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Introduction

Let A be a commutative ring with unity and X be a derivation of A. Such derivation
is called locally nilpotent if for any element a € A, there exits an integer n such that
X"(a) = 0. The study of this kind of derivations goes back at least in the middle of
the twentieth century. To our knowledge, this came into existence from the areas of
Lie theory, invariant theory and differential equations, where the connection between
derivations, group actions and vector fields is established.

Nowadays, locally nilpotent derivations have made remarkable progress and became
an important topic in understanding affine algebraic geometry and commutative alge-
bra. This is due to its close relation to many classical problems in these areas. For
example, the Jacobian Conjecture, which was first formulated by Keller in 1939 [63],
asserts that a polynomial map f = (f1,..., fn), of the polynomial algebra Clz1, ..., x,],
is an automorphism if its jacobian Jac(f) is a nonzero constant. This problem is of
great importance in many disciplines, especially algebra, analysis and complex geome-
try. It is among the eighteen challenging problems for the twenty-first century proposed
by Steven Smale [97]. Using the language of locally nilpotent derivations, this problem
can easily be formulated as follows:

Let fi,..., fo_1 be polynomials in Clxy, ..., z,]. If the Jacobian derivation Xy, . .
has a slice, ie., an element s such that Xy, ,(s) = 1, then Xy, is locally
nilpotent and its ring of constants is C[fy, ..., fn_1].

1

In spite of many advances in attempt to solve this problem, it is still a big mystery,
even for the two dimensional case. Over the last years, many incorrect proofs have been
given to this problem, the last one was given by Carolyn Dean in 2004. One of the
encouraging results in order to simplify this problem is the reduction given in [101] §].
It was proved that it suffices to investigate the Jacobian Conjecture for polynomial
mappings of the form f = x + h with Jac(h) nilpotent and h homogeneous of degree
three. In this perspective, the three-dimensional Jacobian Conjecture has been solved
for all homogeneous polynomial maps of the form x + h, where h is homogeneous of
degree greater or equal to two, for more details see [79].

Another example, in which locally nilpotent derivations can be used, is the Cancella-
tion Problem. This problem asks whether every complex algebraic variety V satisfying
Y x C = C" is isomorphic to C*1. In terms of locally nilpotent derivations, this
problem can also be interpreted as follows:

Given a locally nilpotent derivation X of Clxy, ..., z,| having a slice, does it follow
that s is a coordinate ? i.e., s is the image of x1 under an automorphism of C[x1, ..., x,].

7
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The cancellation problem has been first posed by Zariski in 1942, and since then
it has been proven for the case two variables by Rentschler [87] and for the case three
variables by Fujita [55] and Miyanishi-Sugie [80] in the characteristic zero case and by
Russell in the case of positive characteristic [89]. However, for n > 4 it is still unsolved.
Recently, Musuda proved that every triangular derivation having a slice, respectively,
every locally nilpotent derivation of rank a most 3 having a slice, on the polynomial ring,
is a partial derivative, which in particular, gives two new cases in which the Cancellation
problem has a positive solution, see [74].

From the above formulation of the cancellation problem, we observe that it is di-
rectly related to the recognizing coordinate problem. i.e., recognize polynomials which
may be the image of x; under an automorphism of Clzy,...,z,]. Recognizing and
characterizing coordinates one way or another is of crucial importance for various ques-
tions in algebraic geometry, especially, in the study of polynomial automorphisms of the
affine space. Many researchers, including Drensky, van den Essen, Makar-Limanov, Sh-
pilrain, Yu and other, were working on different aspects of this problem, see for instance
[65, [71), 41, 100, 32, 95, 17, 12, 14]. In [77], Maubach proposed a new conjecture con-
cerning coordinates and locally nilpotent derivations called the Commuting Derivations
Conjecture. This conjecture asks whether, for n — 1 commuting linearly independent
locally nilpotent derivations X, ..., X, over K[z| := Klzy,...,x,], the polynomial f
satisfying NKC[z]Y = K[f] is a coordinate, where K is a commutative field of charac-
teristic zero. The answer of this question is unknown except for the three dimensional
case, which was proved by the same author. As a consequence, and taking into account
that the cancellation problem holds for two dimensional case, all coordinates of the
form p(z)y + q(z, 2,t) in the polynomial ring K[z, vy, z,t] have been described. Later
on, El Kahoui in his paper [33], studied the structure of affine unique factorization
IC-algebras of transcendence degree n without nonconstant units, equipped with n — 1
commuting linearly independent locally nilpotent derivations, and as a by-product, he
showed that the commuting derivations conjecture is equivalent to the weak version
of the Abhyankar-Sathaye Conjecture, which asks if a polynomial f € K[z] satisfying
K(f)z] ~xcp) K(f)"~Yis a coordinate in K[z]. Shortly after, this relationship allowed
van den Essen to announce that any polynomial f in X!, which is a coordinate in
KB+m for some m > 1, is a coordinate in KBl see [47].

From the algorithmic point of view, the question of deciding whether a given poly-
nomial f is a coordinate, is still completely open for n > 3. J. Berson, in his thesis [14],
constructed a new class of coordinates over a Dedekind domain, and in four variables
case, he proposed an algorithm to recognize such coordinates. In case n = 2, various
algorithms have been given to this problem [38, 18, 19, 95, 17, 13]. For example, in [3§],
van den Essen used locally nilpotent derivations to give an algorithmic characterization
of coordinates in two variables over a field of characteristic zero. A few years after, the
same author with Berson treated the same problem replacing the ground field IC by a
finitely generated algebra containing the rational numbers [13].

Locally nilpotent derivations can also be used to attack other problems in algebraic
geometry and commutative algebra, such as the Embedding Problem, the Linearization
Problem, the Fourteenth Problem of Hilbert and the Automorphism Problem. In [42],
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the cancellation problem, the embedding problem and the linearization problem were
discussed and it has been shown how these problems can be related to a special class of
locally nilpotent derivations. In fact, for each regular map from X" onto K™, a special
triangular derivation has been defined. Then, using these derivations, a characterization
of all embeddings of K" in K™ has been given. This characterization asserts that a
regular map from K" onto K" is an embedding if and only if its associated derivation,
which is locally nilpotent, has a slice system. This made possible to launch a relation
between the cancellation problem and the embedding problem and led to candidate
counterexamples for both the cancellation problem and the linearization problem in
dimension five, see also [54].

From the geometric point of view, locally nilpotent derivations of a polynomial
ring, over an algebraically closed field K of characteristic zero, correspond bijectively
to algebraic group actions of (IC,+) over the affine space ™. Such algebraic group
actions are called algebraic G,-actions and are all of the form exp(tX’), where X is a
locally nilpotent derivation of K[z]. So, the study of locally nilpotent derivations can be
reduced to the study of algebraic group actions of (X, +). Locally nilpotent derivations
in one variable are all of the form ad,,, where @ is an element of K. For the higher
dimensional case, many contributions have been done in order to understand this kind
of derivations from the geometric and algebraic point of view. Nevertheless, the current
understanding of this topic is still limited. The only completely understood case is the
polynomial ring in two variables over a field L. This is due to a result of Rentschler
in [87], which states that all algebraic G,-actions on the plane K? are triangular in a
suitable coordinate system. This gives a complete classification of all planar algebraic
G-actions, and likewise, all locally nilpotent derivations of K|z, y]. This result does not
hold for n > 3 as shown by Bass in [7]. In fact, Bass settled the existence of an algebraic
G.-action on K? which can not be conjugated to a triangular G,-action. Since then,
various works has been done in this direction and among the obtained results is the
well-known one of Kaliman in three dimensional case [61], which states that every free
G-action is a translation. In terms of locally nilpotent derivations, this is equivalent to
say that every fixed point free locally nilpotent derivation of polynomial ring, in three
dimensional case, is a partial derivative.

As an approach to understand locally nilpotent derivations in three dimensional case,
an interesting and motivating idea has been given by Freudenburg in [52]. It is called
local slice construction and basically consists in describing a new way to modify a given
locally nilpotent derivation in order to construct another new one. The question, which
was posed after illustrating this idea, is whether every locally nilpotent derivation can
be constructed from a partial derivation via a finite sequence of local slice constructions.
This question has been solved affirmatively by the same author for the case of irreducible
locally nilpotent derivations of rank at most two in K[z, y, z| [52, 54|, and by Daigle
for the case of homogeneous locally nilpotent derivations in three dimensional case
[27]. Local slice construction was first given in order to understand and generalize
the example of locally nilpotent derivation of rank 3, which was given in [51]. In this
sense, by using Fibonacci sequence, a class of three-rank homogeneous locally nilpotent
derivations has been constructed, which plays a crucial role in the classification of the
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standard homogeneous locally nilpotent derivations in three dimensional case.

In the end of the last century, Makar-Limanov has made a significant contribution to
understand algebraic geometry, which is considered among the important tools coming
out from the study of locally nilpotent derivations. More precisely, to an integral domain
A, he associated a new ring called the ML-invariant, which is the intersection of the
kernels of all locally nilpotent derivations of A, see [70]. This invariant has been used
to prove that the hypersurface x + 2%y + 2% + t3 = 0 in C* is not isomorphic to C3
[71], and is presently one of the powerful tools in the classification of algebraic surfaces,
see [31, 16, 25, 26]. For instance, in [25] Daigle studied locally nilpotent derivations
of the coordinate ring of algebraic surfaces defined by polynomials ¢(z) — xzy = 0 in
Kl[z,y, z], such surfaces are called Danielewski surfaces, and as consequence, he gave
a full description of all locally nilpotent derivations of a special Danielewski surface,
i.e., a Danielewski surface which its ML-invariant equal K. Afterward, he gave an
important results which characterize all the special Danielewski surfaces in terms of
locally nilpotent derivations see, [26].

Outline of the Thesis

The aim of this thesis is to present, on one hand, some problems in which locally
nilpotent derivations play a crucial role, namely, the coordinate problem and the para-
metrization problem. On the other hand, give some algorithms concerning locally nilpo-
tent derivations, which may contribute in understanding locally nilpotent derivations
in three dimensional case. It is organized as follows.

In chapter [1! we present a brief introduction of the concept of a locally nilpotent
derivation over rings and give some basic facts to be used in this thesis.

In chapter 2l we deal with the coordinates problem in the polynomial ring A[z, y],
where A is a unique factorization domain. First we treat the problem in the case where
A = K is a field. We give an algorithm to check whether a given polynomial f in
K[z, y] is a coordinate, and if so, to compute a coordinate’s mate of f. Then we extend
the obtained result over fields to unique factorization domains of characteristic zero. A
notable feature of the given algorithm is that it always produces a coordinate mate of
minimum possible degree.

In chapter 3l we address the problem of computing some invariants, namely the
plinth ideal and the rank, of locally nilpotent derivations in dimension three. We give
an algorithm which computes a generator of the plinth ideal for a given locally nilpotent
derivation. As a by-product, we give an algorithmic classification of locally nilpotent
derivations according to their rank.

Chapter 4/ concerns triangulable locally nilpotent derivations in dimension three. We
use the results obtained in chapter 3 to provide a method for recognizing triangulable
locally nilpotent derivation of the polynomial ring K[z, vy, 2], and in case the given
derivation is triangulable, the algorithm produces a coordinate system in which the
derivation takes a triangular form.
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Finally, chapter 5 deals with the polynomial parametrization of an affine space
nonsingular curve. We give a new approach for parameterizing an algebraic curve
by using the language of locally nilpotent derivations. We show that any polynomial
parametrization of the given curve is a solution of an ordinary differential system whose
underlying derivation is locally nilpotent. We also show that we may always choose the
derivation in such a way that the resulting parametrization has its coefficients in the
ground field. In the case where the curve is a complete intersection, we give an easy
and explicit way to find such a derivation.
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Résumé en francais

Cette thése porte sur ’étude algorithmique des problémes liés aux dérivations locale-
ment nilpotentes et leurs applications aux automorphismes polynomiaux de l’espace
affine.

Une dérivation X sur A est dite localement nilpotente si pour tout élément a de A
il existe un entier positif n tel que X™(a) = 0, tout en tenant compte que A est un an-
neau commutatif unitaire. Les dérivations localement nilpotentes sur les anneaux sont
des objets de grande importance dans beaucoup de domaines de mathématiques. Ses
propriétés ont été étudiées par beaucoup de chercheurs, en utilisant des techniques des
groupes algébriques, la géométrie algébrique, la théorie des représentations et I'algebre
commutative, & notre connaissance, I’étude des dérivations localement nilpotentes re-
monte au milieu du X X" siecle, et elle est issue de la théorie de groupe de Lie, la
théorie des invariantes et des équations différentielles. Cet amalgame a permis d’établir
la connexion entre les dérivations, les actions de groupe et les champs de vecteurs.

Durant la derniére décennie, les dérivations localement nilpotentes ont connu un
véritable progrés. Elles sont devenues un élément essentiel pour la compréhension de la
géométrie algébrique affine et d’algebre commutative. Cette importance est due au fait
que certains problémes classiques dans ces domaines, telles que la conjecture jacobienne,
le probléme d’élimination, le probléme de plongement, le probléme de linéarisation et le
14¢™m¢ probléme de Hilbert, ont été reformulés dans la théorie des dérivations localement
nilpotentes. Par exemple, la conjecture jacobienne, qui affirme qu'une application poly-
nomiale f = (f1,..., fn) de C[z1,...,z,] est un automorphisme si son Jacobian Jac(f)
est une constante non nulle, a été formulée de la maniére suivante : Soient fi,..., f, des
polynémes de Clzy, ..., x,]. Sila dérivation jacobienne Xy, s , a un élément princi-
pal, alors la dérivation Xy, , est localement nilpotente et son anneau de constantes
est C[f1,..., fn_1]. Ce probléme est d’une grande importance dans de nombreuses dis-
ciplines tel que l'algébre, 'analyse et la géométrie complexe [41]. Malgré de nombreux
progrés réalisés pour la résolution de ce probléme et méme dans le cas de deux vari-
ables, il reste sans solution notable depuis sa premiére apparition en 1939. Ce champ
scientifique est toujours considéré comme un des grands axes de recherche qui reste a
explorer. Dans ce contexte, un des résultats encourageants dans les essais de simplifier
ce probléme est la condition suffisante proposée dans [101], 8]. Il a été montré que la
conjecture jacobienne peut se réduire a ’étude des polynomes de la forme f; = x; + h;,
ou Jac(h) est nilpotent et h homogeéne du degré trois. Dans cette perspective, le case
de dimension trois a été compleétement résolue pour toutes les polynomes homogenes
de la forme x + h, ou h est homogéne du degré plus grand ou égal a deux [79].

13



14 CONTENTS

Un autre exemple est celui du probléme d’élimination dans lequel on demande si
une variété algébrique complexe V telle que V x C = C" est isomorphe & C*!. En
faisant appel aux dérivations localement nilpotentes X' de Clz, ..., x,], ce probléme est
équivalent au fait que tout élément principal s d’une dérivation localement nilpotente
est une coordonnée, c.a.d, s est 'image de x; par un automorphisme de Clzy, ..., z,].
Le probléeme d’élimination a été évoqué pour la premiére fois par Zariski en 1942 et il a
trouvé solution consécutivement, dans le cas de deux et trois variables par Rentschler
[87], Fujita [55] et Miyanishi-sugie [80]. Cependant, Pour le cas ou n > 4 il reste
encore ouvert. Par ailleurs, le probléeme d’élimination est également lié au probléme
de la reconnaissance des coordonnées, qui est un objet primordial lorsqu’on étudie les
automorphismes polynomiaux de 'algébre de polynémes. La reconnaissance des co-
ordonnées d’une maniére ou d’une autre est de grand impact en géométrie algébrique
affine, spécialement, dans 1’étude des automorphismes polynémes de 'espace affine.
Beaucoup de mathématiciens, y compris Drensky, van den Essen, Makar-Limanov, Sh-
pilrain, Yu et autres, travaillaient sur différents aspects de ce probléme, voir par exemple
[65, [71), 41, 100, 32, 95, 17, 12, 13, 14]. Grace au théoréme d’Abhyanka et Moh [1] ce
probléme a été résolu pour le cas de deux variables. Cependant, il demeure compléte-
ment ouvert pour n supérieur a 3. En utilisant des dérivations localement nilpotentes,
van den Essen a proposé une caractérisation algorithmique des coordonnées a deux
variables sur un corps de caractéristique nulle [38|, et dans [13], le méme auteur avec J.
Berson ont présenté un autre algorithme qui identifie les coordonnées a deux variables
a coefficient dans une algebre de type finie contenant les nombres rationnels.

D’un point de vue géométrique, les dérivations localement nilpotentes sur un anneau
de polynomes, a coefficient dans un corps algébriquement clos IC de caractéristique zéro,
correspondent aux actions algébriques de (K, +) sur 'espace affine K£". Beaucoup de
contributions ont été faites dans le but de comprendre ce genre de dérivations de point
de vue algébrique et géométrique [6, 31, 25 27, 33 54, 61, 70, [72, 3], 87]. Malgré cela,
la compréhension actuelle de ce sujet est encore limitée. Le seul cas qui, bien compris
complétement, est le cas d’un anneau de polyndémes a deux variables a coefficients dans
un corps K. Cela est diit & un résultat de Rentschler [87], qui dit que toutes les actions
algébriques sur le plan K? sont triangulaires dans un systéme de coordonnées. Ce
résultat n’est pas valable pour n > 3. En effet, un contre-exemple a été donné par Bass
[7] pour le cas n = 3 ou il a montré l'existence d’une action algébrique sur K? qui ne
peut étre conjuguée a une action algébrique triangulaire. Depuis, de nombreux travaux
ont été faites dans cette direction. Parmi les résultats obtenus, est celle donnée par
Kaliman en dimensions trois [61]. Il a démontré que chaque action algébrique n’ayant
pas un point fixe est une translation. En termes de dérivations localement nilpotentes,
cela équivaut que chaque dérivation localement nilpotente sans point fixe, sur ’anneau
de polyndmes a trois variables, est un dérivé partiel.

D’autre part, une idée intéressante pour étudier les dérivations localement nilpo-
tentes en trois dimensions a été mentionnée par Freudenburg [52] et elle est connue
depuis sous le nom de la construction des éléments principaux locaux. Cette idée est
basée principalement sur la modification d’une dérivation localement nilpotente donnée
pour construire une autre, et elle a été postulée pour la premiére fois dans le but de
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comprendre et de généraliser I’exemple donné pour la dérivation localement nilpotente
de rang 3 [51]. Dans ce contexte, la question qui a été posée par Freudenburg dans le but
de comprendre les dérivations en dimension trois et de savoir si toute dérivation locale-
ment nilpotente peut étre construite a partir d’une dérivé partielle via une séquence de
la construction des éléments principaux locaux. Effectivement, cette question a trouvé
une réponse significative par le méme auteur dans le cas des dérivations localement
nilpotentes irréductibles de rang < 2 dans 'anneau K|z, y, z] et par Daigle pour le cas
de dérivations localement nilpotentes homogenes en trois dimension [27, 52), 54].

Cette thése a pour objectif de présenter, d'une part, quelques problémes dans
lesquels les dérivations localement nilpotentes jouent un role crucial, a savoir le probléme
des coordonnées et le probléme de paramétrisation polynomial des courbes algébriques
dans l'espace affine. Et d’autre part, de donner quelques algorithmes qui peuvent con-
tribuer & la compréhension des dérivations localement nilpotente en dimension trois.
Dans ce sens, cette these sera organisée comme suit:

Au chapitre/l, nous introduisons quelques notations et définitions de base concernant
les dérivations localement nilpotentes qui vont étre utilisées durant tous le manuscrit.

