Universitat Poliecnica de Catalunya

Departament de Llenguatges i Sistemes Infairos
Programa de Doctorat de Software

Universié de Limoges
Ecole Doctorale Science - Technologie - Sant

Realistic Image Synthesis of
Surface Scratches and Grooves

PhD Dissertation

Carles Bosch
Advisors: Prof. Xavier Pueyo and Prof. Djamchid Ghazardarp

Barcelona, july 2007

Universitat Poliecnica de Catalunya
Departament de Llenguatges i Sistemes Infaios

Universié de Limoges
Ecole Doctorale Science - Technologie - Sant

These
pour obtenir le grade de

DOCTOR PER LA UNIVERSITAT POLIECNICA DE CATALUNYA
et
DOCTEUR DE L'UNIVERSITE DE LIMOGES

Specialite: Informatique

présenée et soutenue par

Carles BOSCH

le 8 octobre 2007
Realistic Image Synthesis of
Surface Scratches and Grooves
Thése dirigge par Prof. Xavier Pueyo et Prof. Djamchid Ghazanfarpour

Composition du jury:

Président: Pere Brunet ProfessauiUniversitat Poliecnica de Catalunya (Espagne)
Rapporteurs: Jean-Michel Dischler Professeltniversite Louis Pasteur de Strasbourg

Mateu Sbert Professearl’Universitat de Girona (Espagne)
Examinateurs: George Drettakis Directeur de RecheadNRIA Sophia-Antipolis

Stephane Mrillou Maéitre de conérences I'Universite de Limoges

To Maria and Aleix

Acknowledgments

First of all, I would like to thank Xavier Pueyo for having natted me to do this thesis
and giving me a lot of support for its achievement. Withouhhl would have never pro-
posed myself to carry out this thesis. | would also like taxthBjamchid Ghazanfarpour and
Stephane Mrillou for their collaboration and help during the thesiglany numerous stays
in Limoges as well as their encouragement.

| am also very grateful to the people at the Graphics Groupiadr@, for the treatment
that | have received during these years and the good workamaent that | hope to enjoy as
much time as possible. Especially, | would like to thank eredRerez and Gustavo Patow, for
their good ideas and the hours that they dedicated to impryverork. To Albert,Alex, and
Marité for the countless coffees and talks that have accompareedllrthis time. To Nacho,
Gonzalo, Roel, and much others, for the good moments we hal/enb@e and outside the
lab. To the system managers and the people at the secrettiigesfor their time and patience.
Also to Laszb Neumann, for its help with the comparisons of images.

| also want to thank the people at the MSI group for their weleaduring my stays in
Limoges, especially to my PhD colleagues, for the good masiespent with them. Thanks
also to the Touzin family and the friends that | met there,cihmade my stays more pleasant
and motivated me to return every time.

Thanks to my family, especially my brothers and parentstHeir support and interest in
my work in spite of not understanding so much its purpose. nalceither forgot my friends
from Figueres and Girona, who made me had very good momeritgydhese years.

Finally, | want to especially thank Maria, whose affectiodainderstanding have accom-
panied me so many times along this thesis, and Aleix, who malefeel so important in his
life. This thesis is dedicated to you.

Carles

The work that has led to this thesis has been funded by therfmly grants and projects:

e Cellula d'inspecco flexible (CIF). CeRTAP - Generalitat de Catalunya.

e Becas de postgrado para la forntactide profesorado universitario. AP2001-1639.
MECD.

e CAD para seguridad vial basado en sistemas de sinulatg iluminacdn. TIC2001-
2392-C03. MCyT.

e Sistema de interaa@n inmersiva en entornos de realidad virtual. TIC2001-2CP@&-
MCyT.

e Grup de recerca consolidat: Visualitzac'iImatges Realistes. 2001-SGR-00296. Gen-
eralitat de Catalunya - DURSI.

e Diseflo de iluminaddn sostenible: optimizagn del diséo de reflectores y aprovecha-
miento de luz natural. TIN2004-07672-C03-00. MEC.

e Grup de recerca consolidat: Visualitzad'Imatges Realistes. 2005-SGR-00002. Gen-
eralitat de Catalunya - DURSI.

Contents

1

Introduction 1
1.1 Contributions. e 3
1.2 OVErVIEW e e 3
State of the Art 7
2.1 RealisticRendering 7
2.1.1 ModelingtheScene. 7
2.1.2 llluminatingthe Scene 9
2.2 Defects e e e 10
2.2.1 DUSt . . e e 10
2.2.2 StAINS. e e e 11
2.2.3 Oxidationand Corrosion e 11
224 Peeling. 12
2.25 Cracksand Fractures. 13
2.26 Erosion. 14
2.27 OtherDefects 15
2.3 Scratches. 15
2.4 GIrOOVES. . . . o e e e e e e 17
25 Conclusions. e 18
Modeling Grooves 21
3.1 Representation Overview. o 21
3.2 Deriving the Geometry from a Scratching Process. 23
3.2.1 Measuring Real-World Scratches 24
3.2.2 Deriving the Cross-Section Geometry. 26
3.2.3 Parameters Specificatian. L. 29
Rendering Grooves 31
4.1 Isolated Scratches. e 32
4.1.1 Finding Scratches. 32
4.1.2 ScratchBRDF. o 33

CONTENTS
41.3 Occlusion. 35
4.1.4 Results. e 36
4.2 General GroOVEeS. e 42
421 Finding Grooves. 42
4.2.2 DetectionofSpecialCases. 44
4.2.3 Isolated and Parallel Grooves 44
424 SpecialCases. 49
425 Results. L 56
4.3 Indirectlllumination 64
4.3.1 Specular Reflections and Transmissions on the Groawdalcg . . . 64
4.3.2 Indirect lllumination from Other Objects 65
4.3.3 Glossy and Diffuse Scattering. 65
434 Results. e 66
Interactive Modeling and Rendering of Grooves 71
5.1 Rendering GroovesinTextureSpace 71
5.1.1 GrooveTextures. e e 72
5.1.2 FIinding Grooves. 74
5.1.3 RenderingGrooves. e 74
514 lIsolated Grooves 75
5.1.5 SpecialCases. e 76
5.1.6 Endsand Other SpecialCases 79
517 Results. 80
5.2 Rendering GroovesasQuads 86
5.2.1 ModelingGrooves. 86
5.2.2 TransferringGrooveData 87
5.2.3 Rendering Grooves. e 88
5.2.4 \Visibility Textures 90
5.25 ExtendingtheQuads. 91
526 ENnds 91
5.2.7 PreliminaryResults. 92
Conclusions and Future Work 97
6.1 Conclusions and Main Contributions. 97
6.2 Publications. 99
6.3 Future Work. e 99
6.3.1 Improving the Modeling of Scratches. 100

6.3.2 Improvingthe Rendering. 101

CONTENTS iii

A Perception-Based Image Comparison 103
A.1 Pixel-by-Pixel Difference and Image Registration. 104
A.2 Perceptually Uniform ColorSpaces 105
A.3 Spatial Pre-Filtering 106
A4 Results 107
A5 Conclusions. e 110

B Computational Complexity 113
B.1 Evaluatingthe Complexity. 113
B.2 Software-Based Algorithms. 0L 114

B.2.1 SpaceComplexity. 114
B.2.2 TimeComplexity. 115
B.3 Hardware-Based Algorithms L. 126
B.3.1 Space Complexity. 126
B.3.2 Time Complexity. 126
B.4 Conclusions. 131

Bibliography 132

CONTENTS

List of Tables

4.1
4.2

4.3

5.1

5.2
5.3

B.1

Rendering times for different scenes (in seconds).. 42
Performance of the different methods for each figure. Bemgltimes are in
seconds and memory consumptions in kilobytes. For our ndethe memory
represents the consumption due to our representatiomutittonsidering the

underlying mesh. This also applies for relief mapping.. 56
Performance of our method for each figure. Rendering tamesn seconds
and memory consumptions in kilobytes.. oL 66

Performance of our method for each figure, with the nunadferendered
frames per second, the memory consumption (in kilobytes},the resolu-

tionofthetwotextures. 81
Performance of our method and relief mapping in frameseeond.. 84
Frame rates of our GPU methods for the rendering of eaatefig. 92
Parameters considered for the complexity calculations.. 113

Vi

LIST OF TABLES

List of Figures

11

2.1

3.1
3.2
3.3
3.4

3.5
3.6

3.7

3.8
4.1

4.2

4.3
4.4

4.5

Pictures of real surfaces exhibiting scratches or geg®o¥rom left to right:
a polished pan with lots of micro-scratches, a metallicehatth isolated
scratches, and a door with big grooves between the woodekpla. 2

In [MDGO1b], scratches are represented by means of arterf paths and
a set of cross-sections. The cross-section geometry isfiggelcy means of
twoanglesp,andgf,. L oL 16

Grooves are represented in texture space by means sfgalltross-sections21

Piecewise cross-section defined on®é& plane.. 22
(a) Scratched plate of aluminum with a close view of atsbrand its mea-

sured cross-section. (b) Scheme of the scratching process.. 23
Scratch tester used to perform controlled scratch.tests 24
Left: Nail used for our manual tests. Right: Close up ofipet. 25

Some scratch tests and measurements performed on anatupiate. Left:

Using the scratch tester with different applied forces. Ridbsing the nail

with different orientations.. L L L. 26
Scratch cross-section obtained by a profilometer andiffezent measured
values. The tool used by the scratch tester is included w #®dependence
between the shape of the scratch groove and the tool geometry 27
Close view of a real scratch intersection (left) and strand (right). 28

TheUV texture plane is uniformly subdivided into a grid storing thfferent
paths. In order to find if the pixel footprint contains a schatwe get the cells

at the boundary of its bounding box and test the paths aghi@$ootprint. . 32
Cross-section geometry at a scratch point showing tlierelift parameters

needed to computethe BRDF. 33
Simulating scratches in Maya with our plug-ins. 36
Scratches simulated using different tools (upper,lefifjdness (upper right),
forces (bottom left), and tool orientations (bottomright) 37
Top: real titanium plate scratched with the tester ard f®m different view-
points. Bottom: corresponding images synthesized with aethod. 38

Vil

viii

LIST OF FIGURES

4.6 Top left: real aluminum plate scratched with a nail uslifigrent forces along
the paths of scratches. Top right: the corresponding syintimage. Bottom
Left: difference image computed using a perceptually-Basetric, in false

color. Bottom right: most perceptible differences.. 39
4.7 Left: a real scratched metallic part. Middle: its cop@sding synthetic im-

age. Right: detection of the scratches.. 40
4.8 Road sign with several imperfections on it, includingasenes.. 40
4.9 Synthetic ring with aninscription.. L. 41

4.10 Left: scratch paths displayed using our 2D procedesdlute. Middle: fi-
nal rendering of the scratches using our approach. Righterea with the
method of Merillou et al. [MDGO1b]. The small images on the bottom right
correspond to the dashed regions rendered from a closepoietyv. 41
4.11 (a) Pixel footprint is affected by two grooves whosehpdie outside its
bounding box. This box must thus be enlarged according o tin@ximum
width and projected heighty,,,.,, andh,,... . (b) At intersections, some in-
terior facets may be visible out of the boundaries of groovidse bounding
box must also be enlarged according to their maximum pregedepthp, ., . 43
4.12 When the footprint is affected by isolated or paralleloyes, the different
operations are performed in cross-section space. (a) Tdjeqtion of the
footprint onto the cross-section plane is done using itsawesA; and A,.
(b) Once in cross-section space, the cross-sections agethqrojected onto

the base surface, and finally clipped.. 45
4.13 Occlusion is found by projecting the cross-sectiomisoaccording t@’ and

then comparing their order onto the base line. For masking,¢... 48
4.14 A different approach is used for these special sitnatid-rom left to right:

Intersection, intersected end, isolated end, and cotner. 49

4.15 Left: footprint is projected onto the current facetdwling the view direction.
Right: once in 2D facet space, the footprint is clipped to theruls of the facet50
4.16 The cross-sections of the intersecting grooves afegteal onto the current
facet (left), and later intersected with the footprint in #2et space (right).. 51
4.17 For the occlusion, the blocking facet (solid profiled ahe prolongations
of the intersecting grooves (dashed segments) are prdjecat® the current
facet. The final profile is obtained by unifying both projecis in facet space. 52
4.18 Grooves protruding from the surface may produce oimius the surround-
ing surface. The occlusion of the ground fa¢gt or the external groove
facets, such ag,, is computed by only projecting their prolongations (pgak$3
4.19 For special cases like intersected ends (left) ortisglands (right), we need
to modify the different cross-sections that are projeciaihg the intersection

4.20 When computing occlusion at ends, the blocking facet&l(profile) and the
prolongations (dashed segments) can be greatly simplified. 54

LIST OF FIGURES IX

4.21 Surface containing lots of parallel grooves showingatm transitions from

neartodistantgrooves. 57
4.22 Scratched surface containing intersecting groovesfefent size.. 59
4.23 Surface containing many intersecting grooves.. 60
4.24 Same models of Figure 4.23 illuminated with two poigihtisources and ren-

dered from a different pointofview. 61
4.25 Grooved sphere simulated with our method (top) andnelief mapping (bot-

tom), rendered from different distances (lefttoright). 63

4.26 Vinyls modeled using lots of concentric micro-groovesp: All the grooves

share the same cross-section, described by a symmetrisas-section (left)

or an asymmetrical one (right). Bottom: Three different sresctions have

been randomly applied to the grooves, seen from a distanpaiat (left) and

acloseone (right) 63
4.27 (a) Groove undergoing specular inter-reflections saasmissions. The al-

gorithm is recursively executed for each visible facet arattsring direction.

(b) Computing the indirect illumination for facél; at one of the recursive call64
4.28 Image corresponding to top middle left of Figure 4.25tYlafter including

inter-reflections(middle) and refractions (right).. 66
4.29 Glass with grooves in the outside, rendered by coriamgl€lifferent kinds of
light-objectinteractions. 67

4.30 Scene composed of several grooved surfaces, shovieigdt special groove
situations, smooth transitions from near to distant grepaad inter-reflections
(on the floor). Bump mapping is included to simulate erosiothencolumns. 69

4.31 Left: complex scene fully modeled and rendered with approach. Top
right: underlying mesh geometry. Bottom right: another poirview. 69

5.1 Grooves are represented by means of a grid texture, {igfixh defines the
position of the grooves onto the surface, and a data textoi@d(e), which
contains the different groove elements (including the @atbross-sections
and materials. Right: detail of the properties stored in ifferént data texels. 72

5.2 Pseudocode of fragment shader for rendering grooves.. 75

5.3 Pseudocode of functidfrocess Isolated Groove. 76

5.4 Left: Groove intersections can be represented using GSsuilitracting the
volume of each groove from the basic flat surface. Right: Vigitcan be
easily determined by tracing the ray through each volumecantbining the
obtained 1D segments. e 77

5.5 When computing groove intersections with CSG, all additigpeaks) should
be performed before any subtraction (grooves). The subigaparts should
also be extended above the peaks in order to correctly rethevatersecting

LIST OF FIGURES

5.6 During visibility computations, we directly classifye ray segments as addi-
tions (green segments) or subtractions (red segments3e"aegments can be

directly combined in a single step using a special booleamaion.
5.7 Pseudocode for visibility computations of functi®rocess Special Case. .
5.8 Special cases related to groove ends are treated by giviorities to some
facets of the grooves. When intersecting, prioritized mqeevail over the
non-prioritized ones and produce the end of these later..
5.9 Flat plane with different groove patterns.
5.10 Flat plane with different cross-sections for a set tdrsecting grooves.. . .
5.11 Curved grooved surface rendered with our GPU prograrerutfiierent view-
ing and lighting conditions. Grooves use different matei@ad cross-sections
(top) as well as different patterns (bottom). The undegymesh is shown
overthetoprightsphere. L
5.12 House rendered in real-time from different viewpougg our approach to
simulate the bricks. The underlying mesh is shown in theoboteft.
5.13 Comparison between our method (top) and relief mapgoggm) for dif-
ferentviewangles..
5.14 Comparison between our method (top) and relief mapfgioggm) for dif-
ferent distances and cross-sections..
5.15 Grooves are modeled as a collection of quads over tleetdjrface. Their
properties are then specified as vertex attributes..
5.16 Pseudocode of fragment shader for rendering groovgsaats..
5.17 Comparison between our two hardware-based methodsstoface contain-
ing non-intersecting grooves. Top to bottom: differentyp®iof view. Left to
right: first method, second method, and corresponding quads
5.18 Comparison between our methods for a surface consisfimgtersecting
grooves. Top to bottom: different points of view. Left tohtg first method,
second method, and correspondingquads..
5.19 Lefttoright: different groove patterns interactivelodeled with our method.
Top to bottom: two points of view of the obtained patterns.

A.1 Left and middle: comparison of two synthetic images oted with different
rendering methods, which correspond to Figure 4.23. Righ&ge obtained
after a pixel-by-pixel color difference.

A.2 Image registration process. Left: target image with sbécted reference
points. Middle: after a projective image transformationgiRi difference
image between the registered image and the reference imaddl¢ image

of Figure A.l). e

A.3 Pixel-by-pixel difference images computed using déf# perceptually-based
metrics. From left to right: L*a*b*, S-CIELAB, and YCxCz/Lab. Fa better
visual comparison, the images are codified in false color..

78

79

93

94

95

105

LIST OF FIGURES Xi

A4
A.5

A.6

A7

Spatial filtering with opponent color spaces.. 106
Top: comparison images of Figure A.3 after removing t&s|perceptible
differences. Bottom: histograms of errorvalues. 108

Another image comparison, this time corresponding tufa 4.21. From left

to right: using L*a*b*, S-CIELAB, and YCxCz/Lab metrics. Frompdo
bottom: difference images in false color, same images sdtapving the less
perceptible differences, and histograms of error values.. 109
Image comparison between a real and a synthetic imagegspmnding to
Figure 4.6. From left to right: using L*a*b*, S-CIELAB, and YCx@ab
metrics. From top to bottom: difference images in false cdame images
after removing the less perceptible differences, and ¢watos of error values110

Xii LIST OF FIGURES

Chapter 1

Introduction

The quest for realism in the synthesis of images has becomefdhe most important subjects
in Computer Graphics. In order to achieve this realism, mamgets of the real world must
be taken into account, such as the variety of shapes of slgadtsurfaces, the complex struc-
tures of materials, or the physical behavior of light wheeiacting with them. Although less
effort has been applied to the simulation of defects, thpyasent another key aspect in this
quest, since defects are present in almost all real-woijectd We only have to take a look
around us to see objects with dust, stains, scratches,ssrackorrosion, for example. The
accurate rendering of such defects is very important, bottheen important part is the simula-
tion of their generating processes, such as aging or weagherhe study of these processes
and their later reproduction, helps in the modeling and eeindg of complex real objects, and
also in their interaction with the course of time. If suchgesses are taken into account, the
different defects on the objects can be included in an auiomey, avoiding their tedious
modeling by hand. Since defects are present in many sihgtthis may have a wide range
of applications, including the industry, where the phyki@didity of the simulations are of
great importance.

Over the last decade, the simulation of defects has gained mierest in the Computer
Graphics field. This has made possible the appearance otancaumber of models that
were not available many years ago. Some of the models thatlie®n proposed are based on
empirical approaches, focusing on the simulation of thaltebetter than on their processes.
The objective of these methods is to provide a set of toolasdyemodel or render the defects,
based on their observations. Other methods, instead, geoploysically-based approaches
that try to faithfully reproduce the processes, which afider the automatic and accurate
formation of the defects. Such methods, however, not algagsenough importance to their
accurate rendering. Our objective in this thesis is to fanu$oth possibilities instead, that
Is, their physically-based simulation and their accuratelering.

One of the defects that still requires attention are scestcBcratches are present on many
real world objects (see left and middle of Figur&) and are characterized by the grooves that
appear on the surfaces after their contact with other sesfaSuch kind of imperfection has

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Pictures of real surfaces exhibiting scrataregrooves. From left to right: a
polished pan with lots of micro-scratches, a metallic pleith isolated scratches, and a door
with big grooves between the wooden planks.

not been treated sufficiently, especially with regard tarthenerating processes. The avail-
able methods, when do not simply simulate scratches emafpyriassume that their properties
are known beforehand. One of these properties, for exansglegir shape, usually character-
ized by means of a cross-section. Since scratches lie onitliesoopic scale of the surface,
the only way to determine their cross-sections are by mesgtine scratches with special-
ized devices. In some fields like in materials engineering, well-known that the shape of
scratches is related to the parameters of the scratchirggspsuch as the scratching tool or
the surface material. If such parameters are availablesesections could be directly derived
from them, but this have not been considered until now.

Concerning the rendering of scratches, further researdsosh@cessary. Previous meth-
ods only focus on specific kinds of scratches, like parallieroascratches distributed on the
overall surface, typical from polished metals (see leftigliFe 1.1), or isolated scratches that
are individually visible (see middle of Figudel). For each of these types, they considerably
restrict the kind of situations that can be simulated, whegults in several limitations about
their geometry, size, or distribution over the surface. avalable models, for example, usu-
ally assume that scratches share the same geometry ordbasinot change along their path.
In addition, none of them consider scratch intersectiorendss, or either bigger scratches for
which the geometry can be clearly visible. This similarlyppans with transitions between
different scales, like from microscopic to macroscopidecahich may happen when chang-
ing the distance of the viewer from the scratched object. ti#dke restrictions can be very
important, especially if an accurate rendering of the stied surfaces is required.

With the aim of improving the available scratch models, is thesis we provide a general

1.1. CONTRIBUTIONS 3

method to simulate accurate scratched surfaces. Its maingt solve the most important
limitations of the previous approaches and its later gdizataon for the rendering of other
similar surface features, such as grooves (see right of&iyd). As a complementary task,
we want to provide fast solutions for their interactive miottgand rendering as well. Our
purpose is to develop a set of methods that are, at the saraggeneral, accurate, fast, and
easy to use.

