
UNIVERSITÉ DE LIMOGES
École Doctorale Science – Technologie – Santé

Faculté des Sciences et Techniques

Laboratoire XLIM Département – C2S2 UMR CNRS 6172

Thèse No [36-2008]

Thèse
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE LIMOGES

Discipline / Spécialité : Télécommunications hautes fréquences et optiques

présentée et soutenue par

Mohammad Reza ZAHABI

Le 29 Septembre 2008

Analog Approaches in Digital Receivers

Thèse dirigée par Mr. Vahid MEGHDADI et Mr. Jean-Pierre CANCES

Jury :

Président :
Mr. Bruno BARELAUD Professeur – Université de Limoges
Rapporteur
Mr. Emmanuel BOUTILLON Professeur – Université de Bretagne Sud
Co-rapporteurs :
Mme. Catherinne DOUILLARD Professeur – ENST Bretagne
Mr. Cyril LAHUEC MCF – Télécom Bretagne
Examinateurs :
Mr. Benoît GELLER MCF HDR – ENSTA
Mr. Vahid MEGHDADI MCF HDR – Université de Limoges
Mr. Jean-Pierre CANCES Professeur – Université de Limoges
Invité :
Mr. Jean-Michel DUMAS Professeur – Université de Limoges

to my parents,
to my family :

Maryam and Amir Reza

Table of Contents

Acknowledgments ix

Abbreviations and Acronyms ix

Abstract x

1 Introduction 1
1.1 System Model . 2
1.2 Error Control Coding . 2
1.3 Modulation . 3
1.4 Trellis Coded Modulation . 4
1.5 Communication Channel Models 4
1.6 Demodulation and Optimum Receiver 6
1.7 Error Probability . 6
1.8 Front-end Processing in Digital Receivers 8
1.9 Dissertation Outline and Contributions 9

2 Trellis and MAP Decoding 13
2.1 Convolutional Codes in GF(2) 13
2.2 Trellis of a Codes and Tailbiting Trellis 14
2.3 Encoder Realization . 15
2.4 Bit-wise Maximum A Posteriori Decoding 18

2.4.1 BCJR Algorithm . 20
2.4.2 Forward-only MAP Algorithm 21

2.5 Block-wise MAP decoding . 23
2.6 Illustrative example of bit-wise and block-wise decoding 23
2.7 Time-varying Convolutional Codes 25
2.8 Trellis Representation of Block codes 27
2.9 HMM and Decoding . 28
2.10 conclusions . 30

3 Graph and Sum Product Algorithm 31
3.1 Probability Conventions in graphs 32
3.2 Probability propagation at Graph’s Nodes 33

vi TABLE OF CONTENTS

3.3 Belief Propagation Algorithm . 35
3.4 Other graphical representations 36
3.5 Optimality of BP Algorithm . 38
3.6 Scheduling the Messages in BP Algorithm 39
3.7 Decoding of Tailbiting Convolutional Codes on Graphs 39

3.7.1 Non-systematic tailbiting Convolutional Codes 40
3.7.2 Encoder with Feedback 41
3.7.3 Algebraic properties of tailbiting RSC and non-RSC codes 42
3.7.4 Binary Graph for Tailbiting Convolutional Codes 44

3.8 conclusions . 45

4 Analog decoding systems 47
4.1 An introduction to analog decoding 47

4.1.1 Motivations for analog decoding 47
4.1.2 History of analog decoding 48

4.2 Theoretical Aspects of Analog Decoding 49
4.2.1 Subthreshold conduction 49
4.2.2 LLR and Boxplus operator 50
4.2.3 Boxplus elementary circuit 51
4.2.4 Boxplus circuit in our design 54

4.3 Realizing different building blocks 54
4.3.1 Modularity . 54
4.3.2 Boxplus circuit in CADENCE 57
4.3.3 Creating Three input function node 60
4.3.4 Creating four-input function nodes 62
4.3.5 Creating variable nodes 62
4.3.6 Other elements and blocks 64

4.4 conclusions . 66

5 Case Study and Simulations 67
5.1 Extended Hamming (8,4) decoder 67

5.1.1 Realizing extended Hamming (8,4) code 67
5.1.2 Results of simulations 68

5.2 Tail biting (7,5) convolutional decoder 69
5.2.1 Circuit representation . 69
5.2.2 Transient responce . 71
5.2.3 Decoder performance . 73

5.3 LDPC Quasi Cyclic Decoder . 75
5.3.1 Circuit representation . 79
5.3.2 Transient response . 79
5.3.3 Code performance . 83

5.4 Optimization . 84
5.5 Transistor’s Aspect Ratio . 84
5.6 Reference Current . 85

TABLE OF CONTENTS vii

5.7 Symbol Rate . 87
5.8 Input average magnitude . 87
5.9 Operating Temperature . 87
5.10 conclusion . 88

6 Fast Viterbi Decoder in Analog CMOS 91
6.1 ML Decoding of Convolutional Codes 92
6.2 Conditioning of Input Signal . 93
6.3 Adapted Algorithm . 94
6.4 Viterbi Decoder Kernel in Analog CMOS 95
6.5 Behavioral Simulation Results 101
6.6 conclusions . 102

7 Analog FIR Filtering 105
7.1 Introduction . 105
7.2 Approximation to Continuous-time Convolution 108
7.3 Mixed-signal MAC . 108

7.3.1 CMOS Inverter as V/I Converter 109
7.3.2 Mixed-signal MAC Architecture 110
7.3.3 Secondary Effects . 112

7.4 Filter Structure . 113
7.5 Design Details and Simulation Results 114
7.6 conclusions . 119

8 Conclusions and Perspective 121

Bibliography 123

List of Figures 130

List of Tables 134

viii TABLE OF CONTENTS

Acknowledgments

I hereby would like to acknowledge and extend my heartfelt gratitude to Dr. Vahid
Meghdadi for serving as a co-advisor and for tremendous technical guidance, con-
tinuing support and insights.

I am deeply thankful to my professor and supervisor Jean-Pierre Cances for his
helpful instructions, support and encouragement which has made the completion
of this thesis possible.

I also would like to express my sincere thank to professor Jean-Michel Dumas
for his support and providing an congenial ambience to work.

My special thanks to Professor Bruno Barelaud and Dr. Sébastien Darfeuille
who shared with me their substantial knowledge on CAD and educated me to em-
ploy Cadence in my thesis.

I had the opportunity to work closely with my friends and colleagues in ENSIL,
Amir Saemi and Hamid Meghdadi for the enlightening discussions that promoted
the technical insight for all of us. I am also indebted to Hamid for his great help
and contribution on CAD and simulations.

I would like to thank Dr. Cyril Lahuec, Pr. Catherine Douillard and Pr. Em-
manuel Boutillon for serving on my defense committee and for their valuable com-
ments.

Many thank goes to all of my friends in ENSIL for the exiting time we spent
together.

I would also thank to university of Mazandaran who sponsored my stay in
France for almost four years.

Last but not least, a special mention for Dr. Amir Hossien Rezaie who helped
me all the time and made all this possible. I owe more than I can say!

This dissertation was provided, thanks to the open
source softwares, Inkscape for most of the drawings
and TeXnicCenter environment for LATEX 2ε.

Abbreviations and Acronyms

ADC Analog to Digital Conversion (or Converter)
APP A Posteriori Probabilities
AWGN Additive White Gaussian Noise
BCJR Bahl, Cocke, Jelinek and Raviv
BER Bit Error Rate
BP Beliefs Propagation (probabilities propagation)
BPSK Binary Phase Shift Keying
CC Convolutional Code
CMOS Complementary Metal Oxide Semiconductor
DAC Digital to Analog Conversion (or Converter)
DSP Digital Signal Processing (or Processor)
FER Frame Error Rate
FG Factor Graph
FPGA Field Programmable Gate-Array
FPOA Field Programmable Object Array
IC Integrated Circuit
IF Intermediary Frequency
iid Independent and identically distributed
LDPC Low Density Parity Check
NG Normal Graph
PSD Power Spectral Density
QPSK Quadrature Phase Shift Keying
RSC Recursive Systematic Convolutional
SP Sum-Product (as in the SP algorithm)
TVC Time Varying Convolutional

Abstract

Modern digital receivers need computationally demanding processes that leads to
prohibitive complexity and power consumption. The idea of lending analog blocks
for realization of digital algorithms can sometimes relaxes the complexity and high
power consumption in such systems. Analog approach in digital receivers is attrac-
tive since it offers parallel processing with very smaller transistor count and chip
area comparing to their digital implementations. The issue of analog approaches
in digital receivers is studied in this dissertation by concentrating on two areas;
analog decoding and front-end processing.

Analog decoding emerged in 1998, concerns exploiting analog circuitry to re-
alize channel decoders in digital receivers. For analog decoding, the realizations of
some efficient decoders are presented along which our contribution in this area in
conjunction with graph theory is proposed. Bit-error-rate estimations of the analog
decoders have been performed by running time-consuming simulations on Cadence
in order to achieve almost realistic results and to justify our designs.

In addition analog realization of Viterbi algorithm is considered. It is shown
that there is a very nice solution for realization of Add-Compare-Select (ACS) that
plays the central rule in Viterbi algorithm. This study leads to a simple ACS real-
ization suitable for parallel and fast Viterbi decoder in nanosecond range. To prove
the design, circuit level simulations are provided while the bit-error-rate estimation
is restricted to behavioural simulation.

For front-end processing, a CMOS mixed-signal programmable filter is de-
signed and investigated. The filter is suitable for high-rate communication sys-
tems. The proposed filter has analog input and analog sampled outputs. A good
advantage of this design is the storage of filter taps in a digital memory. So like a
digital filter they can be changed at any time. The filter is based on simple CMOS
inverter and thus can be integrated efficiently with the digital parts of a system.
Finally, a FIR cosine rolloff filter is designed and studied by simulation in time and
frequency domains.

xii

Chapter 1

Introduction

In the past decade digital communications dominates rapidly the way of accessing
to information and transmitting data. Communication appliances are continuously
developing and becoming more and more sophisticated with lower prices. Wireless
digital communications is undoubtedly a main part of these developments. Power
consumption is now a challenging issue in design of high-tech devices. The work
of Claude Shannon in 1948 is the starting point of these evolutions by founding the
mathematical theory of digital communications and changing the sight of scientists
to this issue. Shannon band is still a benchmark for newly designed communica-
tion systems. His work faced the community with a new problem, "How to protect
effectively information bits through transmissions?" This question developed the
bases of channel coding. Despite several remarkable works after Shannon, limi-
tations of technology halted the practical developments in this area. For example
the work of Galager on LDPC codes remained at the theory level and were mostly
ignored due to demanding computational effort.

In twenty century we are facing again the evolution with much more clear re-
sults influencing out lifestyle. For the first time Claude Berrou and Alain Glavieux
proposed the so-called turbo-codes with the capacity approaching feature in 1993.
At the same time the community paid attention to the Galager’s work on LDPC
codes presented since the early 1960s. This time the current platforms allowed
handling heavy processes that yielded a comparative result with respect to turbo
codes.

Development of graph theory and using it in coding was also important. This
method allowed scientists a better look into coding theory by using graphical dia-
grams and revealed the close relationship between turbo codes and LDPC codes.
Later some authors employed graph directly to the design of good codes. Graph
theory introduced the important concept of iterative processing. Iterative algo-
rithms now covers the synchronization and equalization processes and sometimes
is applied at the same time with decoding process. The relationships between these
three issues are often very complex and finding an iterative solution is not always
possible. Besides, the Expectation-Maximization algorithm, known since many

2 Introduction

years with its strength mathematical bases, was proposed and successfully applied
to beak such complex problems into several smaller modules and obtaining more
simple iterative algorithms. In this dissertation we concentrate on decoding and
implementation of some efficient decoders, notably analog decoders. Analog de-
coding is a new subject in the field of decoder design. We present our contribution
in this subject. In addition we proposed an efficient structure for front-end part
of a receiver, i.e. matched filtering by employing analog devices. we show that
our design yield a good trade-off between power consumption and speed. Analog
schemes are sometimes attractive since they offer parallel processing with small
transistor count and chip area compared to the conventional digital implementa-
tions. There are very promising results in this area which have been reported, yet
there are some limitation with respect to digital implementations that need more
effort.

1.1 System Model

Assume that binary information with equal zero-one probability is passing via a
noisy channel. In the case of non-equal probability the source coding can fulfill
this requirement. Look at figure 1.1 for a general structure of digital communica-
tion systems. Digital source may be an intrinsic digital source such a storage data
or it may be an analog source that is converted to digital stream. In forward-error
correction (FEC) scheme some form of redundancy is added to the source in or-
der to cope with unreliable communication media. This process is performed by
channel encoder and decoder in transmitter and receiver respectively. The abstract
information turns into physical signal in the modulation block and it is strongly
dependent to the channel type. For some sort of media a baseband modulation
is sufficient wherein the spectrum fit channel requirement. On the other hand for
long-haul transmissions, bandpass modulation is required where baseband signal
impressed upon a carrier wave.

1.2 Error Control Coding

Bit errors in digital transmission depend on the quality of channel often denoted
by signal-to-noise ration (SNR). Forward error correcting (FEC) as an important
aspect of error control coding, is a promising solution for reliable communication
over unreliable channels. The principle of FEC is to add redundancy to information
by inclusion of extra digit to source. According to information theory a nearly er-
rorless transmission is possible by using FEC systems. The drawbacks, however is
higher transmission delay, systems complexity and power consumption. A multi-
tude of FEC systems have therefore been devised to suit various applications. Two
major categories of FEC systems are block codes and convolutional codes. The
former performs over a fixed number of information bits (block) while the later
performs over the semi-infinite stream of data bits such as media broadcasting. In

1.3 Modulation 3

Figure 1.1: Outline of digital transmission system

fact, we can always partition data streams into blocks and apply block coding to
them. So block codes sound to be more applicable than convolutional codes.

1.3 Modulation

Modulator associates analog signal (from a set of possible signals / constellation)
to one or several adjacent bits at its input. Figure 1.2 illustrate some important ex-
amples of baseband and bandpass modulation. A very simple example of baseband
modulation is pulse amplitude modulation (PAM) with rectangular pulses (figure
1.2(a)). Such a simple scheme does not often yield a good error performance owing
to signal distortion in most practical cases. The presence of inter-symbol interfer-
ence (ISI) and noise along with limited bandwidth demands more sophisticated sig-
naling to mitigate bit errors in the regenerated signal at receiver side. This problem
was known since 1924 by the work of Nyquist on telegraph signal. He proposed
the so-called cosine rolloff pulses (figure 1.2(b)) to reduce the effect of ISI and to
obtain additional good properties such as simple synchronization and being ban-
dlimited to avoid spectral spillover for a given bandwidth (and hence to increase
spectral efficiency). Sometimes this topic may be covered in communication texts
under the name of "pulse shaping".

Long-haul digital transmission, on the other hand, usually requires continuous
wave modulation to generate a bandpass signal suited to the transmission medium
(figure 1.2(d-f)). There are many modulation methods with their own pros and
cons. Two important parameters in this area is the spectral efficiency and power ef-
ficiency. Spectral efficiency is measured in bit/sec/Hz and expresses the amount
of information that can be transmitted over a given bandwidth in a specific digital
communication channel. According to Nyquist sampling theorem, the spectral ef-
ficiency is upper-bounded to 2log2(M) bit/sec/Hz for a M-ary signaling without
ISI. For example QPSK modulation has two times more efficient as BPSK modu-

4 Introduction

lation. Except the two last methods, which are using quadrature constellation, the
other ones are using simple constellation. By using quadrature constellation we
obtain a bit rate of two times as much as simple constellation given a fixed band-
width. Power efficiency of a spectrum, on the other hand, represents the percentage
of power spill over to the side lobs. Modulations that employ smooth transition e.g.
raised cosine have better power efficiency than those with fast transition such as
NRZ pulse. In addition the complexity of transmitter and receiver is an important
issue and is considered along with aforementioned aspects. We may have a much
more complicated constellation in exchange of pert in overall performance owing
to closeness of constellation points. Bear in mind that the general rule for the er-
ror performance of a digital communication system depends directly on Euclidean
distance of the constellation points and inversely on noise power density, i.e.

Perror = Q
(

distance√
2N0

)
(1.1)

1.4 Trellis Coded Modulation

Sometimes we can not partition a communication system sharply, as it is for Trel-
lis Coded Modulation (TCM). TCM is a modulation scheme which allows highly
efficient transmission of information over band-limited channels such as telephone
lines. TCM was invented by Gottfried Ungerboeck in 1982 [1] and played a key
role in the Information Age by increasing the speed by a factor of two with the same
error rate. Conventionally the coding is a digital function and modulation which is
an analog function, are done separately and independently. In TCM, however the
two functions are merged into a single function.

1.5 Communication Channel Models

Continuous-time AWGN channel is a random channel whose output is a real ran-
dom process y(t) = x(t)+n(t) , where x(t) is the input waveform, regarded as a real
random process, and n(t) is a real white Gaussian noise process with single-sided
noise power density N0 which is independent of x(t). Moreover, the input x(t)
is assumed to be both power-limited and band-limited. The average input power
of the input waveform x(t) is limited to some constant value P. Despite of vari-
ous modulation schemes, it is always possible to reduce a continuous-time AWGN
channel model to an equivalent discrete-time AWGN channel model y = x+n. The
SNR of this channel model is then:

SNR =
P

N0W
, (1.2)

where N0W is the total noise power in the band W . The two parameters W and
SNR turn out to characterize the channel completely for digital communications

1.5 Communication Channel Models 5

Figure 1.2: Several modulation techniques for baseband and bandpass digital trans-
mission

6 Introduction

purposes. If a particular digital communication system transmits a continuous bit
stream over such a channel at the rate of R (b/s), then the spectral efficiency of the
system is said to be ρ = R/W (b/s/Hz). The Shannon limit on spectral efficiency
is:

C =
1
2

log2(1+SNR) b/s/Hz (1.3)

Reliable transmission is possible when ρ < C, but not when ρ > C.

1.6 Demodulation and Optimum Receiver

This section outlines the concept of optimum detection in M-ary receivers. We will
use the convenience of geometric representation of signal to facilitate the necessary
calculations[2]. The transmitter sends a signal si(t) from the set of M signals. The
signal at the destination appears as s(t) owing to corruption by AWGN, nw(t). We
assume a one-sided spectrum of N0 for the noise. The receiver task is to compare
s(t) by each of the M available signals in the signal set at the receiver (coherent
system). A reasonable rule to define the optimality of receivers is to minimize the
error probability that is, the ith symbol is recognized by the receiver if it has the
largest a posteriori probability.

P(si | s) > P(s j | s) =⇒ ŝ = si ∀ i 6= j (1.4)

This rule is known as maximum a posteriori (MAP) rule. Suppose that the
orthogonal basis φk,{k ∈ 1, . . . ,K | K ≤ M}, span the signal set in a subspace SK .
The received signal s(t) = si(t)+ nw(t) dose not fall entirely within SK . As illus-
trated in 1.3, decomposition of nw(t) into relevant noise n(t) and irrelevant noise
n⊥ is needed for spanning the received signal in SK . Also the relevant signal x(t) is
the projection of the received signal in SK as depicted in figure 1.3. The maximum
Likelihood(ML) detection is achieved by choosing the closest signal in the signal
set to x(t). So the receiver task is the calculation of di, the distance between x(t)
and si(t) ∀i ∈ {1 . . .K}.

di = ‖x− si‖2 = ‖x‖2−2〈x,si〉+‖si‖2

The constant value of ‖x‖2 has no effect in comparison. The ‖si‖2 = Ei is the
energy of ith symbol and in general is not constant in some sort of modulations.
In addition, according to orthogonality of n⊥ to SK the mid term 〈x,si〉 is equal
to 〈s,si〉. Two common ways to calculate 〈s,si〉 are by correlation and matched
filtering as it is depicted in figure 1.4.

1.7 Error Probability

Average error probability of a M-ary systems can be formulated according to the
preceding sections. Define Pj as the probability of erroneous detection of jth sym-

1.7 Error Probability 7

Figure 1.3: Geometric representation of received signal

Figure 1.4: Correlation receiver(left) and matched filtered receiver (right)

bol that correspond to s j(t). The average error probability is then:

Pe =
1
M

M

∑
j=1

Pj (1.5)

providing that the symbols are equiprobable. Now define Pi j the probability of
s j to be recognized as si. In fact if the noise component in (si − s j) direction
exceeds the halfway between si and s j an error will take place. Figure 1.5 shows
the geometrical illustration of this phenomenon. Given a Gaussian distribution for
the noise, the error probability can be written as follows:

Pi j =
∫

∞

di j/2
pn(nk)dnk = Q

(
di j√
2N0

)
, (1.6)

where di j =‖ si − s j ‖. Summing up Pi j over i and using equation 1.5 yields the
upper bound for a general M-ary system.

Pe ≤ ∑
i 6= j

Pi j (1.7)

8 Introduction

Figure 1.5: Geometrical illustration of signal to noise ratio

1.8 Front-end Processing in Digital Receivers

At least tree schemes are envisagable for digital receivers when they are accompa-
nying with decoders and/or other processing blocks in digital domain. Figure 1.6
shows the outline for the receiver structures. The first structure is the conventional
one for baseband receivers. The analog filter at the input performs matched filter-
ing while its output is sampled and converted via ADC to digital stream. The post
processing is then accomplished by DSP processors or newly FPGA or FPOA ICs
to perform decoding and other necessary algorithms for say synchronization and
equalization tasks.

In order to achieve more flexibility the scheme of software defined radio re-
ceiver was postulated that consists merely of an ADC converter as close as pos-
sible to the receiver front-end as depicted in figure 1.6(b). This block diagram
is remains valid for both of baseband and bandpass signals. The principle of di-
rect down conversion (DDC) discusses the theory of bandpass reception. Unlike
the conventional bandpass receivers with their intermediate-frequency (IF) section,
here sampling at low frequency imply intentional aliasing that down converts the
bandpass signal into baseband samples. However DDC required a sophisticated
ADC with large bandwidth and input dynamic range. The filtering is done over
digital samples in digital domain. Since all processing are in digital domain, this
structure provide a highest level of reconfigurability and receiver is able to capture
signals of multitude of standards at different times. At the same time the power
consumption and complexity may be prohibitive that put a limit to its applications.

The block diagram in figure 1.6(c) is a novel method based on analog de-
coders. In this power efficient scheme, ADC is no longer needed and the sig-
nal path remains in analog domain. The invention of analog decoder ushered in
the development of very simple receiver structure with potentially very efficient
speed-power-area trade-off. It is also possible to make more sophisticated struc-
ture, say turbo decoding, by using two analog decoders working in parallel. Note

1.9 Dissertation Outline and Contributions 9

Figure 1.6: different schemes for a digital receiver

that there is only need for simple comparator at the decoder output to retrieve infor-
mation bits. Promising successes in design of analog decoders have been reported
so far[3, 4, 5, 6, 7, 8]

In order to gain the full advantage of analog decoders and to avoid DAC be-
tween the matched filter and the decoder blocks, we need an analog filter. But a
traditional analog filter is not a good choice because it can not be integrated with
the decoder and it is not enough flexible. Our contribution in this area was to
devised a novel discrete-time analog filter featuring fully-CMOS and simple struc-
ture that can be integrated with analog decoder. Another important characteristic
of this design is the ability to be reconfigured, like a digital filter, that embodying
the concept of Analogue Software Defined Radio Receiver.

1.9 Dissertation Outline and Contributions

Chapter 2 commences by definition of convolutional codes and two general struc-
tures that realize encoders for a given code. Conversion between the two structures
is presented by exploiting cut-set retiming rule. Using this method, we get a more
clear view of encoder’s state and besides one can use it to devise different struc-
tures for encoding of a code. Representing a code by its trellis is considered in
this chapter as the classical and optimal decoding algorithm. Undoubtedly, the
concept of trellis of a code extends to block codes that is mentioned briefly in this
chapter. In addition some of the related issues such as tailbiting termination and
time-varying convolutional codes for which we have had encountered during this
thesis are explained.

Chapter 3 concerns graph theory and its application in definition of codes and
decoding. The background about the encoders provided in chapter 2 and belief
propagation algorithm illustrated in this chapter leads to novel approach. Our con-

10 Introduction

tributions in this case are presented in section 3.7. Briefly speaking, this section
is targeted at decoding of tailbiting convolutional codes on graph. To this aim a
unified method is devised to get simple graphs form tailbiting convolutional codes.
This is done by reformulation of tailbiting constraint. An important aspect of this
approach is the definition of a new vector. The study of algebraic properties of this
vector reveals two important properties; first, the conditions for which tailbiting
constraint remains valid and second, uncover the relationship between recursive
systematic convolutional (RSC) codes and non-RSC codes. Last result is interest-
ing in the sense that a graph dedicated for decoding of a RSC code can be employed
to decode the related non-RSC code as well. In addition we notice the concept of
fatal loop, a condition that should be avoided in order to belief propagation not to
fail.

Chapter 4 provides an introduction on the history of analog decoding, our mo-
tivation for choosing it as platform of decoder realizations. The building blocks
made of analog transistors in sub-threshold region are then presented in different
level of schematic hierarchies. The designs in this chapter are based on the earlier
works proposed in this context by different authors.