Chapitre 2:
Les coordonnées en dimension deux sur un anneau factoriel

Soient Alz] := Alzy,...,z,] et f € Alz]. On dit que f est une coordonnée s’il
existe des polynémes fi, ..., f,_1 tels que Alz] = A[f, fi1,..., fn_1]- Reconnaissance les
polynomes susceptibles d’étre des coordonnées dans A[z] est I'un des principaux points
qui feront 1'objet d’étude de groupe d’automorphismes de I’algébre de polynomes A[z].
Malgré les nombreux travaux qui ont été réalisés dans ce contexte, ce probléme est
complétement ouvert lorsque n est supérieur a 3. Récemment, une nouvelle méthode a
été développée par J. Berson pour objectif de construire une classe de coordonnées en
se basant sur les plongements dans l'espace affine [13, chapitre 6]. Dans le cas de deux
variables, différents algorithmes ont été proposés pour ce probléme, voir [38, [18, 19, 95,
17, 13]. Néanmoins, lorsqu’on s’intéresse a trouver un compagnon, c.a.d, un polynéme g
qui vérifie K[f, g| = Kz, y], les méthodes existantes sont plus ou moins compliquées au
niveau du calcul. Par exemple, dans 'article [19], une formule intégrale a été développée
pour calculer un polynéme g vérifiant Jac(f,g) = 1, et par conséquent, elle résout le
probléme de compagnon. La méme question a été résolue en gardant la trace des
réductions de Grobner effectuées pour vérifier si f est une coordonnée [95]. En utilisant
la théorie des dérivations localement nilpotentes, une autre solution a ce probléme a été
proposée par Va den Essen dans [38]. Son résultat affirme qu’un polynéme f est une
coordonnée si et seulement si la dérivation jacobienne Xy = 0, f0,—0, f0, est localement
nilpotente et Z(0, f,d,f) = 1, et donc la question de calculer un compagnon pour f se
réduit a calculer un élément principal de &Y, i.e., un élément s tel que Xy(s) = 1.

En s’appuyant sur le résultat de van den Essen, nous présentons, dans ce chapitre,
un autre critére de reconnaissance de coordonnées en dimension deux qui est une sim-
plification de celui de van den Essen. En effet, nous montrons qu’un polynéme f est
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une coordonnée si seulement la dérivation &’ est localement nilpotente et que I’¢lément
qui se trouve juste avant le commencement des zéros X;'(z) est un élément de K*.
Dans ce cas, un compagnon de f est donné par g := (X' (x))*lX}"rl(x). L’avantage
de ce résultat, c’est qu’il réduit le calcul & vérifier uniquement la nilpotente locale de
la dérivation X;. Autrement dit, le calcul effectué nécessaire pour vérifier la nilpotence
locale de X} est suffisant pour vérifier si f est une coordonnée et a calculer un com-
pagnon dans le cas ou il existe. Une caractéristique remarquable de ce critére, c’est
qu’il fournit une solution simple du probléme du compagnon. En plus, le compagnon
produit par cette méthode est toujours plus petit par rapport au degré, ce que nous
montrerons dans le théoréme 2.2.6.

La reconnaissance des coordonnées en dimension supérieure est beaucoup plus com-
pliquée. Une approche pour I'envisager c¢’est de voir les coordonnées dans un anneau de
polynomes a deux variables a coefficients dans un anneau qui n’est pas un corps. Dans
ce sens, nous étendrons le résultat obtenu au cas d’un corps & un anneau factoriel de
caractéristique nulle. Nous donnons le théoréme 2.3.3 qui caractérise les coordonnées
en deux variables & coefficient dans un anneau factoriel. La réalisation de ce résultat
en algorithme nécessite d’avoir d’abord une solution algorithmique du probléme de la
décomposition suivante: Etant donné f,g € Alz,y] et a € A, ot A est un anneau
factoriel. Comment décider si g = h(f) mod(a), ou h est un polynéme dans A[t]? Pour
cela, nous construisons une suite h; ; de polynomes, en utilisant la division Euclidien,
qui nous aide a avoir une solution de notre probléme de décomposition. Puis, nous ter-
minons ce chapitre par donner une description détaillée de ’algorithme qui permet de
reconnaitre les coordonnées en deux variables sur un anneau factoriel de caractéristique
nulle, puis, nous présentons quelques exemples des coordonnées en dimension deux.

Chapitre 3
Caractérisation du rang des dérivations localement nilpotentes

Avoir une bonne description du groupe de K-automorphismes Autx (K[z]), de I'algebre
de polynémes K[z], est 'un des problémes majeurs en algébre commutative. Grace au
résultats de Van der Kulk et Jung [66], 59], on sait que tout élément de Autx (K|xy, z2]) se
décompose en produit d’automorphismes affines et triangulaires, Cependant, Autx(K[z])
reste complétement difficile & appréhender lorsque n > 3. On sait depuis peu que dans
le cas n = 3, ce groupe n’est pas seulement engendré par des automorphismes affines et
triangulaires. Shestakov et Umirbaev [94] ont en particulier démontré récemment que
le célébre automorphisme de Nagata n’admet pas de décomposition en automorphisme
de ce type. Or il se trouve que cet automorphisme s’obtient en termes d’automorphisme
exponentielle, c.a.d, de la forme exp(X'), ot X est une dérivation localement nilpotente
de 'anneau de polynomes K[x,y, z]. Dans cette optique, une approche a suivre pour
étudier le groupe Auti(K[z]) est celle qui vise a avoir une bonne description du sous
groupe d’automorphismes exponentielles. D’autre part, puisque il y a une correspon-
dance bijective entre les automorphismes exponentielles et les dérivations localement
nilpotentes, donc on peut se réduire & trouver une bonne description des dérivations
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localement nilpotentes de KC[z]. Les dérivations localement nilpotentes sur KClz;] sont
toutes de la forme ad,,, ol a est un élément de . On connait aussi que les déri-
vations localement nilpotentes de K[z, y] sont complétement classées, cela di a un
résultat de Rentchler (voir théoréeme [1.2.1). Concernant le cas de trois variables, de
nombreux mathématiciens y compris Daigle, Freudenburg et Kaliman ont contribué a
une meilleure connaissance du sujet en développant des méthodes bien différentes qui
constituent un grand pas vers une classification des dérivations localement nilpotentes
en dimension trois, voir |21, 22 27, 23, 28, 50, 52, 61, 54]. Toutefois, certains des
résultats obtenus, utilisant les méthodes topologiques, ne sont pas de nature algorith-
mique. Il serait donc agréable d’obtenir une classification algorithmique des dérivations
localement nilpotentes en dimension trois, mais cela semble étre un probléme fastidieux.

Dans ce chapitre, nous abordons certains invariants des dérivations localement nilpo-
tentes a savoir I'idéal socle S* = X (K[z]) N K[z]" et le rang, qui est le nombre minimal
des dérivés partielles nécessaire pour exprimer la dérivation X', on le note par rank(X).
Nous définissons d’abord la notion d’élément principal local minimal d’une dérivation
localement nilpotente, sur un anneau commutative unitaire, qui est 'indispensable clef
de tout ce qui suit. Puis, nous mentionnons une caractérisation de tous les éléments
principaux locaux minimaux; nous montrons que dans le cas ou 'anneau A est factoriel,
les éléments principaux locaux minimaux existent toujours. En plus, cette existence est
d’une nature algorithmique, nous donnons un processus pour calculer un élément prin-
cipal local minimal a partir d’un élément principal local donné, ce que nous expliquons
dans la sous-section 3.1.2. Dans le cas d’'un anneau de polynoémes a trois variables, cela
nous aide de déduire un résultat important concernant les générateurs de l'idéal socle.
En fait, en se basant sur la platitude de 'anneau K[z, y, z| sur K[z, y, 2]*, Daigle et
Kaliman ont constaté que l'idéal socle est toujours principal [28]. Ce résultat, nous
permet de trouver les générateurs de cet idéal: nous démontrons que I'idéal socle d'une
dérivation localement nilpotente X est engendré par l'image d’un élément principal
local minimal de la dérivation X, i.e., S* = (X(s)) pour un élément principal local
minimal s de X'. Notre résultat est basé aussi sur celui de Miyanishi [81], qui affirme
que 'anneau des constants d’'une dérivation localement nilpotente sur l'algébre K[z, y, 2]
est toujours un anneau de polyndémes a deux variables. Notons que la preuve donnée
par Miyanishi est de nature topologique et jusqu’a maintenant il n’y en a pas une autre
preuve algorithmique. Pour cela nous supposons, durant tout la suite de ce chapitre,
qu’un systéme de coordonnées de I'anneau des constantes K[z,y, z]¥ est disponible.

Le dernier paragraphe de ce chapitre a pour but de donner une classification des
dérivations localement nilpotentes selon leur rang. Pour ce faire, rappelons que la seule
dérivation sur KC[z] de rang zéro c’est la dérivation nulle et chaque dérivation de rang 1
est toujours de la forme p(y1, ..., Yn—1).Yn, dans un systéme des coordonnées y, . . ., Yp.
Une telle dérivation est localement nilpotente si et seulement si p ne dépend pas de
Yn- Notons aussi que si X est une dérivation localement nilpotente irréductible alors
pour tout élément c tel que X(c) # 0, les dérivations cX’ et X ont le méme rang. Cela
signifie que, pour le calcul de rang, nous pouvons se restreindre, sans perte de généralité,
a des dérivations irréductibles. Dans [50], il a été montré qu’'une dérivation localement
nilpotente de K[z] est de rang 1 si et seulement si son anneau des constants est un
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anneau des polynomes & n — 1 variables et qu’elle a un élément principal. En dimension
3, et en tenant compte le théoréme de Miyanishi, une dérivation localement nilpotente
irréductible est de rang 1 si et seulement si I'algorithme 4, qui calcule I’élément principal
local minimal, produit un élément principal. Cela veut dire que le cas des dérivations
de rang 1 est bien classé. Pour les dérivations localement nilpotentes de rang 2, nous
montrons que le rang d’une dérivation localement nilpotente vaut 2 si seulement si le
générateur de l'idéal socle est un polynéme en un seul variable u et que u est une
coordonnée dans 'anneau des constantes de X. Ce qui est en fait algorithmiquement
testable. En effet, il est algorithmiquement possible de vérifier si un polyndéme en
deux variables est une coordonnée. Nous utilisons pour cela ’algorithme donné dans le
chapitre 2. D’autre part, le fait que le générateur de I’idéal socle est un polyndéme en un
seul variable peut étre vérifié a l'aide de la décomposition fonctionnelle des polynoémes,
voir [56].

A la fin de ce chapitre, nous faisons une implémentation du programme qui cal-
cule le rang. Comme nous n’avons pas une version algorithmique de la théoréme de
Miyahishi, nous nous limitons au cas des dérivations de K[z, y, z] représentés dans une
forme Jacobienne, disons Jac(f,g,.), et dont 'anneau de constantes est généré par f,

g.

Chapitre 4
Dérivations localement nilpotentes triangulable en trois dimensions

Une dérivation localement nilpotente X de K[z] est dite triangulaire dans le sys-
téme de coordonnées (zi,...,x,) si pour tout ¢ = 1,...,n, nous avons X(x;) €
Klz1,...,2z;—1]. On dit que X est triangulable s’il existe un K-automorphisme o € K|z]
tels que o Xo~! est triangulaire dans le systéme de coordonnées (zy,...,x,), i.e., il
existe un systéme de coordonnées (yi, ...,y,) dans lequel X a une forme triangulaire.
Donner un critére de triangulabilité des dérivations est I'un des problémes majeurs en
ce qui concerne l’étude des dérivations localement nilpotentes. Il est pertinent aux
autres différents problémes fondamentaux en géométrie algébrique, comme le probléme
d’automorphismes modérées(Tameness problem) [41], 54]. Grace au résultat de Rentch-
ler [87], on sait que les dérivations localement nilpotentes en dimension deux sont toutes
triangulables, ce résultat a été utilisé apres pour donner une autre preuve du théoréme
de Jung [59] concernant les automorphismes modérées en dimension deux. Pour le cas
de plusieurs variables, le premier exemple d'une dérivation localement nilpotente non-
triangulable en dimension 3 a été donné par Bass |7]. Ensuite, la construction de Bass a
été généralisée par Popov [85] pour obtenir des dérivations localement nilpotentes non-
triangulables en toutes dimensions supérieures a 3. Depuis, de nombreuses tentatives
ont été faites pour trouver un critére de triangulabilité. Dans [85], Popov a proposé
une condition nécessaire de triangulabilité, basée sur la structure des points fixes de
la variété. Cependant, cette condition n’est pas suffisante comme a été constaté dans
[21]. Autres critéres de triangulabilité en dimension 3 ont été développés par plusieurs
mathématiciens dans ce domaine (voir [50, 21, 49, 23]). Pourtant, il est loin de les
rendre algorithmique.
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L’objectif de ce chapitre est de mettre au point un algorithme pour vérifier si une
dérivation localement nilpotente X donnée, de K[z, y, 2], est triangulable, et dans le cas
échéant de trouver un systéme de coordonnées dans lequel X' a une forme triangulaire.
Pour ce faire, rappelons que les dérivations triangulables en dimension n sont de rang
au plus n — 1. D’autre part, les dérivations localement nilpotentes de rang 1 sont
évidemment triangulables. Ce qui indique qu’en dimension 3, le seul cas que nous avons
besoin de traiter est celui des dérivations de rang 2. Dans ce sens, nous simplifions
d’abord la forme du probléme de triangulabilité en fonction de la notion d’élément
principal local minimal; nous montrons que pour chaque dérivation triangulaire X sur
K[z, vy, 2], il existe toujours un systéme de coordonnées (u, v, w) dans lequel la dérivation
X peut s’écrire de la forme suivant X' (u) = 0, X'(v) = c(u) et X' (w) = q(u,v), ot c¢(u) est
un générateur de I’idéal socle de la dérivation X. D’autre part, le fait que la dérivation
considérée est de rang 2, implique que, dans le cas ou la dérivation est triangulable,
tous les systémes de coordonnées dans lesquels la dérivation est triangulaire partagent la
méme coordonnée u. Donc, puisque nous avons déja u, trouver I'un de ces systémes de
coordonnées se réduit a trouver seulement deux compagnons v, w de u, de tel sorte que v
soit un élément principal local minimal de la dérivation et X' (w) soit un polynéme en u et
v. Dans ce but, nous notons l'idéal Z% := cK[z,y, 2] N K[z, y, 2]¥[s], ot ¢ = X(s) est un
générateur de I'idéal socle. Cet idéal contient des informations essentielles concernant la
triangulabilité de la dérivation X, en fait, par le théoréme [4.3.1 nous montrons qu’une
condition nécessaire et suffisante pour la triangulabilité de X est que I'idéal ZZ contient
un polynoéme de la forme H = p+ Q(u, s+ ¢(u, p)), ou p c’est un compagnon de u dans
I’anneau des constants de X'. En utilisant le théoréme de reste Chinois, nous démontrons
que cet critére peut se réduire a trouver un polynéme de la forme p + Q;(u, s + £;(u, p))
dans chaque idéal ZCX% ol c=c"...c", avec les ¢; sont premiers deux a deux.

La section 4.4 s’intéresse & donner une autre caractérisation algorithmique de la tri-
angulabilité qui nous permet de calculer un systéme de coordonnées de K[z, y, z| dans
lequel la dérivation X posséde la forme triangulaire qu’on cherche. Puis, nous termi-
nons ce chapitre par donner une implémentation de I’algorithme de triangulabilité.

Chapitre 5
Paramétrisation polynomiale des courbes intersections compléte non
singulieres

La paramétrisation des courbes algébriques est un outil fondamental pour de nom-
breuses applications, parmi lesquelles on peut citer la modélisation géométrique, I’
informatique graphique et CAGD (Computer Aided Geometric Design). Donner une
paramétrisation d’une courbe algébrique revient & exprimer une correspondance bijec-
tive entre le corps des fonctions de la courbe et le corps des fonctions du plan projectif.
Le calcul d’une paramétrisation rationnelle consiste essentiellement en deux étapes con-
sécutives, la premiéere étape portant sur I’analyse des singularités de la courbe dans le
plan projectif, qui peut étre réalisé soit par la technique d’explosion ou par les séries de
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Puiseaux. La deuxiéme étape consiste a trouver un point non singulier de la courbe dont
les coordonnées générent un corps d’extension, du corps de base, de degré aussi petite
que possible. Pour plus de détail, nous vous renvoyons a [3, [10, 58, 86, 90, 92, 93], 91].

Les courbes rationnelles qui peuvent étre décrites par une paramétrisation polynomi-
ale forment une classe intéressante, dans le sens ot il existe des méthodes qui leurs sont
applicables et non pas aux courbes rationnelles en général, voir [4], [34, 40, [48], 47, 46| [73].
Donc, il sera utile d’avoir un critére de paramétrisation polynomiale des courbes al-
gébriques. La condition sur laquelle une courbe algébrique peut étre paramétrée ra-
tionnellement est que son genre doit étre égal a zéro, c.a.d, le nombre de ses points
singuliers, comptés avec leur multiplicité, est maximum [98]. En utilisant ce résultat,
Abhyankar, dans [2], a démontré qu’une courbe algébrique rationnelle plane est paramé-
trable polynomialement si et seulement si elle a une place a I'infini. Une caractérisation
de ces courbes avec un algorithme pour calculer une paramétrisation dans le cas ot elle
existe a été proposée par Manocha dans [73]. Cependant, cette méthode exige qu’'une
paramétrisation rationnelle de la courbe algébrique soit disponible. Récemment, deux
nouveaux algorithmes ont été développés pour calculer une paramétrisation polyno-
miale d’une courbe plane sans point singuliére. Le premier algorithme fondé sur le
théoréme de Abhyankar-Moh [1] a été donné dans [57], et le deuxiéme algorithme fondé
sur des réductions de Grobner [95] a été donné dans [96].

Dans ce chapitre, nous allons proposer une nouvelle méthode de paramétrisation
en se basant sur la théorie des dérivations localement nilpotentes. Nous donnons un
critére qui est nécessaire et suffisant pour la paramétrisation polynomiale des courbes
algébriques non singuliéres dans I'espace affine. Dans le cas des courbes algébriques qui
sont intersection compléte, nous présentons un algorithme simple qui produit une telle
paramétrisation. L’idée principale derriére notre méthode, c¢’est que si une courbe irré-
ductible non singulier C a une paramétrisation polynomiale z(t), alors cette paramétri-
sation est en fait une solution d’une équation différentielle & = p(z), ot les composantes
de p sont des polynémes. En plus, cette équation différentielle n’a pas de point fixe
sur la courbe C. En termes algébrique, cela signifie que la dérivation correspondant a
cette équation différentielle est localement nilpotente et engendre le module de dériva-
tions Dg(K[C]) de anneau des coordonnées K[C] de la courbe C, ot K est la cloture
algébrique de K. Nous verrons aussi qu’on a toujours la possibilité de choisir une déri-
vation dont les coefficients sont dans le corps de base K, qui est la raison principale
derriére le fait que nous pouvons toujours trouver une paramétrisation a coefficients
dans K. En plus, la dérivation qui génére le module Dg(K[C]) a un élément principal s
et poursuit une paramétrisation de la courbe C, dans ce cas, est donné par

zi(t) = Z %exp(—sX)(Xj(mi))tj, i=1,...,n.

Rendre ce résultat algorithmique demande du travail, spécialement la vérification des
deux premiéres conditions, a savoir la décision que Di(K[C]) est de rang 1 et de trouver
un de ses générateurs. Donc cette optique, nous nous restreignons a un cas partic-
ulier des courbes algébriques sur lequel nous donnons un algorithme qui donne une

paramétrisation. C’est le cas des courbes qui sont intersection compléte. Rappelons
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qu’une courbe algébrique C est dite intersection compléte si son idéal associe Z(C) est
engendré exactement par n — 1 polynoémes fi,..., f,_1. Dans ce cas, nous montrons
que le module des dérivations Dg(K[C]) est toujours de rang 1 engendré par la déri-
vation jacobienne Xy . r . Ce résultat nous aide a présenter le théoréme 5.4.2 dans
lequel nous donnons une simple caractérisation des ensembles algébriques définies par
n — 1 polynémes qui sont susceptibles d’étre des courbes algébriques, non singuliéres,

irréductibles et qui sont polynomialement paramétrisables.

Le reste de ce chapitre est consacré a donner une vue détaillée sur les étapes de la
méthode de projection en comparaissant avec la notre. Puis, nous terminons ce chapitre
par donner quelques exemples, et comparer les performances de notre méthode avec celle
de la projection.