1.1 Contributions

The main contributions of this thesis are:

e A physically-based model to derive the complex micro-geioynef scratches from the
description of their formation process, using a small seimple parameters.

e A general method to accurately render scratches and gradvasy geometry, size,
or distribution over the surface. Such method is able togoerfsmooth transitions
between different scales and deal with special cases sticteesections or ends of such
features. Furthermore, it considers multiple specularirgflections or transmissions
of light.

e Two approaches that implement the previous method ontorighies hardware. These
approaches allow the modeling and rendering of groovedsesf at real time frame
rates.

1.2 Overview

The rest of this dissertation is organized as follows.

Chapter 2. State of the Art

In this chapter, we first overview the available techniquedlie generation of realistic syn-
thetic images. State of the art in the simulation of différéefects is then summarized. We
finally present an in depth study of the previous work conicgrthe simulation of scratches
and grooves.

Chapter 3. Modeling Grooves

The representation used to model scratches and groovescistosl, which is based on paths
and cross-sections. Paths are modeled as lines and curfwesddim texture space, which

4 CHAPTER 1. INTRODUCTION

offers more accuracy than previous image-based reprémerstaCross-sections are then rep-
resented by piecewise lines, without restrictions on theametry.

With regard to scratches, we later present the method usgeriwe their geometry from
the parameters of a scratch process. These parametersharmaterial properties of the
surface, the shape of the tool, its orientation, and theieghpbrce.

Chapter 4. Rendering Grooves

Our different approaches for rendering grooves are prahogeing from the rendering of
isolated scratches to general grooves of any size or disitn For isolated scratches, we
propose a simple model that takes into account the derivessegection of a scratch and
computes its total reflection, including occlusion. Thisdabis later extended to handle
general isolated grooves as well as parallel grooves, bynsneta fast 1D line sampling
approach. We then propose an area-based approach baselggmnpaperations for special
situations like groove intersections or ends.

At the end of this chapter, we extend the method to includeentlillumination, focus-
ing on the specular inter-reflections and refractions aoogiron the same surface. This is
achieved by using a recursive approach and introducing soimar changes to the methods.

Chapter 5. Interactive Modeling and Rendering of Grooves Using Graph
ics Hardware

In this chapter, we adapt our general method for its impldatem onto the programmable
graphics hardware. We present two different approachekbifopurpose: one that renders the
grooves in texture space, and another that models and setigEn in object space. In the
former, groove data is transferred to the GPU by means of éxinites, which are processed
by a fragment shader in a single pass. In the latter, groaeesepresented by a set of quads
lying onto the surface and data is transferred as vertahuatits. Rendering is then performed
in multiple rendering passes.

Chapter 6. Conclusions and Future Work

We conclude the thesis by summarizing our main contribstionthe simulation of surface
scratches and grooves. We also describe the unsolved preldad give future research
directions in the context of this thesis.

Appendix A. Perception-Based Image Comparison

This appendix presents the details of the method used to@@spme of the obtained images.
The method is based on image differences using perceptuaifigrm color spaces and on a

1.2. OVERVIEW 5

spatial pre-filtering step. The objective of this companigoto determine the accuracy of our
method with respect to pictures taken from real groovedatbjer to images rendered with
other methods.

Appendix B. Computational Complexity

In this appendix, we finally include the full derivation ofttime and memory complexity of
our methods.

CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In this chapter, we present the state of the art about thelaiion of scratches and grooves
in Computer Graphics. Since our work focus on the realisticleging of these features, we
first summarize the different techniques that can be usethiempurpose. We then expose
previous work related to the simulation of defects and thederlying processes. The special
case of scratches and their generalization to grooves I§/ftr@ated, giving an in depth study

of the available works.

2.1 Realistic Rendering

In order to obtain realistic images of virtual scenes, theme many aspects that must be
considered. Two of the most important aspects are the nmapelithe scene geometry and its
illumination. Here, we will briefly describe the differemdhniques that can be used for each
case, which will help us to better understand the techniggpkained in the next sections for
the simulation of defects, scratches and grooves.

2.1.1 Modeling the Scene

When modeling the objects of a virtual scene we basically neegecify two things: their
3D geometry and their appearance properties. The geomktamy object can be specified
in many ways, according to our needs. If only the surface efdhject is required, we
can use polygonal or mesh models, splines and free-fornacesfPT95 Far99, implicit
surfaces Bli82a, BW97], subdivision surfacesJC78 WWO01], or point-based representa-
tions [LW85, RLOO, ZPvBGO01]. If, instead, we need to model the entire volume described
by the object, then we must use volumetric representatidhgse representations are typ-
ically based on the 3D discretization of the volume into Isx@nd other space partition-
ing schemesCY93, JHO4, on tetrahedral meshe®ve9§, or on procedural representa-
tions [EMP*02]. Particle systems are also another kind of representat@mmmonly used for

7

8 CHAPTER 2. STATE OF THE ART

modeling fuzzy dynamic objects such as water, fire, and dfidde83 RB8Y.

Concerning the appearance of the object, this mainly dependss material, which
is described by a set of structural and optical propertiewelsas by the local scattering
model, called the bidirectional scattering distributiomdtion (BSDF). The BSDF describes
the object-light interaction, which will be detailed latdong with the illumination and ren-
dering processes. The material properties then are usetpats ifor the BSDF, and these
characterize both the material and the surface, like tHiesdifand specular reflectance or the
surface roughness. When these properties are not consiagtthke surface they can be mod-
eled by means of surface textures. Textures are 2D patteshaite mapped onto the surface
and used to model different properties, such as the surfaloe [Cat74, specular and dif-
fuse reflection BN76, MH84], transparencyGar8g, shadows Coo84, depth Wil78], and
many othersilec86 HS93. These textures can be either represented by imagas § or
generated by some proceduRef8].

Since the fine geometric detail of a surface is sometimesdiffto model and also ex-
pensive to render, a common practice is to store the detail antexture and model the
base surface using a coarse version. Detail can be encodadibgle scalar function — a
height field — and later reconstructed by displacing the lsasice according to this func-
tion, for example, which is called displacement mappi@o¢84 PHO6 SSSO(Q. Another
solution is to simply simulate the detail by means of normatyrbations, using the bump
mapping techniquedli78]. These perturbations are used to modify the surface nsrmal
such a way that the shading make the surface look as if it had Bisplaced. This allows
for a fast approximation of the detail, since the base sartimes not need to be modified;
however, occlusion, inter-reflections or silhouettes cahbe included unless by precom-
puting them Max88 HDKSO00, SGG'00]. Some other techniques have also proposed to
simulate detail without needing to displace the surface,ifeluding occlusion or silhou-
ettes PHL91, HS98 WWT*03, POCO05 Tat0g. Such kind of methods are based on tracing
rays through the detail, which is also represented by atexdtheights or depths.

According to all these different representations, objactsusually modeled using a suc-
cession of a number of geometric models, each capturindeaetit level of detail. The largest
scale is captured by the surface geometric model, smdk-siedails by the texture, and the
smallest microscopic detail by the BRDF. Some authors havepatsposed to unify texture
and BRDF by means of a bidirectional texture function (BTBisP8 DvGNK99, MMS*05.
The BTF stores the surface appearance as a function of thengiemd illumination direc-
tions, like capturing a BRDF that varies per texture elementerel This BTFs are usu-
ally obtained by measuring a real material sample from ifiecamera and light positions.
Another possibility is to represent geometry and texturertaans of images, using image-
based modeling and renderingH96, GGSC96 SGwWHS98. For a given object or scene,
this technigue consist on capturing one or several images flifferent viewpoints, and then
using them to synthesize new images from other viewpointisis Tan save large model-
ing costs, especially for complex scenes. Some similarsideve been used to simulate
surface detail too§P99 OBMO0(Q], and other approaches have simulated more complex non-

2.1. REALISTIC RENDERING 9

height field details, like fur or grass, by slicing the sudatetail into a set of transparent
images MN98, KS01]. This kind of details are known as volumetric textur&&B9].

2.1.2 llluminating the Scene

Apart from modeling the scene geometry and appearance, e toedetermine how this
scene will be illuminated before its rendering. This deeon three main aspects: the light
sources, the propagation or transport of light through teme, and its interaction with the
objects.

First, light sources are considered objects that emit ligtat the scene, and are usually
differentiated from those receiving it — although thearally any object in the scene can emit
light. Such light sources are mainly characterized by thewer and distribution of light, and
go from the simplest point, spotlights, or directional sms, to other more complex sources
such as area or general sources.

Concerning the propagation of light through the scene, iteaggnts the core of the ren-
dering process. As such, it is the most complex part, sindepends on the geometry and
scattering properties of all the objects in the scene. It compute light transport, the
rendering equatiorkaj86] must be solved:

L(p,w) = Le(p,w) +/Qf(p,w,wi)Li(p,wi) cos Odw; .

According to this equation, light exiting from a particutaointp in a directionw, L(p,w),
is the sum of the emitted light. and the scattered light. This scattered light is the light
incoming from all directions,; that scatters in the directian The amount of scattered light
is determined by the scattering functigni.e. the BSDF, andos 6; is the light attenuation
due to its incident angle.

First of all, the BSDF or bidirectional scattering distritaurt function describes the inter-
action between light and an object’s surface, as stateddefbhis encompasses different
scattering effects that are commonly separated into twoetioims: the BRDF or bidirectional
reflectance distribution function, which describes thétligeflected by the surface, and the
BTDF or bidirectional transmittance distribution functjovhich describes the light transmit-
ted through the surface. In order to model a BRDF, differemttatjies are commonly used.
Empirical models, for example, focus on the simulation @f ¥isual aspect of the materials,
using simple and intuitive parametePho75 Bli77, Sch94 Ban94 AS0(. Physically-based
models, instead, are based on their physical propertiedakadinto account the underly-
ing microgeometry of the surface. Such microgeometry isroomly represented by lots
of small statistically distributed microfacet€T81, ON94, APS0Q, random Gaussian sur-
faces HTSG9] Sta99, or parallel cylindersiPF9Q. Some of these models have also been
extended to handle BTDF${a01 He93. On the other hand, BRDFs can also be measured
from real materials, using a gonioreflectometer, and théedfito specific modelsWar92
LFTG97]. Another possibility is to model the 3D micro-geometry kanll and use a virtual

10 CHAPTER 2. STATE OF THE ART

gonioreflectometer to capture the light reflected by the rhg€i@85, CMS87, WAT92], but
this is only feasible if the microstructure of a material &wcomplex and known.

All these previous models handle the reflection or transomssf light at the object sur-
face, assuming that light enters and leaves its materidleasame position. For translucent
materials or layered surfaces, however, light can ententaeerial at one position and exit
at a different one, which is called subsurface scatterinigis €ffect can not be handled by
the BSDF, but with a more general function called bidireciosurface scattering distribu-
tion function (BSSRDF). Several works have focused on thelsitiom of such kind of light
scattering HK93, PHOQ JMLHO01, Sta01 MKB *05].

After modeling the light sources and the local scatterindjgift at the objects, the last
step consists in computing the global scattering of lighbagithe different objects in the
scene. This is called global illumination. Global illumiizan techniques compute the direct
and indirect illumination of the scene by solving a parteculormulation of the previous
rendering equation. Some of the most popular techniquesagréracing Whi80, Gla89
SMO03 CPCB84, radiosity [GTGB84 ICG86, SAS92 BNN198], path tracing Kaj86, LW93,
VG94], metropolis light transportfG97], or photon mappingJC95 Jen0]. Such kinds of
technigues are often combined to get the best of each metimo@, some of them only handle
or are better suited for certain types of light transporhpat

2.2 Defects

Defects can be defined as any flaw or imperfection that spoihanges the appearance of
something, i.e. an object or surface. In real-world situadj several factors can be responsi-
ble for their presence, such as the environment, the usesdpplthe object, or its properties,
like the material or shape. The different defects can be Imdistinguished according to the
processes generating them and their consequences onehtedfbbject. A certain defect,
for example, can appear due to a physical or chemical prpaadscan be a continuous pro-
cess over time or an isolated case. The resulting defecttedrably only affects the object
surface, or maybe some part of the object volume too.

Since defects can be very different between them, they arallysaced with distinct
approaches in Computer Graphics. In this section, we thissifjathe different methods
according to the kind of defect that is being treated. Foheabafect, we first summarize the
main causes of its appearance and its consequences oneesolljhen, we shortly describe
the available methods that simulate it. Since our work isnigaielated to the simulation of
scratches, state of the art in scratch simulation will bdarpd in more detail in Sectioh 3.

2.2.1 Dust

Dust are free microscopic particles of solid material, sashiry earth, that accumulate onto
the surface of objects after being transported by air. Dastsually considered as a kind

2.2. DEFECTS 11

of defect, since it changes the appearance of objects by sr@famodifying its reflection
properties.

Blinn [Bli82b] first simulated the rings of Saturn by considering them andgeneous,
semi-transparent layers of dust particles. The model caldd be used for surfaces com-
pletely covered by dust, but it only considers its realistiedering, which is done by simulat-
ing the single scattering of light inside the layers. Lak&jiya and Von Herzen proposed the
use of ray tracing in order to compute multiple light scatigron volume densities, such as
dust KH84].

In order to determine the zones prone to accumulate defketdust, stains, or corrosion,
Miller [Mil94] proposes different methods to compute the local and glabegssibility of a
surface. This accessibility mainly depends on the surfapeature and the proximity between
surfaces. Hsu and Won#gl]/V95], and later Wong et al WNH97], simulate the accumulation
of dust using a set of dust sources, similar to light sourd@dsese sources “emit” dust that
Is accumulated on the surfaces based on their inclinatiorkirsess, exposure, or scraping
against other objects. Recently, Chen et @X\V+05] have extended this idea usington
tracing, in which weathering effects are traced from the@esiand accumulated in the scene
in a way similar to photon mapping, considering global tporsor multi-weathering effects.

Other authors have also treated the animation and rendefidgst clouds, generated
by the foot impact of hopping creature&@99] or by a moving vehicle on an unpaved sur-
face [CF99 CFW99 CGO0A4.

2.2.2 Stains

Stains, like dust, affect the appearance of the surface jectshtoo. These usually appear
after the contact of some liquids with the surface, due tartbeement of material particles
by the flux and its subsequent drying.

Becket and BadlerBB90Q] introduce a system for the simulation of different kinds of
surface imperfections that includes stains. This simplgrafes on 2D textures, and the
distribution and shape of the stains are modeled using sifinattal techniques. Dorsey et
al. [DPH94 later propose to simulate stains produced by water flowgeiN¥s modeled as a
system of particles that moves over the surface dissolvmgte@nsporting surface material
until its absorption. This results on stains with very rei@di patterns. Liu et al.{LWO05]
also treats the water flow on surfaces, proposing an infeearmework to simulate the
flow, wetting, erosion, and deposition processes. Chen #tal. use itsy-ton technique to
simulate stains due to dirty water flown or splattered betwaese objects¢XW*05).

2.2.3 Oxidation and Corrosion

Corrosion is a gradual process that wears and destroys alatéuie to oxidation or chemical
action, mainly affecting metals. It usually produces sitipe effects, but other kinds of

12 CHAPTER 2. STATE OF THE ART

corrosion can also affect the structure of the object itSello common examples of corrosion
due to oxidation are rust and patina.

In the system proposed by Becket and BadBB90], rust is modeled using a rule-guided
aggregation technique. A set of rules specify the zones gh rusting probability, then
an iterative process simulates the diffusion of randomitiglas that accumulate on these.
Corrosion is also simulated, but by means of fractal-baseghsity distributions. In order
to simulate metallic patinas, Dorsey and HanraHaH96] use a set of operators that suc-
cessively cover, erode, and polish the surface. The remglésithen performed using the
Kubelka-Munk reflection modeKM31], thus taking into account subsurface scattering. Go-
bron and ChibaGC97 GC99 use a similar approach for corrosion due to liquid flow, vhic
works by selecting a set of wet points on the surface and thegragating corrosion to neigh-
boring points. Wong et al. have extended their system of slstces HW95] to simulate
other kinds of imperfections, such as patiM@NH97]. Here, patina is uniformly placed over
the surface using an ambient source, and then removed frgimethéxposed zones based on
a computed surface exposure. Chang and SB80[] use L-systems to model the growth
of patinas in underground objects. The zones prone to deyetnas are described by ten-
dency maps\\WVNH97] based on the soil properties as well as on the curvaturesaiility,
and water retention of the surface. This model is later el¢drto simulate rust on objects
under dynamic environments, such as seaw&@8&0f. Mérillou et al. MDGO014 propose a
phenomenological method that allows the simulation ofedéht kinds of corrosion, taking
into account appearance and geometry changes. In this chetborosion propagates over
and into the object using a random walk propagation schemteighcontrolled by a set of
rules and parameters.

Recently, Gu et al. TR"06] have proposed a data-driven approach to simulate time-
varying processes like corrosion. From a set of acquirepkssnthey separate time-varying
properties from the spatially-varying ones. These are ttasferred to new surfaces, such as
transferring rust from an old metal to a new one. With sinplarposes, Zhou et azPW*05]
propose an interactive painting process based on BTFs, whpegfections are captured from
BTF samples and then painted onto new surfaces after the BTResys.

2.2.4 Peeling

Peeling appears on layered surfaces, like painted or lesathfaces, due to weathering pro-
cesses over long time periods. Common consequences ofgaaticracks, loss of adhesion,
and curling effects, which mainly affect the external lagésurfaces.

In order to simulate peeling, Wong et aWWNH97] use their imperfection sources and
the local surface curvature to determine its tendencyibigton. At each surface point, the
current visible layer is given by the tendency and the thedlsnthresholds specified for each
layer. Gobron and ChibadC01l generate the crack patterns using their 3D cellular au-
tomata GC014. This crack pattern determines the geometry of the dethpreces, as well
as their order of detachment. Paquette etRIP[DOZ later propose a more physical approach

2.2. DEFECTS 13

for painted surfaces. Cracks appear according to the paerigth and tensile stress, and
peeling due to the loss of adhesion around the cracks. Thitehtakes into account partial
peeling and simulate curling effects by creating additig@mmetry over the surface.

2.2.5 Cracks and Fractures

Cracks and fractures appear under the action of stress, @nadine breakage of an object
into several parts. If the result is the complete separatidhe parts, this produces fractures;
otherwise, it produces cracks or partial fractures. Fracgifects are usually classified into
brittle and ductile fracture. In ductile fracture, a plasfieformation takes place before the
fracture that is not present in brittle fracture.

Concerning cracks, Hirota et aHTK98] simulate surface cracks on drying mud by means
of a mass-spring system. The method is later extended tohalsdle volume cracks on
clay [HTKOQ]. Gobron et al. C014 simulate the propagation of cracks by means of a
3D cellular automata, where the obtained pattern is rendasesimple antialiased line seg-
ments. Federl and PrusinkiewicZP02 FP04 use finite elements to model crack formation
on surfaces of bi-layered materials, such as drying mud eselliark. Fractures on bark
have also been addressed by Lefebvre and Nelyi@2]. Desbenoit et al.[DGAO05] animate
cracks by means of an interactive non-physical approach.different types of materials,
they first create an atlas of crack patterns composed of 25 @etd profiles. These patterns
can then be mapped onto an object, edited, and carved outrasedprally generated swept
volume. Hsieh and TaHTO06] simulate cracks by simply vectorizing images with crack pa
terns. These patterns are then projected onto the objettsuamp mapping is used to simulate
depth on the cracks. Iben and O'Brid@®D6] combine a physically based simulation with tra-
ditional appearance driven heuristics, giving more cdmfehe cracking process to the user.
Some authors have also addressed the simulation of cracksifiephotorealistic rendering.
Wyvill et al. simulate Batik painting cracks using a distatr@sform algorithm\vwvOC04,
while Mould computes Voronoi regions for image-guided &rpatterns Mou05|.

The first attempt to model brittle fracture is done by Teradps and FleischerT[F88,
which simulate tearing cloth and paper. Here, the undeglgiasticity equations are solved
using finite difference schemes. Norton et &ilTB*91] then uses a mass-spring system to
model breaking teapots, by means of voxels attached togspribsing a similar approach,
Mazarack et al.fIMA99] also model fracture induced by explosions. Fracture ircthreext
of explosions has been explored by other authors as W&, YOHO00, MBAO2]. Neff
and Fiume, for example, propose a recursive pattern gemdoatiivide a planar region into
polygonal fragmentsNF99. Yngve et al. fOHO(Q], instead, use a combination of spatial
voxelization and finite elements, and Martins et MBA02] simulate real-time blast wave
fractures using a connected voxel model, which allows @tyitvoxels. Brittle fracture on stiff
materials is addressed by O'Brien and Hodgi@siP9, using finite element methods in order
to approximate the continuum mechanics equations. Thishsthter extended inJBHOZ
to include ductile fractures as well, by adding a plastieitpdel. Smith et al. $WBO]]

14 CHAPTER 2. STATE OF THE ART

propose a real-time approach by representing objects asad geint masses connected by
distance-preserving linear constraints. This allows foeasy control of the fracture patterns.
Mdller et al. MMDJO01] simulate deformation and brittle fracture in real-timéngsan hybrid
approach, which alternates between a rigid body dynammuaglation and a continuum model.
A multi-resolution approach is later proposed MiG04], which allows fracture animation on
high resolution surface meshes over coarser volumetribesedMolino et al. propose a virtual
node algorithm that fractures objects along arbitrarygigse linear pathd|BF04]. Finally,
Pauly et al. PKAT05] simulate brittle and ductile fracture using point-basepresentations,
which avoid many of the stability problems of traditional shebased techniques.

