem [3]. This
is valid for the Dyadic Green'’s function in free-space orjsated to boundary conditions. In
addition to that, the Green’s theorems presented in appéndre valid for the dyadic Green’s
function.

Moreover, the vector potential solution for the calculataf the free-space electric field in
(1.54) can be taken as an example for the use of the dyadianGfeaction. This equation can
be expressed by means of the dyadic Green'’s function, this is

A(F) = % / / /V IR G(F.F)dv (1.67)

The dyadic Green’s functions are often sought, transfororedpproximated in order to
solve electromagnetic problems. Several publicatiores[Hi8], [41] testify this.

1.1.5 The Equivalence Principle

The Equivalence Principle states that two sources produbia same field within a region of

space are said to Eguivalentwithin that region. That means that it is not necessary tawkno
the actual sources to calculate a desired field in a giveomegiguivalent sources will serve as
well [3]. This principle is the simplification of the HuygemPrinciple for waves, which states
that each point on an advancing wavefront can be considerachaw source for a new wave.
And that the new wavefront can be regarded as the sum of alletwegenerated waves.

The Equivalence principle is also based on the uniquenessdam. This theorem states that
"afield in alossy region is uniquely specified by the sourcdsmihe region plus the tangential
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Figure 1.3 : A general formulation of the Equivalence Principle

components of over the boundary, or the tangential componentsiafver the boundary, or
the former over part of the boundary and the latter over thet of the boundary This means
that a field in a lossless medium is considered to be the lifrtth@ corresponding field in a
lossy medium as the losses disappear. Furthermore, if tigemial field components & and

H over a boundary are completely known, then the fields ovénaitegions can be determined.

In order to illustrate this principle, the reader has to imadimself a electric and a mag-
netic source (for example a transmitter with it's antenn&l@sed by an imaginary surfa&
that generates a field in free space (describefl BpdH) as depicted in figure 1.3. The applied
Equivalence Principlevould mean that the field outside the imaginary surface warithin the
same and would be generated by equivalent source cutfemisM on the surface. Therefore,
the field in the enclosed space would disappear becoming zero

The equivalent sources are described by their surfacentarnehich can be of electric or
magnetic kind, or even both. This current can be calculayetid following equations

‘Tsurf - ﬁ X Fi Msurf - —ﬁ X E (168)

i is the normal vector of the closed surface. Other conditiasch illustrates the Equiv-
alence Principle more generally, are if it is assumed thsilenthe closed surface there exist
fields E,, Ha as well as outside the fields,, Hp,. In this case at the surface, which represents
the boundary, there must exist electrical and magneticcesurith the following currents.

jsurf =nx (Fia— Fib) I\_/]surf = —Mx (Ea— E)b) (1.69)

Harrington presents the Equivalence Principle for wavedeitail in [3]. [2], [1] and [19]
are additional references, which present this principlannapplied way to electromagnetic
problems.
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Figure 1.4 : Infinitesimal dipole position for far field analysis

1.2 Infinitesimal or Hertzian dipole

An infinitesimal dipole is a linear wire whose length and deder are infinitesimal small com-
pared to the wavelength in an electromagnetic system. Tdrereghe dipole current is assumed
to be constant all over the length of this elementary dipole.

1.2.1 Radiated Fields

The radiated field of an infinitesimal dipole can be calculaby handling it as a radiating
source. Consequently, the field is approached by the dgpad@gnetic vector potential and
hence equation (1.54) from the last section is used. As @fndoned, this vector potential
approach is mainly used due to a more simple solution pracgdrbm a mathematical point
of view.

Hence the first step is to find the magnetic vector potentitl thie knowledge of the source
current along the dipole. Therefore, the magnetic vecttem@l A that has been presented in
the last section in equation (1.53) is applied. The threkifiolegral in the latter equation can
be simplified like in the following: it can be transformed irsarface integral since the current
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density is in general two dimensional. Furthermore, thdddantegral is converted to a simple
integral by taking the current magnitutilus its orientation instead of the current density
The latter can be achieved by assuming that the current daehange along the infinitesimal
length. Hence the vector potential equation evolves liklaénfollowing

// _e jkr
- e lkr
- ET//SJS r ds

ul e Ik / ,
= = r 1.7
4T r cd (1.70)

The following equation shows the resulting simplified swntfor an infinitesimal dipole
placed in the origin of the coordinates

p-T1
I

uII e Ikr
am r

In the more general case, wherein the elementary dipolesbesewhere in space, the
dipole’s magnetic vector potential is given by the next esgion

(x Y, 2) = (1.712)

p'l ij

amJc
The vectorr stands for the posﬂion vector of the observing paing the respective vector
magnitude that is equivalent to the distance between oagthobserving point. The position
vector of the dipole is given bif and its magnitud€e’ describes the distance between the origin
and the position of the dipole. Henéeis the difference between both distances. Figure 1.4
illustrates the geometrical description of the infinitesimipole for the radiation analysis.

A(xy,2) = d  with R=[F-¥|=r—r (1.72)

Due to the fact that elementary dipoles radiate sphericaesjathe general solution for
the electric field is in spherical coordinates. Therefdtg,y,z) is transformed td\(r, 8, ) by
means of a respective transformation matrix (see appendixcAnsequently, the function for
electric field of an elementary dipole has the following form

. 1
E(r,0,0) = —jooA(chp) jwpsDre‘p(Dre"’ (r,G,(p)) (1.73)

e represents the divergence operator for field functionsespal coordinates.

1.2.2 Far field approximation

The Maxwell Equations and the resulting function for theteepotential are valid inside a
certain region that can be of infinite extension. The far fraldiation is of primary interest for
an antenna. This region of interest is where the distancedast the source and the observing
point are very big. Consequently, the following conditisnvalid: r > A. This region, well-
known as far field region, cause that certain values in theldped electromagnetic functions
can be neglected or approximated by "simple-to-calcukstétitutes [1].
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It have be considered that complex harmonic functions caregarded as "fussion" of a
complex amplitude term and a complex phase term. Thered@egregation in applying the far
field simplification is done: a far field approximation for taaplitude term and another for the
phase term. In the next explanatians the magnitude of the position vector of the observation
pointF andr’ the magnitude of the position vector of the radiating so@tcEor the amplitude
term the approximation that the distariRés a constant value is valid. This follows from the
fact that the distance between the origin and the sodrgevery small in comparison to the
radius from the origin until the observerThus the following expression is valid

r>r — R=r—r'~r for the amplitude term (1.74)

The latter approximation can not be applied to the phase @umto the fact that the phase
term on the exponential function has a stronger influencéewalues of the complex function
than the amplitude term. The far field consideration for thage term is done by approximating
the spatial distance differen€eas accurate as possible. Assuming that the observing pesnt |
in the far field both the vectoirsandr’ will be aligned parallel to each other. Hence the distance
differenceR can be calculated by the following approximation

r>r — R=r—r'cosy for the phase term (1.75)

In the latter equation the angleis the spatial angle enclosed by the vectoasdr’

In order to simplify the evaluation of the vector potentiquation, the far field approxima-
tion is applied on the equation for an elementary dipolegyimspace. Moreover, the excitation
current is assumed as constant at the dipotey’,Z) = lp. The resulting expression for the
vector potential is given by the following expression

- Hlor _ikR Hlor _ik(r—r
A =20 g kR B g Jk(r—r'cosy) 1.76
I'stands for the oriented length of elementary dipole poingina certain direction in space.

In theﬁfollowing, the vector potentizﬁl(x, y,Z) has to be transformed in its spherical coordinate
form A(r, 0, @)

Furthermore, expression (1.73) is valid in order to obthadlectric field equation. Never-
theless, this function simplifies since the magnetic vegteential, in cartesian and in spherical
coordinates as well, is a field function dependant of the ﬁfknrq Applying the two divergence
operators to the latter, terms of higher-orderr—]gm = 2,3,... are obtained. For the far field
case these terms are neglected siﬁcéor r — oo, Consequently, the electric far field of an
elementary dipole can be calculated taking into account i@ term of (1.73). This is

E(r,8,¢) ~ —jwA(r,8,0) (1.77)

Besides that, it has to be said that the latter expressioaliis for the® and@ components
since the radial component of the electric field disappears £ c. This is due to itsrin
dependancy.
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1.3 Finite length dipole

The techniques developed for the infinitesimal dipole cand®x to model and to analyse the
radiation characteristics of a linear dipole of any lengdthe elementary dipole, whose diameter
and length are assumed to be very small compared to its wegtblecan be used as an element
of the entire finite dipole. Consequently, the finite lengghote is modelled as a composition of
several infinitesimal dipoles. Each elementary dipole ssgged with a current value according
to a certain distribution for the entire finite length dipdieetailed description of this procedure
can be found at [1] and [15].

1.3.1 Current distribution

For the finite length dipole with a negligible diameter thereat distribution can be approxi-
mated by mathematical equations based on harmonic fursctieor instance, according to [1]
for a dipole of length positioned symmetrically on the z-axis, this means the gdooal centre
of the dipole is at the origin of the coordinates, the curdistribution can have the following
form

[ lgsink(:—2)] 0<z<}
_{ losink(5+2)] —5<z<0

Therein,lg stands for the current amplitudefor the wave number, respectively. The func-
tion defined in the latter expression determines the cunalutes of each elementary dipole
used as a dipole element. This distribution assumes théhiteelength dipole is fed at its cen-
tre. The desired current is supposed to be sinusoidal alendipole length. The distribution
function aims the current at the finite length dipole’s ertdbsé zero.

(1.78)

1.3.2 Radiated field

Assuming the finite length dipole to be a composition of dgpelements excited with current
values according to a current distribution, the radiatdd ©é this dipole can be handled as an
infinite summation of the field contributions of all its elem®& Therefore, the total resulting
field is an integration of the field contribution&eemen:Of all elements along the finite length
of the dipole. This is

I_E»finite:/dE’element (1-79)

Furthermore, if we regard the aforementioned example ofite ftipole on the z-axis, the
resulting far field function using the afore given currendétdbution and applying the latter
expression is

Er - O
—ikr cog X cosB) — cog X
Eg = jZoIOe _ g > . ) g 2)
21T sin®

In order to obtain the latter expression, wheredp,is the intrinsic or wave impedance,
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Figure 1.5 : Horizontal elementary dipole positioned over a perfectdumting plane for far
field analysis

the far field approximations for magnitude and phase terees ($.74) and (1.75)) and some
mathematical transformation have been applied. A detaiétvation for the latter is given in

[1].

1.4 Horizontal dipole

Due to the frequency dependancy of the permittivity and teneability as well as the con-
ductivity a medium can change his characteristic in a aeftgiquency band. For example, a
lossy medium becomes a very good conductor above certgudreies. Therefore, it is neces-
sary to analyse the behaviour of an antenna in presenceferfatit materials. In the following
paragraphs the interaction between a perfect electricalwdor (PEC) plate and a horizontally
positioned dipole will be presented. This interaction hearbanalysed by different authors and
is presented in [1], [2] and [3].

The relevance of this case for the present thesis work is titetting of microstrip antennas.
The radiating element of a microstrip antenna is positioméialia certain height over a grounded
layer, namely the ground plane. The behaviour of the dipolgrésence of a PEC plate will
contribute to the modelling of the patch in a such configoratMoreover, for this analysis the
following configuration is regarded: a dipole placed honizdly over a infinite PEC surface as
depicted in figure 1.5.

The field radiated by the dipole over the conducting plané lvalreflected entirely by it.
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This is, due to the fact that inside the conductor there cdrexist a field. Consequently, on
the other side of the perfect conducting plate exists no.fielee PEC plate acts as a boundary
dividing two regions. Hence the total fieltl,5 received at an observation point in the far field
zone is the sum of the contributions of the direct radiatdd .t and of the reflected one
Ereflect. FUrthermore, these far fields can be calculated by meanguattien (1.77) using the
vector potential expression in (1.76). The following exgsien describes the latter approach

joull e kL jeoull e ikr2
41t r 41t )

I_E’total = I_E’dire(:t‘i‘ I_E’reflect = (1-81)

In order to define the field contribution of the reflected wavles image theory is applied.
For it, the field contribution due to the reflection of the fietaming from the dipole on the PEC
surface can be represented by the field generated by a vatu@alalent source. This virtual
dipole lies on the other region of the boundary. Accordinghe image theory this ficticious
dipole is oriented in opposite direction to real dipolestisiexpressed by the minus sign in the
latter equation. Moreover, for the calculation of the tdigld, according figure 1.5, the distance
r, between the real source and the observation point is refjuirarthermore, for computing
the far field contribution of the virtual source, the distamng, which is the magnitude of the
vector from its position towards the observation point,egded. According to picture 1r
andr, can be described by

N

ri = [r>+h?*-2rhcosk]
r, = [r?4+h?—2rhcos(mi—£)]

(1.82)
(1.83)

NI

With the help of far field approximations for the amplitudeldne phase terms the distances
ri andry can be simplified and hence the total field calculation tooe &pplied far field
aproximation for the amplitude term is

rn=roxr for the amplitude term (1.84)

The far field approximation for the phase term transformg&sgions in equation set (1.83)
into following equations

ri = r—hcost

f; = r+hcost for the phase term (1.85)

Therein, is the angle formed by the distancend the normal vector of the infinite PEC
surface. Applying these attained approximations for tis¢éatices, andr» in (1.81) and doing
some mathematical transformations on them gives the fallpwquation for the total electric
far field

E .20 s _n L
Erotal = { CE)dII’ECLOI‘IgIn 2] sin(khcost) feo|;e 5 <&< 5 (1.86)

The resulting total field can be interpreted as a modulatiahe field of a single dipole.
Due to the fact that the image and the real source build ag aftavo elements, this sinusoidal
function is called "array factor". In addition to formula.86) the values of the field under the
ground plane have to be nulled since inside the perfect adodthere can not exist a field.
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1.5 Far field quantities

The far field analysis of an antenna requires certain quesitivat describe and characterize its
radiation behaviour. The most used quantities are thetradipattern and the directivity. Both
analysis parameters are presented in the following pgvagra-or it, [1], [15] and [14] are used
as references.

1.5.1 Radiation pattern

The radiation pattern shows the radiation performance @frd@nna in dependency to the spa-
cial angles in a certain coordinates system. This quangisgdbes the spatial distribution of the
radiated energy as a function of the position of an obserpigt along a surface of constant
radius. The radiation pattern can be calculated by mearsedbtlowing formula

clo.g— @0
, ‘Emax(e, )| r=const

r—

(1.87)

1.5.1.1 Major lobe and minor lobes

The major lobe also known as "main beam®, is the desired lobe of the ramtigiattern. This
lobe contains the direction of the maximum radiation. Anyestlobe besides the latter one is
calledminor lobe Under the minor lobes there exstle lobesandback lobes The side lobe
is defined as a lobe in any direction than the intended malm.|I€ommonly, the minor lobe
adjacent to the main beam that points inside the hemisphedigdction of this major lobe is
assumed as a side lobe. The back lobe is the minor lobe thaspoithe opposite direction of
the major lobe. All these minor lobes are usually undesiretisinould be minimized.

1.5.2 Directivity and gain

The directivity of an antenna is the ratio between the ramhaintensity from the antenna in
a given direction and the averaged radiation intensity. tHeumore, the averaged radiation
intensity is equal to the total power radiated by the antetivided by 4t The maximum of the
directity can also be defined as the ratio between the mayowvaér density of the measuring
antenna and the power density of an ideal isotropic radigkocording to [15] and [17], the
following equation can be used to compute the directiidity

4mr ZSrad

I:)rad
Prag is the total radiation power of the isotropic radiator ant the distance from the
antenna to the measuring poirfi,g stands for the radiation density of the antenna and it is
defined as

D=

(1.88)

1 -
Sad(r,0,0) = Z\E(r,e,cpﬂz (1.89)

In the latter equatioZy stands for the free-space wave impedance or intrinsic iaupes
andE is the electric far field for an observing poift0, @). Moreover the total radiation power
is given by
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21T ,TT
Paa(r.6,9) = /0 [ Saar?sinededg

= —r2 ’ 0 () 2 neded(p
E r, 9 Si 1.90

In the latter expression the integration limits build a sgdadrea given by the spherical
anglesd and@. The resulting formula for the calculation of the dirediwfor an observing
point (r, 0, @) is consequently

4THE(r,0,¢)?
2 TE (1,0, @) [2sinBd6dq

The following relation between the radiation pattern aredrtdiation density facilitates the
calculation of the directivity if the radiation pattern isesady known, this is

(1.91)

D(r,6,9) =

(r,8,¢)|?

1 -
S’ad(r7e7(p) = Z‘E

_ 2 |Emax
- C(r797(p> 220

= Cz(r,e,tp) - Srad,max (1.92)

Therein, the integration limits are given by the spatiabage’en by the spherical anglés
and@. The resulting formula for the calculation of the diredyus therefore

41C?(r,8,9)
2 C2(r, 8, @) sinbdede
The gainG is a quantity describing the performance of an antenna gakito account

the efficiencyn of the antenna . Furthermore, the gain of an antenna is detdbsely to its
directivity. The latter relation is given by the followingjeation

D(r,0,0) = (2.93)

G=nD (1.94)

1.6 Antenna arrays

For certain systems and applications like scanning at sadatennas with very directive pattern
are desired. A directive pattern is characterized by a glendhin beam but with a high direc-

tivity value at the desired direction. Furthermore, a dixecpattern can be generally reached
by enlarging the antenna aperture or by building up sevedihting elements into an array.

Consequently, an antenna array can be seen as an "sampégtiiraphat is excited at certain

points or regions.

Moreover, depending on the distribution of the array eleisianspace, there exist two kind
of arrays: linear arrays and a planar arrays. The elemeiatireéar array are put along a line in
arow. The elements of a planar array are positioned alonglimensions describing a surface.
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The distance between two array element positions is catlpdcing". If the distances between
neighbouring elements have the same value in the whole, atrag the array has uniform
spacing. For a two-dimensional array there can exist twaisgavalues if it is has uniform
spaced elements.

For the following far field array analysis and the resultingntities, at which [1], [6] and
[15] are used as main references, the following precontitare assumed. First assumption is
that all array elements are identical. Second premise tsatharray elements are equally ori-
ented in space. And last supposition is that there existsfhieence between the array elements.

1.6.1 Array Factor - linear array

The total radiated field of an array is the sum of the contitng of every single array element.
Therefore, the electric far field for an array composedoglements can be defined by the
following equation

N
Earray = Z En (1.95)
m

Without invalidating the generality of the latter equati@ementary dipoles of length
positioned in space according to the vectysand excited by respective currentscan be
chosen as elements for the array. If it is assumed that theradison point lies in the far field
and that the sources are elementary dipoles are near the, dhgn the calculation of the total
radiated field can be transformed in the following way

N-1 g ik(r—rncosyn))

E)array(?) = Klnln
2

efjkr N_lln—» .
O, elkrncosdn (1.96)
i lo

r

= Klp

Therein, I, is the element oriented length, the fraction composed ofctraplex phase
componene X" and of distance from origin to observing poift = r is the green function,
respectively. Furthermore,, = || and the currentp is a normalization value.yy, is the
angle between the vectarsandry,, and comes from the afore given far field approximation in
expression (1.75). The constdtands for the wave number—= %‘ stands for all remaining
constants.

The resulting expression shows that the total radiateddiefebnds mainly on the sum of the
excitation currents and lengths of the dipoles. Moreoves,domplex phase is determined by
the position of the dipoles. The question arises, if thisatign becomes more simple if the used
array elements are equal. Adopting the latter case of ag aomposed of elementary dipoles
and assuming similar elements, this means the dipoles hawame sizk, =, equation (1.96)
becomes

N _)efjkr N—-1 |n )
Earray(?) =Kol % 0 gikrncosn (1.97)
-

=
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Comparing the latter equation with expression (1.71) irfoneer section about elementary
dipoles, the expression before the sum is the radiated figld bipole being placed at the
coordinates origin. Consequently, the total radiated fielthe multiplication of the element
field at the originEg by the sum depending of the normalized excitati{%rand the phase term
that is described by the distanaggowards the elements and the anglgs

e—jkr

N—1
. I , "
Earray(F) = Eo- %I—”e““ncoﬂl’n with Eg=«klol - (1.98)
e lo

Furthermore, if all elements are excited with the same atitge= 1o, then the latter equation
simplifies by disappearing the excitation terms in the surfok®vys

—

3} e
Earay(F) = Eo(F)-AF  with Eo(F) = Klgl - ©

(1.99)

r
and with

N—1
AF = %e““nco&l’n (1.100)
&

The latter expression is widely refered as the array fadtomwf a linear array. It can be
noticed that the derivation of the AF depends of the exatatiurrent of each array element.
Consequently and only under the preconditions stated éefbe calculation of the far field
Earray of an array composed by the same elements of any antennaddandes to a multiplica-
tion of the far field of the single elemeR} in the origin by the respectively calculated Array
FactorAF

1.6.1.1 Linear array with uniform current amplitude and spacing

The AF can be simplified for certain special cases, for ircdior a linear array with equidistant
distances and same excitations amplitude. Thereforegsisgmed that the linear array elements
are positioned with a certain distandan a row and that the equal elements are excited by
currents with the same amplitude but with a progressiveghBHsen from the expression (1.98)
the AF is obtained as

N-1 &
AF = Z) el glkrncosin (1.101)
n=
a is the progressive phase that describes the phase shiftibl tife current in each element
leads the current of the preceding element. Depending ogetbmetry, the phase component
e~ Ikmcostn jn the AF can be expressed as a function of the varidpkmown also as spacing.

For example, in the case of the geometrical constellatiofigure 1.6, where the equal
elements are positioned along the x-axis, the phase funictibe phase term can be replaced by
rncosy, = ndsinBcosyp. Consequently, the array factor of tiNselement linear array becomes

N-1 _ N-1
AF = Z)elme"‘kds'necostp = Z)elnﬁ with B =kdsin6cosp+a (1.102)
n= n=
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Figure 1.6 : Geometry of a N-element linear array of isotropic sourceddiofield analysis

As seen in the latter expression, the AF can be written in a&angsompact form with an
all-embracing progressive phaBe It is immediately visible that this phase is a geometrical
function, which depends on the distribution of the souregngints and the excitations phases.
Consequently, the AF for a linear array with equal elemeatsform spacing and uniform
excitation amplitude can be generalized by means of a gedefmed phase functiof8 as
follows

N—-1
AF = Z)ei“f’ with B =p(d,a) (1.103)

As aforementioned in the latter equatighwill change for the different array geometries,
since it is a function of the spacing and of the progressiasplshift between the elements in
the array. Furthermore, the latter generalized formulanathematically speaking, serial form
can be simplified by transforming it into a closed form. Inelegant of the form of the function
phaseB, the AF can be regarded as a power series. These series can be eéevi@l@pclosed
form by means of the following mathematical relation

for g#1 (1.104)

Applying the latter mathematical statement on the arratofathe series form AF is trans-
formed in a closed form AF as in the following
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N—1
AF = elnP (1.105)

PN
elNB 1

=~ (1.106)
-N -N -N

= — (1.107)
N—1.sin(N

_ attesin(zh) (1.108)

If the physical centre of the linear array is chosen as raferg@oint, the equation for AF for
a uniform amplitude and spacing arraydlements has the following final form

sin(3B)
sin(3B)
In order to normalize the AF so that the maximum value is egodl, the latter expression

can be divided by its maximum value that is the valeé\ normalized array factor is obtained
as follows

AF =

(1.109)

| 2

sm(
Nsin

AF = (1.110)

B)
Nsin(3B)

A[\)

1.6.2 Array factor - two dimensional array

In order to obtain the two-dimensional array factor, theditons for the linear array have been
adopted. The total field of a planar array has to be also theo$aihelement field contributions.

Furthermore, considering the assumptions made alreadthéolinear arrays, the total field
must be a multiplication of the field of a single element npliéid by the respective array
factor. Without invalidating the generalization of thelfoling analysis, a two-dimensional
array consisting of equal elementary dipoles positiondthes and rows as depicted in figure
1.7 is observed.

The two-dimensional array can be seen as a series of linemysar Consequently, it is
posible to use the acquired AF for linear arrays for the datmn of the field of a planar
array. Deducing from equation (1.98), it can be stated tietdtal field of aM x N array is the
multiplication of the element radiatidfy in the coordinates origin by the sum of the normalized
excitations currents on the array elements. This yields in

- M—1N-1 . L gk
Earray(m = Eo- Z amnejkrmncoapmn with  Eg =Klol -

m=0 n=

(1.111)

Therein,lg is a normalization currenk = L* represents certain system constants, laisd
the wavelength, respectively. Furthermaagy = - 'm“ is the complex amplitude of the excitation
at element'm,n). Moreover, the complex phase term of the latter excitatiepeshds of the
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Figure 1.7 : Geometry of a Mk N array of isotropic sources for field analysis

magnitude|Fmn = rmn of the position vector toward the element and the spatialeatg,
enclosed by'm, and the observing point vector In addition, the phase function of the phase
term can be approximated y,n,coSYmn ~ rmcosPm + rncosyPn. The vectors, andry, are
the positioning vectors along the rows and columns of thedimeensional array. Furthermore,
Um and Y, are the spatial angles enclosed by the respective elemsitiopovector and the
vector towards the observing point. In addition to the fadiefinition and assuming that for a
rectangular array, a separable excitation amplitudeiligion is chosen so thay,, = by - cp,
equation (1.111) can be rewritten as follows

M—1N-1 . M-l N-1
Earray(m =Ep- Z mene]k(rmCOSlpm+rnCOSlpn) =Ep- Z bme]krmcowm . Cnejkrncoqun
m=0

m=0 n= n=
(1.112)

Comparing each sum and the respective arguments to the s{®B), similarities are
found. If it is assumed that the excitations are at all eleaméme same then coefficieain
and hencd,, andc, disappear. Moreover, if comparing the new sums, it is clear these are
the same sums as in the definition of the array factor in espeg1.100). This means, that
the linear AF’s for the columnéFR;, and for the rowsAR, of the array are multiplied with the
element radiated fiel#y. Consequently, the total field for a two-dimensional arragstituted
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of equal elements excited with the same currents developes t

M-1 .
Earray(T) = Eo- > elkmCoSkm. Z)e"“ncoa“n = Eg-ARn- AR, (1.113)
m=0 n=

As a consequence of the latter expression, the array fattotwmn-dimensional array is the
product of the linear AF’s of its rows and columns elements

AF = AFn- AR, (1.114)

Moreover, the relationship between the field of an array eleiy and the far field of the
entire arrayEarray remains for the linear and for two-dimensional array casestime, namely

Earray = Eo - AF (1.115)

1.6.2.1 Planar array with uniform current amplitude and spacing

For the uniform amplitude and spacing case, Atkeof a two-dimensional array can be sim-
plified. Analogue to the linear uniform amplitude and spgainray, a progressive phase shift
for the columns and arrows elements can be defined. The gsnitoefficientan, = '%‘ with
Imn = imn€®"™ becomes for the uniform current amplitude cagg= €*™. Assuming that this
progressive phase can be decomposed in progressive pate f@w and column elements of
the array likedimn = am+ an, expression (1.116) becomes

M-1 ) )
Earray(?) —Ep- Z eamejkrmcospm_ %eanejkrncoapn (1.116)
m=0 n=

Analogue to the linear case phase functifps= (dm, 0m) andpn = B(dn, ay,) are defined.
As aforementioned for the linear array, these functionsdependent only on the geometry of
the array. Consequently, ti#d- of the two-dimensional array becomes

M-1 N—-1

AF =% el MPm . Z)ei”Bn (1.117)
m=0 n=

Furthermore, using the mathematical definition in (1.10%) doing an analogue transfor-
mation as in (1.108) for the linear array case, the closed for the AF of a planar array with
uniform amplitude and spacing is

_ sin(¥Bw) _sin(%BN)
sin(3Bm) sin(3Pn)
The latter expression includes in the array factor the infteeof the progressive phase shifts

0m andan, as well as of the spacing between row elemetand column element,.

AF (1.118)

1.6.3 Radiation Pattern

The radiation pattern of the linear and of the two-dimenalanray can be calculated by means
of (1.87). For that, the relation between the total field & #nray with the array factor and the
field of a single element, expressed in (1.99) and (1.115#@two-dimensional case, can be
applied. Consequently, the following equation is gained
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|Esingle(ea ®) - AF|
|Esinglemax(6; @) - AFmay
|Esingle(ea (P)| . |AF|
|Esinglemax(6, @) |AFmax|
The first fraction is equivalent to the single element radrapattern, the second one is the

radiation pattern of the array factor. Thus, knowing theatoin pattern of a single element
Csingle and theAF of an array, the radiation pattern of the array becomes

(1.119)

Carray(ea (P)

(1.120)

Carray(6, @) = Csingle(6, @) - Car(6, @) (1.121)
In the latter expressioBGar is the radiation pattern of the array factor

1.6.4 Phased or Scanning Array

The radiated field of an array can have its maximum at a cediaéction (6p,@). Conse-
guently, its pattern will have its maxima at the same point.afray, whose maximum radiated
field and hence its main beam can be directed by controlliagtiase of its element excita-
tions, is called a phased or scanning array. As stated hefoedar field of an array is built
by the field of a single element and the AF of the array. Consetly the main radiation lobe
from the array element and therefore the major radiatiorhefarray factor must be oriented
in the direction(6p, o). The latter is equivalent to a AF value of 1 for that directiétegard-
ing the general AF equation (1.103), the reader can dedatddhit the array factor’'s phase
componenf(d, 8, @) must dissapear in the directidfo, o). This is

B(d,B80,@) = F(d,B80,q0) +a =0 (1.122)

In the latter equatior stands for the element spacing amdor the progressive phase
between the array element currents. The phase funEtidrd, ¢) depends on the geometrical
distribution of the element. The expression (1.122) caetuthat in order to nullify the AF
phase, the excitation phagenust compensate the phase functid, 6, ¢).

1.6.4.1 Broadside and end-fire array

According to [1], if the major lobe of the radiation pattered vertical to all elements and aligns
with the normal vector of the array axis in the linear caseherdurface’s normal vector in the
planar case, then this pattern is known &saadsidepattern. A pattern is calleghd-firepattern
when the main lobe is aligned with the array axis for the Iinese or the surface expanding
vectors for a two-dimensional case. These two pattern kiatgisbe seen as special cases in
phased arrays. Furthermore, both are desirable patteds kinmany applications and hence
they are briefly presented in the following.

By means of the example of a linear array with uniform ampkwand spacing pictured
in figure 1.6, the phase constellation for broad-side andfieagattern is derived. For it, the
equation for the phase component in (1.103) is obtaineds i§hi
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B = kdsinBcosp+ a (1.123)

At the latter expressiok is the wavelength. Regarding theoadsidecase, the major lobe
of the linear array pattern is vertical to the array’s axigof= 90°. Introducing this value into
the latter equation gives

B = kdsinb[g,_gp COSPly _go» +0 =0 — a=0 (1.124)

This result means that for an phase shift of@ 6y = 90° and for@gy = 90° the pattern of
the array becomes a broadside array pattern.

Taking the same array, the case of #ral-firepattern is regarded. This kind of pattern is
achieved foBp = 90° and@ = 0°,180°. Introducing these two possible constellations in the
phase equation (1.123) yields to

B = kd Sin9|902900 COS(p|(|’.b:0°,180’ +a= 0 - o= O, +kd (1125)

For an phase value afkd, depending on the valug& the main lobe is aligned to the arrays
axis, hence an end-fire pattern is achieved.

1.6.5 Grating lobes

According to [15] and [14] the side lobes of arrays are alsovkmas "grating lobes". They
are defined as the lobes of an antenna array other than the engowhich originate when the
element spacing is sufficiently large to permit in-phasetamdof radiated fields in more than
one direction. These lobes are in general not desired. &untbre, from expression (1.122) and
analysing equation (1.109) it can be deduced that for me#ipf 2tthe AF and therefore the
pattern has additional maxima, namely grating lobes. Tappkns in any directiof®, @) for

B(d,0,@) =F(d,0,@)+a ==+2pm  with p=1,2.3,... (1.126)

To ensure that there are no gratings lobes the phase furietth®, @) and the element ex-
citation phases must be defined or steered so that the AF ghasenot reach therf@nultiples.

The most common mean against grating lobes is to chose arpralpe for the array spac-
ing d in order to minimize or even avoid them. Therefore, &mel-fireand broadsidepattern
cases for the linear array of figure 1.6 are analysed. Acogridi (1.125) an end-fire pattern is
obtained ifa = +kd. Consequently, the major lobes condition according exgiweg1.126) in
this case is

kd Sln9|902900 Cogp|q’b:007180> — :i:2pT[ — d — 2%-[ (1127)
with p=1,2,3,.... Thus, in order to avoid these extreme angles, the lobe stpamust

bed < 3" that due tok = 2" is equivalent tad < A. For the broad-side case the statement in
(1.124) results in the following relation for grating lobes

B = kdsin6[g g COSP+a = +2pTT (1.128)
with p=1,2,3,... . According to the latter equation, the first side lobes appéar
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d= 2?" = A. Consequently, if the spacing is smaller than the wavelenigtis possible to
avoid grating lobes. Moreover, Balanis suggests in [1] thmter all these conditions and the
avoidance of having two main lobes for the end-fire case theesdor the spacing must be
chosen according to

d< (1.129)

N >

1.6.6 Directivity and Gain

In order to obtain the directivity and the gain of an arrag #fore given equations (1.93) and
(1.94) can be used. Due to the fact that the directivity and galues of the main beam of an
array are of high relevance, proper expressions for cdloglthem can be derived. In particular,
for the uniform spacing and uniformly fed array case, thatreh between the pattern and the
array factor can be applied in order to reduce directivitgan computation effort.

Consequently, the directivity and the gain of an array foroaserving point(r,8, @) is
calculated by introducing the respective far field functioto equation (1.93). Since the field
can be expressed by means of &fethe following formula is obtained

4T{AF (60, ®)[[AF (B0, ®o) |*

_ (1.130)
[AF (80, 90)] [AF (80, go)]* sinédedg

Darray(907(PO) = onm
0 Jo

In the latter expressiofx) stands for the complex conjugate. For large planar arraigh, w
(M x N) elements that behave nearly broadside-like, the latteatezureduces to the following
expression

Darray(eo, (m) - T[COSGoDmDn (1131)

ThereinDy stands for the directivity of a broadside linear array cosgubbyM elements in
one directionDy for the directivity of a broadside linear array composed\bglements in the
other direction.

Furthermore, there exist a formula for the directivity mmaxim of an array. Assuming an
array of identical elements with a major radiation in direct 6o, @), then the maximum value
of its AF in the latter direction is equivalent to the numbéretements building the array.
Consequently, in the case of an array Wil elements, the directivity and the gain dNgem
times greater in comparison to the directivity or gain ofragte element in directio(Bo, ¢o).
This is

Darray(eo, @) = Nelem: Dsingle(907 @) (1.132)

The product in this formula simplifies to a sum, if the lodamit is applied. The sought
directivity is transformed in deciBetlB via the following equation [15]

Darray,ds(B0, @) = 10109(Nejem: Dsingle(6o, %)) = 1010gDsingie( B0, @0) +1010gNgjem (1.133)
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Figure 1.8 : Mutual coupling scenario for the transmitting case

1.6.7 Mutual coupling

The assumption that the array elements are independentgacother, which was made for
the array analysis is not valid in practice. Hence the infbedmetween the elements of the array,
which is known as mutual compling, has to be taken into accoilre mutual coupling effect is
regarded in a general way in [9], [6] and [1]. References g} [21] show the mutual coupling
consideration for a planar microstrip patch antenna amalyfar its conformal counterpart.

The interaction between neighbouring array elements isshio figure 1.8. In the picture
two neighbouring antennas during the emitting process laogvis. The first antenna emits
electromagnetic radiation that propagates into space.rtaiodraction of the radiation arrives
to the second antenna perturbating its emission by indwtingnts in it. In a similar way this
antenna is "hit" also by along the surface propagating atsrevhich are caused by surface
leaking waves. Reflected currents generated by mismatalebatthe distribution network and
the antennas reach also the neighbouring elements.

According to [9], in order to model the coupling between hdiguring array elements, the
different coupling currents can be represented by one abantcurrent. This mutual coupling
current is then the summation of all coupling current cdmitions. The following equation
displays the excitation of thN-th array element. The first addend is equivalent to the ideal
current value composed of its magnitude tefrand progressive phase tegfn, if coupling is
neglected. The sum term components are the representétibe coupling currentg,, from
then-th array element towards the m-th one that are two neighbgarray elements.
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Figure 1.9 : Mutual coupling scenario for the receiving case

in=l,el% + Y imn (1.134)
m

Figure 1.9 visualizes the general coupling scenario in goeption case. Due to the fact
that an antenna behaves similarly while transmitting andivéng, the mutual coupling current
is for the reception process reciprocal.

Consequently, the excitation current for the whole arraylwawritten like in the following
equation

itotal = idesign+ icoupling (1-135)

Therein, the total excitation current for the array is thsigie currenigesign Which is com-
posed by the independent feeding currents for each arrayeele in addition to the excitation
current due to element’s mutual couplingypiing It can be deduced from the latter result that
the actual current distribution at the elements dependeemutual influence between the ele-
ments. Consequently, the positioning of the array elemantsrtain distances has an influence
on the coupling effects. In other words the spacing valuéheflinear array, or both spacing
values in the case of a planar array, can be chosen so thatupkng effects can be minimized.

Furthermore, Mailloux [6] and Balanis [1] suggest to modaligling by defining a mutual
coupling matrix. For this simple approximation the currdigtribution of all array elements
are assumed to be the same. In addition to that, three kinchpédances are defined. The
first is the antenna impedance, which is the impedance ofitiggesisolated element. The
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second impedance, the passive driving impedance, is thedamze of one single array el-
ement regarded when the other elements are passively &ediim their normal generator
impedance. The third one, the active driving impedance laieavn as the driving impedance,
is the impedance of a single element when all other arrayeri¢srare excited.

The mutual coupling relationships can be expressed by aedarnre matrix. The latter
matrix for a linear array can be calculated using the rataltietween the current excitatiohs
and the terminal voltagés, given in the following

V| = [Z][In] (1.136)
Consequently, the elemeriig, are yielded with

In
The latter elements represent the passive driving impedaratrix. Nevertheless, in the
usual array operation case a great number of elements aiteceat the same time. Conse-
guently, the coupling between the array elements behawewither way. Therefore, the mutual
coupling effect in this case are expressed with the drivimgadance matrix.

Mailloux [6] states that the mutual coupling coefficieBts, in the driving impedance matrix
have the form of integrals over the free-space scalar Gsdenction kernel . Hence they can be
obtained by evaluating these integrals, which can be eskeddl for the different array cases like
in [21] for a conformal microstrip patch array. Such intdgnealuation is often rigorous, thus
other possibilities for gaining these coefficients are psmul, like in [20], wherein the solutions
for the mutual coupling impedance elements are approxiateseries expansions. The latter
reference considers the case of a microstrip patch array too

In addition to that, Balanis [1] gives the formula for calatihg the driving impedance
Zpmn for the two dimensional array case assuming single-modeatipa, uniform excitation,
identical array elements and equidistant spacing values.

Zpmn = Vinn (1.138)

|mn

with

Vimn= Z Z Zmnpglpg (1.139)
p g

Zmnpq are the mutual impedances defined by the terminal voltdggand the currenth
in the passive impedance case.

1.6.8 Feed network

In order to feed signals with different amplitudes and pbkasethe different elements of an
array a feed network is often required. There are two grodgean networks for antenna
arrays, these are series feeds and parallel feeds. Figuretows the first type of feed network
for an array composed of proximity feed microstrip patcheangs. In the series feed network
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Figure 1.10 : Series feed network
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Figure 1.11 : Parallel feed network

the array elements are fed by a line: each element is fed iessef another element. This
line can be terminated into a resistive load allowing onlpavird waves to travel or causing
resonances. This kind of network is simple to implement anogdides a compact design. The
series feed is limited to linear or planar arrays with a fixedr or frequency-scanning beam.

In the parallel feed network, which is mainly known as cogteffeed network, each array
element is fed in parallel with the other elements. Figuld Hepicts the possible parallel feed
network for a group of proximity feed microstrip patch antas. For the division of the input
signal into several channels, several power dividers apeired. Besides the disadvantages of
the need of more space for the lines and dividers, corpoeai# ietwork allows the control of
the feed of each array element. This enables the pos@bibfirealizing phase-scanning-beam,
multi-beam and shaped-beam arrays.

The corporate-feed network allows in the case of apertunpled patch arrays the sequen-
tial feeding technique for dual-polarisation. Here the malitoupling effects between the patch
elements due to the proximity of their apertures are loweidds is done by placing the el-
ements in groups of two patches with their feeds rotated theththe coupling is very small.
Furthermore, a tapered feeding is possible with a parakd hetwork. In the latter the differ-
ent array elements with different amplitudes or "taperithgg' radiation pattern of the array can
be modified, eventually side lobes are suppressed.

[1], [14] and [10] present examples and further informatwout feed networks.



Chapter 2

Numerical Techniqgues and Analysis
methods

This chapter introduces to existing numerical techniguesduo model and analyse electro-
magnetic problems. These techniques are used nowadaysi arad to simulate behaviour
of antennas. Considering the framework of the presentghesrk the modeling of confor-
mal antennas will be regarded. Furthermore, existing agmhr® for analysing antenna arrays
of planar and conformal kind will be presented. Therefooae of the proposed methods of
relevance for the present thesis work will be outlined.

2.1 Numerical Techniques in Electromagnetics

Through the years different numerical techniques thankextended and detailed research
works have been developed. All these methods can be catedarito four groups: surface
region methods, methods applied to volumes, asymptotiethods, and hybrid methods that
combine mainly two methods each coming from the former tgreeps.

The first approach group includes the use of analytical fanst like the mixed-potential
integral equation or the Green'’s function, and their trarmmehtions as well as approximations
limited to the active region. The resulting solution praaetlis done in frequency or space
domain. Furthermore, the electromagnetic problems areedalsing efficient mathematical
ansatz and transformations, for instance the Method of Mdsnd he techniques of the second
group discretize the volumic medium around the active zoitk the goal to solve in time
or in frequency domain by applying discretized Maxwell Epras or from it deriving wave
equation. The Finite Difference Time Domain Method, theitéiintegral Technique and the
Finite Element Method are part of this group.