22

CONTENTS



Chapter 1

Preliminaries

In this introductory chapter we recall definitions and some basic properties concerning
locally nilpotent derivations over rings, especially over polynomial rings, which will
often be useful for us throughout this thesis. For more background on locally nilpotent
derivations, we refer to |41, 83, [54].

In all the sequel, K denotes a commutative field of characteristic zero and all consid-
ered rings are commutative of characteristic zero with unit. We devote our attention to
a special type of commutative rings, namely the polynomial rings. Often we will use the
abbreviation K[z] to mean the polynomial ring in terms of the variables z, ..., z, with
coefficients in K, and by K" we mean the KC-algebra of polynomials in n unspecified
variables.

1.1 Over-view on derivations

Definition 1.1.1 Let A be a ring. A deriwation of A is a map X : A — A such that
for any a,b € A, the following properties holds:

X(a+b) =X(a) + X()),
X(ab) = aX(b) + bX (a).

For example, in the polynomial ring KC[z], the usual partial derivatives 0,, with respect
to x; are derivations of ICz]. Another well-known example is the so-called triangular
derivations of K[z], i.e., derivations of the polynomial ring K[z] which satisfy X'(z;) €
Klzy,...,x;—q] forany i = 1,... n.

In the case of when A is an R-algebra, R is a ring, we say that a derivation of A is an
R-derivation if it annihilates all elements of R. The collection of all derivations (resp.
R-derivations) of A will be denoted by D(A) (resp. Dr(A)) and it is an A-module.
Moreover, if [.,.] is the Lie bracket, then (D(A),+,.,[,]) is a Lie algebra.

In the case of an R-algebra A and under the assumption that A is finitely generated
by a set G, any derivation X of A is completely determined by the images X'(a), a € G.
In particular if A is a polynomial ring we have the following well-known result, see [41]
Proposition 1.2.5].

23
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Proposition 1.1.2 Let A := R[z]. Then D (A) is a free A-module with basis Oy, , . . ., Oy,
and [0y, 0,] = 0 for all i, j. In other words, for any X € Dr(A):

=1

where the f;’s are elements of A.

1.1.1 Locally nilpotent derivations

A nonzero derivation of a ring A is said to be locally nilpotent if for any element a of
A, there exists a positive integer n > 1 such that X"(a) = 0, where X™ stands for the
n-fold composition X o...o X. In this case, we define the degree of a with respect to
X as degya = n — 1, where n is the smallest integer such that X"(a) = 0. An element
s € A is called a local slice of X if X(s) # 0 and X?(s) = 0. Moreover, if X(s) = 1,
then s is called a slice of X'. Notice that a nonzero locally nilpotent derivation needs not
have a slice, for example the derivation xzd, of K[z, y| has no slice. However it always
has a local slice.

A trivial example of locally nilpotent derivations is the partial derivatives 0,, on the
polynomial ring K[z] since 0,,(z;) = d; ;. Another class of locally nilpotent derivations
is given by the following proposition.

Proposition 1.1.3 FEvery triangular derivation of the ring K[x] is locally nilpotent.

Proof. We will prove this by induction on n. For n = 1 the claimed result is clear. Now

assume that the result holds for n—1. Clearly, X maps K[z1, ..., x, 1] into itself and so
restricts to a triangular derivation, say ), of K[x1,..., 2, 1]. By induction hypothesis
Y is locally nilpotent. From the fact that X(x,) € K[zy,...,2,-1] we deduce that
X™(x,) = 0 for n large enough. .

For n > 3, locally nilpotent derivations are not triangular in general, for instance see
[85, 7, 21] for counterexamples. In chapter 4! we will treat this problem in dimension
three and give conditions under which a given derivation has a triangular form in a
suitable coordinate system.

Let A be a commutative ring and X a derivation of A. By A%, we mean the set
of elements a € A which satisfy X'(a) = 0. This set is an integrally closed subring of
A, called the ring of constants of X or the kernel of X. The following useful result
concerns the ring of constants of a locally nilpotent derivation and can be found in [41]
Proposition 1.3.32]

Proposition 1.1.4 Let A be a K-domain and X be a locally nilpotent derivation of A.
Then the ring of constants A% is factorially closed, i.e., if a € AY and a = bc for some
b,c€ A, then b,c € AY.

As a consequence of this proposition, 4 and A% have the same unit elements, i.c.,
(AY)* = A*. Furthermore, every irreducible element of A% is irreducible in A, in
particular, if A is a unique factorization domain, then so is A¥.
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1.1.2 Local nilpotency criterion

Let A be a commutative K-algebra, X be a locally nilpotent derivation on A and ¢ be
an indeterminate over A. We extend X to a derivation of A[t] by setting X'(¢) = 0, and
for any a € AJt], we define the exponential map exp(tX’) as follows:

exp(tX).a = Z @ti.

7!
i>0

Since the derivation is locally nilpotent the above sum is always a finite sum. Fur-
thermore, the map exp(tX) is an K[t]-automorphism of A[t] with the inverse given by
exp(—tX).

To check whether a given derivation is locally nilpotent is still an open problem in
the general case. However, in the case of a finitely generated R-algebra, we have the
following useful result from [41, Proposition 1.3.16]

Proposition 1.1.5 Let A be an R-algebra with a generating set G, and X be a deriva-
tion on A. Then X is locally nilpotent if and only if for every a € G, there exists an
integer n such that X™(a) = 0.

In |38, 1.4.17], van den Essen gave a partial solution to the problem of recognizing
locally nilpotent derivations on polynomial rings over fields of characteristic zero. His
method was built of the disposal of sufficiently many algebraically independent elements
in the ring of constants. Indeed, he proved that for any nonzero derivation X of K[z],
if n — 1 algebraically independent elements fi, ..., f,_1 over K, which are in K[z]*, are
known and if we let n be the maximum of degrees of the algebraic extensions among the
field extensions K(f1,..., fn_1)(z;) C K(z), then 7 is finite and & is locally nilpotent
if and only if X7 (x;) = 0 for all x;.

In the case of Jacobian derivations this yields the following useful criterion. First,
let us fix some notations. Let fi,..., f,—1 be elements of the polynomial ring K[z]. The
Jacobian derivation of K[z] determined by fi,..., f,_1 is the derivation defined by

Xpy o foa (h),=detJac(f1, ..., fuo1,h)  Vh € K[z]
where Jac(f1,..., fn_1,h) is the Jacobian matrix of (fi,..., fu_1,h).

Theorem 1.1.6 Let X := Xy, 5., be a Jacobian derivation of the polynomial ring
Klz]. If X is locally nilpotent, then X1 (x;) = 0 for any i, where d = H?;ll deg f;.

Proof. Let V; be the affine algebraic set defined by the ideal f; = ... = f,1 = 0 and
KC[Vy] its coordinate ring. Let us write y(z,t) = (W(x,t), ..., Vo(z,t)) with v;(z,t) =
exp(tX).x;. Since exp(tX) is a K[t]-automorphism of K[Vy|[t], we have

filv(z,t)) = exp(tX). fi(z)
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for any ¢ = 1,...,n — 1. According to the fact that X'(f;) = 0, this gives

fily(z, 1) = fi(z) (1.1)
Let d; = deg,(vi(z,t)) and a € V; be such that deg(vi(c,t)) = deg,(vi(z,t)) for any
i=1,...,n. This means that d; = deg(z;).

On the other hand, the fact that fi(«) = 0 implies that f;(v(a,t)) = 0 for any i =
1,...,n—1, and therefore the algebraic curve C; parametrized by v(c, t) belongs to V.

Let ¢ be an indeterminate. Clearly, the polynomial v;(,t) — ¢ is irreducible in K(c)[t],
and so it has d; distinct roots in an algebraic closure K(c) of IC(c¢). If we denote by C;

the extension of C; to K(c), then any root 7 of v;(a, t) — ¢ gives a point 3 of C; which
satisfies 3; = c. Conversely, any point 3 of C; with 3; = ¢ satisfies 3 = v(a, 7), where
vi(a,7) = ¢ for some 7 € K(c). Thus, d; is the number of points § of C; such that
B; = c¢. On the other hand, the set of such points includes to the solution set of the
system

fl('r) = O?"anfl(x) =0, z;=c

By Bézout theorem, this system has at most H?:_ll deg( f;) solutions, which implies that
d; < H?;l deg(f)- -

In the case of two variables, this result is the same as the one given in [41, Theorem
1.3.52]. This is due to the fact that every locally nilpotent derivation in two variables
is of the jacobian form 0,, f0,, — Oy, fOy, for some f € K[x1,x2]. In hope to give a local
nilpotency criterion for any derivation of K|[z], we state the following conjecture which
has been proved for the triangular derivations case.

LNC Conjecture : Let X € Dx(K|[z]) be alocally nilpotent derivation. Then X! (z;) =
0 for all 4, where m = Z?;ol d’ where d = max;(degy(x;)).

1.1.3 Finite generation of the ring of constants

Let r € A and &, = m, o exp(tX), where m, : A[t] — A is the substitution homomor-
phism defined by m,.(g(t)) = g(r). For each element a of A and by a simple computation
we have the following algebraic identity, see [41, Lemma 1.3.20|

0= Y S (X (@) (1.2)

In case s is a slice of X, for any a € A, the coefficients £ (X?(a)) belong to A% for
any 4. This yields the following fundamental result, which dates back a least to [99].

Proposition 1.1.7 Let A be a K-algebra and X be a locally nilpotent derivation of A
with a slice s. Then A is a polynomial ring in s over A, i.e., A = A¥[s] . Moreover,
X = 0.
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An interesting question, when studying derivations, is to describe their rings of
constants. This question has a special interest since it can be related to some other
problems as, for instance, the cancellation problem. In the case of polynomial rings
over a field, it is given as:

Finite generators Problem : Let A := K™ and X be a derivation on A. Is it true that
A% is a finitely generated K-algebra?

As a consequence of (1.2)), we have the following important result, which completely
solves this problem in case of locally nilpotent derivations having slices, see [41, Corol-
lary 1.3.23].

Lemma 1.1.8 Let A be a K-algebra. Let X be a locally nilpotent derivation on A
having a slice s. Then AY = £_,(A). In particular, if G is a generating set for A, then
€_4(G) is a generating set for A%,

In case of locally nilpotent derivations without slices, an algorithm of computing all
generators of the ring of constants has been given by van den Essen. This algorithm
provided that the ring of constants to be finitely generated, see [37] or |41, p. 37,
1.4]. For derivations, which are not necessarily locally nilpotent, the algorithm given
by S. Maubach [75] can be used to compute generators of the ring of constants up to
a certain predetermined degree bound. The same author proved that this problem has
an affirmative answer for a special class of derivations, namely the triangular monomial
derivations, see [76]. In [67] S. Kuroda gave a sufficient condition for finite generation
of the ring of constants, but this holds just for homogeneous derivations on a finitely
generated graded normal domain over a field.

As proven in [30)], this problem is closely related to the famous 14-th problem of
Hilbert which asks if, for any subfield £ of the rational function field /C(z) containing
IC, the ring £LN K[z] is finitely generated KC-algebra. In [102] G. Zariski proved that the
Hilbert’s 14-th Problem has an affirmative answer in case the transcendence degree of
L over K is at most 2. As a consequence of this we have the following result due to M.
Nagata and A. Nowicki [82].

Corollary 1.1.9 Let X be a derivation of K[z]. If n < 3 then the ring K|x]" is finitely
generated over K .

For the case n > 4, some counterexamples have been given to this problem. For
instance, the well-known counterexample of P. Roberts in [88] was generated in [39, 64]
to prove the existence of locally nilpotent derivations with non-finitely generated ring
of constants in all dimension higher than 7. In [24] D. Daigle and G. Freudenburg
adapted the counterexample constructed by G. Freudenburg [53] in 6 variables, to give
another one, in the case n = 5, which realized as the kernel of the following triangular
derivations

X = 170, + (1123 + 12)0p, + 140,

in the polynomial ring K[zq,xs, z3, x4, 25]. The four dimensional case, still remains
unknown. However, recently S. Kuroda in [69] realized that the counterexample he



28 CHAPTER 1. PRELIMINARIES

gave in [68] for the 14-th problem of Hilbert can be achieved as a ring of constants of a
derivation. Thereby, the Finite generators Problem is completely treated for the case
of polynomial ring over a field.

If we restrict to the case of polynomial rings in two variables, we have the following
stronger theorem due to Nagata and Nowicki [82].

Theorem 1.1.10 Let X be a nonzero derivation of KClz,y]. Then there exists a poly-
nomial f such that Klz,y]* = K[f].

This result may be extended by replacing the ground field K by any unique factor-
ization domain of characteristic zero, see |33, [14].

Remark 1.1.11 [t is possible to have a trivial ring of constants, i.e., K[z,y]* = K.
An example of such case is given in [85, 7.3.1].

The following result is proved by Miyanishi [81] for the case £ = C and can be
extended to the general case in a straightforward way by using Kambayashi’s transfer
principle [62], see also [15] for an algebraic proof.

Theorem 1.1.12 Let X be a locally nilpotent derivation of K[z, y, z]. Then there exist
f,g € K[z, y, 2] such that K|x,y,2]* = K[f, g].

Contrary to Theorem [1.1.10 which is of algorithmic nature, it is not clear from
the existing proofs of Theorem 1.1.12/ how to compute, for a given locally nilpotent
derivation X of K[z, y, 2], two polynomials f, g such that K[z, vy, z]¥ = K[f, g].

1.2 Characterization of locally nilpotent derivations

Understanding locally nilpotent derivations on polynomial rings over a field is one of
the basic problems in the study of derivations. The case of one variable is clear, namely
all locally nilpotent derivations in K[x] are of the form a0, for some « € K.

In two variables case, the following result due to R. Rentschler, gives a complete
description of locally nilpotent derivations [87].

Theorem 1.2.1 Let X' be a nonzero locally nilpotent derivation on K[x,y|. Then there

exists two polynomials f,g € Klz,y| and a univariate polynomial h such that K|x,y] =
K[f, 9], K[z,y]* = K[f] and X = h([)9,.

As a consequence of this theorem, if A is a unique factorization domain containing
Q and X is a locally nilpotent derivation of A[z,y|, then there exists f € Az, y] and a
univariate polynomial h such that Az, y]* = A[f] and X = h(f)(0,f0. — O.f0,), see
[23]. In case A is an arbitrary ring, the situation is much more involved, see e.g., [? |.
However, we have the following result from [11, Theorem 3.3].



1.3. ONE-PARAMETER SUBGROUPS 29

Theorem 1.2.2 Let A be a Noetherian domain containing Q and X be a locally nilpo-
tent derivation of Alx,y] such that 1 € Z(X(x),X(y)). Then there exists a polynomial
f such that Alz,y]* = A[f] and X has a slice s. In particular, Alz,y] = Alf,s] and
X = 0,.

By using Theorem 1.1.12 D. Daigle gave the following useful result, which describes
all locally nilpotent derivations in three variables case [22].

Proposition 1.2.3 Any nonzero locally nilpotent derivation X of Klx,y, z| is a multi-
ple of the Jacobian derivation, i.e, X = aX},, where a € K[z, y, 2]*.

It is well known that for n > 4 the ring of constants of a locally nilpotent derivation
is not necessary generated by n — 1 elements, see for example [84]. However, in case the
transcendence degree of Qt(.A) is finite, where A is a K-domain, we have the following
algebraic identity

trdegy Qt(AY) = trdeg, (Qt(A))* — 1 (1.3)

This means that the ring of constants always contains n — 1 algebraically independent
elements. Using this result, we get the following theorem due to Makar-Limanov in the
case of polynomial rings over a field, see |70, Lemma 8§].

Theorem 1.2.4 Let X be an irreducible locally nilpotent derivation of A = K" and
fis-oy fao1 be n — 1 algebraically independent elements of A*. Then there exists a
nonzero element a € Qt(A"Y) such that X = aXy, 4, ,. In particular, Xy g, , is
locally nilpotent.

A generalization of this result is also given by the same author. He gave a description
of all locally nilpotent derivations of any affine K-domain, where IC is algebraically
closed. For more detail we refer to [72].

1.3 One-parameter subgroups of the polynomial au-
tomorphism group

Let K be a field and K[z] be the ring of polynomials in n variables with coefficients
in KC. Let ¢ = (f1,..., fn) be an n-uple in K[z]”. Consider the endomorphism of K|z]
which send each z; to f;, this endomorphism can be seen as a polynomial map of the
space K™ given by the substitution

a=(a,...,an) — o(a) = (fila),..., fula))

for all elements a € K. We say that o is a polynomial automorphism of K[z], if K[z] =
K[f1,..., fa]. The collection of all automorphisms of [z will be denoted by Autx(K[z])
and called the group of C-automorphisms of [z]. One of the known automorphisms is
the so-called the affine automorphism, i.e., the automorphism o € Autx(K[z]) such that
deg(o(x;)) =1,i=1,...,n. Another one is the so-called triangular automorphism, i.e.,
the automorphism defined as

o(x;) =ax; + f(x1,...,21), 6, €KL i=1,...,n
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The tame subgroup of Auty(K[z]) is the subgroup generated by the affine and trian-
gular automorphisms, and is denoted by T'Ax(K[z]). Automorphisms which belong to
T Ak (K[z]) are called tame, and those which are not tame are called wild.

Automorphisms of K2 are well understood. They are all tame and Auty (K?) is the free
amalgamated product of affine and triangular automorphisms along their intersection,
see [66, 59]. However, Autx(K™) remains a big mystery for the case n > 3. Recently,
an algorithm for recognizing tame automorphisms in three dimensional case is given in
[94], as a consequence of that, the existence of wild automorphisms was established.

In spite of many advances in this direction, it still difficult to describe this group.
Moreover, one still does not know what it is necessary to add with the tame automor-
phisms to obtain them all and this question appears well far from being solved. An
attempt to start the study of Auti(K[z]) is to investigate its one-parameter subgroups,
namely algebraic actions of (IC, +) on the affine n-space over K. Such actions are com-
monly called algebraic G,-actions, and are of the form exp(tX);cic, where X is a locally
nilpotent derivation of KC[z]. So studying one-parameter subgroups of Auty(K[z]) can
be reduced to the study locally nilpotent derivations of K[z]. In regard to this, the
classification problem of algebraic actions on K" can be reduced to the classifications
of locally nilpotent derivations of K|z].

As shown in Theorem [1.2.1] all locally nilpotent derivations in two variables are clearly
classified. Moreover, this classification is algorithmic. In three dimensional case, sev-
eral deep results which constitute a big step towards a classification of locally nilpotent
derivations are obtained, Proposition [1.2.3 is one of them, see also [54] and the refer-
ences therein. However, some of these results, which are obtained by using topological
methods, are not of algorithmic nature.

Recently in [29], D. Daigle studied the so-called basic elements in three variables over
a field, i.e., irreducible polynomials which belong to, at least, two rings of constants,
and in an attempt to approach the classification problem of locally nilpotent derivations
in three variables, he asks if every ring of constants of a locally nilpotent derivation
contains a basic element of K[z, y, z].

It would be very useful to obtain an algorithmic classification of locally nilpotent
derivations in dimension three, but this seems to be a difficult problem. One way to
approach this is to classify derivations according to their rank. In chapter 3, we address
the less ambitious problem of computing some invariants, namely the plinth ideal and
the rank, of locally nilpotent derivations in dimension three, and as a consequence,
we will show that the rank of a locally nilpotent derivation in dimension three can be
computed by using classical techniques of computational commutative algebra, namely
Grobner bases and functional decomposition of multivariate polynomials.

1.4 Coordinates in polynomial rings

A polynomial f € K[z] is called coordinate if there exists a list of polynomials fi, ..., f,—1
such that Klz] = K[f, f1,..., fu_1]- In the same way, a list fi,..., f. of polynomials,
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with r < n, is called a system of coordinates if there exists a list f,.1,..., f, of polyno-
mials such that Clz] = K[f1, ..., fn]. A system of coordinates of length n will be called
a coordinate system. The study of coordinates in polynomial rings over fields naturally
leads to do the same but over rings. Given a ring A and f € Alz], we say that f is a
residual coordinate if f is a coordinate of KCp[z] for any prime ideal P of A, where Kp
stands for the residual field of A in P.