2.2.6 Erosion

Erosion is a gradual process that wears and disintegratés and minerals. Its process
consists in the extraction, transport, and deposition denal from eroded to other different
parts. According to the factor that produces it, erosionssally classified into hydraulic
erosion, wind erosion, thermal erosion, or erosion dueatogical influences. Such kind of
processes are distinguished from weathering, where nomenes involved.

Kelley et al. KMN88] uses hydraulic erosion to model terrains with stream nekso
Given an initially uneroded surface, they create a terrednied a previously generated frac-
tal river network. Musgrave et alMKM89] then propose a physically based approach to
simulate thermal and hydraulic erosion. Thermal erosidoased on a low-pass filter that
smooths terrains previously modeled by fractal techniqugégdraulic erosion is based on
material transport using simple gradient-based diffusi®his method is later extended by
Roudier et al. RPP93, in order to take into account geological heterogeneitjhefground
from a given 3D geological model. Marak et IBS97] represent terrain patches by means
of matrices. Such matrices are rewritten using a set of missribing the erosion process.
Nagashimalflag9g focus on the modeling of valleys and mountains with earyietgatterns
on their surfaces, which considers hydraulic erosion aérrifows and rainfall, as well as
thermal erosion. Thermal erosion is also treated in Benek gBRMISS97, by means of a
semi-adaptive algorithm that only erodes on areas with pgidient or importance. Chiba
et al. [CMF9§ use a quasi-physically based approach to simulate hyidraxdsion based on
velocity fields. By simulating the flow of water with particldbey take into account erosion
produced by the motion and collision of water with the graumat infiltration and evapora-
tion are ignored. Benes and ForshaBirQ1] propose a new data structure between classical
height fields and voxel representations that is based ordrdsl stratified layers of materi-
als. This representation is later used BFDPZ for a fast and easy-to-control simulation of
the hydraulic erosion process. Such process is dividedfautoindependent steps that can
be applied as desired: water appearance, erosion, tranapdrevaporation. Inspired by the
same structure, Neidhold et aNWDO05] present an interactive approach to simulate fluid and
erosion effects, where the artist can influence them intreed: Benes and ArriagaBA05]
later proposes an efficient method for the visual modelinglolie mountains (mesas). In this

2.3. SCRATCHES 15

method, the initial scene is composed of a rock that is er@shelichanged into sand. The
sand then falls down and finally forms the hillside. Benes gBalHB06] have also recently
proposed a generalized physically based solution for thaetiteg of hydraulic erosion. Such
method is based on velocity and pressure fields and usesya8flapproach that is able to
simulate receding waterfalls, meanders, or springs ofrwvate

Besides terrain erosion, Dorsey et &HL"99] treats the weathering of stones. This is
done using a physically based technique that takes a stafeyresd layer of voxels around
the stone, calledlab structure, and simulates the effects of water flow. The ddmally
rendered using subsurface Monte Carlo ray tracing and a \eplraton map. Such technique
is later incorporated into a procedural authoring system@>M*02]. Chen et al. simulates
erosion with their method of-ton tracing, where displacement mapping is used to modify
the original geometry. Finally, Valette et aViHLLO5, VPLLO6] have recently developed
a dynamic simulator of rainfall erosion on small-scale soiThis simulator is based on an
extended 3D cellular automata that uses a regular submlividi the space in voxels. It also
takes into account processes such as evaporation, sphakstrusting, which have been rarely
considered by previous models.

2.2.7 Other Defects

Other kinds of defects that have been treated in Computerh@spalthough in a less ex-
tensive way, are impact$PDO0] or efflorescence§MG0Y. Some other works have also
simulated natural phenomena that could be considered asfiaagions, since these change
the appearance or geometry of objects. These are, for egahaplen growth DGA04], foot-
prints in sand $OH99 ONO0Y, skin wrinkles WKMMT99, BKMTKOO, VLRO5], or wetting
and drying of surfacesS\NKON90, JLD99, LGR*05].

2.3 Scratches

The physical damage produced by the contact and frictiowofsurfaces, results in grooves
onto these that are known as scratches. According to thesramd distribution over the
surface, two types of scratches can be distinguished: sgcatches and isolated scratches.
Microscratches are very small, imperceptible scratchasdhe uniformly distributed along
the overall surface. These usually provide an homogenatssteopic aspect to the surface
according to their preferred orientation, and are typyctund on brushed or polished sur-
faces (see left of Figurg.l). Isolated scratches, also called individually visibleasches, are
small isolated scratches that are individually perceetliy the human observer, but where
their geometry still remains invisible (see middle of Figurl). A third type of scratches
could also be devised by considering bigger or macroscapatches, for which the geome-
try is clearly visible. However, scratches are rarely cdesed to fall into this category, and
this is rather associated to other types of grooves (seeafdfigurel.1). In this section, we

16 CHAPTER 2. STATE OF THE ART

2 equal zones
4 equal zonzx
oy 3

as

“scratch (psj

Figure 2.1: In MDGO1h], scratches are represented by means of a texture of padres set
of cross-sections. The cross-section geometry is spetifi@deans of two angles,, andg,.

pixel projected onto a scratch

focus on the simulation of isolated scratches, which arettes that are typically considered
as imperfections. Previous work on other types of scratahdgyrooves will be presented in
the next section.

Concerning the simulation of isolated scratches, all thelae literature is based on
the same principle. Since their reflection is visible but thair geometry, scratches lie
into a representation scale between texture and BRDF. A &xpecifies the location of
the scratches over the object’s surface, while a BRDF modelsghcific light reflection on
each scratch point. With regard to the texture, it is represkby an image with the scratch
paths painted on it that is then mapped onto the surface. sem&s to determine if a point
(projected pixel) on the surface contains or not a scrafahcdntains a scratch, then its light
reflection is computed using the specific BRDF, otherwise tihhencon surface BRDF is used.

Becket and Badler§B90Q] are the first to consider the rendering of isolated scratche
their system of surface imperfections, scratches are glan& the texture as straight lines
with random lengths and directions. Their reflection is teenulated by simply assigning a
random intensity to each scratch, without taking into aottlie underlying geometry nor its
anisotropic behavior. Buchanan and Lalonde propose a Plit@aBRDF in order to take into
account this behavioBLL99]. Scratches are also modeled as straight lines randoméggla
onto the texture, but saving on each texel a list of all thatsties traversing it. Then, during
the rendering pass, they compute the maximum specularndiigtbr the scratches at the cur-
rent texel and add this to the reflection of the surface. Thegdights are computed using
the BRDF. Kautz and SeideKE0(present a simple method to render scratched surfaces at
interactive frame rates, by means of shift-variant BRDFs. eH#re texture directly stores
the parameters of the BRDF, which is based on a general ampsotrmdel (War92 Ban94.

At scratched points, they store anisotropic parametersrdicty to the current scratch direc-
tion. At non-scratched points, they store isotropic patansecorresponding to the surface

2.4. GROOVES 17

reflection. These parameters are then used to compute the B&RiIg the rendering stage.
Meérillou et al. MDGO01H] later propose the first physically based approach, whichpmges
the BRDF according to the underlying scratch microgeometnthis method, each scratch
is first represented by a path and a cross-section: pathsaareeg onto the texture as de-
sired, and cross-sections are specified apart (see RglreAfter having measured different
cross-sections of real scratches, they state that crasisis® consist of a groove surrounded
by two peaks, and they assume that these can be describeddmg wietwo angles (see fig-
ure). During the rendering pass, if the current texel costai scratch, the BRDF computes
its reflection using the associated cross-section. Oanlusithen considered after correctly
locating the cross-section according the scratch directietermined by analyzing the texture
too. The proposed model has several advantages, sincpéicteghe anisotropic behavior of
scratches, includes shadowing and masking effects, art/gqally correct. Furthermore, it
allows the use of a different cross-section for each scrashvell as the use of different re-
flection properties for each facet, e.g. to simulate scestcm multilayered surfaces in which
internal and external facets belong to different layers.

2.4 Grooves

Grooves are surface features that are very similar to dwatdut they can also represent
other features as well, such as those appearing on asseortigetl surfaces, for example
(see right picture of Figure 1). According to this, they candeen as a generalization of
scratches, with no limitations on their geometry or sizeeilmain characteristic is basically
the elongated shape, which can also be represented by nfempath over the surface and a
cross-sectionQGF04.

In Computer Graphics, grooves have been treated by diffeneds of models. These can
be classified into three main categories as before, depgwdithe type or size of the groove
that is simulated: anisotropic reflection models, scratodets, and macro-geometric models.
Since in the previous section we have already describettbaraodels, facing isolated micro-
grooves, we here focus on the other two categories.

Anisotropic models simulate very small grooves uniformigtidbuted over the surface,
such as the previously mentioned micro-scratches (se@8&c8). Due to their microscopic
nature, this kind of grooves is usually modeled by the loe#iection model or BRDF. From
all the available anisotropic BRDFs, most use an empiricat@gh based on simple and in-
tuitive parameters, which is suitable when the micro-gdaoyrie not known WWar92 Sch94
Ban94 AS0Q. Physically-based models are also available, but onlgéotain types of micro-
geometry, like parallel cylinderdPF9Q or random Gaussian surfaceStg§99. For general
types of geometry, brute force methods precompute the tieftefor a subset of directions.
These values are then stored into tablesj85] or approximated by means of spherical har-
monics CMS87 WAT92]. Some anisotropic models are proposed to fit their paraétan
real measurement®\far92 LFTG97]. Others, can be generated from arbitrary normal distri-

18 CHAPTER 2. STATE OF THE ART

butions, which has been applied for ideal V-shaped grocdB$P(J. Some of these previous
models and other similar ones, have been also implemeniiegl the programmable graphics
hardware HS99 KM99, MAAO1, IB02, LK03].

Macro-geometric models, on the other hand, are general Iswtieie allow the simulation
of different kinds of surface details. These are especialgful to simulate bigger surface
features, such as grooves found on engraved wood or on tadd.wsome of the most pop-
ular techniques are bump mapping, displacement mappingglief mapping, which have
been introduced in Sectidh 1.1 Naturally, such kind of surface details can also be diyectl
included into the geometry model of the objects. This apginda usually taken for inter-
active sculpting or editing of surfaces, and many recenkaoan be found on subdivision
surfacesBMZB02, CGF04, CSG modelsfMOiT98], or volumetric modelsBITO04].

Notice that the size of the different grooves is always netaiio the projected pixel size.
Macro-grooves can become micro-grooves, or the opposiige change the camera resolu-
tion, distance, or view angle, for example. Since the previechniques are often limited by
the size of the surface features, it is thus very difficulthhoa@se which is the best technique
to represent them. In order to solve this, a common pracsite use different representa-
tions or resolutions of the surface detail, one for eachesgablistance, and then performing
smooth transitions between these. Becker and NBWd3], for example, address the transi-
tion among displacement mapping, bump mapping, and BRDF.Kiindsof transition, how-
ever, must be approximated due to the inconsistencies batthe different representations,
and shadowing is neglected. Other authors have suggestaddtof multiple resolutions for a
single representation based on normal distributions aghinass map$ou92 Sch97 CLO6).
Such methods perform a kind of efficient mip mappikgIB3] of normal and bump maps by
storing distributions of normals. However, since thesehmes only use normals, not heights
or geometry, occlusion effects like shadowing or maskingreat be taken into account unless
precomputing them, as happens with bump mapping.

Policarpo et al. have recently applied mip mapping for faketures too POCO03, but
directly pre-filtering heights or normals rarely yields i@t resultsfFou93. A single normal,
for instance, can not well represent a group of normals. &dtlehese should be represented
by a distribution of normals, as in the above methods.

2.5 Conclusions

In this chapter, we have described a large number of differemks and approaches that
directly or indirectly focus on the same goal: the obtainofigealistic computer generated
images. Most of these works usually concentrate on the gepmmdeling of objects and
surfaces, the representation of materials, or the sinomlaif local and global illumination,
while only some of them, on the simulation of defects andrtheacesses. This is especially
true for certain kinds of imperfections, for which theretid snuch room for improvement.
One of the imperfections that still requires further reshas scratches. As we have seen,

2.5. CONCLUSIONS 19

scratches have only been treated by a few methods and in aineryd way, especially
isolated scratches. Other kinds of scratches have bedndraa surface grooves in general,
but although more research has been done in this sensetjlitn®ssufficient.

The first drawback that is found on the available works, egfigon those that explicitly
treat scratches, is that they only focus on their renderniogon their generating processes.
If the scratching process is not taken into account, it iy egfficult to correctly simulate a
scratched surface. In addition, the scratches must be ewtglhand too. Some of the few
accurate models that compute the reflection of scratchesding to their micro-geometry
assume that this geometry is previously knowr9Q MDGO1b. However, such geometry
can only be known by measuring it with specific devices. Iteasl some information is
known about the processes that generated the scratchegyeumetry could be derived from
this, for instance.

Concerning the rendering of these features, none of theataiimethods is enough
general to efficiently simulate all kinds of grooves or schas. Despite the number of
existing methods, most of them are very restrictive withpees to their size, geometry,
or distribution over the surface. As we have seen, physitabked models mainly handle
parallel identical micro-groove$F9(Q, specific statistical distributionsSfa99, or isolated
grooves MDGO1h. All these methods, for example, limit the size of groovestte pixel
size, i.e. the size of the pixel once projected onto the sarfénisotropic reflection models
assume that pixel projects onto many grooves, while scratmiels assume that this projects
onto a single groove, with all its cross-section contaimethe pixel. This means that bigger
grooves or closer views are not possible, nor smooth tiansibetween micro and macro-
geometry. Furthermore, most assume that scratches sleasanthe geometry or that their
geometry does not change along the path, which rarely happeral situations. Finally,
special geometric situations like intersections or groewes are neglected as well. All these
constraints are very significant, because light reflectioa ceal world scratch may drastically
change according to its geometry.

Macro-geometry models rarely pose restrictions on the g#ognor distribution of the
grooves. However, these are more suitable for bigger ggyaimece most of the techniques
are based on point-sampling. For small scale or pixel-sggedves, they require good an-
tialiasing or filtering methods that can be very time consygnespecially as the distance to
the viewer increases or for highly detailed surfaces. Imsases, higher resolution for the
maps are also needed to correctly represent the features.

With regard to visibility and lighting effects, although skéng and shadowing are usually
considered by the previous methods, this rarely happetstigt multiple scattering of light.
Scratch models, for instance, have never considered thé&nebelespite the fact that inter-
reflections and transmissions can greatly affect the appearof a grooved surface. This is
especially noticeable on highly specular or transparetfidses, such as metals or glass, thus
is another important point that should be considered.

All these restrictions have motivated us for the developnoéa new general method to
render scratched surfaces of all kinds, which will be désctiin the following chapters.

20

CHAPTER 2. STATE OF THE ART

Chapter 3

Modeling Grooves

This chapter describes the process of modeling grooves @attkes. The representation
used to specify their geometry is first introduced. Next, wgan how this geometry, in the
case of scratches, may be derived from certain parametscsitiag the scratching process.

3.1 Representation Overview

In order to model grooves and similar features, previouske/trave usually characterized
them by means of paths and cross-secti®f399 MDGO01bh CGF04. Paths are defined as
lying on the object’s surface, and are either representecubyes or piecewise lines in 3D
object spaceKS99 CGFO04 or by a 2D texture with the paths “painted” on MPGO01h].
Cross-sections are similarly represented as curves onpisedines, but in 2D world space.
The geometry of a groove is then described by its crossesestvept along the associated
path, where the cross-section is sometimes allowed to ehantp be perturbed along it, in
order to describe non-uniform featuré€§99, CGF04.

/. \
\
A\

Figure 3.1: Grooves are represented in texture space byswé@aths and cross-sections.

21

22 CHAPTER 3. MODELING GROOVES

path Cos
N;

/R
W i

| B S-.-Ci:(Cib,CiW)

Figure 3.2: Piecewise cross-section defined on2hié plane.

In our case, we use a similar representation but mainly itutexspace (see FiguB1).
The geometry of each groove is described by a 2D path and a@&3-section: the path is
specified as lying on th&'V texture plane and the cross-section as being perpendicular
following the path. For a given poirf® on the path, its local frame is described by the path
tangentl” at P, the binormalB perpendicular t@", and the texture vectd# . Cross-sections
lie on the BWW plane of this frame.

Concerning their geometry, paths are represented by meanswfe or a line segment,
while cross-sections by means of a piecewise line. Curvesisesections will thus be ap-
proximated by piecewise lines, which are preferred for gefasomputation of the occlusion
effects. When modeling paths, these may be either specifiectigiin texture space or in 3D
object space, i.e. by first defining them onto the object serfand later transforming them
into texture space. Cross-sections may be similarly spdadifigexture or in world space.
The latter is useful when deriving their geometry from a r&ahtch process, for instance
(see Sectiod.2). Such cross-sections will later be transformed in texgy@ce, as explained
in Section4.1 An example of such a piecewise cross-section is shown iar&@2 This
consists of a set of points; = (C;,, C;,,) with coordinates defined with respect to the path,
where every pair of two consecutive points defines a faGet [C;, C;.1] with normal V;.
As can be seen, cross-sections may penetrate the surfatederfrom it, or both.

For each groove, we can also assign a perturbation functidrspecific material proper-
ties. The perturbation function allows a groove to changshiape along the path, by means of
modifying its cross-section according to the current pataim position in the path. Usually,
we use such perturbation to simply scale the cross-secliba.specific material properties
are useful when the groove do not share the same propertibe base surface. In that case,
a different material can be specified for the entire crossiae or for each of its facets. The
latter is useful, for example, to simulate scratches ontpdiar layered surfaces or to simulate
a bricked wall by means of grooves, where some of the facetstha properties of the bricks
and others the properties of mortar. In addition, each nadt®ay be represented using a dif-
ferent model of reflection (BRDF) or transmission (BTDF), likeoRg, Cook and Torrance,
etc.

This representation has several advantages with respetiiéo representations. In front

3.2. DERIVING THE GEOMETRY FROM A SCRATCHING PROCESS 23

=

=z

> =
A

scratch
direction

(@) (b)

Figure 3.3: (a) Scratched plate of aluminum with a close wéa scratch and its measured
cross-section. (b) Scheme of the scratching process.

of previous scratch methods, our representation of patbensnuous and compact, thus its
accuracy and memory consumption does not depend on the iraagkition. In addition,
we can compute different required properties for the shestosery easily, like the scratch
direction (path tangent) or the intersection and end poil®st representations used for
grooves and other features are also image-baBid3 Coo84 WWT03, OBMO(Q], thus
suffer from similar accuracy and memory problems. Prevgrametry-based representations
of grooves KS99, CGF04 are similar to ours, but our texture space representaigonbe
easily applied to any surface having a texture parameiwizavithout the need of reprojecting
the paths between different surfaces. Furthermore, pathbe easily evaluated in 2D.

3.2 Deriving the Geometry from a Scratching Process

In the case of scratches, it is very difficult to model theiogetry by hand. Since scratches
lie on the microscopic scale of the surface, their crossiees can only be determined by
measuring them with specialized devices, as mentionedd¢see Figurd.3(a). One can
notice, however, that the geometry of the obtained grom/esated to the scratching process.
If such process is relatively known, we could find a way towketheir microgeometry without
needing any measurement.

In the field of materials engineering, some works study thatsh resistance of materials
on the basis of the scratching processes, especially fgmak and thin coating8EPS96.

24 CHAPTER 3. MODELING GROOVES

Figure 3.4: Scratch tester used to perform controlled slortasts.

These works state that the microgeometry of a scratch depamdhe parameters involved
in its formation process, like the material properties @ tject, the scratching tool, or the
applied force. Some have also quantified the contributiothe$e parameters to the final
scratch geometrydgZLM98, BucO1].

Based on this relation, we here propose a physically-baseatklntbat is able to de-
rive the invisible geometry of scratches from the paransedesscribing their scratching pro-
cess BPMGO04. For this purpose, we have considered the real behavidreo§tratch pro-
cesses by taking into account the existing models in the diefdaterials engineering and by
performing several “scratch tests” and measurements. Swly is focused on scratching
processes over metals and alloys because their behaviarésaommon than for other mate-
rials, like ceramics (glass, porcelain, ...) or polymetagpc, rubber, ...)¢al94. However,
the model could be extended to incorporate those types @rralstas well.

For our model we consider the following parameters: the gegonof the tool used to
scratch, its orientationd(, ¢,) relative to the surface normal and the scratch directiba, t
force Fy applied with the tool, and the hardness of the surface nai@ee Figurd.3(b).

3.2.1 Measuring Real-World Scratches

In order to understand the behavior of scratches on metaldave first performed differ-
ent tests using a scratch tester, which is an instrumenoffexs the possibility to perform
controlled and accurate scratch tests (see Figube This kind of device allows the precise
specification of the load (force) that is applied to the tdmit other kind of parameters are
fixed, such as the scratching direction, the orientatioreftobol, or the tool itself, which in
our case is a Rockwell diamond cone (see right of Figuend Figure3.7). For this reason,
the scratch tester has been basically used to study the effditferent forces and its behav-
ior with samples of different hardness. The different materused for these samples are:

3.2. DERIVING THE GEOMETRY FROM A SCRATCHING PROCESS 25

Figure 3.5: Left: Nail used for our manual tests. Right: Clog®tithe tip.

aluminum, brass, steel, and titanium. Then, for each ondjave made different scratches
applying loads from 0.5 to 4 kg. Figu®6 left, shows three scratches obtained with the alu-
minum sample by applying loads of 0.5, 1, and 1.5 kg. A closefupe scratches is shown
in the top, while the corresponding measured cross-sectiomn shown on the bottom. Note
that the horizontal resolution of these measurements heal@a atio of 1:2.5 with respect to
the vertical one.