The asymptotical methods, which embraces the Uniform ThebDiffraction, are based
on approximations of the Maxwell’'s Equations. Therefotés applied only for very high fre-
guencies and it regards the active region as a pure radsiarce (it does not take in account
the form of the active region). In general, the techniquethisf group are not used alone for
antenna applications but combined with other methods. &prently, the hybrid methods are
in general combinations of the third group with the first cza®d group techniques, e.g Finite
Element Method with Uniform Theory of Difraction. In addih, there exist other hybrid tech-
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niques resulting from combinations between the approditiesthe Finite Element Boundary
Integral Method (FE-BI). This hybrid derives from a combina of the Finite Element Method
with the Method of Moment.

The approachs Method of Moments, Finite Difference Time BionMethod, Finite Integral
Technique and Finite Element Method are frequently usedlasrs in electromagnetical sim-
ulators. Although all these techniques are of relevance td first three are regarded closer.
The latter one is introduced shortly with the Uniform Theof\Diffraction.

2.1.1 Method of Moments (MoM)

The Method of Moments (MoM) is, more or less, a general conioe@ny approach (analytical
or numercal) to solve a given problem by transforming itsesystransfer function to a matrix
function in order to solve the latter with known techniquesarrington was the first to use
MoM in electromagnetics and his work [4] is a fundamentag¢refice. Therefore, MoM is used
frequently to model and to solve electromagnetical prokl¢a2], [23], [41] and [47]. The
latter two references will be presented in summerized faterlin this chapter.

2.1.1.1 MoM Principle

The basic idea of Method of Moments is to reduce a functiogah&on to a matrix equation,
which is solved by inverting the matricial operator. Theridwsolution, depending on how the
sought solution function was defined, will approximate ogrebe equivalent to the analytical
solution of the functional equation. For the matrix inversseveral known techniques are used.

The functional equation is usually of inhomogeneous kinlictv has following form

L(f) =g (2.1)

HereinL stands a linear operatdr,is the unknown response or field that has to be deter-
mined, andy is the excitation or source that is described by a known fancfThe linearity of
the operator allows to find a numerical solution with thedwaling technique.

In order to obtain the unknown response functipit is defined as a linear combination
of a finite number of terms. This is represented by a serieha$en functiond,, so-called
expansion functioner basis functionsand by the constants, attributed to these functions,
giving the unknown response function the following form

N
f=YS caf (2.2)
; nin

Therefore, the domain of the linear operdtand its range must be taken into account. The
domain of the operator is restraint by the functiéra which it operates, the respective range
is limited to the functiong. The unknown function is fon — c normally an exact solution.
For a finiten, an approximation to the exact solution is obtained.

The new definition in (2.2) is introduced to equation (2.83lince the operator is linear the
latter system can be written as follows
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N
> enl(fn) =g (2.3)

A new equation with the new task of calculating yeconstants is obtained. In order to
find theN coefficient values\ linearly independent equations are needed. A possibl®@appr
to solve the new equation is to evaluate for the expressid@) @oplying certain boundary
contitions aiN different points. This technique is knownaint-matchingnd hence it converts
the new equation to a linear matrix sytem. The latter is sbhyeinverting the obtained matrix.

Another way to find the solution function by means of the retipe coefficientsc, and
under the assumption that the inner product betwWesmdg has been defined the inner product
of all components of the equation in (2.3) with a serieweighting functions wis built. These
testing functions are supposed to be in the range of tAde equation changes to

N
ch(wm,Lfn> = (Wm, Q) for m=123,....M (2.4)

n

The latter equation system can be paraphrased in the foltpmiatrix form

[lmnl[Cn] = [Om] (2.5)
wherein the matriXln is defined as

<W;|_7 Lf1> <W;|_7 Lf2> e <W;|_7 LfN>
wo, Lf wo, Lf :
] = { 2 1) 2 2) (2.6)
<Wm,|_f1> <W|\/|,|_fN>
The coefficients vectdc,| in expression (2.5) has the following form
C1
C2
CN
Similar form has the excitation vect@y| in (2.5)
(wi,0)
(w2,0)
[Om| = : (2.8)
(Wm,9)

Similar then in thepoint-matchingtechnique, the new matrix equation can be solved by
building the inverse of the matriky. This is only possible if the matrix is non-singular.In such
a case the inverse matril,]~* can be built and the coefficients vecfo] can be calculated
as follows

[Sn] = [lmn] " [gm] (2.9)
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Introducing the obtained coefficients in (2.2) the solutéthe equation is found. Summing
up the solution of the linear equation (2.3) is

f = [fallenl = [fal [l oM (2.10)

Herein the sum in expression (2.2) is described by the spatatuct between the coeffi-
cients vectofcy| and the functions vectdfy,|. The latter is defined as

(fl=[f1 f2 ... f] (2.11)

Depending of the choices of weighting functiomg and basic function$, the solution may
approximate or hit the exact solution. While chosing thedamctions, they should be linearly
independent and they should ensure a reasonalbly well aippaion of the response functidn
For choice of the weighting functions the linear indepergesnecessary too. Furthermore, the
desired advantage of computational simplicity, definedhgydase of evaluation of the matrix
elements and the matrix inversion computational effofec$ the choice in both cases. The
special case where the basic and the weighting functiontharsame is known &Salerkin’s
method

2.1.1.2 Appropriate basis functions

From the theoretically possible options for basis funci@mly certain ones are in practice
used. They can be divided in two classes, the "subdomairifurs® and the "entire domain
functions"

The subdomain functions are structured in non-overlappaggnents. These are not neces-
sary to be collinear or of equal length, since each one is elgfim conjunction with the limits
of its neighbouring segment. The most common subdomais basttions are the "pulse func-
tion" (or piecewise constant function) that is defined as

1 |X < 5rtar
p(x) = A 2(N+) (2.12)
0 X > gy

and the "triangle function"” (or piecewise linear function)

t(x):{ 1-X(N+1) [X < g

(2.13)
0 ‘X‘ > Ni1

The latter functions are defined for a subdomain centeredémbdtheN equispaced points
on the interval < x < 1. Other useful but more complicated subdomain basis fonstare the
"piecewise sinusoid" and the "truncated cosine" functidfse subdomain functions are often
used as basis functions due to the fact that a priori knovdexdtgut the nature of the sought
response functions is not needed.

The entire domain functions are defined over the entirevater Consequently, segmen-
tation is not necessary. They can be generated using Tssttedy Legendre and Hermite
polynomials, or other convinient functions like cosine amke functions. The representation
of the unknown function by the latter functions is similartte Fourier series expansion of
arbitrary functions.
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The entire domain functions are very useful in cases wharesttught response function
is supposed to have a similar behaviour to a known patterrthdse situations fewer terms
or expansion functions for the unknown response are neddadib the case of subdomain
functions. In cases of arbitrary or complicated unknowrcfions the entire domain functions
are less apropiate.

2.1.1.3 Application to antennas

According to [4] and [22] the solution to an antenna problenoltained by using/loM on
an appropriate superposition integral equation. Due toutation simplicity, the conventional
retarded potential integral formulas are used herefors&laee

ES = —jwA—Dd (2.14)

S e kR

A = J dv 2.15

T 219

1 -

. = ——— []-A 2.1

= “om (2.16)
1 =

p = _JTOD.J (2.17)

These equations are derived in chapter 1 (see (1.18), (&r&8)1.54) withR = | — F’|)
from the generalized harmonidaxwell EquationsBesides, following boundary condition has
to be fulfilled on the surfac§, which separates the antenna and the propagating medium

Aix (ES+EY=0 <  AxES=—fAxE (2.18)

E' is the impressed or excitation field on the anteritsis the respective scattered or radi-
ated field from the antenna. The scattered field is producetiégurrents] and the electric
chargep.

The resulting operator equations contain derivatives dsagdntegrals. In order to ease
the computation, the antenna is divided in small antennesats that are connected together.
Each end point of the segments define a pair of terminals ecpuently a network is created.

The impedance matrix of this network is calculated by apyg\d current source to each port
in turn and calculating the circuit voltages at each portcétie impedance matrix is built the
admittance matrix can be calculated. The latter is the s&vef the impedance matrix. More-
over, for any voltage excitation the port currents can bemaed by means of a multiplication
with the admittance matrix.

2.1.1.3.1 Example: Wire antenna An application example of MoM in electromagnetics
is the radiation analysis of a wire antenna. In this casechvig depicted in figure 2.1, the
segments of the wire antenna are small filaments along treaxs. Eachn-th segment has
an starting point called™, a middle point referenced asand a terminal point called—. The
currents, which are supposed to flow only on the directiomefvire axis, and the charges are
treated as constant over each segment. In addition, thgraiteare approximated by the sums
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dl
Wire axis

Figure 2.1 : Discretization of a wire antenna

for all segments. Derivatives are approximated by finitéedénces over the same intervals as
for the integration. Following approximations are used

" . Oy — P dl
B o~ _ _ Pm — P A
= jwAm —T (2.19)
. e ij
An =~ P-zln (2.20)
]kR
O ~ EZGW/Nn+ (2.21)
—1|n+1—|n
~ T 2.22
0-n+ jCO A|n+ ( )

HereinAl, is then-th length increment between poimt andn—. Al,+ andAl,- represent
the increment shift of half a segment along or against thgthedirection.

Defining a voltage vector, which describes the voltage wlneevery wire element, the
impedance matrix can be found. Therefore, the voltage véesapproximated by the multipli-
cation of the electric intensitlg, components at the wire elements with the lenfjihof the
respective segment.

El Al
EL-Al

vi=| 277 (2.23)
Eiy - Alm

The necessary impedance components of m@fiiiare obtained by introducing the equa-
tions (2.20) to (2.1.1.3.1) in (2.1.1.3.1). An expressiepehdant on the currents is achieved,
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which can be reshape in order to separate the current veatopanents and hence get the
impedance matrix following the relation

Vl=[Zl] with [I]=] (2.24)

The acquired matrix equation can be solved by invertingZhenatrix like in the following

1=[Y]V] with [Y]=[Z]! (2.25)

After acquiring the impedance matrix the current vectordny voltage excitation, which
can be on one point or several points of the wire, can be addain

_In order to calculate the far radiation field of the wire amiznthe electric dipole moment
IhAl, of each segment is computed applying the computed curretanjé]. In addition to that,
they are introduced in the following vector potential egumafor the far field case

N

ue—jkro T _—jkrncos
|nAl e~ koS (2.26)
41 Z

A=

In the latter expressian stands for the magnitude of the vector to the origin to theohsg
point in the far field regiont,, for the magnitude for the radius vector to the source poihe T
electric far field is calculated by means of the followingaten. With the help of the acquired
vector potential, which is given, the electric far field isocdated.

Er~0
Er~—j - Ep =~ —jwAg (2.27)
Eo~ — WAy

In [4] another possibility for computing the impedance mxatieparting also from the equa-
tions to is suggested.

2.1.2 Finite Difference Time Domain (FDTD)

The Finite Difference Time Domain method (FDTD) was introdd by Yee [24] and it has
become since then a very popular technique for solving rle@gnetic tasks. Furthermore,

it has been generalized for different volume structure$ 2l it has been used for antenna
analysis [26], [27] and [54]. As its name indicates, the FDMBthod is a temporal domain
approach and it finds the solution to an electromagneticlpnmotby solving the differential
form of the Maxwell Equations Therefore, the regarded region is discretized resulting i
rectangular volumic grid composed of cubic cells. In each tbe fields are computed by
means of the¥ee algorithmwith a second order accuracy in time and space. The following
introduction to FDTD has [5] and [25] as malin references .
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2.1.2.1 FDTD Principle

Assuming that the analysed medium is homogene, isotropicdispersive and without sources
according to [5] theMaxwell Equationsn differential form can be stated as follows

—

q oH
OxE = —psr (2.28)
OxH = s%—f+ol§ (2.29)

o is the electric conductivity of the media,and u the permittivity and the permeability,
respectively. In order to solve the latter equations,ahitonditions as well as boundary condi-
tions on the regarded object are needed. In general, thi& coinditions for the FDTD method
are zero, this means

-
[]-

0 (2.30)
0 (2.31)

O o

In the exception cases the initial conditions must be statadself-consistent manner. This
means that the charge must be taken into account in the setaechent of the latter equation
set. For the boundary conditions the relationships betweefield and the media surfaces have
to be taken into account.

The vectorial equations in (2.28) and (2.29) can be writesia scalar equations. These
have the following form if the Cartesian coordinates areduse

% _ 5(% _ %) (2.33)
%1 ("’(,)iy % —OEX) (2.35)
% 1 (% - ‘ziy —OEZ) (2.37)

The derivatives in equations (2.32)-(2.37) are approxeémhatsing thevee algorithm This
algorithm is based on theeapfrog algorithmwhich is shortly presented in appendix A. Ac-
cording toYeethe partial derivative of a field functidf(x,t) is centered with respect to the two
field values on the cell fronts. The space derivative valicech space component and the time
derivative become then
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Figure 2.2 : Position of the electric and magnetic field vector composiabbutYe€s cubic unit
cell

0 w _ F(x4+4x)—F(x)
Jrxty) = > (2.38)
Spnry = TR 2.39)

The latter definition is obtained by means of the definitiorthed derivative for a finite
distance. The obtained equation approximates the dearvatith a second order accuracy.
Introducing this definition in th&aylor series expansioof the functionF and neglecting the
derivatives higher than the second order, following relahip is acquired

F(x) = 27 4 o(Ax) (2.40)

F(t) = 2 22 +o(At) (2.41)

The latter equation show that the values of the funckint) are centered. It can be shown
that in both cases the accuracy of the values and the paetisfatives of the function are of
second order

With the equations in (2.39) and (2.41) the equation seR{23.37) can be approximated
in the time domain. Therefore, the medium is discretizedolamic grid composed of cells.
In order to describe the cubic ceNeedefines its location with the indic€sg j, k) as depicted
in figure 2.2 . These are related with they, z) coordinates as follows

X = IAX y= Ay z=kAz (2.42)
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i,j andk are the coodinate indices for the respective coordinaeztioms. Similar goes for
the timet with n as the time index

t = nAt (2.43)

Therefore, the time and space dependent fundiipqt) takes the following form

F(i, j,k) = F(nAt,iAx, jAy, kAz) (2.44)

Using the new indice nomenclature the statements in (289)e generalized as follows

aFn<|7J7k) Fn<|+%717k)_|:n(l_%7j7k)

4 _ - (2.45)
1 1
neos I’H-?' H _EM3¢(i i
OFf(i,j.k) _ FTr2(ij.k) —F2(i, . k) (2.46)
ot At

Yee’sdiscretization and approximations are applied at the sdd¢éxwell Equations given
in expressions (2.32) - (2.37). Doing so, each field compbiseexplicit given as a function
of the past values. Reshaping the resulting equationspaiponents of the current fields can
be calculated. In the following, the mathematical transfation for the x-component of the
current magnetic field intensity in expression (2.32) isigho

1 _1 . .
He 20, 5+3 k5 —He 2(0+3k+d) 1 [EXii+3k+)-ENii+3K
At u, j, k) Az
BN+ 1k BN LKD) | o
Ay '
1 1
1 L A
He 205+ 3k+8) = He 20+ 5kt D+ LB+ k1) -
. At -
B+ 3.0+ B2 ket ) -
—EP(i,j+1,k+3)] (2.48)

The same procedure is realized for the other field componeFfite components of the

current magnetic and electric field intensitﬁr?*%(i, j,k) andE™1(i, j,k), can be obtained
with the help of past values by the following equation set
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M2 ke d) - HQ%<i,1+%,k+%>+§—;[EQ<i,J+%,k+1>—EQ(i,j+%,k>]+
+2—:/[Eg(i, j.k+3)—EJ(, j+1,k+3)] (2.49)
H;‘+%(i+%,j,k+%) = H;_%(i—l—%,j,k—i-%)—i—%([EQ(i-l—l,j,k-l—%)—EQ(i,j,k-l—%)]-l—
PR+ 21K B+ . f kD) (2.50)
Hzr‘+%(i+%,j+%,k) = HZ”%(i+%,j+%,k)+2—;[EQ(i+%,j+1,k)—EQ(i+%,j,k)]+
P BRI+ 5.0~ Epli+1 i+ 5.k (2.51)
22300 = [ S e g i B R R 300
H R B gy 2 b k-
CHI( +%, j K+ ;>] (2.52)
EMIG, 41 k) = {_Z((:JJ:” ;(u,J+%,k)+s(iﬁtk)Az[HQ*Z(u,J+%,k+%>—
—HQ+%(|,1+%,k %Hs(l Atk)Ax[ ;+%('_%’J+%’k>_
—HT%(u + 343,k (2.53)
ekt = [T e s o B R ke )
Rk Bl e R ke D) -
_H)?*%(i,jJr%’kJr%)] (2.54)

From the latter equation set it can be deduced that the ieléetd components and the ones
of the magnetic field are calculated at different time stdpss sequential computing with the
help of past values is also known as tteapfrog algorithm

2.1.2.2 Numerical dispersion and stability condition

According to [5], the numerical dispersion is obtained byaducing a plane and monochro-

matic discretized wave solution to the lge’'sscheme discretized Maxwell Equations of (2.28)
and (2.29). After a respective mathematical developmemnglation between the numerical

wave vector components, the wave frequency, the time-stdgree grid space differences is

derived. This resulting relation is the numerical dispangielation.
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Therefore, the following compact vector notation wheredixecomponents of the electric
and magnetic fieldz andH, are put together in one equation is used

: = 0 - .=
jDX(H—i—jE):E(H—i—JE) (2.55)
or defining a new field vectdr (x,y, z) that includes the complex vectors for the magnetic
and electric field

—

jOxV = (?3—\: with V(x,y,2) = H(x,y,2) + JE(X,Y,2) (2.56)

By discretizing the vectorial field functiov after Yee’sscheme, the following expression is
obtained

V(1,3,K) = Vg Oy I0x K Az— Nt (2.57)

In the latter definitionV represents the magnitude of the complex functorBy introduc-
ing this discrete expression into (2.55) and applyYeg'scentral-differenzing discretization on
the gradient operator and the time derivative, the follgnéuation is obtained.

1 ain( ko
E(sm( 2") _
. (kA = ] o .
& sin( 2~ xv”(l,J,K):Ev”(l,J,K)sm(%) (2.58)

1 H RzAZ
AzSIN| =5

Evaluating the cross product generates a vectorial equatibich can be divided in three
scalar equations. The numerical dispersion is obtainedalyulating the determinant of this
vectorial equation and equaling it to zero. The numericgeision relation has then the form

{%( sin(szAX)] g {A—lysin(ﬁy—ﬁy)} g {ésin(%ﬂzﬂ T {% sin(%)} T es9)

By comparing the numerical dispersion with the analytidalgcal one for a in free space
propagating plane wave that has the form

W\ 2
<E) = K2+ K2+ K2 (2.60)

there can not be recognized a strong similitude betweendispiersion relations. However,
the numerical dispersion converge towards the analytiwalfor the differencelx, Ay, Azand
At approaching to zero.

From the numerical dispersion expression it can be expehtgdhe choice of the spatial
and time differences)x, Ay, Az andAt can affect the propagation characteristics of numeri-
cal waves inYee’sspatial grid. That can be explained by the fact, that the FRIgorithm
approximates the electromagnetic wave behaviour by desgrthe propagating medium with
properties very close but not exact to real conditions. @ilEsrepancy generate delays or phase
errors that are accumumulated by the numerical waves. Téreses affect the propagation
characteristics of numerical waves and can lead to nonipdiygsults.
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Consequently, the numerical errors have to remain undatamceange giving the system a
certain stability and accuracy at the same time. There&oiequency analysis at the numerical
dispersion expression in (2.59) is performed: the numkdtspersion relation is manipulated
in order to obtain the angular frequency. This results in

0= garcsing  with chAt\/@sinz&zﬂx)+ﬁsin2<kyTAy)+@sinz<Rzzﬂz>
(2.61)

The argumeny of the inverse sine function can be zero or it maximum vallectvis when
the sine function arguments become the value of 1. This is

1 1 1
nggcAt\/erA—szrE (2.62)

It can be deduced that for valugs> 1 the angular frequency get complex complex values,
which would amplify the value of a sinusoidal wave functiery; with the form of (2.57)) with
every time-step. Hence it would change the near real prapagaehaviour of the FDTD wave
to a non-physical one and would make the system instables, Thhwrder to obtain real values
for the angular frequency and prevail numerical stabijtgyust remain in the interva0, 1|.

Therefore, the maximum time step valiyg,ax is derived by using the expression in (2.62)
and adjustingg = 1. The resultis

1
For time-step valueAt > Atyax the argumeny of the inverse sinus function in (2.61) has

values higher than the value 1. Hence, by usingY&e algorithnthe time differencé\t must
fulfill the following condition for reasons of stability

At < ! (2.64)

1 .1, 1
C\/ pe + Ay? + A7

Moreover, this relation between the spatial and time stegan® that they play a decisive
role in the accuracy as well as in the stability of this nurwedrapproach.

2.1.3 Finite Integration Technique (FIT)

The Finite Integration Technique (FIT) is proposed by Wailavith his publication [28]. This
approach consists in a discretization of Maxwell’s equetim integral form, resulting in matrix
equations that can be solved. It uses integral balancesand permits to check the conserva-
tion properties of the discrete fields and the stability efslgstem before the solving procedure
is run.

2.1.3.1 FIT Principle

According to [29], the first step consists in the restrictdbthe electromagnetic field problem to
a simply connected and bounded space re@i@R3. Like in the FDTD Method, the analysed
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j.k)

€, (ii.k)

Figure 2.3 : Discrete cubic cell according to the Finite Integration iecque (FIT)

medium is discretized into a finite number of volumic céfls x that fit exactly to each other.
This decomposition results in the cells complex

|:17 aimax—l
G:={Vijk € R}V k= [ Xira] X [V}, Yj41] X [Zozea]}  for  j=1,..., jmax—1
k:]., ..,kmax—l

(2.65)

This yields to a total number of Nod&§ = imax- jmax- kmax that have the fornix;, yj, z)
and to an amount d¥elis = (imax— 1) (jmax— 1) (Kmax— 1) cells.

As depicted in figure 2.3, the Maxwell’'s Equations are diszeel and "applied" to each cell
of the complexG. For example, for the upper facgt of cell V; j 1 (parallel to the x-y-plane)
the first Maxwell's Equation (see equation (1.1)) or Far&lkay in integral form becomes

n o . A A 0z . .
%((Iv Jak> +e}’(| +17 J?k) _Q((I7 J +17 k) _e)’(|7 Jak> = _Ebz(lv Jak> (266)
&(i, j,k), &(i+1,j,k), &, l+ 1,k) ande€ (i, j, k) are the electric voltages along the edge of
the surfaces,. The scalar valuéz(i, j,k) represents the magnetic flux over the fagetThese
is expressed by

I _ (Xi+17y'7zk) = T
0119 =Joiy a9 &9 (2.67)
(i, 5K = [fs,i,j B-dS

Similar is valid for the other componerggi+ 1, j, k), &(i, j +1,k) and€ (i, j, k). Assum-

A~

ing a lexicographical ordering of all voltage§, 7, k) and quxesﬁ(i, j,K) in the complexG, two
vectors including the node reference like in the followiagy de defined

’\clr)) >g)>

= (%7”‘%’7n|é'\zyn)-rl]—:17...7Np
= (b n|byn|bz n)I:l,...,Np

Consequently, the equations with the form of (2.66) for ladl tell facets over the whole
complexG can be expressed in matrix form as follows

(2.68)

o» O
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Dual Grid G

Grid G

Figure 2.4 : Discrete cubic cell$ andG according to FIT

e=——b 2.
c-ée atb (2.69)
The matrixC contains topological information on the incidence relatas the cell edges
and on their orientation. Thus it has only the valgesl,0,1}. This can be interpreted &
being the curl-operator on the compléx

The same procedure can be applied to the other Maxwell'sieqsawhereas for equations
(1.2) and (1.4) a second cell complé&xwhich is dual to the primary comple3, is required.
For it, the dual grid is defined by taking the foci of the cell$as gridpoints for the meshcells
of Gas depicted in figure 2.4. In a more general manner, it is plests take the cell barycenters
as boundary vertices [29]. Along the edges of the dual grild tee magnetic field intensities
are applied. On the cell surfaces®@the dielectric fluxes and the electric currents are allatate
in analogy to the quantities allocated Gn

Therefore, the Maxwell’'s Equation set in chapter 1 (equsti(l.1)-(1.4)) the so-called
"Maxwell Grid Equations" (MGE) are obtained. These are

. 0z

cé = —=b (2.70)
~ A 0z =2
CA = —5d+] (2.71)
s = 0 (2.72)
d = q (2.73)

éandh are the electric voltages between grid points and the magratages between dual

grid points, respectivelyd, b andf are the fluxes over grid or dual grid faces. Following the
interpretation made for expression (2.69), the mé@man be seen as discrete divergence matrix
applied onG. Moreover, the matrixC can be interpreted as the dual discrete curl-operator and
Sas the dual discrete divergence@nrespectively
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Following the theory in electromagnetics, the constiitivaterial relations (see chapter 1,
equations (1.19) - (1.22)) have to be adequately definedrefdre, the following discretized
material property relations are obtained

d = Mg (2.74)
b = M,h (2.75)
j = Mgé (2.76)

M¢ , My andMg are the permittivity matrix, the permeability matrix, arrgetconductiv-
ity matrix, respectively. The elements of these matricesabtained by using the values of
the MGE. For example the calculation of a diagonal elememi@ftonductivity matrix is ob-
tained as result for the coupling of the electric current$ itwe electric grid voltages like in the
following

[l 3-ds ff§n0d§+o(h|) 51159 _ (Mo)mm:é—: (2.77)

Jo E-dl fdl Jo.d
The latter is for a corresponding pair of a grid voltagealong the edgem € G and the

flux jm through the face$,,. The error exponent has valuesl ¢f 2 in the case of non-uniform
grid spacing, otherwisk= 3. In a similar way the other discrete material matrix eletaeme
obtained. In general the four MGE are an exact representaficMaxwell’s Equations and
contain only topological information. Consequently, thecdetization error of this method is
found to be located at the discrete constitutive materiab&qns.

[30], [29] and [31] show the algebraic properties of the thtized fields frequency and
time domain. The MGE can be transformed into frequency domaih &(t) = Re(gel®).
With the frequential MGE certain wave equations, like thenbgeneous wave equation and
the Helmholtz equation, can be transformed in eigenvalebdlpms that can be solved by
known techniques. From the analytical version of the lagtguation for instance the gener-
alized Helmholtz-grid-equation was derived [29]. The extjve expression is

[éMuC+D1§TD2§D1 8= M (2.78)

at whichD4 andD», are diagonal matrices that when chosen properly allow thaeliization
of the analytical Helmholtz equation for homogeneous niter This is necessary due to the
definition of two orthogonal vector subspaces, which sparnvéttor space of solutions for the
static (o = 0) and dynamic modesy# 0); a consequence of the necessity of a real-valued and
non-negative system matrix.

According to [31], the time-domain formulation of the distized equations is equivalent to
FDTD. Consequently, the equation set is solved with Yegsrhm, which leads to an explicit
algorithm. For the lossless case this is

fitl = Afl +¢ (2.79)
with
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| ~AC
A= ( MMZICM L | —aPMICM i ) (2.80)

_ bi
f':( e > (2.81)
g2

. 0
gz(—MMJﬁ) (262

At the latter equatioh stands for the unitary matrixt is the discretized time step, respec-
tively. The maximum stable time stéyiyaxiS give by the same expression in (2.64) presented
in the last section for the FDTD method.

2.1.3.2 Spatial discretization for conformal structures

The FIT method allows to consider all types of coordinateshms, orthogonal and non-
orthogonal meshes. In addition to that, local mesh refinénadso known as "subgridding”,
including grid line termination techniques can be appl@ther techniques like "triangular fill-
ing" or "'tetrahedral filling", which work with geometry appximation and metarial averaging
inside the cells, are used to approximate curved boundafgcas. These techniques enhance
the known FIT to the Nonorthogonal Finite Integration Tege (N-FIT). The resulting matri-
ces are symmetric but no longer diagonal. The non-orthdgdgarithm has in its application
limitation due to the increase of the numerical cost by iterpolation scheme.

A more efficient approach known as Perfect Boundary Appratiom (PBA) can be applied
to FIT algorithm. According to [32], it takes the subcellafarmation into account. Since the
lattice generated with this technique is not conformal odbrved boundaries, the PBA algo-
rithm is of second order accuracy for arbitrary shaped baried. In particular, the additional
preproccesing effort with PBA is slightly higher than withat, avoiding a highly resolved
mesh for non-orthogonal shapes.

2.1.4 Additional Techniques

There exist several other numerical methods for handliagtedmagnetic problems and hence
antenna analysis. Among them there are like the Finite Ei¢Method, asymptotic techniques
like Uniform Theory of Diffraction, and analytical methqdike the mixed-potential

2.1.4.1 Finite Element Method (FEM)

The finite element method (FEM) is a mathematical approacfirfding a solution to partial
differential equations (PDEs). This technique is applieab a wide range of physical and
engineering problems, provided it can be expressed as a PRizEsolution approach is based
either on eliminating the differential equation complgtehis cases are called steady state
problems, or rendering the PDE into an approximating systesndinary differential equations,
which are then solved using standard techniques.

A PDE involves a functiorf (1) defined in a certain domain for all its arguments (in the case
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here all values for) with respect to a given boundary condition. The purposéeitethod is
to determine an approximation fq1) the solving function. For instance a second order PDE
can have following form

62—f+cgf = (2.83)
012 -9 '

at whichg is the inhomogeneous part of the differential equation. PB& can also be
regarded as a linear transformation system like in the MetifdMoments (equation (2.84)),
this is
£ = ih L — 0
L(f)=g with L = 702 +C5 (2.84)

at whichL is the linear operator. The primary challenge while finding $olution for the
PDE is to create an equation that approximates the equatibe studied. Therefore, serveral
approaches can be used, for instance the Garlekin’s metm&ayleigh-Ritz approach, etc.

2.1.4.1.1 Rayleigh-Ritz Approach The Rayleigh-Ritz ansatz originates from a generaliza-
tion of the theory of extremum functions. This variationgpeoach is one of the most common
used in engineering problems for calculating the solutibthe respective PDE. That is for a
PDE of second order

F(f):/// (gZT;—i-c%f)-de—///(f-g)dt (2.85)

whereF (f) stands for the primitive function of the functioi(t). This new function is
variated about and forced to become zero in order to obtain the sought fométiike in the
following

SF(f)=0 (2.86)

dis the variation operator used on the primitive functiaff ). The expression in (2.85) can
be written in linear system form as well

F(f)=3(L(f), f)—(f,9) (2.87)

at which the expressiofy) stands for the inner product.

2.1.4.1.2 FEM principle in Electromagnetics The starting PDE to be solved is the vecto-
rial wave equation, which has the following form

Dx%lxﬁ—kgsrﬁz—jkzojm-l—ﬂx%lﬁlmt (2.88)

ko stands for the free-space wavenum@igrfor the free-space intrinsic impedance, respec-
tively. The traditional Rayleigh-Ritz approach is useddtve the PDE. Therefore, the left side
of (2.88) is taken as the linear operatoapplied to the electric fieldl = E. The inhomogeneous
part at the right side of that equation becomes the fundtidhe ansatz results in
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F(E) = %//A(mﬁ@-k&é)édw
+///VE- (jkozoj'”‘—Dx%lMi”‘) dv (2.89)

By means of transformations, among them integration rubelscairl as well as divergence
theorems (see Appendix A), the latter expression becomes

F(E) = ///( (OxE)- DxE)—k%er-E)dv-l—
+///VE- (jkozojnt—mx (ﬁl\ﬁ‘”‘>) dv
1 jkoZo ﬁi E. (A xA)ds (2.90)

with H x fi considered as one of the sources&oiThe sougth field functiof can be found
by enforcing

SF(E)=0 (2.91)

F (E) stands for the first-order variation BfoverE

2.1.4.1.3 Finite Element Discretization In order to calculate the FEM equation on the vol-
ume V, the latter has to be discretized. Therefore, its sudbelil into a finite number of small
volume elements, for instance in rectangular volumic cailsngular or tetrahedal prisms. The
electric fieldE is discretized in a set of basis functions like in the followi

J
E=YEW, (2.92)
J

The later function expansion is done with the help of vectmi®function®V;, which have
to be chosen appropriately like in MoM, and the unknown coieffitsE;. The discretized
electric field is introduced to equation (2.90) and the tasglequation is enforced like in
equation (2.91). The discretization transforms the aryintegral equation in the matrix
equation

[Aj][Ej] + [Bik] [Hs k] = [Ci] (2.93)
with

Eil=[E1 E> ... Ej [Hsk] =[Hs1 Hs2 ... Hsk] (2.94)

and
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Aj = ///( (0 xW)- DxV\/j)—k(z)erWV\/j)dv

Bix — jkoZo#SV\/. (W x A)ds

C :///Vvv.- (jkozoj'm—mx (ﬁmi“t)> dv (2.95)

| gives the total number of element edges as well.asConsequently[A;j] is a square
matrix. K is the total number of element edges residing on the sui$aée similar matrix
system is obtained if the wave equation Fbiis used. Consequently, the figilis discretized
asin (2.92). The obtained matrix equation is solved by sematrix convertion or other known
techniques.

In addition to that, the solving system should be discretize that the computing process
remains numerically stable. The latter means that errotheninput data and intermediate
calculations should not accumulate and cause the resoltitpgit to be meaningless. [33], [34],
[35] and [38] are cited as main references for the short suyoraFEM.

2.1.4.2 Uniform Theory of Diffraction (UTD)

The Geometrical Theory of Diffraction (GTD) and the Unifo&TD (UTD) are asymptotic
methods used for approximating solutions to electromagpebblems at very large frequen-
cies. The GTD, which postulates the existence of "diffrdecteys", is an extension of Geomet-
rical Optics (GO). These rays that describe the solutiomsagoing terms of fractional power
are no taken into account at the GO. Furthermore, the UTDse/bmneers were Kouyoumjian
and Pathak with their publication [37], generalizes GTD tating definition formulae for the
diffraction coefficients valid also within singularitie®treached by GTD. For the following
short summary [2], [18] and [8] are main references.

2.1.4.2.1 UTD principle The idea of this method is based on the concept of the GO: to
approximate the radiation of high-frequency electroméigrszenarios by determining wave
propagation for incident, reflected and refracted fields.rédwer, it approximates diffraction
problems in a more generalized manner than the GTD. Hencerdddels with direct rays the
direct wave propagation. Therefore, it uses the expression

_E P1P2 koS
E(Pobs) = Ei(Qret) - \/(p1+s)(p2+s) e} (2.96)

at which p; and p, are the curvuture radii of the reflected wave-framis the distance
between the reference and the observing pQiat andPyps, ko the free-space wave constant,
andE; the incident field component at the reference point. Theesgion under the square root
is known as the spatial attenuation, the exponential fonagpresents the phase factor.

The diffracted rays resulting from interaction with obs¢gcare taken into account by
using a similar expression as (2.96) enhanced with a diftracoefficient. For reasons of
convenience the spatial angle is transformed in order torheandependent of the reference
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point. Consequently, the diffracted field componggntan be calculated by means of following
adapted formula

Ed(Pobs) = Ei(Qref) -D-A(pc, ) g Jkos (2.97)

with A(pc, S) as the spatial attenuation

for plane and conical wave incidences
,with - p=ssinf3o for cylindrical wave incidence (2.98)

Sl

A(pC7 S) = p

,/S(Sig) :@ for s> for spherical wave incidence

D stands for the diffraction factos, is the distance between the source of the incident field
and the reference point.

There are diffraction coefficients of first and second ordée former ones model the first
diffracted field at the diffraction process. The latter dioefnts known as slope diffraction
coefficients describe the second order diffraction, whicbues specially for rapid changing
fields. The diffraction coefficients depend on the type amuhggtry location of the canonical
form (edge, wedges), but also on their material propertieisaa the type of the incident wave
(planar, spherical). These coefficients are approximayetthdir asymptotic form defined for
canonical forms like edges, wedges. Many studies werezeghln order to define diffraction
coefficients, for instance for a wedge with impedance fa86k [

According to UTD and GTD as well, the diffracted field is corspd by "soft" and "hard"
polarized components. The "soft" polarization componsitarallel to the propagation plane
of the diffracted rays, the "hard" polarization componempgagates perpendicular to it. This
propagation plane is expanded by the vector along the diiifrgq border (egde, wedge, etc)
and the vector from the reference to the observing point. p&ss/ely there exist for each
polarization component its corresponding diffractionftioent.

The diffracted electric fieldEq at the observation poitipsis yielded by using the incident
field E; at the reference poi@e ¢ in the following formula

5 _D.E | Pe oikes
Ed(Pobs) = D Ei(Qref) S(Pe+9) € (2.99)
at whichD is the diffraction dyadic, whose elements contain the aiffion and the slope

diffraction coefficients, ang. is the distance between the reference pQt(s= 0) and the
edge (also first caustic of the diffracted rays) and the sgtcanstic of the diffracted rays. In a
system of a tube of rays the caustics are the lines perpdadtolthe propagation direction that
connect the references points of the cross-sectional.dretiss equation the spatial attenuation
simplifies for the case of the incident field having a planaveviiont as shown in equation
(2.98).

The application of UTD and GTD is limited to the frequency loé regarded system. Both
methods are usually used in combination with other methBadisinstance [52] combines GTD
with slot theory and the modal expansion technique for datmg the far field of microstrip
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antennas. Another example is the application of the UTD c¢netbwith Discrete Fourier
Transform (DFT) on arrays [50].

2.2 Approachs for Modeling Conformal Antennas

Due to the increasing popularity of conformal antennaseris\approachs for their modeling
and simulation have been proposed. These proposals art inase or less on the former pre-
sented numerical techniques. This section will summatiesé conformal antenna modeling
methods giving the reader a general overview.

2.2.1 Application of the Transmission Line Model

Early works creating models for conformal antennas weravel@from their planar analogues.
For instance Munson in his work [53] makes an analysis of dararal microstrip antenna

using an adapted version of his model for planar antennasdbas the Transmission Line
Model (TML). The latter model, which can be found in [1] andl]1lis the easiest but the less
versatile and less accurate way to model a patch antenndareidre it will not be presented
in the present thesis work.

2.2.2 Application of the Cavity Model

The Cavity Model is a method for approximating the behavioumicrostrip patch antennas
by assuming the patch antenna to be a cavity. A detaileddattion to this technique can
be found in several works like [3], [1] and [2] and [8]. Thisomant cavity is described as a
dielectric volume enclosed by six rectangular surfacebénchse of a rectangular patch. In the
case of a circular patch the boundaries of the cavity areutfaces of a cylinder: the lateral
surface plus the top and bottom caps.

In both cases, the latter two surfaces of the cavity, whialhespond to the patch and the
ground plane, are assumed to be perfect electrical condu(@&C’'s). The other walls of
the dielectric loaded cavity are modeled as perfect mageetiductors (PMC). According to
Balanis [1] the current distributions on the patch are eglab the modes of the cavity that
behaves like a truncated waveguide.

This method has a good accuracy at the resonant frequentlyedatter deteriorates outside
the resonance region. Nevertheless, it has been used imabenp thesis work and hence the
method and its implementation will be presented in the neapter.

2.2.3 Approachs based on methods applied to volume: FDTD, Fland
FEM

Methods that use cubic mesh elements to treat antenna prsplike FDTD and FIT, can not
give accurate solutions but approximate the conformityuofed antennas. Additional meshing
techniques can enhance the accuracy of the approximatamsequently, as mentioned in the
former section, FIT uses the PBA mesh technique [32]. Inresfee to the FDTD method,
there exist a conformal variant and the latter can be usedogeirand simulate conformal
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antenna behaviour. Holland [25] is one of the pioneers ip@sog a generalized FDTD for
non-orthogonal coordinates and hence for conformal sirast

The studies made by He and Xu [54], and Kashatal. [27], for instance, are based on a
conformal FDTD variant. He and Xu use the conformal FDTD idewrto obtain the near field
and the surface currents on the cylindrical microstrip Ipat€or it, they assume the cylinder
to be infinite and use perfectly matched layers (PML’s) toudate the necessary boundary
conditions. Furthermore they calculate the far field radraby using a modified version of
the spectral domain dyadic Green'’s functions in the antyitcglindrically stratified media. The
same proceeding is done in [27] with the exception that th&dhl is calculated from the near
field by transforming it using the field equivalence prineipl

Due to the fact that FEM uses tetrahedal and triangular gressrmesh elements, single or
doubly curved structures can be discretized with bettenraoy than with rectangular bricks.
Consequently, in conformal antenna analysis, where FES8&dbanethods are used as solvers,
the FEM technique is used to calculate the electromagnelitsfin the cavity and aperture,
which can be used to compute the surface currents of theeaatitenna zone. Macaet al.
in [38] and [39] proceed in a similar way. They used the hyWietBl, which models the
physical effects of surface curvature by means of a dyadee®s function. This Green’s
function, which couples the tangential electric and magrfetlds in the aperture, enforces
the boundary conditions on the tangential electric fieldr dkre radiating metallic surface. An
asymptotic form of the dyadic Green’s function is deterrdity means of UTD in order to
avoid complicated time-consuming calculations. stratifayers with UTD. Here the material
parameters are assumed to be constant within a finite eldméatre allowed to vary across
elements.

FDTD algorithms are in principle very promising and vergstid describe conformal struc-
tures. Nevertheless, the number of nodes used to accudsstyibe the geometry of an open
conformal component grows so that it makes FDTD not conwiniier fast analysis purposes.
Similar is valid for FIT that despite using mesh techniques still necessary a refinement of
the mesh, which enhances the number of unknowns. For FEM aiyglied to conformal an-
tennas, due to a suitable discretization of the air surrmgnithe antenna and the introduction of
absorbing boundary conditions, the number of unknown®as®s as well. For instance in [23]
the author bridges the modeler of the FEM based softwaredardo attain suitable meshed
surface and so to yield accurate results.