In chapter 5 we justify the idea of analog decoding by several decoding circuits
at simulation level. Extended Hamming code as our first experience, (21,7) quasi-
cyclic code and (16,8) tail-biting convolutional code are considered that demon-
strate the feasibility of analog decoding. Among them, (16,8) tail-biting convolu-
tional code is presented for the first time and is an example of a unified approach
brought in section 3.7 for general tail-biting convolutional codes. The approach
features a simple binary graph suitable for realization of analog decoder. For the
quasi-cyclic code, we shows that how re-labeling of nodes in its graph leads to a
better modularity of decoder system.

This chapter also contains several simulations to figure out some critical char-
acteristics of the analog decoders; the effect of reference current on speed and
performance of the decoder, the effect of input signal amplitude and the issue of
symmetry between two inputs of our generic cell and its affect on the performance
of decoders.

Chapter 6 is dedicated to design a new high-speed Viterbi decoder in nanosec-
ond time range. The core circuitry in this design is winner-take-all (WTA), well-
known in neural network context. Although the MOS transistors in the original
design of WTAs work in sub-threshold region, we change the operating point well
above strong inversion. In WTAs with their inherent positive feedback this is al-
ways possible and yields a far superior speed to the original design.

Beside many advantages of such analog scheme, there are also difficulties. The
first problem with WTA arises from the fact that classical Viterbi algorithm is based
on "Min" function while WTAs provides "Max" function. The second problem is
lack of "argMax" functionality needed for trace-back operation in Viterbi algo-
rithm.

To overcome the first problem, we introduce a mechanism of normalization by
an extra WTA. In addition, regarding the "limited dynamic range of path metric"

1.9 Dissertation Outline and Contributions 11

give rises to obtain even more simplicity. That is using only one WTA-N for an
arbitrary number of states. This is very important for codes with large number of
states, say 64 or more.

Second to add the functionality "argMax" we modify the WTA circuit in our
design so that a logical output is added. As the simulations demonstrate, this output
exhibits a steep variation and fast time response.

Finally the blocks are put together so that we are able to use it as Viterbi kernel
in a decoder while gaining advantage of its simple, fast and CMOS-based structure.

Chapter 7 represents our contribution in the field of filtering. Inspired by a
transconductor design in the context of continuous-time filter, we propose simple
structure for FIR mixed-signal discrete-time filter. CMOS inverter gates features
as a fixed-gain transconductor. Our motivation to overcome fixed-gain limitation
leads to a mixed-signal MAC (multiply-accumulate) as a core block in FIR filters.
The proposed structure has many advantages; remaining signal path analog and
quantizing the filter taps instead, featuring wideband frequency range, being ap-
plicable efficiently with analog decoders, to name only some of them. A roll-off
cosine filter is designed based on the proposed scheme and is verified by simulation
in circuit level. The chapter is concluded by a comparison of designed filter with
some of the other FIR filters.

Finally the last chapter concludes the dissertation and expands on the sequel to
this work.

The contributions provided in this thesis can be equally found in the publica-
tions by the author [9, 10, 11, 12, 13, 14].

12 Introduction

Chapter 2

Trellis and MAP Decoding

This chapter concerns the important issue of trellis structure of a code. The reason
for its importance comes through the fact that for optimal decoding of a code we
need its trellis definition. Traditionally, trellis had been employing for definition
and decoding of convolutional codes while algebraic block codes were decoded
by syndrome former. Later a sort of trellis were devised for block code where the
number of states are not necessarily constant in different trellis section, i.e. time-
varying trellis. According to this introduction we will commence with definition
of convolutional codes and their trellis representation. Then the trellis diagram
of block code will be illustrated briefly. Two important decoding algorithms over
trellis of a code will be derived that include the forward-backward algorithm and
forward-only algorithm. The subtle connection of these algorithms to the well-
established Hidden Markov chain will then be explained.

2.1 Convolutional Codes in GF(2)

Defining the k-tuple binary input information at time i as:

xt = {x(1)
t , · · · ,x(k)

t },

the whole input sequence x is represented by the sequence:

X = · · · ,x−1,x0,x1,x2, · · ·

The convolutional coded output is composed of n-tuple stream as:

Y = · · · ,y−1,y0,y1,y2, · · ·

where yi is defined by n-tuple:

yt = {y(1)
t , · · · ,y(n)

t }.

14 Trellis and MAP Decoding

Figure 2.1: An example of rate 2/3 convolutional encoder

Such a definition represents a rate k/n convolutional code assuming the following
relationship is held:

Y (D) = X(D)G(D) (2.1)

where D is delay operator that convert a numerical vector to a polynomial. For
example X(D) is:

X(D) = · · ·+ x−1D−1 + x0 + x1D + x2D2 + · · ·

The k× n polynomial generator matrix1, G is in general a rational function of D .
One important aspect of convolutional codes is the simple structure of the encoder
that is realizable by only delay and summation (xor). For example figure 2.1 shows
a rate 2/3 convolutional encoder with polynomial generator matrix:

G(D) =
(

1 D 1+D
D2 1 1+D +D2

)

2.2 Trellis of a Codes and Tailbiting Trellis

A code trellis is a graphical representation of a code, heavily used in coding theory
originally for convolutional codes and later for block codes. Trellis is comprised
of nodes and branches in which every path, a concatenation of nodes and branches,
represents a codeword (or a code sequence for a convolutional code). This repre-
sentation makes it possible to implement dynamic programing for decoding of a
code with reduced complexity.

At each time index t, the possible states of the trellis are indicated in a vertical
array of nodes, each node corresponds to one state value. It often represents the

1This is a transfer function and should be distinguished from generator matrix which is a large
numerical matrix

2.3 Encoder Realization 15

Figure 2.2: Tailbiting trellis of (7,5) RSC code

(binary) content of delays in corresponding encoder. A trellis branch connects two
states and corresponds to a possible input. Each branch in trellis is labeled with the
encoder output, ct (or channel symbol) and the corresponding input bt and may be
noticed like bt/ct .

Time-invariant encoder description requires only a section of trellis say for
times t and t +1, because the set of states and possible transitions does not change
from time to time. Trellis of block codes are often time-varying and should be
given completely to describe the corresponding code.

Another important issue in encoding (and consequently in decoding) is the ini-
tial and final states of encoder. It may be designed an encoder starts from zero and
ends also to zero state. Another possibility is unknown state with equi- probable
distribution among the possible states. Tailbiting is an alternative that imposes start
state and end state to be equal. Tailbiting trellis thus have a circular shape, such a
ones is shown in figure 2.2.

2.3 Encoder Realization

In this section we will consider two important realizations of encoder for convo-
lutional codes among almost infinite possible realizations. Furthermore we will
consider only convolutional codes with the polynomial generator matrix reduced
to one row. This simplifies the notation without loss of generality because a linear
combination of two or more such codes yields the complete code. Moreover, the
classical convolutional codes are often described by single row generator polyno-
mial matrices with rate 1/2,1/3 etc. The different encoder realizations for a code
are input-output equivalent but the internal states of the encoders are can be differ-

16 Trellis and MAP Decoding

Figure 2.3: cut-set retiming for system conversion

ent. This fact can affect the trellis diagram of the code and the decoding process
(c.f. section 3.7). Here we are only interested in minimal encoders. Such encoders
have a minimum number of delay elements over all other encoders for the code. In
addition we lend the concept of cut-set retiming to convert one structure to another.

cut-set retiming rule

The cut-set rule can be briefly stated as follows: if a part of a diagram can be
separated from the other parts, one can apply the delay element D to inbound data
lines and apply the advance elements D−1 to outbound data lines (or vise versa) as
illustrated in figure 2.3. The new diagram have exactly the same characteristic as
the first one and can be realize as far as any D−1 is absorbed by an already existing
delay element, owing to the causality issue. As an illustrative example, consider
the generator polynomial of 1/(1 + D + D3). The numerator is simply chosen to
be 1 because the principle part of the state-space representation depends only on
denominator.

The encoder shown in figure 2.4(a) is controller canonical form. We use cut-set
rule to obtain finally the structure of 2.4(d). The procedure is illustrated in details
in figure 2.4 wherein by using cut-set rule there is no need for any mathematical
calculation.

Another advantage of cut-set method is that the relationship between state vec-
tors in the two structures is obvious. For example suppose two encoders with direct
form I and transpose direct form2 II structures. If x and y are state vectors of these
encoder respectively, then the relationship between x and y can be found easily as
depicted in figure 2.5. This figure shows a general encoder with generator polyno-
mial of:

1
1+a1D + · · ·+amDm

where the content of delay element represents the state for each structure. The
relationship between state vectors x and y can be written directly by inspection as:

2Also referred as IIt in signal processing texts

2.3 Encoder Realization 17

Figure 2.4: Evolution of encoder structure; from controller canonical form (Direct
form I) to observer canonical form (Transpose direct form II) using the concept of
cut-set retiming.

Figure 2.5: Relationship between two state vectors x and y

18 Trellis and MAP Decoding

y =


a1 a2D · · · amDm−1

0 a2 · · · amDm−2

...
...

. . .
...

0 0 · · · am

x (2.2)

State space equations, on the other hand, for direct form I and direct form IIt
are respectively as follows. The relationship between two state space matrices is
clearly the transposition, so accounts for the name transpose direct form II.


x1
x2
...

xm


(t+1)

=


a1 · · · am−1 am

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0




x1
x2
...

xm


(t)

+


1
0
...
0

u(t) (2.3)


y1
...

ym−1
ym


(t+1)

=


a1 1 · · · 0
...

...
. . .

...
am−1 0 · · · 1
am 0 · · · 0




y1
...

ym−1
ym


(t)

+


a1
...

am−1
am

u(t)

(2.4)

Choosing one of these structure, depends on the applications. For example
in section 3.7 we need an structure with maximum redundancy in state vector.
Comparing two above mentioned encoder, in direct form I the delay blocks acts as
a shift register while in direct form IIt, input adds to the content of delay. Thus as
a result, direct form I is chosen to achieve a decoder reduced complexity.

2.4 Bit-wise Maximum A Posteriori Decoding

Nowadays Bit-wise MAP decoding dominates other algorithms due to its critical
rule in turbo code. In decoding of turbo codes, there is need for calculation of bit’s
a posteriori and improving its certainty in a recursive manner.This is also critical
to modern iteratively-decoded error-correcting codes including low-density parity-
check codes to find the maximum a posteriori of a bit given a coded stream.

In this section we will briefly review two important approaches on MAP decod-
ing algorithms. Considering MAP decoding at least by two points of view gives a
better insight into the problem and provides motivation for further considerations.
We assume that the trellis of the code is already known. Nevertheless for a concrete
explanation, a sample encoder and its corresponding trellis diagram are shown in
figure 2.6.

2.4 Bit-wise Maximum A Posteriori Decoding 19

Figure 2.6: Definition of variables in a sample convolutional encoder and corre-
sponding trellis diagram

Assuming information vector of length T is coded by a rate 1/n convolutional
encoder and the coded stream mapped into constellation and transmitted through a
channel where a receiver observes the channel output Y T

1 = Y1 · · ·YT as a n× T
matrix. The content of this matrix may be {0,1} for BSC or real number for
AWGN channel model.

The goal of a MAP decoder is to find a posteriori probabilities for each bit
and eventually to calculate log-likelihood ration (LLR) by incorporating all related
information received from the channel:

LLR(bt) = ln
Pr(bt = 0|Y T

1)
Pr(bt = 1|Y T

1)
, (2.5)

where bt is the tth bit that correspond to tth trellis section of the code in a T -length
trellis.

Several algorithms have been developed to find 2.5. Here we consider BCJR
algorithm [15] and Forward-only algorithm [16]. BCJR algorithm is used for max-
imum a posteriori decoding of error correcting codes defined on trellises (prin-
cipally convolutional codes). The algorithm is named after its inventers: Bahl,
Cocke, Jelinek and Raviv. BCJR algorithm is the well-known forward-backward
algorithm in the context of Hidden Markov Model (HMM) while the forward-only
algorithm is a result of clever deviation from BCJR algorithm that eliminate the
need for backward recursion in expense of more hardware usage.

In the following we will often encounter at the expression:

γt(i, j) = P(St = j,Yt |St−1 = i) (2.6)

which is the joint probability of transition from state i to state j and observation at
the time instance of t. This probability can be further factored into two terms as

20 Trellis and MAP Decoding

follows:

γt(i, j) = Pr(St = j|St−1 = i)P(Yt |St = j,St−1 = i) (2.7)

The first term is characterized by the a priori probability of the information bit bt

and the structure of code, i.e. the existence of a path between states i and j. The
second term is characterized by the channel which is obviously independent from
the first process. It is more convenient to denote the second term as P(Yt |Ct). For
example for the trellis in figure 2.6 there are four such probabilities correspond to
Ct ∈ {00,01,10,11}.

2.4.1 BCJR Algorithm

Towards finding an efficient procedure to calculate the equation 2.5, it is more con-
venient to replace the nominator and denominator with P(bt = 0,Y T

1) and P(bt =
1,Y T

1) respectively that clearly don’t change the final result. Then we can partition
them as follow, say for the nominator:

P(bt = 0,Y T
1) = ∑

{i, j}
bt=0

P(St−1 = i,St = j,Y t−1
1 ,Yt ,Y T

t+1). (2.8)

The expression under summation can be factorized using Bayes’ rule:

P(St−1 = i,St = j,Y t−1
1 ,Yt ,Y T

t+1)

= P(St−1 = i,Y t−1
1)P(St = j,Yt ,Y T

t+1|St−1 = i,Y t−1
1)

= P(St−1 = i,Y t−1
1)P(St = j,Yt |St−1 = i,Y t−1

1)

P(Y T
t+1|St−1 = i,Y t−1

1 ,St = j,Yt)

The first term is called forward variable and commonly denoted by αt−1(i). By
definition forward variable is:

αt(i) = P(St = i,Y t
1) (2.9)

In the second term, we can ignore Y t−1
1 because state transition at time t is clearly

independent of our preceding observation. According to 2.7 this term is γt(i, j).
Similarly in the last term we can ignore Y t−1

1 , St−1 and Yt because the observation
after t depends only on the state at time t. This term is called backward variable
and is commonly denoted by βt(j):

βt(j) = P(Y T
t+1|St = j) (2.10)

Therefor equation (2.8) can be expressed by:

P(bt = 0,Y T
1) = ∑

{i, j}
bt=0

αt−1(i)γt(i, j)βt(j) (2.11)

2.4 Bit-wise Maximum A Posteriori Decoding 21

Obviously for bt = 1 we obtain a similar equation as follows:

P(bt = 1,Y T
1) = ∑

{i, j}
bt=1

αt−1(i)γt(i, j)βt(j) (2.12)

The advantage of BCJR algorithm comes from recursive and simple computation
of the forward and backward variables α and β. To obtain the recursive equations,
one can write a marginalize expression as follows:

αt(j) = P(St = j,Y t
1) = ∑

i
P(St−1 = i,St = j,Y t−1

1 ,Yt)

The expression under summation can then be factorized as:

αt(j) = ∑
i

P(St−1 = i,Y t−1
1)P(St = j,Yt |St−1 = i,Y t−1

1)

= ∑
i

αt−1(i)γt(i, j) (2.13)

Equivalently we can extend the probability for β to obtain a recursive formula.
From equation (2.10):

βt(j) = P(Y T
t+1|St = j)

= ∑
k

P(Yt+1,Y T
t+2,St+1 = k|St = j)

= ∑
k

P(St+1 = k,Yt+1|St = j)P(Y T
t+2|St = j,St+1 = k,Yt+1) (2.14)

The first term is γt+1(j,k) and the second, after ignoring the irrelevant terms St and
Yt+1 is equal to βt+1(k). Therefor the backward recursive formula is:

βt(j) = ∑
k

βt+1(k)γt+1(j,k) (2.15)

So the BCJR algorithm uses the forward recursion of 2.13 and backward recursion
of 2.15 to calculate α and β for t ∈ {1, · · ·T}. Then applying 2.11 and 2.12 to
calculate the nominator and denominator of 2.5 is the goal of the algorithm.

One important but implicit step in this procedure is the initialization of the
algorithm. In order to employ 2.13 and 2.15 there is need for α and β at t = 0 and
t = T +1 respectively. This issue is addressed under the term trellis termination in
literatures.

2.4.2 Forward-only MAP Algorithm

Here we try to find P(bt = 0,Y τ
1) and P(bt = 1,Y τ

1) for 1 ≤ t ≤ τ. It is obvious
that for τ = T these two probabilities turn out to be the ones in 2.5. Because of

22 Trellis and MAP Decoding

similarity between the cases bt = 0 and bt = 1, we will only extend the equations
for bt = 1. We have:

P(bt = 1,Y τ
1) = ∑

i
P(bt = 1,Sτ = i,Y τ

1) 1 ≤ t ≤ τ, (2.16)

The expression in the summation plays a major rule in this algorithm and it is
worthwhile to dedicate a notation for it, say:

Λ
τ
i (bt = 1)

4
= P(bt = 1,Sτ = i,Y τ

1) 1 ≤ t ≤ τ, (2.17)

In an attempt to find a recursive formula for Λ, one can use the marginalization and
Bayes’ rules to write:

Λ
τ+1
j (bt = 1) =

∑
i

P(bt = 1,Sτ+1 = j,Y τ+1
1 ,Sτ = i) 1 ≤ t ≤ τ+1 (2.18)

= ∑
i

P(bt = 1,Sτ = i,Y τ
1)

P(Yτ+1,Sτ+1 = j|Sτ = i,bt = 1,Y τ
1) 1 ≤ t ≤ τ+1,

If for a moment we exclude τ + 1 from the time range, then the first expression
under summation becomes clearly Λτ

i (bt = 1). Thus we first continue for 1≤ t ≤ τ

and later we will return to the case of t = τ + 1. Note that bt and Y τ
1 in the second

part have no effect on the probability and can be ignored. According to definition
in (2.6) it is γt+1(i, j). Finally we obtain the following recursive equation, known
as update recursion:

Λ
τ+1
j (bt = 1) = ∑

i
Λ

τ
i (bt = 1)γt+1(i, j) 1 ≤ t ≤ τ (2.19)

Note that Λ has two time variables, τ and t = {1, · · · ,τ}. So calculation of Λτ+1

implies recomputation of Λ for all t = 1,2, · · ·τ+1.
We now return to equation (2.18) and write it for t = τ+1:

Λ
τ+1
j (bτ+1 = 1) = ∑

i
P(bτ+1 = 1,Sτ+1 = j,Y τ+1

1 ,Sτ = i)

= ∑
i

P(Y τ
1 ,Sτ = i)P(bτ+1 = 1,Sτ+1 = j,Yτ+1|Sτ = i,Y τ

1)

The first term in this equation is obtained by marginalizing Λτ
i over bt , i.e. Λτ

i (bτ =
1)+Λτ

i (bτ = 0) and the second term in which we can ignore Y τ
1 is:

P(bτ+1 = 1,Sτ+1 = j,Yτ+1|Sτ = i,Y τ
1) =

{
γτ+1(i, j) bτ+1 = 1
0 otherwise

2.5 Block-wise MAP decoding 23

So we reach an equation which is called extend recursion:

Λ
τ+1
j (bτ+1 = 1) = ∑

i
bτ+1=1

(
Λ

τ
i (bτ = 1)+Λ

τ
i (bτ = 0)

)
γτ+1(i, j) (2.20)

The update and extend recursions for b = 0 are trivially similar to 2.19 and 2.20
respectively. The algorithm start with initial value of Λ and applying extend and
update recursion repeatedly for τ = 1,2, · · · ,T . Given ΛT

i , applying (2.16) for
τ = T yield the result, i.e.:

P(bt = 1,Y τ
1) = ∑

i
Λ

T
i (bt = 1) (2.21)

2.5 Block-wise MAP decoding

The problem with bit-wise MAP decoding is that the decoded stream is not neces-
sarily a valid codeword. On the other hand in some applications we need to assure
about codeword, that yield a better Frame Error Rate (FER) performance in the
decoding process. Theoretically block-wise MAP is defined as follows:

ĉ = argmax
∀c∈C

P(c|Y) (2.22)

where c is a codeword in the code space C and Y is the observation. Viterbi al-
gorithm is the best example of block-wise decoding that maximize P(Y |c), i.e.
Maximum Likelihood (ML) decoding and is equivalent to MAP for equally likely
symbols. Viterbi algorithm is a special case of dynamic programming, was con-
ceived by Andrew Viterbi as an error-correction scheme for noisy digital communi-
cation links, finding universal application in decoding of convolutional codes. For
memoryless channel, equation 2.22 is written in additive form where log function
is used to ease the implementation step:

ĉ = argmax
(c1c2···)∈C

∑
t

log(P(yt |ct)) (2.23)

2.6 Illustrative example of bit-wise and block-wise decod-
ing and a little more

If we spend less than a page and give a small example that clearly demonstrates
bit-wise and block-wise decoding side-by-side, why not do it now!

Refer to figure 2.6, and assume that we encode five bits, (b1 · · ·b5) by the de-
coder into (C1 · · ·C10), then transmit 0 by +1 and 1 by -1 through AWGN channel
with noise spectrum N0 (arbitrary chosen N0 = 2) and we get (Y1 · · ·Y5) at receiver’s
filter output. Table 2.1 gives an instance of values calculated for this example. For
each valid path in the trellis, a probability can be associated and calculated by mul-
tiplying the probabilities of corresponding edges. There are 16 valid paths where

24 Trellis and MAP Decoding

Table 2.1: Bit and block wise decoding by an example

Figure 2.7: Paths that correspond to b3 equal zeros (a) and one (b)

the one highlighted by solid line in the trellis has the largest probability of 0.077.
This path is called Viterbi Surviving path which is claimed to represents the de-
coded output. This is an example of block-wise decoding because the information
bits are taken out from a valid path in the trellis. Bit-wise MAP decoding considers
all paths in the trellis, but divide them into two sets, one that correspond to bt = 0
and the other for bt = 1. For example consider b3 in table 2.1 to be decoded. For the
case b3 = 0, MAP algorithm sum up the probabilities of 8 paths that has the edges
as in figure 2.7(a). Similarly figure 2.7(b) shows other 8 paths that correspond to
b3 = 1. The final step is straightforward i.e. according to the larger probability,
MAP decision is accomplished. MAP algorithm requires large memory and a
large number of operations involving exponentials and multiplies. The algorithm
is likely to be considered prohibitive for implementation in some communication
systems. An important deviation from standard MAP to relax the complexity of
computations is Max-Log-MAP algorithm. It may be applied to BCJR, Forward-
only or other similar algorithms. The idea is to work with log of variables instead of
variables themselves. For example α in BCJR algorithm is replace with α = ln(α).
This is also true for the β and γ. The principle approximation now can be applied

2.7 Time-varying Convolutional Codes 25

Figure 2.8: Graphical representation of α4(1) in BCJR algorithm (a) and Λ4
1(b2 =

0) defined in Forward-only algorithm (b)

to these log variables by the following rule:

ln

(
∑
k

eλk

)
≈ max

k
λk (2.24)

where λ is dummy variable. Turning back to our example in table 2.1 and assum-
ing again the decoding of b3, Max-Log-MAP takes only the path with maximum
probability among the 8 paths in figure 2.7(a) as an estimation for ln(P(b3 = 0|Y)).
Similarly, ln(P(b3 = 1|Y)) is approximated by the path with maximum probability
among the 8 paths in figure 2.7(b).

Before finishing this section, we would like to express graphically the meaning
of α in BCJR algorithm and Λ in Forward-only algorithm. By definition αt(i) =
P(Y t

1 ,St = i). This means summing up all paths of a sub-trellis with length t that
ends at state i. For example to calculate α4(1) we sum 8 paths shown in figure
2.8(a). In the other hand, Λ is defined by the equation (2.17). The value of Λ is
equal to the sum of the probabilities of those paths that ends at ith state at time τ and
have the specified bt . Figure 2.8(b) shows the paths for calculation of Λτ=4

i=1 (b2 = 0).
It should be remarked that the above discussion aims to give the concept of

decoding algorithms and to compare them theoretically. The implementation issue
is the other thing that should be considered separately which also depends on the
type of platform to be employed.

2.7 Time-varying Convolutional Codes

Convolutional codes can be extended to be time-varying in order to achieve pow-
erful codes with still tolerable complexity. Related issue in this context are LDPC
convolutional codes and quasi cyclic codes. This issues first introduced in [17] and
the class of quasi cyclic codes in [18, 19].

As a counterpart to equation 2.1, we may have a time-varying polynomial gen-
erator matrix G(t). A practical and realizable TVC code, however can be obtained
if the time variation repeats with a constant period T . Definition of TVC codes can
be best understood by the structure of its encoder. Figure 2.9 shows such an en-
coder with memory m and rate 1/2. The extra devices with respect to a CC encoder
are two multiplexers that give the feature of time-dependency to the encoder. At
each clock cycle the multiplexers receive clock signal ϕ that control their function.
They are reset every T clocks for a code with the period T .

26 Trellis and MAP Decoding

Figure 2.9: An instance of time-varying convolutional code

The order of rational polynomial of a TVC code with memory m is at most m
and thus can be denoted by m + 1 time-dependent coefficients: {h0(t), · · ·hm(t)}
each with dimension n× (n− k). The constraint at time t for input x(t) is:

xth0(t)+ xt−1h1(t)+ · · ·+ xt−mhm(t) = 0. (2.25)

Consequently the parity check matrix of a TVC codes that satisfies XH ′ = 0 is
generally as follows:

H ′ =



...
h0(t−m) · · · hm(t)

...
h0(t) · · · hm(t +m)

...