Studying coordinates in the polynomial ring K[z], is one of the major topics in the
study of its group of automorphisms Autx(K[z]). Some work in this direction has been
achieved, see for instance [43, [12} [32]. For example, in [43] several ways to characterize
coordinates in two variables over (Q-algebras are given. Also, various results about
coordinates in two variables, that were previously known only for fields, are extended
to arbitrary Q-algebras. The following theorem is one of them, it is proved in [15] for
the Noetherian case and extended to the general case in [43].

Theorem 1.4.1 Let A be a ring containing Q. Then any residual coordinate of Alz, y]
is a coordinate of Alz,y].

A well-known conjecture of Abhyankar and Sathaye concerning coordinates states
that:

Abhyankar-Sathaye Conjecture: Let f € K[z] such that K[z]/f ~x K", Then f is a
coordinate in K[z].

This conjecture is proved by the famous Abhyankar-Moh’s theorem [1] in the case
of two variables. Whereas, for n > 3, it is still open in spite of much research in this
direction. However, in the case of three variables, we have the following result proved
by Kaliman in [60] for the case K = C and extended to the general case in [28].

Theorem 1.4.2 Let f be a polynomial in K|x,y, z| and assume that for all but finitely
many o € K the K-algebra Klx,y, 2]/(f — ) is K-isomorphic to KIZ . Then f is a
coordinate of Kz, vy, z].

A polynomial f of K[z] is called a local coordinate if it satisfies

K(f)[z] ~xcep) K.

As a consequence of Theorem [1.4.2, any local coordinate of K[z, vy, 2] is in fact a coor-
dinate, see [35]. The original proof of Theorem [1.4.2]is of topological nature, and it is
not clear how to compute polynomials g, h such that KC[f, g, h]| = K[z, y, z].

In algorithmic point of view, checking whether a given polynomial of Alz] is a
coordinate is still an open problem for n > 3. Coordinates of one variable are obviously
clear, namely, every coordinate of A[z| is of the form ax + b, with a is a unit of A and
b € A. In the case of two variables and A is a field, the first result of this direction was
that of S. Abhyankar and T. Moh in [I]. They proved that a polynomial f € K[x,]
is coordinate if and only if (0, f,0,f) = 1 and the curve C; defined by f = 0 has one
place at infinity. Then various and more or less explicit solutions have been given to
this problem, see e.g., [38, [18, 19} 95 17, 13].
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However, the closely related question of computing a coordinate’s mate, i.e., a poly-
nomial ¢g such that K[f, g] = Klz,y], is either not treated or solved in a more or less
involved way, see [13]. For instance, in [19] an integral formula is given for computing
a Jacobian mate, i.e. a polynomial g such that Jac(f,g) = 1, and as a by-product, it
solves the question of coordinate’s mate. In [95], the same question is solved by keeping
track of the so-called nonsingular Grobner reductions performed to check whether f is
a coordinate.

In chapter 2/ we will show another algorithmic criterion of coordinates in two vari-
ables over a unique factorization domain A of characteristic zero. A notable feature of
this method is that it always produces a mate of minimum degree.



Chapter 2

Coordinates 1in two variables over
UFD’s

This chapter is devoted to the recognition problem of coordinates in a polynomial ring
in two variables over a unique factorization domain. First, we are interested in algo-
rithmically recognizing coordinates and computing mates over fields of characteristic
zero. We show also that the method we describe always produces a younger mate.
Then we study coordinates in two variables over UFD’s of characteristic zero and give
algorithmic solutions to both the recognition and the mate problems.

2.1 Basic facts

Let A be a ring with unit containing the rational numbers and & be a locally nilpotent
derivation of A. A triangular polynomial f = ay + p(z) (resp., bx + q(y)) of Alz,y]
is a coordinate if and only if a (resp., b) is a unit of A, and if so g = x (resp. g = ¥)
is a coordinate’s mate of f. The triangular case being trivial, so from now on we will
assume that the considered polynomials are non-triangular.

The following lemma is a classical result concerning automorphisms of the affine
plane, and can be found in [7§].

Lemma 2.1.1 Let A be a domain of characteristic zero and (f, g) be an automorphism
of Alz,y], and let deg(f(0,y)) = di and deg(g(0,y)) = da. Then deg,(f) = di and
deg,(g) = dy. Moreover, if both dy and dy are positive, then f and g are monic with
respect to y and dy|ds or ds|d;.

The following lemma is useful and its general case can be found in |41, Proposition
1.1.31, p. 11].

Lemma 2.1.2 Let K be a field and let f and g be two polynomials in K|z, y] such that
Jac(f,g) = 1. Then f and g are algebraically independent over K.

Proof. Assume that there is a polynomial h € K[z,y| of minimal degree such that
h(f,g) = 0. Then we have

9:h(f,9)0xf + 9yh(f,9)0-g = 0, (2.1)

33
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Oh(f, 9)0yf + Oyh(f, 9)0yg = 0. (2.2)
Multiplying the equation (2.1) by 9,¢ and the equation (2.2) by 0,g we obtain

9zh(f, g)Jac(f,g) = 0.

In the same way, by multiplying the equation (2.1) by 0,f and the equation (2.2) by
O, f we get
ayh(f7 g)JaC(f, g) =0.

Since h is assumed to be of minimal degree, then
Ouh(z,y) = dh(x,y) = O, (2.3)

Since K is of characteristic zero, then the identity (2.3) means that h is constant and
so h = 0. .

A basic fact concerning slices of locally nilpotent derivations is given in the following
theorem which is a consequence of Theorem 1.1.10 and Proposition 1.1.7. The proof
we supply here is elementary and constructive.

Theorem 2.1.3 Let A be a UFD of characteristic zero and X = Xy be a locally nilpo-
tent derivation of Alz,y]. Assume that X has a slice g. Then Alx,y]* = A[f] and

Alz,y] = Alf, g].

Proof. The case where f is linear is trivial, so we will assume in the sequel that f is
nonlinear. Let P be a polynomial in A[z, y]*. By induction on the degree of P, we will
prove that P € A[f]. The case when deg(P) = 0 is clear. Assume now that the result
remains true for every polynomial of degree at most m and let P be a polynomial of
Alx,y]* of degree m + 1. Then

AyfoxP — dxfoyP = 0.
On the other hand we have

dyfoxg — Ox foyg = 1.
From the two last equalities we obtain the relations

{ OxP = F(x,y)0xf,
OyP = F(x,y)dyf,

where F(x,y) = 0xgdyP—0ygdzP. Since f is nonlinear then deg(F') < m. On the other
hand, an easy computation shows that 0, F0, f —0,F0,f = 0. By induction hypothesis,
we may write F(z,y) = h(f) with h € A[T]. This proves that P = H(f) + «, where
H € Qt(A)[T] is such that H' = h.

Now, we turn to prove that H has its coefficients in A. Since A is a UFD there is
an element 3 of A such that H, = fH € Aft] and H,(t) is primitive. Therefore
BP(x,y) = Hi(f), which gives
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Hi(f)=0 mod S. (2.4)

Assume that ( is not a unit in A and let ¢ be a prime factor of 3. On the first hand,
the fact that X(g) = 1 implies that f is nonconstant in (A/c)[t]. On the other hand,
equation 2.4] gives

Hi(f) =0 mod c,

and hence Hy(t) = 0 mod ¢ according to the fact that A/c is a domain and f is
nonconstant in (A/c)[t]. But this means that ¢ divides the coefficients of H;, and
contradicts the fact that H; is primitive. Thus, ( is a unit in A and so H has its
coefficients in A.

The fact that X remains locally nilpotent in Qt(A)[z,y| implies that (f,g) is an auto-
morphism of Qt(A)[z,y]. Let (fi,91) be the inverse of (f,g), and let us prove that f;
and gy are in fact polynomials in Az, y]. Since A is a UFD there is an element A of A
such that fo = \f; is primitive in A[zx, y].

Assume that A is not a unit of A and let ¢ be a prime divisor of A. From the identity
fa(f,g9) = Az, we deduce that

f2(f79>20 mod (C)a

and by lemma 2.1.2 we get

fao(x,y) =0 mod (c).

But this means that ¢ divides all the coefficients of f5, and this contradicts the assump-
tion that fo is primitive. Thus, A is a unit in A and so f; has its coefficients in A. In
the same way we prove that ¢g; € Alz,y]. .

2.2 Coordinates over a field

In this section we present another criterion for the Recognizing Coordinate’s Problem
in the case of a field of characteristic zero. A notable feature of this criterion is that it
gives a simple solution to the question of coordinate’s mate. Moreover, the produced
coordinate’s mate is always of minimal degree.

The following theorem, which gives an algorithmic characterization of coordinates
in two variables over a field, is the main result in this section.

Theorem 2.2.1 Let K be a field and f be a non-triangular polynomial in K|x,y]. Then
f 1s a coordinate if and only if the two following conditions hold:

i) the derivation X is locally nilpotent,

it) 11 = degy,x > 2 and X' (x) is constant.
In this case, also o = degy,y > 2 and X*(y) is constant and X;l_l(m), as well as
X}"rl(y), is a coordinate’s mate of f.
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Proof. =) Let g be a coordinate mate of f. Without loss of generality, we may assume
that Xy(g) = 1. This proves in particular that X7(g) = 0. Since on the other hand
Xr(f) =0 and Klz,y] = K[f, g], we deduce that X is locally nilpotent.

Let (f1,91) be the inverse of (f,g). So x = fi(f, g). Since Xy = 9,, it follows that

Xj(2) = (0. 11)(f.9) 2.5)

for all i. Write fi = 3" a;(x)y’, with deg,fi = r. Then by lemma 2.1.1 a, € K* and
hence Xj(x) = rla, € K*. This shows that degx,x = r. The fact that r > 2 follows
from the assumption that f is non-triangular.

Finally, X}"’l(a:) =rla,g + (r — 1)la,_1(f), which is clearly a coordinate’s mate of f.
<) By Theorem 2.1.3/ K[z, y] = K[, g], where g = (X} (x))_lX;l_l(x). .

The following algorithm gives the main steps to be performed in order to check that
f is coordinate over K and if so to compute its mate.

Algorithm 1: Coordinate’s algorithm over field

Input : A polynomial f € K[z, y].
Output :  Either a message that f is not coordinate or a mate g € K[z,y] of
f.

1: for 7 to degf + 1 do

2:  Compute X}(x) and X}(y)

3. if X;1+1(x) =0 and X}“ﬁl(y) = 0 for some 71,79 < degf then

4: if X7'(z) and X;*(y) are nonzero constants then

5 f is coordinate and (X' (9(;))_1/1?'}”171(1:), as well as,
(X;Q(y))_lX?_l(y) is a coordinate’s mate of f.

6 else

7: f is not coordinate

8 end if

9: else

10: f is not coordinate

11:  end if

12: end for

Remark 2.2.2 This result shows that the necessary computations performed to check
whether Xy is locally nilpotent, namely the computation of the iterates X}(m) and X}(y)
up to deg(f)+1, are enough for checking whether f is a coordinate and for computing a
coordinate’s mate in case it exists. Moreover, the obtained coordinate’s mate is younger
as we will show wn the next.

2.2.1 The inverse formula of polynomial automorphisms

Let A be a commutative ring with unit containing the rational numbers and let A|z]
be a polynomial ring. Let F' = (fi,..., f,) be an automorphism of A[z]. A well known
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method to compute the inverse of F' is to compute the Grébner basis of the ideal
Z(fi —u1,..., fn—1uy,) in the polynomial ring K[z, u], with respect to the lexicographic
order x; > ... = x, > u; > ... > Uy, which is of the form {z; — ¢1,..., 2, — gu},
where g; are polynomials in fClu]. In this case, if we let G = (g1, ..., ¢gn), then G is the
inverse of F, see [36] or [41, 3.2, p. 63]. Using the derivation theory, another formula
of the inverse of polynomial automorphisms is given in [41, Proposition 3.1.4, p. 62]
by computing, for each d > 1, the homogeneous component of degree d of F. M. El
Kahoui, in unpublished work, gave a determinantal formula, similar to the McKay-
Wong one [78], for computing the inverse of a polynomial automorphism of an affine
plane by using the subresultant theory.

From the proof of Theorem 2.2.1, we deduce another formula which gives an ex-
pression of the inverse of an automorphism of K[z,y] (formula (2.5)). In fact, this
can be established in the more general case of automorphisms of A[z], where A is a
commutative ring with unit containing the rational numbers.

Given n—1 polynomials f1, ..., f,—1 in Alz], let X}, 1., be the Jacobian derivation
of Alz]. When F' = (fi,..., f,) is an A-automorphism of A[z], the derivation Xy,
is locally nilpotent since

Xf17“~7fn71 (fl) = 67:,”'

Proposition 2.2.3 Let F' = (f1,..., fn) be an A-automorphism of Alx] with 1 as
Jacobian determinant, and G = (g1,...,9n) be its inverse. Then for any i =1,...,n
we have:

eXp<tXf1,m,fn—1>'xi = gi(fh ey fnflv t+ fn>

Proof. 1f we let g;(x) = 37, a;ij(w1,...,2,-1)7}, then we have the identity

Za@j(fl, ce ,fn—l)frz = Zj-

Applying Xy, ;. to the last equation we get

Xfl7~~~7fn—1 (23,) = (axngi)(flv sy fn)a

and by induction we easily prove that

Xfy s (@) = (0590 (fr, -, f)
for any k. Taking into account these relations we get
1
exp(tXy,, . fo 1) Ti = Z H(ﬁfggi)(fla S S
k

The right hand side of the last equation is nothing other than the Taylor expansion of
9i(fiy- -y fao1,t + fn) around f,. .
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2.2.2 The question of younger mate

The aim of this section is to show that the coordinate’s mate computed in Theorem
2.2.1lis a younger mate of the given polynomial. First let us begin with the following
lemmas which will be needed.

Lemma 2.2.4 Let A be a domain and f, g € Alt] be two polynomials such that deg(f) =
p, deg(g) = q and min(p, q) > 2. Let Res,(f —x,g —y) be the resultant of f(t) —x and
g(t) —y with respect to t. Then deg,(Res,(f—x,9—y)) = q, deg,(Res;(f —z,9~y)) =p
and Res,(f — x,g — y) is monic with respect to both x and y.

Proof. Let us write f = ¢,tP+...+co and g = dyt?+. . .+dy. Let Sylv(f(t)—z,g(t)—y) =
(a;r) be the Sylvester matrix of f(t) —z and g(t) — y. The coefficients a;; are either
constants or ¢y — z or dy — y. Moreover, the number of times ¢y — x (resp. dy — ¥)
appears in Sylv(f(t) — x,g(t) —y) is g (resp. p). On the other hand Res;(f —x,9 — y)
is the determinant of the Sylvester matrix, so that the bounds

degm(ReSt(f -9~ y)) <gq, degy(ReSt(f — &9 — y)) <D

To prove that these bounds are equalities, we need to be little bit more precise, and
give the exact subscripts j, k whose corresponding coefficient is ¢y — x (resp. dy — y).
In fact we have a;; = dy —y if and only if j > ¢+ 1 and k = j. Let us write

Res (f — 2,9 —y) = Z £(0)a10(1) -+~ Uprqo(prao)-

0€Sp+q

In order that a given o generates a term of the type ¢(do —y)P it should satisfy o(j) = j
for any j > ¢+ 1. This means that o(j) < ¢ for any j < ¢q. Therefore, the coefficient
of the monomial (dy — y)? in Res;(f — x,9 — y) is det(4,,), where A,, is the ¢ x ¢
principal submatrix of Sylv(f(t) —z, g(t) —y). Clearly, A,, is upper triangular and its
diagonal entries are equal to c¢,. Thus, we have

Resy(f — 2,9 —y) = cl(do — y)* +1(z,y)

with deg,(r) < p. Similar arguments show that Res;(f — x, g — y) is monic of degree ¢
with respect to x. .

Lemma 2.2.5 Let (f,g) be an automorphism of K[z,y] and assume that deg(f) >
deg(g). Let (f1,g1) be the inverse of (f,q) and write fi = amy™ + apm_1(x)y™ 1 +... +
ao(x) and g1 = byy? + by1(x)y?™ + ... + bo(z). Then the coefficients a,,—1(x) and
by—1(x) are constant.

Proof. Even if it means replacing (f,g) by (f o ¢,g o {), where ¢ is a suitable linear
transformation, we may assume that deg, (f) = deg(f) and deg,(g) = deg(g). Indeed,
such change of coordinates does not affect the condition deg(g) < deg(f). Moreover,
since the inverse of (f o f,go f) is ' o (fi,g1), the claimed conclusion will not be
modified.
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Let u,v be indeterminates. Since (f,g) is an automorphism and according to [41]
Theorem 3.3.1|, the resultant of f —u and g — v with respect to y writes as

Res,(f —u,g —v) = a(x — fi(u,v)).

If we let m = deg, (f) and n = deg,(g), then by Lemma2.2.4, f;(u,v) is a polynomial of
degree m with respect to v and of degree n with respect to v and its leading coefficients
with respect to both w and v are constants. Since the degree of the inverse (fi,¢1)
equals the degree of (f, g), we deduce that f; is of degree m.

Let h,, be the leading homogeneous term of f;. Then h,, is a power of a linear form
av + bu, and since deg,(hy,) < deg,(fi) = n < m then b = 0. This proves that
am—1(x) is constant. The fact that b,_;(x) is also constant follows immediately form
the Jacobian condition. .

Now, we are able to give the following result.

Theorem 2.2.6 Let K be a field and f be a non-triangular coordinate in K[z, y|. Let
ry = degy @ andry = degy,y. Then (X} (x)) " X~ (x), as well as (X7 (y)) 7 X2 (y),
15 a younger mate of f.

Proof. Let g be a younger mate of f such that Jac(f,g) = 1 and let (f1,g1) be the
inverse of (f,g). Let us write

fi=ayy? + ap_1(x)yPH + ..+ apx)
g1 = bqu + bq,l(x)yq_l 4+ ...+ bo(.ﬁlﬁ‘)

By Lemma 2.2.5, the coefficients a,_;(z) and b,_1(x) are constant, and taking into
account the algebraic identities in Proposition 2.2.3 we obtain the equalities

X?(x) = play, X})—i(x) = (p— DUpayg + ap-1),
Xi(y) =a'bg, X7 (y) = (¢ — DN gbeg + bg—1).

Therefore (X?(x))"' X7~ () = g + (pa,) 'a,_1, and this proves the claimed result.

2.3 The case of a UFD of characteristic zero

Recognizing coordinates over rings which are not fields is much more complicated.
In [13] an algorithm of recognizing coordinates is given in the case of two variables
with coefficients in a finitely generated K-algebra. In this section we address the same
problem replacing the ground field I by a unique factorization domain of characteristic
zero A.

2.3.1 Polynomial decomposition

In this subsection we give an efficient solution to the following problem, which will play
a crucial role to make our result working in an algorithmic way.
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Problem : Let A be a UFD and a be a nonzero element of A. Let f, g € Alz,y|. How
to check whether g = h(f) mod(a), where h is a polynomial in A[t]?

In the sequel, Rem(g, f;y) will stand for the Euclidean remainder of g by f with
respect to the variable y. The following lemma is the master piece of the solution we
give to this problem.

Lemma 2.3.1 Let A be a domain and f,qg two elements of Alx,y]. Then g = h(f) if
and only if Rem(g, f — t;y) = h(t), where h is a polynomial in Alt].

Proof. <) Assume that Rem(g, f — t;y) = h(t) then ¢ = h(t) mod(f — t) and by
substituting f to t we get g = h(f).

=) If g = h(f) then g—h(t) = h(f)—h(t) = (f —t) P, where P a polynomial in Az, y].
Since deg(h) < deg(f), then Rem(g, f — t;y) = h(t). .

Let A be a UFD, f,g be polynomials in A[z,y] and a be an element of A. Write
a = a"™...a, where the a;’s are irreducible. By using Euclidean division over the

Uy

domain A/(ay)[z,t], we let

h1,1(y) = Rem(g, f — t;y) mod(ay), qi1 = afl(g - h1,1(f))a

and then for j =2,...,m; we let

hi;(t) = Rem(g1j-1, f — t;y) mod(ai), ¢1; = ai (g1j-1 — h1;(f))-

We repeat the same process for as, as, ..., a, by letting for any i =2,... r

hij(t) :1R6m<9i,j—h f—t;y) mod(a,),
9ij = a; (gij—1 — hij(f)),

where j =1,...,m; and gip = gi—1.m,_,-

The solution of the above problem is stated in the following theorem.