2.2.4 Approachs using the dyadic Green’s Function for confanal struc-
tures

Approachs to modeling conformal antennas based on the Gie@nction integrating equation

are limited to the difficulty of obtaining suitable expresss for the Green’s function. More-

over, the calculation of the required Green’s function igejeffort expensive. Nevertheless,
these techniques are the most proposed solution nowaday® dhe accuracy of the results.
Therefore, a basic step of these proceedings is either toletd the elements of the dyadic
Green’s function by means of feasable methods, or to apmabei them as good as possible
with suitable techniques. In some cases closed-form dy@déen’s functions are found and

applied.
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For instance, Thiel and Dreher [41] derivate the dyadic Gsetinction for closed cylin-
drical and cylindrical sector structures by means of a specdomain solution known as
equivalent-circuit approach . This technique proposed bghBr [42] creates a hybrid ma-
trix equation that describes the relations between thesfietween two medium regions via
a two-port representation. This is possible since the miffeal wave equations for tangential
field components become ordinary differential equatioasyely transmission lines equations
in spectral domain. Moreover, via this port representati@eninfluence of each layer in an strat-
ified media can be taken in account by multiplying its hybriatrix. By this way, the multilayer
Green’s Function can be determined.

Consequently, the procedure in [41] starts with the sofree-wave equation in spatial
domain that is converted into spectral domain. The soluierthe wave equation, which is
also transformed in frequency domain, is based on modalnsxpas that are expressed by
Fourier Series. The new spectral wave equation solutiamisgld by the boundary conditions
of the dielectric layers on the cylinder. In the followingetsolution is introduced to the spectral
wave equation and the resulting equations are expressectuit @quivalents in matrix form.

The spectral coefficients of the Dyadic Green’s Functiordaré/ed so that equatidh = G-J
is valid. For it, the spectral excitatiahis defined to a unit source. By this way, in the latter

equation the spectral Dyadic Green’s funct®mecomes equivalent to the spectral fieldnd
the coefficients for the Dyadic elements can be calculatadhBrmore, this spectral elements
of the spectral Green’s Function Dyad are transformed witinaerse Fourier Transform and
used then to form the respective spatial dyadic Green’s ttamcAt the end, the latter Dyad
can be used with a numerical technique like MoM, in order t@lwate the electric field of the
conformal antenna.

Another spectral domain approach example for cylindriogana using a transmission line
analogy is proposed by Biscontiat al.[43]. This method starts with the decomposition of the
field in TE and TM modes using the electric and the magneti¢ovguotentials in spectral
domain. These spectral potentials are defined as supegpssitf with coefficients "weighted"
Hankel functions. The coefficients are determined by matgtie boundary conditions. Then
the harmonic components of the spectral magnetic and ieldieid are calculated by means
of the spectral potentials. In the following, the obtainedds, which are linear combination
partial waves, are written in matrix form. Each layer is cdeigdy described matching the
tangential component at its boundary surfaces. For it thémmaity condition for the tangential
components at the interfaces are applied.

As next step the analogy with the transmission line is redlizy determinating a network by
mapping the tangential components of the electric and ntegiedds to voltages and currents
at the cylindrical interfaces. The resulting network ismalized in order to make it power con-
servative. Then every power conservative cylindrical fagyenapped into a power conservative
network. In such a representation the electromagnetic demyrconditions are represented by
connection between ports. In the following, the discoritinan the tangential component of
the magnetic field is translated into a step current disoaitii represented by a unit current
generator. Once that the network is excited, the amplitodese modal coefficients can be
calculated in the entire network.
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2.2.5 Other Techniques

Some techniques for modeling conformal antennas applgttirslaxwell’s Equations or their
derivative in integral form, like for instance the integfedld equations or the mixed poten-
tial integral equation (MPIE), in order to find the soughtud@n. Therefore, the conformal
structure, on which the antenna lies, is regarded as antafinia finite structure. For the first
approach these equations can be solved in a straigthfomayraising transformation methods
to facilitate the calculation. For the "truncated" struetapproach the boundaries have to be
taken into account and hence it becomes more difficult.

An example of each one of these approaches is given by Hersdtlal. [44]. In this paper
two solutions to a patch on a cylindrical bearer are preseritbe first is the case of a patch an-
tenna on a cylindrical structure assumed to be infinite. Bloersd case treats the same problem
but on a finite structure (a segment). For the infinite stmectase they use the spectral domain
approach, which consist in dermining with help of the Harfkelktions weighted with coeffi-
cients the electromagnetic field components for the in dyloal coordinates give Helmholtz
equation in frequency domain. The latter reduces to a Bd#ff&lential equation. The obtained
fields in each material can be decomposed into transverseatiagTM) and transvers electric
(TE) modes. Nevertheless, the modes are coupled due totdréanes of different dielectrics.
The unknown coefficients are determined by means of the myrabnditions. In the end the
spatial fields are yield with an inverse Fourier transform.

The solution to the truncated cylinder in [44] is attainedusyng the Boundary Element
Method (BEM). This technique often used for scattering peots reduces in dimension a prob-
lem in an unbounded three dimensional domain, in order eraehe unknown currents on the
surface of the scatterer [45]. In order to facilitate thesioh of the boundary integral equations,
this surface is discretized by constructing a boundary etémrmesh consisting of quadrilater-
als and triangles. Moreover, this quadrilateral elemergsnaapped into square master ele-
ments, the triangular elements into right, isosceles guidar master elements. The mappings
are performed using polynomial Lagrange shape functiomsis€quently, BEM does not put
restrictions on the geometric complexity of the scatterer.

In order to apply BEM, Herschleiet al. divide the problem in two regions: the dielec-
tric between the patch and the ground plane, and the freee spadhe following, the vector
formulation of the boundary integral equations, namely g¢lextric and magnetic field inte-
gral equations (EFIE and MFIE, respectively), are used dh tegions. The resulting integral
equations are linear equations systems that are coupledesro# they all can be put a matrix
equation, that can be solved by known techniques. The ragessegrations are perfomed by
Gauss-Legendre quadrature. Consequently, if the fieldribatibn on the surface is known,
the field a any arbitrary point can be determined by integrativer the surrounding surface.
Further information to the derivation for the boundary gred equations can be found in [12].

2.3 Finite Array Analysis Methods

Nowadays, analyses of finite arrays are realized with maddelsfinite arrays. There exist
several solutions for representing an infinite array due tpeater probability to find closed
form solutions for the Green functions or more accurate@prations than in the case of finite
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arrays. Nevertheless, the infinite periodic array modekdae entirely describe the behaviour
of finite arrays, even when they are very large, since it oth#smportant effects resulting from
the structure truncation. These effects have an influend¢bealements, specially for the ones
near the edges of the finite array.

A finite array can be modeled and simulated by using the cdiowead array element-by-
element field summation approach. Herein the aforemerdianéenna analysis methods are
used. This method is depending on the size of the finite antaigh is equivalent to the number
of elements, computational effort and time expensive. €quently, techniques were devel-
oped in order to improve the velocity of calculation at elatdey-element approach, to use
known solutions for infinite arrays by transforming them atusions for finite arrays, or to add
the truncation effects of finite arrays to existing analysih asymptotic methods. In the next
paragraphs three methods coming from these three methodgame presented.

2.3.1 Fast MoM Solution

Array analysis using the normal MoM procedure requires ai@omputation time due to the
calculations to be done at a high number of array elemenis.cbimes from the fact that the lat-
ter antennas are calculated one by one. In addition, theitgd storing the required matrices
is limited. Consequently, some approaches have been gebto accelarate the calculation.
Fasenfeset al. [47] present such approach that is applicable to arrays idkhtical elements
and arbitrary boundaries. The method is based on the Adalptiggral Method (AIM), which
projects the solution domain onto a regular grid to enabéeafghe Fast Fourier Transform
(FFT) algorithm.

The difference between AIM and by the author called GIFFThoeties on the choice on
radiating basis and testing functions. The AIM proceduresusneighbouring grid of approx-
imately equivalent monopole sources and the usual Green&tibn to computed the interac-
tions between the equivalent sources. In the method of Festeat al. the Green’s function is
approximated on an interpolation grid as a sum of separahblgtibns and the basis and testing
function integrations are done using the interpolated sdenction in the classical way.

Therefore, the array is described with a mask, which is ssid array boundary, over a
bounding box. The array boundary is defined by a closed pisedimear curve that encloses
the matrix. The bounding box is described by a matrix whogeand column dimensions are
equal to the number of elements of the planar or linear ailfag.mask approximates the array
boundary by indicating in the bounding box matrix the preseof an element with a 1 or the
non-presence with a 0 at the respective index location. m&iance, a mask for an array of
hexagonal structure is pictured in figure 2.5

From the array mask a matrix mask, which indicates cell inskparationg — ¢’ between
pairs of interacting array elements, is sythesized. Theimatask determines what sample
values of the Green’s function are needed to interpola#tonon-zero matrix entry represents
coupling between a pair of array elements with the corredimgnindex separation. Below, the
Electric Field Integration Equation (EFIE) is given by

G5 (c—<.22) @I(r)as = (2.100)
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Figure 2.5 : Mask for hexagonal array form

is applieed for the MoM procedure like in the following

N =
; S Z0F =VE  with ZRY = —(AR,GF(¢—¢,22),Af) (2.101)
n=1

HereAR andA are the basis and testing functions &= (AR, E). The inner product
symbol represents the integration over both array sourdeoeervation domain. The latter
expression can be expanded in the matrix form. FurtherntloeeGGreen’s function is approxi-
mated by Lagrange interpolation polynomibjsandL ; resulting in

GE(c—c,z7) > 5 Li(QLi@GEy jLi(Q)Lj(Z)  with GE,

NV

=68 -¢.2.7)
(2.102)
The Lagrange Green'’s function interpolation allows therirab be filled with fewer inner
product calculations than the standard MoM due to the sbfgmrature of the approximated
Green’s function. The mutual coupling matrix is approxiethtonsequently like in the follow-

ing

ZRR~ZR0 == 5 (AR Li(QLj(2) -Gy - (Li(S)Lj(2).AR) (2.103)
LT
There are three properties of the latter approximationdbatribute on the acceleration of
the common MoM approach. The first one is that unless the gt = (i%,i5) is in the
cell p’ the inner product/AR, Li(g)Lj(2)) vanishes. This is so because Lagrange polynomial is
non-zero only over the cell containig the interpolationmioiThe same is valid for the other

inner product(Li(c’)Lj(z’),/\ﬁ/>. Second property is related to the inner products too: fonea
array element they need to be calculated once since bothgioare identical for each element.
Moreover, if the Garlekin’s method is used the quantitiesexqqual. The last useful property is
that it is necessary to calculate the approximated Greentgion only for index pairs= (i, i2)
appearing within the matrix mask.
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The impedance matriirﬁ’]ﬁ is inaccurate if the cell separation is not sufficiently &asince
low order interpolation of the Green’s function is inacderaear the source point. To avoid this
inacccuracy the mutual impedance elements and the neytio@iring element impedances are
found by standard MoM. Consequently, the discretized ERIBatrix form can be written as

oz | [+ [Zo8] [1¥] = vl with azpg —zBR - 20 (2.104)

[AZr'%P\(] is called the Toeplitz Difference matrix. Its element valaee taken as zero for el-
ements that satisfi¢' — ¢| > 0. Thus the evaluation of this sparse matrix can be performed

quickly. The second matri*Zﬁ’qﬁ] is of convolutional form can be evaluated using a two-
dimensional FFT, which speeds the evaluation procedureneigl.

2.3.2 Fourier Windowing Method

The Fourier Windowing Method is used generally for largetéirarray analysis in order to
avoid rigorous element-by-element analysis, whose opétian for keeping numerical effort
reasonable can not be extended indefinitely to larger agddarrays. This techniqgue assumes
the array to be infinite and to have information about the it#iarray element. This method is
presented in [48] and [49].

In [49] the windowing technique is shown in more general wagl gor aN x N grid over
a periodic rectangle in scan space wherefrom the quantibpkes are taken. It assumes that
all elements are to be minimum scattering antennas to aeggreatiess extent. The infinite
array pattern repeats in the scan space with a certain patjptience any sampling of a whole
rectangle of these periodic dimensions contains all theriétion necessary to build up a large
finite array. The advantage of the rectangle can be noticeshle array pattern in scan space
is transformed back onto the aperture, the points produeesieced by the array spacings.

According to [49] the procedure starts with retrieving thériite array immersed element
pattern that is then divided by an estimate of the isolateayaglement. A hypothetical pattern
is obtained that enables the transform to the element aperline latter step reveals the true
excitations on the lattice. In addition to that, the yieldéalygens source pattern is multiplied
with the array factor of the finite array before transformibdpack to the aperture. This is
equivalent as convolving the aperture excitations withveod waves.

One optional advantage of this method is that it can handbe/darger than the original
size. This is reached by transforming back the Huygens squattern to the aperture and then
by scanning space on a larger grid by padding the datasetzertis. Back transforming of
the multiplication step reveals the true aperture exciteti These are truncated to the size and
shape of the finite array.

Furthermore, [48] shows the Fourier Windowing method iradelt derives first the "finite
array Green'’s function”. The derivation is based on the ddeotsson’s sum formula in the
case of finite sums. Therefore, a finite phased array is desthy a(M + M;) x (N+N;) cell
structure on the x-y-plane as depicted in 2.6. The curramtces of the finite array are defined
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Figure 2.6 : Finite phased array of microstrip patches

as excitations having a linear phase shift and amplitudertap

Jnn = Joow(ma nb)e Jko(maknb) (2.105)
with

1 if m=n=0
w(manb) =< real if Mi<m<M andif Ntj<n<N (2.106)
0 elsewhere

w(ma nb) is the windowing function. The exponents of the complex ewptial replace
the angles influence like in the followinf = sinBcosp and Ty = sinBsing. The excitation
amplitude oflog at cell (0,0) can be set to unity without loss of generaliycase of elementary
current sourcedpo = &(Foo) With Fop as position vector of that source. The “inferior" borders of
the array are defined byl = —M or Mj = —M +1 andN; = —N or N; = —N + 1 respectively.

By introducing the current distribution in the formula falculating the far field using the
Dyadic Green'’s functiofs (see chapter 1) and transforming upon other terms with tiesBo's
sum formula in the case of finite sums, the following is yielde

[ee]

En(Th) = { Z Z G (ky, Ky) ejkx(x"_xweij(yk_yk)}*W,\ile(Tx,Ty) (2.107)
m:

00 N=—00

with

Wi (T Ty) = 2N (T, Ty) (2.108)

T is the vector that gives the position of the observation fp@inl) are the subscripts of
the coordinates that give the number of cell containingpbigt. a andb are the dimensions of
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the elementary cells. The symt(élstands for the fourier transform ax) for the convolution
product. Consequently, the normalized fi€lgof the large finite array is the convolution of the
infinite array field with the window function.

The "finite array Green’s function can be expressed with the Dyadic Green'’s function
and the fourier transform of the excitation window. This igeg by the following expression
wherer’y; stands for the coordinates vector of the respective source

00 00

CZ':‘K/lIN(rkIWkI):{Z—n > > é(kx,ky)-e""X(Xk‘X@ej"x(yk‘m}*Wh'jl'N(Tx,Ty) (2.109)

ab M=—00 N=—00

Besides, [48] describes the calculation of the active serfaurrent distribution for patch
arrays. Therefore, each patch is supposed to have a cusrené\d@ously defined. An equation
that fulfils the boundary condition on the patch surface chisitates that on a conductor surface
the tangential electric field has become zero, and wher@rsthface current is defined as
an unknown is set by means of the expression (2.107). Themyisttegral equation is then
transformed into a matrix equation by defining the unknowtivacurrent function as a set of
basis functions. The system is then solved by using the @angocedure and the Method of
Moments.

According to [48], this technique gives good results andavedur predictions for elements
embedded in the center of large arrays since it takes auiatiginto account mutual coupling.
Nevertheless, it does not give good predictions for the etemat the borders and corners of
the array because edge effects are neglected.

Arbitrary shapes and illumination distributions can belgsed with this method as long
as the elements lie at multiples of the infinite array spaciAgcording to [49], reasonables
approximations are yielded even if the elements are rellgtcomplex and - against the initial
assumption - if these are not particularly good minimumtscets.

2.3.3 Asymptotic Approach

The approach presented by Janpugdee and Pathak in [50jgd badJTD. The authors use it
in order to analyse a large finite phased array of printednarsielements. Therefore, a finite
rectangular array of2N + 1) x (2M + 1) elements on an infinite grounded material slab is
considered. The surface current distribution in all elet®i@ne represented in terms of a proper
set of basic functiond;. Moreover, it is assumed the array elements to have the sanhtd s
basic functions. Consequently, the current distributiementJ,m is approximated like in the
following

-

Jam(T) = f )Crmi | € 0mml) ~ F(7)Coe ko oD (2.110)
m

r’ are the position vectors of the sourc€sy, the distribution current coefficients adidhe
unit vector, respectively. Furthermore, the field at an olaen point is given by the convolu-
tion intergral of the Dyadic Green'’s function and the cutidistribution. The resulting field can
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be separated in sum components composegh@f which comprend the convolution integrals
of the Green’s Function with the basis function, and theridbistion current coefficients. This is

N M oo
E= 5 5 EnmnCame o) (2.111)
k=—NI=—M
Due to the form of the latter expression, the current coeffits can be regarded as a Dis-
crete Fourier Transform (DFT) expansion. Consequentéyctiefficients can be replaced by its
spectral counterpar@ and the field function becomes

o 2No™M .
E=>% > Gk~ Z CuEx (2.112)
K=01=0 kIeD

In addition to that, the DFT expansion allows to take intooact the significant DFT terms
for the calculation of the field, as expressed with the rgjde approximation in the latter
equation. This is done by truncating the whole DFT expanaiwth retaining these relatively
few terms. According to [50], the DFT expasion is truncatedpproximately 10% to 20%
of the total number. Furthermore, the authors convert theefsums of the field function into
infinite Floquet-type modal sums of finite Poisson integusisig the Poisson sum formula.

The asymptotic evaluation of the resulting spectral irdegyields the contribution to the
total electric field. It is composed mainly of the followingédifield contributions: the Floquet
wave modal fieldE W, the Floquet edge-diffracted fiekf-¢, the Floquet corner-diffracted field
EdC, the Floquet edge-excited surface and leaky waves (SW / L) B¢ and the Floquet
corner-excited SW and LW fielEsc,

— ~ =f — — — —
E~ Z CulEq" +EGS+ESC+ES e+ ESM (2.113)
kleD

Janpugdee and Pathak attribute the Floquet Waves (FW'd)thelhe field produced by
infinite periodic arrays. This is due to the fact, that FW’sséwnly in a confined region of
space due to the array boundary truncation. Furthermaeg, ke the FW'’s ways as the source
for the diffracted Floquet edge-diffracted field, which hhe form of modal conical waves
emanating from the array edges. The FW’s diffract at the @@rand cause also the Floquet
corner-diffracted field. The respective ways of the latedfare of spherical kind and emanated
from the corners of the array in all directions.

According to the analysis in [50], more than one SW mode caexbi#ed depending on the
thickness and permittivity of the dielectric layer for a givfrequency range. While in some
configurations the LW can also be excited in addition to the SW's / LW'’s arosen from
diffraction on edges do not spread along the array. The SW¥'¢ due to the Floquet modal
corner diffraction have cylindrical spreading factor ajahe surface.

The further alternative of forming array element subgrouysnely subarrays, for calcu-
lating the array fields more efficiently is given in [50]. Trafernative is benefiting due to
the fact that the calculations are realized more efficiethiiyn the conventional brute force ar-
ray element-by-element field summation. Moreover, the @sthemark that non-rectangular
periodic array can also be treated as a sum of linear arrays.
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The asymptotic ray analysis can not deal with realisticyac@rent distribution, which is
in general non-smooth. Thus this method assumes simplethsamal slowly varying array
currents. Moreover, the realistic current distributioas de found by means of the use of
numerical techniques. Therefore, the authors recomereleaaated DFT-MoM procedure for
finding the currents on the printed antenna elements.



Chapter 3

Development of a hybrid method

The main task of the present thesis work is to perform far aelalysis of planar and conformal
finite array antennas. Therefore, microstrip patch antenvere chosen as the desired array
element, due to their versatily and inherent low profile. dididon to that, these candidates
can be designed for wide-band or and multi-band functicests. The reader has seen in the
latter chapter that there exist already methods for modelind analysing conformal antennas
and arrays. So the question arises: Why the developmentefanmethod although there exist
already techniques therefore? To answer this questionall@eving observations about the
latter methods have to be given.

Refering to the available techniques for treating finitgdaarray, there exist feasable ap-
proachs not for conformal arrays but for planar ones. Theardor this, is that the element
radiation in a conformal array is dependant of the geometdylence it can not be assumed
that all elements have in the same radiation behaviour albeti the desired observing direc-
tion (6, @). Contrariwise, for the planar array elements this asswonman be made. However,
there exist generally approaches for finite conformal artzgsed on the computation expen-
sive element-by-element treatment. Since the objectivia@fpresent thesis work is to find
a feasable way of modeling, simulating and analysing a clargenna system, the latter ap-
proach proposals can not be used.

Concerning the calculation methods for a conformal antetiveae exist a big number of
proposals. These come mainly from the classical methodsH&M, FDTD and MoM with
certain modifications or alterations. If these techniquesregarded close, it can be said that
FEM and FDTD (and so FIT) analyse more than is required for Eiukations of practical
conformal patch antennas: they discretize and calculatdi¢hd in the antenna and the space
region that surrounds it, analysing in greater scale in @mapn to the smaller active radiating
region. As aforementioned in the latter chapter, on one tideis promising since it yields
good results. On the other side, due to the increasingly highber of unknowns and con-
sequently high computation effort, this is disavantegeciensequently, these methods can
handle conformal antennas but they are not suitable foafaslysis of conformal arrays.

MoM, which relies on the choice of suitable Green’s funcsiiman integral form, links the
positions of equivalent sources on surfaces to the fields $&éms to be one of the optimum
choices for analyzing curved patch antennas. As MoM deals surfaces instead of volumes,
this gives a substantial savings in terms of the number ohawks to be solved. Nevertheless,
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the involvement of dielectric layers at the analysis of confal antennas complicate the calcu-
lations slowing the analysis process. Furthermore, in #se of finite large conformal arrays,
the matrix becomes too big making the calculation of the tsmudifficult and time consum-
ing. Although there exist some approaches to speed up tbelaabn for the planar arrays, for
instance the technique presented in the latter chaptese tten not be used for the conformal
counterparts.

As a consequence of the latter observations and in ordenty gat the main task of the
present thesis work, a new approach was envisaged. Foratnaination of an efficient and
versatile analysis method for the conformal array elemiée,FDTD, FIT or MoM with an
array forming and radiating network was seen as possiblgisnl This chapter concentrates
on the development of such a hybrid method and the respeagtplementation.

3.1 Method concept

The basic concept of the presented method is to analysediaing elements of an array by
performing a decomposition of the active radiating regiosmaller discrete regions that can
be modeled by equivalent sources. These sources are aakbilelectrical currents that are
acquired by means of numerical techniques applied to valtwnénstance FDTD or FIT, or by
means of the cavity model. Furthermore, the method calesikiie electromagnetic far field of
an antenna array by applying analytical radiation formuala¢he obtained active region of the
entire array.

For it, conditioned to the availability of input data the imed can be initialized by recov-
ering necessary values for the method treatment. In addiie array structure, including the
form of its elements, has to be generated. Furthermorestag alement has to be modeled by
means of its radiation characteristics. Besides, it isrgggddo obtain the current values of the
active region of the array elements, namely at the metadtiches. In the following, the array
composed by elements, based on the latter modeling, hasféo field analysed. The last step
is the implementation of the radiation network giving thesided radiation characteristics for
the entire array. Figure 3.1 depicts the latter mentionages of the method.

The modeling of the single array element is made by meanseofiezitary dipoles. Like
proposed in [11] and [51] the active radiating region, nantieé patch, can be decomposed on
single elementary dipoles lying on the patch surface. Thgaevalent sources can be defined in
order to take into account the interaction between diateatrd metallic patch. The reason for
this is, that in typical cases both the antenna’s structodesarrounding region are formed by a
relatively small number of homogenous volumes of dieleatraterial. As a result, the field in
such volumes can be represented by equivalent electric agaetic current densities located
at the boundaries of these volumes [23]. The use of such &eguivsurface sources minimizes
the number of unknowns required to determine both the fiedttlenthe antenna structure, as
well as in the far field region. The latter approach implieat tiihe current distribution on the
active region of the patch antenna should be known. Therewargossibilities to obtain these
currents values. First option, and possibly the most atewae, is to calculate the surface
current on the patch element with the help of realiable nuthike the FDTD, FIT or MoM.
Second possibility is to use an approximation model likeddaty model in order to generate
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Figure 3.1 : Structure of the Equivalent Sources Method

analytic currents on the patch.

Concerning the second stage for the modelling of a non-gdhal large finite array the
conformal structure has to be adequately described. For the proposed approach of the
present thesis work, the generation of a large finite arrajvisled in two realization parts in
order to cope efficiently with this task. The first part yietdsuild from the antenna element
a small antenna array, namely a subarray, taking into atdbenmutual influence between
the array elements known as mutual coupling. The secondaparbaches the realization of
the large finite array structure by using the generated saymmas elements. Furthermore,
the option of composing the entire array with array eleméntsvailable. The challenge of
producing a conformal structure for the antenna arrayfitsel be coped by approximating the
conformal array elements with flat array element on a curéactsre, as it is proposed by
Werneret al.in [46] and Allardet al. in [77]. Furthermore, this simplification is only possible
for a certain moderate degree of curvature as Weenal. [46] imply. Nevertheless, for many
problems of practical interest, like an array on a fusilaggficient accuracy can be achieved
by solving this problem via this approximation. Moreovéistapproach simplifies the use and
the adaptation of the analytical formulae.

In addition to that, it has to be mentioned that conformadyaapproximations with planar
subarrays [56], [57] and planar elements [77] has beendiinesalized. Moreover, certain tech-
niques that derive from these approximations like Kalith&hree segment array” [57] have
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been developed. The basic idea of these approaches is ttegrofn known planar array or
element characteristics for further analysis or synth&imcerning the procedure for building
the conformal array structure in the present thesis wotkastto be added, that unlike the last
approaches it is independent of the degree of curvatureeddiitay element. Thus, despite the
approximation of the conformal antenna with a planar coyate: in the present thesis work,
the construction of the conformal array and the field analgencept are general.

The last stage of this method concerns the radiation netttatkcalculates the electric far
field of the conformal array. Moreover, it computes the radrapattern and the directivity of
the entire antenna system. Besides that, the possibilipedbrming beam steering is given.
Therefore, analytical formulae coming from antenna theamgy implemented. Furthermore,
modules for the generation of files containing calculated défar field measure quantities are
implemented. In addition to that and for reasons of visadilin, additional modules for the
generation of pattern and directivity diagrams are implet®@. For it, the information stored
in the data files is used.

3.2 Algorithm structure and development proceeding

In order to put the approach into practice, an algorithm heenldeveloped. The algorithm
development proceeding follows strictly the method cohstgges. Consequently, the first de-
velopment step has the purpose of generating the radiatdieli of a single antenna. For
that, it is necessary to find a way of modelling the unitanaamlement. This goal is reached
by decomposing the radiating region of this element, nariedypatch, in several contributing
radiating points. The option of modelling the metallic fatif the microstrip antenna as flat
or with a certain degree of curvature is available. The latteealized by means of a distri-
bution application. From the modelled array element, aayaaf small size it is built. The
already existing distribution application used for pasitng the radiating points also allows the
modelling of arrays with a conformal shape. The resultingestay permits the realization of
the large array. The last development step is the realizatithe far field analysis in order to
obtain the desired quantities.

The algorithm structure of the modelling process is basetth@afore given method stages.
The first stage is the initialization, where the input datéindel by the user is retrieved from
the respective files. Consequently, by means of this infaonaertain constants and variable
values are defined. The next stage starts with the calcalafiehe array geometry in space
using the acquired input data. This comprises the posiigof each array element (and sub-
array) plus the calculation of the respective normals orptaear or conformal bearer. As next
step follows the positioning and normals calculation of doglivalent sources for each array
element. This component operates analogue to the forngesst&urthermore, the orientations
of each equivalent sources is computed if required. Theliquocess component handles the
current distribution on all equivalent sources. Thereftre excitations are retrieved from files
with pre-calculated values or they are approximated by me#éithe cavity model. The next
module realizes the calculation of the electric far field.réiie, the computations are done by
means of analytical formulae. The sixth component contaigenerator of far field quanti-
ties such as radiation pattern and directivity. Furtheemarfield conversion between spherical
and cartesian coordinates can be here performed. The hattéule is the generation of files
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Figure 3.2 : Single layer patch antenna

containing all the gained data.

The development of the algorithm in the present thesis wiaikss in contrast to its struc-
ture, by defining the array element and continues step bytstéye desired large array. Con-
sequently, the algorithm will be presented to the reader digjggfurther in detail along the
aforementioned development steps.

Moreover, it is necessary for the method and respectiveritihgo to know the array ele-
ment to be handled. This element is a planar microstrip awatend it is described graphically
in figure 3.2. The microstrip patch antenna depicted is ataraed by a metallic patch of
negligible thickness, a dielectric substrate with a carf@rmittivity €, and a ground plane of
certain thickness. Furthermore, in this pictrandW give the dimensions of the patdinthe
thickness of the substrate, addas well asdy the cell dimensions, respectively. The antenna
array to be modelled can be seen as a composition of elemiént Each of these cells is de-
scribed then by the latter antenna and consequently thendiores of the cell are equivalent to
the array spacing values.

3.3 Patch antenna modelling by equivalent sources

In order to model the patch array element by means of soutbhegquivalence Principle
presented in chapter 1 is applied. This principle statesahaal and a "ficticious" source are
equivalent within a region if both produce the same fieldshat region. These “ficticious"
sources are described by their electric and magnetic dstréfhe currents can be obtained
from the magnetic and electric tangential fields on the bamntimit. In the analysed case of
the present thesis work, this boundary is equivalent to #tehpof the microstrip antenna and
its entourage. Consequently, the radiating patch can lreasethe sole active radiating region.
Therefore, the group of equivalent sources must lie on ttierlavo dimensional boundary.
Furthermore, in order to model the radiating patch with egjent sources, the metallic patch
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surface must be discretized.

The sought radiating field of the microstrip antenna can lergened from these equiva-
lent sources by using analytical formulae for the free sgase. In the method developed in
the present thesis work, the equivalent sources have oetyriel currents. These excitations
are calculated with the help of the tangentthfield components at the boundary, namely at
the metallic patch level. For it, external software basedbf D, FIT or MoM can be used.
There exist also the possibility of obtaining the requiredents by the analytical way. Both
approaches are presented in detail later on.

3.3.1 Patch surface discretization

In order to yield the modelling of a microstrip antenna witjusvalent sources the patch sur-
face of the antenna has to be discretized in small elemetis.i§ performed by dividing the
patch surface in several small surfaces. Each of this smddce elements is then represented
by an equivalent source. For carrying out the latter steps,necessary to define the patch
surface form with discrete points and to attribute the eajeivt sources to these points. Fur-
thermore, these discrete points are equivalent to the geicaleentre of the surface elements.
The surface definition and the source attribution in thetgitocedure steps are performed by
a position distribution algorithm. This essential compurelows to realize the definition of
the array structure as well as the definition of the patcheserform. Three kind of positioning
modules have been developed in the present thesis workehHatim such a position distribu-
tion. They have been conceived with the purpose of definiaganl cylindrical and spherical
structures. They are presented to the reader later on. tohaes said that, the microstrip an-
tennas analysed in the present thesis work are supposedolarze and therefore the planar
positioning algorithm has been used.

Independent of the patch shape, the discretization of tii@trag surface results iM - N
small surface elements. Furthermore, the positioningrdhguos yields @ x N matrix contain-
ing all positioning vectors towards the geometrical ceofréthese discrete surfaces. For each
geometrical point described by the resulting position iraan equivalent source is defined.
The assigned sources have their respective currents aaguidistant along the patch surface,
which is limited by its dimensions. Moreover, dependinglo# information about the patch
geometrical dimensions the points given by the positionegjors form a rectangular shape or
even a square.

3.3.1.1 Mask according to the patch shape

The afore described discretization procedure of the patdhce garantees the layout of a patch
shape of rectangular or quadratic kind but it is not suitdbteelliptical or circular shapes.
Consequently, it is neccessary to give the possibility ofceving different shapes. This is
realized by the introduction of masks. A mask approximatesgatch boundary, which is a
closed linear curve, by indicating in a mask matrix the pneseof an element with a 1 or the
non-presence with a 0 at the respective index location. masix is later on applied on the
position matrix of the equivalent sources in order to ativa deactivate the radiation of certain
sources. This means that the resulting group of sourceisratimtes, is the equivalent to the
radiating patch taking into account its shape.
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Figure 3.3 : Mask for circular patch form

For instance, figure 3.3 shows a possible approximationeotiticular patch form by square
segments, which contain the equivalent sources. In theeptrabesis work a mask module
for the approximation of circular shape patches has beeatarte This module is based on
the latter approach. For it, the distance of each equivaleutce position in reference to the
geometrical centre of the patch is compared to the radiubeofiesired circular shape. The
sources outside the circular boundary are deactivatettiee sources contribute to the radiation
of the patch. Furthermore, the accuracy of the patch forreqomation depends on the number
of equivalent sources used: the more sources are used fesegpation of the patch, the more
accurate is the approximation of the curved patch form.

3.3.2 Far field radiation of an equivalent source

As aforementioned, every patch surface element is repebdry an equivalent source that
is described in the present thesis work by its respectiveents. Applying the Equivalence
Principle on this model, each patch surface element is cteraed by an equivalent electric
current. This excitation quantity depends on the diffeeebetween the magnetic fields at the
boundary, this is, above and below the radiating patch. Tiévalent source can be handled
as an infinitesimal dipole. Consequently, the radiatedtetefar field E can be calculated by
means of the magnetic vector poten#lahs shown in equation (1.73) in chapter 1. Moreover,
the vector potential can be obtained knowing the excitatioment with the equation (1.72).

Furthermore, both formulae can be simplified by using thdiédd approximations given
in (1.74) in chapter 1. Consequently, the equations (1.76)(4.77) are obtained. Assum-
ing that the the radiating patch of the microstrip antenndigsretized and approximated by

M - N equivalent sources, then the vector potenﬁqglmn of a surface elemenim,n) for the
observation point;; in direction(6;, @;) is given by

A = £l ~rmncosb (3.1)
1]

Irmn is the oriented length of the infinitesimal dipole;; andry,, are the magnitudes of
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ly r-r'cosy

Figure 3.4 : Patch surface element position for antenna system analysis

the position vectors towards the observing pa@iptand towards the sourdg,,,, respectively.
The spatial anglgj; mn is calculated by means of the aforementioned vectors. Tdrerethe

relationship between the vectdig andry,, and the cosine of the angig; mn that is enclosed
by these vectors is used in the following way

COSLIJ" o ?I] F’énn — l.|J o arCCOS< F)” ﬁ/‘nn ) (3 2)
j,mn— j,mn— .
P R P . 73 | Ffnn

Figure 3.4 depicts an example for a discretized patch. Ttuhi@s parallel to the x-y-plane
and is discretized iM - N rectangular surface elements. The reader can observe slimpof
one of these elements. The observation point lies in thedht fience the vectors between the
origin and the surface element are nearby parallel.

In order to handle the discretized elements as infinitesammlles, the magnitude Ofan
must be infinitesimal small. Technically speaking, thisssimust be smaller than a tenth of
the wavelength. Consequently, this magnitude is limitedi leence defined by the wavelength
A= %, which depends of the regarded frequeh@nd the medium’s permittivitg,, and by
the discretization numbeM andN.

In order to simplify the handling of the spatial angles, thalgsis of the far field is done
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in spherical coordinates. But for reasons of simplicitysikess difficult to attain the magnetic
vector potential using Cartesian coordinates. Therethesyector potential is calculated first in
Cartesian coordinates and then it is converted by means ebr@ioate transformation matrix
(see appendix A) into spherical ones. The magnetic vectmngpial components in spherical
coordinates has the following form

Ajmn = Al mnsinG;cosy; +A,yj7mnsin9i SiNQ; + Af; 1nCOH;
AieLmn - Ai')(j,mncosei COS(p1+A1>/j7mnCOSGi sing; _Aizj,mnSinGi

'([J?7mn - _Aixj,mnSin(pj +Aiyj7mn009(pj (3.3)
i mn A,%vmn andA,-ZLmn are the vector potential cartesian componentsAing, -ejmn and
-(‘J? mn @re the spherical counterparts. In the end, the complex ooergs of the electric far

field EJ-?mn from a discretized surface elemgimt, n) for the observation poirtg; in direction
(6i, ;) can be given by the following equation set

Ejmn =~ O (3.4)

kg| mre k(i —IanCOSWij mn)

S (1%,,cOSB; cosg; + 1¥,,cosh; sing; — 1Z,.sing;) (3.5)

J2TWoEr
E(p k(2)|mne*jk0(rij *r(ﬂnncosqjij.mn)

ij,mn

(—Ihnsing; + 1¥,,cosp;) (3.6)

J2TIE

These equations were implemented in form of a FORTRAN cotieréfore, the given ex-
pressions were taken directly and translated to FORTRANvabtpnt commands. The resulting
FORTRAN functions, subroutines and structures were writtedifferent modules and in a
main program.

3.3.2.1 Validation: application on dipoles

In order to validate the developed algorithm and respecinge, certain cases handling finite
length dipoles have been simulated by means of a small progrdcFORTRAN. Figure 3.5

depicts such a dipole that is characterized by its lethgéimd its orientation. The dipoles are
modelled with the help of equivalent sources. Each finitgtleripole has been discretized in
K small dipole elements, which are represented by respeetjuezalent sources. The dipole
has been fed with a sinousoidal current according to equéli’8) in chapter 1. According

to equation (1.79) the finite length dipole field is the intggm of the fields generated by its
equivalent sources, namely infinitesimal dipole eleméenite discrete form of the latter formula

for the field of the finite length dipolﬁﬁ' Pl for an observation poinr, 8, ¢;) in the far field is
~dpl o e
5f=gﬁm (3.7)

In the latter expressioﬁij,k is the contribution of a discrete small dipole in referercéhe
observation poinr, 6;, @;).
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Figure 3.5 : Geometry of a finite length dipole z-direction oriented

Moreover, for each finite length dipole case, the coordmat&yin has been defined as the
dipole’s geometrical centre. Consequently, the origimésreference point for the symmetrical
positioning of all equivalent sources. The dipole’s lengdls been defined along one of the axes
of the coordinates. Thus, thépositions of the resulting dipole elements have been Higed
symmetrically along the chosen axis. The length of eachldiptement has been fixed to
Al = %. The number of elements k§ = 5 and hence it depends of the wavelengthnd
of the length of the dipol&. The positioning of the dipole elements, and consequeiitlije
equivalent sources, has been done by changing the value aotbrdinate of the respective
chosen axis. The coordinates of thésources have been saved iKaized vector. Due to
the choice of the origin as reference point, these vectdrgositioning vector, of all dipole
elements. Concerning the current values at the sourceshthe been calculated using the
sinusoidal current distribution presented in expressior) in chapter 1. In this validation case
all oriented lengths of the dipole elements are equal. Maredhe oriented length is related
with the orthonormal vector of the axiswhere at the finite dipole expands. Hefge I'= Al -T.
For instance, if the finite dipole is aligned to the x-axierh has only x-components. The
other components in y and z-direction have the value zere.|atter, simplifies the calculation
procedure of these validation cases.

The contributionsﬁqj,k to the magnetic vector potential due to each elementaryaliee
been attained by inserting all the aforementioned necgsygaut values in the expression (3.1).
Therein, the equation is adapted by definmg- k andn = 1. Furthermore, the for the vector
potential calculation indispensable andlg x has been obtained applying the position vector
r,. and the vector towards the observing painion equation (3.2). There aMy - Ny observing
points and hencé=1,...,Ng and j = 1,...,Ny. It has to be reported, that a special case
take place if the discretized finite dipole expands alongztagis. Here, the angle valugs; «
coincide with the ones of the spatial an@lér the respective observing points. Consequently,
if the observation points are given in spherical coordisatieen thed values corresponding to
the latter points can be taken for thg x values saving additional calculation. For the cases,
wherein the discretized dipole is positioned along the x-axig, the valueg);j x and6; are
related to each other ds; x = 7 — 6;.

The obtained vector potential contributions in Cartesiaordinated; j k are then converted

into spherical componen&s‘jpl? by using the respective transformation matrix.The eledar
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Allocation matrixEn&%
Definition@ =0
Definition@= 10
Definitionrad = 1.0- 10*
fori=1,Ng
Calculation ofg; with A6 andi
for j=1,N,
Calculation ofp; with Ap and]
Calculation ofrjj with rad, 6;, @
Conversion frontj; into X;
DefintionAl = »
Definition Egipole = 0
for k=1,K
Assignation of¢, andly
Calculation of; x with X; andx;
Definition of I, with valueAl and vector
Calculation ofA;;  with Iy, I, andy;j
Conversion fromA;j i into ASPY
Calculation off;j  with A;Pf
Summation ofjj y to £
end

Storage of” in i
end
end

Table 3.1 : Code structure for far field calculation of a modelled finadjth dipole

field is then computed according to (1.77) by means of theovgcitential results. Furthermore,
an observation space in spherical coordinates has beeed&lirthe calculation of the far field.
This space is characterized by the respective sphericadveamposed of its radial component
r and its two angular components, these are, in elev@tammd azimuthp, respectively. Because
of the far field calculation, the radial value must be constanthe observing space. Moreover,
it has to exhibit a huge value, for instance in this validatase = 1.0- 10°m. TheNg 8-values
and theNy @-values have been defined and limited by the rg0ge60°]. Table 3.1 shows the
code proceeding for the far field analysis of this validation

For the implementation of the aforementioned algorithntpdure, the respective functions
have been embedded in three loop structured code. The dodatak a complex field matrix
for theNg - Ny, far field vectors according to the defined observation spates beginning. As
shown in table 3.1, the loop controled variabBeand @ are set to their starting values before
any calculation. Two merged loops "scan" the observati@tsfby varying the values of the
spatial angles. For it, at each step of the first loop the valiies enhanced by AB8. Similarly,
the value ofpis increased by A@, when the second loop progress. Inside these two loops the
spherical vector towards the observing pdintis defined and transformed by a matrix into a
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cartesian vectox j. Furthermore, the field function valu®; x is set to its starting value and
the length of the elementary dipolé&s is computed. Then, the third loop comes into action
by assignating the position of the sourgeas well as the currer and defining the dipole

element orientatioh. In addition to that, the phasgj  is calculated with the values @ and

X.. By means of all the latter values, the vector potenfluf'.iaj< and the field contributiom::ij,k
are computed. The third loop is run until the field contribatof the last dipole element is
computed. At the end of these loop the attained complex lr/aralueﬁﬁI Pl for the observation
point (6;, ;) is stored as an element of the complex field matrix. At the driti@other two
loops this complex matrix is filled with all electric field wecs for the defined observations

points.