Since the scratch tester do not allow the study of differeok drientations, we have also
performed some manual tests. These tests, although lagatediave been used to determine
how orientation approximately affects the resulting stirajeometry. For this purpose, we
have used a sample of aluminum alloy and a nail, represetitépol (see Figurd.5). Then,
different scratches have been made onto the alloy changm@rientation of the nail, i.e.
changingd, and¢,. Figure3.6right, shows the aluminum plate with the different scratche
generated with the nail, changing its orientation for eact @op). Some of the measured
cross-sections are shown on the bottom, correspondingitotientations of (0,-90), (45,-90),
and (60,-90), withd; being relative to the surface normal apdbeing relative to the scratch
direction, as stated above. In this case, the horizontalutsn of these cross-sections has a
scale ratio of 1:5 with respect to the vertical one.

After performing the tests, we have measured each scratthaniommelwerke T2000
profilometer, which allows the measuring of their crosgises in the microscopic scale. For
each profile we have measured the deptbf the groove, the height of each peak, and
its anglesa and § (see Figure3.7). Then, for each material sample, we have measured its
hardness using a static hardness tester. Hardness has basuared on the Vickers scale,
which is one of the common hardness scaléal94. This hardness value will be used to
relate the behavior of the scratches to the properties ahtterial.

26 CHAPTER 3. MODELING GROOVES

Figure 3.6: Some scratch tests and measurements perfonmad aluminum plate. Left:
Using the scratch tester with different applied forces. Rigbsing the nail with different
orientations.

3.2.2 Deriving the Cross-Section Geometry

As stated inMDGO01h], the cross-section geometry of a scratch is composed aj@/grand
two peaks. During a scratch process, the groove is due todhetgation of the tool into the
material, and the peaks due to the flow and pile-up of mataralnd the toolJZLM98§]. As
aresult, the shape of the internal part of a cross-sectearlgldepends on the geometry of the
tool, as shown in Figur8.7. Such dependence can be assumed as direct for metals, decaus
metals have no significant shape recovery after a scrBER$96.

Apart from the shape, the depphof the central groove from the base surface is related
to the force applied with the tool and the material propsrtéthe object. Specifically, the
wear volume is proportional to the applied force and indgrpeoportional to the material

3.2. DERIVING THE GEOMETRY FROM A SCRATCHING PROCESS 27

Figure 3.7: Scratch cross-section obtained by a profilongetd the different measured val-
ues. The tool used by the scratch tester is included to sh@ddpendence between the shape
of the scratch groove and the tool geometry.

hardnessJZLM98]. According to this rule and the measurements obtained bystiatch
tester, the penetration depth is computed using the fatigwkpression:

Fy
p = 0.1824/ — + 0.0055 — 0.014 ,
Hy

wherep is the depth represented in mm)y the applied force in kg, andl the Vickers
hardness of the material in kg/mmAlthough the previous expression may vary for different
geometries of toolsBuc01], we assume that force and hardness will be usually spe@ged
approximate values (see Sect®R2.3, thus the loss of accuracy can be neglected in this case.
With regard to the geometry of the peaks, we have found arliredation between the
internal anglex and the external angl& based on the results obtained from our measurements
and the work of BucailleBucO1J). According to this, for each peak,is directly derived from
the shape of the tool anélis then computed as:

tan 3 = —0.56 + 2.54 tan .

Next, in order to find their height, we assume that there is no loss of material dur-
ing the scratch process, which for metals is accomplishékeifscratching tool is not too
sharp Buc0]]. As a result, we can consider that the sum of the areas ofdhksiis equiv-
alent to the areal of the central groove, and each peak height can then be edddyned
using the following expression:

. A
~ Vcota+cotf’

Finally, the width of both the internal and external partpeéksw; andw,, is obtained
by simple trigonometry:

w; = h cota,

28 CHAPTER 3. MODELING GROOVES

Figure 3.8: Close view of a real scratch intersection (left) acratch end (right).

we = h cot 3.

According to all this, the geometry of a scratch can be ddrix@m the process parameters
using the following relations:

1. The shape of the tool relates to the shape of the groovehartdib peaks.

2. The material hardness and the applied force relate togpdnd height of these.

Another important parameter of the scratch process thatwe hot still considered is the
orientation of the tool. In the different analyzed workse thol is assumed to be completely
perpendicular to the object’s surface, as happens on &bdester. However, our manual tests
and measurements show that the orientation of the tool aasiderably affect the geometry of
the scratches (see right of Figu8&®). Although these tests are less precise than the ones made
with the scratch tester, we have found that this orientdiasically supposes a rotation on the
geometry of the tool. This means that the orientation patanan be taken into account
by simply rotating the tool before deriving the cross-satd using the same expressions as
before.

In this study, we have not considered the geometry resudtisgratch intersections or ends
because this is quite more complex. According to some measmnts that we have made,
intersections tend to result on X-shaped geometries, wihergpeaks of the two scratches
have almost disappeared. In some cases, however, part petie for the latest scratch
may still remain, as shown in FiguB28. At scratch ends, the resulting shape depends on the
material that have been piled up around the end (see righieofigure). This accumulated
material, furthermore, tend to be more important than the fonming the peaks along the
scratch BucO1].

3.2. DERIVING THE GEOMETRY FROM A SCRATCHING PROCESS 29

3.2.3 Parameters Specification

When specifying the parameters of the scratch process, wetbhaake into account some
considerations. Concerning the tool, for example, we asghatehis is given as a 3D model
with real-world coordinatesun, mm, ...), so the geometry of the scratch’s groove can be
directly obtained from the model. If the shape of the toolaskmown but the tool is available,
the size or shape of the tip could be approximately measigied @ microscope, for instance.
For a given scratch, the orientation of the tool and the faare be specified as either single
values for the entire scratch or as a set of different valleagyethe scratch path. In the latter,
the values are linearly interpolated, and this results icratsh where the geometry, and
thus its reflection, changes along the path. If forces argailable, they can be determined
by observing the obtained scratches, since force is claséyed to their final width. This
similarly happens with hardness, but the width is then &ffgéen an inverse way, as stated
before. Hardness, however, is usually easier to deterrhthe surface material is relatively
known, since there are many lists of materials with avaddialrdness value€fl94. Finally,

for complex surfaces consisting of several materials, iesd variations may be specified by
means of a texture too.

The purpose of our model is to derive an approximated but ipalg-correct cross-
section. The result will be more accurate if the exact patarseof the scratch process are
known, but since the knowledge of the exact values is verficdif and not necessary for
many applications, approximate values can also be used.

30

CHAPTER 3. MODELING GROOVES

Chapter 4

Rendering Grooves

This chapter covers our software-based approaches foemagdscratched and grooved sur-
faces. Their purpose is the realistic rendering of this kihslurfaces, by means of taking into
account the specific geometry of each groove, occlusioetsfiich as masking and shadow-
ing, and the correct solving of aliasing problems. FirsSattion4.1we propose a rendering
method to handle isolated scratchB®MGO04. This focus on situations where only a scratch
or micro-groove must be processed at a time, and where itsilwation to the reflection of
the surface, at a given point, is determined by its entiregection. Next, in Sectigh2, we
propose a more general method to handle grooves of all kBEM[ES05. On one hand, we
extend the previous method to handle isolated macro-geoamd multiple parallel grooves,
thus removing its restrictions to micro-grooves or isalaggooves. On the other hand, we
propose a different method for special geometric situatisnch as intersections of grooves,
groove ends, and other similar cases. The result is a gemethbd that efficiently simulates
grooves of any geometry, size, or distribution over theasef allowing smooth transitions
from micro-geometry to macro-geometry, among others. lkti&e4.3, we finally propose
the extension of this method in order to include indirectniination as well. This extension
especially focuses on the specular inter-reflections antsinissions occurring on the same
surface, which are important for specular or transparemfidses such as metals or glass.

With these solutions, we can efficiently treat the specifiongetric situations according
to their needs. Furthermore, the scratches and groovesnantated without modifying the
geometry model of the surfaces, which gives an importantongsave and an easy to specify
model that is appropriate for all kinds of surfaces. In otdesimplify them, however, we here
take several assumptions about the geometry of the groodghat of the surface at the pixel
level:

1. Cross-sections of grooves suffer low perturbations atbagaths.
2. Paths of grooves have low curvature changes.

3. Surface curvature is low.

31

32 CHAPTER 4. RENDERING GROOVES

TP —— footprint's
bounding box

Figure 4.1: TheUV texture plane is uniformly subdivided into a grid storing tthifferent
paths. In order to find if the pixel footprint contains a schatwe get the cells at the boundary
of its bounding box and test the paths against the footprint.

Since dealing with all possible geometries can be very esipenat a pixel level, these
assumptions allow us to approximate the surface local gegrbg a set of flat facets. This
means that, inside a pixel, cross-section perturbationslhaassumed to be constant, curved
paths may be approximated by straight paths, and the basesiny means of a plane, which
considerably simplifies our methods.

4.1 Isolated Scratches

In order to render isolated scratches, the present metheslaisimilar approach to the one
proposed by Mrillou et al. MDGO1H. This consists in determining if the current projected
pixel contains any scratch and on evaluating the apprepB&DF according to this. When a
certain scratch is found, the reflection at the current psicdmputed using the scratch BRDF,
which takes into account the current cross-section; otiserwhe reflection is computed using
the surface BRDF. One of the improvements of our method is bligase¢arch for the current
scratch is based on our geometric representation of thes,pathich offers more accurate
results than evaluating an image of paths. Furthermore, avead put restrictions to the
geometry of the scratch cross-sections, which allows @&begproduction of their reflection
behavior. Such improvements make the method suitable éorahdering of isolated micro-
grooves in general.

4.1.1 Finding Scratches

Once the current pixel has been projected onto the scrativéate, obtaining what is called
the pixel footprint (see Figuré.1), we may determine if this contains a scratch by evaluating

4.1. ISOLATED SCRATCHES 33

Figure 4.2: Cross-section geometry at a scratch point shyptvandifferent parameters needed
to compute the BRDF.

its footprint against the different scratch paths. Fifsg @'V plane is subdivided into a uni-
form grid, saving in each cell a list of all the paths crossinghis grid is used to avoid doing
the tests with all the scratch paths and is computed in aque\stage. At the current stage,
we determine the bounding box of the pixel footprint onto gniel, and then get the paths
stored in the cells at the boundary of this box (see solidgdelFigure4.1). Since paths are
rarely shorter than a pixel footprint, current paths candasél without needing to consider
all the cells inside the footprint, which reduces the nunmidferells to examine fromr x y to

2z + 2(y — 2), wherex andy are the box dimensions.

Once obtained the paths from the corresponding cells, wekcifi@ path is really con-
tained in the footprint by first computing the poift on the path nearest to the footprint
centerF’ (seeP; and P, in Figure4.1). This point is then evaluated using a point-in-ellipse
test [GH84 to determine if this lies inside the footprint. Since thethwa only considers one
scratch per pixel, the path inside the footprint nearedt is selected as the current scratch
(P, in the figure).

In order to find the paths close to a footprint, note that weshehosen a uniform space
subdivision because it is easy to compute and gives a goéarpemce in this case, but other
subdivision could also be used.

4.1.2 Scratch BRDF

When a pixel footprint contains a scratch, the local geomaéfined by the scratch and the
surface can be described by a 2D cross-section. This gr&atlifies the evaluation of the
scratch BRDF by removing one dimension to the problem, anddsalthe assumptions stated
at the beginning of this chapter. At a given scratch poirg,dfoss-section will be composed
of a set ofn = m + 2 facets, wheren is the number of facets of the current cross-section, and

34 CHAPTER 4. RENDERING GROOVES

the other two facets represent the surrounding surface~{geee4.2).
In Mérillou et al. MDGO01b], some additional assumptions are introduced in order to
compute the scratch BRDF:

1. Scratch cross-section consist of four facets with equciths.
2. Scratch width is less than half the pixel size.

3. Scratch is always centered on the footprint.

4. Footprint shape can be neglected.

First assumption is based on their definition of a scratckszs®ction by means of two
angles, which greatly simplifies the obtained geometry (Sgere 2.1). Since the cross-
section of a real scratch rarely has such a specific profilshes/n during the derivation
process (see Sectid@?2), we improve on this by allowing the use of a generic crossice.
Such cross-section has no restrictions on the shape, theemwhfacets, or their width onto
the surface.

Concerning the second assumption, this limits the scratdthv® ensure that its geome-
try is never visible, but only its reflection behavior. Thiseocalong with the third assumption,
guarantee that the scratch cross-section is entirely c@uatan the footprint, so that no clip-
ping with the footprint is necessary. Last assumption thsa gesults from these two, since
if the scratch is small and centered on the footprint, theteshape of the footprint can be
neglected without introducing an important loss of accyrakhese three premises are also
considered in our case.

In order to determine the cross-section geometry at a $cpatioit, the total part occupied
by the scratch will be described by the relative width of tbeagh over the footprint size,
which is called scratch proportion ps[MDGO01h. Such proportion depends on the scratch
width and also on the viewer distance, its angle, or the intagelution, but it can never
exceed half the pixel size, as stated € [0, 0.5]). According to thigs value, the total width
occupied by the two external facetslis- ps, and since the scratch is centered, each one has
a width of (1 — ps)/2.

When computing thes value, if the scratch cross-section has been derived frarrasch-
ing process, its width will be represented in world coortiisgusually inum). Since the foot-
print is represented iV texture coordinates, we then need to determine the pixedmim
sions onto the surface before being transformed into texdpace, and use these dimensions
to computeps.

According to the cross-section geometry at a scratch pthiatscratch BRDF,. s.azch 1S
finally computed as the sum of the light reflected by each fa¢stDGO011:

fr,sc’ratch - Z fr,krka) (41)
k=1

4.1. ISOLATED SCRATCHES 35

wheref, ;. is the BRDF associated to each faegtits contribution to the total reflection, and
G, the geometrical attenuation factor, later described iriGed.1.3
For each facet, the reflection contributieg,e [0, 1], will be:

ly; cos 0; 1, cos 0, 1,

"k s oy, cos 0; cos b,

wherel,, is the relative area of the facet over the total footprinaare, its angle from the
surfacef, , andd, ;, the angle described by the incident light and the observér ispect to
the facet, and,; and6, the same angles with respect to the surface normal (Fi§@yeNote
thatcos 0, , = N x w; andcos 0, , = Nj x w,, whereN;, is the facet normaly; the incident
vector, andv, the viewing vector. Also note that is determined according to previous
and the relative width of each facet.

4.1.3 Occlusion

The geometrical attenuation fact@¥, € [0, 1], represents the occlusion term of each facet,
describing which part of the facet is visible and lit, i.et measked or shadowed by other
facets. In MDGO1h and [ON94], such term is derived from the cross-section geometry and
later transformed to 3D, but they assume that grooves hawfagb V shape. In our case,
we use a similar approach but for a generic cross-sectio, 2blving each facet term in a
generic way.

For each facet, its occlusion terntz;, is divided into three components: self-occlusion,
G S}, occlusion coming from the left; L,, and occlusion coming from the righ; R

Each of these terms is computed using the following expoassi
GSIC = Inax (07 min (17 gk (wz) » 9k (wr))) ’

G Ly = max (0, min (1, gx k1 (i), Gk pr1 (W), = 5 Grn (Wi) 5 G (wr)))
GRk = Imax (07 min (]-7 9k k—1 (wz) y Ok k—1 (w'r’> y 0 5 0k0 (wz) » Jk,0 (W'I‘))))

whereg, (w) represents self-occlusion, apg;(w) the occlusion of: from j, this being com-

puted for each facetlying on the corresponding side bf(left side forG Ly or right side for

G Ry). For these terms, masking is determined using w,, and shadowing using = w;.
The previous termg;, andg;, ; are finally computed by the following expressions:

B 1
_kaw’

gr(w)

36 CHAPTER 4. RENDERING GROOVES

— Maya 5.0: Jusersirichoschimaya/projectsioumodel/scenes/samplel.ma_—— _ ScratchShaler ...

File Edit Modify Create Display Window Edit Curves Surfaces Edit HURBS Polygons Edit Polygons Subdiv Surfaces
ooy S [[DEEREB|z+ 2 leEr0? aR (BN 20| 0C|H(HEBGE ||

Lst Selected Focus Atiribules

Fle Edit View Create Tabs Graph Window View Shading Lighting Show Panels |
Options Panels

dleslonElaen == Il T

] Focus
Wark Area ScratchShader. | ScratchShacer]
O | Presets

Material Sarple .

_i Caching
Mode State Hormal i
i Show Pattem
selectp o T
i Apply Al
ampent Cotor [ll—— I
oifwecoor | [
specuer Color [ll———— =
Cosine Pawer l?STI—_A_IiI
profileFile [sersfbrcboschidactorabiaols/eaut
£
Reflectivity [OS00 [o
gase coior [=
Haraness [EEHS = I
_i Draw Profiles
_i Debua

2P D6 [r]

Hotes:

size: 368 239 Z0om: 1000 (Maya Software) i Select Load atributes | Copy Tab

== E

| 1D L

Figure 4.3: Simulating scratches in Maya with our plug-ins.

cosf — tan oy, ; sin € cos (¢ — Pseraten)

Uk ;
Gy (W (0,0)) =1+ l—;cos Qe Nox o

wherel, ; is the distance between facétsindj, oy ; is the angle between them, aag, ;s

is the azimuthal orientation of the scratch cross-sectitio the surface, obtained from the
current scratch direction, i.e. the path tangéntNote that/, ; and«;, ; are computed from
the point on the current facet nearest to fac@tigure4.?).

In order to avoid computing; ; between each facet and the rest of facets of the cross-
section, we can previously determine which may occlude &icefacet and compute occlu-
sion only for these candidates. Such candidate facets céoubéd by first considering all
the facets higher than the current oriej(+ 1, andk + 1 for facetk in Figure4.2), and then
neglecting those candidates that are always occluded liiemmandidate (in Figur4.2, j+1
is always occluded by whenk is occluded).

4.1.4 Results

In this section, we present the results of our method foreend isolated scratches as well as
the results obtained with our derivation model, descrilme8ection3.2 These methods have
been implemented as two plug-ins for the M8ysoftware, using a shader for the reflection
model and the derivation process, and a 2D procedural exbuithe scratch pattern. Maya
has been also used to model the paths of the grooves diretttiytlve objects and to model

4.1. ISOLATED SCRATCHES 37

Figure 4.4: Scratches simulated using different tools ¢uppft), hardness (upper right),
forces (bottom left), and tool orientations (bottom right)

the different tools for the derivation process (see FiguBe

First, Figure4.4 shows some synthetic scratches modeled by changing trezadiff pa-
rameters of the scratch process and rendered with our agfprdae cross-section geometry
derived from these parameters is included below the saatcfested tools (upper leftimage)
are: a nail, a screwdriver, the scratch tester’s cone, agtbadal tip. Hardness values (upper
right image) increase from left to right, as well as forcesti@m left image). Finally(6,, ¢;)
orientations (bottom right image) are, from left to righ@,), (40,0), (60,90), and (45,45).
All these images have been generated using a light souroceyfdee camera, located in the
opposite side of the scratched plate. As shown, the georaattyeflection of the scratches
greatly depend on the specified parameters. In the caseadtlses with high peaks, the shad-
owing/masking effects produce a considerable darkenirigesfe. All this demonstrates how
important is to take into account the specific geometry ddtsties. Note that with the model
proposed by Mrillou et al. MDGO1H, none of the obtained cross-sections could be correctly
represented, because either the number of facets is mardaina their widths are different,
or the angles of the two peaks do not coincide, i.e. the csestion is asymmetrical.

In Figure4.5we compare some pictures of a real scratched surface withesnabtained
using our method. The object corresponds to the titaniure plaed for the tests that were
made with the scratch tester, and the tool is the testertahtip, without any specific orien-

38 CHAPTER 4. RENDERING GROOVES

Figure 4.5: Top: real titanium plate scratched with theetieand seen from different view-
points. Bottom: corresponding images synthesized with aethod.

tation. In this case, we performed five parallel scratcheis different forces, which decrease
from left to right on the first image, from right to left on thecond, and from bottom to upper
on the third. For the synthetic images, these parametergkhasvthe titanium hardness are
taken into account. The light source is here placed besidesamera because pictures were
made with flash. As can be seen, our model allows an accuratgadion of the real behavior
of the scratches. When rotating the camera around the platey with the light source, the
simulation of their reflection closely matches the real titen without needing to change the
process parameters or the reflection properties.

Figure 4.6 shows another comparison between a real scratched suridca synthetic
one obtained with our method. In this case, the object cpomss to an aluminum plate that
has been manually scratched with a nail, without any spemifentation. This presents five
scratches, which are numbered onto the real plate (top Fedt)the first and fourth scratches,
the force is low and nearly constant. For the second and tiftitches, the force is higher and
diminishes at the end of their paths. The third one finallysprgs different forces along the
path. The results obtained with our method (top right) show the variability of the force
parameter is properly handled along the scratch paths.idrctise, force was specified by
hand, after visually inspecting the real scratched plate.

In the bottom, we include two comparison images to show thregmtible differences
between the two images. These comparison images have beguieal using the method
detailed in Appendix A. Left image shows the pixel-by-pixelrceptual differences in false
color, where blue represents imperceptible differencesrad represents highly perceptible

4.1. ISOLATED SCRATCHES 39

Figure 4.6: Top left: real aluminum plate scratched with & msing different forces along
the paths of scratches. Top right: the corresponding stinthreage. Bottom Left: differ-
ence image computed using a perceptually-based metrieJda €olor. Bottom right: most
perceptible differences.

differences. Right image only shows the most perceptiblermihces, which basically ap-
pear at the boundaries of the plane, at certain regions aluiteice, and at some parts of
the scratches. Most of these differences, however, arealtieetmisalignment of the two
images, since we mainly modeled the scene by hand. We ha¢ettricorrectly align the
different scratches above all, but some misalignment prablcan still be found, especially
for the central scratch. Nevertheless, the differenceslanest imperceptible for the rest of
scratches, as can be observed. See Seatibfor more details about this comparison.