(2.26)

Since the coefficients have been assumed to be periodic, time variable in matrix
(2.26) are modulo T and a primitive block can be extracted so that the parity check
matrix is constructed based on.

P =


h′m(1) h′m−1(1) · · · h′0(1) 0 · · · 0

0 h′m(2) · · · h′1(2) h′0(2) · · · 0
...

...
0 0 h′m(T) · · · h′0(T)

 (2.27)

Paying attention to the size and structure of primitive matrix is essential in design
of a modular decoder, i.e. partitioning of decoder into identical sub-blocks. This

2.8 Trellis Representation of Block codes 27

Figure 2.10: The sub-trellis associated to four rows of extended Hamming (8,4)
generator matrix

issue is considered in design of analog decoder for a quasi cyclic code in section
5.3. Quasi cyclic codes are the systematic version of time-varying periodic LDPC
convolutional codes and are similarly defined by code memory and code period.

2.8 Trellis Representation of Block codes

The issue of representing a given block code by a trellis returns originally to a
paper in 1973 by Bahl, Cocke, Jelinek, and Raviv [15]. In this paper an important
connection between convolutional codes and block codes has been revealed. After
that there were lots of contribution to the problem targeted to create a better trellis.
Figure of merits for construction of a trellis is different in the papers, some of them
yield a trellis with minimum number of edges, other yield minimum number of
states, etc. The methods have been well covered by two tutorial papers [20] and
[21] and a recent thesis that covers the issues as well as construction of tail-biting
trellis [22] for a block code. We will give a simple example of trellis construction
now. We consider extended hamming (8,4) code defined by the following matrix.
Note that in this case the parity check matrix is equal to the generator matrix.

H = G =


1 1 1 1 0 0 0 0
0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1
0 1 1 0 0 0 1 1

 (2.28)

Following the method explained in [20], the procedure for trellis construction be-
gins with sub-trellis associated to each row in G. This corresponds to a (n,1)
sub-code. The sub-code corresponds to each row of the generator matrix G. The
sub-trellis associated to sub-code clearly has 2 states at most, because one input bit
can be sufficiently expressed by two states. The four sub-trellis associated to each
row of the G are depicted in figure 2.10. The next and important step is to merge
the sub-trellis to obtain the final trellis. To do this we need the concept of trellis
product. Any transition in a trellis can be characterized by three-tuple {Si,b,S j}
that defines a branch with the value b ∈ {0,1} emanates from Si and goes to S j.
The product of two such tuples is defined as follows:

{Si,b1,S j}×{Sm,b2,Sn}= {SiSm,b1⊕b2,S jSn} (2.29)

28 Trellis and MAP Decoding

Figure 2.11: Trellis diagram for (8,4) Hamming code

Figure 2.12: Tail-biting trellis diagram for (8,4) Hamming code

It is obvious that multiplication of two sub-trellis with state cardinality of two,
yields a trellis with state cardinality of four. In general with a generator matrix of
k rows, the upper bound for number of state will be 2k. For the above example we
obtain the figure 2.11.

In practice there is often need for a trellis with more regular shape such that
the state cardinalities at different sections of trellis don’t differ so much. Many re-
searchers worked on this problem by introducing tail-biting concept. In a tail-biting
trellis any path that starts and ends at the same point represents a valid codeword. In
general, a tail-biting trellis can reduce the maximum state cardinality to the square
root of the original conventional trellis. For example the Hamming (8,4) code have
a tail-biting trellis as in figure 2.12.

Given a trellis for a block code, all of the decoding methods described so far
are applicable to block codes. This provide an optimum decoding results and is
useful in digital or analog decoding schemes.

2.9 HMM and Decoding

Hidden Markov model (HMM) have been finding a nice tool for speech process-
ing. HMM provide a good model for representing temporal sequences of data,
what is often claimed for speech signals. At the same time, coding processes can
be regarded as a Markov chains, but the difference in notation may cause this con-
nection obscure. In the following we try to like up these important concepts. For
HMM we adopt the notation in the well-known tutorial by Rabiner [23].

HMM defined by two consecutive stochastic processes. The first process is the

2.9 HMM and Decoding 29

Figure 2.13: a Markov chain with four states

transitions between the states with different probabilities and the second process
is to release output(s) according to the probability distribution of the states. The
Markov property says that a current state of the model is affected by the previous
state. The state transition probability matrix A = {ai j} is used to define the first
process as:

ai j = P(qt+1 = S j|qt = Si) 1 ≤ i, j ≤ N, (2.30)

where N states is assumed for the model and the discrete variable qt is used to
show the state at time t. It is convenient to represent A graphically. For example
figure 2.13 shows a Markov chain with four states with state transition probability
mentioned on each edge. It is clear that in any case the standard constraints on the
probabilities hold:

ai j > 0,
N

∑
j=1

ai j = 1.

Beside the the transition matrix, we need a vector to define starting probabilities
of each state, that is:

πi = P(q1 = Si), 1 ≤ i ≤ N.

In addition for the second stochastic process that relates to observation from each
state, we may define a discrete or continuous density function. In general we can
write:

b j(y) = P(y|S j). (2.31)

To construct a direct relationship with coding process, the transitions between
encoder states can be considered as the first process of HMM and the effect of

30 Trellis and MAP Decoding

Figure 2.14: An instance of convolutional encoder and its relationship to HMM

channel on encoder output is considered as the second process. For instance, for
BSC we have a discrete density function while for AWGN we have a continuous
density function as the second process in HMM. There is still a small difference
between coding and HMM defined as above. In definition of HMM, we have firstly
a transition to a state and secondly an observation is obtained. On the other hand,
in coding we have an observation as soon as a transition takes place. So in order
to simulate HMM process in coding there is need to consider encoder input as a
part of state. Equivalently we may add a delay (or set of delays for multi-input
encoder) at encoder input and take the state as usual. Figure 2.14 represents this
modification for a simple encoder. The diagram for state transitions is the one has
been already shown in figure 2.13. Transition matrix in this case have values of
0.5 for all valid transition, providing that information source hase equiprobable 0
and 1. In other cases, say turbo iteration, these a priori values can change. So the
matrix A is:

A =


0.5 0 0.5 0
0.5 0 0.5 0
0 0.5 0 0.5
0 0.5 0 0.5

 .

For the observation we have to use the probability distribution of channel that is
trivial. Given such equivalent model, all of the algorithms in HMM context are
applicable to coding. Apart from the historical point of view there are not any
difference with what we are using in decoding context.

2.10 conclusions

This chapter has illustrated implicitly the importance of state as an intermediate
variable, in the structure of encoders and decoders. Different encoder realizations
for a given code is in fact a re-definition of state variables. Different decoding algo-
rithms, say BCJR, forward-only and HMM approach which have been considered,
are rooted in definition of state variables. The attention on this issue is crucial in
our study and is related to graph theory that will be considered in chapter 3.

Chapter 3

Graph and Sum Product
Algorithm

A graphical model is a family of probability distributions defined in terms of a
directed or undirected graph. The nodes in the graph are identified with random
variables, and joint probability distributions are defined by taking products over
functions defined on connected subsets of nodes. The graph provides an appeal-
ing visual representation of a joint probability distribution, but it also provides a
great deal more. By exploiting the graph-theoretic representation, the formalism
provides general algorithms for computing marginal and conditional probabilities
of interest. Moreover, the formalism provides control over the computational com-
plexity associated with these operations.[24]

Historically, exploiting graphs to define codes and decoding returns science the
invention of low-density parity-check (LDPC) codes of Gallager [25]. Gallager
also invented what today is called the sum-product algorithm for a posteriori prob-
ability (APP) decoding. Some years later, Tanner [26] founded the general study
of codes defined on graphs, introduced generalized constraints, and proved the op-
timality of the sum-product and min-sum algorithms for decoding codes defined
on cycle-free graphs. MacKay [27] was the first one who employed the concept
of Bayesian network and belief propagation into coding theory. Modern interest
in this subject ushered in with the work of Wiberg, Loeliger, and Koetter [28, 29],
who rediscovered Tanner’s results and introduced states into Tanner graphs, thus
allowing connections to trellises and to turbo codes. Connections to Bayesian net-
works and Markov random processes were then recognized [30, 31]. Later Forney
took the original definition of factor graph and applied some modifications to allow
direct connection of function nodes. He called this new graph normal graph [32].

When the messages in a graph are conditional probabilities, the sum-product
algorithm takes the name of belief propagation (or more naturally probability prop-
agation). Belief propagation algorithm has close relationship with Bays’s rule and
Markov chain. In fact the Bayes graphs were used by Pearl’s works since 1988 to
represent Bayes formula graphically.

32 Graph and Sum Product Algorithm

Figure 3.1: Construction of Tanner graph from parity check matrix

Given any parity check matrix, H for a linear block code, its one-to-one equiv-
alent Tanner graph can be drawn by the following straight-forward procedure. As-
sume the code is a [n,k] ensemble and therefore H is a n× (n− k) matrix. The
graph contains two types of node1 , variable node2 and check node3. we draw n
variable nodes associated with every column of H and n−k check node associated
with every row of H. Then we draw an edge for every non-zero element in H that
connects the corresponding variable node and check node. Figure 3.1 illustrates
the procedure for a Hamming code.

3.1 Probability Conventions in graphs

Before starting the algorithm of belief propagation, we deals herein with the quan-
tity of belief in a graph. Basically they are conditional probabilities such as p(b|observation)
were b is a single bit and observation is the information obtained from channel (di-
rectly or indirectly) for one or several received symbol(s). For simplicity we define:

π(b|observation)
4
= P(b = 0|observation) (3.1)

It may be computationally advantageous to use another quantity, say likelihood
ratio defined as:

λ(b|O) =
π(b|O)

1−π(b|O)
(3.2)

1called also vertex
2called also symbol node
3called also function node or constrain node

3.2 Probability propagation at Graph’s Nodes 33

Another possibility is likelihood difference defined as:

δ(b|O) = 2π(b|O)−1 (3.3)

Finally the log likelihood ratio (LLR) which is more interesting in BP algorithm is
defined as:

Λ(b|O) = ln
π(b|O)

1−π(b|O)
(3.4)

The inverse of LLR is then:

π(b|O) =
eΛ(b|O)

1+ eΛ(b|O) (3.5)

3.2 Probability propagation at Graph’s Nodes

Before the expressing of BF algorithm, two following basic questions should be
answered. Herein the random processes are assumed to be statistically indepen-
dent.

First question: given π(b1|y1) and π(b2|y1), what is π(b1⊕b2|y1,y2)?

π(b1⊕b2|y1,y2) = P(b1 = 0,b2 = 0∪b1 = 1,b2 = 1|y1,y2)
= P(b1 = 0,b2 = 0|y1,y2)+P(b1 = 1,b2 = 1|y1,y2)
= π(b1|y1)π(b2|y2)+ [1−π(b1|y1)][1−π(b2|y2)] (3.6)

We can write expression 3.6 more compactly based on LLR as follows. From 3.5
and the identity relation tanh(x/2) = (ex−1)/(ex +1) we obtain:

π(b|O) =
1+ tanh(Λ/2)

2
(3.7)

Applying 3.7 into 3.6 yeild the result:

tanh
(

1
2

Λ(b1⊕b2|y1,y2)
)

= tanh
(

1
2

Λ(b1|y1)
)

tanh
(

1
2

Λ(b2|y2)
)

. (3.8)

Hagenauer [33] introduced the compact notation � for this operation and called it
boxplus.

Λ(b1⊕b2|y1,y2)
4
= Λ(b1|y1)�Λ(b2|y2) (3.9)

By induction one can generalize the above relationship for more than two operands.
One can simply verify that the following properties hold in boxplus operation.

Λ(b)�∞ = Λ(b) Λ(b)� (−∞) =−Λ(b) Λ(b)�0 = 0 (3.10)

34 Graph and Sum Product Algorithm

A useful approximation to 3.8 is by replacing tanh by min operator.

Λ1 �Λ2 ≈ sign(Λ1)sign(Λ1)min(|Λ1| , |Λ2|) (3.11)

where for the simplicity the indexes are replaced for the argument in LLR func-
tions. The sign of LLR of a bit is regarded as the hard decision of the bit and its
absolute value is regarded as the certainty of the bit.

Second question: Given extrinsic information Pex(b|y1) and Pex(b|y2), what is
π(b|y1,y2)? The emphasis on extrinsic implies that it is a pure channel information
and no a priori information is delivered by it. It is important because we don’t
want to take into account the a priori π(b) several times. By definition the extrinsic
probability is thus:

Pex(b|y) =
p(y|b)

p(y|b = 0)+ p(y|b = 1)
(3.12)

Answer to this question is a basic Baye’s problem and can be written as:

π(b|y1,y2) =
p(y1,y2|b = 0)π(b)

p(y1,y2)

=
p(y1|b = 0)p(y2|b = 0)π(b)

p(y1|b = 0)p(y2|b = 0)π(b)+ p(y1|b = 1)p(y2|b = 1)(1−π(b))

Using the extrinsic probability definition of 3.12 and replacing for p(y1|b) and
p(y2|b) yield:

π(b|y1,y2) =
πex(b|y1)πex(b|y2)π(b)

πex(b|y1)πex(b|y2)π(b)+(1−πex(b|y1))(1−πex(b|y2))(1−π(b))
(3.13)

Note that π(b) is the a priori information of the bit b and is only used when it is
applicable, such as turbo decoding. This equation takes much simple shape when
is expressed based on LLR. Applying 3.5 yields:

Λ(b|y1,y2) = Λ(b|y1)+Λ(b|y2)+Λ(b) (3.14)

More interestingly, the extrinsic channel LLR, Λ(b|y), is proportional to y which is
desirable for its simple implementation in a decoder. To see that, we consider two
special cases of BSC and Gaussian channels. Assume pe as crossover probability
in BSC and assume a BPSK modulation, then:

Λ(b|y) = ln
πex(b|y)

1−πex(b|y)

= ln
p(y|b = 0)
p(y|b = 1)

=

{
ln 1−pe

pe
y = +1

ln pe
1−pe

y =−1

=
(

ln
1− pe

pe

)
y (3.15)

3.3 Belief Propagation Algorithm 35

The approach for AWGN channels is similar except for incorporating normal dis-
tribution of Gaussian noise into the calculation.

Λ(b|y) = ln
πex(b|y)

1−πex(b|y)

= ln
p(y|b = 0)
p(y|b = 1)

= ln
exp(− 1

2σ2
n
(y−αE)2)

exp(− 1
2σ2

n
(y+αE)2)

=
(

2αE
σ2

n

)
y (3.16)

where α denotes the fading coefficient for a fading channel and is set to one for
AWGN channels. We have assumed that the signal is observed at the receiver’s
filter output where E denotes the magnitude of this signal at the sampling time.
Also σ2

n is noise variance at the filter output. Assumption of using matched filter in
receiver and ideal sampling time, maximize the ratio in equation (3.16). Under this
assumptions, E becomes Es, the energy of the transmitted pulse4, and the value of
σ2

n becomes N0
2 ,the power spectrum of noise in the channel 5.

The factor of y in both BSC and AWGN channels is a function of channel and
reflects the reliability of channel under consideration and will be shown herein with
Kc.

3.3 Belief Propagation Algorithm

After the previous introductory sections, we are preparing to define the exchange of
extrinsic information for which the concept of belief propagation will be emerged.
we start with Tanner graph but some of the other graphical conventions will be
discussed later. According to equations 3.9 and 3.14, there are only two type of
operations in BP algorithm that leads to a bipartite graph with two type of nodes,
function node and variable node. First, we will consider the binary graph where
all messages are related to a binary variable. Other graph with non-binary variable
i.e. trellis diagram of a code will be considered in the next chapter.

To better demonstrate the BP algorithm, we start by figure 3.2(a) where the
process in a variable node is illustrated. Assume that LLR is chosen arbitrary for
the message in this graph. The outgoing message from x7 node is the LLR for this
bit given other information received from the channel. These information include
our direct observation of the bit, x7, as well as two other ones which are depicted by
two incoming arrows in x7 node. By applying equation 3.14 and arbitrary ignoring
π(b) we have:

Λ(b7|x7,group1,group2) = Λ(b7|x7)+Λ(b7|group1)+Λ(b7|group2)
4with a unity factor to normalize the dimension
5This is the direct results of Wiener-Kinchine theorem and ergodicity of Gaussian process.

36 Graph and Sum Product Algorithm

Figure 3.2: Illustration of message passing algorithm on a graph, variable-to-
function message (a) and function-to-variable message (b)

Clearly, this process augments the certainty of b7 by incorporating other informa-
tion in addition to x7 itself. group1 and group2 are used to simplify the notation
and they are stand for x1 ⊕ x3 ⊕ x5 and x2 ⊕ x3 ⊕ x6 respectively. sometimes we
may emphasis on the message direction. In such cases the above calculation is
recognized as a variable-to-function (V2F) message. The second and last process
in Tanner graph is calculation of messages in reverse direction, i.e. function-to-
variable (F2V) message. Refer to figure 3.2(b), the outgoing message from the
function node is defined and calculated as follows:

Λ(b1⊕b3⊕b5|x1,x3,x5) = Λ(b1|x1)�Λ(b3|x3)�Λ(b5|x5)

where we use the equation 3.9 extended for three inputs.
Knowing the calculation of V2F and F2V messages, the belief propagation

algorithm is briefly defined as recursive calculation of these messages in a graph.

3.4 Other graphical representations

After Tanner who treated the codes and decodings by his bipartite graphs [26], a
group in ISIT’97 including Tanner, generalized the concept and introduced factor
graph [34]. The main idea behind this generalization was a graphical model for
coding (and beyond as well) by applying them to arbitrary functions. Almost at the
same time Forney who was also in the group, introduced normal graph in a separate
paper [32]. Fortunately all of the abovementioned graphical models differ only in
their appearance at least when applied to coding theory. In order to better illustrate
these different representations, we give some examples for them, supporting by
their equivalent Tanner graph.

3.4 Other graphical representations 37

Figure 3.3: Procedure to convert a Bayes net to a factor graph

Figure 3.4: Baye’s net fo Hamming (7,4) code

We first introduce Bayes net which is the oldest one, had been exploiting for
BP algorithm. Figure 3.3(a) is an example of such graph. Note that it is a directed
graph for which we can simply recognize the parent variable(s) and the child vari-
able(s) at any point. For example in this figure B and E are parents of A where J
and M are childes of A. Given a Bayes graph one can obtain corresponding factor
graph easily. For doing this we create function node for each variable and simply
copy the variable nodes. Then connect function node to its variable node and to the
parent variable node(s). Finally associate a conditional probability to each variable
node. This procedure results in a undirected graph as illustrated in figure 3.3(b).

As an another example, the hamming code depicted in figure 3.1 has the fol-
lowing constraints:

x1 = x3⊕ x5⊕ x7, x2 = x3⊕ x6⊕ x7, x4 = x5⊕ x6⊕ x7,

using these constraints, the global function can be factorized as follows:

P(x1, . . .x7) = P(x1|x3,x5,x7)P(x2|x3,x6,x7)
P(x3)P(x4|x5,x6,x7)P(x5)P(x6)P(x7), (3.17)

and its corresponding Baye’s graph is shown in figure 3.4
Another popular graph is Factor Graph (FG) and like before contains two type

of nodes, function node and variable node. Wiberg [] developed this definition by
introducing an extra node to graph, named state node. The definition of Wiberg

38 Graph and Sum Product Algorithm

my3 = ∑
y1,y2

g(y1,y2,y3)my1my2

Figure 3.5: Messages in Normal graph

extents the application of graph to trellis and forward-backward algorithm, state
space model, etc. On the other hand Forney preferred to made a modification to
Wiberg graph and he called it Normal Graph (NG). In NG there is only the function
node and the edges handles the variables in a graph. There are two possibilities:
First, the observed variables are shown as half edge. Second, other variables are
states and are shown as full edges. According to Forney this is a new representation
in the filed of graph, but is well known in system theory and resembles the block
diagram representation. Another effect of NG definition is the nominal difference
in message passing algorithm. In NG there are only one equation for evaluation of
messages as illustrated in figure 3.5. Although it seems to be more simple using
NG, but the complexity of actual algorithm dose not change. For example in de-
coding process there are need for two function nodes: soft xor gate and soft equal
gate (� and =). The first node is a boxplus node and the second node lends the
equation of variable node. Thus we have once again the known message passing
algorithm in our graph.

Figure 3.6 shows the Tanner graph in figure 3.1 and its equivalent normal graph.

3.5 Optimality of BP Algorithm

Each iteration of belief propagation can be thought of as an operator F that inputs
a list of messages m(t) and outputs a list of messages m(t + 1) = F

(
m(t)

)
. Thus

belief propagation can be thought of as an iterative way of finding a solution to
the fixed point equations m∞ = F(m∞) . McEliece et al. [35] have shown a simple
example for which F contains multiple fixed points and belief propagation finds
only one. They also showed a simple example where a fixed-point exists but the
iterations do not converge. So belief propagation will obviously not work for ar-
bitrary networks and distributions. However when nodes in a graph are described
by jointly Gaussian random variables, there are sufficient conditions for the con-
vergence of BP algorithm that yields the correct posteriori [36].

3.6 Scheduling the Messages in BP Algorithm 39

Figure 3.6: An instance of a factor graph and its equivalent normal graph

3.6 Scheduling the Messages in BP Algorithm

In the previous sections we considered the calculation of the messages in graph.
But the details on ordering the messages and initialization was not given. This
issue is considered under the title of scheduling. Several scheduling method have
been devised since now, say Flooding, Probabilistic vertical and Horizontal shuffle,
etc. [37]. For circuit speed consideration and the analog implementation that uses a
parallel structure, flooding schedule is a good choice for simulation. In this sched-
ule, once a new message is generated, it is then passed to its destination and once
the result on an edge changes, a new message is generated on that edge. If multiple
messages are generated at the same time on the graph, then they are all passed out
at the same time. Also, the flooding schedule is a simple message passing schedule
for simulation software since there is no order to the update [38]. Nevertheless in
a real analog decoder there is no clock and this issue is not applicable any more.

3.7 Decoding of Tailbiting Convolutional Codes on Graphs

This section proposes a general method to develop Tanner graphs from tail-biting
convolutional codes (CC). Recursive Systematic Convolutional (RSC) and non-
RSC codes are considered consistently and it leads to a unique graph applicable for
decoding of both RSC and non-RSC codes. In addition the graphical representation
is extended to derive the condition for which the tail-biting termination is valid.
Later in chapter 5 the graph will be realized by exploiting the analog decoding
scheme and MOS transistors and simulation results will be provided.

Although it has been mentioned that decoding on trellis results in optimal so-

40 Graph and Sum Product Algorithm

Figure 3.7: A method that incorporates systematic information into the codeword
to obtain a graph with desired nodes.

lution, the complexity of the required circuit becomes prohibitive for large infor-
mation vector length and/or high code complexity. In fact trellis representation
introduces 2m states where m is the number of delay elements in the associated
minimal encoder. Handling of this non-binary variable demands a complex real-
ization. In addition, if we change m, the design of circuit changes.

In contrast to trellis representation, this section concerns definition and decod-
ing of tailbiting CC by bipartite binary graph (c.f. 3.3) and sum-product algorithm.
As we saw earlier in such graphs there are only two simple operations of sum and
boxplus. Such versatile binary graph are suitable for analog realization. We also
consider tailbiting convolutional codes which is again suitable for our propose due
to the inherent feedback in its graph.

3.7.1 Non-systematic tailbiting Convolutional Codes

In a feed-forward encoder, state at any time is a function of several recent informa-
tion bit(s) and thus it is easy to obtain a tail-biting code by loading the encoder’s
registers with appropriate last information bits. This simple operation however
introduces a latency equivalent to one frame of information.

The strategy to obtain the graph is simple in this case as outlined in Figure
(3.7). We force the generator matrix to be systematic by incorporating the sys-
tematic information into the codeword. So the encoder output stream consists of
information bits as well as the parity bits. But the information bits are not sent
and they are actually discarded in the transmitter (this can be regarded as a system-
atic puncturing). At destination, we have a decoder with systematic input. Since
the information bits are not sent, systematic inputs are initialized to null values at
receiver input (e.g. zero in log-likelihood domain). Assume a non-systematic en-
coder defined by the k×n matrix G. Including information bits results in the larger
systematic generator and parity matrices of GS = [Ik|G] and HS = [H|In] respec-
tively. This approach makes the final parity check matrix preserve the form of the
code. More importantly, the extrinsic values for information bits can now be ob-
tained from the decoder. The later advantage is essential in a turbo decoder. Using
HS one can draw a graph to show the code graphically and to perform decoding
on it. We postpone this issue upon to the next subsection, when the encoders with
feedback have been considered.