Theorem 2.3.2 Let A be a UFD, f, g be two polynomials in Alz,y] and a be a nonzero
element of A. Then the following assertions are equivalent:

i) g = h(f) mod(a) for some h € Alt],

i) all h; ;’s are elements of Alt].

In this case, the polynomial h =3[ > 7" al"'h;(t) satisfies g = h(f) + agrm, -

Proof. i) = i) This is a direct consequence of the routine described above and Lemma
2.3.1.

i1) = i) By induction on the size m =my + ... +m, of a = a™ ... a*. If m =1, the
element a is irreducible, so the result follows from lemma 2.3.1. Assume now that the
result has been proved for the size less than m and let a be with size m + 1, Let a;
be a prime factor of a. By using Euclidean division over the domain A/(aq)[z, ], we
have g = hy11(f) + a191,1, and applying the induction hypothesis to g;; and arta, we
get g11 = ho(f) mod (a;'a) for some hy € A[t]. Therefore, g = h(f) mod (a), where
h(t) = hl’l(t) + (Zlho(t). ]
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2.3.2 Characterization of coordinates over a UFD

The following result produces an algorithmic characterization of coordinates over a
unique factorization domain.

Theorem 2.3.3 Let A be a UFD of characteristic zero and [ be a mon-triangular
polynomial in Alz,y|. Then f is a coordinate if and only if the three following conditions
hold:

i) the derivation Xy is locally nilpotent,

it) 11 = degy,x > 2 and X' (x) is constant.
iii) X Yz ) = h(f) mod(X;'(z)), where h € Alt].
In this case, (X["(2))~"

) AT Y(z) — h(f)) is a coordinate’s mate of f.

Proof. =) The conditions i) and i7) can be checked in the same way as in the proof of
Theorem 2.2.1), so the only thing that remains to prove is the condition #iz). Let g be
a coordinate’s mate of f such that X(g) = 1. Then

X(X" " (z) — X" (2)g) =0,

and so X" (z) — X" (x)g = h(f) by Theorem 2.1.3.

<) By Theorem 2.1.3 it is enough to prove that X, has a slice. Since X}l_l(x) =
h(f) mod(X}'(z)), there exists a polynomial g in A[z, y| such that X}qlfl(m) =h(f)+
(X' (x))g, which implies that Xy(g) = 1. .

The algorithm of this case is giving as follow

Algorithm 2: Coordinate’s algorithm over UFD

Input : A polynomial f € Az,y], where A is a UFD.
Output : Either a message that f is not coordinate or a mate with minimum
degree g € Alx,y] of f.
1: By using algorithm 1 check if A} is locally nilpotent, a local slice is then given by
g =X (2)

2: if X;'(x) € A then
Put a = X]’Zl*l(x) and compute h; ; as in theorem 2.3.2
if h; ; € Alt] then

[ is coordinate and (X7 (x))~"! (X;l_l(x) — h(f)) is a coordinate’s mate of f,

where h =331, 327" al hiy ().

else

f is not coordinate
else

f is not coordinate
10:  end if
11: end if

3:
4

Ut
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2.4 Implementation

In this section we give a pseudo-code description of the algorithm studied in the previous
sections. The algorithm takes as input a polynomial f in two variables with coefficients
in a UFD of characteristic zero and checks whether it is a coordinate, and if so, it
computes a coordinate’s mate. Moreover, it produces a mate of f of minimal degree.

2.4.1 Description of the coordinate algorithm

For a given polynomial f, the algorithm performs the following steps:

Step 1: It is well known that the leading homogeneous form of f should be a power
of a linear form. Thus, in this step we test if f satisfies this condition.

Step 2: We test if the derivation X is locally nilpotent, by computing the iterates
Xi(x) and Xj(y) up to d = deg(f). At the same time we check whether X' (x) is
constant, where r; = degy, (). Notice that according to the relation (2.5) the degree
of the i-th iterate should be bounded by min(d(d — 1),i(d — 2) 4+ 1). The computation
is stopped if the degree of X}(r) exceeds this bound. If A}*(z) divides X;l_l(x),

the polynomial (X' (x))_lX}"rl(x) is a younger mate of f. Otherwise, the algorithm
returns the polynomial X ;1_1(x) and the constant X' ().

Step 3: We check the condition iii) of Theorem 2.3.3/ by computing the h; ; which
corresponds to the routine described in Theorem 2.3.2.

Step 4: In case a coordinate’s mate is computed in step 3, we transform it into a mate
of minimal degree by using the following algorithm.

Algorithm 3: Reduction’s algorithm

Input : Two polynomials f and g such that deg,(f) divides deg,(g).
Output : A polynomial h € Aft] and g of minimal degree such that

g="n(f)+g

1: g :deg ,

2: if deng € N* then

3:  foritodegf—1do

4: - Compute the coefficients C; and C'y of yld=idee,f in respectively, § and f4°.
5: - Write C3 = aCy + 3

6: if a and @ are polynomial and content of « is integer then
7 g:=g— Oéfd_i

8: h:=h+ at??

9: else

10: return g

11: end if

12: end for
13: else
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14:  return g
15: end if
16: return g,h

2.4.2 Examples

In this subsection we present some examples of coordinates in two variables. For ex-
perimentations, we have used the Computer Algebra System Maple.

1) Let us consider the first component of the well-known Nagata automorphism over
Zlz][z, y]:
flx,y) =y + 20 + 2y,

By applying algorithm 1, we get that &’ is locally nilpotent and has 1 + 2zy as a local
slice with its image —22z% which is not a unit of Z|2].

Using algorithm 2, we get h = 1 + 2zt — 22t* which is an element of Z[z][t]. So f is
coordinate and a coordinate’s mate of minimal degree is

g(x,y) =x —2yzr — 2y3 — 232 2z2xy2 _ zy4.

It is also of minimal degree over Q. Since deg(g) > deg(f), we deduce that the Nagata
automorphism is not tame in Q[z][x, y].

2) In the ring Z[v/2][z,y], we consider the polynomial defined by

f(z,y) 3:x—2y(\/§x_y2)+\/§(\/§x_y2)2_
Bly— ()

Applying algorithm 2, we show that it is a coordinate and it has a mate of minimal
degree
g(z,y) = —y — V2¢* + 2.

3) Consider the polynomial in Z[z][z, y] defined by

flz,y) = —2*y'2 + (B3w2® — 525) 48 + (=32%22 + 10 2%x) y*
+5y + 3+ za® — 5 2322

The algorithm 1 shows that the derivation X has a local slice
374220000000002°z — 62370000000000z" — 37422000000000y* 2°

and by algorithm 2, we state that f is not a coordinate in Z[z][x,y]. It is, however, a
coordinate in the ring Q|[z][x,y], and a coordinate’s mate is

g(x,y) == —1/32* - 1/529* +1/5.
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Chapter 3

The rank’s characterization of locally
nilpotent derivations

Let K[z] be the polynomial ring over K and X be a derivation of KC[z]|. As defined in
[50] the co-rank of X', denoted by corank(X’), is the unique nonnegative integer r such
that K[z]* contains a system of coordinates of length r and no system of coordinates
of length greater than r. The rank of X', denoted by rank(X), is defined by rank(X’) =
n — corank(X). Intuitively, the rank of X" is the minimal number of partial derivatives
needed for expressing X'. The unique derivation of rank 0 is the zero derivation. Any
derivation of rank 1 is of the form p(fi,..., f,)0y,, where fi,..., f, is a coordinate
system, such a derivation is locally nilpotent if and only if p does not depend on f,,.

For such a derivation, let ¢ be the ged of X(zy),...,X(z,). We say that X is
irreducible if ¢ is a constant of K£*. It is well known that X'(c) = 0 and X = ¢}, where
Y is an irreducible locally nilpotent derivation. Moreover, this decomposition is unique
up to a unit, i.e., if X = 1), where )} is irreducible, then there exists a constant
i € K* such that ¢; = pc and Y = p).

Given any irreducible locally nilpotent derivation of K[z] and any ¢ # 0 such that
X (c) = 0, the derivations X and ¢X have the same rank. Thus, for rank computation
we may reduce, without loss of generality, to irreducible derivations.

3.1 Minimal local slice

This section concerns minimal local slices of locally nilpotent derivations on polynomial
rings. We show that for a unique factorization domain, minimal local slices always exist.

3.1.1 Existence of minimal local slices

Let A be a ring and X be a locally nilpotent derivation of A. A local slice s of X’ called
minimal if for any local slice v such that X'(v)/X(s) we have

X(v) = pX(s),

where p is a unit of A.

45
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The following lemma is the master key of the existence of minimal local slices.

Lemma 3.1.1 Let A be a domain and X be a locally nilpotent derivation of A. Let s
be a local slice of X, p be a factor of X(s) = ¢ and write ¢ = pcy. Then there exists
s1 € A such that X (s1) = ¢ if and only if the ideal pA contains an element of the form
s+ a where a € A",

Proof. =) Assume that there exists a local slice s; of X such that X'(s;) = ¢;. Then
X(ps; —s) = 0 and so ps; — s = a, where a is a constant of X. This proves that p.A
contains s + a.

<) Assume now that the ideal p.A contains an element of the form s + a, where a is a
constant of X', and write s + a = ps;. Then X(s) = pX(s1) and so X(s1) = ¢;. .

For the case of a unique factorization domain, the following result states the exis-
tence of minimal local slices.

Proposition 3.1.2 Let A be a UFD, X be a locally nilpotent derivation of A. Then for
any local slice s of X there exists a minimal local slice sy of X such that X (sq)/X(s),

Proof. i) Let s be a local slice of X and write X' (s) = up™ ...p", where p is a unit
and the p;’s are primes, and set m = >, m;. We will prove the result by induction on
m.

For m = 0, X(s) = p, and so p~'s is a slice of X'. This shows that s is a minimal local
slice of X. Let us now assume that the result holds for m — 1 and let s be a local slice
of X, with X(s) = pp{™ ...p" and ), m; = m. Two cases are then possible:

- Case 1: for any ¢ = 1,...,r the ideal p; A does not contain any element of the form
s+ a with X(a) = 0. In this case s is a minimal local slice of X by Lemma [3.1.1.

- Case 2: there exists ¢ such that p; A contains an element of the form s + a, with
X (a) = 0. Without loss of generality, we may assume that ¢ = 1. If we write s+a = p;s;

then X(s;) = p™~1pl? ... p™, and using induction hypothesis we get a minimal
local slice so of X' such that X(sg)/X(s1). The conclusion follows from the fact that
X(s1)/X(s). .

3.1.2 Computation of minimal local slices

The main question to be addressed, if we want to have an algorithmic version of Propo-
sition [3.1.2} is to check, for a given prime p of A, whether p.AN A%[s] contains a monic
polynomial of degree one with respect to s. In case A is an affine ring over a computable
field IC this problem, may be solved by using Grobner bases theory, see e.g. [5, 9, 20].
We only treat here the case of when A and A% are polynomial rings over a field since
this fits our need.

Proposition 3.1.3 LetZ be an ideal of K|z] and h = hy, ..., hy be a list of algebraically
independent polynomials of Klz]. Let u = uy,...,u; be a list of new variables and J
be the ideal of Klu,z| generated by T and hy — uy,...,hy —w,. Let G be a Grobner
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basis of J with respect to the lexicographic order uy < ... < uy < x1 < ... < x,, and
{91, ., 90} =GN K[u]. Then:

i) {91,---,90} is a Grobner basis of J N K[u] with respect to the lexicographic order
U < ... < Uy,

i1) the KC-isomorphism u; € Klu] — h; € K[h] maps J N K[u] onto Z N K[A].

In our case, we have Z = pKlz, y, z] for some polynomial p, and K[h] = K[f, g, s| where
f,g is a generating system of K[z, vy, 2] and s is a local slice of X. Let ui, us, us be
new variables and J be the ideal of Kluy,us,us, x,y, z] generated by p, f — ui,g —
ug, s — uz. Let G be a Grobner basis of J with respect to the lexicographic order
u < up <uz <x <y <zand G =GN Klup,uy, uz). By Proposition [3.1.3, the ideal
pKlz,y, z] N K[f,g,s| contains a polynomial of the form s+ a(f,g) if and only if G;
contains a monic polynomial £(uy, ug, uz) of degree 1 with respect to ug. In this case,
the polynomial we are looking for is ¢(f, g, s).

3.2 The plinth ideal

In this section we focus our attention on the case of polynomial rings in three variables
over a field. We give an algorithm to compute a generator of the plinth ideal of a
locally nilpotent derivation of K[z, y, z|. Besides Theorem [3.2.1, our algorithm strongly
depends on the fact that K[z,y,2]?" is finitely generated. Since we do not have at
disposal an algorithmic version of Miyanishi theorem [1.1.12, we assume a generating
system of K[z, y, 2]* to be available

Let A be a ring, X be a locally nilpotent derivation of A and let

SY = {X(a)/X*(a) = 0}.

It is easy to see that S* is an ideal of A?¥, called the plinth ideal of X. This is
clearly an invariant of X, i.e., S7¥7 " = o(S8%Y) for any automorphism o of A. In case
A = Kl[z,y, z], we have the following result which is a direct consequence of faithful
flatness of K[z, v, 2] over K[z, y, 2]*, see [28].

Theorem 3.2.1 Let X be a locally nilpotent derivation of A = Klx,y,z]. Then the
plinth ideal S* is principal.

The following result gives a generator of the plinth ideal in case it is principal.

Proposition 3.2.2 Let A be a UFD, X be a locally nilpotent derivation of A and s be
a local slice of X. If 8 is principal ideal, then it is generated by X (s) for any minimal
local slice s of X.

Proof. Assume that S is principal and let ¢ be a generator of this ideal, with ¢ = X (sy).
Let s be a minimal local slice of X . Since X(s) € S* we may write X(s) = ¢;X(s0).
The fact that s is minimal implies that ¢; is a unit of A”Y | and so X(s) generates S*. u
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At least in the case we are concerned with, the ideal S is principal according to
Theorem 3.2.1. So if we restrict to the case of derivations of K[z, y, 2] represented in
a jacobian form, the following algorithm gives the main steps to be performed in order
to compute a minimal local slice of a given locally nilpotent derivation.

Algorithm 4: Minimal local slice Algorithm

Input : A locally nilpotent derivation X of K[z, vy, z] and a generating system f, g of
Kla,y, 2]*.
Output : A minimal local slice s of X.

Compute a local slice sq of X.
Write X (sg) = pi"* ... p", where the p;’s are primes.
S = Sp.
for ¢ to r do
for j to m; do
Let G be a Grobner basis of Z(p, f —uq, g—usa, s—ug3) with respect to the lex-order
up <uy <uz <<y =<z and Gy =GN Kluy, ug, usl.
if G; contains a monic polynomial of degree 1 with respect to us, say us+a(uy, us)
then
Write s + a(f, g) = pisi-
s = 81.
else
Break.
end if
end for
end for

This algorithm may easily be modified to work for any locally nilpotent derivation of
K[z, ..., x,], provided we have at disposal a finite generating system of its K-algebra
of constants.

Remark 3.2.3 In [29] it is proved that if f is a basic element in K[x,y,z| then for
any locally nilpotent derivation such that f € Klz,y, 2] there exists a polynomial g
that satisfies K|x,y, 2]* = K[f, g] and a generator of the plinth ideal S* is of the form
a(f)g™ for some a € K[f] and n € {o,1}.

3.3 The rank in three variables

In this section we show that the plinth ideal holds a crucial information to give a
characterization of the rank of locally nilpotent derivations in dimension three. As a
by-product, we give an algorithm for computing the rank.
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3.3.1 The main result

It is well-known that the only derivation of rank 0 is the zero derivation. An irreducible
locally nilpotent derivation of K[z] is of rank one if and only if K[z]* = KM~! and
X has a slice, see [50]. In dimension 3, and taking into account Theorem [1.1.12, an
irreducible locally nilpotent derivation is of rank one if and only if Algorithm 4 produces
a slice. Therefore, we only need to characterize derivations of rank two.

Now, we are ready to announce the main theorem in this section.

Theorem 3.3.1 Let X be an irreducible locally nilpotent derivation of Klz,y, z] and
assume rank(X) # 1. Let us write K[z, y, 2] = K|[f, g] and 8* = cK|[f,g]. Then the
following are equivalent:

i) rank(X) = 2,

it) ¢ = L(u), where { is a univariate polynomial and u is a coordinate of K[f,g],

i11) ¢ = l(u), where u is a coordinate of Klx,y, z].

Proof. i) = i) Assume that rank(X) = 2 and let u,v, w be a coordinate system such
that X(u) = 0. The derivation X is therefore a K[u]-derivation of K[u|[v,w], and since
K[u] is UFD, there exists p € K[z, y, 2] such that K[f, g] = Klu, p]. This proves that u
is a coordinate of K[f, g].

Let us now view X' as K(u)-derivation of KC(u)[v,w]. By Theorem 1.2.1, X = a(v')d,,
for some v, w" € K(u)[v,w] and a € K(u)[v']. Since X is irreducible, then a € K(u)
which means that X have a slice s in K(u)[v,w]. Let us write s = k(u) 'h(u, v, w),
then X (h) = k(u). Let ¢ be a generator of S*. Then ¢ divides k(u), and since K[u] is
factorially closed in KC[u, v, w], we have ¢ = {(u) for some univariate polynomial /.

a’u)
(u

i1) = ti1)Assume that ¢ = f(u), where u is a coordinate of K[f, g] and write K[f, g] =
Klu,p]. Let s be such that X(s) = ¢. If we view X as K(u)-derivation of K(u)[z,y, 2]
then K(u)[z,y, 2]* = K(u)[p] and X(c"'s) = 1. By applying Proposition 1.1.7 we get
K(u)lz,y, z] = K(u)[p, s]. From the observation after Theorem [1.4.2, we deduce that u
is a coordinate of Kz, y, z].

i1i) = 1) Since rank(X) # 1 the polynomial ¢ is nonconstant. Then we have X(c¢) =
¢ (u)X(u) = 0, and so X(u) = 0. On the other hand, since u is assumed to be a
coordinate of Klx,y, z], we have rank(X) < 2. By assumption rank(X) # 1 and so
rank(X) = 2. .

The conditions of 4i) in Theorem 3.3.1 is in fact algorithmic. Indeed, it is algorith-
mically possible to check whether a given polynomial in two variables is a coordinate,
see chapter 2 or |1}, 13, [95]. Here we will use this step as a black box, but it is worth
mentioning that from the complexity point of view, the algorithm given in [95] is the
most efficient as reported in [96]. On the other hand, condition ¢ = ¢(u) may be checked
by using a special case, called uni-multivariate decomposition, of functional decompo-
sition of polynomials, see e.g. [56]. It is important to notice here that uni-multivariate
decomposition is essentially unique. Namely, if ¢ = ¢(u) = ¢1(u;), where u and u,, are
undecomposable, then there exist y € K* and v € K such that u; = pu+v. Taking into
account the particular nature of our decomposition problem, it seems more convenient
to use the following proposition.
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Proposition 3.3.2 Let c(z) € K[z] be nonconstant and u = uy, ..., u, be a list of new
variables. Then the following are equivalent:

i) c(x) = L(y1(x)), where  is a univariate polynomial and yy is a coordinate of K[z],
it) y1(z) —y1(w)/c(z) — c(u) and yy is a coordinate of K[z].