Next, we present some application examples of our methodur&i.7 shows a real
scratched metallic component from a car (left) and the spwading synthetic image (mid-
dle). The synthetic image belongs to a bank of images thats@d to train computer vision
systems for the correct detection of scratched parts in faatwring and inspection processes.
Right image shows the results obtained with one of theseragstising our synthetic image.

40 CHAPTER 4. RENDERING GROOVES

sem
0@

Figure 4.7: Left: a real scratched metallic part. Middle: gbrresponding synthetic image.
Right: detection of the scratches.

-
|

Figure 4.8: Road sign with several imperfections on it, idolg scratches.

Notice how the scratches are correctly detected. Figuéhen shows two synthetic images
of a deformed road sign with dust and scratches on it, therlaéing simulated with our
method. These images belong to a CAD for road safety develtipstlidy, among others,
the visibility of old road signs in adverse circumstanceshsas night scenes (see right im-
age) or scenes with fog or rain. Figute shows a synthesized gold ring with an inscription.
This example illustrates how our model could be used forangg processes, in order to test
different designs, tools, or other parameters over metflsré engraving them, for instance.
This could avoid possible mistakes and reduce importariscos

On the other hand, our representation based on curves nmapealgseful to render any
type of surface annotation (geometric lineéSKHLOQ] or 2D vector graphics. Thisis shownin
Figure4.10 where our procedural texture is used to display the scratis onto the object’s
surface (left). In our case, we use this functionality toctlyi display the position or shape
changes of the paths when modifying the texture paramatizaf the surface. However,
it could be used to accurately display any kind of pattern@m2aphic over a surface. Our

4.1. ISOLATED SCRATCHES 41

Figure 4.9: Synthetic ring with an inscription.

Figure 4.10: Left: scratch paths displayed using our 2D @docal texture. Middle: final
rendering of the scratches using our approach. Right: reddeith the method of Mrillou
et al. MDGO01H. The small images on the bottom right correspond to the ethsbgions
rendered from a closer viewpoint.

main purpose of using a geometric representation of thespsith be able to correctly render
surface scratches at any image resolution or distance fnermiewer (see middle). If paths
are represented by means of an image, asénilMu et al. MDGO01l], the aliasing problems

are clearly noticeable as the viewer approaches to thecguf$ae right).

In Table4.1, we finally compare the performance of our method with resjoebe method
of Mérillou et al. MDGO01h. With this purpose, we have used three scenes with a differe
number of scratches over an object: 5, 50, and 500. Each $@mbeen rendered on a
Pentium 4 (1.8 GHz) with 1Gb RAM, and the same scene withowtsices was rendered
in 4 sec. As expected, the rendering times for the two moaelease with the number of
scratches, since more computations are necessary. Tloerparfce difference of our method

42 CHAPTER 4. RENDERING GROOVES

Scratcheg Our method MDGO1H

5 10 8 (10)
50 19 15 (17)
500 67 41 (55)

Table 4.1: Rendering times for different scenes (in seconds)

is mainly due to the computations required by the curvess@alty when finding the nearest
path contained in a pixel footprint. The model oENllou et al., however, needs extra pixel
samples in order to obtain a similar quality, which increa$e rendering time, as shown in
brackets. On the other hand, their model has many problepowpute the scratch directions
from the pattern image, especially when the number of deeatcs high. This is due to their
calculation of the scratch directions by means of analyzirggneighboring texels at each
point. Such kind of analysis becomes very difficult at intetgns or places with very close
scratches.

In order to evaluate the efficiency of our method we have adstved its time and space
complexity. In the worst case, the rendering of isolate@tstres is achieved i@ (g(n +
m) + [f?) time, whereg is the number of scratches in the pattern, m the resolution of the
grid, [the number of light samples, arnfdthe number of cross-section facets of the scratch.
Concerning the representation of the scratches, its menostyisO (g(p, + p: + f)), where
p, are the (maximum) number of control points of the paths, grttie (maximum) number
of control points of the perturbation functions. The gridpaiths and the lists of possible
blocking facets then have a space complexity)¢fimg) andO(gf?), respectively, and are
precomputed irO(g(p, + nm)) andO(g(p; + f*)) time, also respectively. In Appendix B,
you can find more details about the derivation of these coxitj#s.

4.2 General Grooves

This section introduces our general method for renderiogwgd surfaces, which improves
on the previous method by allowing scratches or groovesysee and distribution onto the
surface. For this purpose, two approaches are presentsthted before: a fast 1D sampling
approach for isolated and parallel grooves and an area sapgpproach for special situations
like groove intersections or ends.

4.2.1 Finding Grooves

First of all, we need to find which grooves are contained infl@cathe current pixel footprint,
that is, visible grooves as well as grooves casting shadows d-or this purpose, we may
use the same approach of Sectdbh.l, by means of evaluating the footprint against the paths
stored into the grid. In this case, however, the size or bmgnbox of the footprint is not

4.2. GENERAL GROOVES 43

footprint

footprint’s
bounding box g

enlarged L
bounding box &5

W
\Y
\/'U
(@) (b)

Figure 4.11: (a) Pixel footprint is affected by two groovesose paths lie outside its bound-
ing box. This box must thus be enlarged according to theirimam width and projected
height,w,,,,, andh,,., g. (b) At intersections, some interior facets may be visihleaf the
boundaries of grooves. The bounding box must also be emdagsording to their maximum
projected depthy,,. &.

sufficient to find all the contained grooves, since biggerearast grooves may be partially
contained without containing its path, as shown in Figufel(a)

In order to solve this, here we must consider the dimensibtied cross-sections as well,
and use these values to enlarge the footprint bounding bimxeébgetting the corresponding
grid cells. Such values are the width (half-width), heigtrid depth of the grooves, but since
these are different for each groove and also change withdtiarpation functions, we instead
use their maximum values for all the grooves;..., hmaz, aNdp,,.... These values are easily
computed in a preprocessing step, during the computatitmeajrid.

In Figure4.11(a) we show an example of a footprint affected by two groovessetmaths
lie outside its bounding box. By enlarging this bounding bozading tow,,..., we can found
the paths for the grooves directly contained in the footp(lieft groove in the figure). For
grooves casting shadows or seen far from their bounds (giginve), we must considér,, ..
too, specifically its projection according to the viewl/lighirection. For the view direction
E = (E,, E,, E,) in texture space, the box is thus enlarged according to:

hma:v,E - hmaa: tan 97‘)

wheref, is the viewing angle anthn 6,. is obtained by:

tand, = 7‘1_E12U)

Ey,

44 CHAPTER 4. RENDERING GROOVES

For intersections and similar situations, we need to camsig,, as well. This must
be done to find the grooves that may be visible through ansettion, as shown in Fig-
ure4.11(b) For non-intersecting grooves, the interior facets of¢hgr®oves are always seen
inside their boundaries, even at grazing angles. At intties, instead, those facets might
not be masked due to the removed geometry and thus remalotevidn order to find the
corresponding path we must then enlarge the bounding baxdiog to:

Pmaz,E = Pmazx tan 97« .

Note that in the previous case, the bounding box is enlargiairving the viewer direction,
and in this case, in the inverse direction.

In order to find the grooves casting shadows on the footpsinjlar values have to be
computed for each light source directi@nabove the surface, i.é.,, > 0. In this case, the
bounding box must be always enlarged in the direction ofitjite source, which reduces the
previous expressions into a single expression:

hpmam,L = (hmax +pma:r:) tan 92 3

whered; is the light source angle. Since all these enlargements beustdependently done
for each light source and the viewer, in practice, we first gota the maximum enlargement
of the box in its four possible directions and finally enlatige box accordingly. The resulting
box may contain paths of grooves not affecting the footphat these will be discarded during
the clipping step (see Section2.3.2and4.2.4.)).

Once the box has been properly expanded, we finally get tihelgiglg on the boundary
of the box, as before (see solid cells in the figures). Notefthrarepeating patterns, if the
bounding box exceeds the limits of the grid, we then condidercells from the other sides
too.

4.2.2 Detection of Special Cases

In order to select the appropriate rendering approach foigthoves found on the previous
step, we need to determine if there is any special case, sualgeoove intersection or end.
First, if two grooves are not parallel, i.e. if their tangelmectionsT differ, we assume that

these probably intersect. Then, we test if any of the two emdtp of a path lies inside the

current bounding box. If any of these conditions is satisfweel use the rendering method of
Sectiond.2.4 otherwise, we use the method of the following section.

4.2.3 Isolated and Parallel Grooves

When a pixel footprint does not contain any special case,dbal lgeometry at the current
point can be represented by a 2D cross-section, as befois.lotal geometry, however, is
not as restricted as in Sectidnl.2 since we want to handle more than a groove per pixel,

4.2. GENERAL GROOVES 45

S

[—
Projrsi
v, =
Sl | Aol |
Co Cy *Q}g Cy C’s Cg Cly
W C, Cj3 Cs C7

(@) (b)

Figure 4.12: When the footprint is affected by isolated omlflal grooves, the different op-
erations are performed in cross-section space. (a) Thegtimp of the footprint onto the
cross-section plane is done using its two axesnd A,. (b) Once in cross-section space, the
cross-sections are merged, projected onto the base suafaténally clipped.

grooves wider than the footprint size, or grooves not cewdten the footprint. To handle such
cases, the main difference is that we need to clip the crest#es to the boundaries of the
footprint, and this implies that the footprint shape mustdien into account as well.

The proposed method consists in the following steps:

1. Merge cross-sections of grooves into a single crossesect
2. Clip the cross-section facets to the footprint.
3. Compute masking and shadowing.

4. Compute reflection for each obtained facet.

4.2.3.1 Merging Cross-Sections

Merging is performed to unify the different groove crosstgms and the base surface into a
single cross-section. In this way, multiple grooves canuaduated as a single cross-section
and the occlusion between the different cross-sectionbea@asily handled. For the merging,
we basically need to translate each cross-section acegptaliits position with respect to the
footprint centerF’, which can be achieved by first computing the pdihon the path nearest
to F', and then computing its signed distankteith the following expression:

d= B,F,+ B,F,—B-P=B-(F—P), (4.2)

where B = (B,, B,) is the path binormal aP and F' = (F,, F,) is the footprint center
(see Figuret.12(a). The different cross-section point& of each groove are translated using

46 CHAPTER 4. RENDERING GROOVES

C). = Cx+d, and then finally merged (see Figud 2(b). The obtained cross-section directly
includes the surface between the different grooves, aseaedn, and the rest of the surface
is included by adding two extra facets at the beginning ambdoéthe cross-section.

4.2.3.2 Footprint Clipping

Clipping is used to remove the portions that remains outsidiesocurrent footprint, and this
consists in three steps:

1. Project the footprint onto the cross-section plane.
2. Project the cross-section onto the surface followingvteer direction.

3. Clip each facet to the footprint.

In the first step, the footprint is projected onto tB&l” plane in order to compute clip-
ping and other operations in cross-section space. As ugathape of a pixel footprint is
originally represented by an oriented ellipse (see Figui®(a). This shape must be thus
projected onto the plane, but we can approximate this piojeasing its two main axed;
andA,. The axis with the largest projection is the one that bedpresents the original shape,
and is computed as:

projmaw - maX(|prOjA1|7 |prOjA2|))

whereproj,, = A; - B andproj,, = A, - B. According toproj,,,,., the resulting footprint
segment is:

S - [_projmaxa projmax] ?
defined with respect to the footprint centér In Figure4.12(a) for example, the largest
projection isproj, , thusS = [—proj,,, proj,,J.

The next step is the projection of the merged cross-secticoreing to the anglé€’.. This
angle represents the angle of the view veéamnce projected onto the cross-section plane, as
shown in Figured.12 Note that this angle is signed, being negative wheemd B directions
remain on the same side, and positive otherwise. For each poithe unified cross-section
Cy = (Cy,, Ct,), its projected point is:

proj,, = (J,’% + Cy, tan 6.,
where
—B- (Eu, EU)
F, '

The previous step results in a set of 1D facets lying on thieasabase line defined by the
binormal B. Since the footprint is also represented onto this line aB aggment, clipping

tan @, =

(4.3)

4.2. GENERAL GROOVES 47

may be done using simple 1D operations. The footprint segsien Sy, S;] is thus clipped
with each projected facetoj,, = [projc, . projc, ,, | using the following expression:

g _ null if So > proj,,, or Si < proje,
1 [max(So, proje,), min(Sy, projs,)] otherwise
(4.4)
First case occurs whefi is completely outside of the current fagabj, , and second
case, whery is partially or totally inside the facet. In the example ofiie4.12(b) when the
footprint segment is clipped with the faceprojy,, this results in a partially inside segment
SRsy-

4.2.3.3 Occlusion

Occlusion could be computed using the approach of Sedtibig but this method requires
several computations that can be costly as the number oégsed facets increases. In this
section, we propose a different method that is simple artddasl does not require any pre-
computation of the occluding facets. It consists in firsigecong the different cross-section
points according to the view or light direction. The ordeattfollow these projected points
onto the base line is then used to determine which facetscataded.

Given a vector in cross-section space from which we must coengcclusion, its signed
angle with respect td1” is ¢#’. According to the sign of this angle, two different cases are
differentiated. Wher’ > 0, points are sequentially projected from left to the rigid #he
occlusion of each facek,, is computed using the following expression:

null if projck+1 < projcj, with 7 < k
proj, = { [proje,.proje, . if proje, < proje, < proje, . with j < k
Projg, otherwise

This expression computes the occlusion by comparing therondwhich the projected
points lie on the base line, as stated above. A facet is cdaipleccluded (first case) if its
projected end poinproj., ., lies before any previously projected poimt)jcj, with j < k.
Self-occlusion, for example, appears when the end poinheffacet lies before its begin
point, projc, ,, < projc, . Whenprojcj lies between the two facet points, the facet is then par-
tially occluded (second case). In that case, the non-oedlpart is computed as the segment
between this point and the facet’s end point. Finally, if @ofthe previous cases applies, the
facet is completely visible and remains as is (third case).

In the example of Figurd.13 we can see such different occlusion situations. H&re,
R5, and R; are completely occluded?, and 5 are self-occluded whilé?; is occluded by
R,. FacetR, is partially occluded by?,, resulting in[proj,, proj.. |, and k¢ by R4. R, and
R, are the only completely visible facets.

48 CHAPTER 4. RENDERING GROOVES

V projr,

\\\\gré \\\\
o \(" \\" e
projc, projc, \'~ \X projc, Projc, Projc,
w projc,

I projc, projc,
B

Figure 4.13: Occlusion is found by projecting the crosdisagpoints according t@’ and
then comparing their order onto the base line. For masking,?...

When#' < 0, the previous process is then inverted. The different esession points are
sequentially projected from right to left, and the previenpression results in:

null if projo, > projcj, with j > k
projR;C = [projg, , projcj] if projs, < projcj < projg, ,,, with j >k + 1
projp, otherwise

These expressions are used to compute both masking andnshgddvasking is com-
puted during the clipping operation, so that clipping is @anth only the visible parts of the
cross-section. Shadowing is computed after that, andgtigrshadowed facets are intersected
with their corresponding clipped parts using an expressinlar to Equation4.4).

4.2.3.4 Reflection Contribution

The total reflection inside the footprint is finally computeging the following expression:

fr,grooves = Z fr,krk . (45)
k=1

This expression is similar to Equatiof.{), but herer;, directly includes the geometrical
attenuation factor. The, value thus represents the contribution of each facet todta t
reflection after clipping and occlusion operations, andisputed as:

_ SRM — SRko
Ty = Sl — S() ’

whereSg, =[Sk, , Sr,,] is the current facet segment after these operationsJahé origi-
nal footprint segment.

4.2. GENERAL GROOVES 49

paths

Figure 4.14: A different approach is used for these spediahtsons. From left to right:
Intersection, intersected end, isolated end, and corner.

4.2.4 Special Cases

At points where grooves intersect or end, there can be foiifedeht special situations, such
as common intersections, intersected ends, isolated endsyners (see Figuré.14. For
such kind of situations, the local geometry is significamtigre complex than in the previ-
ous case, and can not be approximated with a single croisrsec sampled with a single
footprint segment. In these cases, we rather need to cortkel8D geometry of the grooves
as well as the entire pixel footprint, i.e. using an area se@@pproach. This kind of sam-
pling will be done by considering the footprint’s origindiagpe and computing the different
operations in a per-facet basis, using the following atyaomi

for each groove:
for each facet:
1. Project footprint onto the facet and clip.
2. Remove intersected part.
3. Compute masking.
for each light source:

3. Compute shadowing.
4. Add reflection contribution.

Next, we describe the details of the different algorithnpstéor the case of common
intersections. Their extension to handle the other spea&ds is explained in Sectidr?.4.5

4.2.4.1 Footprint Clipping

In order to consider the footprint’s original shape for thkdwing operations, we represent it
as a polygon lying on th& V' plane and defined by a set bf points (see Figuré.15. If the
footprint is originally represented by an elliptical shape can approximate it by means of a
polygonal, but a quadrilateral usually gives good enoughlts.

50 CHAPTER 4. RENDERING GROOVES

facet projected
space i
p . ‘/. footprint

projg;

R« clipped footprint

Figure 4.15: Left: footprint is projected onto the curreatdt following the view direction.
Right: once in 2D facet space, the footprint is clipped to tbertals of the facet.

For the clipping step, the polygonal footprint is first pidpd onto the current facet using
common line-plane intersections in 3D groove space. Thefoa points are transformed
into this space according 6 and B vectors and its distancéto the groove, by means of a
simple rotation and translation. These points along withvilew vectorE’ describe the set of
lines that must be intersected with the facet plane, whiagkpsesented by the facet normal
N}, and one of the two facet points, such@s

Once projected onto the facet plane, the footprint is tamnséd into 2D facet space by
simply dropping the most representative coordinate of tla@e and the projected points
proj.. Clipping is then easily performed with an axis-aligned pldounded by two hori-
zontal lines (see right part of Figudel5), where the footprint is directly neglected if all the
points proj.. fall outside one of these lines, and used as is if all of theliirfaide. In any
other case, the footprint is clipped using 2D line-polygateisections.

The base surface around the grooves is here treated as arfeedt representing thHél”
texture plane. In this case, no projection or clipping isassary because the footprint already
lies on theU'V plane and this is considered as unbounded. The footpritibpdhat actually
belongs to the surface will be determined in the followirgpst

4.2.4.2 Intersection Removal

This step is used to remove the portion lost during a grootersection. For a certain facet,
this portion is represented by the cross-sections of tleegatting grooves (see Figutel6),
thus we simply need to project these cross-sections ontoutrent facet and remove them
from the polygon obtained in the previous step.

For each intersecting groove, its cross-section is pregeonto the facet using 3D line-
plane intersections, as before. In this case, the projectiection is the groove direction
T,, and the cross-section points, are transformed into the current groove space using the

4.2. GENERAL GROOVES 51

projected

/ footprint

_intersection

_~ profiles

Figure 4.16: The cross-sections of the intersecting groave projected onto the current facet
(left), and later intersected with the footprint in 2D fasptice (right).

binormal B, and the footprint’s distance to each groo¥@ndd,, as:
Cék - (B2u(c2kb - d2)a B2v<02kb - dz) + d, Cka))

For the ground facet representing the surrounding surtheeportion to be removed is
simply defined by the bounds of each groove onto the surfacdyy the two lines specified by
its T" direction and its initial and final cross-section points.ilitar portion is also obtained
for facets parallel to the surface, such/asin Figure4.16 In this case, however, the different
lines are specified by the intersection points of the giveissisection with the current facet’s
height.

4.2.4.3 Occlusion

Concerning the occlusion, this can also be treated as a pastiprofile that lies onto the
current facet and must be removed from the current polygarch $rofile is here obtained
from the projection of the blocking facet according to thelasion direction (see solid profile
in Figure4.17), as well as the projection of the prolongations of the seeting grooves (see
dashed segments in the figure). A blocking facet is a facenigahg to the same groove that
cast occlusion to the current facet. Since this facet isialgosected, its profile is mainly de-
scribed by the cross-sections of the intersecting grod¥edongations then represent straight
open-ended segments that start on this blocking facet dloavfthe highest points or peaks
of the intersecting grooves.

According to this, the occlusion at the current facet is aeieed by projecting the block-
ing facet profile and the different prolongations onto theefa Then, once in 2D facet space,
the obtained projections are unified to determine the finaluston profile and this is finally
removed from the current footprint polygon.

52 CHAPTER 4. RENDERING GROOVES

Figure 4.17: For the occlusion, the blocking facet (solidfi¢) and the prolongations of the
intersecting grooves (dashed segments) are projectedtmnturrent facet. The final profile
is obtained by unifying both projections in facet space.

Such procedure, however, is not always necessary in moss.c&¥rst, we only need to
process those facets that are visible from the current siceludirection, i.e. not self-occluded.
Then, for these facets, only the blocking facets that afeceeluded may cast occlusion on
them, and thus need to be tested. In FigluE/, for example,R; may cast shadows oR;
because it is self-shadowed, i/, - L < 0. Note that the list of blocking facets that may
occlude a given facet can also be precomputed as in Sekttiok

Concerning the surrounding surface, its occlusion is onlypmated when grooves pro-
trude from the surface. In such cases, only their prolongatmust be considered for its
occlusion, and this similarly happens for the external taoé the grooves. In Figuré.18
the ground faceR?, is shadowed by the peaks or prolongations of the two groovieite the
external facef?, is shadowed by the peak of the other groove.

4.2.4.4 Reflection Contribution

The total reflection inside the footprint is finally computesing Equation4.5). The only

difference is that here the area ratjois computed by means of polygon areas:
Ar

T, = ——

k‘ AF)

where Ay is the area of the footprint polygon once projected onto Huet, andAy its area
after the clipping, intersection, and occlusion steps.