3.7 Decoding of Tailbiting Convolutional Codes on Graphs 41

Figure 3.8: Controller canonical realization of recursive encoder

3.7.2 Encoder with Feedback

The encoders with feedback are commonly used for RSC codes. Generation of
tailbiting RSC codes is more difficult than non-RSC codes because the last state of
the encoder is a function of entire information vector. Solution to this problem is
based on the state space equations of the encoder [39]. State space equations de-
pend on the encoder structure. Among varieties of structures, the controller canon-
ical form is more desirable for our work. This encoder diagram and its connection
to observable canonical form has been illustrated in figure 2.4. A general controller
canonical encoder diagram depicted again in figure 3.8 for convenience. Such min-
imal realization has the maximum redundancy for the elements of the state vector
because except for the first state, all other ones perform only a shift right at each
clock cycle and their contents don’t change. The state space equations can be easily
written by direct inspection or using equation 2.3.

xn+1 = Axn +Bun (3.18)

where

A =


g1 · · · gm−1 gm

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 B =


1
0
...
0

 (3.19)

In A elements gi are related to the polynomial gF(D) = g1 +g2D + · · ·+gmDm−1,
and characteristic function of the encoder:

gD(D) = 1+g1D +g2D2 + · · ·+gmDm. (3.20)

Applying the constraint that the final state equals the initial state yields the
following answer: (

AN + Im
)
x0 = x{zs}

N (3.21)

42 Graph and Sum Product Algorithm

where N is the length of information vector, Im is identity matrix of size m, x0 is
the initial state to be calculated and x{zs}

N is the zero-state response of the encoder.
Accordingly the coding procedure to obtain a tailbiting systematic code from

recursive encoder is as follows:

1. Apply information vector to the encoder with zero initial state. The final
state will be x{zs}

N .

2. Calculate x0 from equation (3.21).

3. Run the encoder with x0 as initial state and take the encoder output which is
a tail-biting code

Recall that equation (3.21) may have no solution for some particular N and A.
In such case a tail-biting code does not exist. We will return to this problem more
accurately in the next subsection.

3.7.3 Algebraic properties of tailbiting RSC and non-RSC codes

In this subsection we will discuss the subtle relation between tailbiting non-RSC
and RSC codes which leads to a unique graph for both codes.

First, consider the recursive encoder in figure (3.8) and recall the equality at
the sum (xor) output:

un + xn +g1xn−1 + · · ·+gmxn−m = 0 (3.22)

Second, define X to be a vector of length N defined as follows:

X = (x−m · · ·x0x1 · · ·xN−m−1) (3.23)

Note that each m-tuple of adjacent elements in X is a state of encoder. For
example (x−m · · ·x−1) is the initial state, (x−m+1 · · ·x0) is the state after first clock
pulse and so on. Definition of X in 3.23 implicitly implies the concept of tailbiting
because the vector is truncated at xN−m−1 after which the initial state of encoder
will be generated. The properties of X can be best demonstrated by figure (3.9).
Equation (3.22) hold for every m adjacent nodes in this figure. In addition we can
conclude that X is cyclic, i.e. choosing an arbitrary starting point, we will return to
it after N clocks. This property may be formulated as follows:

X [i](D)≡ D iX(D) (mod 1+DN) (3.24)

where X(D) is polynomial representation of (3.23) and [i] denotes i-times circular
right shift. Using equations (3.22) and (3.24) we can obtain a useful relationship
for tail-biting RSC codes:

gD(D)X(D)≡ Dmu(D) (mod 1+DN) (3.25)

3.7 Decoding of Tailbiting Convolutional Codes on Graphs 43

Figure 3.9: A global state vector comprised of local state vectors

where gD(D) is defined in (3.20) and u(D) is a polynomial made up by the entire
information vector of length N. From equation (3.25) we find that for an arbitrary
u(D), the existence of X(D) depends on the existence of multiplicative inverse of
gD(D). From the theories of finite field this inverse exists if and only if gD(D) is
prime to (1+DN).

A similar equation for the encoder’s output yn can be written as follows:

y(D)≡ gN(D)X(D) (mod 1+DN) (3.26)

Equations (3.25) and (3.26) completely define the encoder’s systematic and
parity outputs respectively. These equation may be combined into a single polyno-
mial generator matrix form:

u(D)
(

1 gN(D)
gD(D)

)
≡ X(D)

(
D−mgD(D) gN(D)

)
(mod 1+DN) (3.27)

In order to show the relationship between the encoder with and without feed-
back, one can writes a similar equations for the equivalent feedforward encoder.
Assume an encoder with polynomials gD(D) and gN(D) that generate its first and
second outputs respectively. Then we have:

(
y{1}(D) y{2}(D)

)
≡ u(D)

(
gD(D) gN(D)

)
(mod 1+DN) (3.28)

44 Graph and Sum Product Algorithm

Figure 3.10: Two different connectivities for a unique decoder applicable to RSC
and non-RSC tail-biting equivalent codes

Left side of equation (3.27) are the systematic and parity output of feedback
encoder. Equivalently the left side of (3.28) gives two non-systematic outputs of
feedforward encoder. Comparison the right sides of these equation reveals that
X(D) in feedback encoder plays the same rule as u(D) in feedforward encoder.
The result is unique block for two family codes as depicted in figure (3.10). Given
a network dedicated for decoding of RSC codes as in figure (3.10)(a), one can em-
ploy it to decode non-RSC codes by exchanging u and X outputs (figure (3.10)(b)).

3.7.4 Binary Graph for Tailbiting Convolutional Codes

We can draw a graph from a parity check matrix and thus we rewrite the polynomial
equations in matrix form to obtain the equivalent parity check matrix:(

IN | GD
)(U

X

)
= 0 (3.29)

(
IN | GN

)(Y
X

)
= 0 (3.30)

where U and Y have length N and are comprised of entire information and output
bits respectively. GD is an N ×N matrix comprised of the coefficients of gD(D)
as a row vector in diagonal and zero elsewhere. Similarly GN is constructed form
gN(D) in this way.

We may eliminate X between equations (3.29) and (3.30), but the result will be
a non-sparse matrix without a regular arrange of “one”. Instead keeping X yields
a sparse matrix (for large N). More importantly by keeping X the resulting graph
is applicable for non-RSC codes as well as mentioned earlier. Thus we capture our
graph according to the following parity check matrix:(

IN 0 GD

0 IN GN

)U
Y
X

= 0 (3.31)

3.8 conclusions 45

Figure 3.11: A fatal loop due to initial null values of variable nodes that need
transformation to resolve the problem

Cycles in Graphs and Fatal Loop

Iterative decoding algorithms don’t often converge to the optimal solution, but in
a graph with adequate girth (minimum length of the cycles), the solution is com-
pletely acceptable. The challenging issue is that a graph is not unique for a given
code and a better graph leads to a better result. The cycles in graph are more impor-
tant in our case because a part of input values are initially zero. Figure 3.11 shows
a fatal loop for which sum-product algorithm fails. The hidden nodes initially have
null values (i.e. probability of 0.5). The received information from channel has
nontrivial values and could update these values. But the nontrivial values combine
with trivial ones in function nodes and yield again a trivial value.

Fortunately, we can easily sort it out owing to regular structure of the parity-
check matrices. For example assume UMTS constituent code with generator poly-
nomial of (13,15)oct. The graph can be drawn according to equation(3.31), but
it contains fatal loops. On the other hand the linear transformation of adding two
rows of parity check matrix resolves the problem. A part of this graph is depicted in
figure (3.12). Another graph depicted in figure (3.13) is for the codes (1, 1+D2

1+D+D2).
This graph is used in chapter 5 as case study for further simulations.

3.8 conclusions

The concept of iterative decoding on a graph has been discussed intuitively. It
was shown that various labels and structures introduced in this context have no
any serious difference with each others. A new global state vector was defined
that leaded to a unified approach for decoding of taibiting convolutional codes.
Application of this approach to the graph theory yielded interesting graph with low
complexity suitable for analog realizations.

46 Graph and Sum Product Algorithm

Figure 3.12: A part of binary graph of (13,15)oct tailbiting CC

Figure 3.13: Binary graphs of recursive (7,5)oct tail-biting CC (N = 8).

Chapter 4

Analog decoding systems

The goal of analog decoding systems is to find a way to use an analog integrated
circuit to solve the equations obtained by the decoding process. This chapter will
provide some basic information about the analog implementation of decoding sys-
tems.

4.1 An introduction to analog decoding

Long before digital processors were invented, scientists had the vision to compute
with analog electronic circuits, to build analog systems that could make calcula-
tions with high precision. Let us consider a complex analog circuit with lots of
inputs to which we connect constant current or voltage sources. If the circuit is not
unstable, it will converge to a stable state. When this steady state has been reached
we can measure the voltage of each node or the current of each branch. In other
word the circuit has solved a set of nonlinear equations. These equations are deter-
mined by the circuit topology and inputs. In this approach the measured currents
and voltages represent the unknown parameters of the equations. The time needed
for solving this set of nonlinear equations is the settling time of the circuit. The
main problem is to find a circuit topology that leads to a set of equations similar to
those obtained by the decoding process covered by previous chapter.

4.1.1 Motivations for analog decoding

There are a lot of interests in developing the analog decoders:

Power consumption: The decoding algorithms developed by the previous chap-
ters are normally implemented by digital circuits like DSP or FPGA. The
power consumption of these circuits is very high. A digital number of N
bits needs N wires to be transmitted along the circuits. The ADC circuits
are needed to interface the channel and the processor. On the other hand,
analog circuits require much less power than digital processors, and they can

48 Analog decoding systems

manage numbers as analog voltages and currents using only one wire. The
consuming ADC will be replaced with simple sample-and-hold circuits.

Speed: The digital implementation of decoders require a clock based process.
Thousands of clock pulses are necessary to decode a single block of data.
Also ADC is often a slow device that affects the total speed of the decoding
algorithm. In the analog counterparts, The time needed for the solution is the
converging time of the circuit, and the ADC is omitted. At the same time,
because of the small circuit a very large scale parallelism is possible.

Surface: An analog decoder requires much less transistors than an FPGA or mi-
croprocessor. Depending on the desired calculation power of a processor
some millions of transistors are needed, while an analog decoder require
some hundreds to some thousands of transistors depending on the decoder
complexity and parallelism degree.

It is important to note that there is a kind of compromising between these ad-
vantages, for example we achieve better speed at the cost of more parallelism in-
ducing bigger circuit and more power consumption. However, analog network de-
coding confirms to have better combined power/speed performance than its digital
counterparts (see for example [40] and the references inside).

4.1.2 History of analog decoding

The field of analog iterative decoders began with simultaneous proposals by Hage-
nauer and Loeliger following a suggestion by Wiberg [29]. These authors proposed
using non-linear analog circuits to implement decoding operations [41, 42]. Since
1998, much effort has been spent towards turning these ideas into working chips.
The first fully functional analog decoder of this type was built in 1998 by Lusten-
berger using discrete transistors [3]. Lustenberger then designed and manufactured
first, a decoder for a four-state tail biting (18,9,5) convolutional code and later, a
decoder for a (44,22,8) low density code, both in 0.8 µm BiCMOS technology,
although both of them suffered some practical defects [43, 44]. Mörz et al. demon-
strated a perfectly working decoder for a two state (16,8,3) tail-biting convolutional
code in 0.25 µm BiCMOS technology [7].

Analog iterative decoders then emerged as a means of implementing Turbo
codes and LDPC codes. The standard Viterbi algorithm is insufficient for these
codes, because the decoder output is binary (i.e. hard information). A more com-
plex algorithm, known as BCJR [45], is required for Turbo codes. The output of a
BCJR decoder is soft, allowing it to be exchanged with a network of decoders for
multiple rounds of decoding.

In 2001, Kschischang, Loeliger and Frey consolidated the theory of soft-information
algorithms, including BCJR [34]. These algorithms were shown to be instances of
a general algorithm, called the sum-product algorithm, which is described in terms

4.2 Theoretical Aspects of Analog Decoding 49

of “factor graph”. It was further shown by Loeliger and Lustenberger that a large
class of factor graphs could be mapped to analog circuits [42].

In 2003, Gaudet presented an analog decoder with a programmable interleaver
for a (48,16) turbo code [8]. Winstead reported a decoder for a (16,11) Hamming
code, as well as a decoder for a (16,11) product code in his thesis [46]. Recently,
a successful implementation of a chip for decoding a (132,40) turbo code (accord-
ing to the UMTS standard) was reported [5]. A more detailed history of analog
decoders is given in [40] and [46].

4.2 Theoretical Aspects of Analog Decoding

In this section we are about to discuss the principal aspects leading to the analog
approach for the error control decoding systems. we will start our study by a brief
description of MOS transistor under the subthreshold region, then we will follow
the section by introducing basic concepts of analog decoding systems such as LLR
and boxplus operator. Finally we will introduce our circuitry for realizing analog
decoders.

4.2.1 Subthreshold conduction

As we will see in the following sub sections, an analog decoder is made of transis-
tors. For proper operation of the circuit, it is necessary that the transistors follow
an exponential characteristics. According to basic electronic texts, BJT1 transis-
tors are devices with such characteristics. The problem with a BJT is that it has
a non-negligible base current which will result in finite input resistance and there-
fore voltage drop over the input stage. Furthermore, a BJT transistor is much more
expensive than a MOS transistor, because it needs more technological operations
[47].

In analyzing CMOS devices, it is sometimes assumed that the device turns
off abruptly as gate-source voltage VGS drops below the threshold voltage VT h. In
reality, for VGS ≈Vth a weak inversion layer still exists and some current flows from
drain to source. Even for VGS < Vth, drain-source current ID exists and it exhibits
an exponential dependency on VGS. Called subthreshold conduction, this effect can
be formulated for VDS greater than roughly 200 mV as [48]:

ID = Is e
VGS
ζVT (4.1)

In this equation Is denotes the transport saturation current, ζ > 1 is a nonideality
factor and VT = kT/q that is about 26mV in ambient temperature. We also say that
the device operates in weak inversion. Equation 4.1 is similar to the exponential
IC−VBE relationship in a bipolar transistor.

Working under the subthreshold condition results in decreased transistor speed
[49] [50]. As a result one can decide to increase the decoder speed at the cost

1Bipolar Junctional Transistor

50 Analog decoding systems

of approaching or even entering the square root region of the MOS transistor. In
this case the circuit speed increases, but on the other hand, the power consumption
of the circuit will increase. As the MOS approaches the edge of the subthreshold
region, bit error rate will increase slightly.

4.2.2 LLR and Boxplus operator

Refering to chapter 3, the marginal function implemented by function node in the
decoding systems are of type of GF(2) sum (or binary XOR) operation. A function
node gets the probability of all of its adjacent variable nodes but one, it assumes
that the GF(2) sum of all of its neighbors must be 0, it calculates the extrinsic
probability of its remaining member to be 0 or 1, and it passes this value to its re-
maining neighbor. Therefore, the basic operation of analog decoders is to calculate
the probability of a statistical variable to be 0 or 1.

In analog decoding we do not send separate messages for a variable probability
to be 0 or one. Instead a term Log-Likelihood Ratio LLR is used. Let us consider
X to be a binary random variable which can take the values 0 or 1. The LLR value
of X is noted L(X) and is equal to:

L(X) = ln
PX(x = 0)
PX(x = 1)

(4.2)

It is simple to derive the following equations from equation 4.2 by noticing that
PX(x = 0)+PX(x = 1) = 1:

PX(x = 0) =
1

1+ e−L(X) (4.3)

PX(x = 1) =
e−L(X)

1+ e−L(X) (4.4)

We use the isomorphism 0 ↔ +1 and 1 ↔ −1. The expectation of the binary
random variable X is defined as:

E[X] = λ(X) = (+1)PX(x = +1)+(−1)PX(x =−1)

=
1− e−L(X)

1+ e−L(X) = tanh
L(X)

2
(4.5)

This expectation is referred to as the “soft bit” denoted by λ(X) has a range of
−1 to +1. Now let us consider three statistical variables U1, U2, and U3. We will
assume that U1 and U2 are two independent binary variables and U3 = U2 ⊕U1,
with ⊕ the GF(2) sum . Note that this is the marginal function used by decoders
based on sum product algorithm. We can derive an expression for L(U3), the LLR
value of U3. Figure 4.1 shows that the numeric value of U3 can be written as a real
multiplication of U1 and U2. In fact in λ-domain, XOR can be written as a real
multiplication because of the multiplication of the expectations:

λ(U3) = λ(U1) ·λ(U2) (4.6)

4.2 Theoretical Aspects of Analog Decoding 51

Figure 4.1: Binary XOR gate

Figure 4.2: Conversion from Log-likelihoods into probabilities and vice versa

Using Equation 4.5 in Equation 4.6 we can derive :

L(U3) = 2tanh−1
[

tanh
(

L(U1)
2

)
· tanh

(
L(U1)

2

)]
= L(U1)�L(U2) (4.7)

Here, � denotes the Boxplus operator which is an abbreviation of the function im-
plied by equation 4.7 [33]. The operation is also called soft XOR gate by Loeliger
[51].

4.2.3 Boxplus elementary circuit

In the previous sub section we have introduced the boxplus operator. this operator
is the main building block of each analog decoder. In this section we will introduce
the first and simplest circuit to realize this function using analog devices.

First of all let us study a differential amplifier using bipolar transistors. Such a
circuit is shown in figure 4.2 (left hand side). We know that the collector current
IC is given by equation 4.1. One can easily calculate the output currents I0 and I1
as follows:

I0 = I
1

1+ e−
∆V
VT

(4.8)

52 Analog decoding systems

Figure 4.3: Simple boxplus circuit

I1 = I
e−

∆V
VT

1+ e−
∆V
VT

(4.9)

Where ∆V is differential input voltage and I = I0 + I1. By comparing these equa-
tions with Equations 4.3 and 4.4 one can instantly find that I0/I and I1/I correspond
to PX(x = 0) and PX(x = 1) respectively. Furthermore, ∆V/VT equals L(X). The
differential output current ∆I = I0− I1 can be expressed from equations 4.8 and 4.9
as:

∆I = I0− I1 = I tanh
(

∆V
2VT

)
(4.10)

Again we can easily find the similarity between equation 4.10 and 4.5 by replacing
∆I/I by λ(X). We can say that the circuit on the left hand side of Figure 4.2
converts the LLR value of a binary random variable to the probabilities of 0 and 1.
Generally in the analog decoding systems we interpret the differential voltages as
LLR’s and the currents as probabilities.

The circuit on the right hand side of Figure 4.2 performs the inverse transforma-
tion from probabilities (currents) into a log-likelihood ratio (differential voltage).

Now we will turn our attention to realization of the boxplus operator. Let us
analyze the circuit in Figure 4.3. Because the lower stage of the circuit is identical
to the left hand side circuit of Figure 4.2, we can calculate the currents I0 and I1
from equations 4.8 and 4.9 just by replacing ∆V by ∆V1. Note that the upper stage
circuit contains two of such circuits, one with I0 and other with I1 as common (tail)

4.2 Theoretical Aspects of Analog Decoding 53

currents. So we can write:

I0,0 = I0
1

1+ e−
∆V2
VT

= I

(
1

1+ e−
∆V1
VT

)(
1

1+ e−
∆V2
VT

)
(4.11)

I0,1 = I0
e−

∆V2
VT

1+ e−
∆V2
VT

= I

(
1

1+ e−
∆V1
VT

) e−
∆V2
VT

1+ e−
∆V2
VT

 (4.12)

I1,0 = I1
1

1+ e−
∆V2
VT

= I

 e−
∆V1
VT

1+ e−
∆V1
VT

(1

1+ e−
∆V2
VT

)
(4.13)

I1,1 = I1
e−

∆V2
VT

1+ e−
∆V2
VT

= I

 e−
∆V1
VT

1+ e−
∆V1
VT

 e−
∆V2
VT

1+ e−
∆V2
VT

 (4.14)

Looking at Figure 4.3 we see that Iz0 = I0,0 + I1,1 and Iz1 = I1,0 + I0,1, therefore we
can calculate Iz0 and Iz1:

Iz0 = I0,0 + I1,1

= I
1+ e−

∆V1+∆V2
VT(

1+ e−
∆V1
VT

)(
1+ e−

∆V2
VT

) (4.15)

Iz1 = I0,1 + I1,0

= I
e−

∆V1
VT + e−

∆V2
VT(

1+ e−
∆V1
VT

)(
1+ e−

∆V2
VT

) (4.16)

The upper stage of the circuit is a probability-to-LLR converter, or current-to-

54 Analog decoding systems

voltage converter with the following equation:

∆V3 = VT ln(
Iz0

Iz1
)

= VT ln(
1+ e−

∆V1+∆V2
VT

e−
∆V1
VT + e−

∆V2
VT

)

=⇒ V3

VT
= ln(

1+ e−
∆V1+∆V2

VT

e−
∆V1
VT + e−

∆V2
VT

) (4.17)

A set of simple but long algebraic operations leads to the point that Equations 4.17
and 4.7 are identical. So the circuit in figure 4.3 is a realization for the boxplus
operator as far as 4.1 is valid.

4.2.4 Boxplus circuit in our design

The boxplus circuit that was implemented in our design was the same circuit as
the one in figure 4.3 with some modifications. The bipolar transistors are replaced
by the MOS transistor to reduce power consumption of the circuit. The circuit is
shown in figure 4.4. The differential input LLRs are applied to the Vx,0 and Vx,1 for
U1 and Vy,0 and Vy,1 for U2. The value of V ddd is chosen as to ensure Iz = 10nA
to ensure that all of the transistors will stay in subthreshold zone, thus the MOS
transistors have an exponential behavior and the circuit behaves like the circuit
shown in Figure 4.3. Vn input is used to drive output common mode voltage to the
level required by the transistors of next stage.

4.3 Realizing different building blocks

In this section we will explain the step by step approach followed to design different
building blocs of our analog decoder. The technology in use is 0.35 µA CMOS.
The approach discussed here is mainly from [38]. This also include the size of
transistors in our preliminarily design. In section 5.5 the sizes become optimized
in favor of getting a better performance (also c.f. to figure 5.20 that the tight result
is due to the optimized dimensions for the transistors.)

4.3.1 Modularity

Another category of blocks for realizing analog decoders are adders. This adders
are used in the variable nodes where the product of all adjacent function nodes are
summed up to form the output message of these nodes. The adder circuit is much
like a boxplus element. In fact we can realize an LLR adder just as we do for
a boxplus element with some small changes in the manner in which we connect
different blocs. Figure 4.5 shows this property. In order to obtain more modularity
we have divided the box plus circuit into two parts [38]:

4.3 Realizing different building blocks 55

Figure 4.4: Box plus circuit using the MOS transistors

56 Analog decoding systems

Figure 4.5: Realization of Boxplus and summing circuits

4.3 Realizing different building blocks 57

Figure 4.6: The Boxplus circuit schematic in CADENCE

Figure 4.7: Product22 block as a part of Boxplus cell

Product22: This block is a classical multiplier, however in our application full
range of signal is used for the required nonlinear characteristic.

Norm2: This block will normalize the outputs of the product22 block so that the
output voltages of the block meet the common mode levels required by the
next stages, and the output currents does not derive next stage transistors out
of the subthreshold region.

4.3.2 Boxplus circuit in CADENCE

During this project, we have used the package CADENCE to design and simulate
different blocks. The boxplus circuit implementation is shown in figures 4.6, 4.7
and 4.8. This circuit has been simulated to assure that it follows equation (4.7).
The obtained results are shown in figures 4.9, 4.10 and 4.11. As we can see,
the theoretical and simulated characteristics are proportional with a proportionality
constant that will be calculated later.2 This constant is ζVT in equation 4.1.

2See section4.3.6

58 Analog decoding systems

Figure 4.8: Norm2 block as a part of Boxplus cell

Figure 4.9: Characteristic curve of ideal Boxplus by equation 4.7

4.3 Realizing different building blocks 59

Figure 4.10: Characteristic curve of Boxplus by simulation of figure 4.6

60 Analog decoding systems

Figure 4.11: Three dimensional view of characteristic curve of the Boxplus simu-
lation

4.3.3 Creating Three input function node

As shown in Figure 4.12, a three input box plus is comprised of 3 independent
Boxplus circuits. This block will send to each of its ports the boxplus result of
its two other ports. Figure 4.13 shows the design circuit in CADENCE. Note that
this block is a three input function node, it takes the messages (differential voltages
meaning LLR’s) from two of its ports, and send the result as an LLR value (differ-
ential voltage) to its remaining input. Each port is defined by 4 wires, two pair of
differential voltages, one of which serves as an input to the circuit while the other
one sends out the output. This is because there are messages passing in two sides,
from and to the circuit, while a line cannot act as an input and output at the same
time.

4.3 Realizing different building blocks 61

Figure 4.12: Three input boxplus

Figure 4.13: Schema of three-input boxplus element

62 Analog decoding systems

Figure 4.14: Four-input function node by using tree-input function node

4.3.4 Creating four-input function nodes

From Equation 4.7 it is easy to derive third order LLR operation:

(L(U1)�L(U2))�L(U3) = L(U1)� (L(U2)�L(U3))
= L(U1)�L(U2)�L(U3) (4.18)

As a result we can use three blocks of three-input boxplus to form a four-input
buxplus or function node as shown in 4.14. Following the same method we can
make function nodes with 5 and more inputs.

4.3.5 Creating variable nodes

A variable node is simply a number of adders. It passes to each of its ports the
sum of the values passed by its other ports. A variable node, like a function node,
has four lines to interface with external blocks. One pair of differential inputs, and
one pair of differential outputs. In the decoding applications we can characterize a
variable node by:

Outi = ∑
j 6=i

In j (4.19)

The one-input, two-input and three-input variable nodes are shown in the figures
4.15, 4.16 and 4.17 respectively. In Figure 4.15, the PI input is LLR at the output
of the channel. I1 is the dynamic input, which is the message that comes from
adjacent function node. The O output is the dynamic output that goes to the adja-
cent function node. For the case where there is only one input, it simply reflects
the channel information. Finally, FO is the final output which is the sum of the dy-
namic input and the channel information. The norm2 block assures that the channel
information meet the circuit requirements. In Figure 4.16, the O1 dynamic output
is the sum of I2 dynamic input and PI, the channel information. Of the same way

4.3 Realizing different building blocks 63

Figure 4.15: One-input variable node

Figure 4.16: Two-input variable node

64 Analog decoding systems

Figure 4.17: Three-input variable node

the O2 output is the I1 input plus channel information. FO will be used as the final
decision criteria and is the sum of all dynamic inputs plus the channel information.
We can generalize these circuits to obtain variable nodes with more ports.