In order to have a comparison with other results, the arealyfunction for calculating a
dipole oriented along the z-axis derived in [1] and presgmte(3.8) in chapter 1 has been
implemented by means of a small code in MATLAB. The disceditormula of the respective
field function for such a dipole for thilg - Ny observing points with the forni®;, ¢;) has the
following form

Ej = 0

5 _ lge ki cog*9 cosdy) — cog*g)

Ej =] : -

J 211 Sing;

Ei‘}’ =0 (3.8)

Therein,Zg is the intrinsic or wave impedande, the wavelengthl, the dipole lengthlg the
dipole excitation andj; the distance toward the observation point in direc(i@ng;), respec-
tively. The radiation pattern for both approachs and foesadipole cases has been computed.
For each case the three-dimensional pattern is shown byswéants in elevation and azimuth
direction. Furthermore, it has to be remarked that in theofohg cases the lengths of the
dipoles are given iiA that represents the wavelength. The first case run has beeé fipole.
The respective pattern is shown in figure 3.6. In additiorhtd,tthe calculation result in form
of the radiation pattern for & dipole is shown in the figure 3.7.

In diagrams 3.9 and 3.8 the plots give the graphical desonf the radiation behaviour
of the dipoles of lengtA and3\.
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Figure 3.6 : Pattern comparison for % dipole in elevation
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Figure 3.8 : Pattern comparison for é)\ dipole in elevation
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Figure 3.9 : Pattern comparison for é)\ dipole in elevation
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3.3.3 Effects of the ground plane

A microstrip antenna has in the general case always a grolame.p This metallic plate has
an important influence on the antenna radiation. Therefohas to be included into the patch
antenna model. In chapter 1 the radiation influence an iefpetfect electric conductor (PEC)
plate on a simple dipole has been examined. In the respestaraple, the dipole is positioned
parallel to the PEC plane at a certain distance, as it is the fa the equivalent sources used
for representing the patch surface of the microstrip argei@onsequently, the currents of the
equivalent sources are oriented parallel to the groundepl®doreover, equation (1.86) shows
that the reflected waves enhances the radiation by a sa€aliey factor". Thus, this influence
on the antenna radiation can be taken into account by aggpéyioh a factor on every equivalent
source of the patch antenna model. Consequently, the folgpVarray factor” function, which
is dependant on the source regarded, is multiplied to traraldield function of the sources.
Furthermore, the values underneath the ground plane haeatolled. The resulting expression
is

gope _ [ Eijmn- 2jsin(kohcosgijmn) for —5 <&jmn<3 3.9
M0 else (3:9)

at whichh is the distance between ground plane and the equivalentesourhe spatial
angle shift€jj mn is enclosed by the normal vectosn, of the patch surface elemefrh, n) and
the distance vectdkrj; m, between the source position point and the observing pomisithe
angleéj; mn can be calculated by the following formula

Ar)ij ,mn* Amn

costji mn= ———————
.1 = 1A o o

AF‘ij mn* Dmn )
— ii mm=arccoyf ———————— 3.10
Sijmn B el o) OO

The distance vector is defined A§j mn = Tij — Ty, Therein,ry,, is the source position
vector,Tj; is the vector towards the observing point in direct{®n ¢;), respectively. It has to
be remarked that the expression (3.9) is a discretizedorersi equation (1.86) presented in
chapter 1. Furthermore, due to anglemn's dependancy of the normal vector of the metallic
ground surface and of the source position vector, expnesg®9) and (3.10) allow to model
an infinite ground plane described by any arbitrary plangasa in space. Moreover, it can be
denoted that the normal vector can be retrieved matherigtimadoing partial derivatives on
the surface function at the required or analysed geomép@at. A more detailed description
of this calculation can be found in appendix A. There, therfgia for obtaining the normal
vector of a tangent plane at a certain point is given.

3.3.3.1 \Validation: different dipoles over a ground plane

Certain cases, wherein finite length dipoles are modellesboyvalent sources, have been anal-
ysed in order to validate the ground plane effects. Figut® 3hows the dimension and the
geometrical position of such a dipole. In each validatiosecthe infinite dipole element far
field has been calculated by using the field function of theeafpven expression (3.9). Fur-
thermore, expression (3.7) has been used in order to cadhlatotal field of the finite length
dipole. The validation of the ground plane modelling hashbealized in the same way as the
former presented validation of the source modelling. Cqueatly, the proceeding of the algo-
rithm is the same as for the source modelling algorithm: tpeld is symmetrically modelled
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Figure 3.10 : A x-direction oriented dipole positioned over a PEC layer

along one of the coordinates axis with the coordinatesmagireference point and by means of
K equivalent sources. All sources are treated as elemeniaojed of same lengthl and ori-
ented inl = Al -T. The vector potential contributioly; « of each dipole element is computed by

means of the angl$,17k, the excitatiory, the oriented Iength and vectorsjj andr) according
to (3.1). The latter equation has been adapted to the dipskesdy definingh= k andn =1

Furthermore, the cartesiay  is transformed into the spherlcalfph that is used to obtain
the field contributiorE;j k. This fleld contribution is the required fleld in equatior®(3n order
to yield the radiated field with the ground plane effEﬁtiE. For it, the anglé;j x has been
calculated by means of the vectd$;  andri,. The first vector has been attained by subducting
the source position vector from the vector towards the olagien vector, this id\rj; = Tjj —
r. Concerning the definition of the normal vectiy for each equivalent source, one of the
orthonormal axis vectors, which are orthogonal to the diparientation, has been chosen as
respective normal vector. The choice has been done acgaimithe desired placement of the
infinite PEC plate. Since all the sources lie on the same axasgueue and the planar ground
surface is infinite, all th& elements have the same normal vecipe= i. Moreover, a special
case takes place if the geometrical location of the diszadtiipole is on the x-y-plane and if the
dipoles length is small in comparison to the distance tow#né observing point. The spatial
angleg;j x overlaps with the region of the angde Thus, this spatial angle can be obtained by
means of the elevation values, fact that diminish the coerpedlculations. Another special
case happens for a placement of the finite dipole along thesz-the spatial angle becomes
EIJ k= 2 — 6.

Concerning the implementation of the algorithm, the codecstire given in table 3.1 has
been used, however, the latter has been extended with thelatédns of the ground plane’s
normal vectorri, the difference vectoAr;; x, the angleg;; , and the field contribution with
the ground plane eﬁe&EPE. The respective calculation steps have been added to tite thi
loop inside the code structure. Furthermore, the obsenvapace has been definedNy- Ny
observing pointgr, 6;,@;) lying in the far field withi =1,...,Ng andj = 1,...,Ny as well as
a constant huge-valued radius- 1.0- 10*. Consequently, the resulting fields have been stored
in a complexNg x Ny matrix. Table 3.2 shows the extended third loop, which reggahe third
loop of the previous code structure (table 3.1).

A comparison between the results obtained by the sourcelimgdapproach and the ones
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Definition of start values
for i=1,Ng
for j=1,Ny
for k=1,K
Assignation of¢ andly
Calculation ofy;j x with X;; andx;
Definition of [, with valueAl and vectot
Calculation Ofﬁqu with Iy, I andy;j k
Conversion fromf; i into AP
Calculation ofEj i with ASP
Calculation offi, with T
Calculation ofArj; \ with X;; andX,
Calculation of¢jj \ with i andAr;; k
Calculation oﬂ?i‘fiE with Ejj x and&jj x
Summation oﬁi‘fiE to Eioj' Pl
end
Storage o in i
end
end

Table 3.2 : Part of the code structure for far field calculation of a mdddlhorizontal dipole
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Figure 3.11 : Pattern comparison for a}% dipole at h= % over a PEC plane in elevation

by using straigthforward the analytical functions for tmeund plane effect on a dipole has been
made. For it, the analytical equation (1.86) of chapter 1b®e evaluated using the previous
presented analytical function for computing a dipole deenalong the z-axis in (3.8). Both
formulae have been implemented in an MATLAB code. The raaligbattern for the analytical
and the source modelling approachs for the case{gfeiementary dipole.

Furthermore, the influence of the distamdeetween radiation element and PEC layer an a
finite length dipole is presented in the following figure 3.The air-filled region separates with
its thickness the metallic ground plane from the radiating dipole. Theaafhg metallic layer
of infinite size is characterized by a perfect conductingavedur and by a negligible thickness.
As in the validation for the dipole modelling, the dipole ehgthA is fed with a sinousoidal
current according to equation (1.78) in chapter 1.
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Figure 3.12 : Pattern comparison for 5}% dipole at h= % over a PEC plane in elevation
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Figure 3.13 : Pattern comparison for a}% dipole at h= % over a PEC plane in elevation
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Figure 3.14 : Pattern comparison for afo dipole at h= A over a PEC plane in elevation
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Figure 3.15 : Pattern in elevation for a finite length dipole over a PEC mdar different heights
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(r.8,9)

Figure 3.16 : Geometry of a horizontal electric dipole on an infinite grded dielectric slab

3.3.4 Dielectric layer effects

The modelling of a microstrip patch antenna by means of edgmi sources has to take into
account the influence of the dielectric layer on the radmti®@herefore, Moini-Mazandarani
[11] and Bokhariet al.[51] developed additional functions for the far field caserider to apply
them directly to the spherical field function. Furthermdid, presents dielectric describing
functions in order to use them for patch radiation calcatatiReference [11] approachs these
functions by analysing and evaluating the potential egunatof a Hertztian dipole in air and in
the dielectric medium. The necessary integral equatiom®birained from the dyadic Green’s
function. These Sommerfeld integrals are solved by meakswfier transformation.

In a similar way the second approach in [51] examines andiates by means of the Fourier
transformation the integral equation obtained from Gred¢iméorem for an elementary dipole
that is considered to be an x-directed horizontal elecipold (HED) on an infinite grounded
dielectric slab as depicted in figure 3.16. This infinite exgiag medium is limited by a second
medium above and a metallic layer underneath. The secontumead composed of air and
hence defined by its constant valums= 0, Lo = 1 andeg = 1. The first medium corresponds
to a dielectric substrate described by the following valogs- 0, 41 = Ho, €1 = €0&r. The last
layer is a perfect conducting plate that is characterizeitishgonstant, = oo,

By an application of the volume equivalence theorem, thiedigc layer can be replaced by
equivalent volume polarisation currents. Moreover, ajpggjymage theory, the infinite ground
plane is replaced by images of these currents. Hence, the ggbmetry is composed by a set
of equivalent currents all radiating in free space. Thd fahl is equivalent to the superposition
of all contributions of these sources. The far fié&ferl due to the polarisation currends can
be given as
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e*jkor

h 0 oo

E 12 (k. ky,ks) = Eqo / dz A A 3 with Eao=—jkoZo (3.11)

Therein,ky, ky andk; are the Fourier transform variables in the spatial frequetmmain,
ko the free-space wavelengthy the intrinsic impedance andthe magnitude of the observa-
tion vectort, respectively. For the latter expression, the excitatmmrees are assumed to be
unbounded polarisation currents in the dielecric layenedineless, the resulting functions are
valid for bounded sources and for an observation point detitie source region. The polarisa-
tion currents are defined as

Jp(x,y,2) = %(sr ~1)E}, for |Z<h (3.12)
whereEQ),, stands for the actual electric field in the dielectric slabseal by the HED. The
rectangular components for the latter field can be obtainerlased-form in the two dimen-
sional Fourier transform domain. By introducing them intation (3.11) and applying the
Fourier integral theorem, the expression ﬁafferl reduces to a single integral along z that can
be calculated. This approach is called mixed potentiagnateequation technique (MPIE) by
Bokhariet al.in [51]. Consequently, the following rectangular compadsere obtained

) T cosBco sin
Efmix(6,9) = j2Eq [ : . fq’z .(Acosd—TB) (3.13)
Drm Dre
) ) T cosB 1
Efni,(6,9) = j2Egocospsing [f — | -(AcosB—TB) (3.14)
™ TE
. cosBcospsind(TA— BcosB
Eqm(0.9) = —j2Ea [ > Df( >] (3.15)
™

with

T = /& —sind? (3.16)

A = sin(kohT)cos(kphcos9) (3.17)
B = cos(kohT)sin(kghcos) (3.18)
D;M = g cosBcos(kohT) + jT sin(kohT) (3.19)
DI: = Tcos(khT)+ jcosdsin(kohT) (3.20)

These far field components can be transformed into the g@theroordinate system by
means of a coordinate transformation matrix. Knowing thatradial component of the field
vanishes in the far field, only titand@ components are calculated as in the following

f f f . f .
Egieo(8,:9) = EgyigcosBcosp+Eyg  cosBsing— Egg, ,SinG (3.21)
f far . f
EdiaerL(p(e? ¢ = _EdiaeerSIn(p—f— Ediaerl,ycoscp (3.22)

Furthermore, the far field of the x-directed HED and its imdge to the infinite ground
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plane are given by

E,Lél‘zrae(e,(p) = j2EgocosBcospsin(kohcosh) (3.23)
Eipg(8.9) = —j2Egsingsin(kohcosd) (3.24)

As aforementioned the total radiated field is the sum of ttied&eld contributions. Conse-
guently, the far field of the HED on an infinite grounded digledayer is the superposition of
the field due to the polarisation currents and the image ofi¢he generated by the HED itself
[51]. This can be written as

f f f
Eg”(6,0) = Engpe+Eqiae=Edo-fo (3.25)
Eo" (0,0) = EjEpe+Eqino=Edo- fo (3.26)

Moreover, due to the fact that the radiation contributiyp of the HED is the cause of the
fields coming from the dielectric slab, this contributiomdxee factored out, leaving the functions
fg andfy that represent all interactions due to the infinite grourdietictric layer. The yielded
functionsfg andf, describe the behaviour of electromagnetic waves when tlogagate across
the layered stack with a structure composed of a single hemmmgnd isotropic dielectric layer.
Due to the fact, that equation (3.11) is obtained from Gretlréorem and the Green’s function,
these dielectric effect functions are different if the nanlbf dielectric layers is increased.
Consequently, the microstrip antennas defined in the preékegsis work are composed of a
single dielectric layer.

For the case pictured in figure 3.16, wherein the dielecayet spreads in the x-y-plane
plus the HED is oriented in x - direction and the observingnp@ (r,0, @), the far field the
dielectric influence functions have the following form

2c0h- /g — sind2 . dkohcosd (3.27)
V& —sinB2 — je, cosBeot(kohy/ € — SinB?) '

. . akohcosd
fo(0) = 2c09-¢ (3.28)

cosd —j/& — sinB2cot(kohy/& — SinG?)

Therein, kg is the free-space wavelengtt, the complex permittivity constant arttithe
spatial angle, respectively. Furthermore, Bahl and Bleith[7] give the dielectric influence
functions for a HED oriented in x and y direction derived byang of the vector potential
approach. These are

g—1

Se+ Tsinez
fo(B) — cosh - @kohcosd . cosB-+j+/ & —sinB2tan(kohy/&r —sin6?) (3.29)
cosd —j/& — sinB2cot(kohy/& — SinG?)
. aAkohcosd
fo(6) = Cof- € (3.30)

V& — sinB2cot(kohy/&r — sinG?)
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The functionsfg(0) and fy(6) are multiplied to the respectiiy andE, component of the
electric far field like in the following

Eodier = fo-Eg (3.31)

From expressions (3.27) until (3.30) it becomes apparkat,functionsfg and fy, have the
spatial angleéd as an essential variable. In the corresponding case thecttiellayer expands
along the x-y plane and hence the z-axis becomes the norcctala# the dielectric surface and
of the radiating element. Furthermore, this angle givesribkénation between the observation
point(r, 0, @) and the z-axis. Consequently, these functions depend deoatly mainly of the
angular position of the layer with respect to the cartes@ordinates system. Moreover, this
angle depends of the dielectric surface normal and the vemi@rds the observing point. This
means that for the same dielectric layer, but that expan@s@mbitrary plane, the functiorfg
and f, can be adapted with the respective angle.

In addition to that, the reader may have noticed that thigeaisgequivalent to the afore
presented spatial angteused in the ground plane modelling in equation (3.9). Thelaase
can be interpreted as a special case of the dielectric nioglethse, wherein air is the dielectric
medium. Consequently, the spatial an§lis calculated by the afore given formula in equation
(3.10). Moreover, for the case of modelling a radiating pdtg means oM - N element(m, n)
the functions in equation set (3.32) are matched by repaitia angled depending functions
by &ij mndepending ones. The new adapted functions, which desttafluence of dielectric
layer positioned arbitrarily in space on a source whosesatiis one-dimensionally directed for
an observation poin, 8, ¢; in the far field, are

. ZCOSEij,mn‘ Er —Sinaijymn2~ék0hcoszijﬁmn (3 33)

£
1.mn e 2 . ) L 2
& — SiN&jj mn~ — j&r COSEjj mnCOt(Kohy/ & — SIN&jj mn")

—2CO0Ss5i; .ékOhCOSEij,mn
A — Sij mn (3.34)

ij,mn ] i > ; >
COSKjj mn—J1/ & — SiN&ij,mn” cot(kohy /& —sin&jj mn")

Furthermore, the new adapted dielectric effect functionafsource with a two-dimensional
directed current are

0 jkohCosEji
fij7mn = Coszijymn'elko ij.mn.
B Singij

COSEij mnt] \/Sr *SinEij ,mnz tan(koh\/ﬁr *SinEij .mnz)

COSEjj mn+

. (3.35)
COSEjj mn—j\/& — SIN&ij mn’ COt(Kohy/ & — SIN&ij mr)
9 _ COSEjj mn- €NCOSKij.mn (3.36)

ij,mn — . 2 . 2
Jor iy et g
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(Y I

Figure 3.17 : A x-direction oriented dipole embedded on the top of a gredralibstrate

In the present thesis work the modelled microstrip antemnasassumed to be composed
of a dielectric layer surrounded by air such as the aforerteest structure. Each medium is
defined by its electric conductivity, its magnetic permeability and its dielectric permittivity
€. The patch is supposed to be printed on or submerged in thexttie substrate’s upper side.
Although dielectric losses can be taken into account, inpilesent thesis work all dielectric
substrates are treated as lossless media.

In addition to that, the finite size of the ground plane is #eeh into account. Bokhaat
al. propose in [51] to use the calculated currents on the patdnéoinfinite ground plane case
in order to scatter the respective radiation on a finite gdguiane. For the evaluation of these
induced currents the weak conjugate gradient fast Fouaestorm (WCG-FFT) technique,
which tests the electric field integral equations with rtag-basis functions, is used. Another
possible way to include the effect of a finite ground planevemgby Huang in [52]. Therein, the
Slot theory or the Modal Expansion Technique combined witlib@s proposed as approach.

3.3.4.1 Validation: Finite length dipole on a grounded subsate

A finite length dipole has been modelled by equivalent saierealysed in order to validate
the dielectric effects. The dipole has a lengthLof )‘—20 and a diameter of negligible size. It
is embedded at the top of a grounded dielectric layer thaessribed by its thickneds =
0.2\o and its permittivitye, = 2.35. The dielectric layer and the ground plane, which is a
perfect electrical conductor (PEC) layer, expand alongxtyeplane. Figure 3.17 shows the
geometrical position of such a dipole. For this validatiase, the effects from the grounded
dielectric have been taken into account by applying theedtek effect functions according to
expressions (3.35) and (3.36). Furthermore, the totahtedifield of the finite length dipole
has been acquired by using equation (3.7) and followingtiyessof the afore given proceeding
for the source modelling algorithm.

Figure 3.18 shows the calculated E-plane and H-plane pdtiethe modelled dipole. This
validation case have been simulated and analised in [11f r€Bults using the equivalent
sources method yield the same pattern plots presentedrthere
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Figure 3.18 : E-plane and H-plane pattern of a finite length dipole embedadle a grounded
substrate

3.3.5 Far field radiation of a microstrip antenna

According to the basic concept of the approach presentdukiprtesent thesis work, the field
generated by the radiating region of the microstrip anteamebe seen as a superposition of the
field contributions generated by the radiating surface etgmthat are characterized by equiv-
alent sources. These sources lie equally separated indgienrihat represents the radiating
region of the antenna, namely, the patch surface. This ntbanhall the electric field contribu-
tions of the equivalent sources have to be summed up in codastain the field of the entire
microstrip antenna. Each field of these contributions isdgie with the afore presented far
field algorithm conceived for an equivalent source. Consatiy, the field of the microstrip an-
tennaﬁiﬁ’amh for an observation poirr, 8;, ;) in the far field is obtained by using the following
formula

M
_ h _
EPF'=3 S Eijmn (3.37)

In the latter equatioEij .mnStands for the field contributions of an equivalent soursei@s
ing the discretization of the radiating surfaceMnN small elements. Therefore, the first step in
order to obtain the far field radiation of a patch antenna digoretize the patch surface in small
surface elements. Second step is to calculate the posittbn@mal vectors at the geometrical
centres of these discrete surfaces. Third step is to obtagnaalculate the current density. Last
step is to compute the far field contributions of all disciigaces.

The geometrical discretization of the radiating surfaceemized by means of different
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positioning algorithms developed for the present thesiskwdhese algorithms distribute the
discrete surface elements in space according to the sugac®rm conceiving a structure that
approximates it. Furthermore, the positioning modulefdyie obtain all the positions of the
surface element centres in space, resulting in a mesheztldtt all modules the dimension of
the distances between the surface element centres areeiaalthat the discretized surfaces
can be represented by equivalent sources, namely infimiésiipoles. Consequently, the size
for each side of a grid rectangle has been chosen to be srttadlera tenth of the wavelength.
These resulting positions are stored in a matrix, whose eisnare the position coordinates
of the surface elements. Moreover, these elements are gigopovectors of the equivalent
sources. The positioning procedure at all modules stasts & reference point that can be the
geometrical centre of the respective surface. The choidd@positioning algorithm depends
on the kind of surface of the modelling patch. The positigratgorithms for planar, cylindrical
and spherical surfaces have been developed in this workhase are presented later on.

Assuming the discretization of the radiating surfacevinN small surface elements, the
positioning algorithms yields Bl x N matrix containing all positioning vectors towards the ge-
ometrical centre of these discrete surfaces. For each geoat@oint described by the resulting
position matrix, the normal vector of the respective discgurface at this point is calculated.
Depending on the surface structure, the latter can be adisimag by applying the respective
analytical function or approximating the normal vector gedrically. The normal vector cal-
culation algorithm generates a matrix with the same size@pbsition matrix. Both approach
are presented together with the positioning algorithmrlate Furthermore, due to the fact
that in the present thesis work conformal arrays are appratad by planar patch elements, the
normal vectors of all discrete surfaces that belong to ahpalement are the same.

Concerning the current densities at the discrete surfasegxternal analysis method in
order to retrieve these excitations is used. At the predestis work, the required currents
densities at the patch surface have been calculated by mé&msTD or FIT. Due to the fact
that the required grid structure in FDTD or FIT is finer thaa tliscretisation lattice produced by
the positioning modules of the present thesis work, therdlgo averages the current densities
calculated by the external method into the required exeitatfor the equivalent sources of the
discrete surfaces. This is realized by comparing the gathreyles of the external method and
the internal positioning module: the dimensiafg andW,; of the internal grid cell are divided
by the dimensionkey andWey Of the external cell. The acquired valugsandP, are summed
up intoP. This resulting value gives the number of external cell$ ¢batain one internal mesh
cell.

Pl — ||:|nt
x —  P=P+P (3.38)

P2 = Wee

Consequently, the current densitilf,ét of these external cells are averaged resulting in one
current density value?eqs for the internal grid rectangle.

P
egs =5 - Z I (3.39)

Furthermore, the option of calculating the current deesilly means of the cavity model is
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given in the present thesis work. Therein, the excitatiorsagproximated by dipole moments
that are equivalent to a multiplication of the current digttion at the dielectric layer surface by
the orientation length of elementary dipoles. Each origtgagth is defined by the orientation
vector and the length of the elementary dipole. The orieriatector of a discrete surface is
composed of the vectors that stretch the area of the dissvetace. Due to the fact that the
present thesis work handles planar patch elements, thesevare the same for all discrete
surfaces. The length of the elementary dipole is equivatetite minimum size of the internal

grid cell sides. It has to be remarked that the algorithm apghesent thesis work computes
for each arbitrary positioned surface element the requisedvectors, which expand the area
of the patch surface, by means of the surface normal vectare®der, the algorithm steers
the contribution of these vectors at the composition of thentation vector. Consequently, the
elementary dipole orientation can be defined by the user.

The computation of the complex field contributid:::mrnn of the equivalent sources, which
represent the surface elements of a discretized patchcsuifarealized by merging the algo-
rithm for the radiation of such a discretized surface elenfenn) in direction(6;, ¢;) with the
algorithms that model the ground plane and dielectric &ffeEor it, expressions (3.4) - (3.6)
and (3.35) - (3.36) have been fusioned yielding the follafer field function

Eiern ~ O (340)
21 ko(rij —rfnCosWij,mn)
e j i,
SIS i?mko . B (3.41)
’ ’ J2TIE i '
21 ko(rij —rfnCosWij mn)
e j is
EP ., =~ fi‘-"mn-I<O : N (3.42)

Thereinky = 2)\—” is the wave numbetp = 21tf the angular frequency, aregd the free-space

permittivity, respectively. In additiorfi?7mn and fi‘jpymn are the dielectric influence functions. Be-
sides thatr;; andry,, are the magnitudes of the position vectors towards the viggpointrj;

and towards the sourcg,,. Furthermore, the required spatial phgsgemn enclosed by the latter

vectors is obtained using equation (3.2). Moreodéymn andJi‘ﬁ’ymn are the spherical compo-
nents of the surface densily mn. The latter excitation density is calculated as aforenoeel

by means of an external module or by using the internal matialeapplies following equation

‘]iej,mn = Imn(IhncOS@; + 13,0sing;) (3.43)
I mn = Imn(—1Fnsing; +1%,cosp)) (3.44)

In the latter expressiok¥,,, I%n are the cartesian components of the oriented Ieﬁg{hlt
had to be said, that for a planar patch the compolggtwhose direction is parallel to the
normal vector of the patch surface, is equivalent to zerotduée fact that the electric cur-
rents exist only on the patch surface. Consequently, it doeappear in the latter equation set.
Furthermore]m is the excitation current of elemef, n). Its value is obtained by using the

cavity model approach that is presented in the presentsthesk later on. Moreover, the mul-

'e:jko(rij ~Incosij mn)

tiplication of the vectorJTLmn and the Green’s function term i in expressions
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(3.40) - (3.42) can be interpreted as the discrete vect@rpial Aij mn in spherical coordinates
if compared with afore given cartesian expression of thermmatg potential in (3.1).

3.3.5.1 Validation: planar patch antennas with dielectric

Based on the algorithm proceeding used at the validatioaricequivalent source and on the
afore given function that enhances the equivalent sourndlimg with ground plane and di-
electric effects, an algorithm for the far field analysis he®n developed. Consequently,
the proceeding of this algorithm is similar as for the sourgadelling: the radiating patch
is symmetrically modelled in reference to its geometriaitce by means d¥1 - N equivalent
sources. The latter point is defined by a position vectodmsi cartesian coordinate system.
All sources are treated as elementary dipoles of same lekigi¥ith the same orientation in
Imn=1=Al-({1+T2). T1 andT» are the cartesian tensing vectors of the patch surface. The
vector potential contributiodj mn in Cartesian coordinates of each surface elengenh) is
computed by means of the anglg mn, the excitatiorlymn, the oriented Iengtﬁ and vectors;
andry,, according to (3.1). Furthermore, the computation of theiapangley;; mn has been
realized according to (3.2). Moreover, in case of existirgmal precalculated current den-
sitiesJ; i mn, the cartesian vector potential is obtained by multiplyiingse excitations with the
Green’s function term.

Furthermore, the Cartesian vector potential is transfdriméo spherical form yielding
APh, that is used in combination with the spherical dielectrfeest functionsf® | andff
according to (3.29)-(3.30) and with other constants adogrtb (3.40) - (3.42) in order to ob-
tain the field contributiorEjj mn. The resulting field contribution is consequently the reetia
field of an equivalent source with the ground plane and dieteeffect. Furthermore, the re-
quired anglegjj mn for attaining fi?,mn and fi(j‘imn has been calculated by means of the vectors
ATij mn=Tij —lpandfimp according to (3.10). Besides that, the normal vetigyis for all sur-
face elements the same due to the planar patch surface assuntponsequently, the normal

vector at each source is equivalent to the patch surfacealaentor, this i, = fsyrt.

The implementation of the algorithm has been realized wiRO&TRAN code whose struc-
ture is given in table 3.3. For it, an observation space has loefined byNg - Ny observing
points with the form(r, 6;, @;) lying in the far field withi = 1,...,Ng andj = 1,...,Ny as well
as a constant huge-valued radius 1.0- 10*. The resulting fields have been stored in a complex
Ng x Ny matrix.

In order to calculate all points of the observing space, wapé are run like in the case for
the dipole’s simulation. These external loops in the FORNRAde vary the angle8; and;
in the range 0f0°,360] starting with values of @ Inside these loops the vector towards the
observation point; ; defined by the constant radius and the an@leand @; is converted by
a transformation matrix from this spherical into Cartestaordinates yielding iXj j. Then,
the field calculation of the patch for this observing poinsiarted. Due to the fact that the
equivalent sources model a two dimensional radiating sarfthe realization of the required
calculations has to be done with the help of two loops. Thetsenal loops steer the variables
and functions that contribute to the computation of the Ip&ild. The first step inside these
loops is to assign the required information to the respeatariables: the position vecta,,
of the equivalent source, the normal vector at this pBigt= fsyrf, the current valuéy, plus
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Allocation matrixEne,n(p
Definition® =0
Definitionp= 0
Definitionrad = 1.0- 10
Definition of start values
fori=1,Np
Calculation off; with A8 andi
for j=1,Ny
Calculation ofgp; with Ag and]
Calculation offjj with rad, 6;, @
Conversion frontj; into X;j
Definition Epatch= 0
for m=1,M
for n=1,N
Assignation o<, Imn plusAl or \J?j,mn, (1, I2 andfsyrf
Calculation of)i; mn With X; andX,,
Definition of I, With valueAl and vectors; andT,
Calculation ofA;j mn With Imn, Imn @ndWij mn
or with Jij mn andij mn
Conversion fromAij mninto A7 h
Assignation offi;n with Rgyr
Calculation ofArij; mn With X;; andX,,
Calculation 0f&jj mn With fimpn @andArij mn
Calculation offf | andf{ . with & mn
Calculation ofEjj mnwith APh
Summation o&;j mn to Eiﬁ’atc
end
end
Storage oE}™"in ;|
end
end

Table 3.3 : Code structure for field calculation of a modelled micrgspatch antenna
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Figure 3.19 : Geometry of a rectangular microstrip patch antenna

the elementary dipole lengtki or eventually the current densiJTan in Cartesian coordinates,
and the surface tensing vectafs i>. As next step, the required geometrical functions like
the spatial angleg)ij mn andéij mn, and if necessary the dipole orientatig, are calculated
with the latter variables. By taking all these required getinal values in addition to the
latter variables, the Cartesian vector potenfiglmn and the dielectric effects functiorfﬁ}mn

¢
and fij

Agjpgn The forelast step inside the internal loops is to obtainetleetric fieldE;j mn for the
element(m,n) by means of the vector potential and the dielectric effeatgfions. At the
end of internal loops the obtained field compond§|§§nn are summed up in order to define
the complex electric far fieléfj’amh for the observation poinr, 8;, ;). Moreover, each of the
resulting field values is stored as an element dfa< Ny, complex matrix. At the end of the
external loops a complex field matrix for the desired obseygpace is obtained.

are computed. Furthermor&,jvmn is converted in spherical coordinates resulting in

Validation cases for the patch modelling have been reahzid some examples of mi-
crostrip antennas. For it, simulations with the developmtkechave been performed. Paralell to
it, analytical formula has been derived following the sam@cpdure introduced in [7] in order
to validate the results. Therein, the patch antennas arelewds resonant cavities. Further-
more, their radiation behaviour is approximated by dieleatalls that behave like radiating
apertures. For the first validation case, the microstrigrama has a rectangular patch. The
geometry of the latter is depicted in figure 3.19. As aforetioeed, the result of the method
conceived in the present thesis work is compared with theoba@ analytical formula. Con-
sequently, the following analytical equation set for thefi@d of a microstrip antenna lying in
the x-y-plane has been derived and implemented



100 CHAPTER 3. DEVELOPMENT OF A HYBRID METHOD

o “kohwloe 1Ko . gin(@sineisincpj)sin(@sineicoscpo
= TijZo = kow sing; sing; kh sing; cosy;
L
.cos<k0 Zeff sinG; coscpj) - fo(65)
; kohwlge-ikori _ sin(@sineisincpj) sin(%sineicoscpj)
Eij = —]j———=—— { cosb;sing; Row = : Koh o :
TijZo =5~ SinG; sing; =5 sinB; cosy;
L
.cos<k0 ZEH Sing; coscpj) - fo(6)) (3.45)

Therein,L andw are the geometrical size of the patblihe dielectric thickness, respectively.
lo is the feeding currenkg the free space wave numbgg,the intrinsic impedance, respectively.
Furthermore fg and fy are the dielectric effect functions defined in equationg 3u2d 3.28. In
addition to thatL ¢t stands for the effective length, which takes into accouatémgth of the
patchL as well as the lengtAL of the region where fringing effects take place. The frigin
fields let appear the patch electrically longer comparingst@hysical dimension. Hence the
amount of fringing is a function of the patch length and wid#ttcording to [1] the effective
lengthLeft can be defined by the following expression

Left = L+ 2AL (3.46)

The lengthAL that describes the geometrical influence region of the ifngpgelds, is de-
fined by following relation

AL _ o gqolEet+03) (F+0.264)

h (gefr—0.258) (L 40.8)

The required effective dielectric constagt s is defined as in the following formula

(3.47)

N

W

> + > 1+ 12W . >1 (3.48)
A rectangular patch antenna that resonates at the frequerc$0.0GHz has been taken
for further analysis. This single layered microstrip amiznvith a dielectric thickness of =
1.588mm and a permittivity ofef = 2.2 has following patch dimension&: = 9.06mm and
w = 11.86mm. The behaviour of the latter patch antenna in form of#okation pattern has
been analysed. In the following diagrams, cuts in elevabioiine resulting three-dimensional
patterns are shown. These sections are don@ fort5° and® = 90°. Furthermore, additional
cuts in azimuth forp = 90° and @ = 0° have been performed. Figures 3.20 and 3.21 show
the radiation pattern in E-plane and H-plane for the firsidedion case. The pattern plots for
the analytical formula proceeding and for the method deedoin the present thesis work,
namely the equivalent source approach, are depicted irattex figures. The currents used at
the equivalent source approach are calculated by means o#tlity model.

e+1 sr—l{ h}_
Eeff =
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Figure 3.20 : E-plane directivity of a microstrip antenna with rectangupatch - currents cal-
culated with cavity model

Furthermore, additional diagrams have been plotted inrdaleompare the radiation be-
haviour caused by currents that are obtained by means ofathy enodel and by means of
the accurate FDTD. These pattern plots are given in appdhdixthe reader. The respective
figures show that the approximated currents with the helpetavity model converge towards
the FDTD ones and therefore they are acceptable. Moreogare 3.22 and 3.23 depict the
simulation with the equivalent source approach and the FDiEEhod. For them, the currents
have been calculated with FDTD.

The second validation case embraces a simulation of a nhigr@ntenna with a circular
patch. The geometry of the latter antenna is shown in figi4. 3 he simulation of the method
conceived in the present thesis work is compared with aryacal formula. Consequently, the
following analytical equation set for the far field compotgeaf a microstrip antenna lying in
the x-y-plane has been derived and implemented

Eirj ~ O
0  Kohaegtl e 1ko"ii . .
Ei = -] T J1(Koaefr) OSPj [Jo(Koaefr SiNG; ) — Jo(Koaefr SiNG;)| - fo(6;)
ij
KohaegrlgeIkorii . .
Ei‘f — ko aZfIF’--OZO J1(Koaefr) cOSB; Sing; - [Jo(Koaesr SING; )+
ij
+J2(Koaefr SinG; )] - fo(6)) (3.49)

In the latter equationdy, J; andJ, stand for the first kind Bessel functions of null, first and
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Figure 3.21 : H-plane directivity of a microstrip antenna with rectangupatch - currents cal-
culated with cavity model
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Figure 3.22 : E-plane directivity of a m
culated with FDTD

icrostrip antenna with rectangupatch - currents cal-
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Figure 3.23 : H-plane directivity of a microstrip antenna with rectangupatch - currents cal-
culated with FDTD

Figure 3.24 : Geometry of a circular microstrip patch antenna
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Figure 3.25 : E-plane directivity pattern of a microstrip antenna withiazilar patch - currents
calculated with cavity model

second order, respectively. Moreovigy,is the wave number in radial directiol, the feeding
current,h the dielectric layer thicknesgg the free space wave number, afigithe intrinsic
impedance, respectively. Furthermofg,and f, are the dielectric effect functions defined in
equations 3.27 and 3.28. As in the rectangular case patehegiion, wherein fringing effects
take place, is taking into account by defining an effectivBusa.s. This radius has generally
greater values than the actual physical radiltecause the fringing fields let appear the patch
electrically larger. The effective radius is yielded by meaf the following expression

Aeff = A (l+ 2h [|n(%) + 1.772@) ? (3.50)
For the validation, a circular patch antenna with the resoaedrequencyf = 10.0GHz
has been taken for further analysis. This single layeredasidp antenna with a dielectric
thickness oth = 1.588mm and a permittivity ofess = 2.2 has a circular patch described by

its physical radiua = 5.25mm. The necessary currents have been acquired by usinguity
model. In order to test the simulation with the analyticahfalae, the radiation behaviour has
been visualized by means of plots. The respective diagraenprasented in figures 3.25 and
3.26. Additional plots have been realized in order to coraplae results with currents by means
of the cavity model in contrast to the acquired currents WIEW D. These figures are shown in
appendix D to the reader. These plots demonstrate that grexamated currents with the help
of the cavity model are acceptable.

r

As in the other examples the plot lines of both methods aréctegh In these diagrams
the curves show the radiation pattern of the microstrip ramdein elevation fo® = 45° and
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Figure 3.26 : H-plane directivity pattern of a microstrip antenna withrailar patch - currents
calculated with cavity model

for 8 = 90°. Furthermore, the pattern in azimuth fpe= 90° and for@ = 0° are depicted. In
addition to the latter results, a comparison of them withréselilts using the FDTD method are
presented in figure 3.27 and 3.28. Therein, the currentslhese calculated with FDTD.
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Figure 3.27 : E-plane directivity pattern of a microstrip antenna withiazilar patch - currents
calculated with FDTD

90°
1205 60°
4 =T NG N
N\
15 h N\ 30°
A
180 0°
0 420 -f10 (db)
21 330°
— equiv.sources method, phi= 90 z
- = FDTD approach, phi= 90 300°
—
270°

Figure 3.28 : H-plane directivity pattern of a microstrip antenna withrailar patch - currents
calculated with FDTD
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3.4 Positioning algorithms

As aforementioned a positioning module has been conceivéki present thesis work. This
tool is used to calculate the position of the geometricatresnof the elements on the surface
of a planar or conformal array. The position distributiomgedure is realized according to
the desired spacing values and it starts from a referencd it is the geometrical centre of
the surface. The position distribution procedure can berpmeted as a discretization of the
handled surface by surface elements whose size is definég Ispacing values. Consequently,
the implemented positioning algorithms are used also #®dikcretization of the patch surface
belonging to the microstrip elements of the array. AssundiegiredU -V array elements, the
positioning algorithms yields @ x V matrix containing all positioning vectors. The modules
in the present thesis work are conceived for planar, cyilbadiand spherical positioning.

Furthermore, the concept of these three positioning maduleflat and curved surfaces is
based on geometry. Consequently, several mathematicalifae have been applied. More-
over, the geometry dependant concept can be used of anylatiteof surface as far as its
mathematical form is known or given. The reader has to bernméd that the word "distri-
bution" associated with a geometrical context in the pretesis work and specially in this
section refers always to the localization of the geomdtpoaitions of points on a certain sur-
face. Moreover, the expressions "position distributiond dpositioning" are equivalent in the
present thesis work. In the following, the surface georoakrcentre of the patch surface and
the discretized surface elements are treated as globabaatireference points, respectively.
Therefore, the patch surface centre is refered as startimg jm the following descriptions of
the distribution modules. Besides that, all the distribatmodules developed in the present
thesis work generate equidistant lying geometrical pantthe regarded patch surface.

3.4.1 Planar position distribution

The position distribution module for a planar structureat to model planar arrays as well as
flat patch surfaces for microstrip antennas. For instangerdi3.29 shows a possible constel-
lation for a planar patch antenna array. A planar surfacessmbed mathematically by two

vectors that tense this plane. Each of these vectors betoragstraight line. Both lines have a

common reference point on the tensed surface. The matheahatjuation describing a point

(u,v) on planar surface is given by the following formula

Xov = Xef +U-Sy-Ty+V-Sy-Ty for u=1,...,Uu and v=1,....V (3.51)

Xuv Stands for the position vector of a point that is part of toglene, X for the position
vector of the reference point on the plane, respectivelytheéamorej, andt, are the tensing
vectors andy, ands, are real-valued shift coefficients. The latter coefficiesté®r the translation
of the position vectok¢ towards the a poinfu,v) by the tensing vectors. This formula is
generally applicable and therefore a plane oriented in @&egtibn in space can be described.