4.2. GENERAL GROOVES 53

Figure 4.18: Grooves protruding from the surface may predwxlusion to the surrounding
surface. The occlusion of the ground fac¢gt or the external groove facets, suchs is
computed by only projecting their prolongations (peaks).

4.2.4.5 Ends and Other Special Cases

As stated in Sectiod.2.4 the proposed method can be adapted to handle other sitsi@so
well, such as isolated ends, intersected ends, or corndrsselsituations are all related to
groove ends, since intersected ends are grooves ending mitldle of another groove and
corners consist of two grooves ending at the same point (geed4.14).

First of all, when some of the grooves inside a footprint ardse we must detect which
kind of situation is defined by each one. Intersected endfrateletected by checking if the
distance between an end point and the path of a non-endimyejie less than the sum of
their half-widths. Corners are detected in a similar way,dauhputing the distance between
the end points of the corresponding grooves. Then, isokaeld are found as the ends that
neither form an intersected end nor a corner. Note that @dldlests can be precomputed in a
previous stage if desired.

In order to render each situation, we can treat them as dpeteasection cases then.
Intersected ends, for instance, can be treated as hatéattigons, isolated ends as grooves
being intersected by a sort of perpendicular groove witli thed same cross-section, and
corners as a combination of both. This means that each cagdenhandled by mainly
modifying the different cross-sections that are projechadng the intersection and occlusion
steps.

Concerning the intersection step, such modifications departtie current facet and the
groove to which it belongs. If the facet belongs to an intetesé end, the cross-section of
the intersecting groove must be extended following therandirection, as shown in the left

54 CHAPTER 4. RENDERING GROOVES

footprint \
R '
i

extended J

cross-section

R

Figure 4.19: For special cases like intersected ends @efgolated ends (right), we need to
modify the different cross-sections that are projectednduthe intersection step.

Figure 4.20: When computing occlusion at ends, the blockawgts (solid profile) and the
prolongations (dashed segments) can be greatly simplified.

of Figure4.19 If this facet belongs to an isolated end, instead, suchsesestion must be
extended in a similar direction or in both directions, butheout including the cross-section
in itself (see right of Figurel.19. For corners and for external facets protruding from the
surface, these modifications are performed in a similar way.

For the occlusion step, the different modifications depemthe blocking facet, and this

4.2. GENERAL GROOVES 55

facet as well as the groove prolongations can be greatlylgiegpin this case. When the
current facet belongs to an intersected end, sudi, am the left of Figuret.2Q its blocking
facet is then represented by only half the cross-sectiomedintersecting groove, for instance.
In addition, only one prolongation needs to be projectedaasbe seen. For facets belonging
to isolated ends, blocking facets can even be represent@dgs straight lines (see right of
Figure4.20), since the produced occlusion does not depend on any seasi®n. At corners,
the different blocking facets and prolongations dependhencurrent facet, and they can be
represented in the same way.

Besides these cases, our algorithm could be adapted to hathdlkekinds of situations as
well, such as intersections where one of the groove predaesrover the other, for example.
This kind of situation is sometimes found on real scratcarsgctions and happens when the
peaks of one scratch appear inside the intersection (sé®1$8c2.2. This case could be
handled using other modifications similar to the ones pregt®re.

4.2.4.6 Efficiency Issues

The algorithm presented in this section requires sevemégtions and polygon operations
that can be very time consuming compared to the method ftatesbor parallel grooves (see
Section4.2.3. The increase in time is nearly imperceptible in most casege grooved
surfaces usually contain few intersections or ends, battécomes noticeable as the number
of intersections and other special situations increasesrder to solve this, here we propose
some ways to improve the efficiency of the algorithm, esplyaia certain situations.

On close views, for example, most groove facets rarely dan# to the final reflection of a
footprint, but they are also treated by the algorithm. Is ttase, such facets can be avoided by
simply starting processing the facets lying on the samedithes footprint center and stopping
when the contribution of the footprint is fulfilled, i.e. win&_r, ~ 1. In order to reduce
the number of projections, we can also reuse the projectexbections from one footprint
to another by means of a cache structure, which is especisdifjul when cross-sections and
projection directions do not vary between them. With theggrovements, however, the speed
up is not very important in generak(10%).

Since the most consuming part are the different polygonaijmers, we could substitute
these polygons by other shapes giving better performarfe@sclose views or big grooves
where not much detail is included in the footprint, the footpshape may be approximated
using a set of lines, for instance. Jones and PdiPY() uses a screen-space approach that per-
forms antialiasing by means of two perpendicular line segsend state that two segments
are usually enough to correctly capture the detail. Usiregstime idea, we have considered
the two footprint axes to sample our grooves. Each of thess ak segments is projected
onto the facets, clipped, and then subtracted with thesattion and occlusion profiles, as
with polygons. Then, the reflection values of the two segsang finally combined taking
into account which one better represents the current detgil according to the number of
intersected edges or the intersection angl&df). With this approach, the algorithm speeds

56 CHAPTER 4. RENDERING GROOVES

Our method Geometry Relief mapping
Figure time memory time memory time memory
4.21 26 16 95 656 0.043 256
4.22 27 19 114 53000 0.029 4096
4.23 47 14 130 2116 - —
4.24 20/13 14 71 2116 — —
4.25middle left 21 16 - - 0.028 256
4.26bottom left 32 124 — — — —
4.26bottom right 43 124 — — — —

Table 4.2: Performance of the different methods for eachrdigiRendering times are in
seconds and memory consumptions in kilobytes. For our ndethe memory represents the
consumption due to our representation, without considettie underlying mesh. This also
applies for relief mapping.

up considerably#£ 40%) and the result is quite similar to the one obtained with gohs.
However, as the viewer moves away from the surface, somesfacgy be missed by the lines
and the error becomes considerable. Jones and Perry siatadte line samples could also
be used for better results, but then a polygon could perfattebantialiasing with a similar
computation time.

4.2.5 Results

Our general method for rendering grooved surfaces has t&@mgplemented as a plug-in for
the May# software. The images and timings have been obtained on auReftprocessor
at 1.6 GHz, and are shown in Tale? along with the memory consumption. Note that the
images generated with our method are differentiated insicsion by including the different
cross-sections used for the grooves, usually on the upfreoiaer.

First, we introduce different examples of grooved surfabes have been used to study
the performance of our method. Our purpose is to test theracgwf our method with re-
spect to ray traced geometry, which offers high quality tesand to one of the techniques
that also simulate surface detail without explicitly geaterg geometry, such as relief map-
ping [POCO0S.

The model used in Figuré.21first corresponds to a surface containing lots of parallel
grooves, each having the same cross-section and withousEaoe between them. In Fig-
ure4.21(a) it has been modeled using a flat surface, a set of paralle$ pand a single cross-
section (see upper left of the image). The scene has thenreedared using the method of
Sectiond.2.3for parallel grooves. In Figuré.21(c) the same scene has been modeled using
explicit geometry and then ray traced with Mental Rayvhich offers better performances
than Maya for such cases. This ray tracing is only needed pgtuta the shadows on the
grooves, and is done using 1 shadow ray and adaptive sugaisgmin order to obtain a

4.2. GENERAL GROOVES 57

(a) Our method (c) Ray traced geometry

(b) Relief mapping (d) Comparison image between (a) and (b)

Figure 4.21: Surface containing lots of parallel groovesnshg smooth transitions from near
to distant grooves.

similar quality for the distant grooves, 4 up to 64 samplesraquired for this image. As
can be seen, both images show a smooth transition from nehstant grooves, i.e. from
macro-geometry to micro-geometry. The difference in célom left to right on the far side
Is due to the masking effect, and shadowing is present imalgtooves due to a light source
placed far away on the right part of the scene. These imagesearly indistinguishable, as
can be observed, but our method is much faster in such sigtsince no supersampling is
needed (see Tabk?2). Aliasing is still visible at some places on both imagesjolhn our

58 CHAPTER 4. RENDERING GROOVES

case, is due to the use of a non-weighted sampling schems.c@hld be improved using
weighted filter shapes, such as a Gaussian filter, for exardptees and Perry have proposed
a method to perform weighted line sampling in image spacedbad be easily applied to
our method JP0Q. Even so, the aliasing is less perceptible with our metlagdhown in the
close views on the top of the images. This suggests that eeea samples should be used
for the ray traced geometry.

In Figure4.21(b) the same scene has been rendered using relief mapping. thérse-
lief texture with the normals and heights has been generaitida modified version of our
method (which samples the heights and normals of the graosésad of evaluating the re-
flection). Then, the textures have been transferred to thg &fder, which rendered the
detail. With this technique, although the rendering of theoges is done at interactive frame
rates, as shown in Tabk2 the quality of the image decreases substantially. Forestos
grooves, the aliasing on the shadows is very perceptiblegghwie mainly due to the use of
a simple ray intersection approach with the detail. Foragisgrooves, the smoothing or
blurring of the grooves is due to the use of mip mapping, wipickfilters the relief texture.
Such kind of pre-filtering is not adequate for normal or heiglues, as stated in Secti@r¥,
since this considerably smooths the detail. To improve tlaity of the shadows, a better ap-
proach could be used for the ray intersections, such as thproposed by Tatarchukgt0qg.
Distant detail, however, would require supersampling, &slens with common ray tracing
techniques. This also applies for other similar techniqWé¥/T*03, Don0§ Tat0q. In Ta-
ble 4.2, we include the timings for relief mapping, which have bebtamed with a NVIDIA
GeForce 6200 card. Naturally, its performance is difficalbé compared with our method,
since the latter is implemented in software.

Figure4.21(d)finally includes a comparison image for the two images on dpe $how-
ing their perceptible differences. Since the images areectly aligned, only some small
differences are noticeable in this case. The most perdepiites appear on the boundary
of the plane, but for the rest they are almost imperceptilblee image showing the highly
perceptible differences is not included because its camyl®lack, which means that even
the differences on the boundary are not so important (seo8&c4 for more details).

For the next example, we have used a scratched surface togsé a set of crossing
grooves of different size (see Figue22. In this case, both algorithms of Sectioh.3
and4.2.4are used for Figurd.22(a) since this contains intersections. For Figdt22(b)
the geometry has been generated by means of displacemepingapsing a height texture
generated with our method, as before. Part of this mesh wrshrothe bottom right. Even if
using a feature-based approach, the number of generaadlas are in the order of 500,000,
which greatly increases the memory cost. Its time cost isoasiderably increased despite of
this because 1 to 16 samples are enough to correctly filteldtad in this case (see Table?).
As expected, the quality of the results obtained with disptaent or relief mapping greatly
depends on the resolution of the input textures. The filgepgarformed on these textures
avoids some artifacts, but then the detail is considerailyathed. Here, for example, we
have used a resolution of 1024 x 1024 in order to adequatphgsent the smallest grooves.

4.2. GENERAL GROOVES 59

(c) Relief mapping

Figure 4.22: Scratched surface containing intersectiog\gs of different size.

Big grooves, however, still have rounded shapes, and sombiesingrooves are missed at
certain places, especially with relief mapping (see clasey at the bottom of the figures).
This suggests that even a higher texture resolution shaulgskd in this case, which would
suppose an increase in memory as well as in speed, since exefs imust be processed.

The memory requirements of our method mainly depends onetbaution of the grid
of paths too. However, this resolution does not affect thaityuof the results, but only our
efficiency when finding the grooves that are actually comigim the footprint. In general,
we have found that grid resolutions of 9000 or 200200 have a good trade-off between
speed and memory, which are the ones used in all these exarhiigh resolutions are more
efficient, but while the memory increase is noticeable, #vwrgs in time are low. Concerning
the performance of our method, the area sampling appro&chfasthe intersections requires

60 CHAPTER 4. RENDERING GROOVES

(&) Our method (c) Ray traced geometry

(b) Comparison image (d) Highest perceptual differences

Figure 4.23: Surface containing many intersecting grooves

more computations than the line sampling used for the ntargacted parts. In this case, the
special situations are very localized, as usually hapghos,the increase in rendering time is
not very noticeable. However, even with more intersectigaperformance tend to be better
than using ray traced geometry, as will be shown in the fahgvexample. This is especially

true for small or distant grooves, for which more samplesgamerally needed using point

sampling techniques. Also notice that this kind of scradcherfaces could not be simulated
with our previous method (see Sectidrl) or with any currently available scratch model,
since these only consider isolated, pixel-size scratches.

4.2. GENERAL GROOVES 61

(a) Our method: polygon sampling (b) Our method: line sampling (c) Ray traced geometry

Figure 4.24: Same models of Figu#e23illuminated with two point light sources and ren-
dered from a different point of view.

In Figure4.23 we have simulated a tiled surface consisting of many angsgrooves,
which shows transitions from near to far grooves. Figi@8(a)has been modeled and ren-
dered using our approach, while Figy&3(c)has been modeled as a mesho4500 poly-
gons and ray traced using 4 up to 64 adaptive samples, in rgeoperly capture the distant
detail. Note how our method is able to perform correct aiatsathg with only one sample,
even for grazing angles. This is due to the consideratiomiehted footprints and the correct
sampling of the intersections of grooves contained wittf8mce the two images are nearly
indistinguishable, we have also included their differemages in the bottom. As can be
noticed, the perceptible differences mainly appear on tlyee of the grooves, which again
is produced by the misalignment of the images. We have taduhd the best transformation
for their correct matching but some misalignments are gtésent. For most of the grooves,
however, no important differences are found between thanvages (see Figur4.23(d).

In Figure4.24 the same surfaces are illuminated using two near point igbrces and
rendered from a distant point of view. In this case, for theoged surface modeled with
our representation, we compare its rendering using ourgeolypproach (left) and using the
two line samples approach proposed in Sectidh4.6(middle). For the ray traced version
(right), the mesh has been rendered using up to 64 samplesf@®. The timings of these
methods are included in Tabde2, where the ones obtained with our model are separated by a
bar: the first one corresponds to our polygon approach, anltter to the line sampling. As
expected, the line sampling approach is faster than thegpalpne, but as shown in the top
of the figures, antialiasing is better performed with theygoh approach, since it samples the

62 CHAPTER 4. RENDERING GROOVES

entire footprint area.

Another example demonstrating the benefits of our methodaw/s in Figure4.25 This
consisting of a grooved sphere with a pattern similar to the af Figure4.21 The sphere
on the top shows up two highlights due to a light source plasd the sphere and a shared
cross-section consisting of two facets. When one of thesdauwgts is properly aligned with
respect to the viewer and the light source, then the highbgipears. As can be seen from
left to right, even if the viewer moves away from the objee kighlights remain on the same
place, as expected. With relief mapping, instead, suchligiyls are very different for each
viewpoint (see bottom images). At close views, the smogtbinthe detail makes highlights
to appear on the peaks of most of the grooves. Then, as thewvimeaves away from the
object, the highlights turn into a single centered highlide to the smoothing effect of mip
mapping.

In Figure4.26 we have finally simulated three vinyls using our method.sEheave been
modeled using lots of small concentric grooves, withoutgrgce between the grooves except
for the separation of the different tracks. The only differe between the vinyls is the cross-
section used for the grooves. For the top vinyls, we have assgitilar cross-section, the
right one being an asymmetrical version of the left one. Feocertain distance, both vinyls
show an anisotropic reflection on its overall surface thedudy depends on the type of cross-
section that is used, as can be observed. On the bottom, dtifeent cross-sections have
been randomly applied to the grooves, resulting in a vergint effect. The right image
represents the same vinyl on the left but rendered from astogewpoint. For all these
different vinyls, notice that common anisotropic BRDF modsetsuld not be appropriate.
The model of Poulin and FourniePF9(Q, or one of the available empirical models, could be
used to approximate the effect on the first vinyl, but theseld/ail to represent the other two.
Furthermore, BRDF models are limited to distant viewpointt,allowing closer viewpoints
like in the bottom right image, where the geometry is clearfyble. With our model, we are
able to correctly simulate such kind of small micro-groguasthe ones present on polished
surfaces, from any distance and with any cross-section.

More examples of grooved surfaces simulated with our génegthod are later presented
in Sectiond.3.4as well.

In order to evaluate the efficiency of the method we here firalmmarize its time com-
plexity. With regard to the rendering of isolated and pafajrooves, we have found that its
complexity isO(g(n + m + [f)). Compared to our previous method for isolated scratches
(see Sectiod.1.4), the quadratic cost with respect to the number of fagassremoved due
to the use of a different approach for the occlusion commrtat(see Appendix B for more
details). For the rendering of groove intersections ana gitglcost i) (g(n+m+1f/9+g))
then. As can be seen, the algorithm is far more costly, wiaadue to the different polygon
operations that are performed. This cost, however, woulgmobtained with very complex
polygons. Since groove cross-sections and pixel footprstially tend to be very simple, its
complexity is considerably lower on average (see Appendix B)

4.2. GENERAL GROOVES 63

Figure 4.25: Grooved sphere simulated with our method (@ol) with relief mapping (bot-
tom), rendered from different distances (left to right).

Figure 4.26: Vinyls modeled using lots of concentric migr@oves. Top: All the grooves

share the same cross-section, described by a symmetrsstsection (left) or an asymmet-
rical one (right). Bottom: Three different cross-sectiomsébeen randomly applied to the
grooves, seen from a distant viewpoint (left) and a close(aghkt)

64 CHAPTER 4. RENDERING GROOVES

A

el
ray traced N,
reflection .
Nk—l \ \‘\/projc2
E H \\ L;TI\\
L prOJC:;j W
Et raytraced int -
y new footprint E

transmissions
(@) (b)

Figure 4.27: (a) Groove undergoing specular inter-refdastiand transmissions. The algo-
rithm is recursively executed for each visible facet andtedag direction. (b) Computing
the indirect illumination for facek; at one of the recursive calls.

4.3 Indirect lllumination

The different methods that we have proposed to render $e@tand grooved surfaces only
take into account the direct illumination, that is, the tigloming directly from the light
sources. In order to achieve more realistic results, hergresent an extension of our previous
general method to include indirect illumination as well,igthcomes from the light reflected
and transmitted by the objects in the scene. In this seatietiirst focus on the specular inter-
reflections and transmissions taking place on the groovddc®) which are easily included
with some changes on the original algorithm. We later dbsdnow the indirect illumination
from the rest of the scene is also considered and how the shethdd be extended to include
diffuse illumination as well.

4.3.1 Specular Reflections and Transmissions on the Grooved Surface

In order to simulate light scattering on a specular groovethse, the basic idea is to perform
a kind of beam tracingHH84]. This mainly consists in recursively projecting the cutre
footprint, or part of it, for each reflection and transmissilirection (see Figuré.27(a). Once
computed the visibility and direct illumination on the arigl footprint, the visible portion of
each facet is used as a new footprint. Then, the reflectiotrandmission directiongy, and
E;, represent the new view vectors. The algorithm must thugbemputed using each new
footprint and view direction, and this is done in a recursuasy.

The scattering directions, and E; are computed according to the current vedioand
the facet's normalV,, using the classical expressiorGl§89. In order to recompute the
algorithm, since the algorithm expects a footprint lyingtba surface, the visible portion of
each facet is previously projected onto the& plane according to the corresponding direction.
Such direction is then inverted to represent the new viewovesince an outgoing vector is

4.3. INDIRECT ILLUMINATION 65

also expected. This setup is depicted in Figuz/ (b)

During the recursive execution of the algorithm, some d#ifé considerations must be
taken into account. First, the new vectérmay have a negative height now, i, < 0, as
shown in Figuret.27(b) When looking for the grooves affecting the new footprinis theans
that the footprint’s bounding box has to be enlarged in theosfte direction, since,,, .., i or
Pmaz, e F€SUItIN Negative values as well (see Secddn). For isolated or parallel grooves, a
negative height also affects the computation of the ocaiusifects, thus the different tests of
Sectiond.2.3.2must be similarly inverted. In Figuee27(b) for example R, will not be self-
masked whemroj., > proj, ., but whenproj., < projc, ,,, i.e. projs, < projg,. Finally,
during a recursive pass, and independently of a negativestiye F,,, we can only process
those facets lying on the current visible part of the crasdisn (R, from R, in the figure).

If all the cross-section facets are processed like in thegass, some previous non-visible
facets can mask the visible ones, which is incorrect.

After each execution of the algorithm, the returned valygasents the indirect illumi-
nation of the current visible facet coming from the giveredtron. As with the direct illu-
mination, this illumination must be added to the total reftatof the current footprint once
weighted by its actual contribution, which is computed as. ;. - 7. Here, f,.. x is the spec-
ular term obtained from the BRDF or BTDF of the facet, dependinghe case, and, is
the area ratio of the facet, which is computed as in Secdod8.4and4.2.4.4but without
considering the shadowed portion of the facet.

4.3.2 Indirect lllumination from Other Objects

During the execution of the previous algorithm, part of teevfiootprint may not project onto
the neighboring grooves or surface. This part represestmthirect illumination that comes
from the other objects of the scene or from the other faceh@tame object, such as side
or back faces (see Figu#e27(a). In order to account for this indirect illumination, we the
propose to use ray tracing. When the contribution of the nespfint is not fulfilled at the
end of each execution, i.&.r, < 1, we trace one or several rays in the current direction.
The obtained illumination from each ray is then averaged aaded to the footprint total
reflection, weighted according to— > r,. Note that ray tracing is here used for availability,
but other techniques could also be usd#iB4, Kaj86, JC91.

4.3.3 Glossy and Diffuse Scattering

Although not considered in this thesis, reflections andsimraasions on glossy and diffuse
surfaces could be included using the same approach ded@ime. Instead of using the
perfectly specular directions, andE;, we could then use a set of randomly chosen directions,
as done in distribution ray tracin@po84 or path tracing Kaj86]. Such approach, however,
can be very time consuming if a considerable number of dorstis necessary, thus a better
solution should be found. An easy way to approximate glossglurred reflections is to

66 CHAPTER 4. RENDERING GROOVES

Figure Time Memory
4.28left 21 16
4.28middle 24 16
4.28right 251 16
4.29(a) 12 49
4.29(c) 164 49
4.29(b) 290 49
4.29(d) 382 49
4.30 258 283
4.31left 81 679

4.31bottom right 89 679

Table 4.3: Performance of our method for each figure. Rengleinmes are in seconds and
memory consumptions in kilobytes.