4.3.6 Other elements and blocks

In this section we will introduce some circuit interfacing facilities that induce more
simplicity as well as designing some necessary blocks to realizable the decoder.

Using Bus in schematic

All of the inputs and outputs used in the circuits are differential. At the same
time, all of the connections between a function node and a variable node are bi-
directional, which means that a pair of wires is necessary for each direction. Thus
every edges in a factor graph need four wires to be implemented, very soon the
circuit will be covered by wires which makes the debugging very difficult if not
impossible.

CADENCE makes it possible to use buses or wide wires to represent a number
of wires called narrow wire. We have changed the interface between the circuits
from wires to buses containing each one four wires. In this way the schematics are
much more understandable and they look like the original factor graph.

Connecting the channel to the circuit

In this subsection we will interface the output of a noisy AWGN channel to our
circuit. We know that the output of channel is a random variable whose expectation
is +1 or −1 depending on transmitted bit and whose variance is σ2

n = N0/2. The

4.3 Realizing different building blocks 65

Figure 4.18: Circuitry to determine ζVT

Figure 4.19: Determining the factor ζVT by linear regression

circuit’s input needs to be the LLR value multiplied by ζVT . Let us calculate the
LLR value of the random variable X at the output of an AWGN channel in terms
of N0. Using the equations of Gaussian noise probability density function and
equation 4.2 we can write:

L(X) = ln
(

p(x = 1)
p(x =−1)

)
=

1√
2πσ2

n
e
− (x−1)2

2σ2n

1√
2πσ2

n
e
− (x+1)2

2σ2n

= ln(e
x

σ2n) =
2x
σ2

n
=

4x
N0

(4.20)

Equation 4.20 shows that knowing the one-sided power spectral density N0, we
can easily convert the channel output to the LLR value. We use the circuit in figure
4.18 to measure the factor ζVT . The resulting curve is shown in figure 4.19. As
we can see in this figure, the circuit operates quit linear in a wide range of LLR
values, and the proportionality constant ζVT is about 34 mV in our case.

66 Analog decoding systems

Figure 4.20: Level shifter circuit

Level shifter

The amplifiers of the two stages in the boxplus circuit need different common mode
voltages. Some designers [38] have provided their norm2 block with two different
set of outputs, the first one being suitable for the lower transistors and the second
for the upper ones. The user will choose between these outputs, and selects the
appropriate output according to the needs of the next block.

We have chosen another approach by adding a level shifter in the input of our
product22 circuit to shift the input voltage level up to the level required by transis-
tors. The level shifter block is shown in figure 4.20.

4.4 conclusions

It has been shown that a subtle change in a Gilbert’s multiplier can easily realizes
the necessary blocks in a graph providing that they are regarded as large signal
circuits. In such approach, log-likelihood ratio (LLR) is represented by differential
voltage and probability is represented by current in the circuit. Finally it is shown
that given the primitive blocks, say third-order function and variable nodes, we can
develop more complex nodes for realization of any given graph. This issue was
discussed based on our approach in Cadence.

Chapter 5

Case Study and Simulations

In the previous chapter we have constructed different building blocks needed to
implement analog decoders. In this chapter we will explore to design and simulate
real decoders and verify the efficiency of our analog decoders.

5.1 Extended Hamming (8,4) decoder

As the first approach to analog decoding we have decided to implement a simple
decoder, with a limited number of nodes and a straightforward theory. The (8,4)
extended Hamming code has chosen for this propose. The corresponding Tanner
graph is shown in figure 5.1.

5.1.1 Realizing extended Hamming (8,4) code

We can use our building blocks design in the previous chapter to implement the
factor graph shown in Figure 5.1. As we can see in this figure we need the following
blocks to realize the Tanner graph of extended Hamming (8,4) decoder:

• Four-input function nodes (f1- f4)

• One-input variable nodes (x1, x5)

• Two-input variable nodes (x2, x4, x6, x8)

• Three-input variable nodes (x3,x7)

• Eight inputs to inject channel LLR values to the circuit.

• Eight outputs to display a posterior LLR values

Figure 5.2 shows the schematic designed in CADENCE for this decoder.

68 Case Study and Simulations

Figure 5.1: Tanner graph of (8,4) extended Hamming code

Figure 5.2: Hamming (8,4) decoder in CADENCE

5.1.2 Results of simulations

DC mode simulations

We have simulated the circuit with SPECTRE in DC mode to verify the schematic
diagram and to test that the circuit does converge to the desired codeword. We
know that each row of the parity-check matrix is a valid codeword, so we have
injected the a prior probabilities according to one of the codewords and made sure
that the a posterior probabilities converge to the selected codeword.

After assuring about the schematic, the next step was to verify that the Ham-
ming code dose correct a single error. According to table 5.1 we have selected a
codeword, changed one of the bits, and simulated the circuit in DC mode and ob-
served that the error has been corrected. The input voltage of±75mV in our design
corresponds to a certainty of 90%.

Transient mode analysis

It is interesting to perform a transient simulation and to see how the circuit reacts
to a corrupted channel value. We have replaced the DC voltage sources by step
voltage sources. In this case we have entered the invalid word "11111000" in lieu
of valid codeword "11110000". The simulation result is depicted in figure 5.3. We
can see that after about 5µs the decoder starts to correct the error (fifth bit) and after

5.2 Tail biting (7,5) convolutional decoder 69

Bit Selected Erred Input Output Hard
word word voltage(mV) voltage(mV) decision

1 0 0 +74.7 +233 0
2 0 0 +74.7 +181 0
3 1 1 -74.7 -218 1
4 1 0 +74.7 -115 1
5 0 0 +74.7 +226 0
6 1 1 -74.7 -190 1
7 1 1 -74.7 -138 1
8 0 0 +74.7 +194 0

Table 5.1: DC simulation results for extended Hamming decoder

25µs the outputs represent the expected valid codeword. In addition, before the
fifth output converges to its correct level, the other outputs settled down to a lower
voltages with respect to their final values. At about t ≈ 25µs a second transient
starts just when the fifth output polarity has changed. This make the other outputs
to reach to a higher level of voltages. So we may argue that the inherent (nonlinear)
feedback of the analog decoder circuit is destructive for invalid codewords and
constructive for valid codewords.

5.2 Tail biting (7,5) convolutional decoder

Now we will turn our attention to the analog implementation of the tailbiting con-
volutional (7,5) code considered earlier in section 3.7 and represented by the graph
in figure 3.13. The graph is repeated in figure 5.4 for convenience. Convolutional
codes may be employed for coding of a large sequence of information bits. As a
result the factor graph of such a code will be a very huge network and impossible
to be implemented by analog circuits. Here the information sequence of size 8 is
selected, thus the coded message will be of length 16. The result is a (16,8,5) code.

5.2.1 Circuit representation

We have considered the graph in figure 5.4 and designed the necessary CMOS
circuit. The decoder is highly modular comprised of eight identical branches. Re-
alization details of the branch is drawn in figure 5.5. For each branch there are
two function nodes of order three, two variable nodes of order three (for x and y
nodes) and a simple leaf node (for u). The complete decoder is realized hierarchi-
cally by simply replication of this branch as depicted in figure 5.6. As stated in
section 3.7, this graph can decode RSC and non-RSC codes. We have run the sim-
ulations for RSC and non-RSC codes and we obtained exactly the similar results.
It was demonstrated in figure 3.10 that decoding of two family codes differs only

70 Case Study and Simulations

Figure 5.3: An instance of transient response of (8,4) extended Hamming code

Figure 5.4: Graph representation of (7,5) tail-biting convolutional code for a frame
length of eight

5.2 Tail biting (7,5) convolutional decoder 71

Figure 5.5: One branch of analog implementation of the (16,8,5) decoder

in input-output connectivities. Consequently, both of connectivities shows a sim-
ilar performance because all node voltages of the graph either converge to a valid
codeword or not and difference in labeling of nodes have no effect on the circuit.

Consider the graph in figure 5.4. For RSC code, u nodes are designated for
systematic bits and y nodes for parities while the outputs are taken from u nodes.
On the other hand for non-RSC code, u and y nodes are used for two parities while
the outputs are taken from x nodes. In both cases the nodes x leave with zero input
LLR.

Complete decoder consists of 16 differential inputs and 8 differential outputs.
The decoder input signal was built off-line from a randomly generated stream of
several thousands of information vectors. The encoded information bits were then
corrupted by an AWGN source and scaled by the calculated proportionality con-
stant ζVT and then stored in a file. SPECTRE uses this file as stimulus to perform
a nearly realistic BER estimation.

5.2.2 Transient responce

The circuit transient response is given by figures 5.7 in which a large time scale
is selected to better represent the convergence trend. On the other hand figure 5.8
shows the details of this figure using a small time scale. Figure 5.8 shows that the
erroneous fifth bit is detected after 2µs and the decoder started to correct it so that
after 7µs it can be decoded correctly.

72 Case Study and Simulations

Figure 5.6: The analog (16,8,5) decoder

Figure 5.7: An example of transient response of the convolutional decoder

5.2 Tail biting (7,5) convolutional decoder 73

Figure 5.8: A portion of the transient response shown in figure 5.7

5.2.3 Decoder performance

We have used a stimulus input file in SPECTRE to analyze the bit error rate of our
system. 16 bits are given to the decoder in parallel and after a fixed time, 8 decoder
outputs are sampled and saved in an output file. Post processing of the output
file is then performed to obtain the BER of the decoder. A short dead zone with
zero voltages after each input allows decoder to be reset. This period discharges
the parasite capacitors and lets the decoder to start from zero initial conditions for
each information vector. The result is depicted in figure 5.9 for which a reference
(tail) current of 10 nA has been assumed. Other curve obtained by classical BP
methods are also included for comparison. Two curves follow each other tightly
that demonstrates a reasonable good design. As we have mentioned, the decoder
outputs are sampled after a fixed period. One important question is that how this
time affect on the performance. Obviously a short sampling period degrades the
performance because the decoder have a delay (but not constant) before settled
down to a valid codeword. On the other hand a long sampling period sacrifices
throughput and is not desirable. In order to show this effect and to compromise
between them we have plotted the BER versus the sample time in figure 5.10.
As we can see the BER remains almost constant after 30µs. Knowing that every
codeword has 16 bits, we achieve a throughput of more than 500 kbit/sec. The
parallel structure of decoder make it possible to increase this rate by increasing
data frame length in exchange for more complexity.

74 Case Study and Simulations

−6 −4 −2 0 2 4
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

Analog Decoder
Belief Propagation

Figure 5.9: Decoder BER performance by circuit level simulation

Figure 5.10: Effect of symbol time on the decoder performance

5.3 LDPC Quasi Cyclic Decoder 75

5.3 LDPC Quasi Cyclic Decoder

Tanner et al. have developed an algorithm for obtaining quasi cyclic convolutional
codes using the circulant matrices [18]. Their approach provide a systematic al-
gorithm for LDPC code construction and further to obtain LDPC convolutional
codes. Here we review the gist of their algorithm and select a small code for our
analog realization.

Given a prime m, the multiplicative order of nonzero element a modulo m is
denoted by Om(a) and is defined as the smallest positive integer k so that:

ak ≡ 1 (mod m) (5.1)

The nonzero elements of GF(m)= {0,1, · · · ,m− 1} form a cyclic multiplicartive
group. Given two nonzero elements a and b from GF(m) with multiplicative orders
Om(a) = k and Om(b) = j, a j× k matrix with element in GF(m) can be formed as
follows:

P =


1 a a2 · · · ak−1

b ab a2b · · · ak−1b
· · · · · · · · · · · · · · ·

b j−1 ab j−1 a2b j−1 · · · ak−1b j−1

 (5.2)

A Quasi Cyclic (QC) parity check matrix H is made of a j× k array of circulant
sub-matrices as:

H =


I1 Ia Ia2 · · · Iak−1

Ib Iab Ia2b · · · Iak−1b
· · · · · · · · · · · · · · ·

Ib j−1 Iab j−1 Ia2b j−1 · · · Iak−1b j−1

 (5.3)

where Ix is an m×m identity matrix with rows cyclically shifted to left by x−1 po-
sitions. The resulting binary parity-check matrix is of size jm× km, which means
the associated code has a rate R = 1− j

k . However the rate may be greater than
this value due to linear dependence among the rows of H. By construction, every
column of H contains j ones and every row contains k ones, and so H represents
a (j,k) regular LDPC code. The codes constructed using this technique are quasi-
cyclic with period k, i.e. cyclically shifting a codeword by k position results in
another codeword. Some examples of LDPC quasi-cyclic codes constructed in this
manner from a prime m are shown in table 5.2.

We have selected one of these codes for implementing in analog domain. For
m = 7, a = 2 and b = 6 chosen from GF(7), then O7(a) = 3, O7(b) = 2, and the
parity-check matrix is:

H =
(

I1 I2 I4
I6 I5 I3

)
14×21

(5.4)

Replacing Ix in Equation 5.4 by 7×7 identity matrix shifted x−1 positions to left,

76 Case Study and Simulations

Block length Parameters Design rate Actual rate Circulant size
N j k Rd R m
21 2 3 1/3 = 0.3333 0.3809 7
129 2 3 1/3 = 0.3333 0.3411 43
155 3 5 2/5 = 0.4000 0.4129 31
186 5 6 1/6 = 0.1667 0.1882 31
1477 3 7 4/7 = 0.5714 0.5727 211
3641 5 11 6/11 = 0.5454 0.5465 331

Table 5.2: Examples of codes constructed from prime circulant sizes

we obtain the following matrix.

H =



1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0


14×21

(5.5)

The resulting Tanner graph has girth1 twelve and is shown in figure 5.11. The
associated code which is a (21,7) code, has minimum distance dmin = 6 and is a
regular LDPC code. The best (21,8) linear code has dmin = 8. Another code, near
to this characteristic, is extended Golay code (24,12) with dmin = 8. We can see
that the graph has a repetitive structure. If the columns are regarded as blocks, two
sort of inter-column connections are recognizable. The first category concerns the
memory of the code while the second category related to cyclic properties of the
code. In the graph depicted in figure 5.11 it is not easy to recognize them owing
to short code length. We redraw this graph in figure 5.12 with increased code
length to better show the inter-column connections. This figure contains only the
connection related to code memory (i.e. those function nodes that are connected
to the variable nodes in different column or time step). In this case a maximum
memory 6 is obvious (e.g. f1 – v14)

Here, like our graph in figure 5.4 we are willing to have a modular structure, so
that decoder expansion for larger codeword become easily possible by appending

1Girth is a term indicating the size of the smallest loop in the H

5.3 LDPC Quasi Cyclic Decoder 77

Figure 5.11: Tanner graph for a (21,8,6) QC code

Figure 5.12: Extended version of the graph in figure 5.11 that exhibits inter-column
connections

extra blocks. Toward this aim, we relabel the node in figure 5.11 in a suitable
manner, so that the neighbor nodes arrange in a column. The results in the graph
in figure 5.13 that corresponds to the following parity check matrix:

H =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0


14×21

(5.6)

In the following, we will see that this subtle modification, leads to a modular hier-
archical structure for the decoder.

78 Case Study and Simulations

Figure 5.13: Tanner graph for the (21,8,6) QC code corresponding to matrix 5.6

Obtaining systematic full-rank code

In general, for a given H one can find many generator matrices that satisfy the code
constraints. For H matrix in (5.6) we are interested in systematic code. To do this
we will proceed using the method explained below.

First note that the matrix (5.6) is of rank 13, i.e. there is one parity-check equa-
tion that is linearly depended to the other equations. It means that one of the parity
bits added to the information bits can be replaced by an independent information
bit. So the actual rate will be 8

21 = 0.3809 instead of 7
21 = 0.3333.

1. Eliminate the last row of H in 5.6. It can be easily verified that the resulting
matrix H13×21 has still rank 13.

2. Divide H13×21 in two parts H1 and H2 : (H13×21) =
(
H113×8 | H213×13

)
3. Write the parity-check equation for a received codeword, considering that

the first 8 bits are information bits and the last 13 bits are parity bits:

H · x =
(
H113×8 | H213×13

)
·



u1
...

u8

v1
...

v13


= H1 ·U +H2 ·V = 0

U and V denoting information bits and parity bits respectively.

4. Solve the above equation for V that is V = H−1
2 ×H1 ·U

5. The systematic generator matrix Gsys is the matrix used to code information
bits into codewords. It can be written as Gsys =

(
I8×8 | (H−1

2 ×H1)T
)

5.3 LDPC Quasi Cyclic Decoder 79

6. The Gsys matrix will be used to encode the information bits. When transmit-
ted, codewords can be decoded using the same graph represented in figures
5.13.

Note that matrix H in (5.6) is not an standard systematic parity-check matrix, how-
ever, it is simple to verify that HGT

syst = 0, i.e. data coded by Gsyst can be decoded
by this H that corresponds to the Tanner graph in figure 5.13.

5.3.1 Circuit representation

We can see that the Tanner graph in figure 5.13 is periodic with identical columns.
Each column contains two function nodes and three variable nodes. All variable
nodes have two adjacent function nodes and each of function nodes has three neigh-
boring variable nodes. We have encapsulated one column in a distinct block to
achieve better modularity for the decoder. The designed column block is shown in
details in figures 5.14 and as a single block in figure 5.15. Inter-column connec-
tions are made possible by the in/out pins in this block.

Figure 5.15 shows the symbol view of the column, the upper pins are provided
to inject the channel information into the circuit. The left pins are provided to
establish the connections to the neighbor function nodes. The pins on right will
be used to connect the circuit to the neighboring variable nodes. The bottom pins
of the circuit are used to output the final LLRs. Seven blocks of shown in figure
5.15 can be merged to form a block of eight bits decoder as shown in figure 5.16.
This schematic corresponds to the Tanner graph in figure 5.11. One advantage of
this design is that it can be used for different message lengths. If the information
message contains n bytes, the decoder will contain n such blocks, which are con-
nected in series. Each block is connected to the next block, and the last block is
connected to the first one. This configuration for the case of n = 1 and n = 2 are
shown in figures 5.17 and 5.18 respectively. These codes all have the same rate and
performance.

5.3.2 Transient response

The code in figure 5.17 has been simulated here. 21 channel LLRs are given to the
circuit using the 21 voltages sources indicated on the top the figure. The waveform
of these voltage sources are provided in text files. The final LLRs can be obtained
from the voltage of 21 outputs at the bottom of the figure. Only the first 8 bits, cor-
responding to the information bits in our case. An instance of a transient response
of the decoder is given in figure 5.19. The time axis in this figure is represented in
logarithmic scale to allow a better visualization of the voltage variations. Thicker
lines are the erroneous bits. These bits are corrected later by the decoder due to in-
teraction with other parity bits. We can see that the circuit overall speed is roughly
ten microseconds. Time needed for decoder to settle down depends on noise level
and transistor current. We will consider this issue later in this chapter.

80 Case Study and Simulations

Figure 5.14: CADENCE schematic to realize one column of graph in figure 5.13.
The input line are singlr ended while outputs are differential. Four-line bus con-
nections are shown by the notation: <4:1>

5.3 LDPC Quasi Cyclic Decoder 81

Figure 5.15: CADENCE symbol that encapsulates the schematic in figure 5.14 into
a single block

Figure 5.16: A block of LDPC decoder according to the graph in figure 5.13. Filled
and empty circuls are used to better show the inter block connections (see figures
5.17 and 5.18)

82 Case Study and Simulations

Figure 5.17: Top level hierarchy of the schematic digram for realization of the
graph in figure 5.13

Figure 5.18: Doubling the code length by cascading an extra block

5.3 LDPC Quasi Cyclic Decoder 83

10
−2

10
−1

10
0

10
1

10
2

−100

−50

0

50

100

150

Time (µsec)

V
o

lt
ag

e
(m

V
)

2

1

6

7

5

8

4

3

Figure 5.19: QC code transient response

5.3.3 Code performance

The BER analysis is done in three phases:

1. Data generation(MATLAB): In this phase, MATLAB generates a sequence
of random bits, then it encodes the sequence and generates 21 sequence of
codewords. Noise with desired levels is then added, and the values are scaled
to the input requirement of circuit. The resulting waveforms are saved into
ASCII files, each file storing the waveform of one bit of codewords (21 files
here).

2. Simulation(SPECTRE): In this phase circuit is simulated in CADENCE
environment. The software reads 21 ASCII files, and associates each file
with an independent voltage source. Simulation can take several hours de-
pending on the number of bits in the sequence. When simulation is finished,
the 8 final voltages corresponding to the 8 a posteriori LLR values of infor-
mation bits are stored in an ASCII text file.

3. Post processing(MATLAB): The file generated during second phase is read
by MATLAB and compared to the original information sequence. The num-
ber of bit changes between decoder output and original sequence (i.e. num-
ber of errors) is counted and the BER is calculated.

Figure 5.20 shows BER curve for (21,8,6) QC code. The figure also contains the
results obtained by belief propagation algorithm. Two curves are very close in this
figure that justifies the analog decoder performance. It must be mentioned that we
are not obtained such perfect result in our previous simulation of tailbiting (7,5)

84 Case Study and Simulations

−4 −3 −2 −1 0 1 2 3 4
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

Sum−product Algorithm
Analog Circuit

Figure 5.20: BER performance of the QC LDPC

CC. depicted in figure 5.9. The reason is a supplementary optimization step that
was only applied to QC decoder. The aim of optimization step is to design good
function and variable nodes by modification of design parameters on an ad hoc
basis. The next section gives more details on this issue.

5.4 Optimization

The circuit presented so far is a prototype to ensure proper operation of analog
decoders. There is a large variety of parameters that a designer can change in order
to improve performance of the decoder. In this section we are going to introduce
some of these parameters and analyze the way that these parameters can affect
the performance of analog decoders. Both internal parameters (e.g. W

L , reference
voltages,...) and external parameters (e.g. input voltage levels, symbol time,..) are
considered.

5.5 Transistor’s Aspect Ratio

Analog decoder are made of primitives such as the product cell in figure 5.21. This
simple circuit along with Norm circuit provides the necessary hyperbolic function
for operation of analog decoder. Any deviation from the ideal characteristic can
degrades the overall performance of decoding. We have found that one important
source of error is the lack of good symmetry between two differential inputs in

5.6 Reference Current 85

Figure 5.21: Product22 circuit schematic with optimized transistor size as are men-
tioned in table 5.3

Reference current T3,. . . ,T6 T1,T2
Ire f W (µm) L (µm) W (µm) L (µm)

10 nA 1.7 2.1 3.1 3.9
100 nA 1.7 2.1 3.1 3.9

1 µA 2.1 2.1 4 3.9

Table 5.3: W and L of transistors for different reference currents

Boxplus. In the other words, the cell output must be the same whether the inputs
are applied to Vx and Vy or Vy and Vx.

We have changed W/L using trial and error method to get a symmetric hyper-
bolic tangent curve. Optimal W/L depends on the choice of reference current. We
have used the currents of 10 nA, 100 nA, and 1 µA as reference currents in the cell
and we obtained the results shown in table 5.3.

5.6 Reference Current

We have stated in section 4.2.1 that the reference current affects the circuit speed
and performance, however we did not specify how do speed and performance
change in responding to different reference currents. Figure 5.22 shows BER of
tailbiting (7,5) decoder versus sampling time for different signal to noise ratios.
we can see that smaller values of reference current result in less errors in detection
(even for Eb/N0 = 4dB the performance of Ire f = 10 nA is better than Ire f = 100
nA, if sampling time is later than 100 µs). We can see that BER is slightly different
for Ire f = 10 nA and Ire f = 100 nA, but much worse for Ire f = 1 µA. The response
is almost immediate for Ire f = 1 µA, about 5 µs for Ire f = 100 nA, and roughly 40
µs for Ire f = 10 nA.

The choice for the Ire f depends on design requirements, however for a usual
application we can say that as for Ire f = 100 nA we gain one order of magnitude in
speed and do not lose significantly in BER compared to Ire f = 10 nA.

86 Case Study and Simulations

0 10 20 30 40 50 60 70 80
10

−2

10
−1

10
0

E
b
/N

0
 = 2 dB

B
E

R
10 nA
100 nA
1000 nA

0 10 20 30 40 50 60 70 80
10

−2

10
−1

10
0

E
b
/N

0
 = 3 dB

B
E

R

10 nA
100 nA
1000 nA

0 10 20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 = 4 dB

Time (µsec)

B
E

R

10 nA
100 nA
1000 nA

Figure 5.22: Circuit speed and performance for different currents and Eb
N0

5.7 Symbol Rate 87

5.7 Symbol Rate

As we can see on figure 5.22 that the later we make our decision on the decoded
bits, the lower BER we have. However the BER tends to a constant value when
sampling time tends to infinity. On the other hand, if we use smaller sampling
times, we gain on the speed, and consequently the amount of information transmit-
ted by the channel. It is logic to let the sampling time equal to the value for which
the BER arrives its final value ±5%, i.e. about 2 µs for Ire f = 1 µA, about 10 µs for
Ire f = 100 nA and about 80 µs for Ire f = 10 nA.