The algorithm developed for the planar distribution modsléased on the afore given
mathematical function. Consequently, the algorithm nekesnformation about the reference
point and then tensing vectofg andTy. The first requirement is fulfilled by choosing the
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Figure 3.29 : A planar patch array structure on they-plane

geometrical centre of the patch surface as reference phiiret.necessary vectors are found by
means of the normal vector of the planar surface strucigreAll three vectors have to build an
orthogonal system. Thus, a such vectorial system is buit thie information about the normal
vector and the position vector of the reference point. Tiap & entirely of mathematical nature
and hence it is presented in the appendix A. In addition tg thhave to be said that, due to
the fact that the normal vector on a planar surface is the $anal surface points, the tensing
vectors are the same for all these points too. Hence theyasrelated only once.

Furthermore, an evaluation on the parity of the valuesdoandV is performed. This
is due to the existance of three constellations dependikgahd/orV are even or odd. The
first constellation happens f&f andV being odd numbers. In this case the surface structure
is of point-symmetrical kind and its geometrical centre,ckhis equivalent to the reference
point, belongs to thilk 4 desired points and consequently equation (3.51) can bestrseght-
forward. The second case takes placelJoandV being even numbers: the structure is axis-
symmetric and therefore the geometrical centre, this igeference point, is not part of the
desiredN;ota points. Consequently, the shift distansgsands, in (3.51) have to be adapted
during the distribution. The last case takes placeldneing odd and/ being even or vice
versa: in both situations the reference point is not parhefdurface structure. Thus, the shift
distance that depends on the even number of elements alerigdpective tensing vector has
to be corrected.

The proceeding of the algorithm begins with calling the plastructure normal vectal,
and the reference point vectgg s values. In addition to that, the algorithm looks for informa
tion about the number of desired poitisandV along the dimensions of the structure surface
and the geometrical shift distancgsands, between them. Consequently, the total number of
desired points idota1 = U V. Following the latter, the required tensing vectqrandt, are
calculated. In the following proceeding step, for each meispoint(u,v) the algorithm takes
the reference point vect8f  and shifts it according to (3.51) with the given values fa shift
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Recovery ofs,, S, Xef andiis

Calculation ofi, andty,

Evaluation ofU andV on parity

Calculation of correction factor if necessary
Correction of thes,, s, if necessary

foru=1,U
forv=1V
Calculation ofX,y with u, v, sy, Sy, Xef, [y andiy
Storage oy
end
end

Table 3.4 : Code structure for the planar distribution module

distances including the correction factor. The last stefph@®proceeding is to store the obtained
values for each the distribution point.

Based on the afore described proceeding of the planarkdisitrn algorithm, a module in
FORTRAN has been coded. For itUax V matrix for the(u,v) point vectors wittu=1,... .U
andv=1---,V at the planar structure has been defined. The structure oésiéting code is
shown in table 3.4

As observed in the latter presented structure, the deveélopde uses two loops to perform
the entire point distribution on the planar structure. Tigeathm steps are practically traduced
directly into code functions. Consequently, the necessayt variabless,, s, Xet andnsy
are assigned before the loop procedure. In addition to thatiensing vectors are calculated.
Furthermore, the correction factor calculation as welllesrespective correction of the shift
distances are realized. Inside the loops the calculatidheoposition vectorg,, is performed.
For it, the first loop steers distance shifts in directionesfsing vector,. The second loop acts
the same but in direction of the second tensing vagtoFhe distribution code generates in the
end of the procedureld x V matrix with the position vectorg,y for the points on the surface
structure as elements.

The latter developed algorithm and code for the planar straare used for the construc-
tion of a planar array and for the modelling of the planar patta microstrip antenna. Thus,
the code structure afore given is applied on both caseselartiay case the distribution module
asks the user for the values of the normal vector and of a poirthe desired planar struc-
ture. The normal vector is used in order to calculate theingngectors and the given point
becomes then the geometrical centre of the array struckughermore, the shift distances,
these are the spacing values, are demanded to the user. gattiemodelling case one of the
distribution generated points on the array structure igyass as the geometrical centre of the
patch. The required normal vector for the patch surfacesiséime of the array structure. In the
present thesis work the axes of the planar patches and ofaharmrray structure are aligned.
Consequently, the tensing vectors of the patch surface fie @array surface are equal. Con-
cerning the shift distances, the length and width of thelpate discretized by dividing them by
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Figure 3.30 : A patch array on a cylindrical structure alongaxis

the number of discrete elements necessary to approximateshlting discrete elements with
equivalent sources. The resulting discrete elements diloes are consequently the required
shift coefficients for the distribution module.

3.4.2 Cylindrical position distribution

In addition to the afore presented planar distribution n@dather distribution modules for
non-orthogonal surfaces have been developed. One of theioh s presented in the follow-
ing, allows to model arrays with a structure that is simplyved with a certain radius. Such a
curved surface is equivalent to a section or the entire seréd a cylinder. Figure 3.30 shows
the geometry of a patch array on a cylindrical structure. $tah array structure, the posi-
tion vectors of the points belonging to the simply curvedawe can be calculated using the
mathematical definition of a cylinder. According to [85] fok-axis oriented cylinder, this is

XCcosO
X= | rcyiSing (6,x) € [0, 21 x [0,1] (3.52)

The latter equation shows a vectorial function for a cylimith@t expands along theaxis.
The latter expression is not a suitable function for the tigwaent of a generally applicable
distribution algorithm, specially when cases, whereireana arrays are integrated in slanted
cylindrical structures, have to be simulated. Conseqyeatyenerally applicable approach in-
dependent from the direction of the cylinder’s longitudiaeis has been developed. For it, the
latter equation is analysed. The reader may notice that toenponent of the position vectgr
along the longitudinal axis of the cylinder remains lineattlte changes along this coordinate.
Unlike to the latter component, tly@ndz components behave according to functions dependant
of the angled that is defined on the plane build by th@ndz coordinates. Both components
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build a circle of radiusy on they-z-plane. Furthermore, the multiplication of the angle de-
pendant harmonic function by the constant radius of thedglircy at they andz components
can be interpreted as a rotation of a point about the longialidxis on they-z-plane with6 as
rotation angle.

Consequently, the main idea used to develope the genepgllicable distribution module
for a cylindrical surface is to shift a chosen reference pevhich should be part of the handled
surface, with a certain distance parallel the longitudaas of the cylinder and then to rotate
it about the latter axis according to a certain rotation angWloreover, a condition for this
approach is to have information about the longitudinal akibe cylindrical structure. This axis
is obtained by means of the normal vector of the surfacetsireat the reference point. Based
on the the algorithm of the planar distribution and on théeladnalysis, which is generally
applicable, formulae of following mathematical form hawnlaerived. These are

Xuv = Xref + Frot (U, V(Su, rcyl)) Ty) +Vesy-Ty (3.53)

or

Xuv = Xref +U-Sy-Tu+ Frot (V,V(Sy, Teyl)) - Ty (3.54)

In the latter two equationg,, stands for the position vector of the point v) that is part
of to the cylindrical surfaceXes for the position vector of the reference point on the plane,
respectively. Furthermoré, orT, andT, are the vectors that build with the normal veantgy
at the point(u,v) an orthogonal system. Moreovey, ands, are real-valued shift coefficients
that steer the translation and the rotation of the positectorXes towards the a poinfu,v).
Consequentlyfo; stands for the rotation function that has the rotation anghs argument.
The latter required angle is calculated from the cylinddiuar.y and the arc length Besides
thattu=1,....,Uandv=1,...,V.

Furthermore, the following relation between the arc lersgihd the radiuscy of the cylin-
der derived from the geometry in figure 3.31 is used for thewation of the rotation angle
Vv

Ve (3.55)

Iyl
Moreover, depending of the choice of the longitudinal akis value for the arc length is
s=gs, 0rs=s,. In order to perform the angular displacement, the rotafimetion F; that
calculates the rotation angleand performs the desired rotation has been developggd.is
based on the latter expression in order to obtain the rotaigle and on the rotation matrix
function that due to its pure mathematical nature is preskmtappendix A.

As in the afore presented algorithm for a planar structure, algorithm proceeding for
the cylindrical distribution calculates the positions bétpoints starting from the reference
point. For it, first the normal vectadie s at the reference point is obtained by meanggf the
reference point angis a point on the longitudinal axis. Thus, the coordinates efréference
point and a second point that is supposed to be on the lomgéucy/linder axis are demanded
from the user. The distance between the longitudinal axist@nd the reference point is
equivalent to the radius of the cylindrical structugg. Moreover, the respective vector built
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Figure 3.31 : Geometry of an array on a cylindrical bearer

by the position vectors towards these points is the normetioven; at the reference point.
With the information about this vector, the algorithm gextes like in the case of the planar
distribution an orthonormal system according to appendixTAe latter system is built by,
plusT, orTy. According to the choice of the user, eithigror T, becomes the direction vector
of the longitudinal axigais that together with the user given point on this a¥igs builds the
axial straight line.

The next proceeding step is to calculate the rotation anglehich depends of the arc
length and the cylinder radius, according to expressidb(3.The latter length value, which is
equivalent to the spacing between two neighbouring pointtie simply curved structure, $g
or s, depending on the chosen longitudinal axis. Furthermoneesin the present thesis work
the distances between the array elements are supposed tpidéstnt, the rotation anghle
is calculated only once. Moreover, the parity evalutionhaf values fotJ andV is performed
similar to the planar distribution module. In almost the samanner, the correction of the shift
coefficientss, ands, and consequently of the rotation angléor the cases, where&at andV
are even numbers &f is odd andV is even or vice versa, is realized.

The calculation of a vector poift, is performed with all the latter information. Assuming
the choice ofy as the direction of the longitudinal axis, thiS'igis =Ty, then equation (3.53) is
used for the distribution. For it, the reference point imatetl by means d; about the latter
axis with rotation angle in directionT, and in addition shifted in directiofy by the distance
s,. Before a new position is calculated, the normal veaigris calculated by means of the
position vector for pointu,v) andX,,;; the point on the longitudinal axis shifted bys, from
the reference pointais. The directior, for the new required rotation is acquired by building
a new orthogonal system with,, andT,. Following it, the calculation of the new point by the
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Recovery ofsy, Sy, I'eyls Xret @aNdXaxis
Calculation offie andrey,

Calculation ofiy andty

Choice of longitudinal axis vect@yis
Evaluation ofU andV on parity

Calculation of correction factor if necessary
Correction of thes,, s, if necessary

Choice of the arc length

Calculation of the rotation anglewith sandry,

foru=1,U
forv=1V
Calculation offot with v andu orv
Calculation of%yy, With U, Vv, Xef, Sy OF Sy, Taxis, lv @andFrot
Calculation ofX,,, ;s With Xaxis andu- s, orv-s,
Calculation offiy, andt, orTy
Storage o&,y
end
end

Table 3.5 : Code structure for the cylindrical distribution module

respective rotation and displacement can be done. For thieecbfT, as the direction of the
longitudinal axis, expression (3.54) is used for the distibn. The respective proceeding is
performed in the same manner.

The afore described distribution algorithm for a cylindfistructure taking in account the
two possible choices of the cylinder axis has been impleeteimt a FORTRAN code. The
resulting distribution module for cylindrical surfacesshtie code structure depicted in table
3.5

For the latter code, B x V matrix for the(u,v) point vectors withu=1,...,U andv =
1,---,V at the cylindrical structure has been defined. Accordindheolatter code structure,
the required information about the variab&ss,, rcy, Xet andXaxis is looked for. With them,
the code calculates the required orthogonal system cordpdS®e ¢, Ty andiy. Furthermore,
the choice of the direction of the longitudinal axis allows value definition of the arclenggh
and hence the calculation of the rotation angl&loreover the parity check and the respective
correction is realized. The code uses two loops to realiseyhndrical distribution. For every
element(u,v) the position calculation starts at the reference pgigit The code rotates this
reference point by a shift angle that is a multiple of thetiotaanglev. The value of the latter
multiple depends on how far the new point in reference oneugthermore, the code displaces
the rotated point by the multiple of the shift distance, whaalue is eithes, or s, depending
on the choice of the direction of the longitudinal akigs. The code generatelax V position
matrix, whose elements are the position vectors of the painthe simply curved surface.
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3.4.3 Spherical position distribution

The possibility of finding points that belong to a sphericaface by means of a suitable distri-
bution module has been introduced in the present thesis. vikarkthe conception of the latter
module an algorithm in order to calculate the position vectaf the points belonging to the
doubly curved surface has been derived. Therefore, theamettical definition of a sphere that
according to [85] resembles to the following expressioms, been analysed.

I'sphSINBcosp
X=| TrspnSinBsing (6,9) € [0,2m] x [0, (3.56)
I'sphCOSO

In the latter equation the position vectbdepends directly from the spatial angandg
and the constant distance The latter two angle variables are attached to the locaidioate
system. Consequently, the latter expression is not a $eitabction for the development of a
generally applicable distribution algorithm. Nevertlsslesuch an approach can been reached
by analysing equation (3.56). The reader may notice that #mely components of the position
vectorX behave according to a multiplication of the constant sphadeus by two harmonic
functions dependant of the spatial an§lend @, respectively. Furthermore, componens
defined by the multiplication of the constant distance by rnloaic function dependant &
The relation between the components due to the spatialsogfebe interpreted as two rotation
procedures about the origin of the local coordinates. Tkeratation takes place ixz-plane
and in they-z-plane with® as rotation angle. The second rotation happensyfplane and
the rotation angle ig. In both rotations a point afar from the origin with the dmstarsy is
displaced.

The algorithm for modelling doubly curved structures depeld in the present thesis work
is based on the latter analysis. For it, the position veabtise reference point on the spherical
surface and the sphere’s centre are required. The algodfipties the following developed
formula

Xuv = Xre + Frot (U, V1(Su, rsph)) 'Tvl + Frot (V, V2(Sy, rsph)) 'Tvz (3.57)

In the latter equationg,y stands for the position vector of the pojut v) that belongs to the
spherical surfacet for the position vector of the reference point on the plamspectively.
VectorsT, andTy build with the normal vectony, at the point(u,v) an orthogonal system.
Moreover,s, ands, are the values for the arc length in directignandy,, respectively. Both
real-valued shift coefficients are used to calculate thaired rotation angleg; andv, that are
arguments of the rotation function Bf.

Similar to the case of a cylindrical structure, the algoritphroceeding for a doubly curved
surface calculates the positions of the points startinmftioe reference point. Therefore, the
normal vectormes at the reference point is acquired with the help of vectorthefreference
point X«f and of the centr&y,. Consequently, the vector values of the latter points are de
manded from the user. The distance between the centre aneféinence point is equivalent to
the radius of the spherical structurg, and the respective vector built by them is the normal
vectornyes at the reference point. With this information the algoritgenerates an orthonor-
mal system according to appendix A yielding andiy,. As next, the rotation angles and
V2, which depend of the arc length values that sy@nds, and the sphere radiugy, , are
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Recovery ofsy, Sy, I'cyl, Xref andXqtr

Calculation offie andrspn

Calculation offy, andty,

Evaluation ofU andV on parity

Calculation of correction factor if necessary

Correction of thes, s, if necessary

Calculation of the rotation angles andv, with s, s, andrspp

foru=1,U
forv=1V
Calculation off with v4 andu
Calculation offo with v, andv
Calculation ofX,y with Xref, Ty,, Tv,, Frot (U, V1) andFot (v, v2)
Storage oiy
end
end

Table 3.6 : Code structure for the spherical distribution module

obtained using expression (3.55). Furthermore, the ortathgles are calculated once since in
the present thesis work the distances between the arragetem@re supposed to be equidistant.
Moreover, the parity evalution of the values fdrandV is performed similar to the planar and
cylindrical distribution modules. In the same way, the eotion of the arc lengthsg, ands, and
consequently of the rotation anglesandv-, for the cases, wherebk andV are even numbers
or U is odd anaV is even or vice versa, is performed. The calculation of aargebint X,y

is performed applying equation (3.57). For it, the refeeepoint is rotated by means &fy
about the centre of the sphere first withand then withy; in directiont, andiy,, respectively.
Moreover, as in the cylinder algorithm the rotation funotis based on the rotation matrix
function that is given in appendix A.

Based on the afore described algorithm a code for findingtpan spherical surfaces has
been developed in FORTRAN. The code allocatés :aVV matrix for the position vectors of
each point(u,v), withu=1,...,U andv=1,--- V, on the doubly curved structure. These
vectors are computed according tho the code structure shoiable 3.6

As in the precedent modules, the code uses two loops toedhkscalculation of the point
vectorsX,y. Before the loop process starts the required variablesrdicgpto table 3.6 are
retrieved or calculated. Furthermore the evaluation oitypand if necessary the correction of
the arc length values are performed. The first loop steenothgon with the rotation anghe;
and hence it displaces the reference poinjdirection. In the second loop the similar is done
inTy, direction: the treated point is rotated along the spheretmeintre with the rotation angle
va. At the end of the procedure, the code fills the V matrix with the respective vector values
representing all evaluated surface elements.
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3.4.4 Normal vectors at surface points

In the present thesis work certain electromagnetic field ggmmetrical functions need input
information about the normal vectors at the equivalente®positions and at the array element
geometrical centres. For instance, the normal vector aptisétion of an equivalent source
is a precondition to calculate its far field. Furthermore fipatial anglegy and¢, which are
essential variables in the field functions, depend of theesbf the normal vector. Besides that,
the geometrical composition of planar and conformal armayke present thesis work requires
the knowledge on the normal vector. In this section, the @gg for calculating the required
normal vector is described briefly.

The normal vector at a point that belongs to a surface in sgaoegarded in a general
manner and therefore it is assumed that the analysed fietidanhas the formz = f(x,y).
Then according to the formula that is given in detail in agpem, the normal vector of a
functionf at point(xo, Yo, 2o) is

n= (D f (X, Y, Z)) |(x0,y0,zo) (3.58)

The [ operator in the latter equation appliedfobuilds the gradient of this function. Since
the partial derivation as itself can not be implementedatliyento a code expression in FOR-
TRAN, it is necessary to approximate the gradient compankyntmeans of finite difference
equations as presented in expression (A.3) until (A.5) énappendix A.

In the present thesis work a module based on the latter ajppation has been developed.
The latter module performs the required subtraction angsidiv of the function values. Fur-
thermore, the latter values are obtained using develogtdhilition modules: the values of the
position vectolx,, are displaced using the small valued shefor the shift coefficients, this is
su = Sy = h. The same is valid for the cylindrical and spherical disttibn modules, due to
the fact that the rotation angles in them are calculated syitnds,. Consequently, the point
xyv acts like the reference point in the previous describedgeding of the three distribution
algorithms. Furthermore, the step valuenust be very small in comparison to the mesh cell
dimension in the case of handling a patch surface or in cosgrato the spacing values in the
case of handling an array structure. Moreover, the vanaiicdhe position vectorg,, and the
resulting variated vectors are limited tbx V vector elements including,, with U = 3 and
VvV =3.

The latter described approach allows to handle any kindrafyastructure, nevertheless it
is not suitable for the array surfaces analysed in the pteakesis work due to the required
computational effort. Besides that, it is an approximatidrose inaccuracy can perturbate the
results of the far field analysis. In order to facilitate tlaécalation of the normal vector, simple
vector arithmetic has been used. As aforementioned, indke of a planar array or patch,
the normal vector is demanded as input information from #er.urhis normal vector does not
change values along the entire extending surface. Constigubere is no need to compute the
normal vector. The latter is not valid for non-orthogonalistures like a cylindrical or spherical
surface.

For a spherical structure it is sufficient to create a vectomfsphere’s centre to the regarded
point on the sphere that in the following is normalized. Tikis
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Xuv — Xetr
Ry — Xetr|

whereinX., andX,y are the position vectors of the sphere’s centre and of trerded point,
respectively. Consequently, the values of the vexggmare required as input information. It has
to be remarked that all the normal vector at each sphere saiifferent to the others. Besides
that, the reader may noticed that the vector arithmetiouation steps are less than using the
gradient module on a spherical surface.

Auy = (3.59)

In the case of the cylindrical structure the normal vectaralkeulated in the same manner:
the normalized difference between the position vectordiefregarded point on the structure
Xuv and of a point on the longitudinal cylinder axig,;.. This is

YUV XaXIS
[Ruv — Rie|
Furthermore, the latter axis point must lie perpendicudathe point on the cylinder. The

latter condition is guaranteed by obtaining the requirdde&ofX,,;. with the following equa-
tion

Auy = (3.60)

Kaxis = Xaxis + S+ Taxis (3.61)

Therein [ ais is the longitudinal axis vector of the cylinder asé the shift coefficient that
depending on the direction of the latter axis vectos is 5, or s=s,. It has to be remarked
that the normal vectors at the points positioned in directbthe cylinder axis vector do not
change and have the same normal values. Different behagidound if the points are posi-
tioned in angular direction,: the normals at these points differ from each other. Bediukts
the calculation procedure in this case needs low compuiatieffort than using the gradient
module.

Furthermore, it can be said that using the simple vectdnraetic approach yields more ac-
curate values for the normal vectors than the derivativeagmation module. Both approachs
generate & x V matrix with the normal vectors as elements.

3.4.5 Validation of the planar and cylindrical positioning algorithm

In order to test the correctness of the positioning algoritertain simulations by means of the
code developed in the present thesis work and a MoM basedrdudwe been realised. For it,
an array composed of:65 elementary dipoles oriented in z-direction has been aedlyThe
% dipoles build for the first validation case a planar array thgands on the x-z-plane. The
array is defined with a uniform spacing valuedof 1.0m and current amplitudg = 1.0A. The
radiation behaviour in free-space has been calculated bysna the directivity for a frequency
of f = 150MHz defining the length of the dipoleslas 0.1m. Figure 3.32 shows the resulting
plots obtained with the equivalent source method and the Mpptoach

In the second validation case t@g dipoles form a cylindrical array whose curve radius
has the value of = 2.0m. The axis of the cylindrical structure expands in di@ttof the
z coordinate. The conformal array is defined with uniformreat amplitudey = 1.0A and
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Figure 3.32 : E-plane directivity of a planar array composed®k 5 %, dipoles

with uniform spacingd = 1.0m, which is equivalent to a uniform arc length. As in the afor
given validation case, the directivity has been simulatedaffrequency off = 150MHz with
free-space conditions. The respective radiation behaisaiepicted in figure 3.33.

3.5 General array modelling

With the afore described point distribution and patch miaigimodules an array of sizé¢ x V

can be modelled. The modelling of a planar of conformal arsagerformed similar to the
microstrip patch antenna modelling. The first step is toter¢lae array shape by means of
points generated with the developed distribution modulése conceived array points are the
geometrical centres of the array elements. In the secoe steese elements are handled as
patch antennas. Consequently, they are modelled by measguofalent sources. For each
array element its far field contribution is computed. Asdhstep the far field of the array is
calculated by summing up all the latter field contributions.

Concerning the first proceeding step, the geometrical atragture is generated with one
of the afore presented distribution modules accordingealgsired form. The latter tools locate
the Nglem= U -V points on the array surface. The result of the chosen disioib modules is
a matrix containing the position vectors of these pointse distribution procedure starts from
a reference point vector whose values are expected to beeddfinthe user. Furthermore, de-
pending on the desired structure additional informaticxjgected: the normal vector value for
a planar array structure, the coordinates of a point on thgitoedinal axis in case of a cylin-
drical array structure or the coordinates of the centretgoina spherical array structure. In
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Figure 3.33 : E-plane directivity of a cylindrical array composed®k 5 %) dipoles

addition to the latter, the distances between the neigligparray elements, the so-called spac-
ing values, and the number of array elements on both expamuiitiections are expected being
part of the input information. The array conception progedaccording to the desired form is
performed with all the latter required data. In additioneaad matrix with the normal vec-
tors at the yielded array surface points is generated ubmgfore described vector arithmetic
approach.

In the next proceeding step, each resulting position vextthre applied distribution module
is attributed to an array element as its geometrical ceftoethermore, the normal vectors at
the latter centre points are given to each array elementpad information. Moreover, the
information about the geometrical dimensions of the artaynent and the desired number of
discrete points for its discretization are expected fromubker. The mesh cell dimensions are
calculated with the latter input information: the lengtrdamidth of the patch are discretized
by dividing them by the number of discrete points. As aforetiomed, it is necessary that the
cells dimension are small enough in order to approximateligerete elements with equivalent
sources. As a general rule, this is guaranteed if each mdstideehas the sizal < 1)‘—0. The
discretization of the patch surface into small surface eleisis performed by means of the
planar distribution module in the present thesis work. FEpthie required shift coefficients
are defined by attributing the calculated mesh cell sideevuthem, this iss, = s, = Al.
Furthermore, the geometrical centre of the patch is defisetefgrence point for the point
distribution and the normal vector values at this geomaiientre are attributed to the discrete
surface elements as their normal vectors. Consequently,a&aay element is discretized with
uniform surface elements. After the distribution procegtine position of all equivalent sources
and the respective normal vectors at these positions aenebit for each array element. In
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addition to that, the current density values are retrievethfa respective input file generated
by external software if the latter file exists. Otherwise therents are calculated with the
information about the excitation amplitudes and phasesatieeexpected from the user. For the
latter the cavity model approach, which is presented latersoused.

The far field contribution generated by each array elemenbisputed by means of the
current distribution retrieved or calculated and givenhe equivalent sources in addition to
the information about the source position and normal vectdach field contributiorﬁij,uv
is computed according to the afore described algorithm aai@ ¢or modelling a microstrip
antenna. The far field of the entire an‘é&”ay is the addition of these fields contributions. The
superposition of these fields is realized by means of folhgvaquation

= 3 5 o (3.62)

It has to be said, that the resulting field is the electric feélthe entire array for an observing
point (r,6;,¢;). This means that in order to obtain the field for a designedesipéNg - Ny
observation points the entire modelling proceeding hagtepeateds - Ny times.

For the realization of the array modelling module a FORTRAN & has been developed
based in the afore described proceeding in addition to th@ned distribution and array element
modelling modules. For it, Bg x Ny Observation space has been defined composed of observing
points with the form(r,6;, ;) withi =1,...,Ng andj = 1,...,Ny positioned in the far field.
This means that all the observing points are defined by a aohktige-valued radius. In the
present thesis work this is= 1.0- 10*. The resulting fields have been stored in a complex
Ng x Ny matrix. The resulting code structure is shown in table 3.7.

The developed code performs first all the necessary proes@uorder to obtain and to store
the required geometrical information. These procedurester calculation of the position and
normal vectors of the array elements, the computation optisition and normal vectors of the
equivalent sources, and the allocation of matrices forrgjadhe geometrical data. Furthermore,
the assignment of the current densities to the equivalentse takes place if a file containing
these external calculated excitations exits. In the casdlhl latter file is missing, the necessary
excitation values are computed according to the cavity rhaxe attributed to the equivalent
sources. As in the code for modelling the microstrip patctemma, the implementation of
the calculation proceeding of the array far field is perfadnagth two pair of loops. The first
two loops control the variation of the spatial anggsand ¢j, which define the observation
space, in the range d0°,36C°]. The other two loops decide which array eleméanmtv) is
being analysed by steering the control variahlesdv that have the values=1,...,U and
v=1...,V. The latter means that the field generated byl"h® array elements is calculated
for each observation poirft, 6;, ¢;). The internal loops, that indicate which equivalent source
is being handled, and the corresponding procedures in 8&Blare applied in order to obtain
the field contribution of a single array element. The resglfield contains all contributions
of the modelling equivalent sources for the regarded ariayent(u,v). Following the latter
procedure the fields of all array elements are summed up.afte step and the array elements
loop process are equivalent to the double sum applied onrthg alements field in equation
(3.62). Moreover, the acquired far field is stored in a matrtixelementi, j). The entire
procedure is repeated until thg x Ny matrix is filled.
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Allocation matrixEne,n(p
Definition0 =0
Definition@=10
Definitionrad = 1.0- 10
Calculation of the position vectors of the array elements
Calculation of the normal vectors of the array elements
Calculation of the position vectors of the equivalent searc
Calculation of the normal vectors of the equivalent sources
Calculation/Assignment of the current densities for/t® ¢quivalent sources
fori=1,Ng
Calculation off;
for j=1,N,

Calculation oft;

Calculation offjj with rad, 6;, @;

Conversion frontj; into X;j

Definition £ = 0

foru=1V

forv=1V
Calculation OELUV with antenna model
Summation o&;j u to Eﬁ-‘”ay
end
end
Storage o] in Ej |

end

end

Table 3.7 : Code structure for the field calculation of a modelled array
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Figure 3.34 : E-plane pattern for & x 5 array of %, dipoles

3.5.1 Validation of the general array modelling algorithm

The general array modelling algorithm applied on arrayat #ire composed of elementary
dipoles, has to yield the results obtained by analyticahidae. Consequently, an array com-
posed of 5< 5 infinitesimal dipoles that are oriented in x direction hastbanalysed. The flat
array structure lies parallel to the x-y-plane. The elem@itthis planar array are positioned
with uniform spacingd = 0.5A¢ and fed with a uniform current value &f = 1.0A. Under the
latter conditions the array field has to be equivalent to théiplication of the element radiated
field with the array factor of equation (1.118) in chapter yufes 3.34, 3.35 show the pattern
function in E-plane and the H-plane for the approach deezlap the present thesis work, the
equivalent sources method, compared to the analyticatitmd-urthermore, the behaviour of
the pattern in elevation fap= 45° has been compared. All three yielded curves overlap.
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3.6 Large array modelling by means of subarrays

The radiation behaviour of a finite large array can be moddie means of the previous de-
scribed general array modelling approach. Neverthelessinaing that the analysed array is
characterized by uniform spacing, equal planar elememtgtat it has a periodic structure, it
may be possible to model the far field behaviour of an entir@ydy regarding only a part of

the array, namely a subarray. Consequently, some calonlptocedures could be simplified
and therefore the computational effort reduced. In thisi@ethe modelling of a subarray, this
is a small array composed Kf-L elements e.g. fak <5andL <5, is used in order to calculate
the entire large finite array.

The principle of this approach is based on the idea that algrmalp of K - L elements
being part of &J xV uniform spaced periodic array composed of equal planahpatimely a
K x L subarray, has a certain radiation behaviour that is sirtelanotheiK x L element group
of the same array. Furthermore, this periodic array is caa@dyNs,, = % \{ of the latter
subarrays. Moreover, the total far field of the array is tha st the field contributions of the
subarrays. Hence it can be decomposed in a multiplicatidimeo$ubarray radiation by a factor
consisting of the sum of thidg,, phase terms that correspond to all subarrays. This basac ide
originates from the analogue approach developed in ordesduire the theoretical array factor.
The respective derivation steps are shown in expressiofi6)(1(1.98) in chapter 1. In these
equations the constants and non changing quantities cactoedd out of the field sum leaving
a sum factor that consist of the non negligible phase ternteefirray elements due to their
geometrical position. Due to the latter analogy, similatidgions steps can be developed in
order to obtain suitable functions for the field calculatigimeans of subarrays. The following
equation shows the resulting mathematical expressionhiretectric field calculation of an
array composed dflsyo= ¥ - ¥ subarrays

EStRp- €Hian (3.63)

M=Ic
M i<

=array
E; i =
1b

a 1

At the latter equatior’n::isjub is the electric far field of & x L subarray angi; ap is the non
negligible phase due to the geometrical position of sulyaarb. Analogue to the case of the
derivation of the array facton‘?_ﬁf“b is the radiation of a subarray at the reference point of the
large array. In the present thesis work this point is the ggdoal centre of the array structure.

The general approach of building an array with the help ogligsnents implies the knowl-
edge of the positions of these elements. Consequentlyeiaftire presented algorithm for the
general the approach, the geometrical centres of the amagtwe and of the array elements
contribute in building the adequate phase terms requirethéofar field calculation. Further-
more, these terms contain the information about the relaiosition of the array elements in
reference to the array’s geometrical centre that for an addber of elements is the position
of a centre element. Analogue to the latter, the phgsg should comprise the relative po-
sitions of the subarrays in reference to the array centrefdhan odd number of elements is
the position of the reference subarray. Furthermore, diegtdact that the element modelling
equivalent sources contribute to the phase term of the whubdarrayyij anb should take into
account their influence.
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b

Figure 3.37 : Geometry for array approximation by means of subarray higd|

Assuming that the subarrays have same radiation behaviauthat they are of small size
and hence that the subarray elements are in proximity ofubarsay centre, the phase contri-
bution of the entire subarray can be approximated by usiaggiative position of the subarrays
centre. Such positions are shown in figure 3.37 for an array oylindrical bearer. In this ex-
ample there are seven subarrays whose geometrical centyarésented by the dark dots. The
subarray in the centre is the reference subarray of theeemtiny. The required information
about the relative positions of the neighbouring subareagsdescribed by the angles, Yo,
Yrer and the vectors;, 1, andry,, respectively. Consequentlyfax B array can be modelled
by Nsup K x L "subarray elements”, which are described by their relgiosation, if the radiated
field of a subarray, namely the reference subarray, is kn@wte the relative position contains
the information about the array structure, this approxiomais independent of the form of the
structure . Assuming that the phase term of the radiated dielde reference subarray has the
form e~ Ikor'rerocosdijefo then the phasg; ap is calculated by

/ !/
Yij.ab = 're 0 COSWij ref0 — I 3pCOSYij ab (3.64)

In the latter equatiom, ¢, = |F7.1ol IS the magnitude of the position vector towards the
geometrical centre of the reference subarrayrape- |1, | stands for the length of the position
vector towards the geometrical centre of the subafaaly). Furthermoreyj refo andyj ap are
the spatial angles enclosed by the vectiyg,, Ti; and vectors?,, Tij, respectively. Théj is
the position vector of the observation po{nt6;, ¢;). Using the afore given formula (3.2) for
the definition of a spatial angle enclosed by two vectorsfdhewing mathematical expression
can be applied in order to acquire the valuesiigrap
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Tij -T2 Tij - T’
COSYij .ab = _ab = Wij.ab= arccos< 1 __ab ) (3.65)
ITij | T ’ ITij || Pap)
The other required spatial anglge o is obtained using the same formula with the vectors
Tretor Tij- Thisis

cosij refo = fi Trefo — Pij refo = arcco fi Trefo (3.66)
[FiiPretol [Fii[Pre ol

Recapitulatory, it can be said that this approximation capdrformed if the radiation be-
haviour of all subarrays are equal. Moreover, if the geoiratcentre of the reference subarray
is not the origin of the coordinates system, the phase temntaliis relative position has to be
compensated and taken into account in the pliasg. Besides, in order to obtain the far field
of the analysed array it is necessary to calculate the figittiboition of the reference subarray
and then to convert the obtained contribution into the ttaffield. The latter conversion is
performed by multiplying it with the sum of the phase termatttorrespond to the rest of the
subarrays. Moreover, in the case of an even number of syisathee radiation field for a virtual
array is computed and then it is multiplied by the sum of thagghterms. By this mean, the
calculation of the far fields of the large finite array is sirfipd.

The previous described approach is valid for planar as veeticaformal structures. The
multiplication of the reference subarray field with a singlease term can be interpreted as a
translation along the array surface in the planar case. drcyfindrical case the latter phase
term multiplication means a translation in direction of tyénder axis or a rotation transversal
to this axis. In the spherical case the phase multiplicasosquivalent to a rotation aroung
the sphere’s centre. Furthermore, the algorithm and thpeotise approximation can only be
realized for certain curvature grades, due to the fact trahigh curvature grades the phase
contribution of each single array element on the subarrag@lherm is greater and can not be
neglected. Since in general large finite conformal arragsaainly integrated in structures of
aceptable curvature grade, this approximation can beexppli

The afore presented algorithm has been implemented in a RBRTmodule. The structure
of the developed code is shown in table 3.8 and it based orotle structure of table 3.7. The
code performs all procedures previously explained withlp of some pair of loops: one pair
for defining the observing space, another for the field catouh of a subarray and a third for
the acquiring of the total field of the entire array. A compieatrix, whose elements contain
the electric field values for all observation points, is aietd at the end of the loop procedure.

An observation space composed\fvalues for® andN, for @ as well as a constant radius
value has been defined. The spatial angles vauesid ¢; have been limited by the range
[0°,360°]. The code performs first the geometrical array structureabgutating the positions
and the normals of all equivalent sources. Then, it calealahd assigns the excitations to these
source or it assigns the excitations from a current file atiogrto the case. Then, it calculates
for each observation point the far field of the reference salgaand the phase term due to the
reference subarray geometrical centre. Then, the phase tire to the positions of the other
subarrays are calculated. These terms are used togethahwitield of the reference subarray
and the reference centre phase term for calculating the ¢mhdributions of the respective
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Allocation matrixEn&%
Definition® =0
Definition@= 0
Definitionrad = 1.0- 10*
Calculation of the position vectors of the array elements
Calculation of the normal vectors of the array elements
Calculation of the position vectors of the equivalent searc
Calculation of the normal vectors of the equivalent sources
Calculation/Assignment of the current densities for/t® ¢équivalent sources
fori=1,Ng
Calculation off;
for j=1,Ng
Calculation ofe;
Calculation offjj with rad, 6;, @
Conversion frontj; into X;
Definition ES"°= 0
foru=1,K
forv=1,L
Calculation OféiLuv with antenna model
Summation ofj .y to Eﬁf“b
end
end
Recovery off ¢,
Calculation ofYij refo With Tra¢q
Definition E;"™ =0
fora=1,%
for b=1,{
Recover of,, and conversion t&,
Calculation ofy;; ap With X, %
Calculation ofyjj an With Wij ab, Wij refo
Calculation Oféij .ab With Vij ap, Esub
Summation oE;; ap to Eﬁ-‘"ay
end
end
Storage o in Ej |
end
end

Table 3.8 : Code structure for the field calculation of a large finite ayday means of subarrays
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subarrays. In the last step the fields of all subarrays arerpoped yielding the far field for an
observation point that is stored irNg x Ny matrix.

Concerning the generation of points that represent thergysaon the analysed large array
structure, it is realized by means of the distribution allfpons presented in this chapter. The
distribution procedure starts from a reference point, Whscthe geometrical centre of the fi-
nite large array. Consequently, the geometry of the arnatire will be symmetrical to this
point. The distances between the neighbouring subarr&ysduirivalent to the ones between
the subarray centres. These distances are defined by thef $sime subarrays. The respective
length and width values of the subarray are integer multipfethe array spacings and hence
they depend of the number of elements that belong to a syb#saat the patch structure gen-
eration procedure there is a parity evaluation and a casreipg shift coefficient correction if
necessary.

3.6.1 Validation of the large array modelling algorithm

As validation case for the large array modelling algorithmaaray composed of 100 100
elementary dipoles has been modelled and analysed. Thustalg has to generate the same
field resulting from the multiplication of the element raéic field with the array factor of
equation (1.118) in chapter 1. The latter field generatigreisormed similar as in the general
array modelling algorithm case. The infinitesimal dipoles ariented in x-direction and are
fed with a uniform current value df = 1.0A. Furthermore, the array is uniformly spaced and

the spacing value id = 0.5Aq. Furthermore, the subarrays have been defined to be composed

of 10x 10 elements. Consequently, the large array has 100 "syleerments”. In figures 3.38
and 3.39 the E-plane and H-plane radiation pattern obtaimbdhe approach developed in the
present thesis work and with the analytical formulae arétgdo The reader may observe that
the curves obtained by means of both approaches overlap.
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Figure 3.38 : E-plane pattern of 400x 100array composed df0 x 10subarrays ofl)‘—0 dipoles
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Figure 3.39 : H-plane pattern of 400x 100array composed df0 x 10subarrays oflA—0 dipoles
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3.7 Excitation currents for the sources

The excitation currents are essential variables for theutation of the array far field. There
exist two possibilities in order to obtain these currentsh@narray elements. The first approach
consists in modelling the current distribution on the rédgregion of the microstrip antenna
by means of the cavity model. For it, the respective anal/ticrmulae, that are presented
later on, are applied. The second possibility for attainhgcurrent distribution is to compute
them by means of external software. Therefore, codes basE®®D and FIT has been used.
Moreover, it has to be remarked that the acquired currenitgyube cavity model does not
allow to take into account the interactions between neighhg array elements. Consequently,
it models the currents of a single antenna element.

Two aspects of the present thesis work have to be recalléeteeder. The first one is that
the field of a conformal array and conformal radiation eletmes approximated with planar
radiating elements on a conformal structure. Furtherntbese array elements are supposed to
be equal shaped and with equal radiation characteristmss&juently, these antennas imply to
have same current distributions. Second aspect is thabthe gresented in the present thesis
work treats the antenna array according to a micro-to-mapproach. This means that the
code calculates first for each array element the far fieldrimrtion of the equivalent sources
and then with them the field contribution of a subarray or thige field of the array. Therefore,
the assignment of the current values must be performed autnealent sources. Furthermore,
the attribution of the currents must be realized after theception of the array structure and
before the far field calculation procedure.

3.7.1 Currents with the Cavity Model approach

There exist simple models in order to approximate the remfidiehaviour of a microstrip an-
tenna, for instance, the Transmission Line model and théyklodel. For the generation of
the excitation currents certain analytical functions ordging from the Cavity Model technique
have been used in the present thesis work. Theory concettménigtter approach is presented
briefly in the next lines. For this introduction, [1], [2] af@i4] have been used as reference.
Moreover, [51] and [10] give also a brief description of thedual.