Proof. i) = ii) Let ¢ be a univariate polynomial and ¢,t, be variables. Then we have
t —to/L(t) — L(to). This shows that yi(z) — y1(u)/l(z) — {(u).

ii) = i) Let ya,...,yn be polynomials such that y = y1,...,yn is a coordinate system
of K[z], and let v; = y;(u). Then v = vy,...,v, is a coordinate system of K[u].
Let us write c(z) — c(u) = (y1(z) — y1(w))A(y, z) and c(z) = £(y). Then we have

((y) —L(v) = (1 —v1)B(v,y). (3.1)

Let us now write £(y) = >, aa¥s” ... yn" . After substituting y1 to v; in the relation 3.1
and taking into account the fact that vo, ... v, 4o, ..., y, are algebraically independent
over Ky1], we get a, = 0 for any a # 0. This proves that £(y) is a polynomial in terms
of Yi-

3.3.2 The rank algorithm

Before implementing algorithms for locally nilpotent derivations of K[x,y, 2] we must
first specify how such objects are to be concretely represented. Any chosen representa-
tion should address the two following problems.

Recognition problem: Given a derivation X of K[z, v, 2], check whether X is locally
nilpotent.

Kernel problem: Given a locally nilpotent derivation X of K[z, y, z|, compute f, g such

that K[z,y, 2]* = K[f, g].

Usually, a derivation X of Kz, y, z] is written as a K[z, y, z]-linear combination of
the partial derivatives 0, 0,,0,. However, with such a representation, the recognition
and kernel problems are nowhere near completely solved. To our knowledge, only the
weighted homogeneous case of the recognition problem is solved, see [44]. One way to
go round this hurdle is to opt for another representation. The Jacobian representation
gives another alternative to represent locally nilpotent derivations. Indeed, by Propo-
sition [1.2.3, any locally nilpotent derivation of K[z, y, 2] is, up to a nonzero constant
in K[z,vy,2]", equal to Jac(f,g,.). According to Theorem [1.1.6/ and in order to check
whether a Jacobian derivation X = Jac(f,g,.) is locally nilpotent, it suffices to check
that X4 (z) = X (y) = X4 (2) = 0, where d = deg(f)deg(g). However, it is still
not clear how such a representation could help in solving the kernel problem. Never-
theless, we may always check whether this ring of constants is generated over K by f, g
by using van den Essen’s kernel algorithm [41]. Due to the above discussed issues, we
have restricted our implementation to the case of derivations of K[z, y, z| represented
in a Jacobian form, say Jac(f,g,.), and whose ring of constants is generated by f, g.

Now the algorithm for computing the rank of a locally nilpotent derivation in di-
mension 3 is.
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Algorithm 5: Rank Algorithm

Input : A locally nilpotent derivation X of K[z, y, z] and a generating system f, g of
Klz,y, 2",
Output : The rank of X.

Write X = a10, + a20, + a30,. Compute ¢; = gcd(ay, az, az) and write X = ;).
By using Algorithm 4, compute a minimal local slice s of ). A generator of SY is
then given by ¢ = Y(s).
if c is a unit then
rank(X) =1
else
Compute a factorization of ¢(f,g) — c(t1,t2) in K[f, g, t1, ta)where t1,ty are new
variables.
if no factor of ¢(f, g) — c(t1,t2) is of the form u(f, g) — u(ty,t2) then
rank(X) =3
else
if w is a coordinate of K[f, g for a factor of the form u(f, g) —u(t1,t2) of c(f, g)—
c(t1,t2) then

rank(X) =2
else
rank(X) =3
end if
end if
end if

In case rank(X) = 2, this algorithm produces a coordinate u which belongs to K[z, y, 2]

but does not produce any coordinate system which contains u. This is due to the fact
that we do not know any algorithmic version of Kaliman’s result [60].

3.3.3 Examples

Example 1: Let us take, in the first example, the well-known example established by
Freudenburg [51] for a derivation of rank 3. So let

f=xz+1?
g=2f%+22%yf — 2°.

By using algorithm 4 we compute the minimal local slice of the Jacobian derivation
Xtg, we get that

s =2(xz +y°)(—2° + yzz + ¢°)
and its image which is a generator of the plinth ideal S¥7s is given as

c = 228 — 82%ySx — 1223y*2? — 4y"a? — 1200232 — 12932122 — 8x%a3y? — 423ya® —
2252 + 2%y + 4a5y? 2 + 22722
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Viewing ¢ as an element of the polynomial ring K[f, g] and using algorithm 5 we obtain
that ¢ = f2g, which is not a coordinate in K[f, g]. So as consequence of Theorem 3.3.1,
we deduce that the derivation is of rank three.

Example 2: Consider the derivation X defined by polynomials

fi = —x — byz — 142z — 28xy2? — 143223 + 2% + 222 + 2yz + 2y°2 — 222 — 2y22 +
202 + dayz + 2% 22

and

fo = T2’z + ldayz® + Ty?23 — y? + 2yz — 22 —yx —y*2 + 22 + y2? — 2% — 2oyz — Y22
In the first step, applying the algorithm 4, we show that the minimal local slice of X" is
given as

5 = 2x 42y — 22+ 10yz — 4y%2 + 4oz + 4yz% 4+ 2822 2 + 28y 2% — 49?22 + 56ay2? — Saxyz —
4a? — 4y? — 42° — dyx

Its image, which is a generator of S¥, is
c = 28zyz + 14y 2% + 1422

So as a consequence of this step, X is not of rank 1.

By the algorithm 5 we get that the derivation is of rank two, so the obtained result
shows that the polynomial ¢ is of the form 14u? with © = z + zy, and that u is a
coordinate in A% with its coordinate’s mate given as p := fo.

As we showed in this chapter, the plinth ideal of a locally nilpotent derivations
contains crucial information about this derivation. In the next chapter we will show
that it also holds more other information which can be used to give a characterization
of triangulable derivations in three variables case.



Chapter 4

Triangulable locally nilpotent
derivations in dimension three

All over this chapter, K is a field of characteristic zero. Let X be a derivation of
K[z]. We say that X is triangulable, if there exists an K-automorphism o of K[z]| such
that 0 Xo~!(x1) € K and for i > 2 0 Xo ! (x;) € K[z1,...,2;_1]. A natural question,
when studying derivations, is to decide whether a given locally nilpotent derivation
is triangulable. The case of two variables was algorithmically solved by Rentschler’s
theorem [1.2.1. For the case n > 3, the first example of non-triangulable G,-action in
dimension 3 is given in [7]. Then the construction of this example was generalized by
V. L. Popov in [85] to obtain non-triangulable G,-actions in any dimension n > 3.

A necessary condition of triangulability, based on the structure of the variety of fixed
points, is also given in [85]. It is proven that the set of fixed points of a triangulable
derivation must be cylindrical, i.e., isomorphic to .V, where V is an algebraic variety
of K2. However, this condition is not sufficient as proved in [21]. Other criteria of
triangulability in dimension 3 are given in [50} 21], 49, 23]. Whereas, it is nowhere near
obvious to make all of these methods work in an algorithmic manner.

This chapter deals with the triangulability of locally nilpotent derivations in three
dimensional case. By using results obtained in Chapter [3, we will show a new criterion
for the triangulability in three variables and as by-product an efficient algorithm will
be produced. In case the given derivation is triangulable, this algorithm produces a
coordinate system in which it exhibits a triangular form.

4.1 Basic facts

The following proposition gives a necessary condition for the triangulability of deriva-
tions.

Proposition 4.1.1 Triangulable derivations X of Klz| are of rank at most n — 1.

Proof. Without loss of generality, we may assume that X is triangular in the coordinate
system (z1,...,x,). Suppose that n > 2 and assume that X (z;) = o« € K. If a = 0,

23
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we are done. Otherwise, let g € K[zy] such that X (z2) = 0,,9(z1). Then if we let
Yo = axg + g(x1), it is clear that y, is a coordinate and since X'(y2) = 0 we claim the
result. .

As defined in [21], a derivation X of rank r of K[z] is called rigid if for any
coordinate systems yy,...,%, and 21,...,z, such that K[yi,...,y.—,] = Klz]* and
Klz1s- -y 2n_r] = K[z]¥, we have Klyi,...,yn_r] = Klz1,...,2n_r]. The main result
behind the triangulability criterion given in [21] is that locally nilpotent derivations in
three variables are rigid. In general, derivations of rank 0,1 and n are obviously rigid,
only the rank two case is nontrivial. The characterization i) of rank two derivations
given in Theorem 3.3.1/ gives, in fact, more precise information. Indeed, it tells that if a
coordinate of K[z, vy, z] belongs to K[z, y, 2]*, then it may be found by decomposing the
generator of the plinth ideal S*. The fact that rank two derivations are rigid is then
an obvious consequence of the uniqueness property of uni-multivariate decomposition.
On the other hand, a rank 1 locally nilpotent derivation is obviously triangulable. This
shows that, in dimension 3, we only need to deal with rank 2 derivations.

Let X be a rank two locally nilpotent derivation of K[x,y, 2] such that X (z) = 0.
Then for any coordinate system x1, y1, z; such that X' (z1) = 0, we have K[x] = K[x1], see
[21]. This could also be easily deduced from the uniqueness property of uni-multivariate
decomposition. This proves that if X has a triangular form in a coordinate system
x1,Y1, 21, then 7 is essentially unique and may be extracted from a generator of the
plinth ideal S*. Also, this shows that if X is triangulable and X (a) = 0, then aX’ is
triangulable if and only if a € K[x].

In the following lemma we construct a new derivation which will play a crucial role
in Theorem 14.4.2.

Lemma 4.1.2 Let X be an irreducible locally nilpotent derivation of Klz,y, z| of rank
2, u be a coordinate of K[x,y, z] such that X(u) = 0, and s be a minimal local slice of
X. Then the Klul-derivation Y = Jac(y..)(u,s,.) is locally nilpotent irreducible and
Klx,y, 2]¥ = K[u, s]. Moreover, XY = YX.

Proof. Without loss of generality, we may assume that u = x. Let us write K[z, y, 2]* =
K[z, p] and by Theorem 3.3.1/let X'(s) = ¢(x). Then K[zl [y, z] = K|z][p, s] according

to Proposition [I.1.7. Given a € K[x,y, z], we may therefore write a = hﬁfg’gf ). This
gives

Y(a) = —c"(0,50,p — 0ys0,p)0,h,

and since, by the observation following Theorem 1.2.1, X (s) = —0,50,p+0,s0,p = c(x),
we get V(a) = ¢(x) " 9,h. By induction, we get Y*'(a) = 0, where d = deg,(h), and
this proves that ) is locally nilpotent.

Let g(z,y, z) = ged(0ys, 0,s). Since Y(p) = —c(x), then g | ¢(z) and so we may write
c(x) = g(x)ey(z). Then s(x,y, z) = g(x)s1(z,y, z) + a(x), and this gives X (s1) = c1(x).
Since s is a minimal local slice of X, then ¢(z) | ¢;(z), and so g € K*. This shows that
Y is irreducible.

Let us write K[z, y, 2]¥ = K[z, so] and s = {(x, s5). Then

Y = 0s,l(z, 50)(02500, — 0yS00;).
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Since Y is irreducible, 0s,¢(x, so) is a unit, and so s = psg + a(x) with € K. This
proves that K[z, so] = K[z, s|. The fact that X and ) commute is clear. .

4.2 Reduction of the triangular form

The main purpose of this section is to reduce the triangular form of a given triangular
derivation, i.e., for any triangular derivation X of K[z, y, z] we can find a new coordinate
system (u, v, w) in which the derivation has the triangular form X (u) = 0, X (v) = ¢(u)
and X (w) = b(u,v), where c(u) is a generator of the plinth ideal of the derivation X.

The following lemma is the key for that.

Lemma 4.2.1 Let X be a rank two irreducible triangulable derivation of K[z, y, z] and
let u,v,w be a coordinate system of K[z,y, z] such that

X(u)=0, X()=du), X(w)=q(u,v).

Let c(u) be a generator of the ideal S*. Then d(u) = c(u)e(u), ged(c(u), e(u)) =1 and
Z(e(u),q(u,v)) = Klu,v].

Proof. Since X is of rank 2, we must have d(u) # 0, and so v is a local slice of X'. This
proves that c(u) | d(u). On the other hand, let us consider

p = d(u)w — q(u,v), (4.1)

where 9,q; = q. Then X = 0,,p0, — 9,p0,,, and the fact that X is irreducible implies
that ged(d,p, O,p) = 1. This shows that Klu, v, w]* = K[u, p].

Let us write d(u) = ¢(u)e(u), and notice that the result obviously holds if we have
deg,(e(u)) = 0. Thus, we assume in the sequel that deg,(e(u)) > 0.

Let a be a root of e(u) in an algebraic closure K of K and let us prove that ¢(c,v) is a
nonzero constant. Using proposition 3.1.2l we may write X(s) = ¢(u) for some minimal
local slice of X. Hence v — e(u)s € Klu,v,w]*. So

v =e(u)s(u,v,w) + l(u, p(u,v,w)), (4.2)

By substituting a to u in the relation (4.2) we get v = ¢(«, p(cv, v, w)), and by doing
so for (4.1) we get p(a, v, w) = —q; (v, v). This yields v = (o, —q1 (@, v)). By compar-
ing degrees in both sides of this equality we get deg(qi(a,v)) = 1. This proves that
deg(q(a,v)) = 0 and so g(a,v) is a nonzero constant. By the Hilbert’s Nullstellensatz,
we have Z(e(u),q(u,v)) = K[u,v]. To prove that ged(c,e) = 1, we only need to show
that g(«,v) is nonconstant for any root a of ¢(u).

Let a(u) be a prime factor of c(u). First, notice that the assumption g¢(u,v) =
0 mod a(u) would imply that a(u) | X(h) for any h and contradicts the fact that X is
irreducible. Assume, towards contradiction, that ¢(u,v) is a nonzero constant modulo
a(u). Then X has no fixed points in the surface a(u) = 0. If we write c(u) = a(u)™c1(u),
with ged(cy, a) = 1, and view X as K[u].,-derivation of Clu]., [v, w], then it is fixed point

free and so it has a slice s according to Theorem [1.2.2. If we write s = h(“c—fjw) then

1
X(h) = c}. But ¢} is not a multiple of ¢, and this contradicts the fact that ¢ is a
generator of S%. .
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The following lemma shows that it is possible to get rid of the factor e(u).

Lemma 4.2.2 Let X be a rank two irreducible triangulable locally nilpotent derivation
of Klx,y, 2], and write Klx,y, 2]* = K[u, p] where u is a coordinate of K|x,y,z]. Let s
be a minimal local slice of X and write X(s) = c(u). Then there exist v,w such that
u, v, w s a coordinate system and

X(u) =0, X(v) =c(u), X(w) = q(u,v).

Proof. Let uy,v1,w; be a coordinate system such that X' (u;) = 0, X(v1) = d(uq) and
X(w1) = q1(ug,v1). Without loss of generality, we may assume that u; = u, and
according to Lemma [4.2.1) let us write d(u) = c(u)e(u) with ged(c(u), e(u)) = 1.

Without loss of generality, we may choose p = ¢(u)e(u)w; —Q1(u, v1), where 9,, Q1 = ¢1,
and v; = e(u)s + ¢1(u, p). This gives the relation

p = c(we(u)wr — Qi (u, e(u)s + bi(u, p)). (4.3)
If we write a(u)c(u) + b(u)e(u) = 1, then we get

Qu(u, e(u)s + l(u, p)) = Qi (u, e(u)(s + b(u)lr(u, p)) + c(u)a(u)ly(u, p)),

and by Taylor expanding we get

Qu(u, e(u)s + i (u, p)) = Qu(u, e(u)(s + b(u)li(u, p))) + c(w)Qa(u,p,5).  (44)

Now, let £(u,p) = b(u)li(u,p), v = s + l(u,p), Q(u,v) = Q1(u,e(u)v) and let w =
e(u)w; — Q2(u, p, s). According to the relations (4.3) and (4.4), we have

p+ Qu,v) = c(u)w. (4.5)

Let us consider the K[ul-derivation Y = —Jac(u,v,.). By Lemma 4.1.2) ) is locally
nilpotent and K[z,y, z]¥ = K[u,v]. By the relation (4.5) and Y(p) = c(u) (see the
proof of lemma 4.1.2), Y(w) = 1, and from Proposition [1.1.7/ we deduce that u,v,w
is a coordinate system of Klz,y, z]. Moreover, X(u) = 0,X(v) = c¢(u) and X(w) =
0y Q(u,v). .

4.3 Criterion for triangulability

Let A be a ring and X a locally nilpotent derivation of A. Let A¥[s ; X(s) € 87|
be the subring of A generated over A¥Y by all the local slices of X. This is another
invariant of the derivation X. Let (c;);e; be a generating system of St and let s; be
such that X (s;) = ¢;. Given any local slice s of X we have X(s) € 8, and so there exist
a finite subset J of I and a family (u;);cs in A% such that X(s) = >, u;X(s;). Then
X(s—Y,u;s;) =0 and so s € A¥[s;,i € I]. This proves that the ring A%[s ; X(s) €
SX] = AX[Si,i € I]
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Assume that A to be a UFD and SV is principal and generated by ¢ = X(s). For
any factor q of ¢, we let Z¥ = g AN A*[s]. The ideals Z; are in fact invariants of the
derivation and we will see in the sequel that they hold the essential information needed
to decide whether X is triangulable.

The following result gives a criterion of the triangulability.

Theorem 4.3.1 Let X be a rank two irreducible locally nilpotent derivation of the ring
Klz,y, 2] and write K[z,y, 2]* = Klu,p] where u is a coordinate of K[z,y, z]. Let s be
a minimal local slice of X and write X (s) = c(u). Then the following are equivalent:
i) the derivation X is triangulable,
i) the ideal X contains a polynomial of the form H = p + Q(u, s + £(u,p)).

In this case, if we let v = s+ €(u,p) and H = c(u)w, then u,v,w is a coordinate system
of K|z, y, z] which satisfies

X(u) =0, X(v) = c(u), X(w) = 0,Q(u,v).

Proof. i) = i) Let u,v,w be a coordinate system such that X' (u) = 0, X (v) = d(u)
and X(w) = ¢q(u,v). By Lemma 4.2.2] we may choose our coordinate system in such
a way that d(u) = c(u). In this case we have v = s + ¢(u,p) and we may choose
p = c(u)w — Q(u,v), where 9,Q(u,v) = q(u,v). If we let H = p+ Q(u,v), then clearly
H eIt

it) = 1) Let v = s + l(u,p) and Y = —Jac(u,v,.). Notice that ) is locally nilpotent
and K[z,y,2]Y = Klu,v] according to Lemma 4.1.2. By assumption we have H =
p+ Q(u,v) € IF, so let us write H = c(u)w. Since Y(H) = Y(p) = c(u), then
Y(w) = 1. According to Proposition [1.1.7, u,v,w is a coordinate system of Kz, v, 2],
X(u) =0,X(v) = c(u), and X(w) = 0,Q(u,v). .

By the following corollary we may reduce the problem to the case ¢, where c is
irreducible.

Corollary 4.3.2 Let X be a rank two irreducible locally nilpotent derivation of K[z, y, 2]

and write K|x,y, 2] = K[u, p] where u is a coordinate of K[z,y,z2]. Let s be a minimal

local slice of X and write X(s) = c(u) = " --- ', where the ¢;’s are irreducible and

pairwise distinct. Then the following are equivalent:
i) the deriwation X is triangulable,

ii) for any i = 1,...,r the ideal Ijﬁi contains a polynomial H; such that H; =
p+ Qi(u,s + l;(u,p)) mod c;".

Proof. i) = ii) This is an obvious consequence of Theorem 4.3.1.

i) = i) By the Chinese remainder Theorem, let Q(u,v) and ¢(u,p) be such that
Q = Q; mod ¢ and ¢ = ¢; mod c;*. A straightforward computation shows that
p+ Qu, s+ (u,p)) = c(u)w, and so X is triangulable by Theorem 4.3.1. .



58 CHAPTER 4. TRIANGULABLE L.N.D IN DIMENSION THREE

4.4 Computation of a triangulating coordinate system

Let X be an irreducible triangulable locally nilpotent derivation of K[z, y, z] and write
Klz,y, 2] = Klu, p], where u is a coordinate of K[z, y, z]. Let s be a minimal local slice
of X, with X(s) = c(u) = " - - ¢ and the ¢;’s are prime and pairwise distinct. Ac-
cording to Corollary4.3.2, it suffices to find a polynomial of the form p+@Q; (u, s+£;(u, p))
in each ideal I;El It is trivial to see that such a polynomial is a coordinate of K[u, p, s,

and as by-product it is a coordinate when viewed as polynomial of Klul/c![p, s]. We are
thus led to deal with the problem of finding a polynomial in Z_ s which is a coordinate
of Klu]/c!"[p, s]. In fact, taking into account Theorem 1.4.1) we only need to deal with
the case of KClu|/c;[p, s]. In this section we solve such a problem, and we show how this
allows to compute a coordinate system of K|z, y, z] in which X exhibits a triangular
form.