5.8 Input average magnitude

In section 4.3.6 we saw that the theoretical proportionality constant between nor-
malized channel output (±1) and voltages at the circuit inputs was:

V = ζVT L(Y) =
4ζVT

N0
y = kcy (5.7)

where y is channel output. This equation does not account for the transistor satura-
tion and noise figure. According to equation 5.7, for large signal to noise ratios, the
output of channel must be amplified before being injected into the circuit. How-
ever, in order to prevent transistor saturation, input voltages should not be very
large. On the other hand, equation 5.7 indicated that for small values of SNR,
channel outputs must be attenuated before giving to analog decoder. But very
small voltages cannot invoke any significant reaction in the circuit. The question is
that how the optimum average input level varies around the theoretical value V

kcy .
We have simulated the decoder response to a fixed input sequence for different

channel SNRs. Figure 5.23 shows the results. In this figure, the horizontal axis is
the average input level normalized to its theoretical value. We can see that for large
SNRs the optimum input level tends to decrease from its theoretical value while for
small SNRs it tends to increase from its theoretical value. However, for the signal
to noise ratios examined in this repport the optimum average input varies slightly
around theoretical value.

5.9 Operating Temperature

We know that the temperature may cause an effect on a circuit performance and
degrades performance. In order to anticipate this effect, the earlier BER simulation
was repeated for two extra limiting temperatures. Note that this type of simulation
does not incorporate the sophisticated effects such as thermal gradients in IC die
that also need appropriate model for transistors. As a result the following simple
simulation may be far from a realistic situation. Nevertheless for such a low-power
application, one might argue that the self-heating in the decoder circuit is negligible
and it does not affect the overall performance substantially.

88 Case Study and Simulations

0.1 1 10
0

0.02

0.04

0.06

0.08

0.1

0.12

y /K
c

B
E

R

E
b
/N

0
=2dB

E
b
/N

0
=3dB

E
b
/N

0
=4dB

Figure 5.23: Effect of input average magnitude on the performance

We have simulated our analog decoder by a fixed information sequence on
different ambient temperatures (T = 15◦ C, T = 27◦ C, T = 40◦ C). Figure 5.24
shows the results. In figure 5.24, we can see that the temperature does not affect
the circuit performance significantly. The reason is that analog decoder finally
converge to a saturated (and stable) state. The temperature may have, and has,
an effect on the intermediate (transient) behavior of the response, but it has not a
significant effect on the final values.

5.10 conclusion

Several decoders have been considered and implemented by analog approach. For-
tunately, in all cases we had promising results that validate the approach. For the
graph proposed in section 3.7, we have a tight accordance of BER result with the
corresponding theoretical curve. Monitoring the convergence of decoder circuit
shows that a latency of about 30 µS is sufficient for reliable decoding of input vec-
tor at the condition of Eb/N0 = 4dB. This is obtained for reference (tail) current of
only 10 nA in the cells.

A quasi cyclic code is also studied by its decoder implementation. For this
decoder an ultimate modularity has been obtained during relabeling of nodes in its
graph.

Mismatch is an important issue in analog decoder and has been considered by
many authors. Instead of giving a complex formula based on tolerances of design
parameters, we have faced this issue rather differently . Here the asymmetry of
basic cell due to systematic and non-systematic defects has been recognized as the

5.10 conclusion 89

−4 −3 −2 −1 0 1 2 3
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
T=15°C
T=27°C
T=40°C

Figure 5.24: Temperature effect on circuit performance

−0.45 −0.445 −0.44 −0.435 −0.43 −0.425

10
−1

E
b
/N

0
 (dB)

B
E

R

T=15°C
T=27°C
T=40°C

Figure 5.25: Magnified version of figure 5.24

90 Case Study and Simulations

main source of performance degradation in a decoder. Systematic defects refer to
the design issue in a circuit that leads to (anticipated) imperfections. In our case,
for example, the body effect of MOS transistors is a source of systematic defect
while transistor’s mismatch falls in non-systematic defect category. Controlling the
asymmetry in the basic cell yield decoders that response very close with respect to
the theory.

Chapter 6

Fast Viterbi Decoder in Analog
CMOS

The implementation of Viterbi algorithm (VA) to obtain high throughput has been
always of great interest due to its application in convolutional decoders, trellis
code demodulation, turbo-codes, etc. Many digital architectures, adapted to FPGA
or digital VLSI circuits, have been proposed to improve the bit rate [52, 53, 54].
Recently, the higher throughput with less power consumption seems to be possible
using analog VLSI circuit [55, 56, 57, 41]. The idea is to replace the digital add-
compare-select (ACS) with its analog equivalent. Implementation of ACS which
is the kernel of digital realization of the algorithm is still challenging because its
effect on overall speed and power consumption of decoder.

Besides, several ideas have been proposed for conditioning of analog signals,
for example, finding the maximum (minimum) of two or more currents(voltages)
[58]. It is possible to employ these ideas for realization of VA. The advantages are
omitting analog to digital converter, saving quantization error as well as a better
speed/ power trade-off. Current mode circuits are often preferred because summa-
tion of two signal is equivalent to tying their corresponding wires. Nevertheless
replicating a current needs current mirror. New MOS technology features very
short channel length and hence good speed. On the other hand effect of channel
modulation makes them far from being a good current source. The situation is
still worse in p-channel MOS assuming a typical n-Well process. So care must be
applied in the design of such circuits.

In this work two Winner-Take-All (WTA) circuits are combined so that it can
realize the principal part of VA. The output current of a WTA is the maximum of
its input currents. A subtle change in standard VA is done to adapt the real circuit
requirements.

92 Fast Viterbi Decoder in Analog CMOS

Figure 6.1: A part of trellis for generator [1,(1+D+D2)/(1+D2)]

6.1 ML Decoding of Convolutional Codes

Briefly, using some tail bits, a convolutional encoder can be considered as a block
code where a sequence of k information bits is transformed to a new sequence of
length n using a finite state machine with NS states. The coded sequence ct =
(c1,t ,c2,t , · · · ,cn,t) then is applied to a modulator (mapper) with “-1” as null sym-
bol and is sent through communication channel. After mapping, namely BPSK, the
input channel symbols are denoted by xt and the channel output by yt = xt +nt as-
suming a memoryless additive Gaussian noise channel. Generalization to the case
of flat fading channel is trivial. The task of the receiver is to find the most likely
coded sequence Ĉ = {ct |t = 1,2,3, · · ·} from observations Y = {yt |t = 1,2,3 · · ·}
which can be formally written as follows for a memoryless channel:

Ĉ = argmax
C

∑
t

ln
(
P(yt |ct)

)
(6.1)

Since all sequences of size n are not valid code sequences, the VA presents an
efficient method to find only valid code sequences. Furthermore, using VA, the
exhaustive search is replaced by much more efficient iterative method. Using trellis
representation, ln(P(yt |ct)) is called branch metric and when it accumulates over
a specific path, it is called path metric of the path. Figure 6.1 shows some details
of VA for a systematic recursive (7,5) convolutional code that is kept as a generic
code for our simulations. The branch metrics dt are calculated based on observation
yt and corresponding ct for each edge in the trellis diagram. Assuming Gaussian
noise, maximizing ln(P(yt |ct)) is equivalent to minimizing ‖yt − ct‖ . At each state,
branch metrics are added to path metrics of the corresponding previous stage based
on the structure of the trellis, following by a comparison and selecting the smallest
competitors. The new path metrics are passed to following stages. Denoting path
metric of state k at time t as Dt(k), This operation is summarized as follow:

Dt(k) = min
{

Dt−1(i)+dt(i,k)
Dt−1(j)+dt(j,k)

}
(6.2)

6.2 Conditioning of Input Signal 93

Furthermore, for decoding of information bits, the surviving path should be stored
for each state and used in trace back operation:

vt(k) = argmin
{

Dt−1(i)+dt(i,k)
Dt−1(j)+dt(j,k)

}
(6.3)

6.2 Conditioning of Input Signal

Several circuits were considered in order to obtain a Max or Min function with
good speed and low complexity. The later feature is more important in the sys-
tem with a large number of states NS. Among plenty of such circuits, it seems
that the WTA in [58] still outperforms other ones in the sense of robustness, speed
and complexity. Assuming a current mode WTA with Max functionality, we de-
fine a new variable in order to replace Min in equation (6.2) with Max as well as
converting bipolar (voltage) variables to unipolar current variables as:

λt(i) = Ire f −α f
(
dt(i)

)
(6.4)

Here dt(i) represents the distance between observation yt and xt for a particular
ct = i. The fact that adding (subtracting) a constant to all path metrics has no effect
on the algorithm, we can expand dt(i) and eliminate the constant terms in order to
achieve the linear equations as follows:

dt(0)≡ dt(0,0) = dt(1,2) = ‖yt − (−1,−1)‖ ≡ y1,t + y2,t

dt(1)≡ dt(2,1) = dt(3,3) = ‖yt − (−1,1)‖ ≡ y1,t − y2,t

dt(2)≡ dt(2,3) = dt(3,1) = ‖yt − (1,−1)‖ ≡ −y1,t + y2,t

dt(4)≡ dt(1,0) = dt(0,2) = ‖yt − (1,1)‖ ≡ −y1,t − y2,t

(6.5)

Thus dt(i) is a bipolar (voltage) variables. f (·) in equation (6.4) is a limiting
function defined by:

f (x) =


LB x < LB
x LB < x < UB
UB x > UB

(6.6)

where LB and UB are lower band and upper band respectively. The bands must
be set properly so that overall Bit-Error-Rate (BER) remain almost unchanged.
Recall that in a typical competing path, most branch metrics are minimal, we can
argue that the bands must span over -2 (volt) with sufficient margin that depend
directly on the noise variance. α is a constant with dimension of (Ω−1). Finally
Ire f is chosen so that λ remains always positive. It must be mentioned that equation
6.4 can be almost realize by only one MOS as a transconductance converter and a
current conveyor [59].

94 Fast Viterbi Decoder in Analog CMOS

6.3 Adapted Algorithm

In the algorithm there are three parameters, IP , IN and Ith , that should be set
properly as will be described bellow.

1. initialization
Set IP , IN and Ith and initialize the path metric as M0 = (IP,0, · · · ,0).

2. Set t = 1 and calculate branch the metrics corresponding to each edge in
trellis diagram according to equation 6.4, i.e. calculate:

λt(i, j) ∀i, j ∈ {0,1, · · · ,Ns−1}

3. For each t (and all k) update the path metrics by:

Mt(k) =
{

G Mt−1(i) < Ith
G− IN otherwise

(6.7)

where the intermediate variable G is:

G =
{

Mt−1(i)+λt(i,k)
Mt−1(j)+λt(j,k)

}
(6.8)

Knowing that 0 < λ < λmax = α(UB− LB) and selecting IP > λmax ensure that
starting state is zero. In fact IP propagates through the algorithm and determines
the current that the circuit works around it. So it must be chosen so that the circuit
has the best trade-off between speed and precision. In our design it is found by
simulation to be 50µA.

It is clear that path metrics continue to increase in each iteration and so rescal-
ing of the metric is inevitable. This is done by subtracting IN form all metrics at
the specified condition as given in equation 6.7. Delay of rescaling does not ac-
cumulate on the delay of metric calculation because two WTAs work in parallel.
This is why Mt−1 is sensed instead of Mt . It is expected that metrics have varia-
tion between Ith− IN and Ith . Again they are set to the best operating range of the
circuit. While practically possible, there is no need to check all path metrics to per-
form the rescaling. Dynamic range of path metrics is bounded in magnitude by a
fixed quantity, ∆max, due to pruning of surviving paths [60]. We have the following
equation:

∆max < λmax log2(NS) (6.9)

So it will be sufficient to check out only one metric (say, the path metric of state
“zero”) and set IN < ∆max to ensure all other path metrics remain positive. A CMOS
circuit that mimics the procedure tn the above algorithm was designed and simu-
lated in the following section.

6.4 Viterbi Decoder Kernel in Analog CMOS 95

Figure 6.2: WTA-MAX circuit for realization of MAX and ARGMAX function.

6.4 Viterbi Decoder Kernel in Analog CMOS

In this section we present a CMOS realization of the algorithm proposed in section
6.3 and its functionality by means of transient and DC responses. The simulations
are based on AMS0.35 process with BSIM3v3 level 53 model for MOS which
were performed in CadenceTM. This analog design that realize the core of Viterbi
decoder can be used in lieu of Add-Compare-Select (ACS) unit in conventional
implementation of the algorithm. Nevertheless other part of a Viterbi decoder, say
trace back, still remains unchanged. It is clear that with this analog circuit we don’t
need ADC at the input. The only things we need, are current switches (S/H) to hold
the output currents and to feed it back to inputs.

Figures (6.2) shows a Winner-Take-All (WTA) circuits that is a main part of
this design. There are two sort of outputs in this circuit, Iout which is an analog
current and Vo as a logic output. Iout take the maximum values of two input currents,
Iin1 and Iin2 with a high degree of precision despite the transistor characteristics. On
the other hand, Vo goes to GND for Iin1 > Iin2 and Vdd for Iin1 < Iin2. So the circuit
performs both MAX and ARGMAX functions and we call it WTA-MAX. Figure
(6.3) shows the response of WTA-MAX during static and dynamic characteristics
respectively. From figure (6.3) it can be recognized that the circuit settles down
completely after 1.8nS and with referring to DC response, static error is negligible.
Maximum error take place when two inputs are the same. In this case, figure
(6.3) estimates an error of about 2%. At higher current, output curve bends due to
effective mobility reduction. Fortunately it is far from the operating point of our

96 Fast Viterbi Decoder in Analog CMOS

10 20 30 40 50 60 70 80 90
0
1
2
3
4

10
20
30
40
50
60
70
80
90

i
in

(µA)

C
ur

re
nt

 (µ
A)

44

46

48

50

52

54

56

0 2 4 6 8 10 12 14 16 18 20
0
1
2
3
4

C
ur

re
nt

 (µ
A)

Time (nSec)

vo
lt

C
ur

re
nt

 (µ
A)

vo
lt

v
out

v
out

i
in1

i
in2

i
out

i
out

i
in2

i
in1

Figure 6.3: (top) DC characteristic of WTA-MAX in figure (6.2) , (down) A typical
transient response

6.4 Viterbi Decoder Kernel in Analog CMOS 97

Figure 6.4: Wilson current mirror

design. Also Vo represents a very sharp variation. This logic output is neecessary
for trace back in Viterbi decoding and will be connected to the circuitry of surviving
path memory (or state register in register exchange decoding mode).

Here is a brief explanation of how it works and the reason for its speed and
precision. One can consider this circuit from different point of view. We thought
that Wilson current source is a good starting point for an intuitive analysis.

Figure 6.4 shows a Wilson current mirror, in which Iout = Iin. The precision of
current mirror is pretty good for a wide range of current and for different transis-
tor’s characteristics. It is basically due to a strong inherent feedback in the circuit.
M3 and M1 are feedback mechanism with a unit gain (complete feedback) while
M2 provide the forward gain. In addition, thanks to M4 Vds for M1 and M3 are
almost equal that guarantees the unit gain of feedback network.

The WTA-MAX in figure 6.2 can be regarded as two competitive Wilson cur-
rent mirrors. M1–M3 along with M4 can form a Wilson current mirror. Another
possibility is M5–M7 and M4. So M4 will belong to that group of transistors with
higher current level. This competitive behavior is a result of positive feedback in
the circuit. The common node “A” in the circuit is responsible for this positive feed-
back. Suppose that Iin1 is larger than Iin2 for instance. The common node voltage
“A” defined by “I−V ” curve of M3. But this is also the gate voltage of M7 and this
transistor conveys lower current by assumption. This make M7 saturated and pulls
down the drain voltage of M7 and gate voltage of M6. Finally M6 is driven toward
cut-off region. Without M6, we have M1–M4 that is a Wilson current source. M14
is added to simply duplicates the winning current. In addition, according to above
comments, M2 drain current is either zero (almost) or equal to the winner current.
This is also true for M6 drain current. It is straightforward to see that Vo is zero or
Vdd for two competitive states of the circuit.

Rescaling of path metrics, as stated in the algorithm in section 6.3 requires a
current comparator. Fortunately the original WTA discussed in [58] have a desired

98 Fast Viterbi Decoder in Analog CMOS

;�

;����

;�, ;��

�	��

����

����

���

Figure 6.5: WTA-N circuits which realizes a current comparator

WTA-MAX M8-M11 3.6µm/0.35µm
WTA-N M5,M6 1.2µm/1µm
CSR M1-M12 1.2µm/1µm
otherwise 1.2µm/0.35µm

Table 6.1: Transistor dimensions (W/L)

characteristic. The circuit (WTA-N) and its response are shown in figures (6.5) and
(6.6) respectively. In obtaining the responses, a current source of IN = 20µA was
connected to the port Itail in figure (6.5). So when current Iin become greater than
Ith, output current changes from zero to IN . Figure (6.7) shows complete circuit as
kernel of Viterbi decoder. It consist of WTA-MAX, WTA-N and some current mir-
ror for current duplication necessity. Channel length is augmented for p-channel
transistors in this figure to mitigate the effect of channel length modulation. The
drawback is a little speed loss which is inevitable in CMOS technology. Transistor
dimentions are indicated in table (6.1). Note also that for a code with NS states we
need the equal number of WTA-MAX, but only one WTA-N will be sufficient as
discussed theoretically in section (6.3).

Moreover in figure (6.7), transistor M1 is just half of a current mirror. Depend-
ing on the code, there is need for replication of its current by sharing VGS with the
other transistors. For example for the code defined in figure (6.1), two edges leave
each state so we need two copies of M1’s current.

Figure (6.8) shows the effect of connecting WTA-N to WTA-MAX in the com-
plete circuit of figure (6.7). Here a step change of 20µA was expected in WTA-
MAX output, but it turns back to 45µA, because IN had been set to 15µA. For a

6.4 Viterbi Decoder Kernel in Analog CMOS 99

10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

C
ur

re
nt

 (µ
A)

i
in

(µA)

i
in

i
out

I
th

0 2 4 6 8 10 12 14 16 18 20
-5

5

15

25

35

45

55

65

75

C
ur

re
nt

 (µ
A)

Time (nSec)

I
th

i
out

i
in

Figure 6.6: Typical dynamic and static response of WTA-N

100 Fast Viterbi Decoder in Analog CMOS

;�,

;�, ;�-�� ;�-��

;�-�� ;�-��

;�,
;�I'

;�I;�-��

;�I'

;�I;�-��

;�I;���

;�I;���

;�I;���

;�I;���

;�

4�

��

�	

��

��

;
��
��

; ��

;
�,

;�

�����

��

���

��

��

���

���

���

����

���

������

���

;���

;���

;�0�

4�

���

Figure 6.7: Complete circuit for Compare, Select and Rescaling (CSR) of two
metrics

6.5 Behavioral Simulation Results 101

0 5 10 15 20
35

40

45

50

55

60

65

time (nSec)

cu
rre

nt
 (µ

A
)

Figure 6.8: Typical transient response of complete circuit that illustrates the effect
rescaling

complete characterizing the CSR1 circuit, refer to figure (6.9), in which a family
curves are produced by parametric sweep on Iin1 and Iin2. The response is simi-
lar to figure (6.3) except an IN = 20µA abrupt change at the threshold current of
Ith = 50µA.

6.5 Behavioral Simulation Results

In order to estimate the bit error rate of the proposed decoder, among several source
of errors we consider two secondary effects which may impact overall performance
of the analog Viterbi decoder. Conditioning of branch metrics is the first one that
reduces the dynamic range of metrics. Second effect is the non ideal Max function
due to its soft transition as depicted in figure (6.3). First issue is simply modeled
by imposing equation (6.6) in VA. Figure (6.10) shows that a tighter range results
in a worst performance and vise versa. To include the non ideal Max function we
add a nonlinear function g(·) to the ideal Max function:

max∗(x,y) = max(x,y)+g(x− y)

with g(·) as:
g(x) = ae−b|x|−λ|x|

The constants a, b and λ are obtained from figure (6.3). For our case, a least squares
fitting results in a = 0.65, b = 0.9 and λ = 1

30 . Figure (6.11) shows effect of this
model on bit error rate in which a dynamic range of UB-LB=4 (volt) has been

1Compare-Select-Rescaling

102 Fast Viterbi Decoder in Analog CMOS

�� �� �� �� �� �� 	� 	�
�

��

��

��

��

��

�	

�

��

�

��

��

��

��

��

��

�	

�

��

�
 ;��I
'J

;��I%
J

;��I%�J

;��I&*J

;��I&&J

;��I&'J

;��!J2$

;�
!J
2
$

Figure 6.9: DC characteristic of CSR circuit

assumed. This figure justifies that non ideal issues in CSR design are tolerable and
has minor effect on the overall performance of Viterbi decoder.

6.6 conclusions

We have shown that ACS block in a Viterbi decoder is realizable by CMOS circuit.
The design here is based on WTA tailored for this purpose. In contrast to LDPC
analog decoders, transistors carrying high current in order to obtain a desirable
speed. The design is based on current-mode circuit, so branch and path metrics are
represented by current. A solution for rescaling path metric has been proposed that
dose not degrad the overall speed. Circuit level simulations revealed a latency of
3 nanosecond for the ACS + rescaling. With its very simple structure, a complete
parallel architecture for a Viterbi decoder with large number of states, say 64 or
128, will be still tolerable.

6.6 conclusions 103

'9�:'

'9�:)

'9�:*

Figure 6.10: Effect of metric’s range on bit error rate.

-12 -10 -8 -6 -4 -2 0 2 4 6
10

-3

10
-2

10
-1

10
0

Eb/N0 (dB)

B
E

R

standard
non ideal

Figure 6.11: comparison of standard decoding with the one with non ideal Max
function as well as limiting the dynamic range for the metrics.

104 Fast Viterbi Decoder in Analog CMOS

Chapter 7

Analog FIR Filtering

7.1 Introduction

Despite the fact that digital signal processing is widespread in today’s technology,
existence of analog parts especially in front-end sections of communication sys-
tems is unavoidable. This kind of circuits are widely used in mixed-signal SoC
(System on Chip) applications where the integration of analog and digital parts
on the same chip is necessary [61]. It may be both economic and power effi-
cient to pre-process analog signals at the analog/digital interfaces. The location
of matched-filters in digital communication systems is a good example of such in-
terfaces. By analog filter in this paper, we mean the sampled-data or equivalently
discrete-time analog filters.

Figure 7.1 shows some important schemes used for digital receivers. In figure
7.1(a), the analog matched filter is used and its output is applied to an Analog-to-
Digital Convertor (ADC). The digital stream from ADC block are then processed
by a digital core (DSP, FPGA or FPOA)1. The significant potentials for analog
filters with respect to their digital counterparts are lower power and smaller chip
area. Two major realizations for analog sampled-data filters are the well known
switched-capacitor (SC) and switched-current (SI) networks [62, 63, 64]. Low tol-
erance of capacitance ratio in monolithic fabrications makes precise control over
SC filter’s characteristics. However, the existence of operational amplifier in such
networks limits the maximum attainable bandwidth. This problem limits the use
of SC filters in high-rate digital receivers. Another problem is the use of floating
capacitors (poly-poly caps) that makes such network incompatible with CMOS fab-
rication technology. SI networks, on the other hand, has better frequency response
compared to SC networks and are compatible with CMOS fabrication technology.
Several attempts have been made to increase the clock rate of SI networks using
special active elements such as GaAs MESFET [65] in exchange for increase in
costs.

Another challenge in analog domain arises from realization of reconfigurable

1Digital Signal Processor, Field Programmable Gate Arrays, Field Programmable Object Arrays

106 Analog FIR Filtering

Baseband

Signal Analog

Matched

Filter
ADC

DSP /

FPGA /

FPOA

Retrieved

Digital

information

Baseband or

Bandpass

Signals
Digital

Matched

Filter
ADC

DSP /

FPGA /

FPOA

Retrieved

Digital

information

(a)

(b)

Mixed−signal

Matched

Filter

Analog

Decoder

RAM

(c)

RAM

Baseband

Signal
Analog voltages proportional

to conditional probabilities of

information bits.

(to low rate digital conversion)

Figure 7.1: Three possible structures for digital receivers (a) Conventional receiver
with analog matched-filter (b) Software radio inspired structure (c) Exploiting ana-
log decoder with mixed-signal matched filter yield a simple and power efficient
solution for digital receivers

7.1 Introduction 107

filters. Reconfigurable filters are widely used where the filter taps may be changed
in real time such as adaptive channel equalizer, multi-rate data transmission, etc.
To take advantage of full programmability, reconfigurable filters are usually imple-
mented in digital domain. Several attempts have been made to gain this feature in
analog filters. For example the concept of floating gate was exploited to realize a
reconfigurable FIR filter in audio frequency range [66]. In [67] a reconfigurable SI
filter based on a CMOS ladder circuit [68] is proposed which is able to multiply a
digital word by an analog current. As another example, a reconfigurable FIR filter
based on CCD is presented in [69] in which the input quantity is electrical charge.
These examples demonstrate the application of mixed-signal designs in the sense
that the input quantity is analog while the multiplicand is a digital binary number.