3.7.1.0.1 The Cavity Model According to [1] the current distributions on the patch ae r
lated to the modes of a rectangular cavity. In this model @telpantenna is described as a
dielectric volume enclosed by six rectangular surfaces fop and the bottom of this cavity,
which correspond to the patch and the ground plane, are askasperfectly conducting elec-
tric walls. The other four walls of the dielectric loaded itgare modelled as perfect magnetic
walls. Furthermore, under the concept of a rectangulartycaiwaveguide of finite length,
that enclosures a dielectric, is understood. A microstnfe@ana resembles to such a cavity
with the exception of not having all conductor walls. Consatly, to model more accurately
the microstrip patch antenna, the cavity walls around thehpare treated as magnetic walls
simulating an open circuit. The assumption, that the cauityent distribution describes very
close the distribution of the microstrip antenna, is conéidby measurements. Therefore, other
guantities like resonant frequencies and modes of theycawinpare very well to the ones of
the microstrip antenna.
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Figure 3.40 : Cavity model of a rectangular microstrip patch antenna

Since the thickness of the microstrip is very small, the sayenerated within the dielec-
tric substrate undergo extensive reflections causing stgaavaves. At the same time the field
variations along the very small height of the microstripassidered as constant. The height is
usually very small compared to the wavelength of the resomémequency. The fields under-
neath the antenna patch, which form standing waves, carpbesented by cosinusoidal wave
functions. Concerning these wave functions, only trarsalenagnetic modé& Mp,,,,, field con-
figurations are assumed to exist within the cavity in the gméshesis work and hence only
these configurations are considered. These field configngtian be taken into account by
defining the magnetic vector potential function adequatelythermore, the vector potential is
conceived according to the boundary conditions of the gavit

For instance, the boundary conditions for a rectangulaityctvat expands at the x-y-plane
as shown in figure 3.19 are the following

Ex(0<x<L,0<y<w,z=0)=0
Ex(0<x<L,0<y<w,z=h)=0
Hy(x=0,0<y<w,0<z<h)=0
Hy(x=L,0<y<w,0<z<h)=0
Hy(0<x<L,y=00<z<h)=0
Hy(0<x<Ly=w,0<z<h)=0 (3.67)

In the latter equation sétstands for the height of the cavityfor the length andav for the
width of the cavity, respectively. Consequently, the maigneector potential must fulfil the
latter conditions on these geometrical borders. The fonatf such a vector potentialinside
the cavity is given by the following equation set
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AX — O
A; = AcoetCOgkyx)cogkyy) cogk;2) (3.68)

In the latter expressioAy, Ay andA; are the components of the vector potenthgbe the
amplitude coefficient, respectivelt, k, andk; stand for the wave numbers that also have to
fulfil the boundary conditions. These wave numbers are Gatled by the next formulae

kX:mTT[ m:O,l,Z,...
ky = %{ n=0,12... (m,n,p) # (0,0,0) (3.69)
kZ:pT p:O71727"'

In the latter equation set, the variabtesn andp represent the mode numbers that describe
the behaviour of the waves in the cavity. These numbers gwegtiantities of half-cycle filled
variations along, y andz directions. According to the Cavity Model, the yielded \w#gbo-
tential for the cavity is also valid for a microstrip patchtema that is characterized by the
same geometrical values. Consequently, the analysed strigrantenna has a radiating patch
of lengthL and of widthw. Furthermore, the thickness of the dielectric substrateerantenna
is h. Moreover, the transversal magnetic wadddn, in basic mode has great influence on
the radiation behaviour according to [1]. Consequentlyy dasic modes are used in order to
approximate the vector potential behaviour inside the osittip antenna structure.

The acquired vector potential function can be used strd@itard in order to obtain the
the fields enclosed by the dielectric layer of the microsampenna. Consequently, it can be
used to acquire the current distribution on the radiatingmma. According to equation (1.76)
in chapter 1, the vector potential for far field analysis carapproximated by a multiplication
between the excitation current, the orientation of the eletythe phase term with the position
information, and other constants. Thus, assuming theetigation of the radiating patch and
according to the equation for a discrete patch surface eieimexpression (3.1), the amplitude
coefficientAcoe f Of the vector potential can be determined. For instanceyebtor potential in
T Mmnp mode underneath a patch surface element is defined as inlitheifg

Ar)im =0
A%m =0
|
AL = Acoefcos(kxxmn)cos(kyym.n)Cos(kzh)t—r:[n (3.70)

The current distribution on the patch can be obtained usiegafore given function for
the vector potential in combination with its relation witletmagnetic intensity and with the
boundary relation. The latter relation results from the efsequivalent sources and is given in
chapter 1. Consequently, by applying the latter vectormi@kEfunction in equation (1.37), the
magnetic fieldHm, under the patch surface elemént n) is obtained. This is
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Figure 3.41 : Cavity model of a circular microstrip patch antenna

Hr);m = _kzLulmn Coquxmn) Coqkyymn) Sin(kzh)
Hin = 9™ cogkmn) sin(Kyymn) cos(kzh)
Hon = 0 (3.71)

whereinlmh, = Al is the size of the mesh celly the excitation current of the entire patch
antenna ang@ the permeability of the dielectric layer, respectively.tiihe acquired field un-
derneath the metallic patch surface the current distobuiccording to (1.69) can be acquired.
Furthermore, it is assumed that there exist no incident fieldhe patch surface and conse-
guently the field above the patch surface is zero. Takingantmunt the latter assumption and
adapting the expression (1.69) for a patch discretizéd itN surface elements, the following
expression for obtaining the current distributi@iiff " on the surface elemefin, n) is yielded

jrsnunrf = —fisurf X Hinn (3.72)

Therein,Agyrt is the normal vector of the regarded surface element that ialif surface el-
ements the same since the patch surface is assumed to be Elamlaermoreﬁmn is the afore
acquired magnetic intensity underneath the surface ele(nen). The latter defined current
distribution, which fulfills the boundary conditions givemset (3.73), has been implemented
for the aT Mmnp in form of a module coded in FORTRAN. In order to obtain a regdidom-
inant mode, the wave numbers according to (3.69) have to teendimed. The mode with the
lowest order resonant frequency is referred to as the darthmade. According to [1] for all
rectangular microstrip patch antennas witkk L andh < w, the dominant mode is thEMg1.
For the latter mode, the wave numbeyidirection becomek, = = and the wave numbers in
andzdirection dissapear fan = 0 andp = 0, respectively.

In addition to the latter, the possibility of calculatingetburrent distribution at a patch of
circular form has been implemented. Consequently, thadsitial patch antenna is modeled by
a cylindrical cavity with the geometrical dimensionrandh that are the radius and the height
of the cylinder. Furthermore, the required vector potéritiaction in the cavity has to fulfil
following boundary conditions
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Eo(0<p<a,0<@<2mz=0)=0
Ep(0<p<a0<@<2mz=h)=0
Ho(p=2a,0<¢9<2m0<z<h)=0 (3.73)

The fields in latter equation set are in cylindrical coortisap, ¢ andz are the radial com-
ponent, the azimuthal component and the axial componehegbdsition vector in cylindrical
coordinates. These boundary conditions, which charaetéie cylindrical cavity, describe the
cylinder envelope as a perfect magnetic wall, and the topbattdm of the cylinder as perfect
electric walls. A vector potential that fulfils the condit® on the dielectric layer borders is
proposed in [1]. This is

A?nn =0
Al(%n = 0
Afn = BooetJm(KoPmn)[C1COS M@nn) + C2Sin(m@inn)| cOS kzZmn) (3.74)

The latter vector potential equation gives the wave fumdtidhe transversal magnetic mode
TMnmnp. Therein,ky andk; are the wave numbers mandz direction, andBceet, C1 andCp
are coefficients. Furthermorg,, stands for the Bessel function of first kind of oraer The
required wave numbers are defined by

=X m—012.. and n=123...
kZ:pF p:O,l,Z,...

In the latter equationm, n andp stand for the mode numbers that describe the behaviour of
the waves in the cavity. Furthermorng,, represents the zeros of the derivative of the Bessel
function J,,. For most typical microstrip antennas the thicknessf the dielectric layer is
typically h < 0.05\g with Ag as the free space wavelength and therefore it is very smatis€&
guently, the fields alongdirection for a patch geometry as in figure 3.24 are essgntiahstant
and are defined by setting= 0. According to [1], the first dominant mode of tfiéV,,, wave
functions is thel My19. The magnetic field due to this vector potential wave functan be
calculated by applying equation (1.37). Consequentlyptagnetic intensity under the surface
element(m,n) chosing a simple cosine variation, this me&as= 1 andC, = 0, is given by

(3.75)

10 1 :
Hin = J(Iﬁngl(kppmn)S'n%n
Hin = j(i)_%-lll(kppmn)cogﬂnn
HZ. = 0 (3.76)

In the latter expressiopmn, @mn together with thezy, give the position of the regarded
surface elemer(tm,n) in cylinder coordinates.

It has to be said that the calculated excitations by means®friodule, which is based on
the latter theoretical concepts of the Cavity Model, do aéktinto account coupling effects.
In order to include this interaction between the array el@sadditional current functions de-
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scribing the dielectric current due to surface and leakyesand other parasitic currents have
to be added.

3.7.2 Currents with external software

The developed module expects as input information the ndrtieediles, wherein the external
calculated values are stored, so that it retrieves andres$iggm to matrices that are further
treated by the code. In the present thesis work, softwaredoas FDTD and FIT has been used
for the generation of the values that are stored in the reddile format. These applied tools do
not furnish the currents on the metallic patch but the fielnsva and underneath it. Following
it, from the acquired field values the module calculates #eeasary currents on the radiating
metallic surface.

3.7.2.1 Currents on a radiating patch

The currents on the radiating patch have not been acquiredtlyi but with the field values
around it. The simulation tools allow the user to calculdée magnetic and electric field in
a certain region at or around the analysed element. By ukisgdasibility and the relation
(1.69) of chapter 1 for the magnetic intensity accordindpdEquivalence Principlethe electric
currents on the patch can be acquired. Consequently, thgdabof the current gaining process
is to obtain the magnetic fields under and on the radiatinghpand second to applied them to
the following equation in order to compute the necessarseots

Ion "= Tsure x (Hap"®— Hin'® (3.77)

In the latter adapted expression for a patch surface dizedsinM - N elementsﬁ%t??veand
Hunder are the magnetic intensity above and underneath the swafiawentm, n), respectively.
Furthermorefis, stands for the normal vector of the regarded surface elethatits equivalent
to the normal of the patch surface since the microstrip areteés assumed to be planar. The
resulting value is the current densﬁS{‘nrf at the surface elemeiiin,n). These acquired values
are stored in a matrix of complex elements.

3.7.2.2 Coupling between array elements

For an antenna array, the coupling effects due to the proxiofineighbouring array elements
contribute on the radiation and hence they should not beentgl. Due to the fact that every
antenna can receive and send radiated waves, the interdetioeen neighbouring elements
can affect their radiation and hence the far field of the wiaotay. As mentioned in chapter
1, the mutual coupling effects can be taken into account bypdiicing a mutual impedance
matrix, like [20] and [21] suggest. Another way of calcutatithe coupling currents is proposed
in [9].

In microstrip arrays coupling takes place inside the dieletayer due to leaky waves and in
the proximity space between the neighbouring array elesraue to surface waves. Therefore,
the coupling influence can be determined by the currents druader the radiating patches.
This conception is the basic idea for modelling the couplinty the help of external software.
Furthermore, for the desired large array it is valid thattedl inner elements will interact simi-
larly with each other. This means that the currents of an efgisurrounded by a certain number
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of neighbouring elements will contain the coupling infotroa due to its entourage. Conse-
guently, the coupling effects can be taken into account yguke currents of this element for
the calculation of the far field. For it, a patch array of snahension and point-symmetric
constellation can be used as model. The excitation on thigecelement of this array can be
obtained and used for modelling the coupling currents.

The implementation of the afore given procedure has bedorpaed in the following way.
An U xV array withU =V = 3 has been conceived and simulated by means of external soft-
ware. Following it, the fields above and underneath the eestray element have been ex-
tracted. The currents values at the centre element patchcargred by applying equation
(3.77). The procedure ends by storing the obtained curadnes for the further far field calcu-
lation. It has to be remarked that the simulation tools baseBDTD and FIT method include
all interactions between the discrete meshed volume cetlgedfield calculations. Therefore
the extracted fields enclosed by the dielectric layer wilitain the coupling influences of all
array elements.

3.7.3 Fringing effects at the array borders

Due to the fact that an array analysis approach should beblsapamodelling a finite large
array, the effects at the elements at the borders of an aregiscussed in the following.
Unlike the inner array elements, these fringing elemergsrdtuenced by their neighbours and
by the abrupt end of the dielectric layer. Consequentlyraagation of these elements will be
different and therefore their contribution on the far fiefwsld be taken into account.

The modelling of the fringing effects is based on the coyphmodelling. The interaction
between the array elements and the layer edges takes placky maide the dielectric layer
and in the upper space. Therefore, the fringing effects eatetermined by the currents on and
under the radiating array elements similar to the couplifeces. Furthermore, the elements at
the border of the array structure have less interaction thighinner array elements.

The fringing effects are considerated by taking the curketes of the array elements
near the layer edges and by using them for the calculatioheofar field with the help of the
developed approach in the present thesis work. Thus, a amajl analysis similar to the one
for the coupling case has to be realized. The currents ofrtiag alements near the corners and
edges are acquired and assigned to the counterparts ofiteddige array.

The implementation of the fringe effects in the code is samthe one realized for the
coupling effects. The difference lies on the atributiontd turrents: these are assigned only to
the finite large array elements near the layer edges andrsorne

3.7.4 The applied software and its solvers

In the present thesis work simulation tools based on FDTDHRiidhave been used in order
to obtain the field values above and underneath the metatthpof the analysed microstrip
antenna. The simulation of the analysed patch and the smat@h @rray has been performed
operating the user interfaces of these tools with the parpbsonceiving the geometrical struc-
ture and of running the solvers. Furthermore, two huygeumrfases above and underneath the
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respective cell region, whereat the patch surface resltlage been declared. The field val-
ues have been obtained by means of these surfaces and tlepd®av stored in two separete
files. These files are expected to be available by the curseéraoting module that has been
devoloped in the present thesis work. Moreover, the soéwaplied are TEMSI, that uses an
FDTD solver, and Microwave Studio, that solves with the Fl&thod.

TEMSI stands for Time Electromagnetic Simulator and is anopeurce software created
at laboratory XLIM (a collaboration between the Centre Biadéile de Recherche Scientifique
CNRS and the University of Limoges). This simulation toob&sed on FDTD and is suitable
for handling flat structures of any kind including radiatipatch antennas or even small arrays.
Since FDTD approximates antenna radiating behaviour vetlfamd therefore it gives a certain
reliability to simulation tools based on this method, TEMi@&k been used to perform the field
calculations of the microstrip antenna. With the help of ¢thenputed fields at the dielectric
layer, the currents on the radiating zone, namely the patdhee, have been determined.

Microwave Studio is a custom software developed by the prise CST. This simulation
tool uses the FIT method in time and spectral domain in ommeolve electromagnetical prob-
lems. For the simulation purposes in the present thesis therkIT solver in time domain has
been selected.

3.8 Implementation of antenna far field quantities

The quantities that describe the far field behaviour of aeram array in a clearly arranged
manner are the directivity and the radiation pattern. Cguestly, these quantities have been
implemented by developing respective modules in FORTRAN.

3.8.1 Calculation of the radiation pattern

The mathematical function for the radiation pattern présgm equation (1.87) in chapter 1 has
been implemented in a respective module. Therefore, thessacy electric far field valué,j

in reference to &g x Ny observation space have been acquired from the complex fiagdidxn
In the following, the absolute magnitude of each electridfi@lue for an observation points
has been computed. In addition, the maximum magnitude arttentpatter values has been
selected. With all the latter values the radiation pat@rnfor an observation poinr, 6;, ¢;)
has been acquired by using the following expression

_ &y
maxi v {|Eij |}
The latter approach in order to calculate the pattern of dineerray has been used at the

development of a code in FORTRAN. The structure of this cedahown in table 3.9. Therein,
the bracket$ | about the respective elements represent the matrix of tlesents.

Cj=

(3.78)

The code reads the stored electric field matrix and transfdhm latter matrix in another
one that contains the magnitudes of the electric field vallieen, the value with the maximum
magnitude is selected from the new matrix. According to thaecstructure, two loops control
the afore presented function in expression (3.78) for tHeutation of the radiation pattern
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Calculation of“l?i,jw with Fi,jJ
Selection of maximum value frorﬁ Ei | |]
for i=1,Ng
fori=1,N,
Calculation ofC; j with | j| and maxX|E; j|}
end
end

Table 3.9 : Code structure for the radiation pattern calculation

Assignment oA® andAB
fori=1,Ng
Calculation oft;
for i=1,Ny
Calculation of|E; ;|2 with E; |
Storage ofE; j|2in [|Ei,j|2}
Summation ofE; j|?sinBiABAQtO 3, 3 ;
end
end

Calculation of[D; j] with “E,jﬂ andy;y

Table 3.10 : Code structure for the directivity calculation

elements. At the end of the loops a matrix containing theepattalues for all combinations of
the elevation and the azimuth anglésandg, respectively, is obtained.

3.8.2 Calculation of the directivity

The computation of the directivity has been implementectdam the mathematical function
given in equation 1.91 in chapter 1. For it, the latter forahs been transformed in a suitable
expression given in the following

2|2
Dij=—~—x B : (3.79)
zijlzj§1|Ei7j|ZsmeiAeAcp
For the latter equation the availability of the far field m@u is a precondition. A module

coded in FORTRAN, that performs the latter expression, le@s ldeveloped. For it, the code
analyses the far field values for a defirfdgix Ny observation space according to the structure
depicted in table 3.10. Therein, the brackets about the respective elements represent the
matrix of these elements

The code performs the necessary functions by means of afdamms that control the pa-
rameters for reading and filling the respective matricese fiffst two steps of the developed
code for the calculation of the directivity are similar teetsteps of the code for the radiation
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pattern. The difference is that, instead of acquiring thgmitade of the elements of the com-
plex far field matrix, their quadrature is computed. The bigd values form as well another
matrix of the same size as the far field matrix. Moreover, tharsation factory;  ;, which
represents the denominator of equation (3.79), is cakdlat each loop step. Furthermore,
after the loop proceeding the directivity matrix is acqditey a simple division of the matrix

[|Ei7j 2| by the summation factoy; Y- Inthe end of the code procedure, the matrix with the
directivity values for all observing points is obtained.

3.8.3 Visualization

In order to visualize the calculated far field quantitieffedent diagram modules has been de-
veloped in MATLAB. Therefore, the small codes depict theamitd matrices for the radiation
pattern and the directivity in form of diagrams. The quasditcan be graphically plotted in
linear diagrams or polar diagrams. Moreover, the reasanthéchoice of MATLAB as pro-
gramming language for the visualization modules are thelgity of reading external files and
the availability of plot commands.



Chapter 4

Antenna array synthesis and optimization

In certain antenna array design cases it is desired that@atarays have extremely low side-
lobe and narrow beamwidth patterns. In other cases the i@adcarray should show a desired
distribution or radiate a pattern possesing certain charigtics like nulls in certain directions,
dacaying minor lobes, etc. Thus certain pattern forms aagledntage in practice and therefore
it is necessary the designed array to yield or at least toocxppate the desired pattern in an
acceptable way. Such a procedure of designing arrays ieteés "synthesis".

The existing sythesis methods can be divided in three claiseategories. The first one is
the synthesis of various sector patterns. The second egtegubrace the synthesis methods for
low-side and narrow-beam patterns. Part of the latter @esshe Dolph-Tschebyshev and the
Taylor line Source methods. Approaches like the Woodwaaaiton and the Fourier transform
techniques belong to the category of beam shaping syntmetisods

Furthermore within the array synthesis, there exist procesithat optimize some array
parameters subjected to additional condtions e.g. on tiedokie level or the existance of noise
sources.

4.1 Pattern synthesis methods for linear and planar arrays

All the following methods accomplish the achievement oftgrats by means of steering the
excitation of the array elements, which can be accurateiyrotied. These are presented in [6],
[1] and [55]; in the first two references in a more detailed men

4.1.1 Schelkunov or Polynomial Method

The Schelkunov method allows the design of an array whoserpgiossesses nulls in desired
directions. Therefore, it uses the polynomial form of thragpfactor: the number of its elements
and their excitation coefficients are derived by means ofiving the number of nulls and their
location. In order to derive this polynomial form it is nesagy to obtain a general expression
for the AF. Therefore, the different current amplitudgand a progressive current phaséor
each array element are taken into account. The latter diervia performed by taking the sum
expression from equation (1.98) for the array factor andapshg it in similar way as in (1.103)
with B = K(rn—ro) + o anda, = yielding
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6

Figure 4.1 : Unit circle in complex z-space with root locations (whitectas)

N—lln

. N-1
I_ejn(k(rn*rO)JFG) — Z} aneJnB (41)
n= 0 n=

AF =

The phase argumeftin the complex expontential function contains the magratuadf the
vectors toward the reference elemgpand toward the array elememts and the current phase
shift a between those two elements. Therefore, it depends of theejeical position of the
array elements and hence of the spacing. The coeffigjegives the ratio between the current
amplitudes at tha-element and at the reference element. The whole compleanexpial
function can be substituted by a complex variable like infdlewing

z=elP 4.2)
Consequently, the sum of tieelements at thA&F changes to
N—1
AF(z) = %anzn =ao+alz+a222+...+aN,12N—1 (4.3)
n=

This is the array factor’s polynomial form of degide- 1. The polynomial has consequently
N — 1 zeros and can be factored as a multiplicatioNef 1 elements in the following way

AF(z)=an-1(z—271)(z—20)...(z— 2Zn-1) (4.4)
In the latter expression tha are complex roots and give tiNe— 1 zeros of the polynomial.
The magnitude of the array factor is given then by

|AF(2)| = an-1]z2—z1||z2— 22| ... |z— Zn—1] (4.5)

The information about the zero locations helps the methoahyse theAF and hence
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Figure 4.2 : Linear array of elementary dipoles equally spaced alongig ax

synthesize the array. Therefore, the variable plotted on the complex z-space, where
Regz) + jim(z), as depicted in figure 4.1. For any rg¢hathe complex variable is on thenit
circle: eachz’s magnitude amounts to unity and the respective angle depmnfs It can be
observed that the product of the lengths of the straight seggrjoining any point of the unit
circle zto theAF’s rootsz, are equivalent to thAF’s magnitude.

In order to illustrate the analysis, a linear array of equsflaced elements located along the
z-axis with a element spacing df as shown in figure 4.2, is regarded. The array factor will
have no variation i, but in6. Consequently, the phase at the sum expression of (4.1jgesu
inB= ZT"d cosf+a. Furthermore, in the latter analysis case the spacing isetbd = % and
o = 0. Figure 4.3 shows some possible complex roots at the uniedor the latter definitions.
According to [1] the region where the path of thealues on the unit circle take course is also
known as "visible region”, the rest of the circle "invisibslgion”, respectively. If all the array
factor roots are located in the visible region, then eachammeesponds to a null in the pattern
of the AF. This happens becausehanges as the angdechanges, so that it passes contingently
through each of the zeros. Whitgpasses a zero, the length between it and this zero becomes

null and the magnitude &&F vanishes.

In order to visualize the influence of the progressive cumpbase, the "visible region” of the
last example is depicted in 4.4 for the following cade= % anda = 7. Comparing figures 4.3
and 4.4 a rotation counterclockwise of the visible regiopesceived for the non-cem. Plots
for differenta values show that the visible region rotates a certain amibanis equivalent to

the respective phase

Combining all the latter observation results the followan be said: In the case that all
zeros are not in the visible region, but in the invisible oegand/or in a point other than the
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circle, then that particular array factor has no nulls foy salue of6. Consequently, only the
roots on the visible region will contribute to tiAd-. If a given zero lies in the invisible region,
that zero can be included in the pattern by rotating the lMsibggion, namely by changing the
current phase. Hence theAF can be "matched" with the zeros to the desired form.

If the array observed is uniform spaced and excited, therzé¢nes of itsAF are equally
spaced on the unity circle in z-space. For this special ¢hegyolynomial array factor may be
described [6] by the following closed form

AF(r) = (4.6)

4.1.2 Fourier Method

The Fourier Method is often used for beam-shaping arrayhegid. In this approach the array
factor is represented as Fourier series like in the follgwin

N-1

2 .
AF(r) = % anelkn(rd) (4.7)
ne -1

2

The Fourier series summation is performed over a symmetange. Therefore, the values
of n depend on the number of the series elemahts

n=+3 43 +£3... forNeven
n=0,£1+2 +3,... for N odd
Consequently, thé&F is a finite Fourier series that is periodicrirspace with the symmet-

rical interval. If the array factor is known, the excitatiooefficientsa, can be found with the
help of the following formula that origins from the orthoguity conditions of Fourier series

(4.8)

d 2)\_d P26 d
an = X/ ~ AF(r)e 1A P gy (4.9)
~d

While applying the Fourier Method, a condition for the spadnas to be taken into account.
For the spacingl > % this method yields the least mean squared error approxomati the

desired pattern. For the spacidg< % the definition of the pattern is not unique because the
integration domain exceeds the visible region.

4.1.3 Woodward-Lawson Method

The Woodward-Lawson is preferently used for shaping bedims main idea of this technique
is to sample the desired pattern at several discrete p&iath sampled pointis related to a har-
monic current of uniform amplitude and uniform progresgbase, whose respective radiating
field is referred to as aomposing functionEach current is steered by an excitation coefficient
by, such that its composing function’s strength is equal to theldaude of the desired pattern
at its corresponding sampled point. The total current isitefsummation of all harmonic ex-
citations and consequently the synthesized pattern i€septed by a finite summation of the
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corresponding composing functions.

The number of sampling points is obtained similar to the 8bansampling theorem: in
order to reproduce faithfully the original function, it alid be sampled at points separated no
more than half the period of the highest frequency. For tiiepasampling case means this that
the narrowest pattern possible should be taken as refemerder to calculate the sampling
pointsum. The narrowest pattern is achieved by a distance equividetiite array spacing.
Since the length of the array is equivalentte- Nd, there are at lea®l samples. Hence the
sampling pointal, = u(m,d) form=+1+2 +3 .. .,i% depend of the spacindjand the
number of elements.

Furthermore, the composing function has the following form

sin(3B(u—um))

"sin(3B(u—um))

The latter equation is equivalent to the normalized arrayofaof a uniform excited and
spaced array of expression 1.110 in chapter 1 multipliedhbyekcitation coefficierty,

(4.10)

fm(d,a) =

The respective radiated field is described by the field doutiion of the single array element
multiplied by the array factor, which is calculated by meahall composing functions

N—1
2 Npu—
AF(u) = % bmS'_n< 2 B(u— ) (4.11)
N1 SiN(3B(U—Um))
m=-=
The excitation steering values at the sample points areénautdy
bm = AF(u=um) (4.12)

The latter means that the excitation coefficients are equtdéd value of the desired array
factor at the sample points since the composing functiows paak values of unity. Moreover,
the normalized excitation coefficient of each array elemestich is required to achieve the
desired pattern, is given by

> .
ZV bme 1KB(U=tm) (4.13)
-1
2

Zl=

N-1
ar]:

M=
The implementation procedure looks like in the followingheTfirst composing function

generates a radiation pattern, whose placement is definéldebyniform progressive phase.
The second composing function produces a similar pattexhatcording to its respective ad-
justed progressive phase coincides with the intermostafdlie pattern of the first composing
function. This results in a kind of controlled filling-in ofi¢ null of the first pattern contribu-
tion, whose amount is steered by the amplitude of the exmitaf the second sample point. In
the same way, the uniform progressive phase of the third osimg function is adjusted: the
maximum of its pattern is placed at the second intermostafdlie first composing function al-

lowing also a controlled filling-in. This process conting@silarly with the remaining number
of composing functions.



146 CHAPTER 4. ANTENNA ARRAY SYNTHESIS AND OPTIMIZATION

The primary advantage of the Woodward-Lawson method arpdhsibility of using loss-
less composing functions and its simple implementationti@rother side, it does not control
the sidelobe level in the unshaped region of the pattern [66]

4.1.4 Dolph-Tschebyshev Method

The Dolph-Tschebyshev technique allows to narrow the badthvgustaining a given side-

lobe level. Therefore, it relates the excitation coeffitsemvhich build up the array factor, to

Tschebyshev polynomials. The formula for Tschebyshevrpmtyials of recursive kind is
Tm(2) =22Tm-1(2) — Tm—2(2) (4.14)

Each polynomial can be also calculated with the help of foihg expressions

[ cogmarccogz)) for |7<1
Tm(2) = { coshimarccosliz)) for |z >1 (4.15)
wherem=0,1,2,...,8%! and
z=zcogu)  with 2zy=cosh( arccoskiR)) (4.16)

HereR stands for the voltage ratio amds a function that depends of the spacihgnd the
number of elementhl. The voltage ratio takes positive values for the main beathregative
ones for the side lobes.

The synthesis process starts by calculating the linearevafuthe voltage ratidRyg =
20log;o(R). Continuously, thé\F has to be expanded in its polynomial form. Furthermore, the
pointz= z is determined. Thus, the Tschebyshev polynomial coeffitienomedm(zp) = R.

For calculating the Tschebyshev polynomials, the arrag kile region is attributed ta| < 1
and the major lobe to |z > 1. In order to normalize the polynomials, the substitution
cogu) = £ is realized. Consequently, the pattern has a maximum vdlumity at z = z,.
Introducing all calculated Tschebishev polynomials, thetation coefficients, can be calcu-
lated by equating the Tschebishev polynoms with ones ofAfhe

The Tschebyshev method is not adequate for large arraysodbe & gain limitation. For
relative small arrays as well as large ones the directividydg a maximum. This can be ex-
plained by the forced constant sidelobes: they take a laagegh the power, while the beam
becomes narrower as the number of array elements increases.

4.1.5 Taylor Line Source Method

As evoqued in the latter subsection, the Tschebyshev tgobmossesses deficiencies for large
arrays. Taylor analyzed the latter method, examined the &ifra continuous line source and
drew the following conclusions about allowed illuminatscand pattern far-sidelobe levels. The
loss in efficiency of the Tschebyshev method comes from tii@regment of having constant
sidelobe heights. In the case of large arrays means thia thage fraction of energy resides in
the sidelobe region. Hence a very large array requires agalinable aperture illumination.

Taylor states that the far sidelobes of a given line soureeaaiunction only of the line



4.1. PATTERN SYNTHESIS METHODS FOR LINEAR AND PLANAR ARRAYS 147

source edge illumination. According to [6], if the edge miunation for a line source of length
2a behaves as in the following
(a—1[x)° (4.17)

at whichx is measured from the center of the source, then for the $edcaerivative"
L > 0 the far sidelobe level has the behaviour of the followingction f (z)

sinTz
Sy
for
_ 2
f<z) - sinTz

— for
COSTZ

) for

(4.18)
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whereinz = % andu is a function that depends of the spacthgnd the number of elements
N. The choice of values for the "derivative" of the apertulgnlinationu "steers" the behaviour

of the far sidelobes, for exampleuf= 0 for the array leeds to sidelobes Wﬁ?ﬁgzl”. A pattern
distribution, like the one of the uniform illumination, nmains its efficiency even if the array
becomes larger. For the other positive "derivative" valilhessidelobes decay faster and have
generally lower efficiency.

For "derivative" value® < 0 the illuminations are no realizable for the continuousrape
ture case [6]. Furthermore, the location of the far zerosheffattern are determined by the
edge illumination. The-th pair of pattern zeros appearlddends to infinity at the following
locations

zy=+(n+Y) (4.19)

A particular case is observed when the edge illuminatiomszere compared with the
Tschebyshev zeros that occur asymptotically-éat — %): the latter zero locations correspond
touv = —1, a not realizable illumination.

Taylor suggested a pattern function with zeros far from tfennibeam at locations that
correspond to the uniform illumination & 0). Additionally, the zeros closer to the main beam
should be chosen similar to those of the Tschebyshev paffaylor simulated and modified
a continuous source with similar features as the Tschebysdgern using the following ideal
line source patterBF as substitute

1
cos( MZ—-A?2 ) for Z2<A
SKF(zA) = 1 (4.20)
cos( (A2 —722)2 ) for 22> A2
where
z="4 (4.21)

The sidelobe ratio is given as the valueSifatz=0

R = cosH{TA) — A= tlarccoslR) (4.22)
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The resulting pattern correspond to the limiting case offtehebyshev array as the number
of elements is infinitively increased. Therefore, the |aoad of the zeros are

1
Zn=+(A2+(n-1)%2 N=1,23,... (4.23)

According to [6], if a new function with near zeros very cldsghose of the ideal pattern

in 4.23 but with more far zeros corresponding to those ofmlmetﬁonw is defined, then the
requirement on the near and the far sidelobes can be fulfilled

Taylor chose to keep all nulls at the integer location [fgr> N, and to move those for
lu| <N near the locations of 4.23. By this way, nearly constantlsizks near the main beam
can be obtained. In order to match these two sets of zerogliltteon factor o is applied.
This factor, which is slightly greater than unity, "dilatdbe ideal space factor horizontally
by moving the ideal zero locatiors in a way, that eventually one of the zeros equals the
corresponding integeM. Therefore, the synthesizeédF pattern in normalized form is given
then by

_ . ON-11-— ﬁz
AF(z,A N) = Sinz 2 with z=uk (4.24)

n=1 1- vl

n

The zero locations of the synthesized pattern can be cédclibgyy the following expression

N (4.25)
+n for N 00

1
Zn:{ +0(A2+(n—3$)?)2 for 1
Herein thedilatation factoris given by
N
— 1
(A +(N-3)?)2

o= (4.26)

at which forn = N the zero location I, = N. Due to the fact that thdilation factor o
stretches the "ideal" space factor in the manner that itsszare shifted away from the major
lobe, the beamwidth of the pattern is increased.

4.2 Pattern synthesis methods for conformal arrays

Building arrays with conformal elements conclude from thleamtages that offer conformal
antennas. Patrticularly, they can provide wider range afrsicg angles for phased arrays than
planar arrays. The challenging problem by using conformaya is how to handle the dif-
ferent orientations of its radiating elements, which irdates the pattern separation principle
applicable to linear and planar cases. Thus, it makes ttssicil array synthesis methods
unusable. Therefore, different approaches have been ggdpdmong them there are the itera-
tive least square method, adaptive array theory, the waighner product method and genetic
algorithms.
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4.2.1 The Projections Method

The generalized Projection Method (PM) is explained by Butal. in [58] in detail. The
authors show the application of this technique on an arrathggis case [59]. A reconfigurable
array with phase-only control, whose elements lie regukeguidistant in a plane of a cartesian
frame, is expressed by a multiplication of the element tashdield Eqjemand the array factor
(AF) in direction(0, @)

AFO.Q)= 5 anme o (4.27)

(nm)el

U is the unitary vector, the produk@?’nm the propagation vector, respectivelyis the set
of the couples of n,m) specifying the locations of the array elemeng, is the excitation
magnitude coefficient. The AF is defined ovyerrt, 1) x (—1t, ). For the reconfigurable arrays
there have to bg AF’'s radiated by the same array and synthesized at the samaeTihis set of
AF’s belongs tos C (£2)9, where£? is the set of all functions square integrable (e, ).
Thus, ag-tuple of functions(6, @), which belong to the set C (£2)4 must to be taken into
account.

In addition to that, a set; of admissible g-tuples including only element satisfyihg t
requirement oflanm1| = ... = |anmg| (Phase-only reconfigurable array condition) is sought.
This meansg is a subset ofs. The requirements on the pattern are expresseddying <
Fgq < Mupg, namely the definition of the desired pattern mask. Moredtiey belong to the set
M C (£2)9. Due to the fact that there is no need for a stabilizing fumel since the pattern
mask is defined fof—1t, 1) X (—T11,17), the fundamental functional reduces to the last term [58].
These all reduces the synthesis problem to the search foma gfathe intersectiorms N 3,
which can be solved via the iterative process with the ptiwjer®peratorse,, and2, and the
respective iterative step

Fn+1 = fPM fpgg Fn (428)

with the general projection operator definition

PaiXeH —YeA|X=Y||<|x=Y|l, YWeA (4.29)

at whichA is a closed subset of the normed space Applied this definition to the array
synthesis example, the operators can be interpreted imblog/ing form
Fq
Mupary  Fa > Mupg
fPﬂ\/[,qlzq =4 Fq Mdowng < “:q‘ < Mupg (4.30)
Mdownqﬁ Fq < Mdowng

and
Q L,
PpqFg Z ||Fq — Fgl|= — min (4.31)
=1

In the latter expressiotiy is the calculated value for the AF aifg represents the desired
array factor. Furthermore, Bucet al. give an insight into the properties of the limit point (4.28)
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of the iterative process. Therefore, the authors obserevbehaviour of the distance function

and explain three possible cases. FirsDiffy) converges to zero, then the sequeffige
contains a subsequence that converges to the intersediohbetweens and 4/ and hence
the sought solution is found. In the case that the distanoetifan converge to a non-zero
value Dpyin, there exist no intersection point and a "best" possiblateml according to the
stated quality criterion is obtained. Moreover, the resahl be improved by trimming of the
requirements. The last case, wherBiff,) converge to a nonzero vall¥ ft) and fr is a part
of the antecedentfi,, is called "trap” case. The latter can be only avoided bylasrathoice of
the starting point, which should be consistent with the fobat hand.

Furthermore, [60] shows the application of this synthesshod to conformal arrays. The
procedure is similar with the difference that is applied#®whole radiation pattern and not only
to the AF like in the planar case. The reason for that lies erdifierent radiation directions of
the array element pattern. The projection method is sunz@@in a more generalized manner
in [58]. Therefore, Buccet al. the method is derived mathematically and different appboa
examples are shown.

A variant of the aforementioned projections approach isSihecessive Projections method
(SP). Like the PM approach, it is an iterative procedure fadifig a point in the intersection
in a number of sets. It is based on the methods of projectiots convex sets [62]. It is
applied for image restoration, filter and antenna desigrofding to Poulton [61], the method
proceeds by finding an estimate of nominal array excitatidrich is consistent with all field
measurements within a prescribed error. These measurgmheiime a number of intersecting
sets of possible array excitations: one set for every fieldtpd point in the intersection of
all sets represents an excitation that satisfies all cansraimultaneously, consequently itis a
solution to the problem. The iterative procedure of prajgcbnto each set in turn can under
certain conditions converge to a point in the intersection.

Furthermore, in [72] Elliot gives a description of a possilibrative algorithms based on
the PM and SP approach for conformal array analysis. Botbritfigns are used in order to
realize comparisons between existing array synthesisadsttor conformal arrays. An obser-
vation from the realized analysis in [72] is that the SP ditlcanverge completely in Elliot’s
investigated case of conformal arrays and hence it detivenéy a local minimum.

4.2.2 The Simulated Annealing Technique

The Simulated Annealing technique (SA) is an iterative reatatical algorithm that was
used formerly for optimization problems in informatics ygital design of computers) and
econocmis (travelling salesmen problem). Kirkpatrétkal. describe the procedure of this al-
gorithm in a general form and uses it for the aforemention&trozation cases [65]. Due to
its simplicity and efficacy it was used consequently in etsoiagnetics. In [64] Farhat and Bai
describe its implementation for a phased-array patterthegis. Furthermore, Arest al. uses
the SA method in order to optimize the pattern of circulararays.
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According to [65], the SA describes the procedure of findimg tight temperature state
for growing a single crystal from a melt by careful annealitgerein, the subtance is melted
first with the highest temperature that is then lowered sfoWwhe melt spends a long time at
temperatures near the freezing point. For the mathematesdription of the process, a cost
function symbolizing the system and a system variable, réqatesents the temperatufeand
is to be optimized, are introduced. The process is initiatelkigh temperature. In each step
of this algorithm, the system variable is given a small dispment and the resulting change in
the energyAE of the system is calculated. AE < 0, the variable changes and its configuration
in the system is used as the starting point of the next stepada ofAE > 0 the acceptance is

weighted. Therefore, the probability by means of Boltzmarabability factolP(AE) = e kBT
with kg as the Boltzmann constant is calculated and compared talamanumber in the range
of [0,1]. If the latter is less than the probability factor, then tlesvrconfiguration is retained.
Otherwise, the original configuration is used to start the step. These steps are repeated until
the optimum steady state of the system is reached. Furtlmerri@ choice of the initial is
curcial for the success of the process.

For an array pattern optimization the SA technique is apph defining a suitable cost
function replacing the energy and a set of parameters bleedynamic variables of the system.
In [63] the radiation patter@(6, @) of a circular arc array is expressed by the following form

N . .
C(6,9) = 5 1ne Ml ORI MIC, (B, p— gr) (4.33)
n=1

at whichR is the radius of the arc where the elements are positiokgdtands for the
free-space wave number aqnﬁl_ T7 the angular spacing between the consecutive elements.
At the latter equationCelem is the eIement pattern, which has to be taken into accountalue
the different direction of radiatiof®, @) in contrast to their planar counter parts, where it is
not necessary. Considerating a conformal array strucfues et al. define the magnituddg
and phasesy, of the excitations as the dynamic variables and therefara foxed geometry a
set of starting element excitations are chosen. In additidhat, the cost function has to be
determined. This is done in a general way as in the following

i=1 j=1
CostFct= % ai(Y.desired,i - Yi)2+ % bj (Gstart,j - aj) (4.34)

Here, Yyesireqi @andY; are the desired and obtained values forrihgought design parame-
ters, which can be beam-width, side-lobe levels, gain, @{g j anda; are the starting and
the obtained value in each iteration. After defining theeysto be optimized, the synthesis is
realized following the aforementioned SA process steps.