Lemma 4.4.1 Let X be a rank two irreducible locally nilpotent derivation of the ring
Klx,y, 2|, and write K[z,y, 2| = K[u, p| where u is a coordinate of K|z,y, z]. Let s be
a minimal local slice of X and write X(s) = c¢(u). Then for any prime factor ¢; of ¢
the following hold:

i) there exists a monic polynomial hy with respect to s such that I3 = (¢, hy).
Moreover, c1, hy is the reduced Grobner basis of Igf with respect to the lex-order u <
p=s,

i) the ideal T contains a coordinate of Klu/c1[p, s] if and only if hy is a coordinate
of K[u]/c1[p, s]. Moreover, any polynomial h € IX which is a coordinate of Klu]/c1[p, s]
satisfies h = p(u)hy, where p is a unit of Klu]/c;.

Proof. i) Let v, w be such that u, v, w is a coordinate system of K[z, y, z]. The derivation
X induces a K[u]/ci-derivation X of the ring K[z,y,2]/c; = K[u]/ei[v,w] which is
locally nilpotent. Since X is assumed to be irreducible, then X # 0, and by Theorem
1.2.1, there exists ¥ € K[u]/c1[v, w] such that

Klu]/ferlo, w]® = Klu] fea[9].

Clearly, Klu,p,s]/Z¥ is a K[u]/ci-subalgebra of K[u]/ci[v,w] and we have X(p) =
X(s) = 0in K[u]/c1[v, w]. This proves that K[u,p, s|/Z is in fact a K[u]/c;-subalgebra
of Klu]/c1[9], and as a consequence there exist polynomials a(t),b(t) € Klu]/c;[t] such
that p = a(¥) and s = b() in K[u]/c1[9]. To prove that a(t) is nonconstant we will prove
that Klu,p] NI = (¢1). Let k(u,p) € Klu,p]NZT and write k(u, p) = c1(u)pi (u, v, w).
Since K[u, p| is factorially closed in KClu, v, w](cf. Proposition [1.1.4)), then p;(u,v,w) =
p2(u,p), and so k(u, p) = c1(u)pa2(u, p).

Now, if a(t) is constant, say ag(u), then p—ag(u) = 0 in Klu]/c1[v, w] and so p—agp(u) €
Klu,p] NZ. This contradicts the fact that Klu, p] NZF = (¢1(u)).

The fact Klu,p|NZY = (c1) implies that the polynomial algebra Klul/c1[p] is a Klu)/ ;-
subalgebra of Klu ]/cl[ w]. Let us write a(t) = ap(u)t™ + -+ + ap(u) with m > 1
and a,, a unit of Klu ]/01 The fact that a(d) —p = 0 in IC[u]/cl [v,w] implies that
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¥ is integral over Klu|/ci[p]. From s = b(¢¥) in Klu]/ci[v,w], we deduce that s is
integral over K[u]/c;[p] as well. Since K[u]/c;1[p] is a UFD and Ku]/c1[v, w] is a domain
there exists a unique irreducible polynomial h;(u,p,t) which is monic with respect to
t such that hy(u,p,s) = 0 in Klu]/ci[v, w]. Moreover, any other polynomial h(u,p,t)
such that h(u,p,s) = 0 in K[u|/ci[v,w] is a multiple of hy. This means exactly that
1 Klu, v, w] N Klu,p,s] = (c1,hy) and that hy is unique, up to a multiplication by a
constant in Klu]/ci, when viewed as a polynomial in KClu]/c [p, s].

Now, let a € Ic)f , and notice that in this case reducing a by hy, with respect to the
lex-order u < p < s, is the same as performing the Euclidean division of a by h; with
respect to s. We may thus write a = ghy + r, with deg,(r) < deg,(hy). Since r € I
we may write r = bihy + bocy, and even if it means reducing by by h, we may assume
that deg,(by) < deg,(h1). By comparing degrees with respect to s in both sides of the
last equality, we get r = bycy, and so a reduces to 0 by using hq, ¢;. This means exactly
that ¢, b1 is a Grobner basis of ij with respect to the lex-order u < p < s.

i) Let h € Z¥ be a coordinate of K[u]/c1[p, s], and write h = ac; + bhy. Then over
K[u]/c1, we have h = bhy, and the fact that h is a coordinate of K[u]/c1[p, s| implies
that it is irreducible. This shows that b is a unit of Klu|/c1[p, s], and so a nonzero
element of the field Klu]/c;. It follows that, h; is a coordinate of Klu]/ci[p,s]. The
converse is clear. ]

Theorem 4.4.2 Let X be a rank two irreducible locally nilpotent derivation of the
ring Klx,y, 2|, and let K[z, y,2]* = K[u, p|, where u is a coordinate of K|x,vy,z|. Let
s be a minimal local slice of X and write X(s) = c(u) = ¢* -+, where the ¢;’s

are irreductble and pairwise distinct. Then X s triangulable if and only if for any
t=1,...,7 the following hold:

i) the reduced Grobner basis of Ic)f with respect to the lex-order u < p < s is ¢;, hy,
where h; = Q;(u, s + £;(u,p)) + pi(u)p mod ¢; and p;(u) is a unit mod ¢;,

ii) if £(u,p) is such that L(u,p) = {;(u,p)) mod ¢;, and v = s + {(u,p) then u,v is a
system of coordinates of Klx,y, z].

In this case, the ideal T?, where Y = Jac(zy»(u,v,.), contains a polynomial of the

form p+ Q(u, s + €(u,p)) and if we let p+ Q(u,s + l(u,p)) = c(u)w, then u,v,w is a
coordinate system of K[x,y, z| which satisfies

X(u) =0, X(v) = c(u), X(w) = 0,Q(u,v).

Proof. =) By Theorem [4.3.1, the ideal Z%* contains a polynomial h* of the form p +
Q*(u, s + 0*(u,p)) and if we let v* = s + £*(u,p) and h* = c(u)w*, then u,v*, w* is a
coordinate system of K[z, y, z|.

Foranyi=1,...,r, let b}, QF, {; be respectively the reductions modulo ¢; of h*, Q*, ¢*.

The fact that reduction modulo ¢; is a K-algebra homomorphism implies that A} =
p+ Qf (u, s+ £f(u,p)) mod c;.

Since h* is a coordinate of K[u][p,s], it is a coordinate of K[u]/c;[p, s] according to
Theorem 1.4.1. By Lemma 4.4.17) let ¢;, h; be the reduced Grobner basis of Igf with
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respect to the lex-order u < p < s. According to Lemma 4.4.1] i), there exists a unit
v; modulo ¢; such that hf = v;(u)h;. If we let p;(u) be such that p;v; =1 mod ¢;, then
we have h; = Q;(u, s + £ (u,p)) + pi(uw)p, where Q; € Klu, t].

Now, let ¢(u,p) be such that ¢(u,p) = €f(u,p) mod ¢; for any ¢ = 1,...,r. Since
Cr(u,p) = {*(u,p) mod ¢; we also have {(u,p) = ¢*(u,p) mod ¢;. We claim that
v =5+ l(u,p) is a K[u]-coordinate of Klu,v*, w*]. Indeed, according to Theorem
1.4.1, it suffices to show that v is a coordinate of K[u]/d(u)[v*, w*| for any irreducible
polynomial d(u) € Klu]. Depending on d(u), we have the two following cases.

— For some ¢ = 1,...,r, d(u) and ¢;(u) are associate. In this case, we have v = v* in
Klu]/d(u)[v*, w*], and so v is a coordinate in K[u]/d(u)[v*, w*].

~Foranyi=1,...,r, ged(d,c;) = 1. In this case, c(u) is a unit of Klu]/d(u). Let X be
the K[u]/d(u)-derivation of K[u]/d(u)[v*, w*] induced by X. Then X(c~'v) = 1, which
proves, according to Theorem [1.2.1, that v is a coordinate of K[u]/d(u)[v*, w*].

<) Assume that i) and i) hold and let Y = Jac(u,v,.). By Lemma 4.1.2 ) is locally
nilpotent and K[u, v*, w*]¥ = K[u, v]. Moreover, J(p) = —c(u) and the fact that v is a
coordinate of K[u][v*, w*] implies that ) has a slice w. We therefore have Y (p+c(u)w) =
0, and so p+ c¢(u)w = Q(u,v). The fact that u,v,w is a coordinate system of K[z, y, 2]
follows immediately from Proposition 1.1.7, and a direct computation shows that X
has a triangular form in the coordinate system u, v, w. .

Remark 4.4.3 Let X be a triangular deriwvation and write

X(z) =0, X(y) = c(z), X(2) = q(z,y),

and let p = c(x)z — Q(x,y) where ¢ = 0,Q). From Theorem [4.4.2 ii) we deduce that any
v =y+d(z)l(x,p), where d(z) is the mazimal square-free factor of ¢(x), is a coordinate
and gives rise to another coordinate system x, v, w in which X has a triangular form with
a different polynomial Q. Thus, a triangulable derivation has many, actually infinitely
many, triangular forms. It is also not clear whether there exists a distinguished form
which could serve as a “normal form". Nevertheless, it should be noticed that all the
triangular forms and their corresponding coordinate systems are built out of invariants
of X, namely 8% and the ideals Igf where the ¢;’s are the primes factors of c(u).

4.5 The algorithm

Let us now discuss how to computationally check the conditions i) and ii) of Theorem
4.4.2.  Assume that condition ¢) holds and that we have found a polynomial of the
form p + Q;(u, s + £;(u,p)) in each ideal Z*. The computation of £(u, p) is then just a
matter of Chinese remaindering. On the other hand, from Lemma 4.1.2 we know that
Y = Jac(yy,» (u,v,.), where v = s+£(u, p), is locally nilpotent and K|z, y, 2]¥ = Ku, v].
Thus, v is a coordinate if and only if ) has a slice. This may be checked by computing
a minimal local slice starting from the local slice p, which reduces to compute a reduced
Grobner basis G of c(u)K[z,y, z] N Klu, v, p| with respect to the lex-order u < v < p.
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In more explicit terms, v is a coordinate if and only if the computed Grébner basis is
of the form c¢(u),p + Q(u,v). Notice that in case v is a coordinate, G also furnishes a
polynomial w, with p+ Q(u,v) = c¢(u)w, which completes u, v into a coordinate system
and the polynomial ¢) which is involved in the triangular form of X.

The condition 7) is a matter of functional decomposition of polynomials, and the fact
that we are here dealing with monic polynomials with respect to s makes it almost
trivial.

Lemma 4.5.1 Let c(u) be an irreducible polynomial of Klu,v,w], n be a positive integer
and h € K[u,v,w] be monic with respect to w and write

h = w4+ hg_y(u,v)w?™ " 4+ - + ho(u,v).

Then the following are equivalent:

i) h=Q(u,w —Z l(u,v)) in Klu]/c"[v, w], with £ € Klu]/c"[v] and Q € K[u]/c"[w],
dd‘l), viewed in Klu|/c"[v,w], is a polynomial of Klu)/c"w].

i) h(u,v,w —

In this case, we may choose { = hdd‘l and Q = h(u,v,w —{).

Proof. i) = ii) Let us write Q = w? + ga_1(w)w® + -+ + go(u). By expanding
Q(u,w + £(u,v)) an comparing its coefficients with respect to w to those of h we get
hi—1(u,v) = dl(u,v) + g4—1(u). Therefore, h(u,w — hdd”) = Q(u,w — qd%;(")) and this
clearly shows that h(u,w — hdd‘l) € Klu]/c™[w].

i1) = i) Let us write h(u,v,w — hdd‘l) = Q(u,w). Then Q(u,w+ hdd‘l) = h and we have

the required decomposition. .

The following algorithm gives the main steps to check the triangulability and in the
affirmative case produce the triangular form.

Algorithm 6: Triangulability Algorithm

Input : A locally nilpotent derivation X of K[z, y, z] and a generating system f, g of
Klx,y, z]*.

Output : Check whether X is triangulable. If so, compute a coordinate system u, v, w
such that X has a triangular form in u, v, w.

1 Write X = 10, + a20, + a30, . Compute ¢; = ged(ay, as, as) and write X' = c1).
By using Algorithm 4, compute a minimal local slice sof J) . A generator of S is
then given by ¢ = Y(s).
By using Algorithm 5, compute the rank of X" .
if rank(X)=3 then
X is not triangulable.
end if
if rank(X) =1 then

N
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*

f,g9,s is a coordinate system, and X has the triangular form

X(f)=0, X(g)=0, X(s)=alf9)

9: end if

10: if rank(X) =2 then

11:  Lete=c(u) =], ..., ', where u is a coordinate of K[z, vy, 2], and let p be such

that KC[f, g] = K[u, p].

12:  foritor do

13: Let t1,t5,t3 be new indeterminates, and compute a Grobner basis G; of the
ideal Z(¢;, u—1t1,p—tq, s —t3) with respect to the lexicographic order t; < t5 <
ts <x <y <z Let G, = G, N K[t1, 12, 13].

14: if G, ., is not of the form {c;(t1), hi(t1,t2,t3)} then

15: X is not triangulable.

16: else if hz = Qi(tlatﬁl + &(tl,tg» + ,ul(tl)tg mod Ci(tl) with ,ul(t1> is unit
mod ¢;(t;) then

17: Let v; = s + £;(u, p).

18: else

19: X is not triangulable.

20: end if

21:  end for

22:  Find ¢ such that / =/¢; mod ¢;, fori=1..r

23:  Put v = s+/ and compute a Grébner basis G of the ideal Z(c,u—t1,p—ts, v —1t3)
with respect to the lexicographic order t; < t3 <ty <z <y < 2.

24: Let gc = gﬂ’C[tl,tQ,tg].

25:  if G. contains a polynomial of the form t; + Q(t1,t3) then

26: if we let w such that p + Q(u,v) = we(u),

27: (u,v,w) is a triangulating system and X has the triangular form

X(u) =0, X(v)=cu), X(w)=0,Q(u,v).

28:  else

29: X is not triangulable.
30: end if

31: end if

4.6 Examples

In this section we give some examples to illustrate how our algorithm proceeds. All
derivations are given in a Jacobian form, i.e., as Jac(f,g,.), since in such a form it is
possible to check whether the given derivation is locally nilpotent and also to check
whether its ring of constants in generated by f,g. For implementation, we use the
Computer Algebra System Maple release 11.

Example 4.6.1 Consider the following example from [21].

fl:x7 2\2
g =p=y+ =
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and let the Jacobian derivation X = Jac(y . (f1,91,.) = 0:010, — 0yq10.. It is proved
in [21] that X s locally nilpotent and its kernel is Klz,p]. Our algorithm produces
—x as generator of the plinth ideal S and s = —xz — y? as minimal local slice. The
computation of a Grobner basis of T with respect to the lez-order x < g; < s produces
then z, (s? — 4g1)% + 16s, and the polynomial (s* — 4g1)? + 16s cannot be written in the
form pgy + Q(x, s + €(x, g1)), where p € K*. Therefore, X is not triangulable.

Example 4.6.2 Consider the following polynomials

fo=2x+y+ 2% —2zxy + 2>,
g =32y +22% — 220 +22%y +y? —yz +ay? + 22y + 2o — 23+ 3 Pay—
2 zxy? — 2 z2%y — 3zx%y* + 2%y + 3y + 23y — 2% + 22y — 2%,

and let Y = Jac(zy, ) (f2,92,.). The derivation Y is locally nilpotent and its kernel is
K[f2, ga]. Moreover, our algorithm produces f as a generator of the plinth ideal S¥ and
s =z—axy+ 1 as a minimal local slice of Y. The computation of a Grobner basis of
IJ%; with respect to the lex-order fo < gy < s produces then fy,s* — 25 + gy + 1. If we
let u= fy and v = s — 1 then we get g, + v? = fow, where w = —y — x + 2z — xy. This
gives a coordinate system wu,v,w such that

Y(u) =0, V) =u,Y(w) = 2uv.
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Chapter 5

Polynomial parametrization of
nonsingular complete intersection
curves

In this chapter we show a new approach to the problem of polynomial parametrization of
algebraic curves using the language of locally nilpotent derivations. We give a criterion
which is sufficient and necessary for the polynomial parametrization, and in the case
the algebraic curve is a complete intersection, we present an algorithm which produces
such a parametrization.

5.1 What i1s known

To parametrize a curve means to compute the birational equivalence of the curve with
a projective line. This means computing an isomorphism between the function field
of the curve and the function field of the projective plane. Computing a rational
parametrization essentially requires an analysis of the singularities of the curve in the
projective plane. This may actually be achieved either by blow-up techniques or by
Puiseux expansions. It also requires to find a nonsingular point on the curve whose
coordinates generate a field extension of the ground field of degree as small as possible.
for more detail we refer to |3} [10, 58, [86, 90, 92, 93, 91].

Rational curve which have a polynomial parametrizations provide an interesting
class of curves in so far as there are specific methods which apply to them and not
to general rational curves, see e.g. |4, 134, 40 48| 47, 46, [73]. It is therefore useful
to decide whether a given space curve has a polynomial parametrization. In [98] it is
proved that the condition under which an implicit algebraic curve can be parametrized
using rational parametrization is that its genus must be zero. In [2] Abhyankar proved
that a rational plane algebraic curve is polynomially parameterizable if and only if it
has one place at infinity. A simpler characterization of such curves, together with an
algorithm to compute a polynomial parametrization in case it exists, is given in [73].
However, notice that this method requires a rational parametrization of the algebraic
curve to be available.

65
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In the case of a plane curve without affine singularities, an algorithm based on the
Abhyankar-Moh theorem [1] is given in [57]. Its algebraic complexity is O(d*logd) field
operations, where d is the degree of the curve. Recently, another algorithm based on
Grobner reductions [95] is given in [96], with O(d?logd) field operations.

5.2  Algebriac curves

Let K be a field of characteristic zero and K be its algebraic closure. Let Z be an ideal
of Klz] and C C K" be the algebraic set defined by Z. We will say in this case that C is
defined over KC. The ideal of C, namely the set of all polynomials which vanish on C ,
will be denoted by Zx(C) and its coordinate ring K[z|/Zx(C) by K[C]. When the ideal
Zx(C) is equi-dimensional of dimension 1, we call C an algebraic curve. An algebraic
curve is called absolutely irreducible if the ideal Zg(C) is prime.

Given an algebraic curve C, there exists a positive integer d such that a generic
affine hyperplane H of K" intersects C at d points. Moreover, if a hyperplane H does
not contain the curve, the intersection H N C contains at most d points. The integer d
is called the degree of the curve and is denoted by deg(C).

An algebraic curve C is called an ideal theoretically complete intersection, or com-
plete intersection for short, if Ixc(C) is generated by n — 1 polynomials fi,..., f,—1. In
this case, deg(C) < [, deg(f;) by Bézout theorem, and equality holds if the hypersur-
faces f; = 0 have only finitely many intersection points in the hyperplane at infinity of
the projective space P"(K).

The following result characterizes the nilpotency of derivations on coordinate ring
of nonsingular algebraic curves.

Theorem 5.2.1 Let C be an n-space nonsingular algebraic curve of degree d defined
over IC and let X be a derivation of IC[C]. Then the following are equivalent:

i) the derivation X is locally nilpotent,

ii) for anyi=1,...,n, X (z;) =0 in K[C].

Proof. i) = ii) Let Z(C) be the ideal of the curve C in K[z], and recall that Zg(C)
is radical. Let us write Zg(C) = Py N ... NP, where the P;’s are prime, and let C;
be the curve defined by P;. Then C = UC;, and the fact that C is nonsingular implies
that C; NC; = ) for i # j. By the Hilbert Nullstellensatz, we have P; + P; = (1) for
i # j. According to the Chinese remainder theorem, the K-algebra KC[C] is isomorphic to
[1, KIC:]. As by product, the derivation X can be identified through this isomorphism
to (X1, ..., X,), where X; is a derivation of K[C;]. On the other hand, since deg(C;) <
deg(C), it suffices to prove the bound for every X;. Thus, without loss the generality,
we may assume that C is absolutely irreducible.