Figure 4.28: Image corresponding to top middle left of Fegu25(left) after including inter-
reflections(middle) and refractions (right).

enlarge the footprint before calling the algorithm, as diarfdma84, but the obtained results
might not be very realistic then.

4.3.4 Results

This sections presents the results of the extension of cugrgémethod to include indirect
illumination. The rendering timings and memory consumpfiar the different examples are
shown in Tablet.3.

First, Figure4.28shows the grooved sphere of Figdr@5prior to and after including in-
directillumination. Left image shows the original imageairect illumination only. Middle
image then includes inter-reflections computed using awursdve approach, which results in
a brighter surface. This is especially perceptible betwbentwo original highlights of the
left image. Right image, instead, includes refractions dua ¢lass-like material associated

4.3. INDIRECT ILLUMINATION 67

(b) Refractions (d) Reflections and refractions

Figure 4.29: Glass with grooves in the outside, rendereddmgidering different kinds of
light-object interactions.

to the sphere. In this case, ray tracing is enabled to alsoieahe illumination coming from
the grooves in the back of the sphere as well as the texturegtmund the sphere. This
considerably increases the rendering time of the imagee sinultiple bounces are computed.
Note, however, that ray tracing is performed using a singlae per refracted footprint,
i.e. without using supersampling. These images demogdtinatimportance of taking into
account indirect illumination on a grooved surface, esgcior specular objects such as the
ones used in this example.

In Figure4.29 we show a similar scene but with a grooved glass, renderetdKiyg
into account different kinds of light-object interactiorSigure4.29(a)first shows the glass

68 CHAPTER 4. RENDERING GROOVES

rendered with only direct illumination, while Figu#e29(c)includes indirect illumination
due to inter-reflections, mainly coming from the floor and wedls. In Figure4.29(b) we
have considered transmitted indirect illumination usimgirzdex of refraction of 1.5, and
Figure4.29(d)finally shows the combination of both reflection and transiois. As in the
previous case, the high rendering time (see Tal8is basically due to the ray tracing of the
scene, in order to account for the reflection and transnmssaming from the other surfaces.
If we disable ray tracing and only consider the inter-reftetd and transmissions coming
from the same grooves of the glass, the rendering time isdahsis.

Next, in Figure4.30, we can see a scene composed of many stone columns over a tiled
floor. The hieroglyphics on the columns have been mainly neadasing the first cross-
section, and the tiles and fracture of the floor, using theltbne (see top left of the figure).
Some hieroglyphics are simulated by perturbing their ceesdions along the paths, as in the
snakes. Wider details such as circles or triangles arertsatbellated using a contouring path
and then using the second cross-section. Bump map is alse@ppkimulate erosion on the
columns, by modifying the surface normal before applyingroathod. The floor has specular
properties and includes inter-reflection, and ray tracapéen used to capture the reflections
of the columns onto the floor as well as the shadows betweedhffeeent objects. As can be
realized, the grooves on the floor and the columns are ctyr&atulated independently on
their distance to the camera.

In the bottom left of the figure, we can see a closer view of softlee hieroglyphics from
the nearest column, where bump mapping has been removeddo $ee the grooves. The
view shows some grooves with highly curved paths that havéeen properly simulated in
this case. Notice that the upper groove is correctly siredlecause of its smooth curvature,
but the two lower, highly curved grooves exhibit shadowingtakes. These mistakes are
due to our local approximation of the paths by means of ditdiges, and is related to our
assumption or restriction to non-highly curved paths ($eeimtroduction of this chapter).
In order to solve this, the curvature of the grooves shoulthken into account during their
processing, especially during the computation of the @ichs, but further research is still
needed in this sense.

Finally, in Figure4.31we use our method to simulate a more complex scene, comstin
a house and its surroundings. The underlying mesh geometlyycontains 88 polygons (see
top right image), and almost all the surfaces contain greo%eich a scene entirely modeled
with geometry would consist of at leasR00,000 polygons. Ray tracing is used to capture the
shadows and reflections between the different objects. Coimcereflections, these mainly
appear on the swimming pool and on the windows, the lattergoeiodeled with protruding
grooves using the third cross-section. Bottom right imageesponds to another point of
view, which shows how these grooved surfaces are correstigiared at grazing angles too.
The roof and the chimney are simulated with intersected,eagdsan be observed.

These scenes represent some examples of the kind of sitsiatieere our method could
be applied. Grooves and similar features are very commoaahworld scenes, thus many
applications could profit from the methods proposed here.

4.3. INDIRECT ILLUMINATION 69

Figure 4.30: Scene composed of several grooved surfacesjrghdifferent special groove
situations, smooth transitions from near to distant grepsaad inter-reflections (on the floor).
Bump mapping is included to simulate erosion on the columns.

underlying mesh geometry. Bottom right: another point ofwie

70 CHAPTER 4. RENDERING GROOVES

Concerning the complexity that results after including tiadi illumination, it strongly
depends on the number of light bounces that are consideeadhé maximum depth recur-
sion ord. According to this value, we have found that the complexitghe algorithm is
O(g?f?) - Ogsr, whereOy;, is the cost of computing the direct illumination at each remn
level. Replacing this cost with the ones obtained for theioaignethod (see Sectich2.5,
this results in a time complexity @®(¢¢f¢(n +m + 1)) for isolated and parallel grooves and
O(gfi(n +m + 1f/9)) for the special situations like intersections or ends.

Chapter 5

Interactive Modeling and Rendering of
Grooves Using Graphics Hardware

For many applications, the interactive rendering of thesotsi and their surface detail may
be of great interest, especially in walk-throughs, gamegre-visualization tools before a
complex rendering setup. Our previous methods present€tapter 4 allow the rendering
of scratched and grooved surfaces in relatively short tirneseach image may take several
seconds to be rendered, which is far from being interactSace current programmable
graphics hardware tend to out perform most CPU-based digmsitin this chapter we pro-
pose to implement our methods on this platform. For this, vesgnt two different solutions:
a first approach that focus on the interactive renderingegtiooves in texture spacBfP07,
and a second one that allows their rendering as well as nmgdeliobject space. Both ap-
proaches are based on a representation of the groovesrdioitee one proposed in Chapter
3, but in the first case, these are transferred to the graphit§GPU) as a set of textures, and
in the second, as a set of quads over the object surface. @amgeéhe second method, we
show its feasibility and we present some preliminary rasthiat demonstrate its advantages
with respect to the first one, such as its interactive editihthe grooves or its fast render-
ing times. Although these methods are not as general as éwase-based solutions, we
achieve real-time frame rates on current available gragiacdware and offer several advan-
tages with respect to image-based technigWdd/[T+03, POCO05 Tat0g, such as an accurate
representation of the detail or a low memory consumption.

5.1 Rendering Grooves in Texture Space

In order to render the grooves in texture space, our firstagmbr represents and transfers
groove data to the GPU by means of a set of textures. A fragsteder is then proposed
to evaluate this data and render the grooves in a single negdeass. As in the previous
chapter, isolated grooves and special cases like groogeséattions or ends are treated with

71

72 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Grid texture Data texture
path.A
1 G | path.B
g m—S roove elements _
! | [Hatd patlh.Cl_‘ priority
) \ """""""" --! / I| ‘\next
// LA \ Cl.b
1.
1) 1] CL
= I . Cross-sections ,7 ---------- ” C2.w
\ \v/ ’/ diffuse
\ L Materials R|G[B|A[<
RV , R|G|B | Al specular
e ccc e e e e r e e e e ===
g power

Figure 5.1: Grooves are represented by means of a grid &ftaft), which defines the posi-
tion of the grooves onto the surface, and a data texture (gjidahich contains the different
groove elements (including the paths), cross-sectionsratdrials. Right: detail of the prop-
erties stored in the different data texels.

different approaches. For the latter, however, we presemwaapproach similar to the ray
tracing of CSG primitives that efficiently computes theinbikty. All this results in a method
that is fast and enough general to handle all kinds of grouatgns.

5.1.1 Groove Textures

The information and structures concerning the groovestaredin a set of textures in order
to properly transfer them on the GPU. For this purpose, twtutes are used: a 2D texture
that plays the role of the grid (similar to the one used in iBact.1.1) and a 1D texture
that sequentially contains all the data about the groowes) as paths, cross-sections, and
materials (see Figure.1).

In the grid texture, each texel represents a cell that mayaversed by a set of grooves.
The list of grooves crossing a certain cell is stored in thie dexture, while the cell only
stores a reference to this list. When no groove crosses thacerlll reference is then stored.
Unlike our original grid, note that not only the crossinghsaare considered in this case, but
the entire grooves.

In the data texture, we first store the different lists of ge®associated to the grid tex-
ture. Each groove is here represented by a groove elemértdhiains all the information
necessary for the groove, consisting of: the path, the &gsdocross-section and material, a
priority value, and a flag for the next groove element. Conogrihe path, we assume that
paths are modeled by means of piecewise lines in this caseseTére preferred to curved
paths because they require less computational effort analge room. Furthermore, they can

5.1. RENDERING GROOVES IN TEXTURE SPACE 73

be treated as a set of straight line segments and cornerd) wigans that, at a given cell, the
local path of a groove may be specified by a single line equatiche current cell contains
a corner, we then specify this by means of two groove elemwititsstraight paths forming a
corner between them. Paths are stored in the same groovergkeasing their implicit line
equations, which only require three floating-point values.

With regard to cross-sections and materials, these ardlyishared by several grooves
at the same time, thus they are stored apart (see Figlireln the groove element, we then
simply store two references to their corresponding passtia the texture. The priority value
is only needed when the cell contains more than one groovis. vatue will be used for the
evaluation of intersected ends, isolated ends, and cqraedsis explained in more detail in
Section5.1.6 The flag for the next element finally indicates if the nextay@element in the
texture belongs to the same grid cell or not. All this infotima concerning a groove element
may be stored in a single texel along with the path, as depintBigure5.1 The data texture
is defined as a four-component floating point texture (RGBABR)st three components are
used to store the implicit line equation of the path, and theth one (alpha) is used for the
rest, by packing the different values. For the cross-sediod material references we use
the highest three bytes: two for the cross-section and aniaéomaterial. This allows us to
access up to 1024 cross-sections of 128 points each onedopde, and 256 materials (see
below). The priority and the flag are then packed in the lowgtt, although only three bits
are required for them.

Following the different groove elements, the data textunetains the cross-sections and
the material properties. Cross-sections are specifiedtaofiD points with floating-point
coordinates, which means that every texel may store a pgioiots, i.e. one coordinate per
component. Since each cross-section has a different nuoflpaints, this number is also
stored at the beginning of each cross-section. In ordergesent cross-sections using and
odd number of texel components, we can store this numbethet®V coordinate or height
of the first point (;,), which is always zero. For the materials, their properéies packed
using a single texel. For a common Phong-like BRDF we pack tifiesei and specular colors
in the first two components of the texel, as RGBAS colors, aedgiecular power in the third
component. For other kinds of BRDFs, other properties cowdd bé included in the fourth
component of the texel or even in the third one along with frexalar power if necessary.

After storing the cross-sections and materials, theitis@positions into the data texture
are kept for its later use on the GPU shader. These posititovg as to access the different
cross-sections and materials by means of relative positiwhich require less precision than
absolute positions and can be packed into a single texel coemp of a groove element,
as seen before. Since 1D textures are very limited in rasoluthe data texture will be
transferred to the GPU as a 2D texture as well. This meansliitae different positions will
need to be transformed to 2D texture coordinates beforessitethe texture.

The different packings of groove elements, cross-sectiang materials have been per-
formed with the objective of reducing to a minimum the numbfeiexels needed for the data
texture. This reduction represents less memory storageelisaw less texture accesses at

74 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

rendering time, which is one of the most expensive operatiora GPU shader. Notice that
perturbations along the grooves have not been considetbgimplementation. If perturba-

tions are necessary, they could be stored as piecewisedngdh the data texture and then
a reference to their position should be stored on each grelment as well. In order to

evaluate them, we should later determine the path lengtheaturrent position and read the
corresponding perturbation.

5.1.2 Finding Grooves

In our software implementations, current grooves are fdundhecking several cells on the
grid according to the footprint shape, groove dimensionsji@v and light directions (see
Sectiond.1.1and Sectior#t.2.]). This strategy is difficult to be ported to the GPU because of
the inherent computational cost in terms of texture look;upus we here propose a simpler
approach. As explained later, footprint shape does not tede considered because we
will only sample at the pixel center in this case. Furthemmdhe width of the grooves is
directly considered by the cells by means of storing theolistrossing grooves instead of the
paths. If grooves do not protrude from the surface, this méhat current grooves can be
found by simply checking the cell at the pixel center. In thseof grooves with protruding
parts, which may be seen or may cast shadows far from themdso(width), the current
approach is not sufficient. For such cases, we propose tokisd af mip mapping strategy
by storing different resolutions of the grid texture. Theuaring the rendering stage, we select
the appropriate texture according to the view and light @agAnother solution could be the
traversal of the grid texture in the given view or light ditiea, but this may require several
texture look-ups.

5.1.3 Rendering Grooves

In order to evaluate the grooves at the current cell, ounso# sampling strategies based on
line segments or polygons require lots of computations emat either feasible for a GPU
implementation. In this case, we have thus decided to usaalesipoint sampling strategy.
This only consists in sampling the grooves at the currenglpx footprint center, which
greatly simplifies our method.

In Figure5.2, we show the main structure of our fragment shader algoriffime process
starts by retrieving the corresponding cell from the grixtuee at the current texture coor-
dinatesuv, representing the footprint center. If no reference to ageocelement is found,
we evaluate the BRDF using the surface norivahnd material propertiesiat set at the
beginning. When the current cell is crossed by any groove hee tetrieve the data for the
first groove and evaluate the current visible facet. In tlaisec we also propose a different
approach for isolated grooves and for special situatidesifitersections or ends. Once the
visible facet has been determinedqt and NV are set according to this facet and returned by
the corresponding procedure to compute its BRDF.

5.1. RENDERING GROOVES IN TEXTURE SPACE 75

Using surface attributes> mat, N
Read cell from grid textureu@)) — ref _groove

if (ref_groove # —1)
Read data for 1st groove from data textur€ (groove)
— path, ref _prof, ref _mat, next_flag, etc.
Read cross-section points from data textueg (prof)
— profile

if (next_flag=20)
Process Isolated Groovedth, profile) — mat, N
else
Process Special Casgu(h, profile) — mat, N
endif
endif

Compute shadingifat, N) — color

Figure 5.2: Pseudocode of fragment shader for renderingvgeo

5.1.4 Isolated Grooves

The pseudocode for isolated grooves can be found in FigideThe computations are di-
vided in two main parts: visibility and shadowing. In thetfioge, the visible facet is found by
projecting the 2D cross-section onto the surface followhwgyview direction. The projected
facet that contains the pixel centew{ then represents the visible one. Like in Secdah 3.3
masking is taken into account by checking the order of thgepted points onto the surface
base line. In addition, pixel center is previously transfed into cross-section space ac-
cording to its distance from the current groove path too. hSdistance is computed as in
Equation 4.2), but using the path’s implicit equation stored at the aurgroove element.

For shadowing, the visible point is reprojected onto théamgy, if necessary, and the pro-
cess is repeated using the light source direction. If amiffefacet is foundk # £’) the point
is in shadow; otherwise, the material of the facet is re&tikeand its normal is computed. Such
normal can be easily determined using the 2D coordinateseofaicet and later transformed
into 3D texture space using its path binormal, also obtafred its equation.

In our current implementation, when several grooves aredan the same cell, these are
automatically treated as special cases using the algooftihe next section. If such grooves
are isolated, we could also treat them using the previousigthgn by sequentially processing
the different cross-sections, for example. Another pdgyitwould be to treat them as a
single groove by first merging their profiles, like in Sect#2.3.1 In our case, however,

76 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

/1 Visibility
Project cross-section and find visible facgitdfile, uv, view_dir) — k

/I Shadowing
Project point from the facet to the surfade (v, light_dir) — uv’
Project cross-section and find illuminated fagev(ile, uv’, light _dir) — k'

/I Set new material and normal

if (k#E) /I if shadowed
mat =0 Il black material
elseif(kK > 0 and k < prof _points) /I if facet belongs to the groove

Read material from data textures(_mat) — mat
Compute normal of visible facet and transform to 3D
texture/tangent space N
endif

Figure 5.3: Pseudocode of functi@nocess Isolated Groove

these approaches have not been considered in order to nattderfcomplicate our shader.

5.1.5 Special Cases

At groove intersections and other special cases, their ageometry requires a different
strategy for the visibility operations. This strategy mibstable to handle all kinds of situa-
tions, with any shape, or any number of grooves, and to alle@ietvaluation of each groove
independently of the others as much as possible. One metlaodutfills this criterion and
can be adapted for our cases is the use of Constructive Sotich&ey (CSG).

If we take a look to the formation process of scratches andvg® we can see that these
are generated by removing material from some areas (grpamdsaccumulating material to
other ones (peaks). In CSG, we can represent the same prategaLset of primitives and
regularized boolean operations, as shown in the left offei§ul. The most interesting part,
however, is that visibility can be easily evaluated by tngciays on the corresponding CSG
tree [GN71, FvDFH9(Q. This offers the advantage that each primitive can be iaddpntly
intersected with the ray and the result be combined usinglsitD boolean operations. In
the right of Figure5.4, we can observe how the ray segments or spans resulting frem t
intersections of the ray with each primitive are combinedoading to the corresponding
boolean operation (a subtraction in this case). The vigiblet is then determined as the first
point of the resulting segments, as can be seen in the botdbn r

In order to apply this method, the first step is to determing tebuild our special situ-
ations of grooves using CSG. For this, we will focus here onmoom groove intersections,
while the other situations will be addressed in Secbdh6 As we have seen in Figui4,

5.1. RENDERING GROOVES IN TEXTURE SPACE 77

e
~ ©
W L2 1
kel
Eyellight ray - 5 igl
Visible point: :

Figure 5.4: Left: Groove intersections can be represernsetyuCSG by subtracting the vol-
ume of each groove from the basic flat surface. Right: Vigibdan be easily determined by
tracing the ray through each volume and combining the obthiD segments.

if grooves do not protrude from the surface, groove intdises can be easily built by sub-
tracting the grooves from the flat surface (difference ogp@na If such grooves also protrude
from the surface, the corresponding peaks must be addedIgsimien), but then they should
be added just before the subtractions for a correct resedt Fsgures.5). Furthermore, we
must subtract not only the part of the groove that is striatigler the base surface, but the
whole wedge extending above the peaks. When computing thelitys this means that we
should first intersect the ray with the surface and the pditigiparts of the grooves and unify
the obtained segments. Then, we should compute the ragéctesns with the penetrating
parts and remove these segments from the previous ones.

In practice, the different additions and subtractions cacdimputed at the same time for
each groove. During visibility computation, this is acl@evby sequentially classifying the
different intersection segments of the ray as additionssaibtiactions (see Figuke6). If the
ray starts hitting an external facet (top groove in the figjutesequentially adds and subtracts
material for each intersection with the groove, but the Begment is not classified. If the
ray instead starts hitting an internal facet (bottom groiovthe figure), it also sequentially
adds and subtracts material, but the initial segment of djes classified as a subtraction
segment then. This is done to simulate the subtraction of¢hé&ral wedge extending above
the peaks, as stated before. Once computed the differeségments for the two grooves, we
combine them using a special operation that works in theviotig way. At points where one
of the segments is a subtraction, the result is always aasituin. At points where there are
two additions or one addition and no operation (non-clasgegment), the result is then an

78 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure 5.5: When computing groove intersections with CSGaddlitions (peaks) should be
performed before any subtraction (grooves). The subtrggiarts should also be extended
above the peaks in order to correctly remove the intersgpiaks.

1 U
, 40 1201

— / ot

2nd E@E o

: 3

) : ¢ b

nd /\ o

, Eesult ; P

\ Visible point ' P

Eyellight ray

— Adding segment — Subtracting segment

Figure 5.6: During visibility computations, we directlyasisify the ray segments as additions
(green segments) or subtractions (red segments). Thesesegcan be directly combined in
a single step using a special boolean operation.

addition. Finally, if the two segments are not classified, résult is a non-classified segment
too. This procedure is repeated for every groove presertarctrrent cell, combining the
segments obtained for the current groove with the ones fhenptevious operation, as shown
in the algorithm of Figurés.7. At the end, the visible point of the intersection is the first
addition point found of the final segments (see right of Feduf).

Concerning the computation of the intersection points beiwe ray and the different
grooves, we use an approach similar to the one used forastdgboves. In this case, however,
all the intersections must be taken into account, thus mgsiki not considered. In order
to classify the ray segments, the definition of external anternal facets is currently done
in an approximate way. In our current implementation, ad fhcets above the surface are
considered as external, and the rest are considered asahtehich correctly works for the
kinds of cross-sections we are using. For a more generattd@ieorocess, we should start
on both ends of the cross-section towards the center arsifglasery facet as external until
the orientation of the facet is downwards, i.e. the heightfirst point is greater than the

5.1. RENDERING GROOVES IN TEXTURE SPACE 79

/1 Visibility
Find intersection points for 1st grooverffile, uv, view_dir) — intSegs

while next_flag # 0
ref _groove = ref _groove + 1
Read data for next groove from data texturef (groove)
— ref _prof , next_flag, etc.
Read cross-section points from data textueg (prof) — profile

Find intersection points for this grooverofile, uv, view_dir) — intSegs’
Combine {ntSegs, intSegs’) — intSegs
endwhile

/l Get visible facet
Get first point (ntSegs) — k

Figure 5.7: Pseudocode for visibility computations of fume Process Special Case

height of its last point. This classification could also bequmputed and stored along with
the cross-section points, if desired, which would requisagple flag per point.