The advantage of the SA technique is its ability to avoid llooaima and generally to
converge to the global minimum of the cost function. In addito that, it has to be said that like
in the Dolph-Tschebyshev optimum function, the optimuntction given by SA is different for
different steering angles. Furthermore, since simulategkaling is an iterative improvement
process, it takes a relatively long time to do an optimizapooblem. Thus, instead of the
Boltzmann selection rule, a Cauchy probability selectida can be used to speed up the whole
annealing process [64].
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4.2.3 The Least Square Method

The Least Square Method is an approach closely related &b d@timization techniques, like
Conjugate Gradient method and Newton method, that can Heedpmly to linear problems.
Since the relation between the excitations at the elemdran array and the array’s radiated
far-field are of linear kind, this method can be applied. Ttvecept of the Least Squares method
(LS) is to find the required complex excitation values in oraeobtain the desired radiation
pattern from the antenna system. Furthermore, using teariity of the system functions the
latter can be written in matrix form as in the following eqoat

(Ca) =[D]-(A) (4.35)

where(Cy) stands for the desired pattern in vector fofid] for the geometry dependant
system matrix, also called complex element directive pattgatrix [72], and A) the excitation
vector, respectively. Consequently, the latter matrixatigm has to be solved in order to yield
the sought excitations. For it, there exist different kimfigpproach. The simpliest one is to
multiply equation 4.35 by the transposed mafi{ resulting in

(IDI'-(Cq)) = ([D]'- [D]) - (A) (4.36)

The resulting matrix equation, whose right side is equiviate a square matrix, can be
solved by standard techniques. Furthermore, if the latpeagon is reshaped as in the following

(A) = ([D'-(Cq)) " *- (IDI'- D)) (4.37)

and if instead of using the transposed matrix the hermitiansposéD]" of the system
matrix is applied, then the classical LS approach is deriv@mhsequently, the solution can be
calculated as in the next equation
-1
(A)=([D]"-[D]) " ([D]" - (Ca)) (4.38)
The latter equation gives the solution according to thesatas LS method. The hermitian
transposéD]" is equivalent to the transpose of the complex conjugaiBof

Moreover, it would be useful to solve the matrix equation inydifying the required matrix
inversion. For it, there exist some decomposition techesgor invertible matrices in order to
reduce the computation effort due to matrix inversion . Rstance, the LU decomposition sees
the matrix[D] as a result of the multiplication between a lower and upgangular matrix[L |
and [U], respectively. Hence, the matrix system in (4.35) can beesbby finding the solu-
tion for two smaller systems. Furthermore, another decaitipa technique is the orthogonal
matrix triangularization or QR decomposition method. Tdyiproach is more effective since
it reduces am,n) matrix with m > n and full rank to a much simpler form. Furthermore, it
minimizes the approximation error, which is usually expegkby

err=(Cq)— [D]- (A) (4.39)

The QR method decomposes matii¥ in an orthogonal partQ| and an upper triangular
matrix [R] like in the following

O] = [Q]-[R] (4.40)
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Since the suitably chosen orthogonal matrix is unitary &ed¢lation|l] = [Q] - [Q]", with
[I] as the identity matrix anfQ]" as the hermitian conjugate, is valid, then the transpose of
matrix [D] is

D] t=[R]* Q" (4.41)

Consequently, the solution for equation (4.35) and theeetiwe sought excitation vector is

(A)=[R]"*[Q"(Cq) (4.42)

It has to be said that in order to apply the QR method, thelisygstem in (4.35) is suppossed
to be a over-determined.

Another more elegant and efficient way to solve the LS matjixa¢ion is performed with
the Single Value Decomposition (SVD). This method presttbieMazzarella in [71] decom-
poses the complex element directive pattern mdmixin order to find its pseudo-inverse for
minimizing

1(Ca) — [D]- (A)[? (4.43)

The SVD allows to "split" the matri}D] in certain matrix components like in the following
equation

D]=[]-[Z]-V]?  with [Z]=diagoy,...,0N) (4.44)

In the latter decompositiofl) | is a unitary matrix containing the left-singular eigenwest
[VIH the conjugate hermitian of a unitary matrix composed oftrigjhgular eigenvectors, and
= a diagonal matrix that is constituted of the singular valoiethe [D]. For these Eigenvalues
isvalidoy > 02 > ... > 0r1 = 0 with rank{[D]} = r. Consequently, the pseudo-inve{Bg™
of the system matrix is

DI =V]-[E7 T with [F]7t=diags,. . 5,0,---,0) (4.45)

Mazzarella proposes to apply the acquired pseudo-invarsequation (4.35) replacing the
transposéD]' like in the next equation

(A)=[D]"+(Cq) (4.46)

Moreover, Jornaet al. in [70] propose a variant of Mazzarella’s approach by trtinga
the SVD by eleminating certain amplitudes that do not cbuote to a significantly better syn-
thesized radiation pattern. The proposal demonstratesyprovement for the LS solution in
reference to the radiation beam quality due to a improverfwerthe tapper efficiency of the
conformal array.

In addition to that, it has to be said that Least-Squaresropdtion gives a solution for the
unknown excitation values that is valid for some (guessbdp values of the goal function but
that is not necessarily equivalent to the optimum solutasritie synthesized pattern amplitude.
For finding the best amplitude fit, Vaskeleinen proposestdrative LS [67]. Furthermore, the
LS optimization is also not directly suitable for phase &gsis, which is a nonlinear optimizing
problem [68]. Consequently, the iterative LS method in coration with possible contraint
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values is presented in [69] as an efficient solution for thisec

4.2.4 The Virtual Array Method

The basic idea of this approach of Vaskelainen [66] is to miné the difference between the
array factors of the "virtual" array and the array to be opted. Therefore, an array, the so-
called virtual array, is synthesized with a suitable methodording to the destination array
geometry and later its excitation values found are transéakinto the excitation values of the
destination array. For it, the radiaton pattern of the artrrayC, and of the analysed arr&y
are described as follows

K , K o
0=73 aell and  C(0) = S o pelkoPel (4.47)
p=1
ax andry are the excitation coefficients and the position vector efklelements of the
examined array and their counterpamsandpy, for the p element virtual arrayi is the unit
vector. The error function is given by

o(t) = C(U) —Cy(U) (4.48)

Vaskelainen defines the following integral function frone tlatter error function for all
directions (over the solid angf®) in order to derivate a relationship between the excitgtion
the examined and the virtual array.

s— ]f 5(0)5" (1) (4.49)

The resulting relationship, which fuIIf|I§T and 5525 as , IS

K P
S aky{ elko(fi—Tgt _ S vpy{ eoli=Bp)l—0  for i=1,....K (4.50)
-1 JQ p=1 /9

The latter expression can be expressed by the followingixrequation

S’rA — S’VAV Wlth A — [a]_,...,aK], AV: [V]_,.,VP] (451)

The elements of matri%, andS,, are the integral components from equation (4.50), which
are evaluated and result in

. sin(Ko|Fi — Fi|) sin(ko|i — Ppl)
S (1, k)4 Ko|Fi — T| ko|Fi — Pp

The virtual array should be a known array in the sense of anteawvaluate array, for which
a known and efficient synthesis method exists. In additiadhag it is advantageous if the virtual
array is 15— 3 times the maximum dimensions of the examined array. Theelas the size
of the virtual array has influence on the accuracy of the gish for a large virtual array the
analysed array can not reproduce the finest details of tipecage array factor. Consequently,
the detailed errors are smoothened out in the array factiveaéxamined array.

Sv(i, p)amt

(4.52)

According to [66], the latter matrix equation can be usedifoy array geometry, if one can
find a synthesis method for the virtual array. This meansttievirtual and the examined array
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must have similar geometry. Furthermore, Vaskelainen tree$wo-dimensional Woodward
Synthesis in order to optimize a planar array.

4.2.5 "Conformal Fourier Method" or Weighted Inner Product Method

Deng and Michalski present in [73] an alternative appro&ett is based on the inner product
and resembles to the Fourier method for planar arrays. Titweepd regarding the total far field
patternCarray as a summation of the translated versions of the refereeogesit patterry;.

Caray(T) = 3 3 upYip()  with Yip=Yie"™ and Y;=(TiCer)(")  (4.53)
p

At the latter expressiof; stands for the translation operatGy, s for the reference element
pattern, respectivelyg, T andT are the position vector, the orientation vector and theoresft
observation direction, respectively. Furthermore, theffatientsc; , embraces the translation
and orientation properties on the reference element patf#ne authors find a strong resem-
blance with the windowed Fourier transform (WFT) that is eorestruction formula. In order
to yield a desired pattern, the coefficients are calculated with the help of a weighted inner
product that has following general form

(f,g) = /r(r>f(r>g*(r)dr (4.54)

at which the symbo(x) stands for the complex conjugate andor the weight function
respectively. In the beam synthesis case the weight fumitidefined by

1
rr)=——
(") >ilYil?
The desired pattern constructing coefficients are caledlbay the following equation

(4.55)

Ct.p = (Cdesired Yi,p) (4.56)

The latter inner product allows the WFT to construct the $bugdiation pattern. The
approach applied on planar antennas is equivalent to thedfanethod, hence it can be seen
as a conformal version of the Fourier method for planar atrdiyie additional capability of this
method is to compensate nearby all the translation effeetalthe curved structure.

4.2.6 Synthesis with a Genetic Algorithm

The classical synthesis techniques presented at the liegiofthis chapter, are thought to be
for planar arrays and hence they are not adequate for coaf@may structures. Furthermore,
some of the methods for antenna array synthesis, coming tihenafore presented ones for
conformal antennas, can only be applied to arrays withicectanditions on the array shape and
on the array elements. In addition to that, approachs li&&ticcessive Projections method tend
to converge to local minima. Genetic Algorithms (GA's) halve potential and ability to explore
the entire configuration space and eventually reach theagloimimum [80]. Consequently,
they are used for different optimization problems in electagnetics as shown in [74] and [75].
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Moreover, they have been used for array synthesis [76] anjd his optimization method is
treated in detail in the next chapter.



Chapter 5

Use of a genetic algorithm for antenna
synthesis

Considering the aforementioned synthesis methods, thieelbo a feasable and efficient ap-
proach for optimizing a conformal array has been persuedordier to overcome the great
computational effort of direct analysis approaches duedtiminversions, and to acquire more
accurate methods as iterative methods yield, robust apdiiion methods like simulated anneal-
ing and genetic algorithms are most like to be used. Amonly temhniques, the most diffused
and used one are genetic algorithms. The reason therefiiat SA's are versatile and accurate
for easy as well as for complex cases, where other optimiziathods fail. Although it is a
time consuming method, the ratio between the time efforttaedquality of the results back
their use in different engineering domains. Thereforehia work the application of a genetic
algorithm is used as synthesis method.

5.1 About genetic algorithm

A genetic algorithm (GA) is a model of machine learning treabased on natural selection.
According to [80] and [74] it derives its mechanisms accoegdio the principle stated by Dar-
win known as "survival of the fittest”. Therein, an initialgadation is created from a random
selection of the parameters in the parameter space. Eaametar set represents the individ-
ual’'s chromosomes. Each individual is ranked afteffiin@ss which is a measure of how well
the solution is concordant with the requirements. A new gggtien emerges from the current
generation by creating offsprings from a pair of individial

There are three operational functions in a GA with the objeadf creating the next gen-
eration, these are selection, crossover and mutation. eAbéiginning, a population composed
by a number of individuals is given. These individuals amed@nly generated. According to
the biological life process, the more fit individuals haveghler chance of finding a mate and
reproducing. Conversely, the weak individuals have lessicl in mating and hence they die
off. This is known as natural selection, which is implemeritea GA in form of the selection
function. By favouring the mating of the more fit individualee more promising areas of the
search space are explored. Analogous to its biologicalteopart, the cross-over function in
a GA is defined for the children of the selected population hAds chromosome set is some
mix of its mated parent’s chromosomes.
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Random Initial Population

»| Calculate Fitness for Each Individual
»| Select and Mate the Most Fit Parents

Perform Crossover Operation

v

Perform Mutation Operation

v

Perform Elitism Operation

Population done?

Repeat for New Generation

v

Keep Best Individual

Figure 5.1 : General flow diagram for a typical genetic algorithm

Following the cross-over, the mutation function operatea IGA. Like in nature, certain
gene’s chromosomes are altered or changed by chance, gudtitonal or taking away certain
characteristics of the individual. Furthermore, the fimeSeach child is determined and the
process of selection, crossover and mutation is repeatbd.effitire new generation creating
process is performed until an entirely new popolation isegated. Practically, the average
fithess of the population in the GA tends to increase withyemew generation. Consequently,
the aforementioned process is successively done untilfitengdividuals are obtained. Figure
5.1 visualizes by means of a flow diagram the latter descriibedesses in a genetic algorithm.

According to [76], the selection process happens at eachtiibe step. Herein a certain
amount of pairs of parents are chosen by tournament, whexatly parent is selected as the
best of a randomly chosen group from the group of candid&tsh of these couples produce a
child or more using crossover, which is followed eventulljya mutation. The crossover step
refers to the mixing of information from both parents to ¢eethe children: from each parent a
part of their chromosome set is taken randomly generatingnaset of chromosomes for their
offspring. The mutation process implies that the chromaseat of an generated individual is

modified: one chromosome is altered randomly.
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5.1.1 GA process functions and concepts in a Genetic Algohin

The process functions of the GA and certain additional neitlemming from the mathemati-

cal implementation are presented in [80], [79] and [78]. Sehunctional steps and concepts
are floating point and binary coding, tournament selecsorgle point and uniform crossover,

jump and creep mutation, niching as well as elitism. Theesfthey are presented in the fol-
lowing paragraphs.

Coding is a method for discretizing the individual parameta a number of possibilities.
Analogue to the description of genes in biology, the indinlls chromosomes are encoded as
a string of values. Therefore, each parameter is represégtés chromosome. The length of
each parameter string is called the parameter length. Aoapto the floating point coding,
the value of the chromosome is stored as a floating point nunogthermore, the parameter
length is unity since each parameter is represented by Eesthgppmosome in the chromosome
length. For binary coding, the chromosome length is baseti®total number of possibilities
in a binary format. For example!'®ossibilities would be represented by a stringnddinary
elements, which can only contain the values of 0 and 1.

Selection in a GA is the function of picking right parents ceming their fithess char-
acteristics for mating. According to [80], there are expédctalue selection and tournament
selection. At the first selection method the expected pridbalp; of being selected for an |nd|-
vidual is his/her fitness$; divided by the sum of the fitness of all individuals. Th|5p|s_ Z
Consequently, the expected number of parents with an clsome set for the new generatlon
is simply np, with n as the population size. Finally, random pairs of the latt&ied indi-
viduals are chosen for mating. At the tournament selectmlom pairs from the population
are selected and the most fit of each pair is allowed to mateh gair of mates create a child
or children, which have some mix of the two parents chroma@soactcording the method of
crossover (see next paragraph). This process continuiéa metv generation with a number of
individuals similar to the old generation is repopulated.

Another process function used in a Genetic Algorithm is soesr. There exist single point
crossover and uniform crossover. At the first one, a crosspemt is randomly chosen in
the chromosome set of the first individual. At this point, feat of the first parent set is
replaced or overwritten by the one of the second parent seanfexample, let the first parent
set be "abcde" and "ABCDE" for the second parent, respégtivllowing the single point
crossover, a possible child set can be "abcDE". Herein thgoraly picked point lies between
"c" and "D". The uniform crossover is a crossover procesereteach chromosome position
has its own probability for a crossover with the one of theoselcparent. Thus, it is possible
to obtain any combination of the two parent chromosomesadJtie latter example a possible
chromosome set of the child can be "aBcDe". Comparing bathgsses, for the single point
crossover the possibility that the child inherites the vetaliromosome set of one of the parents
exists. For the uniform kind, this possibility is not availe.

In a GA there exist two kind of mutation: the jump mutation ahd creep mutation. The
jump mutation produces a chromosome that is randomly chfveemthe defined parameter
range. Using the example of the crossover methods, the cdsmmme set of a child can be
"abcDM", where "M" is not a chromosome from either parent.e Teep mutation method
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generates a parameter value that is randomly picked to gerlar smaller than the parents’
one. As an example the child chromosome string resemblealioDF", where "F" is not
a chromosome from either parent but it is only one incremardyafrom the second parent
chromosome value of "E".

Niching, also known as sharing, is an effective GA technifjugoroblems in multimodal
domain, where each peak can be thought as a niche. The lagtaranthat there exist more
then one possible solution to the optimization task. Actwydo Miller [82], the analogy from
nature is that within an environment there are differentspaloes (niches) that can support
different kind of life (species, or organisms). The numbkpanisms for a given niche is
determined by its fertility and the organism’s capaciti@exploit this fertility. If there are to
many organisms in the niche, there will be not enough foodcéé¢he least efficient organisms
will disapear. Conversely, if there are few organisms inrtiléeniche, they will quickly repro-
duce in order to exploit the niche’s ability to support life.a similar manner the GA maintains
with the niching function the population diversity of its mbers in a multimodal domain. This
multidimensional sharing scheme is presented by Goldinei@yi].

The elitism function is used frequently in a Genetic Algomt This is an operator used
for ensuring that the until date generated individual, \whas the best chromosome set, pro-
creates offspring. After the population is generated, thevéxifies if the best parent has been
replicated. For a negative verification result the algonitthoses a random individual and the
chromosome set of the best parent is copied to that indilidins process helps to prevent the
random loss of good chromosome strings

5.1.2 The micro-Genetic Algorithm

The micro-genetic algorithmuGA), as the name 'micro’ alludes to, is a small population GA
with reinitialization. This approach was derived from saimeoretical results obtained by Gold-
berg, according to which a population size of three is seéffitio converge, regardless of the
chromosomic length adopted [81]. Furthermore, Goldbeggssted to start with randomly
generated population, then to apply on it the GA processsigrementioned until reaching
nominal convergence. After it, a new population should beegated by transferring the best
individuals of the converged population to the new one. Tdrmaining individuals would be
randomly created and the process should restart.

Krishnakumar in [83] did the first implementation of th&A. His algorithm starts with a
small random population of five individuals that evolveslik standard GA process but with
crossover rate of one and a mutation rate of zero. The elgtemcopied the best chromosome
string found in the current population to the next generatithe selection step was realized by
holding four competitions between strings that were adjsicethe population array, and taking
the individual with the highest fithess for the next roundn€equently, at Krishnakumag&A
the concepts that are used are those of elitism, single paissover and restart. The mutation
concept is not used as aforementioned. Furthermore, Kaighmar compared his results with
the ones of the simple GA and reported a significant improventee results converged even
on real-world engineering control problems faster. Anotdvantage found at Krishnakumar’s
MGA was the avoidance of premature convergence.
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5.1.3 Application of a Genetic Algorithm

The GA is applied to a certain process by allowing it to "piltie generation or selection

of input variables. For example in [77], the genetic aldorittechnique is used to select the
excitation phases that would produce the closest possibtehto a desired array radiation
pattern. The input variables will be chosen or created irggeio an evaluation of the output

quality called "fitness". This fitness evaluation is made typaring the desired quantity with

the calculated one. According to Carroll [78] the fitness lsarcalculated by

1
lef |Qtargetk - Qcalqk

at the latter equatio®argetk iS the desiredk-th quantity value Qcack the value of the
calculated quantity, respectively. The amount of measareti calculated values is for both
K. According to [74], to rank the performance of the solutidhss necessary to calculate the
error for a given solution. Therefore, the error value stidad calculated by means of an error
function, which will reflect the fitness of a solution in a GAs Already seen, the error value
is equivalent to th& differences between the calculated quantity value and éseet target
value. Consequently, the following equation

fitnes§Qcaic, Qtarget) = (5.1)

K
1
ErrF (Qcalc, Qtarget) = Z |Qtargetk — Qealck| = z—— (5.2)

fitness
which is the inverse of the fitness function, gives the totedreand is known as the error
function. It has to be said, that the afore presented errantion is the equivalent to the afore-
mentioned cost function in the Simulated Annealing metHadact, the term cost function is
also used in GA. In the present thesis work cost and errottifumare synonyms.

Furthermore, it is important that the error function is wagkigned according to the target
requirements. The following equation is an example for ajdes error functiorerrF proposed
by Skaar [74]

K

ErrF (Qcalc, Qtarget) = Z(Qtargetk - Qcalqk)2 (5.3)

The desired quantity valu&g,rgetk can be theoretical values or measurements. In a more
general way, the error function can be represented by thanfimlg definition, wherein the value
differences are weighted with coefficieris

K v
ErrFp(Qcalc, Qrarget) = [Z(Ck‘QtargeLk - Qcamk\)p] (5.4)

K is the number of target quantity values as well as the nunflroputed quantity values.
The parametgp in the latter equation gives how the large errors are wethtdenpared to small
ones. For example, fqu = 1 the error function becomes a simple weighted sum of erfors,
p = 2 the error function is equivalent to a weighted EuclidiarinaeFor the limit casg — o
the error function evolves to

ErrFeo(Qcalc, Qtarget) = mkaX(Ck|QtargeLK — Qcalck|) for p— o (5.5)
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Thereforep has to be chosen according to the requirements.

5.2 Implementation of the genetic algorithm

The array synthesis for antenna arrays with a defined steiigwlone by determining the opti-

mal excitation of the elements. The excitation currentscaraposed of a complex magnitude
(or amplitude) and a complex exponential function with tkeiation phase as argument. Gen-
erally, the basic concept of the optimization is to detemrtime best amplitude coefficient and
phase coefficient configuration by means of a GA, in order taioka desired radiation pat-

tern. In the case of beam-shaping and phased arrays, whbeegxcitations amplitudes are
pre-determined, the phase coefficient configuration iswipéd.

Furthermore as seen in the last paragraphs, the definititre@fdequate fitness function is
fundamental for the optimizing process of the conformahyarin connection with the fitness
comparison, it is essential to define a suitable objectiwetian, or pattern mask, that describes
the desired pattern. In addition to that, the GA should bepmmsad of the alternatives for
the process functions, which lower the quantity of evabratperations (this means the GA
optimizes fast) and find the optimum solution (this means3Aavorks efficiently) at the same
time. Moreover, the GA's process functions has to be adetyuabnfigured in relation to the
synthesis of conformal arrays. In addition to that, theatibn and control variables for each
GA process step have to be adequately defined.

5.2.1 Structure of the performed GA

The Genetic Algorithm at this work is an adapted version off@bs developed GA for the
optimization of a chemical oxygene-iodine laser preseimé¢a9]. The reason for this choice is
the versatility of Carroll’'s algorithm, which was previdusested for a source decomposition
problem. Besides, being based on the GA theory of Goldbehgsi its own random generator
that works more efficient than other tested codes. Consdguire GA in this work uses binary
coding, tournament selection, uniform cross-over, cregfations, niching, elitism. There exist
also the possibility of launching Krishnakumap&A. The GA is structured as depicted in
figure 5.2.

The GA starts with an initialization stage, wherein the fgeheration created. Following
it, the fitness evaluation step is applied that stores thdtieg fithess of the actual generation.
Then, the inheritance stage starts, wherein selection ms3-over take place. The latter step
leads to the modification stage, wheregi®A option is note used, mutation is applied. The
process continues with the generation of the off-springpeig the new generation. The last
stage of this iteration is the reinitialization. The lageocess is run until the designated number
of simulations of the GA is reached. The implemented cod@&ague to the presented GA
structure. The GA process components are explained in Hosvfog paragraphs.

5.2.1.1 Initialization

In the initialization stage, the input data containing @lues for the GA variables is retrieved
from a file. These are the heuristic values, like cross-ower mutation probability, as well
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Figure 5.2 : Structure of the implemented genetic algorithm

as command values, e.g. if&A should be performed. The input file has also information
about the population, for instance the amount of generation parameters to optimize, and
about the parameters, namely the element amplitudes asg@ghahe input data contains also
details on the pattern mask that describes the desiredpéitection, e.g. beamwidth, steering
angle, etc. In the case that the user desingSA optimization rather then the standard variant,
the values after Krishnakumar, as described in the lattapte, are set automatically. This
is, the population size has the value of five, crossover ratme and a mutation rate of zero,
respectively. Likewise elitism, single-point cross-oged restart are performed.

Furthermore, if it is the first simulation run, the patternskunction, which is given in
detail in the next section, is built according to requiretseset by the user. Another significant
event, that happens during the first round, is that the ptipnl@omposed of individuals is
generated. To these individuals were attributed ramdoh@ycharacteristics given in the input
file. Conversely, if it is not the first simulation, the iniiEation stage reads from a store file
the information about an existing optimized generationlld®ong it, the random values for
the amplitudes and phases of the population individuals@ded in strings using coding. This
work uses binary coding, since it lowers the size of the paiah and hence the number on
evaluation operations needed for the optimization acogrth the results obtained in [80]. The
coded information about the population is stored in a matvixich contains in each row each
individual and in the columns the properties of each indiaid In our case, a rows stands for a
solutions and the columns for the parameters, namely tineegiephases and amplitudes.
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5.2.1.2 Evaluation of the fithess

The evaluation of the fitness is the core step of the syntipesiess. It performs the analysis
of the investigated optimization problem with the regargegulation as a posible solution.
Therefore, for each generation the evaluation functioegake coded chromosome strings of
each individual and then it decodes them using the resgedéeoder for the binary code. By
this way, the phases and amplitudes of all solutions areraata Following it, each solution
and its respective parameters are transformed in the caraptgtation combination applied on
all array elements. For each array element, this is multiglghe matching amplitude by the
complex exponential function containing the respectivagghas argument. Then, the excited
array is evaluated on its fitness with the fitness function.

As seen in the latter chapter, the fithess function is thergavef the error functiorerrF
(equation (5.2)). Consequently, the error and therefaalifierence between the pattern mask
function values and the calculated values is computed byhsefan adequate error function,
whose form depends on the optimization case. The congiructi a such error function is
presented later in this chapter. The radiation patternl@itzed for each solution, this is, the
complex excitation combination is applied to the array. méeessary array pattern computation
in each case is performed with the hybrid method createdignwbrk. For each proposed
excitation combination, an error value is obtained. Fronthalse error results, the lowest value
that stands for the highest fitness value is selected aneldstor

A distinctive feature of Carroll's GA implemented for thisovk is the adaptive fitness
threshold. The first threshold is set equivalent to the b&stds value obtained at the first
run. If a better fithess value is obtained in any random smhuduring the next rounds, then this
value becomes the threshold. The following runs becomeetprently more discerning and
hence the optimization process of higher quality.

5.2.1.3 Niching

Another function that highers the quality of the optiminatprocess is the implemented niche
function. The studies made by Carroll in [79] show that thehmitechnique is only useful for
multimodal optimization problems. Consequently, the mghstage is an optional stage and
hence it can be switch on or off depending on the problem remeénts and, of course, on the
user’s desire. Furthermore, the niche function is implaedby means of a triangular sharing
function according to [84].

5.2.1.4 Inheritance

The inheritance stage consists in elaborating the chaistate of a new generation from the
genes or chromosomes of fit individuals of the actual germeratThis is realized by the selec-
tion and the cross-over functions. The genetic algoriththisiwork uses tournament selection,
which works efficiently in selecting the fit parents for matiinom a relative small sized pop-
ulation. These results are found by Carroll in [78]. He htites this behaviour to the greater
probability to find the mating partner by chance under thestraimt of certain selection rules.

For the breeding of a fit generation, the genes of fit partners@mbined by means of the
cross-over function. Uniform cross-over is used in ordemiw up the parents genes as much
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as possible. The reason for this choice is found in [79]: thdiss effectuated show that the
uniform-crossover case converges faster to the optimatieal then the single-point variant.
Other studies, like [80], confirm this behaviour.

5.2.1.5 Modification

The modification step stands for the mutation process fanctit simulates random changes
in the chromosomes. The creep mutation kind is chosen agiorutariant, since apparently

this method can slide the gene pool toward the optimal soiutaither than just having to jump
forwards it [79]. Consequently, the optimum is reached whiidggher velocity than using the

jump mutation method. In the modification stage there ekistdption to continue with the

process of Krishnakumar{gGA. For it, the mutation function is omitted as aforemenéidn

5.2.1.6 Offspring generation

After having all the information required, in the offspriggneration stage, as the name implies,
a new generation is created with the genes and chromosomdsradion from the fittest par-
ents attained by the latter other stages. For it, this s&gges the created arrays of the parents,
giving so place to a new generation. Parallel to it, it alsecis if the fittest individual of the
parent generation had offspring (elitism). In the end, de®the gene information in strings
with the aforementioned binary code method.

5.2.1.7 Restarting

In the restarting step the gained fittest candidates fronatteal generation are stored in a
file. The latter file is used in the initialization stage in erdo take them as the new parent
generation. By this way, the first simulation loop ends arel @A process restarts from the
beginning.

5.2.2 Defining the pattern mask

The selection of a suitable objective pattern function 81 tee fithess of a solution is an es-
sential step for the optimization process. This patternknh@as to depict the characteristics of
the desired pattern. Boeringer [76] and Allard [77] propdiesed on studies made for pattern
approximations, mask functions of cosinusoidal kind. lis thork, the following pattern mask
function is used

cod [ggg—wef;] for 0 ¢ [6g,6p C [-3,7]

0 elsewhere

Fmask0) = (5.6)

dew,e stands for the angle range of the half-power beamwig{rand6, are the limits of
the main beam angular expansion, &gds the desired steering anglg.is a decimal number
that has a different value depending on the antenna kindasaday element. For instance in
[77], certain patch antennas are used as array elementhamattern mask is approximated
by means of the latter function wittp= 2. Furthermore, Boeringer suggests that 1,6 or
g = 1,5 approximates the pattern of dipole arrays. The valugisfoften chosen to match the
half-power beamwidth of the radiating element under caersition [76].
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For the two-dimensional array case, if the desired beamlghmisteered 6o, ¢p) di-
rection, expression (5.6) can be expanded by defining thevii@lr of the mask pattern iq
direction. This can be performed by using the latter equaditd replacing the values related to
the angled with the ones related t@ as well as expanding the range for the respective values.
This yields to

Fresl®) = | /0% [Tt or oclmplclonn 57)

@
0 elsewhere

dsw,e Stands for the half-power beamwidth, this is the range wélues.@, andq, are the
limits of the main beam angular expansion, &gds the desired steering angle. By combining
mask functions (5.6) and (5.7), a three-dimensional patteask is obtained for the steering
direction (6o, ¢p)

5.2.3 Building the error function

The error function used in this work has been defined accgriithe error function given by
Baroni et al. in [75]. The respective error function is given for a pattemask values along
0 direction. The array pattern synthesis has to take intolwatdcithe case, whereat the pattern
is being steered in directiof®o, @p). Therefore, the error functioBrrF has to be extended.
This is done by using Skaar and Risvik’s proposal in [74]. E&her function is composed
by two error functions that evaluate the calculated thriesedsional field function regarding
one of the two angular dimensions. The sum of both compormentsegives the total error.
Consequently, the error functidrrFg, which evaluates the excitation combination @o£ 6o,
can be calculated by

‘ 2

B \/ZE_l H B E

ErrFg = —
v Y l|Exl2
0=06¢

Similar is valid for the componerirrFy, that is obtained with the same equation but with
@ = (p instead of a fixed angle.

(5.8)

Ve
ErrFy= (5.9)

V Zica IEll?
=0

Furthermore, in the calculation of the total error, it candeeided how the synthesis th
range is weighted in comparison to the synthesigrange by using a weighting coefficients as
shown in [74]. Therefore, the error function is expressed by

EH’F - Werr7]_ . EH’FQ + Werr72E H’F(p W|th Werr71 — 1 - Werr72 (510)

Werr 1 andwerr 2 ar the weighting coefficients that are linked as shown indttett expression.
Analogue to the error function for the field function valua$unctionErrF € for the calculation
of the error regarding the radiation pattern can be expodsgéhe following equation
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ErrFC = Wer - ErFg + (1— Werr ) EITFS (5.11)

The latter statement can be simplified, if instead of theorgatfield values the respective
radiation pattern is used. By using the relation betweed B&ld pattern given in expression
(1.87) of chapter 1 the pattern values for the desired anth®icalculated radiation pattern,
Cy andCy, are obtained. The error function concerning the radigiattern is yielded by the
respective error componerifereC andErrFS that can be attained in the same way as for the
components oErrF. Since the weighting coefficients are linked, the Error fiorccan be
calculated only knowing one weighting coefficient. The cmmimtErng that gives the error
in @p direction is

\/ZE:l(Ck —C)?

\/ Sk C? =

The component for the error functidj'ﬂrrFeC is calculated with the latter formula but by
fixing 8 = 69

ErFg = (5.12)

K (Cc—Ci)?
ErFS = V(G (5.13)

K @2
V2 & g g

5.2.4 Choice on initial values and probabilistic constants

Another important step before the GA optimization procdssts is to define the necessary
values for all process variables. The heuristic variabtes@garded first. According to Carroll

in [79], the overall probability of a jump mutatignumpj and the overall probability of a creep

mutationpereepi Ocurring for an individuai are

Pjumpi =1—(1— I:)jump)nC and Pereepi = 1— (1— I:)creep)np (5.14)

respectivelyn; stands for the number of chromosomes (bits) in an individbatary string,
np for the number of parameters, respectively. Carroll agnaxes both probability values with

andpereep= ni beingnpop the number of parents in the population. This comes

Pjump= 1 5
from the FoTIowing tought:pifpa similar value for the creepdajump probability is desired, then
the latter both equations have to be set equal. By using arbal@xpansion and by taking into

accountPjymp < 1, the resulting expression can be approximated as follows

ne

n
Pcreep: 1— (1— Pjump) np ~ n—CPJump (515)
p

If Pjump= 7 as stated before amg = 22 andn, = 8 for instance, then the probabilistic
value for creep mutation would f®reep= %’ Consequently, the approximation is ok, since

Npop IS NOt small. The mutation kind and the respective probigtalie read from the input file.

Furthermore, the popolation sing, can be determinated by means of following expression
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Npop= 0 (Mx¥) =0 ({—(xk) (5.16)

kis the size of the schema of interest aiithe length of the chromosome string. Moreover,
for the appropiate estimation afop, the schema length is assumed to be equal to the average
parameter length. In addition to that,= 2 for binary coding. With these approximations the
order of the population size can be found. For the optimizagirocess one child per parents
has been chosen.

The second part of the preparations is related to the paeastetbe optimized. The range
of the current amplitudes and phases are given by their nsaind minima extracted from
the input file. Moreover, the number of parameters and cheames are calculated by means
of Np = Nelenfvar @aNdNe = NpNpits. Nelem iS the number of array elementsg, the number of
variables sythesized, respectively. In the case of patignthesisnyar = 2 due to the sought
excitation amplitude and phase for each array element. @hees of the other variables are
obtained from the input file.

The third part of the preparations concerns the pattern mdsie values for the angle
borders inB and direction, the half-power beamwidth angle randgge anddgw,e, and the
steering directior{Bo, ¢o) are taken from the input file. The pattern mask is built by nseain
the aforementioned function witp= 2.

5.2.5 Pattern optimization examples with the genetic algathm

The genetic algorithm afore presented has been used farpaynthesis. For it, the error
function and the probabilistic variables have been defirsedfarementioned. For reasons of
simplicity, linear arrays have been analysed. Furtherpibeearray elements are elementary
dipoles. Nevertheless, the implemented synthesis methwde applied to any kind of array
and any kind of array element as the reader will notice in v ohapter.

Consequently, two optimization cases have been run foreadiarray mounted on a flat
plane and then on a cylindrical surface. For both cases thai@®alates 500 generations for
a population size of 50 members. Furthermore, the prolssibilconstant have been defined
like in the following: cross-over probability of 50%, mutat probability of 1% and 15bits for
each value. Furthermore, the excitation amplitude valti¢iseoelements have been limited to
the intervalllp € [0.0,10.0]A and the excitation phase value to the intereat [—-180°,180].
Both cases are presented in the following.

5.2.5.1 Source decomposition

The first case realized consists in finding the complex etxaitavalues of a linear array, whose
elements are positioned on the x-axis, for a working frequeri f = 1.0GHz. The elementary
dipoles are oriented in y-direction. The array elementpasitioned equidistant with the spac-
ing value ofd = )‘—20 ~ 0.15m. The directivity pattern of the same array for a unifotemeent
excitation with the current amplitude value lgf= 1A and current phase value af= 0° has
been taken as the goal or mask pattern. The task of the GA retofit the excitation amplitude
and phase, this is the source decomposition, in order tomstact the mask pattern. The result
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Figure 5.3 : Pattern Synthesis of a linear array composed @flipoles on a planar structure

of this pattern synthesis is shown in figure 5.3. ThereinHkm@ane of the mask pattern and of
the reconstructed pattern are depicteddfer [—90°, 90°].

The reader may observe that the obtained excitation produtieectivity pattern that is
very similar to the desired one. Due to the fact that the geradgorithm search for each
array element its excitation value independently from ttineis, the synthesized pattern is not
completely symmetrical.

Furthermore, the GA synthesis approach has been tested erdhation decomposition for
a phased array. The pattern of the latter array has been phéisel causing the main beam to
be atBy = 40°. For it, the excitation phase of each 10 elements has been givespective pro-
gressive phase value. Concerning the excitation amplitallees, they have not been modified.
The resulting directivity pattern fof = 1.0GHz has been taken as mask pattern. The GA syn-
thesis has been applied in order to reconstruct the latterpaFigure 5.4 pictures the acquired
H-plane directivity pattern with this synthesis approachddition to the expected pattern func-
tion. The resulting pattern approximates the mask patterm well, specially concerning the
main lobe and side lobes maxima.

Moreover, since the directivity pattern of a dipole elemantl of dipole arrays in free
space are symmetrical, the pattern in theegion of[—180°, —90°] behaves like in the inte-
vall [-90°,0°]. Similar is valid for the interval90°, 180C°|: the pattern behaves there like in the
region[0°,90°]. Consequently, regioris-90°,0°] and[90°, 180°] have not been plotted.
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Figure 5.4 : Pattern synthesis of a linear array composedl6fdipoles on a planar structure
with beam steerin@g = 40°

5.2.5.2 Conformal source decomposition

In addition to the afore given synthesis case, the apptinaif the GA approach on conformal
array synthesis has been regarded. For it, a linear arraysevilements are positioned along
the circumference of a cylindrical structure, has beenyseal at a working frequency df=
1.0GHz. The cylinder has a radiug,. Its main axis is oriented in y-direction and therefore
the circumference is on the x-z plane. The array elementp@sitioned equidistant with the
spacing value ofl = )‘—20 ~ 0.15m, which defines the arc length between the elements on the
circumference. The mask pattern for this case is the duigctof this array for a uniform
element excitation with the current amplitude valuel@f= 1A and current phase value of
a = 0°. Furthermore, the cylinder radius has been given the vdlug o= 10.0m. The task for
the GA is to perform the excitation decomposition for a cdrireear array in order to yield the
mask pattern.

Figure 5.5 shows the synthesis results@a [-90°,90°]. Therein, the H-plane of the mask
pattern and of the reconstructed directivity are presenfdte synthesis result approximates
the desired pattern with a suitable accuracy. The acquiattenm is not symmetrical but the
maxima and almost the entire form of the mask pattern have fmesd though the influence
of the curvature on the radiation.

A second conformal case has been performed in order to anthigsnfluence of the confor-
mal structure on the pattern synthesis. For it, the samdelglements as in the latter analysis
case have been positioned on a cylindrical structure witigheln degree of curvature. The
respective radius of the cylindrical structure becomes thg = 2.0m. The pattern to be re-
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Figure 5.5 : Pattern Synthesis of a linear array composed.0ipoles on a cylindrical struc-
ture, rey) = 10m

constructed is the directivity of the 10 elements array atftequency off = 1.0GHz for a
uniform excitation with current amplitude and phake= 1A anda = 0°, respectively. The
acquired directivity and the mask pattern are depicted unréip.6. The reader may notice that
the GA synthesis approximates the desired function very \dinds the proper values for the
excitation even for a stronger degree of curvature.



172 CHAPTER 5. USE OF A GENETIC ALGORITHM FOR ANTENNA SYNTHESIS

20— T T T T T T T T

- - Desired pattern; phi= 0 -
— GA optmized pattern; phi= 0 : : : :
_40 L L L L L L L L L
-80 -60 -40 -20 0 20 40 60 80
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Chapter 6

Application of the developed method on
antenna arrays

The developed code has been validated by performing theefar dnalysis of an array that
has patch antennas as elements. The antenna array andeagsitayll element have been mod-
elled and simulated with external software. The solversie$é simulators are based on FDTD
and FIT and they have the capability of calculating the radidield and far field quantities.
Therefore, the single patch antenna has been examinedheigxternal software and with the
developed method in this work. Subsequently, differenmatarrays have been conceived and
analysed with the FIT and the equivalent sources approabh.rdsults have been compared.
Furthermore, the coupling effects between the array el&srae regarded. The behaviour of
an array on a cylindrical structure for different degree wivature is examined. Several pat-
tern optimization cases are performed on planar and comfcaimays by means of the genetic
algorithm optimizing approach implemented in this work.

Moreover, the antenna, which is used for the conceptioneofdtiowing arrays, is a circular
patch antenna. This microstrip antenna has been proposezkégrchers of the research de-
partment 'Innovation Works’ (IW) that belongs to the Eurapeéderospace Defence and Space
company (EADS). The working frequency band of the latteeana lies in the spectral band
used for wireless communication. Consequently, this rsici antenna can be used in com-
munication systems. Besides that, the research studiestenreas made by IW are focused
on the appropiate integration in aircraft fuselage for camivation tasks like aircraft-satellite
communication.

6.1 Far field analysis of a single array alement

In order to have an idea of the radiation behaviour of an ath@characteristics of a single array
element must be known first. Consequently, this sectiorsdeith the single antenna analysis
concerning its far field behaviour. For it, the proposed ostiip antenna with circular patch
form is introduced to the reader. The geometrical measudnd®@ntenna are depicted in figure
6.1. The circular patch antenna resonates at the frequénicy-@2.4GHz. This single layered
microstrip antenna with a dielectric thicknesshof 0.7mm and a permittivity o€es; = 2.33

has a circular patch of radius= 2.32mm. Furthermore, the cell dimensions are defined as
dy = 60.0mm anddy = 60.0mm. These dimensions are used later on.
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Figure 6.1 : Single layer microstrip antenna with circular patch

The far field analysis of the latter antenna has been perfbbipenodelling it with equiv-
alent sources that have been excited with electric currdiits yielded radiated field has been
calculated and from it the radiation pattern as well as tiectivity. The currents have been
retrieved with an internal current generator that caleddhem by means of the cavity model.
Furthermore, the currents have also been acquired by usiagnal software based on the nu-
merical methods FDTD and FIT. As aforementioned, this safétas solvers that calculate the
near and the far field generated by the antennas. This plitydilsis been exploited in order to
validate the hybrid method developed in this thesis worker&fore, several simulations have
been run with all three solvers.