Figure 7.1(b) depicts a structure based on software radio principle. According
to this principle, ADC block is located as close as possible to analog front-end
and any further processes are accomplished in digital domain. A sophisticated
ADC is required to convert analog signals to digital at very high rate. The main
advantage of this structure is the full programmability that yields a versatile system.
Advances in digital platforms such as new evaluation boards are another attraction
toward the use of this structure for research and prototyping. However, for specified
applications where power consumption, complexity and costs are the main factors,
this structure is not preferred and analog implementations can be a more reasonable
choice.

Figure 7.1(c) demonstrates a new scheme for digital receivers in which the dig-
ital section is replaced with the analog decoder. Analog decoding was proposed at
the same time by J. Hagenauer, et al. and H. A. Loeliger, et al. in 1998 [70, 42].
Briefly speaking, analog decoding is an alternative to digital decoders in which
decoding algorithm is performed by exploiting nonlinear analog circuits. In com-
parison with conventional digital decoders, analog decoders have potentially less
power consumption, higher speed and lower chip area. Note that the immediate
advantage of such configuration is the elimination of ADC that means a great en-
ergy/area saving. Also, in this figure our proposed mixed-signal filter is placed
before the analog decoder to handle high-rate symbol transmission.

In this chapter we aim to design a mixed-signal FIR filter suitable for front-end
processing in high-rate digital receivers. In the proposed architecture, the signal
path remains in analog domain while the filter taps are stored digitally, assuring
reconfigurability as desired. The filter is based on simple CMOS inverters and ex-
hibits very high bandwidth as a direct result of a design with no internal nodes. In
other words, up to circuit diagram analysis, no pole introduces by the design and
the bandwidth is infinite in theory. The practical bandwidth is only limited by sec-
ondary effects such as carrier transit time, path resistance, etc. In the application
such as wireless communication systems our proposed structure is a good solution
due to its simple and low complexity structure, low power consumption and fully
CMOS compatible fabrication. Furthermore, the high-speed capability and its ana-
log input-output can produce a consistent integrated circuit when is accompanied
by the analog decoders.

108 Analog FIR Filtering

7.2 Approximation to Continuous-time Convolution

Suppose h(t) is a time limited impulse response of a causal filter with duration D
to be realized, and x(t) is the input signal. The analog filter output is given by
convolutional integral:

y(t) =
∫ t

t−D
x(τ)h(t− τ)dτ (7.1)

In digital communication systems, we are normally interested in the filter’s output
at some instants nT where T is the symbol duration. In practical case, the duration
D is an integer multiple of symbol period T , i.e. D/T = N so (7.1) can be written
as follows:

y(nT) =
∫ nT

(n−N)T
x(τ)h(nT − τ)dτ (7.2)

The integral can be approximated by dividing the integration interval into L sub-
sections. Defining the kth integration gain as:

gk = ĥ((L−1− k)∆T) (7.3)

where ĥ is the quantized h, ∆T = D
L and k = 0, · · · ,L−1. The filter output can be

expressed approximately as:

y(nT) =
L−1

∑
k=0

gk

∫ nT−(L−k−1)∆t

nT−(L−k)∆t
x(τ)dτ (7.4)

In order to realize (7.4), there is need for an integrator with the gain proportional
to gk at the instant (L−1− k)∆t. The above operations introduce three deviations
from an ideal convolution. The first deviation is the truncation of filter’s impulse
response which is equivalent to convolution of the filter frequency response with
Dsinc(f D)exp(− jπ f D). The second deviation is due to (7.3) which is equiva-
lent to the flat-top sampling of h(t). It affects the overall frequency response via
multiplication to ∆t sinc(f ∆t)exp(− jπ f ∆t) and as ∆t becomes small, this effect
becomes negligible. The third deviation is the quantization of the filter taps, gk,
that can degrade the frequency response of the filter. One can minimize this effect
by incorporating the quantization into the design as opposed to quantizing the co-
efficients after the filter has been designed [71]. The phase response remains linear
providing that the symmetry of the filter taps is conserved.

7.3 Mixed-signal MAC

Realization of convolution in conventional digital systems is based on MAC unit.
Equivalently, we introduce mixed-signal MAC which has analog input while the
multiplicands are digitally-stored numbers. According to (7.4), the filter output

7.3 Mixed-signal MAC 109

can be approximately obtained by successively multiplication and integration of the
analog input signal. Typically, the input is a voltage signal and the integration can
be performed by using a voltage-to-current converter (V/I) followed by a capacitor.
We first review the employed V/I circuit which is based on the transconductor
presented in [72]. Then we discuss the architecture of mixed-signal MAC which
is based on a bank of V/I converter. Some non-ideal issues in the circuit are also
discussed at the following.

The following notations are used in the sequel. Variables in capital letter (e.g.
VDD) show DC or static values. Lower case variables with the subscribes in capital
show the total values (e.g. vI) and the variables all in lower case are small signal
components (e.g. vi). For example we may write vI = VI + vi.

7.3.1 CMOS Inverter as V/I Converter

The principal operation of a CMOS inverter as V/I converter is depicted in figure
7.2. Starting with the classical square law formula for the transistors and apply-
ing Kirchhoff current law (KCL) at the output node of the inverter, the following
equations are obtained:

iN = 1
2 kn(vI −VT Hn)2, iP = 1

2 kp(VDD− vI −VT H p)2,
iO = iN − iP.

In these equations, kn , VT Hn , kp and VT H p are the corresponding parameters for
n-channel and p-channel transistors respectively. VDD is the supply voltage and
vI and iO are the input voltage and the output current respectively, as illustrated in
figure 7.2. After some simple manipulations the output current versus input voltage
can be expressed as follows:

iO =
1
2
(kn− kp)(vI −VC)2 +gm(vI −VC) (7.5)

where

gm =
√

knkp (VDD−VT Hn−|VT H p|) (7.6)

and

VC =
VDD−VT Hn−|VT H p|

1+
√

kn/kp
+VT Hn (7.7)

With the same p-channel and n-channel transistors, i.e. kn = kp, the output
current would be linear with respect to input voltage except an offset voltage equal
to VC. This offset is given by (7.7) and is approximately equal to VDD

2 . In practice,
however, the first term in (7.5) exists owing to transistor mismatch which is very
undesirable. To solve this problem a balance structure as shown in figure 7.3 can
be used that effectively removes second order terms as well as taking advantages
of a differential structure.

110 Analog FIR Filtering

Figure 7.2: A CMOS inverter and its internal circuit which can be used as a voltage-
to-current converter

Figure 7.3: A balance structure yeild a good linear transconductor

Defining the differential output current io = iO1− iO2, the following relationship
is obtained:

io = iO1− iO2 = (kn− kp)(VI −VC)vi +gmvi (7.8)

where VI is the common mode input voltage and gm and VC are defined in (7.6) and
(7.7) respectively. The aspect ratios of the transistors are chosen so that kn ≈ kp

and also VI is kept close to VC. Therefore the output current, io, will be almost
equal to the second term in (7.8). In addition, the desired simple structure of the
transconductor in figure 7.3, results in a very wideband circuit. In fact, there are
only two input and output nodes with parasitic capacitors connected to AC ground.
As a result no internal node exists and the circuit can operate up to very high
frequency range.

7.3.2 Mixed-signal MAC Architecture

The nature of the output quantity in the V/I converter is obviously current. This
makes it possible to tie the outputs together to perform current addition or sub-
traction. This simple principle leads to the MAC architecture in figure 7.4. There
are M transconductors of gain gm, connected in parallel. At the input side, a re-
sistive ladder network provides binary-weighted attenuation of input signal, i.e.
{vi,vi/2, · · · ,vi/2M−1}. These signals are connected to the transconductors via
the switch boxes. By applying zero or VDD voltage to the digital control lines b0

7.3 Mixed-signal MAC 111

Figure 7.4: Mixed-signal MAC architecture comprised of resistors R and 4R,
switchers, main transconductors, gm, compensating transconductors gm2 and gm3
and grounded capacitors.

through bM−1, each transconductor can be connected to or disconnected from the
ladder network. This architecture is equivalent to a transconductor with the effec-
tive gain gme ranging from zero to (2-aLSB)gm with the step aLSB where aLSB =
1/2M−1. With the capacitors C at the output, gme/C corresponds to the integral
gain, gk, in (7.4).

It is worthwhile to mention two important points about this design. First, the
resistive network introduce internal node to the design and have negative effect
on the overall bandwidth of the filter. Fortunately in the case of communication
systems, input impedance is typically low (say, 50 Ω) and the resistors in the ladder
are easily realizably in CMOS fabrication technology. The corresponding pole
frequencies of this low impedance and parasitic input capacitances of switch box
is very high and therefore tolerable (c.f. section 7.5).

Second, filters have often positive and negative tap values which in many case
are not symmetric about zero. For example, the impulse response of a typical
raised cosine filter is not symmetric about zero and ranges over [−0.2 · · ·1]2. It
can be found that the optimal3 four-bit quantized range should be proportional to
[−2 · · ·13]. The conventional 2’s complement binary number dose not fit this range
well and the quantization error increase. Recall that a 2’s complement four-bit bi-
nary number have the weights {1, 2, 4, -8} that can span the range [−8 · · ·7]. Using
other combination of binary weight may decrease quantization error. For example

2the exact value depends on rolloff factor
3MSE measure

112 Analog FIR Filtering

in the case of raised cosine signal the binary weights {1, -2, 4, 8} minimize quanti-
zation error by spanning the proper range [−2 · · ·13]. Fortunately this requirement
can be accomplished in the proposed structure with no extra complexity as follows.
We twist the inputs (or outputs) connection of those transconductors with negative
weight and at the same time invert the corresponding command logic in the digital
memory. For example, in figure 7.4 the input to the second transconductor has to be
twisted and consequently b1 becomes inverted (c.f. table 7.2) to obtain the desired
span range [−2 · · ·13].

7.3.3 Secondary Effects

Finite output resistance is a common problem in analog circuits. In general, CMOS
transistors suffer from channel length modulation effect which can be modeled by a
finite output resistance. In figure 7.4, each transconductor has such an output resis-
tance which appear in parallel at MAC output. The drawback with limited output
resistance is introducing a low-frequency pole that limits the useful bandwidth of
the filter at low-frequency. Fortunately, the so-called negative resistance compen-
sation is easily applicable in this configuration with a minor extra complexity. As
can be shown in figure 7.4, two transconductors of the gains gm2 and gm3 are con-
nected at the output. It is easy to show that this is equivalent to a resistor with the
value 1/(gm3−gm2). Proper setting of gm2 and gm3 results in a negative resistance
that will cancel out the output resistance of the main transconductors and yield a
theoretical infinite output resistance. Based on (7.6) gm is proportional to the aspect
ratio (W/L) of the transistors (through kn and kp). Slight reduction of aspect ratio
for the transistors in gm3 with respect to gm2 yields the required negative resistance.

Another important issue in practical implementations is the transistor mis-
match. In order to estimate the amount of variation on transconductor gain, we
target the dominant (second) term in (7.8) and calculate the variation of gm. Using
(7.6) and applying mathematical analysis to the variables subjected to mismatch,
we obtain:

σ

(
∆gm

gm

)
=

√
1
4

σ

(
∆kn

kn

)2

+
1
4

σ

(
∆kp

kp

)2

+
σ(∆VT Hn)2 +σ(∆VT H p)2

(VDD−VT Hn−|VT H p|)2 (7.9)

where σ(·) stands for standard deviation of the corresponding parameter and is
given by the foundry [73]. Table 7.1 shows the necessary parameters for calculation
of (7.9). Taking into account transistor’s dimensions given in section 7.5, we obtain
from (7.9) that σ = 6.54×10−3 which is about 19 times less than aLSB in our design
and thus the mismatch effect is negligible for four-bit resolution.

Similarly, table 7.1 is applicable to temperature dependency calculation. Transcon-
ductance in (7.6) is subjected to temperature variation via mobility and threshold
voltage of transistors. Taking derivation with respect to temperature and after some

7.4 Filter Structure 113

Parameter NMOS PMOS Unit Comment
A_VT 9.5 14.5 mV µm σ(VT H) = A_V T√

WL
A_K 0.7 1.0 % µm σ

(
∆K
K ×100

)
= A_K√

WL
VT 0.50 -0.65 V Threshold Voltage

TCVT -1.1 1.8 mV/°K Temp. coeff. of VT
BEX -1.8 -1.3 – Mobility exponent i.e. d(lnµ)

d(lnT)

Table 7.1: Mismatch and process parameters for NMOS and PMOS [73]

manipulation, one obtains:

∆gm

gm
=

cn + cp

2
∆T
T
−
(

δVT Hn

δT
−

δVT H p

δT

)
∆T

VDD−VT Hn−|VT H p|
(7.10)

In this equation cn and cp are mobility exponents which are named BEX in table
7.1. δVT H/δT is the temperature coefficient of threshold voltage which is given in
table 7.1 for n-channel and p-channel devices under the name of TCVT. Replacing
all parameters in (7.10) by their values yield the value of−3.8×10−3 at 300°K. For
example a 10°C increase in temperature will lower gm by about 3.8% which is only
about one-third of aLSB. Despite the temperature and mismatch uncertainties, the
critical filter parameter remain unchanged because they are related to digital clock
frequency and stored filter taps in memory. The slow variation of transconduc-
tance affects only the output magnitude. Suppose that the filter in connected to a
decoder, it can be shown that the variation in magnitude degrades the performance
of decoder very slightly [9].

Finally, in short channel devices, the classical square-law model is no longer
valid. In this work, except switch transistors which have minimum channel length,
the analog transistors designed to have a length of 1µm in order to achieve a suitable
characteristic. Since the transistor count in this design is considerably low, a slight
augmentation of device size can be tolerable. A good model for analytical analysis
in such channel length is the so called alpha-power law model [74]. It can be shown
that the differential structure still yields a good linearity despite the deviation from
ideal square-law model but here it is only justified by simulation.

7.4 Filter Structure

Based on the timing digram in figure 7.5, the MAC output is valid after the inte-
gration period D. Integration period for the next MAC starts after To second where
1/To is the desired sampling rate at the filter output and in general we have the
inequality ∆t ≤ To ≤ T . Therefore the integration periods of the MAC units over-
laps but all of them perform the same things. It means that dD/Toe identical MAC
units are needed to retrieve all output samples4 . In general, 9 log2(M)+10 transis-

4d·e is ceiling function

114 Analog FIR Filtering

Figure 7.5: Timing diagram of several MAC units to continuously filter incoming
signal

tors are needed for each MAC unit and we need N such units for a complete filter
realization.

The digital commands for the MAC units are the same but a constant delay
between them is needed. The necessary hardware to generate the delayed sequence
is several (digital) latches as depicted in figure 7.6. The memory and the latches
are clocked at the over sampling rate, i.e. reciprocal of ∆t. Note that each single
latch provides ∆t delay and in general To/∆t latches are needed to put between the
MAC units in order to provide the necessary delay.

7.5 Design Details and Simulation Results

MAC unit is the main part of the proposed filter and thus it is important to be
investigated more precisely. A MAC is implemented in CadenceTM using AMS035
models. The aspect ratio for n-channel transistors is 1.2µm/1µm. For p-channel
transistors, the aspect ratio of 4.3µm/1µm is used in the main transconductor and
gm2. The aspect ratio of the p-channel transistors in gm3 is designed to be slightly
lower i.e. 4µm/1µm to generate the required negative resistance. The number of
quantization levels is arbitrary chosen to be M = 16 (4 bits) and the binary basis
is again arbitrary selected to be {-1, 2, -4, 8} which is equivalent to the dynamic
range of [−5 · · ·10]. Using a supply voltage of 3.3 volt, the AC simulation for three
different gains is shown in figure 7.7.

As expected, we obtain -20dB per decade curve with a −π/2 of phase that
represents a precise integrator with a very large bandwidth. The low-frequency
pole due to the output resistance (depends on the precision of negative resistance)
can be as low as 10kHz and the second undesirable pole is located at about 4GHz.
This pole is mainly due to the switching transistors that introduce internal nodes to
the circuit. We can observe the linearity of the circuit using different gain values as
depicted in figure 7.7 for the typical gains of 1, -5 and 10. It also shows the perfect
phase behavior of the circuit for the negative gain.

Next simulation concerns a typical cosine rolloff filter design with sampling
frequency = 160MHz, symbol rate = 40MHz and rolloff factor = 0.3. The filter
taps were obtains from standard relationship of raised cosine formula. Then, they

7.5 Design Details and Simulation Results 115

Figure 7.6: Digital circuitry in a complete filter serves tap values stored in digital
memory and the required delay between MAC units by digital latch stack

-110

-70

-30

10

50

90

130

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Frequency (Hz)

G
a
in
 (
d
B
)

-135

-90

-45

0

45

90

135

180

P
h
a
s
e
 (
d
e
g
re
e
)

gain +1 gain -5 gain +10 phase -5 phase +1

Figure 7.7: Frequency response of the MAC unit for three gain values

116 Analog FIR Filtering

tap# tap value Code word tap# tap value code word
1 0 0000 14 0.9398 0011
2 0.0783 1000 15 0.6265 0001
3 0.0783 1000 16 0.3133 0010
4 0.0783 1000 17 0 0011
5 0 0000 18 -0.1566 0100
6 -0.0783 1100 19 -0.1566 0100
7 -0.1566 0100 20 -0.0783 1100
8 -0.1566 0100 21 0 0000
9 0 0 22 0.0783 1000

10 0.3133 0010 23 0.0783 1000
11 0.6265 0001 24 0.0783 1000
12 0.9398 0011 25 0 0000
13 1.0181 1011 code word: bLSB – bMSB

Table 7.2: Designed filter taps and the corresponding code words

were quantized by a 16-level uniform quantizer and the result mapped to binary
number using the appropriate weights {1, -2, 4, 8}. The quantized tap values and
the corresponding code words is depicted in table 7.2.

The filter’s impulse response is truncated to D = 6 and output sampling rate is
To = 1 (normalized time value). Therefore the MAC unit should be replicated six
times in this design. Moreover, the integrating capacitors are discharged using a
switching transistor at the beginning of each new integration interval.

Figure 7.8 shows the frequency response for this filter as well as a correspond-
ing theoretical filter with the same number of quantization levels. It can be seen
that the channel noise injection from the side lobs does not differ considerably for
the practical and the theoretical filters; thereby the overall performances of a re-
ceiver with the proposed filter and theoretical filter are expected to be close to each
other. The phase response is also quiet linear in pass band which is important in
digital receivers.

Figure 7.9 shows the effect of quantization levels on Bit-Error-Rate (BER) of
a receiver with our quantized-tap matched filter and compares it with theory, i.e.
PError = 0.5erfc

(√
SNR/2

)
. This figure is drawn versus the SNR referred to the

matched filter output. This proves that the proposed four-bit matched filter is quiet
satisfactory for communication applications.

Another simulation is the time response of the practical filter and compari-
son with the response of an ideal filter with no quantized tap values. Figure 7.10
demonstrates the two curves obtain from simulation in Matlab and Cadence by
setting a simulation as follows. An input Barker-13 sequence was shaped at the
rate of 40MHz using a root raised cosine filter and was given to the theoretical and
practical filters. The response of theoretical filter follows tightly the practical one.
This shows that distortion of the proposed filter with only 4 bits of resolution is
quiet acceptable.

7.5 Design Details and Simulation Results 117

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (

dB
)

theoretical freq. res.
practical freq. res.

0 1 2 3 4 5 6 7 8

x 10
7

−25

−20

−15

−10

−5

0

Frequency (Hz)

P
ha

se
 (

ra
d)

Figure 7.8: Theoretical and practical frequency response of a typical cosine rolloff
matched filter (4 bits quantization, rolloff factor=0.3, 40MHz symbol rate, sam-
pling frequency=160 MHz).

118 Analog FIR Filtering

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

4 levels
8 levels
theory

Figure 7.9: Bit error rate versus quantization levels (M) of a receiver with the
proposed matched filter.

1 2 3 4 5 6 7

x 10
−7

−2

−1

0

1

2

3 4 5 6 7

x 10
−7

−100

0

100

−100

0

Time (Sec)

m
V

ol
t

 Theoretical filter

 Practical filter

Figure 7.10: Time response simulation for an ideal root raised cosine filter (up)
and a practical filter with 4-bit tap values. The circles in the upper figure shows
Barker’s stream and the filled circles in the lower figure are the output samples
obtained from mixed-signal filter. They are interpolated for a better visualization.
The residual norm (after normalization) of the figures is 0.117 in this case

7.6 conclusions 119

Parameter No. of Sampling Static power Supply Technology
Taps Frequency consumption voltage

Analog [62] 8 20 MHz 13 mW 5 V 0.5 CMOS
ASIC [75] 24 20 MHz 328 mW 3 V 0.35 CMOS
TI [76] 32 20 MHz 400 mW 3.3 V 0.5 CMOS
FPGA [77] 8 20 MHz 210 mW NA NA
SI [78] 11 10 MHz 100 mW 5 V 2.0 CMOS
This work 25 40 MHz 17 mW 3.3 V 0.35 CMOS

Table 7.3: Comparison of the proposed filter with some other approaches

In our simulation each 4-bit MAC draws 858µA using a supply voltage of 3.3
volts. For N = 6 MAC units, the total power is about 17mW which is quite satis-
fying. Note that the power consumption has the logarithmic relationship, log2(M),
with the quantization levels M. Thus increase of M changes this power slightly. Ta-
ble 7.3 summarizes the results of several recent works as well as this work. In com-
parison with commercial and digital implementations, e.g. ASIC, DSP (by Texas
Instruments) and FPGA, great improvement in power consumption is achieved
with the proposed filter. The analog and SI realizations consume lower power than
the digital realizations. However, the power consumption of our proposed filter
is considerably lower than SI approach. In comparison with the analog filter our
mixed-signal structure is more interesting by considering its more number of taps,
lower supply voltage and higher operating frequency as well as having no S/H in
signal path.

7.6 conclusions

In this novel design of FIR filter, we have gained at a same time the flexibility
of a digital filter, the simplicity of a CMOS circuit and low power consumption.
The design is totally based on CMOS inverter, exploited differentially to achieve a
good transconductor without any internal node. Signal path in the design remains
analog while filter taps are quantized and store digitally. With a known filter im-
pulse response, one can do far beyond a simple quantization task. For example a
non-uniform and optimal quantization is possible. We had proposed a new binary
system that effectively reduces the quantization error still with a uniform quantiza-
tion.

No internal node means that there is not any pole in the circuit. This guarantees
a very large bandwidth for the circuit with conventional CMOS technology.

Circuit level simulation of the designed filter and comparing the results with
theory proved its performance and revealed an interesting value for its power con-
sumption with respect to some recently reported filters.

120 Analog FIR Filtering

Chapter 8

Conclusions and Perspective

In the context of convolutional codes, a class of versatile decoders based on Tanner
graph for tail-biting constraint has been addressed. Also the condition for which
tail-biting is valid was mentioned. Analog realization and simulation of corre-
sponding decoder have been considered and the performance of decoder was com-
pared with classical benchmark.

The effect of optimization of design parameters and its effect on the overall
performance of our decoders have been noticed by a comparison between BER
simulations. It was shown that optimization step is crucial in design of analog
decoders in order to achieve a result near to the performance theoretical algorithm.

Analog Viterbi decoders has been studied and an analog circuit has been pro-
posed to be replaced with Add-Compare-Select block. It has been shown that the
proposed circuit is rather simple to implement while the achieved speed is in the
range of nanoseconds. Practical limitations and non ideal behaviors have been con-
sidered during a behavioral simulations. Like other analog approaches in coding
domains, this design also unrestricts decoders to be equipped with analog-to-digital
converters.

The last chapter proposed a new CMOS based simple structure for the mixed-
signal realization of FIR filters with high-frequency characteristics and suitable for
digital receivers. A sample cosine rolloff filter was designed and implemented in
Cadence using the proposed scheme. Frequency response, time domain and BER
simulation have been performed and the result was compared to the theoretical
benchmark. The results show the versatility of the proposed filter as a matched
filter in digital receivers.

The results obtained so far, gives motivation for studying the issue of analog
approaches in a broader range. For example in time synchronization algorithms,
analog schemes are expected to be useful. There are also ideas about LLR extrac-
tion in a M-ary signaling and MIMO systems that need more effort to extend these
concepts.

According to the best of our knowledge, innovations at the circuit level are
restricted to two or three ideas since the invention of analog decoding. After the

122 Conclusions and Perspective

main idea proposed by Hagenauer [41] and Loeliger etal. [42], the design of Chris
Winstead [46] for its contribution on low voltage design and the idea introduced
by Frey [40] for a compact design of graph’s node is remarkable. Also the idea
of Hemati [79] who for the first time employed current-mode circuitry for this
propose is interesting. In order to have a compact and low power decoder for still
lager codes, much effort at circuit level design is required.

Setting up a more complete system by putting together the blocks based on the
idea of mixed-signal filtering and analog decoding as suggested in figure 7.1c is a
big deal toward a complete system.

Making the ideas become operational by implementing them on a chip and
getting realistic measurement data is also necessary.

Incorporating other algorithms that better match with the proposed analog Viterbi
kernel, say, modified feedback decoding algorithm (MFDA) [80] can relax the
hardware complexity needed for trace back operation.

Extending the analog scheme to a more complex situation in which there is a
channel with memory, in a sense, something like the work in [81].