Let v be a local slice of X and let ¢ = X(v). The fact that K[C] is of transcendence
degree 1 over K and v is transcendent over K[C]¥ implies that K[C]?¥ is algebraic over
KC, and so K[C]* = K since K is algebraically closed. In particular, ¢ is a unit of K[C]
and therefore s = ¢7'v is a slice of X.



5.3. POLYNOMIAL PARAMETRIZATION OF ALGEBRAIC CURVES 67

By Proposition [1.1.7, we may write X[C] = K[s], and we have X = ,. Let us write
z; = Y a;;s;, and let deg(z;) = d;. Clearly, X%*1(z;) = 0. It remains to prove that
d; < d for any i. The case of z;(s) being constant is trivial, so let us assume that
x;(s) is nonconstant and for any a € K let V.o be the intersection of the curve C with
the hyperplane z; = a. Then V;, = {a € K Ja = (21(s),...,2.(5)), 2:(s) = a}. Let
us choose a in such a way that the roots of z;(s) — a are all simple. Moreover, since
C is nonsingular, then two distinct roots of x;(s) — a give distinct points of V;,, and
50 |Via| = d;. On the other hand, |V;,| < d since C and the hyperplane z; = a may
intersect in the hyperplane at infinity of the projective space P*KC. Therefore, d; < d.

it) = 1) Since xy,...,x, generate K[C] and X;Hl(xi) = 0, the derivation &} is locally
nilpotent. n

5.3 Polynomial parametrization of algebraic curves

In this section we give the main theoretical results which are at the basis of our method.
The main idea behind our method is that if an absolutely irreducible nonsingular curve C
has a polynomial parametrization z(t), then this parametrization is in fact a solution of
an ordinary differential equation & = p(x), where the components of p are polynomials.
Moreover, this differential equation has no fixed points on the curve C. In algebraic
terms this means that the derivation corresponding to this differential equation is locally
nilpotent and generates the module D=(K|[C]). It turns out that we always may choose
a derivation with coefficients in the ground field I, and this is the main reason behind

the fact that we can find a parametrization with coefficients in /C.

The following lemma will be needed.

Lemma 5.3.1 Let C be a nonsingular affine n-space algebraic curve defined over K,
and KI[C] be its coordinate ring. Assume that C is absolutely irreducible and has a
polynomial parametrization. Then the units of IC|C] are the elements of K*.

Proof. Let f1,..., f- be a generating system of the ideal Zi(C). Since Zi(C') is radical,
the f;’s also generate Zg(C). The fact that C is absolutely irreducible, nonsingular and

has a polynomial parametrization implies that K[C] =& M As by product, the units
of K[C] are the elements of K . Now, let g € K[z] which is a unit in K[C], and write

g=u+y aiz)fi(x),

withu € K and a; € K[z]. Let F be the field generated over K by u and the coefficients
of the a;’s, and write F = K[u| according to the primitive element theorem. The above
relation may then be rewritten as

9= Zujﬂj + Zfizai,jﬂja

where u; € K and a; ; € K[z]. Since K[p] and K[z] are linearly disjoint over K, we get
g=1up+ Y a;ofi, and so g = ug in K[C]. .
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Now, we give the main result of this section

Theorem 5.3.2 Let C be an affine n-space algebraic curve defined over K. Then the
following are equivalent:

i) the curve C is absolutely irreducible, nonsingular and has a polynomial parame-
trization with coefficients in a field extension of IC,

i1) Dxc(K[C]) is free of rank 1, any generator X is locally nilpotent and K[C]* = K.

In this case, X has a slice s and a parametrization of C is given by

1 . . ,
ni(s) = D (X)), = (5.1)
j
In particular, C has a polynomial parametrization with coefficients in K.

Proof. i) = ii) Let us write K[C] = K[s]. Then the derivation defined by X(s) = 1
is clearly locally nilpotent and generates Dg(K[C]). Now, we need to show that X,
or another generator, restricts to a derivation of K[C]. Since X is not trivial, we may
assume that X'(x1) # 0. Let us write X' (z1) = ), aox® where the monomials z with
aq # 0 are linearly independent, in IC[C], over K. Then one, at least, of the coefficients

Gq, SAY ag, is nonzero, and even if it means dividing by it, we may assume ag = 1.

Let us prove that X(z;) € K[C] for any i = 1,...,n. For this, we let o0 be a K-
automorphism of K and we extend it to a K[z]-automorphism of K[z] by letting o (z;) =
z;. The fact that Zx(C) is generated by polynomials in K[z] implies that

0(Zx(C)) = Ik (C)

so o induces a KC[C]-automorphism of K[C] which we also denoted by . Since c X0~ ! €
De(K[C]), we have o X0~ ! = aX, with a € K[C]. On the other hand, the fact that
o is a K[C]-automorphism of K[C] implies that c X0~ ! also generated Dz(K[C]). This
gives X = b.oXo !, and hence ab = 1. Therefore, a € K . Since o~ (x1) = 1, then
oXo Y z) = oX(xy), and so

Z o(as)x" =a Z A0

According to the linear independence of the x*’s over K and the fact that ap = 1
we get a = 1, and hence cXo~! = X. From classical Galois theory, we deduce that
X(x;) € K[C] for any i, and so X restricts to a derivation of KC[C]. In the rest of the
proof, we also denote by X" the restriction of X to K[C].

Let us now prove that X generates Di(K[C]). Given any Y € Di(K[C]), we may write
Y = aX with a € K[C]. Applying any K[C]-automorphism of IC[C] to this relation we
get Y = o(a)X, and so a = o(a). This proves that a € K[C], and hence X generates
Di(K[C]).

Let ¢ € K|[C] be such that X'(c) = 0, and assume that ¢ # 0. The fact that K[C] is of
transcendence degree 1 over K and X' # 0 implies, according to the equality (1.3) , that
KI[C]* is of transcendence degree zero over K, hence it is algebraic over K, and so c is
algebraic over K.
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Since c is algebraic over K and ¢ # 0, it is a unit of K[C], and by Lemma 5.3.1 ¢ € K.
This proves that K[C]* = K. On the other hand, if v is a local slice of X then
X(v) = ¢ # 0 and X(c) = 0. Therefore, ¢ € K* and so s = ¢ v is a slice of X. By
the relation (1.2) we get a parametrization of C in the form (5.1)), which clearly has its
coefficients in the ground field .

i1) = i) The fact that C is absolutely irreducible and nonsingular follows immediately
from the fact that C is isomorphic to K. .

Given an algebraic curve C and Zx(C) its defining ideal, an algorithmic realization of
Theorem 15.3.2 would mainly consist of the following steps:

P;. Check whether Dy (K|C]) is free of rank 1, and if so, find a generator.
P. In case a generator X' of Di(K[C]) is found, check whether it is locally nilpotent.

P;. In case X is locally nilpotent, compute a slice. For this, choose x; in such a way
that X(x;) # 0. Let a; = X’(x;) and r be the biggest integer such that a, # 0. If
a, ¢ K then K C K[C]*. Otherwise, s = a, ! a,_; is a slice of X.

Py. If a slice is found, compute a generating system of K[C]* by using Lemma [1.1.8,
and check whether K = K[C]* . If so, compute a parametrization by using the identity
(L.2).

The steps P; and Py can clearly be achieved by using Grobner bases and normal forms,
and the step P, is also a matter of normal form computation due to Theorem 5.2.1,
but the first one need more work. We will see in what follow that step P, has an easy
solution in the case of a complete intersection nonsingular curve.

5.4 Nonsingular complete intersection curves

Let C be a complete intersection curve, and let f = fi,..., f,_1 be a list of polynomials
in K[z] which generates the ideal Zic(C). Let Jac(f) be the Jacobian matrix of f. This
is an n — 1 by n matrix, and so it has exactly n principal minors. Recall that a point of
C is singular if and only if all the principal minors of Jac(f) vanish at that point. Let
X¢ be the derivation of K[z] defined by X¢(h) = detJac(f,h). It is obvious to see that
Xp(f;) =0 for any i = 1,...,n — 1, and therefore Xy induces a derivation of [C]. By
abuse of notation we also use Xy to denote such a derivation.

The following lemma gives an answer to the problem of finding a generator of the

module D (KI[C)).

Lemma 5.4.1 LetC be a nonsingular complete intersection curve, and let f = f1,..., fo_1
be a list of polynomials in K|z such that Ic(C) = I (f). Then D (K[C]) is a free K[C]-
module of rank 1 generated by Xj.

Proof. Let my,...,m, be the principal minors of Jac(f), and notice that X; =
> (=1)*"m;0,,. The fact that Zx(C) = Zx(f) and C is nonsingular implies that the
m;’s do not have common zeros in C, and so we have > a;m; = 1 with a; € K[C].
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Let X = }g;0,, be a derivation of K[C]. Then for any i = 1,...,n — 1, we have
>.; 9;0x; fi = 0. Moreover, if we let Zj(—l)j+”gjaj = p, then we get a linear system

A.g=1(0,...,0,p),

where g = (g1,...,9,)" and A = (a;;) is defined by

e { (1)

Itha;  i=n

By expanding the determinant of A with respect to its last line we get det(A) =
Zj ajm; =1, and so A is invertible. This implies that g = A~1.(0,...,0,p), and so to
get the g;’s, we just need to compute the entries in the last column of A~!. Since A~!
is the transpose of the adjoint of A, the entry (i,n) of A~! is (—1)"""det(A, ), where
A,,; is the matrix obtained form A by removing the line n and the column ¢. Clearly,
det(A,;) = m;, and so g; = (—1)"""m,;p. This finally gives X = p_.(=1)""m;0,, =
p.)ff. n

In the case of a nonsingular complete intersection curve, we have the following
reformulation of Theorem 5.3.2.

Theorem 5.4.2 Let f = fi,..., fa1 be a list a polynomials in K[x] and let C be the
algebraic set defined by f. Then the following are equivalent:

i) C is an absolutely irreducible nonsingular curve having a polynomial parametriza-
tion and I (C) = Ik (f),

it) For anyi=1,...,n we have X}Hl(:ci) = 0 in Klz|/Z(f), with d = []deg(fx),
and the ring of constants of Xy is K.

Proof. i) = i) We have Zxc(C) = Zx(f), and so K[z|/Zx(f) = K|[C]. By Lemma
5.4.1] the derivation X, generates Dy (K[C]). The fact that C is absolutely irreducible,
nonsingular and has a polynomial parametrization implies, by Theorem [5.3.2, that the
generator Xy is locally nilpotent and its ring of constants is K. On the other hand,
since deg(C) < []deg(fx), then X;Hl(xi) = 0 by Theorem 5.2.1.

it) = i) Let v be a local slice of Xy and write X;(v) = ¢ # 0. Since ¢ is a constant
of Xy, then ¢ € K*, and so s = ¢ 'v is a slice of X; . By Proposition 1.1.7, we have
Klz]/Zx(f) = K[s]. This proves that C is isomorphic to I, and so C is absolutely
irreducible, nonsingular and has a polynomial parametrization. The fact that K[s] is a
domain implies that Zx(C) is prime, and so Zx(C) = Zx.(f) by the Hilbert Nullstellen-
satz. .

5.5 Parametrization algorithm

The following algorithm gives the main steps to compute the polynomial parametriza-
tion of an algebraic curve
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Algorithm 7: Polynomial parametrization.

Input : Alist f = fi,..., fu_1 of polynomials in KC[z]. We let C be the algebraic set
defined by f.

Output : A polynomial parametrization of C in case C is a nonsingular curve, Z(C) =
Ti(f) and such a parametrization exists.

1: Compute a Grobner basis G of Z(f). Any monomial order will do the job since
no projection is needed.

2: Check whether X} is locally nilpotent. If so, compute a slice and check whether the
ring of constants of X is K.

e For any i = 1,...,n compute incrementally X’ ; (x;), compute its normal form
a;; with respect to G and stop if a; ; = 0 or j = d+ 1, with d = [[ deg(fx). If
the sequence (a; ;) does not reach 0 for some ¢ then X is not locally nilpotent.

e Check whether for any i the last nonzero element a;,, in the sequence (a; ;)
is an element of K. If it is not the case we have K & (K[z]/Zic(f))*.

e Choose i in such a way that ; > 1 ( if no such ¢ exists then this means that
Xp=0),and let s = a;}iam_l. Then s is a slice of X .

e Compute a generating system cy, ..., ¢, of (K[z]/Zx(f))* by using lemma
5.4.1l and normal forms with respect to GG. If one, a least, of the ¢;’s is not in

K, then K & (K[z]/Z(f))*".

3: Compute a parametrization of C using the identity (1.2).

5.5.1 Comparison to projection methods

Projection based algorithms for computing a parametrization of a space curve mainly
consist of the two following steps.

S1. Find a birational projection of C onto a plane curve C, given by a bivariate
polynomial h, and compute the birational inverse of the projection. To simplify, we
assume that the projection is x —— (zq,x2).

S5. Compute a parametrization of the plane curve Cp,, and deduce from it a para-
metrization of C by using the birational inverse of the projection.

The first step S; can for example be achieved by Grobner basis of Zi(C) with
respect to an elimination order, say the lexicographic order xy < x2 < ... < z,. The
Grobner basis contains the equation h(zq,x2) of the plane projection, and also enough
information to compute the inverse of the projection. Indeed, since the projection is
birational, the Grobner basis contains for each ¢ > 3 a polynomial in Klxq,. .., x]
which is of degree 1 with respect to z;. In case C is nonsingular in the projective space,
and under some genericity conditions on the projection, it is shown in [10] that the
computed Grobner basis also contains information on the adjoint curves to Cp,, which
helps a lot for its parametrization. In the case of a complete intersection curve in the
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3-dimensional space, one can use pseudo-remainder sequences instead of Grobner bases
131

For the step Sy, several algorithms exist so far [10, [58, 86) 90, 91} 92, 93] and they
consist of two major steps. The first one is a fine analysis of the singularities, in the
projective plane, of the projection C,. This is in fact tightly bound to the computation
of a nonsingular model of Cj, and one feels it is redundant to do so if the original
curve C is nonsingular. The second step is to find a nonsingular point on the curve. A
parametrization of Cj, is obtained by computing a rational function which has a pole of
multiplicity 1 at the chosen point and no other poles.

The choice of the point is important in so far as the resulting parametrization has
its coefficients in the field extension generated by the coordinates of the chosen point.
Therefore, one needs to find a point on the curve which generates a field extension of
degree as small as possible, and this is quite involved [92]. It is also important to notice
that if the point is chosen in the affine plane then the resulting parametrization has
rational functions, and not polynomials, as components even in the case where the curve
has a polynomial parametrization. This is due to the fact that the chosen point is a
pole of the computed birational map from C into P'KC. In this case a re-parametrization
of the curve is needed, see e.g. [73].

Let C be an affine nonsingular complete intersection curve having a polynomial
parametrization. A generic plane projection Cj, of C has only nodes as singularities in
the affine plane. Nevertheless, C; always has one place at infinity, and if deg(C) > 4
this place is centered at a big singular point which could be rather complicated [2].
In our method, once a Grobner basis of the ideal of the curve is computed, we only
need to perform normal form computation to solve for a parametrization. In contrast
to projection based methods, we do not need to deal with the singular point at infinity
or to find a nonsingular point on the curve. Notice also that we have much more
flexibility in the choice of the monomial order. This is important since Grébner basis
computation is very sensitive to the chosen order and elimination orders, which are
needed in projection based methods, are reputed to be very costly compared to other
orders such as the graded reverse lexicographic order.

5.5.2 Examples

In this section we give some computational examples, and compare the performance of
our method with the projection based one.

FExample 1: Consider the 3-space curve C given implicitly by

f=—a%+a— 2%+ 222% — 229 + 2y%23 — o,

g=—1/22%+y—3/2x2+1/22% — 3 /22322 + 3/22%y* + 3/222°% — 32329* + 3/229* +
3/2x + 3/2y%x5 — 3 /223yt — 3/2xy? + 1/215.

Applying algorithm 7, we get the following parametrization in 1.151 seconds.

z(t) = 12,

y(t) =3 —3/2t° + 3/218,

2(t) =t + 3t — 3tM — 9/4¢1% + 9/2t™ — 9/4¢16.
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By projecting the curve C into the (z, y)-plane we get a curve whose parametrization,
using the Maple package Algcurves , requires 9.864 seconds. The resulting parametriza-
tion has rational components, which means that a re-parametrization step is needed.

Example 2: Another example of 3-space curve is defined by

f =5x — 52+ 3y3z + 3y* + 18y>xz + 18y3x + 36yx’z + 36y2x? + 24232 + 2423y + 7,
g = —13y+ 22— 1022+ 522 — 102y — 6322 — 12y*2 — 6y° — 369%12? — 72322 — 36y r—
T2yx?2? — 1449% 2% 2 — 72322 — 482322 — 9623y 2 — 48x3y? — 142 — 5y + 1.

Using our method, the resulting parametrization of this curve is

2(t) = 2/5 + 8t + 125t — 1125¢3 + 140625¢° — 5859375¢7,
y(t) = —9/5 — 16t — 125¢2 + 2250¢3 — 281250t + 11718750¢",
2(t) = 9/5 + 11¢ + 125¢2 — 2250¢% + 2812505 — 117187501,

and the running time is 1.011 seconds. On the other hand, using the projection onto the
(z,y)-plane, the parametrization of the resulting curve is achieved in 90.240 seconds.
If we choose the projection onto the (y, z)-plane, we get a parametrization in 13.690
seconds. The obtained parametrization in this example have rational components with
huge coefficients.

We have also tested our method in several other examples, and it compares very
favorably to the projection based method. In fact, our method is even faster than the
parametrization step of the plane projection in the projection based method.
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Résumé

Les dérivations localement nilpotentes sur les anneaux des polynomes sont des
objets de grande importance dans beaucoup de domaines de mathématiques. Durant
la derniére décennie, elles ont connu un véritable progrés et sont devenues un élément
essentiel pour la compréhension de la géométrie algébrique affine et d’algébre commu-
tative. Cette importance est due au fait que certains problémes classiques dans ces
domaines, telles que la conjecture jacobienne, le probléme d’élimination, le probléme
de plongement et le probléme de linéarisation, ont été reformulés dans la théorie des
dérivations localement nilpotentes. Cette thése porte sur I'étude algorithmique des
problémes liés aux dérivations localement nilpotentes et leurs applications aux auto-
morphismes polynomiaux de ’espace affine. Elle a pour objectif de présenter, d'une
part, quelques problémes dans lesquels les dérivations localement nilpotentes jouent
un role crucial, a savoir le probléme des coordonnées et le probléeme de paramétri-
sation polynomial des courbes algébriques dans ’espace affine. Et d’autre part, de
donner quelques algorithmes qui peuvent contribuer a la compréhension des dériva-
tions localement nilpotente en dimension trois, a savoir les algorithmes du rang et
de triangulabilité des dérivations localement nilpotentes

Summary

Derivations, especially locally nilpotent ones, over polynomial rings are objects of
great importance in many fields of pure and applied mathematics. Nowadays, locally
nilpotent derivations have made remarkable progress and became an important topic
in understanding affine algebraic geometry and commutative algebra. This is due to
the fact that some classic problems in these areas, such as the Jacobian conjecture,
the Linearization problem and the Cancellation problem, can be reformulated in
terms of locally nilpotent derivations. This thesis is about the algorithmic study of
problems linked to locally nilpotent derivations and their applications to the study
of polynomial automorphisms of the affine space. Its aim is to present, on one hand,
some problems in which locally nilpotent derivations play a crucial role, namely,
the coordinate problem and the parametrization problem. On the other hand, give
some algorithms concerning locally nilpotent derivations, which may contribute in
understanding locally nilpotent derivations in three dimensional case, namely, rang
and triangulability algorithms of locally nilpotent derivations.



	Limoges-Version
	Summary