Moreover, the currents have been acquired with the integaaérator first and then with
the help of an external numerical technique. The quantiti¢gined from the radiated far field
caused by the latter excitations have been plotted. In thenimg diagrams of the resulting
three-dimensional patterns, the E-plane pattern refetisetdwo dimensional cut of the three-
dimensional one ap= 0°, H-plane pattern to the cut @t= 90°.

6.1.1 Use the of internal current generator

The internal current generator applies the cavity modedgmmeed in chapter 3. The equation set
in (3.76) is used in combination with equation (3.72) in tleagrator. According to [1] and [7],
the dominant mode in circular patch antenna isTiiM, 1o. Therefore, this mode has been cho-
sen and the respective currents have been generated. Babggche far field as well as the
directive pattern has been calculated with these exaitatibhe simulation of the method con-
ceived in this work is compared then with an analytical applo For it, the analytical equation
set (3.49) has been used in for obtaining the far field commisna& a circular patch antenna.
Furthermore, the influence of the dielectric slab has belentato account by multiplying a
correction function that describes the dielectric effects

The patterns for the analytical formula proceeding and ler hybrid method developed
in this thesis work, namely the equivalent source approaahe been computed and pictured.
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Figure 6.2 : E-plane directivity of a circular patch antenna - currentslaulated with cavity
model

Therefore, figures 6.2 and 6.3 show the radiation patternptaBe and H-plane obtained from
the far field generated by these currents compared to therpattquired with the analytical
approach.

6.1.2 Use of external generated currents

For the next analysis results, the currents on the metalichpof the microstrip antenna have
been computed by means of external software. In additiohdat) the radiated far field of the
circular patch antenna due to these excitations has beeunlai@d with the external solvers in
order to perform comparisons. The first current results ke lperformed with the help of
the FIT solver, the second ones with the FDTD solver. The iaedwcurrents by means of the
external software have been used to generate the respextiated electric far field.

6.1.2.1 Currents calculated with FIT

For the simulation with the FIT solver, in order to generdtte hecessary currents on the ac-
tive radiating zone of the patch antenna, the antenna ekehasnbeen defined with the afore
given geometrical values. The dielectric substrate has bstablished as infinite and lossless.
The same goes for the ground plane: it is a perfect electndwctor (PEC) layer of infinite
extension. The metallic patch has been modelled with atdligtkness of somexmand with

a very high conductivity value. The antenna has been fed lgnmef a coax that lies slightly
shifted from the geometrical centre of the patch. The fedthge has been set td = 1.0V
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Figure 6.3 : H-plane directivity of a circular patch antenna - currentalculated with cavity
model

and a well-matched defined input impedanc&;pi= 50Q. The FIT solver calculated the near
fields on and under the metallic patch.

The currents in the active region of the microstrip antemeaaaquired by giving the cal-
culated near field to the current generation module. Theesdipression (3.77) is applied in
combination with the near field as afore described in chapteContinuously, the far field
calculation module of the developed method of the presasishwork performs the field gen-
eration. Figures 6.4 and 6.5 show the directivity in E-pland H-plane for external currents
that have been calculated with FIT.

The yielded plots show an exact overlap of the calculatei@paby means of the equivalent
method approach with the one obtained by means of the Fldsasrilation tool. The E-plane
plot in particular show the influence of the substrate thedanon the radiation of the patch
element: in thé intervals[80°, 90°] and[27(°,280°] the pattern has still high amplitude values.
According to [51], the contributions from the horizontalasation currents are very small due
to the small dielectric thickness so that they can be negfiecThe latter is expressed by the
high pattern values at the frontiers between dielectrib aled patch. Furthermore, the results
are compared with FDTD results as seen in figures 6.6 and Gi&eTexist a great similarity
between both pattern plots. In addition to that, the readasy notice a slight shift between
both results. This very small difference that makes the FIpI@ slight asymmetrical might
be explained by the influence of the coax fed that is takenantount in a different manner by
the FDTD solver. Therefore, the modelling proceeding with EDTD based simulation tool is
explained in the next subsection.
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Figure 6.4 : E-plane directivity of a circular patch antenna - curreneculated with FIT

6.1.2.2 Currents calculated with FDTD

The current generation with the FDTD simulation tool hasrbperformed in a similar man-
ner as with the FIT solver. This means, that in order to cateuthe necessary currents on
the metallic patch of the microstrip antenna, this anteneaent has to be modelled with the
geometrical values afore given at the begin of this sectiime dielectric substrate has been
also defined as infinite and lossless. The ground plane iblestad as a PEC layer of infi-
nite extension. In addition to that, the patch has been nemtlek a limited metallic layer of
negligible thickness with a very high conductivity valuehéelcoax fed has been modelled as
a segmented wire slightly shifted from the geometrical ienf the patch. One of the wire
segments contains the voltage generator. The feed volagbden set td = 1.0V as in the
FIT case. Furthermore, the fed is set as well-matched witimpunt impedance oZ;, = 50Q.
The FDTD based simulation tool calculated the near fieldsahuemder the metallic patch.

The patch currents of the microstrip antenna are obtaikedri the case of the FIT based
simulation tool. This is by giving the calculated near fiedhe current generation module that
calculates the required excitations using expressior7{3n/combination with the FDTD gen-
erated near field. Subsequently, the far field calculatioduteof the hybrid method realizes
the field generation with the latter currents. Figures 6@ &9 depict the directive pattern in
E-plane and H-plane for external currents that have beeunledéd with FDTD.

The acquired plot with the equivalent source method comgetg the one obtained with
FDTD. The reader may notice again the slight difference betwboth curves. This may con-
firm the influence of the coax fed modelling concerning theatéoh behaviour. This influence
is not taken into account at the hybrid method developedigtiiesis work. Furthermore, both
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Figure 6.5 : H-plane directivity of a circular patch antenna - curren@lculated with FIT
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Figure 6.6 : E-plane directivity of a circular patch antenna - curreneculated with FIT
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Figure 6.7 : H-plane directivity of a circular patch antenna - curren@lculated with FIT
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Figure 6.8 : E-plane directivity of a circular patch antenna - curreneculated with FDTD
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Figure 6.9 : H-plane directivity of a circular patch antenna - currentslculated with FDTD

plots show the influence of the very thin dielectric thickmesthe E-plane plot. Moreover, the
results are compared with the FIT results as shown in figudgs#&hd 6.11. There exist a great
similarity between both pattern plots. Furthermore, thstexnegligible difference between the
results with the excitation being calculated by means ofRfesolver and the ones by means
of the FDTD solver. Consequently, both current values oletdican be used for the following
analysis.

6.2 Far field analysis of a microstrip antenna array

After having a certain knowledge about the far field chargsties of a single array element,
the radiation characteristics of an array is analysed. t-tlie array is built by using the afore
presented microstrip antenna. In the following, the intBoms between the array elements is
regarded. Subsequently, validation examples for theza#din of planar arrays are shown. An
example concerning beam-steering is given. Furthermbeeinfluence of the curvature of a
conformal array is presented to the reader

6.2.1 Planar arrays

Certain planar arrays have been generated by using the\aldated circular patch antenna.
Firstly, planar arrays are analysed. Therefore, the hagalith coupling between neighbouring
elements are regarded. Then, the far field behaviour of pmays defined on the x-y-plane
is observed. Three examples have been modelled: a small@maposed of X% 2 elements, a
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Figure 6.10 : E-plane directivity of a circular patch antenna - curreneaulated with FDTD
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Figure 6.11 : H-plane directivity of a circular patch antenna - current@lculated with FDTD
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medium array built by 4« 4 elements, and a big array conceived by means>o8&lements.
Furthermore, the cell dimensiong anddy in figure 6.1 are equivalent to the spacing values.
These dimensions have been setite= 60.0mm anddy = 60.0mm. Consequently, the arrays
are defined as uniformly spaced. In addition to that, theyataments are uniformly fed with

U = 1.0V. The far field and the directivity of the latter arrays hasi computed with the
hybrid method of this thesis work. Furthermore, these teduve been compared with the
ones gained by means of the FIT based simulation tool.

6.2.1.1 Consideration of coupling effects

As mentioned in chapter 3, the elements of an array inteetetden them due to lossy waves,
like leaky and surface waves. These waves influence stramgeeaker the radiation charac-
teristics of the elements depending on the proximity betwteem. Furthermore, the currents
of an element, which is surrounded by a certain number of ésn contains in general the
coupling information due to its neighbours. Consequettily,coupling effects can be approxi-
mated and hence taken into account by analysing such anmieme using its currents for the
analysis of the entire array. For it, a small array of 3 elements has been defined according
to the afore defined spacing values. Subsequently, theeceleiment is analysed. The circular
patch antenna studied at the latter subsection has beerassgday element. The modelling
and the simulation of the array have been performed by mefahe DTD based simulation
tool.

For acquiring the currents on the central element, all niements have been fed with the
same excitation simultaneously. The near field of the edateay has been calculated. The
near fields over and underneath the metallic patch of thealeglement have been extracted.
According to expression (1.69) from chapter 1, the currattise metallic patches, which can be
handled as boundaries, can be acquired with these fielddyiAgphe latter to the calculated
near fields yields to the simulation results visualized imrfég6.12. This diagram shows the
current magnitude values on the patches of the array elesmbtdreover, the near fields over
and underneath the metallic patch of the central elemerg bagn extracted in order to obtain
the currents of this element. The currents contain aut@algtithe mutual coupling coming
from the other array elements. These currents are used foelfimg the arrays later on.

Furthermore, additional simulation cases have been rumdardo observe the coupling
effects coming from a single array element. For it, the satiah setting has been modified
concerning the feed values for the array elements. Two gakenses are presented in the
following. The first case comprises the coupling effects uthe central element. The second
treats the mutual coupling due to a corner element. Figuk® @epicts the central element
case. For this simulation case, the excitation of all artagnents with exception of the central
element have been set to zero. The reader may notice thaletinergs right and left of the
central element are affected the most by the coupling affddte occurence of currents in both
elements though zero feed values are the highest. Newest)edince the values are around
—30dB they are probably non perceivable if the elements acdesk Another observation
is that the coupling currents magnitudes are distributeghlise at all three patches. It can be
assumed that this distribution pattern shows that the aogipurrents and the excited ones have
the same in-phase or opposite-phase orientation. Thisdaexglain also the strong coupling
behaviour only in neighbouring elements along the curreentation. Furthermore, the latter
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Figure 6.12 : Magnitude of electric currents at the patches3of 3 array in [dB], all elements
fed

opposite-phase assumption can be supported by the law oftiod, that says that induced
current flows in a direction to oppose changes due to a magfiedt.

The second case presented handles the coupling effects abther element. For it, the
simulation settings concerning the excitation have beemgéd in such a way that only the
corner element has been excited, the other elements haveshéiehed off. The resulting
current distribution for the entire array in the case of fagdhe left upper corner element is
depicted in figure 6.14. It can be observed that the corneneazié causes significant coupling
currents mainly on its right hand neighbour. Similar as m¢kntre element coupling case, the
values of the current magnitudes are abe@0dB. Hence, it can be pressumed that they are
not noticeable if the affected array element is excited.tharmore, the current distributions
on the excited and on the coupling affected patches have itasipattern and they coincide
with the distribution pattern observed in the central elehoase. This behaviour supports the
statement that source and coupled currents are orientdr isaime direction but in opposite
phase manner.

As aforementioned, the currents found for the centre elémkthne latter analysed array
contain additional coupled currents due to the proximitp@ghbouring elements. In order to
see the influence of these additional coupling currents @ndtliation behaviour of an element,
a single element has been fed with the currents of the celetngeat of the latter array. Subse-
guently, the far field and the directivity of the excited amta have been calculated. The results
of this simulation have been compared with the results nbthfor the single element analysis
made in the latter section. The yielded directivities hagerbplotted together. Consequently,
figure 6.15 shows the E-plane of the directive pattern anddiguL6 the H-plane, respectively.
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Figure 6.13 : Magnitude of electric currents at the patcheg8of3 array in [dB], central element
fed
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Figure 6.14 : Magnitude of electric currents at the patchegof3 array in [dB], corner element
fed
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Figure 6.15 : E-plane directivity of a circular patch antenna - current&lwand without cou-
pling

The reader may observe that the directivities of the singlayaelement and the single
antenna coincide entirely. Consequently, it can be saidttieacoupling effects are apparently
minimal in the case of a 8 3 array and therefore negligible. In addition to the latiiecan
be said that in a bigger array, for instance 5, the centre array element is affected by its
neighbours after next, in addition to the next neighboueilegnents. Nevertheless, the influence
should be minimal, if observing the upper right corner elete figure 6.14. Consequently,
the coupling currents can be supposed to come only from re@ghhouring elements for this
array composed of the circular patch elements afore aralydeerefore, bigger arrays can be
modelled by using the currents obtained for centre element.

Moreover, fringing effects have not been considered in tiesgnt thesis work. These ef-
fects become noticeable at the border of microstrip antemrays, specially for arrays with
finite size ground planes. Nevertheless, fringing effectésless perceivable at arrays of big
dimensions with directive patterns. Microstrip antennmays integrated in aircraft fuselage can
be modelled as infinite grounded arrays due to the materaabckeristics and specially due to
the dimensions of the fuselage in comparison to the arragh&umore, the number of elements
of such arrays are of large dimensions and directive patt@na of advantage for communica-
tion tasks. Consequently, the fringing effects are negtkot the following analyses.

6.2.1.2 Analysis of an array

Considering the latter examination on the coupling effédtveen neighbouring array ele-
ments, the far field radiation behaviour of a planar arragt faking and then not taking cou-
pling into account, is regarded. The purpose of this sinutais to observe if the coupling
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Figure 6.16 : H-plane directivity of a circular patch antenna - currentstivand without cou-
pling

effects sum themselves up and hence influence the radidtam array. For it, a planar array
has been built with & 8 circular patch antennas. Therefore, these antenna eleimare been
positioned on the x-y-plane according to the afore givegisgavalues. The latter values, which
aredy = dy ~ 0.48%, fulfill the conditions for avoiding grating lobes and a sedanain lobe
in the end-fire pattern case according to theory (see chaptéurthermore, all array elements
have been fed with the same excitation.

The simulations have been run with the hybrid method deeslapthe present work. For it,
the near fields obtained by the analysis of the single pattdgnaa made with the FDTD solver
are given to the current generation module of the hybrid oetA he latter module calculates
the required excitations that are in the following used ideorto generate the far field and
the radiation quantities. The same procedure is perforntdtie near fields acquired by the
analysis of the central element of a3 array. The resulting directivity functions are plotted in
figures 6.17 and 6.18. The first figure contains the E-planbeflirective pattern, the second
figure the H-plane, respectively.

The reader may notice that the results with the currentaggkito account coupling and the
results without considering them are the same. This meatsttie coupling effects due to the
next neighbours do not amount to a high noticeable valuagiinumber of the array elements
is enhanced. Consequently, coupling can be neglected whigerved case and the simulations
of arrays composed of the circular patch antenna can berpetbby means of the excitation
currents that do not include the coupling currents.
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Figure 6.17 : E-plane directivity of 8 x 8 circular patch array on a planar structure - currents
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Figure 6.18 : H-plane directivity of & x 8 circular patch array on a planar structure - currents
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Figure 6.19 : E-plane directivity of 8 x 8 circular patch array - currents calculated with FDTD

For validation reasons, the simulation results of theSBarray with the approach developed
in this thesis work have been compared to the ones obtairtediva FIT-based simulator. The
comparison plots are depicted in figures 6.19 and 6.20. Thete E and the H-plane of the
directive pattern are presented to the reader. The plottiees show a good agreement between
the calculated directivity values generated by the extesol@er and by the equivalent source
method. In addition to that, a low number of side lobes thataticeable in E and H plane can
be discovered. Besides that, the patterns behave symmaligtin both planes. Furthermore,
the directivities in E-plane show the influence of the swdistwith a small thickness value that
has been encountered in the case of a single patch elemergoéo, the acquired maximum
gain has a value dbmax~ 23dB according to both simulations.

It has to be remarked that the simulation tools based on FDAWDRAT method include at
the field calculations all interactions between the digcneéshed volume cells. Consequently,
the near fields over and in the dielectric slab contain th@log effects of all array elements.

6.2.1.3 Additional planar arrays

In order to give the reader an idea about the radiation ctetatics of microstrip antenna ar-
rays, simulations with two array composed of a small numbelamments have been performed.
The first array analysed is thex22 array. The resulting directivity plots are presented in fig
ures 6.21 and 6.22. The first picture depicts the E-planeeflitectivities, the second one the
H-plane of the latter far field quantities, respectively.bisth figures, an overlap between the
directivity generated by the hybrid method and the diréistivalculated with the FIT method
is observed. Furthermore, the reader may notice that tkeetdie pattern of an array composed
of four elements is symmetrical and does not have side lolbésreover, the influence of the
very thin dielectric substrate at tifeintervals[80°,90°] and [270°,280] is perceivable as in
the case of the single patch element. The maximal gain aiogpta both simulations is about
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Figure 6.20 : H-plane directivity of &8 x 8 circular patch array - currents calculated with FDTD

Gmax~ 11dB.

Second example is the simulation of & 4 array. The results of this uniform fed and spaced
array have been visualized. Figure 6.23 pictures the dmepatterns in E-plane, figure 6.24 the
directive patterns in H-plane, respectively. The diratiég in E-plane show the aforementioned
influence of the substrate with a small thickness value,laimas in the case of the>22 array
and of the single patch element. Furthermore, the rise ofside lobes, which are noticeable
in E and H plane, can be discovered. The patterns behave swmioatly in both planes.
Moreover, the directivity results calculated by the applodeveloped in this thesis work agrees
with the one acquired by means of the FIT method. In both satrads the maximal gain
amounts t@Gmax~ 17dB.

6.2.1.4 Phased Array

In the following, an example for a phased array is given. Retance, it is desired that the main
beam of broadside pattern of thex8 planar array afore presented lies the artigle= 60°.
Therefore, the excitation phases are calculated by meatte cipatial angleg, andy, (see
equation (1.116), chapter 1) that depend of the geometiyedditray. These spatial angles must
dissappear at the desired direction in order to have thermpattaximum. The progressive shift
obtained amounts te 155,88 and the respective multiples are additioned to the arrayemhs

in x-direction. The phased array pattern is depicted in &guR5. The reader may notice the
main beam to be at the desired spatial arigle
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Figure 6.21 : E-plane directivity of & x 2 circular patch array - currents calculated with FDTD
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Figure 6.22 : H-plane directivity of & x 2 circular patch array - currents calculated with FDTD
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Figure 6.23 : E-plane directivity of & x 4 circular patch array - currents calculated with FDTD
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Figure 6.24 : H-plane directivity of & x 4 circular patch array - currents calculated with FDTD
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Figure 6.25 : Phase shifted beam abo@t= 60 of a 8 x 8 circular patch array on a planar
structure

6.2.2 Conformal arrays for different degree of curvature

The advantage of microstrip antenna arrays is the simpdesfaategrating them to conformal
structures. Consequently, the behaviour of a conformalas of great importance and needs
to be examined. Therefore, several simulations have baeforian array composed of>88
circular patch elements on a cylindrical structure. Fahi, centre element currents taken from
the afore presented analysis, which include coupling &ffdtave been used. Proceeding in
such a manner means that the coupling effects of the confemagy, which take place on and
inside the dielectric slab, are approximated by the cogpéifiects of the planar counterpart.
This approximation can be made for conformal arrays withghsbdegree of curvature. For a
very curved array structure this approximation is probalotyappropiate, due to the fact that the
geometry dependant Green'’s function becomes differemteder, the conformal antenna arrays
are approximated with flat elements, for whom the couplirffgot$ are valid. Furthermore,
since the inner array elements are influenced only by the meighbour, as observed in the
afore presented coupling analysis, the radiation behaway approximate the real conformal
array.

In order to see the influence of the degree of curvature orrthg eadiation behaviour, sim-
ulations for an 8 8 conformal array have been performed. The conformal ammaycilindrical
form and is described by the radiug and by its main axis in direction x-axis. Consequently,
the spacing valud; = 60mm is equivalent to the distances between the array elsnrex-
direction. The spacing valwk = 60mm is equivalent to the arc lengths between neighbouring
elements along the circumference of the cylinder. The a#gegninated circular patch antenna
is used as array element. Furthermore, the coupling efé@etsupposed to be the same as in a
planar array. Hence, each array element is fed with the misrextracted of the inner element of
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planar; phi= 0
= = cylindrical r=0.3m; phi=0
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+ cylindrical r=0.15m; phi= 0

Figure 6.26 : E-plane directivity of & x 8 circular patch array on a cylindrical structure for
different curvature levels - currents calculated with FDTD

the afore analysed:33 array. Figures 6.26 and 6.27 show the directive pattercsmiormal
arrays with different degree of curvature in comparisonhtgirtplanar counterpart. The first
figure depicts the E-plane of the directivities, the secoguaré the H-plane, respectively

The H-plane plots show to the reader the influence of the dustreicture. The array with
reyi = 0.15mm is the conformal array with the strongest curvatureetegnder the shown ones.
The reader may notice that the directive pattern of thisyarréghe H-plane does not show side-
lobes but a wide low powered main lobe. This is due to the featt@ach array element radiates
in different directions. Consequently, a wide angle rarggeavered but with a small power.
The more the degree of curvature is lowered, the more powgn®§¢o concentrate in certain
regions and hence the more beams begin to rise. The E-pldteensashow a preservation of
the main and side lobes but also a reduction of magnitudentodifferent curved arrays. For
the E-plane it is valid too that the stronger the degree ofature is, the less is the magnitude
of the main beam.

6.3 Array optimization

This section comprises the performed validation of the anmnted genetic algorithm opti-
mization approach. For it, certain optimization casesngknto account certain industrial

aspects have been regarded. The first case treated is segmaubsition. The possibility of

finding out the optimal excitation for an antenna array uregetain geometrical conditions, for
instance the integration of the array in a conformal stmgtis of advantage for the conception
of telecommunication systems in aircraft fuselage.

The second case concerns phase synthesis of a planar ormmahmtenna array. This
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Figure 6.27 : H-plane directivity of a8 x 8 circular patch array on a cylindrical structure for
different curvature levels- currents calculated with FDTD

situation may occur, if for example the array of a telecomitation system must concentrate
its radiation towards a transmitting station. Then, itsnmabe must be shifted at a certain
angle. The last example handles the pattern synthesis. éf@irc applications, for instance
satellite-aircraft communication, it is necessary thatdhtenna array generates a very directive
beam. Therefore, the input energy must be distributed inyathat a the biggest fraction of
energy goes to the main beam and the rest on the side lobest, Bw side lobes must be
supressed.

It has to be added that in the following optimization simigas realised with the GA the
number of iterations, this is the number of generationsm#ed to a low value on purpose.
This has been realized in order to observe the performantteeafptimization method in time
limiting and computation effort saving conditions.

6.3.1 Source decomposition with GA

The optimization case in this section consists in findingdbmplex excitation values of an
array composed of 8 8 circular patch elements at the working frequencyfof 2.4GHz.
The afore validated circular patch antenna is used as aleayeat. The array elements are
positioned equidistant with the spacing valuedof 0.15m~ 0.48\qg. The optimization case
is run for an array mounted on a planar structure and thenrfariay on a cylinder. For both
cases the GA simulates 50 generations for a population $i¥& members. Furthermore, the
probabilistic constant have been defined like in the foltayvicross-over probability of 50%,
mutation probability of 5% and 15bits for each value. Furthermore, the excitatiopliéunae
values for the array elements are limited to the interigit [10°, 1.0]A and the excitation
phase value to the intervatl € [0°,360°].
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Figure 6.28 : Source decomposition of@&x 8 circular patch array on a planar structure

The radiation pattern of the conceived planar array for &oum element excitation with
the current amplitude value &§ = 1A and current phase value af= 0° has been taken as
the goal or mask pattern. Subsequently, the GA algorithmbeas applied to approximate
the excitation amplitude and phase in order to reconsthgciiask pattern. The results of this
pattern synthesis is shown in figure 6.28. Therein, the Beple the mask pattern and of the
reconstructed pattern are depicted. The error betweerpgir@x@mated and the sought pattern
amounts to ere= 0.512 after all generations. This value reflects mainly theredue to the
amplitude difference between the calculated and the dkpatern.

Similar as for the latter planar array synthesis, the raahagbattern used as mask pattern
is equivalent to the one generated by all uniformly fed ele®avith lo = 1A anda = 0°.
Furthermore, in this conformal source decomposition désecylindrical bearer is oriented in
z-direction and it has a radius ofy; = 0.2m. According to the latter values and to the afore
given examples, the curvature of the array is very strongis€quently, a high error value is
expected at the end of the generations. The results of thihasis case are found in figure
6.29.

As expected, the error value is high, it amounts to-efr.7 after all generations. Neverthe-
less, the GA optimization method arrives to find all minima arslight different value for the
main lobe amplitude even though the “critical” circumstsic

6.3.2 Phase synthesis with the genetic algorithm

The GA optimization approach has been tested on phase systteor it, the pattern of the
planar 8x 8 array has been phase shifted causing the main beam t®pe &0°. This has been
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Figure 6.29 : Source decomposition of&x 8 circular patch array on a cylindrical structure,

performed by giving each array element a progressive phageta = 15588°. Concerning
the excitation amplitude values, they have been maintamtu value ofg = 1A. The resulting
radiation pattern fof = 2.4GHz has been taken as mask pattern. The genetic algoritam ha
been applied in order to find the right excitations, so thatl#tter pattern is yielded with the
planar array and with its conformal counterpart. The cuedy has a cylindrical form with

a radius ofr¢y; = 0.2m. Both cases have been run with the same low number ofitesaf50
generations with each generation having 16 members) irr tmdesualize the influence of the
curvature on the optimization. Furthermore, the probstidliconstants have been defined as in
the source decomposition example. This is, cross-oveghibty of 50%, mutation probability

of 2.5% and 15bits for each value. In addition to that, the exoitaphase values for the
elements of the synthesized array have been limited to teevadla € [0°,360°]. Furthermore,
their excitation amplitude values have been fixethte 1A.

The first case performed is the phase synthesis for #h@@anar array. Figure 6.30 pictures
the acquired E-plane radiation pattern with the GA optitieaapproach compared to the
expected pattern function. The resulting pattern congetge/ards the desired pattern: the
desired phase shift of the main lobes ab@yit= 60° have been reached. The error value after
the optimization has a value of err 0.494. This error reflects the differences between the
pattern mask and the optimized pattern: it refers to thedrighlue of the side lobes, specially
at@= 0°, and to the smaller beamwidth.

The second case, the cylindrical case, has been realizéldrsa®s for the planar case: the
pattern of the planar 8 8 array has been set as mask and the GA optimization algohtsm
been applied in order to generate a similar radiation belafrom the conformal & 8 array.
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Figure 6.30 : Phase synthesis of&x 8 circular patch array on a planar structure

The results are depicted in figure 6.31. Therein, the E-pdatiee radiation pattern is plotted for

different@ values. The yielded error value amounts to-10.885 after all generations. Since
the optimization did not find the required excitation phas@sder to attain the desired maxima,
the error value is high. The calculated pattern shows réispdobes at the desired angles but
these have a smaller amplitude in comparison to the lotpe-dd°. This can be explained by the

extreme curvature that does not allow all elements to dauttito the radiation in the desired
direction. Consequently, the desired beam maxim@yat 60° is not reached. Nevertheless,
the GA optimization approach "forces" the conformal argénerate lobes in the expected
direction.

Furthermore, the reader may have noticed that though thenlowber of iterations the
simulation results approximates the pattern mask, spganethe planar case.
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Figure 6.31 : Phase synthesis of&x 8 circular patch array on a cylindrical structurecy =
0.2m

6.3.3 Pattern synthesis with the genetic algorithm

The last optimization cases concerns the pattern syntidsgsefore, a pattern mask according
to equation (5.6) of chapter 5 has been defined. The additiahzes that describe the latter
cosinusoidal function are defined like in the following. Tiedf-power beamwidth angle range
is dgwe = 20° and the main beam angle range is givendmg = 20°. The main beam is
established to be in directiaf®o, ¢o) = (0°,45°). Consequently, the main beam range limits
are set td@; = —20° andB, = 20°. In addition to the latter, the side lobe level has been set to
SLLgg = 30.0dB. The mask pattern function determines a certain shapidéobeam and an
amplitude value for the side lobes.

The GA optimization approach has been used in order to genanadiation pattern with
the characteristics of the pattern mask for a work frequaricly = 2.4GHz. Concerning the
probabilistic variables, they have been established asaratter validation cases (cross-over
probability of 50%, mutation probability of.2% and 15bits for each value). Furthermore, the
excitation phase values for the elements of the tested aaag been limited to the intervall
a € [0°,360°]. In addition to that, their excitation amplitude values éaeen fixed tdg = 1A.

Consequently, the main beam of a planar array af8circular patch elements has been
synthesized with the genetic algorithm. The results of bldam-shaping procedure are pre-
sented in figure 6.32. Therein, the plots of the pattern madkod the synthesized pattern are
compared. The reader may notice, that the desired beam &laapeeen nearby completely
reached, specially concerning the half-power beamwidtévextheless, the side lobe levels are
still at certain small intervals ap over the defined limit. This is recognized by the optimizatio
approach and expressed by the error obtained at the endaptin@zation procedure. Its value
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Figure 6.32 : Pattern synthesis of & x 8 circular patch array on a planar structure

amounts to ere= 0.327.

For the next pattern synthesis example, the GA optimizajgroach has been applied to
a conformal antenna composed ok® circular patch elements. As in the afore presented
conformal examples, the conformal structure is equivaiest cylinder of radiuscy = 0.2m.
The pattern mask is the same as in the planar pattern symtesmple. The result of the
calculated optimization is depicted in figure 6.33 and thredpced error has a value of efr
0.464. The computed beam converges toward the desired begra, Specially concerning
the half-power beamwidth, but the side lobe levels are at arss of thep values range over
the desired limit. Consequently, the error obtained at titea# the optimization procedure is
high-valued, namely ers 0.465.

If the planar pattern synthesis case is compared with theoooal counterpart, it can be
said that the optimization of the planar array attains béette desired pattern shape than the
cylindrical array. Nevertheless, it has to be added thattirdormal array has a strong degree
of curvature and therefore the approximation is reasonable
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Figure 6.33 : Pattern synthesis of & 8 circular patch array on a cylindrical structurecy =
0.2m



Conclusion

The presented thesis work gives the possibility to realcigte and fast far field modelling
and analysis of planar and conformal arrays in order to suppalepth electromagnetic com-
patibility analyses. Therefore, an approach for the amalylsarrays has been developed. This
developed tool allows the handling of planar and conformalys composed of dipole elements
or microstrip patch antennas. Due to the combination of imple modelling approach, that
uses equivalent sources with accurate numerical techampied to volume for the excitation
values, this hybrid method allows the user to produce ridiadsults with less computational
effort. With regard to complex array bearer shapes and kangg dimensions, the latter possi-
bility is a big advantage. Moreover, the inner current gatay that approximates the excitation
currents with analytical formula and the cavity model, a#athis tool to approximate the far
field behaviour of antennas and arrays in an acceptable whg. pdssibility of introducing
coupling and fringing effects by means of the currents istfa@oimportant advantage of the
developed analysis approach.

Furthermore, the developed optimization tool offers thegtality of persuing different
studies concerning the development and conception of cmaflcantenna arrays in considera-
tion of aircraft architecture and EMC related thresholdse implemented pattern optimization
approach allows to perform synthesis tasks of differentikihhe advantage of the genetic al-
gorithm based optimization tool is that it finds generallylabgl optimum solution for each
synthesis task. Consequently, this synthesis tool gemeetiable results. Furthermore, the
robustness of a genetic algorithm gives the user the pdissita treat simple and complex
synthesis cases. This characterizes this optimizationaeersatile. In addition to that, the
implemented synthesis tool in the present work allows tahice measured or reference data
in order to use it as pattern mask. It also allows to defineepathasks that in general reflect
the requirements or limitations concerning the far fielddvebur of an antenna array.

The examples and cases presented in this thesis manuseripioae of general validating
kind and therefore test studies using the developed madedind analysis tool concerning dif-
ferent EMC applications are required. Besides that, treettea need of reducing computational
effort in sophisticated EMC studies that handle the inttgsadetween the antennas radiation
characteristics and aircraft architecture. Here, the eémibe of aircraft structural parts, for in-
stance of the fuselage, wings and/or fin, on the radiatiofopeance of a radiating conformal
array can be mentioned as an example. Therefore, the ap@®aonceived in the present
thesis work would be appropiate for the modelling of the comfal arrays.

Moreover, the developed modelling method should be imgt@amcerning the considera-
tion of multilayered microstrip antennas. Therefore, afi#int analyses on the dielectric multi-
layer effects should be performed. Furthermore, additistuaies are required concerning the
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mutual coupling effects for conformal arrays. Concerningwyasynthesis aspects, the perfor-
mance of the implemented optimization tool should be test@dmparison to other synthesis
methods, as for instance the iterative Least Squares agproa

The modelling, analysis and optimization tools presentatlimmplemented in the present
thesis work go well beyond of electromagnetic compatiptéisks. They can contribute also to
the development of versatile modelling and analysis tepies for the different types of antenna
systems. For instance, they can be basic modules for thellingd# finite large arrays.



Appendix A

Geometry Analysis

A.1 \Vector transformation

All

Al2

Cartesian to spherical coordinates and vice versa

Vi = WSinBcosp+ vy, sinBsing+-v,cosb
Vg = VxCosOcosp-+ vycosdsing—V,sind
Vo = —VxSINQ+VyCOoSsp
Vx = VrSINBCOSP+ Vg COSBCOSP— VpSing
Vy = V;SinBsing+- Vg cosdsing+- vy Cosy
V; = —V;C0SB—Vgsind

Cartesian to cylindrical and vice versa

Vp = VxCOSP+\VySing
Vo = —VxSINQ+ VyCOoSp
VZ - VZ

Vx = VpCOSP—VeSing
Vy = VpSiN@+VyCosp

VZ - VZ
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Figure A.1: Spherical coordinate system
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Figure A.2 : Cylindrical coordinate system
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A.1.3 Cylindrical to spherical and vice versa

Vi = VpSinB+v,cosd
Vg = VpCOSD—V,Sind
Vo = VrSinB+vpcosd
V; = V;C0SB—Vgsind

A.2 Spatial Rotation

The rotation function uses the longitudinal axis of thergér as reference line in order to shift
the desired point by a certain angle without changing theade between the new point and
reference line.

O(X) = (1—cos()axX- d+ cost - X+ sinl - (d x X)

a2 ab ac 100 0 —-cb
M(8)=(1—cosl)- | ab ¥ bc |+cost-| O 1 O |+sin(-[ c 0O -a
ac bc ¢ 001 b a 0

A.3 Tangent plane of a surface at a certain point

The mathematical function of the surface is esential fordhleulation of the tangent plane
normal vector. It has to be known and it has to be differefgial®epending on the form of
the function, it can be in a vectorial form or in form of a scaquation, the searched vector is
calculated with three different solutions. In this work theface function is supposed to have
the following explicit form

z=f(xy) (A.1)

The respective method for calculating the tangent planmabvector uses partial derivation
on the surface functioffi(x,y, z) in order to obtain the normal vector components at the point
(X0,Y0,20). The following equation shows which of the partial derieas or gradients are
necessary to obtain the desired vector.

af (x0,Y0,20) 0f(X0,¥0,20) 0f(X0,Y0,20)
A= (0 Dlogyoz = - , o : > )

Furthermore, the following mathematical definition of fendifferences can be applied in
order to approximate the partial derivatives. This is

(A.2)



206 APPENDIX A. GEOMETRY ANALYSIS

af(XO,YO,ZO) — lim f(XO—i‘h,YO,ZO)—f(XOa)’O,ZO) (A3)
ox  h=0 h '
0f(x0.Y0.20) _ . F(%0,Y0+h,20) — f (0,0, 20) (A4)
oy -0 h '
0f(xo0,¥0,20) |imf(Xo,yo,20+h)—f(Xo,yo,20> (A5)
0z N h—0 h '

whereinh is the infinitesimal variation around the values yo or Zp, respectively. This
variation can be approximated by a very small value and hémeeccuracy of the partial
derivatives depends on how small the value is.

A.4 Vectorial inner product - Angle enclosed by two vectors

- a1 b1
d-b=| ax |-| by | =aib;+ahy+azbs
as b3

a-b
ER

cos/(a,b) =

A.5 Vectorial cross product

) a1 b1 aghz —ashy
axb= az X b2 = a3b1 — a1b3
ag b3 aghy —aphy

|dx b| = |d|-|b|-sin/(&,b)

A.6 Equation of a plane

The latter one is one of the axes vectors of the general coatelsystem. The resulting vector
is one orthonormal vector that is multiplied with the normattor again to obtain a second
orthonormal one.

X=a+r-b+s-¢ rseR (A.6)
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Field Analysis

B.1 Curl and Divergence Theorems

O-(OxA) = 0

OxOW = 0
O(®+W) = O+ 0¥
O@W) = o0W+Wwoo
O0-(A+B) = O-A+0-B
Ox (A+B) = OxA+0xB
O0-(WA) = A OW+WwO-A
Ox (WA) = OWxA+WOxA
OA-B) = (A-D)B+(B-0)A+Ax (OxB)+Bx (OxA)
0-(AxB) = B-OxA—A.-OxB
Ox (AxB) = AO-B—BO-A+(B-0)A—(A-D)B
OxOxA = 0O(0-A)—0%A

B.2 Green’s theorems

In Mathematics the statements due to a symmetrical behawbtwo functions are called
Green’s theorems. These mathematical reprocity theorgisisfer scalar as well as for vecto-
rial functions.

The Green’s theorem applied to scalars is based on the foljpmathematical identity
whereiny and@ are scalar functions

0. (WOo) = WO%d+ 0V - Od (B.1)

We obtainGreen'’s first idendity for scalar functiorghown in B.2 by integrating the last
equation throughout a region and applying the divergeneertém on the equation’s left side

#W?%)ds: ///(w52¢+ OW. Od)dr (B.2)
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If we interchange the functiorl8 and® in the last statement and subtract the consequently
altered equation with the original one, we obt@reen’s second idendity for scalar functions
or mainly known asGreen’s theorenwhich is shown in the following

# (w‘;%’ _ q;%_‘:) ds— / / / (W20 — DI2W)dr (B.3)

Analogue to the scalar case, the Green’s theorem for vattiomctions is based on the
following identity, whereinA andB are vector field functions

O-(AxOxB)=0xA-OxB—A-OxOxB (B.4)

In the same way as for the scalar case, an integration thoaigiregion and the application
of the divergence theorem is done. These modifications yagBteen’s first idendity for vector
functionsshown in the following

#(Axmx§)~ds:///(DxA~Dx|§—RDxDx@)dr (B.5)

Finally, Green’s second idendity for scalar functiae®btained by interchanging the vector
fields A andB and subtracting the resulting equation from the origina.orhis identity is also
known as thevector Green'’s theoremand it is represented by the following equation

#(ﬂxDxI§—I§><Dxﬁ)-ds:///(g-DxDxﬂ—ﬁ:-Dxng)dT (B.6)

B.3 Functional inner product and linearity

inner product for functions

(1.9 = [ fogdt ®.7)
linearity
(f,99 = (9,f) (B.8)
(af +Bg,h) = o(f,h)+B(g,h) (B.9)
positive definite
. >0 if f#0
<f,f){zo it (B.10)
adjoint operator
(Lf,9) = (Lag, f) (B.11)
inverse operator
f=L"(g) (B.12)

positive definite operator
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(f*,Lf) >0 (B.13)

B.4 Finite Differences

The functionF (x) at the space point; + h is approximated with the help of Baylor series
about the space poirt taking in account the differende Due to the fact that the components
of the series with a grade higher than the second grade ayesnrall, they can be neglected.
Thus the function can be represented as follows

oF (x) h? 02F (x)
F(xi+h)=F(x)+h——= - —
Gi+h) =F(a) + ox |, 2 0x
In the latter equation, the approximation of the functidierag to its spatial dependency is
shown. Concerning the time variable of the function: theesamproximation is performed in

the algorithm. Consequently, the functiBrcan be

+o(h®) (B.14)

X

FX) = S[F (x+ )+ F(c 2]+ o) (8.15)

PF(x)  FX+E)+F(x—5)—2F(x)
ox2 ) NG ) (B.16)

Ax _
R S Al £ w21 FRVNSTCER)
~ 0 (B.18)
1 Ax Ax F(x+2) —F(x)

FO) = S[FO+ ) +F(x— )+ x——2—— +o®)  (B.19)

B.4.1 Leapfrog algorithm

The leapfrog algorithm is a modified version of tklerlet algorithm The Verlet algorithm
uses the positions and accelerations at the tiared the positions at the time- At to predict
the positions at the time+ At, whereAt is the integration step. The leapfrog algorithm is
computationally less expensive than other approachesxtonple the Predictor-Corrector, and
requires less storage. This is an important advantage icabke of large scale calculations.
Moreover, the conservation of energy is respected, evearge ltime steps. Therefore, the
computation time can be greatly decreased, if this algorigiused. However, it has its limits,
if more accurate velocities and positions are needed.



Appendix C

Simulation Results Dipoles

C.1 Simulation of different dipoles

C.1.1 Radiation pattern of different finite length dipoles

The following diagrams give the graphical description @& tadiation behaviour several dipoles
analysed in the present thesis work.

In addition to the latter, the radiation patter in azimuthjet is the same for the z-directed
dipole of different length, is depicted in figure C.3
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Figure C.3 : Pattern comparison for% dipole in azimuth

C.1.2 Radiation pattern of arrays of elementary dipoles
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Appendix D

Simulation Results Patch Antennas

D.1 Simulation of different patch antennas

The directivity and radiation patterns in the next figuresatide the radiation behaviour in
elevation and azimuth for a patch antenna with a dieleceronttivity €, = 2.0. As in the afore
given examples, the plot lines for analytical formula ag@toand the method conceived in the
present thesis work are pictured.
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Figure D.1: E-plane directivity of a rectangular patch antenna - cutienalculated with cavity
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Figure D.2 : H-plane directivity of a rectangular patch antenna - curtenalculated with cavity
model
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Figure D.4 : E-plane directivity of circular patch antenna - currentsl@aated with cavity
model
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