Bibliography

[1] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans.
Inform. Theory, 1982.

[2] A. B. Carlson, COMMUNICATION SYSTEMS, 3rd ed. McGraw-Hill, 1986.

[3] F. Lustenberger, “On the design of analog VLSI iterative decoders,” Ph.D.
dissertation, ETH Zürich, 2000.

[4] C. Winstead, J. Die, S. Little, C. Myers, and C. Schlegel, “Analog MAP
decoder for (8, 4) hamming code in subthreshold CMOS,” Mar 2001.
[Online]. Available: citeseer.ist.psu.edu/article/winstead01analog.html

[5] A. G. I. AMAT, S. BENEDETTO, G. MONTORSI, A. NEVIANI,
A. GEROSA, and D. VOGRIG, “Design, simulation, and testing of a CMOS
analog decoder for the block length-40 UMTS turbo code,” IEEE transactions
on communications, vol. 54, no. 11, pp. 1973 – 1982, nov 2006.

[6] M. ARZEL, C. LAHUEC, F. SEGUIN, M. JEZEQUEL, and D. GNAEDIG,
“Semi-iterative analog turbo decoding,” IEEE transactions on circuits and
systems I - regular papers, vol. 54, no. 6, pp. 1305 – 1316, june 2007.

[7] M. Mörz, T. Gabara, R. Yan, and J. Hagenauer, “An analog 0.25 µm BiCMOS
tail-biting MAP decoder,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb
2000, pp. 356–357.

[8] V. C. Gaudet and P. G. Gulak, “A 13.3 Mb/s 0.35 µm CMOS analog turbo
decoder IC with a configurable interleaver,” IEEE J. Solid-State Circuits,
vol. 38, pp. 2010–2015, Nov 2003.

[9] M. R. Zahabi, V. Meghdadi, H. Meghdadi, and J. P. Cances, “Versatile graphs
for tail-biting convolutional codes,” in IEEE International Symposium on Cir-
cuits and Systems, May 2008, pp. 216–219.

[10] M. R. Zahabi, V. Meghdadia, and J.-P. Cances, “Analog decoding of tail-
biting convolutional codes based on Tanner graph,” IET Electronic Letters,
vol. 42, pp. 1167–1168, Sep 2006.

124 BIBLIOGRAPHY

[11] M. R. Zahabi, V. Meghdadi, J. P. Cances, and A. Saemi, “A mixed-signal
matched-filter design and simulation,” in 15th International Conference on
Digital Signal Processing, Jul 2007, pp. 272–275.

[12] M. R. Zahabi, V. Meghdadia, J.-P. Cances, and A. Saemi, “A mixed-signal
matched-filter for high rate communication systems,” IET Signal Processing
Journal, submitted for publication.

[13] M. R. Zahabi, V. Meghdadi, J. P. Cances, and A. Saemi, “Mixed analog and
digital matched-filter design for high rate WLAN,” in Global Telecommuni-
cations Conference, Nov 2007, pp. 310 – 314.

[14] M. R. Zahabi, V. Meghdadi, J. P. Cances, A. Saemi, J. Dumas, and B. Bare-
laud, “Analog CMOS kernel for ML decoding of convolutional codes,” in In-
ternational conference on electrical engineering, ICEE, Tehran, IRAN, Mar
2006.

[15] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol.
IT-20, pp. 284–287, 1974.

[16] M. Xiao and A. Kavcic, “Path partitions and forward-only trellis algorithms,”
IEEE Trans on Information Theory, vol. 49, pp. 38–52, 2003.

[17] A. J. Felström and K. S. Zigangirov, “Time-varying periodic convolutional
codes with low-density parity-check matrix,” IEEE Trans. Inform. Theory,
1999.

[18] R. M. Tanner, D. Sridhara, A. Sridhara, T. Fuja, and D. J. Costello, “LDPC
block and convolutional codes based on circulant matrices,” IEEE Trans on
Information Theory, vol. 50, pp. 2966–2984, 2004.

[19] A. Sridharan, “Design and analysis of LDPC convolutional codes,” Ph.D.
dissertation, University of Notre Dame, February 2005.

[20] F. R. Kschischang and V. Sorokine, “On the trellis structure of block codes,”
IEEE Transaction on Information Theory, vol. 41, no. 6, pp. 1924–1937, nov
1995. [Online]. Available: www.comm.utoronto.ca/frank/

[21] R. J. McEliece, “On the BCJR trellis for linear block codes,” IEEE TRANS-
ACTIONS ON INFORMATION THEORY, vol. 42, no. 4, jul 1996.

[22] A. V. Nori, “Unifying views of tail-biting trellises for linear block codes,”
Ph.D. dissertation, Indian Institute of Science, sep 2005.

[23] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,
1989.

BIBLIOGRAPHY 125

[24] M. I. Jordan, “Graphical models,” Berkeley 94720, 2003.

[25] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Information
Theory, 1962.

[26] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inform. Theory, 1981.

[27] D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matri-
ces,” in Cryptography and Coding, 1999.

[28] N.Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Univ.
Linköping, Linköping, Sweden, 1996.

[29] N. Wiberg, H. A. Loeliger, and R. Kötter, “Codes and iterative decoding on
general graphs,” Euro. Trans. Telecomm., 1995.

[30] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, “Turbo decoding as an
instance of Pearl’s belief propagation algorithm,” IEEE J. Select. Areas Com-
mun., 1998.

[31] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes
by probability propagation in graphical models,” IEEE J. Select. Areas Com-
mun., 1998.

[32] G. Forney, “Codes on graphs: normal realizations,” IEEE Transactions on
Information Theory, 2001.

[33] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Trans. on Information Theory, vol. 42, pp.
429–445, March 1996.

[34] F. R. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans on Information Theory, vol. 51, pp. 498–515,
February 2001.

[35] R. McEliece, E. Rodemich, and J. Cheng, “The turbo decision algorithm,” in
Proc. 33rd Allerton Conference on Communications, Control and Computing,
Monticello, IL, 1995, pp. 366–379.

[36] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in gaussian
graphical models of arbitrary topology,” 1999.

[37] F. Guilloud, “Generic architecture for LDPC codes decoding,” Ph.D. disser-
tation, Télécom Paris, July 2004.

[38] J. Dai, “Design methodology for analog VLSI implementations of error con-
trol decoders,” Ph.D. dissertation, The University of Utah, December 2002.

126 BIBLIOGRAPHY

[39] C. Weiss, C. bettstetter, S. Riedel, and D. J. Costello, “Turbo decoding with
tail-biting trellises,” in URSI Int. sym. Sig. Sys. and Elec., 1998.

[40] M. Frey, “On analog decoders and digitally corrected converters,” Ph.D. dis-
sertation, Swiss Federal Institute of Technology, April 2006.

[41] J. Hagenauer, “Decoding of binary codes with analog networks,” in Proc.
Info. Theory Wksp., San Diego, CA, Feb 1998, pp. 13–14.

[42] H.-A. Loeliger, F. Lustenberger, M. Helfenstein, and F.Tarkoy, “Probability
propagation and decoding in analog VLSI,” in Proc. Int. Symp. Information
Theory. Cambridge, MA, 1998, p. 146.

[43] M. Frey, H.-A. Loeliger, F. Lustenberger, P. Merkli, and P. Strebel, “Analog-
decoder experiments with subthreshold CMOS soft-gates,” in Proc. IEEE
Conf. On Circuits and Systems, 2003, pp. 85–88.

[44] F. Lustenberger, M. Helfenstein, H.-A. Loeliger, F. Tarköy, and G. S.
Moschytz, “All analog decoder for a binary (18,9,5) tail-biting trellis code,”
in European Solid-State Circuits Conference, 1999, pp. 362–365.

[45] F. J. L. R. Bahl, J. Cocke and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans on Information Theory, vol. 20,
pp. 284–287, March 1974.

[46] C. Winstead, “Analog iterative error control decoders,” Ph.D. dissertation,
University of Alberta, 2005.

[47] B. Streetman, Solis state electronic devices. Prentice Hall, 2000.

[48] B. Razavi, Design of analog CMOS integrated circuits. McGraw-Hill, 2001.

[49] S. Aghtar, J. Haslett, and F. N. Trofimenkoff, “Subthreshold analysis of an
MOS analog switch,” IEEE Transactions on Electron Devices, vol. 44, pp.
86–91, 1997.

[50] R. M. Swanson and J. D. Meindl, “Ion-implanted complementary MOS tran-
sistor in low-voltage circuits,” IEEE J Solid-State Circuits, vol. SSC-7, pp.
146–153, 1972.

[51] B. Frey and F. Loeliger, “Factor graphs and algorithms,” in 35th Alteron Conf
on Communications, Contol, and Computing, September 1997, pp. 666–680.

[52] P. J. Black and T. H.-Y. Meng, “A 1-Gb/s, four-state, sliding block Viterbi
decoder,” IEEE Journal of Solid-State Circuits, vol. 32, no. 6, pp. 797–805,
1997.

[53] J. Ou and M. Prasanna, “Time and energy efficient Viterbi decoding using
FPGAs,” in IEEE International Conference on Acoustics, Speech, and Signal
Processing vol. 5, pp. V/33-v/36, March 2005., vol. 5, 2005, pp. v/33–v/36.

BIBLIOGRAPHY 127

[54] J. Tang and K. Parhi, “Viterbi decoder for high-speed ultra-wideband commu-
nication systems,” in IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 5, March 2005, pp. v/37–v/40.

[55] S.-W. Choi and S.-S. Choi, “200 Mbps Viterbi decoder for UWB,” in The 7th
International Conference on Advanced Communication Technology, 2005.

[56] H.Kim, H. Son, T. Roska, and L. Chua, “High-performance Viterbi decoder
with circularly connected 2-D CNN unilateral cell array,” IEEE Transactions
on Circuits and Systems, vol. 52, no. 10, pp. 2208–2218, Oct 2005.

[57] L. Dong, S. Wentao, L. Xingzhao, L. Hanwen, X. Youyun, and Z. Wenjun,
“Neural networks based parallel Viterbi decoder by hybrid design,” in Fifth
World Congress on Intelligent Control and Automation, vol. 3, Jun 2004, pp.
1923–1926.

[58] J. Lazzaro, S.Ryckebusch, M. Mahowald, and C. A. Mead, “Winner-take-all
networks of order N complexity,” in Proc. IEEE Conf. On Neural Information
Processing - Natural and Synthetic, Denver, 1988.

[59] E. A. Vittoz, “Analog VLSI signal processing:why, where and how,” Journal
of VLSI Signal Processing, vol. 8, Oct 1994.

[60] A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,” IEEE
Transactions on Communications, vol. 37, no. 11, pp. 1220–1222, Nov 1989.

[61] L.-R. Zheng, X. Duo, M. Shen, W. Michielsen, and H. Tenhunen, “Cost and
performance tradeoff analysis in radio and mixed-signal system-on-package
design,” IEEE Trans. on Advanced Packaging, vol. 27, no. 2, pp. 364–375,
May 2004.

[62] V. Srinivasan, G. Rosen, and P. Hasler, “Low-power realization of FIR fil-
ters using current-mode analog design techniques,” in Thirty-Eighth Asilo-
mar Conference on Signals, Systems and Computers, vol. 2, Nov 2004, pp.
2223–2227.

[63] J. M. Rocha-Perez and J. Silva-Martinez, “SC implementation of FIR fil-
ters for digital communication systems,” in Third International Workshop on
Design of Mixed-Mode Integrated Circuits and Applications, Jul 1999, pp.
179–182.

[64] N. Battersby and C. Toumazou, “Class AB switched-current memory for ana-
log sampled data systems,” Electronics Letters, vol. 27, pp. 873–875, May
1991.

[65] C. Toumazou, N. Battersby, and M. Punwani, “GaAs switched-current tech-
niques for front-end analogue signal processing applications,” in Proceedings
of the 35th Midwest Symposium on Circuits and Systems, vol. 1, Aug 1992,
pp. 44–47.

128 BIBLIOGRAPHY

[66] E. Ozalevli, W. Huang, P. Hasler, and D. Anderson, “VLSI implementation
of a reconfigurable mixed-signal finite impulse response filter,” in IEEE In-
ternational Symposium on Circuits and Systems, May 2007, pp. 2168–2171.

[67] Y. L. Cheung and A. Buchwald, “A sampled-data switched-current analog
16-tap FIR filter with digitally programmable coefficients in 0.8µ CMOS,” in
IEEE International Solid-State Circuits Conference, 1997, pp. 54–55.

[68] K. Bult and G. Geelen, “An inherently linear and compact most-only current
division technique,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1730–
1735, Dec 1992.

[69] A. M. Chiang, “Low-power adaptive filter,” in IEEE International Solid-State
Circuits Conference, Feb 1994, pp. 90–91.

[70] J. Hagenauer and M. Winkelhofer, “The analog decoder,” in Proc. Int. Symp.
on Information Theory. Cambridge, MA, 1998, p. 145.

[71] R. Storn, “Designing nonstandard filter with differential evolution,” IEEE
Signal Processing Magazine, vol. 22, no. 1, pp. 103–106, Jan 2005.

[72] B. Nauta, “A CMOS transconductance-C filter technique for very high fre-
quencies,” IEEE Journal of Solid-State Circuits, vol. 27, no. 2, pp. 142–153,
Feb 1992.

[73] ENG-228, 0.35µm C35 CMOS Matching Parameters and ENG-182, 0.35µm
C35 CMOS Process Parameters, Austriamicrosystems, rev. 2.0.

[74] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D. Meindl, “A physi-
cal alpha-power law MOSFET model,” IEEE Journal of Solid-State Circuits,
vol. 34, no. 10, pp. 1410–1414, Oct 1999.

[75] A. Erdogan, E. Zwyssig, and T. Arslan, “Architectural trade-offs in the design
of low power FIR filtering cores,” in IEE Proceedings on Circuits, Devices
and Systems, vol. 151, Feb 2004., pp. 10–17.

[76] GC2011A-3.3V digital chip, Texas Instruments Datasheet.

[77] G. Cardarilli, A. Re, A. Nannarelli, and M. Re, “Power characterization of
digital filters implemented on FPGA,” in Proceedings of the International
Symposium on Circuits and Systems, vol. 5, May 2002, pp. V.801–V.804.

[78] G. Liang and D. Allstot, “FIR filtering using CMOS switched-current tech-
niques,” in Proceedings of the International Symposium on Circuits and Sys-
tems, vol. 3, May 1990, pp. 2291–2293.

[79] S. Hemati and A. H. Banihashemi, “Convergence speed and throughput of
analog decoders,” IEEE Transactions on Communications, vol. 55, no. 5, pp.
833–836, 2007.

BIBLIOGRAPHY 129

[80] A. Demosthenous and B. V. Tomatsopoulos, “Effects of decoding depth on
the performance of the modified feedback decoding algorithm for convolu-
tional codes,” in London Communication Symposium, London, UK, 2003.

[81] C. Lahuec, G. L. Mestre, M. Arzel, F. Seguin, and M. Jézéquel, “Design and
test of a 0.25-µm BiCMOS doublebinary analog APP decoder,” in Proceeding
of Analog Decoding Workshop, Jun 2006, pp. 35–38.

List of Figures

1.1 Outline of digital transmission system 3
1.2 Several modulation techniques for baseband and bandpass digital

transmission . 5
1.3 Geometric representation of received signal 7
1.4 Correlation receiver(left) and matched filtered receiver (right) . . . 7
1.5 Geometrical illustration of signal to noise ratio 8
1.6 different schemes for a digital receiver 9

2.1 An example of rate 2/3 convolutional encoder 14
2.2 Tailbiting trellis of (7,5) RSC code 15
2.3 cut-set retiming for system conversion 16
2.4 Evolution of encoder structure; from controller canonical form (Di-

rect form I) to observer canonical form (Transpose direct form II)
using the concept of cut-set retiming. 17

2.5 Relationship between two state vectors x and y 17
2.6 Definition of variables in a sample convolutional encoder and cor-

responding trellis diagram . 19
2.7 Paths that correspond to b3 equal zeros (a) and one (b) 24
2.8 Graphical representation of α4(1) in BCJR algorithm (a) and Λ4

1(b2 =
0) defined in Forward-only algorithm (b) 25

2.9 An instance of time-varying convolutional code 26
2.10 The sub-trellis associated to four rows of extended Hamming (8,4)

generator matrix . 27
2.11 Trellis diagram for (8,4) Hamming code 28
2.12 Tail-biting trellis diagram for (8,4) Hamming code 28
2.13 a Markov chain with four states 29
2.14 An instance of convolutional encoder and its relationship to HMM 30

3.1 Construction of Tanner graph from parity check matrix 32
3.2 Illustration of message passing algorithm on a graph, variable-to-

function message (a) and function-to-variable message (b) 36
3.3 Procedure to convert a Bayes net to a factor graph 37
3.4 Baye’s net fo Hamming (7,4) code 37

LIST OF FIGURES 131

3.5 Messages in Normal graph . 38
3.6 An instance of a factor graph and its equivalent normal graph . . . 39
3.7 A method that incorporates systematic information into the code-

word to obtain a graph with desired nodes. 40
3.8 Controller canonical realization of recursive encoder 41
3.9 A global state vector comprised of local state vectors 43
3.10 Two different connectivities for a unique decoder applicable to

RSC and non-RSC tail-biting equivalent codes 44
3.11 A fatal loop due to initial null values of variable nodes that need

transformation to resolve the problem 45
3.12 A part of binary graph of (13,15)oct tailbiting CC 46
3.13 Binary graphs of recursive (7,5)oct tail-biting CC (N = 8). 46

4.1 Binary XOR gate . 51
4.2 Conversion from Log-likelihoods into probabilities and vice versa 51
4.3 Simple boxplus circuit . 52
4.4 Box plus circuit using the MOS transistors 55
4.5 Realization of Boxplus and summing circuits 56
4.6 The Boxplus circuit schematic in CADENCE 57
4.7 Product22 block as a part of Boxplus cell 57
4.8 Norm2 block as a part of Boxplus cell 58
4.9 Characteristic curve of ideal Boxplus by equation 4.7 58
4.10 Characteristic curve of Boxplus by simulation of figure 4.6 59
4.11 Three dimensional view of characteristic curve of the Boxplus sim-

ulation . 60
4.12 Three input boxplus . 61
4.13 Schema of three-input boxplus element 61
4.14 Four-input function node by using tree-input function node 62
4.15 One-input variable node . 63
4.16 Two-input variable node . 63
4.17 Three-input variable node . 64
4.18 Circuitry to determine ζVT . 65
4.19 Determining the factor ζVT by linear regression 65
4.20 Level shifter circuit . 66

5.1 Tanner graph of (8,4) extended Hamming code 68
5.2 Hamming (8,4) decoder in CADENCE 68
5.3 An instance of transient response of (8,4) extended Hamming code 70
5.4 Graph representation of (7,5) tail-biting convolutional code for a

frame length of eight . 70
5.5 One branch of analog implementation of the (16,8,5) decoder . . . 71
5.6 The analog (16,8,5) decoder . 72
5.7 An example of transient response of the convolutional decoder . . 72
5.8 A portion of the transient response shown in figure 5.7 73

132 LIST OF FIGURES

5.9 Decoder BER performance by circuit level simulation 74
5.10 Effect of symbol time on the decoder performance 74
5.11 Tanner graph for a (21,8,6) QC code 77
5.12 Extended version of the graph in figure 5.11 that exhibits inter-

column connections . 77
5.13 Node enumeration for Tanner graph of the (21,8,6) QC code . . . 78
5.14 CADENCE schematic to realize one column of graph 80
5.15 CADENCE symbol that encapsulates the schematic in figure 5.14

into a single block . 81
5.16 A block of LDPC decoder . 81
5.17 Top level hierarchy of the schematic digram for realization of the

graph in figure 5.13 . 82
5.18 Doubling the code length by cascading an extra block 82
5.19 QC code transient response . 83
5.20 BER performance of the QC LDPC 84
5.21 Product22 circuit schematic with optimized transistor size as are

mentioned in table 5.3 . 85
5.22 Circuit speed and performance for different currents and Eb

N0
. . . . 86

5.23 Effect of input average magnitude on the performance 88
5.24 Temperature effect on circuit performance 89
5.25 Magnified version of figure 5.24 89

6.1 A part of trellis for generator [1,(1+D+D2)/(1+D2)] 92
6.2 WTA-MAX circuit for realization of MAX and ARGMAX function. 95
6.3 (top) DC characteristic of WTA-MAX in figure (6.2) , (down) A

typical transient response . 96
6.4 Wilson current mirror . 97
6.5 WTA-N circuits which realizes a current comparator 98
6.6 Typical dynamic and static response of WTA-N 99
6.7 Complete circuit for Compare, Select and Rescaling (CSR) of two

metrics . 100
6.8 Typical transient response of complete circuit that illustrates the

effect rescaling . 101
6.9 DC characteristic of CSR circuit 102
6.10 Effect of metric’s range on bit error rate. 103
6.11 comparison of standard decoding with the one with non ideal Max

function as well as limiting the dynamic range for the metrics. . . 103

7.1 Three possible structures for digital receivers (a) Conventional re-
ceiver with analog matched-filter (b) Software radio inspired struc-
ture (c) Exploiting analog decoder with mixed-signal matched filter
yield a simple and power efficient solution for digital receivers . . 106

7.2 A CMOS inverter and its internal circuit which can be used as a
voltage-to-current converter . 110

LIST OF FIGURES 133

7.3 A balance structure yeild a good linear transconductor 110
7.4 Mixed-signal MAC architecture comprised of resistors R and 4R,

switchers, main transconductors, gm, compensating transconduc-
tors gm2 and gm3 and grounded capacitors. 111

7.5 Timing diagram of several MAC units to continuously filter incom-
ing signal . 114

7.6 Digital circuitry in a complete filter serves tap values stored in dig-
ital memory and the required delay between MAC units by digital
latch stack . 115

7.7 Frequency response of the MAC unit for three gain values 115
7.8 Theoretical and practical frequency response of a typical cosine

rolloff matched filter (4 bits quantization, rolloff factor=0.3, 40MHz
symbol rate, sampling frequency=160 MHz). 117

7.9 Bit error rate versus quantization levels (M) of a receiver with the
proposed matched filter. 118

7.10 Time response simulation for an ideal root raised cosine filter (up)
and a practical filter with 4-bit tap values. The circles in the upper
figure shows Barker’s stream and the filled circles in the lower fig-
ure are the output samples obtained from mixed-signal filter. They
are interpolated for a better visualization. The residual norm (after
normalization) of the figures is 0.117 in this case 118

List of Tables

2.1 Bit and block wise decoding by an example 24

5.1 DC simulation results for extended Hamming decoder 69
5.2 Examples of codes constructed from prime circulant sizes 76
5.3 W and L of transistors for different reference currents 85

6.1 Transistor dimensions (W/L) . 98

7.1 Mismatch and process parameters for NMOS and PMOS [73] . . 113
7.2 Designed filter taps and the corresponding code words 116
7.3 Comparison of the proposed filter with some other approaches . . 119

ANALOG APPROACHES IN DIGITAL RECEIVERS

Abstract: Modern digital receivers need computationally demanding processes that
leads to prohibitive complexity and power consumption. The idea of lending ana-
log blocks for realization of digital algorithms can sometimes relaxes the com-
plexity and high power consumption of digital receivers. The issue of analog ap-
proaches in digital receivers is studied in this dissertation by concentrating on two
areas; analog decoding and front-end processing.

For analog decoding, the realizations of some efficient decoders are presented
along which our contribution in this area in conjunction with graph theory is pro-
posed. In addition, analog realization of a fast Viterbi decoder is considered. It
is shown that there is a very nice analog solution for realization of Add-Compare-
Select that plays the central rule in Viterbi algorithm. In order to justify the pro-
posed analog decoders, Cadence package is used.

For front-end processing, a novel mixed-signal programmable filter is designed
and investigated. The filter is suitable for high-rate communication systems. The
proposed filter has analog input and analog sampled outputs. The filter is based on
simple CMOS inverter and thus can be integrated efficiently with digital parts.

Keywords: Analog Decoder, Graph, Sum Product Algorithm, Belief Propagation,
MAP, Trellis, Tailbiting, Analog Viterbi, FIR Filter, Mixed Signal

APPROCHES ANALOGIQUES DANS LES RECEPTEURS
NUMERIQUES

Résumé : Cette thèse propose d’utiliser des circuits analogiques pour réaliser des
algorithmes numériques. Le but étant de diminuer la complexité et la puissance
consommée et augmenter la vitesse. Deux applications gourmandes en temps de
calcul ont été considérées dans cette thèse : le décodeur et le filtre RIF.

On propose une structure analogique CMOS très efficace pour un décodeur
Viterbi et pour un décodeur sur les graphes de Tanner. Les structures proposées
ont été implantées et testées sous l’outil Cadence et démontre la validité de notre
démarche.

Quant au traitement de signal à l’entrée de décodeurs, un filtre RIF program-
mable utilisant la technologie CMOS a été étudié, conçu et implanté. La structure
proposée est bien adapté aux systèmes de communications haut-débits. Le filtre
possède une entrée analogique et une sortie échantillonnée, basée sur un simple
inverseur CMOS et peut donc être intégré de manière efficace avec les parties nu-
mériques sur une seule puce.

Mots Clés : Décodeur Analogique, Graphe, Propagations de Croyance, Algorithme
de Viterbi, Filtrage RIF, Implantation Mixte