5.1.6 Ends and Other Special Cases

For the other special cases such as intersected endsedseladls, or corners, we propose a
variation of the previous approach that consists on the ti§griority” flags. Priority flags
are associated to the facets of the grooves according toirideok situation, and serve to
produce the end of other non-prioritized facets when tsamgrthem. In an intersected end,
for example, some facets of the non-ending groove are pred with respect to the groove
that ends. These facets are the ones that remain on the wppm® of the end, that is,
the non-intersected facets (see left of Figbr8). When evaluating the ray intersections,
the intersection segments from a prioritized facet will @& take precedence over the non-
prioritized ones, independently if they are adding or remgwmaterial. This will produce
the complete visibility of the prioritized facets and theslation of the ending for the other
groove.

Concerning isolated ends, these are modeled as a kind o$écted end too, but giving
priority to all the facets of the ending groove as well, asvaian the middle of Figureé.8.
When two intersecting grooves have facets with priority, rireen difference is with respect
to the classification of the first ray segments, which mustriverted. In this case, if the
ray first intersects an exterior facet, it is classified astdaraation segment, and when it first
intersects an interior facet, it is not classified. The of#disegments can then be combined
as usual, taking into account if they add or subtract mdteBach inverse classification is

80 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

My, priority

priority

priority priority priority

Figure 5.8: Special cases related to groove ends are treagiding priorities to some facets
of the grooves. When intersecting, prioritized facets ptexeer the non-prioritized ones and
produce the end of these later.

performed to obtain the appropriate shape of these endghanalso holds for corners. The
main difference is that, at corners, the prioritized fackgend on the side where they lie, as
can be seen in the right of Figue8. If facets lie on the external side of the corner they are
labeled with priority, independently of the groove whereytlie.

All these different priority flags are stored in the data te®f as stated in Sectidnl.l
Since priorities always affect one side or another of th@gepwe do not store one flag per
facet, but a single value that identifies which sides of tlumge have priority. Such value is
stored at the groove element, and four states are used: ard@ypmpriority on the left, priority
on the right, and priority on both sides. According to thituea the cross-section facets are
then labeled depending on the side where they lie.

5.1.7 Results

Our method has been implemented as a fragment shader usingd@geaOpenGL API. The
rendering times for the next images are included in Ta&bleand correspond to the shader
running on a GeForce 8800. As can be seen, this table alsalggthe memory consumption
due to our different textures as well as their resolution.

In Figure5.9 we can see some first results of our method for a flat plane storgsiof
different groove patterns. For these patterns, the sanss-s@ction have been used, as shown
in the top left of the first image. This corresponds to a stréite profile consisting of two
peaks and a central groove. Observe that the images shovingaskl shadowing effects and
different special situations like groove intersectiongj€ or corners. Our method allows the
correct rendering of all these effects at real-time frantes;eas shown in Tabk.1 Further-
more, our textures require low memory consumption. Theluéiso of the grid textures used
in these examples goes from 60x60 to 150x150 (see Ealjeand data textures are even
lower, with a mean resolution of 60x60.

As in our software approaches, the resolution of the gridutexonly determines our
efficiency when finding if the current point contains a cerigiioove or not. In general, when

5.1. RENDERING GROOVES IN TEXTURE SPACE 81

Figure Frame rate Memory Textures resolution
5.9top left 895.5 72 60x60 / 61x61
5.9top middle 621.7 158 150x150 / 67x67
5.9 bottom right 318.7 131 150x150 / 53x53
5.10bottom left 484.5 8 25x25/16x16
5.10bottom right 109.4 8 25x25/ 16x16
5.11bottom left 352.5 52 60x60 / 49x49
5.11bottom right 425.6 8 25x25/ 16x16
5.12top left 127.0 100 100x100 / 62x62
5.12top middle 73.7 100 100x100 / 62x62
5.12bottom right 169.1 100 100x100 / 62x62

Table 5.1: Performance of our method for each figure, withniln@ber of rendered frames
per second, the memory consumption (in kilobytes), anddkelution of the two textures.

Figure 5.9: Flat plane with different groove patterns.

less grooves are contained in the cells, more faster bectiraeshader. Concerning the data
texture, its resolution depends on the number of grooveadsncross-section and materials.
Its resolution thus depends on the resolution of the gridamtthe pattern or properties of the
grooves.

Figure5.10shows a similar flat plane with a groove pattern consisting eét of inter-
secting grooves. In this case, different cross-sectiome baen used for each image, which
are included in their top left. Such kind of pattern can beceffitly rendered with very low
resolution textures, where its memory consumption is geawperceptible (see Tabk1). In

82 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure 5.10: Flat plane with different cross-sections feetof intersecting grooves.

the bottom right image, the viewpoint is placed very closéhsurface, which shows how
the quality of the visualization holds even for close-upnse

In Figure5.11, we can see some other similar patterns applied to a nondfiice, here
represented by a sphere. In the top row, we have used a setallepgrooves and then
applied different cross-sections and material propediethem. The middle image has been
rendered from a viewpoint pointing towards the top of theesphand the right image shows
the underlying mesh. With our method, the visibility andddaing of the different grooves
can be properly simulated without modifying the surfacergewy, as can be observed. In the
bottom row, we have applied two different groove patterias ithclude ends and intersections.
In this case, the image on the right shows the same sphereirusked middle image but
rendered from a closer viewpoint. This close-up correspdndthe selected region in the
middle image.

Figure5.12then shows an example of a more complex scene composed odilsgoved
surfaces, which represents a variation of the house model isFigure4.31 For these
surfaces, we have used the same groove pattern as in thghopmage of Figur&.9properly
tiled on them. Then, to simulate the bricks, some of the faasé the material properties of
the base surface (bricks) and others the properties of thevgs (mortar). This is especially
noticeable in the bottom right image, which represents seclagp of the region shown in the
bottom middle image too. Such images as well as the ones opheghow different parts

5.1. RENDERING GROOVES IN TEXTURE SPACE 83

Figure 5.11: Curved grooved surface rendered with our GPgrpro under different viewing
and lighting conditions. Grooves use different materiald aross-sections (top) as well as
different patterns (bottom). The underlying mesh is showar ¢the top right sphere.

|

N\ =g
Ve

i
A

=

Figure 5.12: House rendered in real-time from differentmgeints using our approach to
simulate the bricks. The underlying mesh is shown in theoboteft.

84 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure Our method Relief mapping
5.13left 485.0 1064.0
5.13middle 719.6 771.2
5.13right 1304.3 677.8
5.14left 323.2 1165.9
5.14middle 128.7 1439.3
5.14right 128.7 1440.7

Table 5.2: Performance of our method and relief mappingamés per second.

of the house rendered from different viewpoints, the toptr@ne corresponding to its inside.
Since several groove surfaces must be processed and the@aéaoany grooves, the frame
rates are much lower in this case (see TdbB. Nevertheless, the timings are fast enough
and the real time is not lost.

Notice that indirect illumination has not been still addes in this method. This illu-
mination, however, could be easily included using the sappeaach than for visibility and
shadows. It would basically consist on following the difet bounces of the rays, by tracing
them through the grooves as before, but in the reflectionfaaaton direction.

In order to evaluate the performance and accuracy of our adetive finally compare
our method with the relief mapping technigu®QCO03. First, Figure5.13compares the two
methods for different viewing angles. For this comparisea,have used the spiral groove
of Figure 5.9 and the cross-section shown in the top left. The resolutioouo textures
is 100x100 for the grid and 50x50 for the data, while the netsah of the relief map is
512x512. From left to right, the viewing angle is changedichtaffects the performance of
both methods (see Tab%e?). As can be observed, the performance of our method incsease
with the viewing angle, because the number of fragments farbeessed decreases. On the
contrary, the performance of the relief mapping technigeerebses, because the number of
texels that must be evaluated during the ray tracing ineseas

In Figure5.14 the same surface has been rendered from closer distanseshafvn in
the bottom left, the current resolution of the relief textus not suitable for such a closer
viewpoint, since the artifacts produced by the regular deng@f the detail are clearly visi-
ble. Using a 1024x1024 texture, these artifacts becometaseptible, but its performance is
considerably decreased from 1165.9 (see Talfleto 304 frames per second. This resolution
has been used for the closer views of the bottom middle ard imgages, where shadows
are also included. For these images, the performance ef relpping is much better de-
spite the increase in the resolution, because the numbeooégsed texels decreases at closer
views. Nevertheless, its quality is lower compared to osuilts (top row), which becomes
more noticeable when the pattern contains high frequeraggds (right). In the right, a more
squared cross-section has been applied to the groove,gingduore high frequency changes
with respect to its height/depth. Note that if the base ofdtwss-section were further elon-
gated, the obtained detail would then result in a non-hdightt, which can not be correctly

5.1. RENDERING GROOVES IN TEXTURE SPACE 85

Figure 5.13: Comparison between our method (top) and relagfpimg (bottom) for different
view angles.

Ty \'\"\‘r\'(\’ﬂﬁmm\'f\"ﬂ'\'\‘\'l“

/

Figure 5.14: Comparison between our method (top) and rekgfpimg (bottom) for different
distances and cross-sections.

represented with this technique. In order to handle thid kirgrooves, the extension of relief
texture mapping for non-height fields could be use®p4, but this would then require an
extra texture to store the different depths at each texel.

Finally, concerning the space and time complexity of ourhodt we have found the fol-

86 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

lowing results. In the worst case, the storage of the twautesthas a space complexity of
O(nm) for the grid texture and)(g(nm + f)) for the data texture, while its precomputation
is achieved irO(g(nm(n+m)+ f)) time. Then, the rendering of the grooves is performed in
O(f) time for isolated grooves ard(g f) for the rest of situations. As expected, the compu-
tational complexity is greatly reduced compared to oungarfé solutions (see Sectidr2.5.
This, among others, is due to the use of a simple point-sagglirategy that do not require
the evaluation of polygons or line samples, or the constaeraf a single light sample, as
stated in Appendix B.

5.2 Rendering Grooves as Quads

In our previous approach, the use of textures for the stavhtiee geometry and properties of
the grooves introduces some important limitations. A firsithtion is that textures need to
be precomputed, which greatly difficult the editing of theares or their properties. Another
limitation is that these textures must later be accessathdime in order to recover the data,
and this introduces a considerable decrease in the penficara our shader.

To solve these limitations, this section proposes a diffeapproach. Instead of using a
set of textures, grooves are represented as a collectionaafsgonto the object surface, and
the different data concerning the grooves are transfersegedex attributes. The rendering
of the grooves is computed with a fragment shader, as bejat@nly processing a groove at
the same time. This kind of approach requires the evaluafioriersections and other special
cases by means of multiple rendering passes, but the stsactemsiderably simplified in this
way. Such kind of simplification along with the reduction bétnumber of texture look-ups
results in a faster rendering of the grooves. In additiomcatextures need to be precomputed,
grooves can be easily edited in an interactive way.

For this second method, although its full implementatiomas yet available, we have
obtained some preliminary results that demonstrate itsiiéidy and benefits. We present
them in the following sections.

5.2.1 Modeling Grooves

In order to model a groove, the user first have to define itsipatielecting a set of points over
the object surface. Each pair of points represents a pathesggand around each segment,
we create a quad. The orientation of the quad is determindiddbyurface normal and its size
is given by the width of the associated cross-section, wbashalso be selected or edited by
the user. The result of such procedure is depicted in Figii® Notice that paths are modeled
in object space in this case, while cross-sections arefggom world space coordinates.
In our current implementation, we have only focused on plawafaces for simplicity.

In order to handle curved surfaces, the previous procespmibably require the projection
of the previous path segments onto the surface mesh. Thmettsegments should then be

5.2. RENDERING GROOVES AS QUADS 87

Figure 5.15: Grooves are modeled as a collection of quadstheeobject surface. Their
properties are then specified as vertex attributes.

subdivided for their adaptation to the surface geometns tibtaining a set of quads for each
original segment.

5.2.2 Transferring Groove Data

The different properties of the grooves, such as their esestion or material, are transferred
to the shader as vertex attributes of the quads. Theseuadtsiare temporally stored using the
available GPU registers, which may represent RGBA32 vahmsHor the cross-section, each
pair of points may be stored in a single RGBA32 value, as se&eation5.1.1 According

to this, the number of required registers will be half the bemof points, but since cross-
sections usually consist of few points, a small number oistegs is actually needed. If not
enough registers are available, however, they could algmabked using less precision per
coordinate or transferred by means of a texture, as beforacefoing the material, diffuse
and specular colors can be packed as RGBAS values and stamagl <h the power in a
single RGBA32 value, as also stated in Secoh 1l This requires its later unpacking in the
shader, thus we better prefer to transfer each color in desmegister without any packing,
which only supposes an extra register. The specular powethem be passed through the
alpha component of the specular color.

In this case, the path equation or the curremposition are not needed by the shader for
the visibility computations. It only requires the 1D distarbetween each point and the center
of the quad, here representing the local path. For the twex@oints lying on the left of the
path, we assign the negative width of the cross-sectiondb eartex, and for the other two,
the positive width. The distance will then be automaticathynputed during the interpolation
of this value at the GPU.

88 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

5.2.3 Rendering Grooves

As in our previous approach, the visibility and shading ef ginooves are computed by means
of a fragment shader. For each fragment belonging to thesjubd shader evaluates the
data stored at the input registers and computes the conm@sggpoperations. In this case,
however, only the data for the current groove are availatnlee&ch fragment, which means
that intersections and other special cases must be hargllegimultiple rendering passes. At
each fragment, the basic idea is to compute the visibilitthefcurrent groove (associated to
the current quad) and combine it with the visibility commlter the previous groove, if any.
Such visibility is computed and combined as in Sectoh.5 by means of our CSG-based
approach. The only difference is that the distinct grooweslapping at a certain point will be
sequentially processed using several rendering passesisTdthieved by performing depth
peeling Eve01].

Depth peeling is a technique that produces a depth-sortpeesee of fragment layers by
rendering the scene in several passes. At each pass, thes déghe incoming fragments
are compared with the previous depth layer by means of conaepth tests. The closest
fragments that pass the depth test are then selected fouttentlayer, thus resulting in a
layer with the next nearest fragments seen from the vieweorder to apply this technique,
we must first take into account that fragments of differerddpumust result on different
depths to be correctly sorted. When the quads are creats@athmbe easily solved by slightly
displacing each quad from the surface using a distance ghheffset. Such offset is selected
so that it is sufficiently big to avoid depth collisions betmehe grooves and the surface, and
sufficiently small to be imperceptible when viewed at grgzamgles. For the peeling process,
the algorithm of Figuré.16is then applied. First, depth and color buffers are initiedi by
rendering the surface and the rest of the scene. The quagsomessed next and from back
to front, in order to avoid processing quads occluded byedbsbjects. This means that
we actually perform an inverse depth peeling, which onlystsis in changing the sense of
the depth test operation. For each pass, the quads must t® $lee graphics pipeline and
the different overlapping fragments will be sequentiallggessed according to the associated
depth. Once all the grooves have been processed, we mustdp&at the same process to
determine the shadowed parts as well. Then, at the end, weneatl to combine the results
from both operations and output the corresponding refleciodor.

The number of required passes for the visibility operatiaiisdepend on the maximum
number of grooves intersecting at a certain point, thaths, haximum number of quads
overlapping at a pixel. Since determining this maximum taming for all the pixels can be
tedious, we simply stop each operation when no pixel has beeéated in the last pass, which
can be easily done using hardware occlusion queries (ARBusionquery extension).

One little drawback of the previous peeling process is therfer displacing the quads
using a different offset. If a considerable number of quaalseto be rendered, some of the
latest quads may have an important offset with respect teutace that could be perceptible
at grazing angles. In order to solve this, one possible isplutould be the use of identifiers

5.2. RENDERING GROOVES AS QUADS 89

/I Scene pass

Enable depth test with less operation
Enable back-face culling

Draw scene

Il Visibility of grooves

Set depth test with greater operation

Enable render to texture for visibility textures

Enable shader

Draw quads

while (any fragment has been updated)
Ping-pong depth and visibility textures
Draw quads

endwhile

I/l Shadowing of grooves

Recover depth buffer of the scene

Draw quads

while (any fragment has been updated)
Ping-pong depth and visibility textures
Draw quads

endwhile

/l Final pass

Disable render to texture

Disable depth test

Enable final shader

Evaluate visibility textures using a screen-sized quad

Figure 5.16: Pseudocode of fragment shader for renderimgygs as quads.

instead of depths. Depth comparisons would be also reqtorécndle occlusions due to
other objects of the scene. Nevertheless, quads could tezldny comparing their identifiers

instead. Each quad would be assigned with a different ifientand peeling would generate
layers with fragments sorted by their corresponding idientiln this way, quads would only

require a fixed small displacement from the surface. Morgadf/the current surface can not
block these quads, the surface could be discarded for thid degts and no displacement
should be even necessary for them.

Concerning the visibility and shadowing operations, themuiiference between them
is that shadowing requires the use of the visible point fodadng the visibility operation.

90 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Before computing the visibility from the light source’s pbof view, this visible point should
be reprojected onto the surface (quad) following the lighiree direction and its distance
from the local path be then computed. From the observeris pbview, the required distance
is directly available in one of the input registers (see i8ad.2.2, but from the light source,

it must be determined. Using the distantef the current point (the one in the register) and
the heighth of the visible point obtained from the previous operatioe, ean compute the
new distance!’ with the following expression:

d =d—htan6 + htand,

wheretan 6. andtan ¢; are calculated as in Equatio#.8).

Once both operations have finished, the last pass consigigloating their visibility
results to check if the visible point is in shadow or not (ske@i@thm of Figure5.16). If the
two visible points coincide, the point is illuminated ansiéblor is written in the output color
buffer; otherwise, a black or ambient color is written. Thaist pass is done by rendering a
screen-sized quad with the associated textures and usingpbegragment shader to evaluate
them.

5.2.4 Visibility Textures

During the different rendering passes, the groove fragsenist evaluate the visibility of
a possible intersection by taking into account the vigipilesults from the previous passes,
as stated before. In order to transfer such results from ase another, we simply store
the different values into a set of textures and later reathtimethe following pass. Using
the render-to-texture extension, we can read and write th@dextures without needing to
copy their contents between the different passes. Thengwerm “ping-ponging” to avoid
reading and writing at the same time, which consists on cotmgbbetween two versions of
the different textures.

The visibility data that must be transferred to the next geesscally consists on the ray
segments from the current pass and the reflection color &t @agsibly visible point. The
ray segments are represented by the different interseptionts and a flag indicating if the
starting segment is labeled as a subtraction segment cs@®Sectio’.1.5. The number of
intersected points that need to be stored will depend ondimplexity of the situation and the
cross-sections of the grooves, but usually three or fivetpaiffices. For such points, notice
that only the heights are necessary. Concerning the reftectitors, they are computed at
each intersection point facing the viewer, and are usedsexahere the visible point changes
in subsequent passes and its shading must be determinex ssaming their normals along
with the groove material would require a considerable arhotispace, we prefer to directly
compute the shading of each new point at the correspondsgygrad then transfer this to the
next passes. The number of colors that are then needed ithbaltimber of ray segments,
and each is packed as a RGBA32 value.

5.2. RENDERING GROOVES AS QUADS 91

Assuming that we have a maximum of 6 ray segments, altogetheequire five floating-
point values for the heights and 3 floating-point values If@r packed colors, which can be
stored using two 32-bit floating-point textures. The flagtfa first segment only requires a
single bit and can be easily codified with one of the heightstide that since two textures are
necessary, we have to use multiple render targets (MRT;hwddiows the output of several
colors or values at the same time.Also notice that for thel@wang case, the reflection color
does not need to be computed or stored in the visibility tesu

5.2.5 Extending the Quads

When grooves are seen at grazing angles, some of their faagtpnmect out of their bounds
or width, as described in Sectidn2.1 In our current method, quads are only created accord-
ing to the width of each groove, thus part of their facets matybe visible in such situations.
In order to solve this, we propose to extend the differentdgueccording to the view/light
angle and the cross-section dimensions, i.e. the projdéwaght and depth of the grooves.
This will be easily done in the vertex shader.

When the quads are send to the graphics card, the vertex dhratidecides if the current
vertex must be displaced according to the height or deptihefgroove. This is done by
checking if the vertex and the viewer are on the same “sidéi véspect to the groove path:
the side of the current vertex is given by the sign of its aiséed width value, while the side
of the viewer is given by the sign of the dot product betweenview vector and the quad
binormal (£ - B). Once the corresponding height or depth value is seledtesiprojected
according to the view/light angle as in Sectid2.1 Finally, the vertex position is updated
and the associated width accordingly increased with theesanmount.

5.2.6 Ends

In our current implementation, common groove intersectibave been treated to demon-
strate the feasibility of the method in handling specialatibns as well as isolated grooves.
Although the other special cases related to groove endsoasdith supported, these could be
treated using the same approach described before. At sndhokisituations, the visibility
could also be computed as in Sectimid.g by means of using priorities for their facets. The
only difference is that, in this case, the priority flags cahlve fixed for the facets associated
to a given quad. A quad may produce a corner in one end and katede@nd on the other,
for example, and this would require different priority @gsnents. In such cases, we should
better locally detect at each fragment which kind of sitwais produced and then assign the
appropriate priorities before the visibility computatson

First of all, we should detect if the current fragment cqosds to a groove end or not.
This could be determined by means of the length of the qudtkaturrent point and a given
threshold, from which the fragment would be detected as en&me length of the quad could
by assigned per vertex and automatically interpolatednhduttie rasterization, as previously

92 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure First method Second method
5.17top 682.8 9125
5.17bottom 484.8 755.2
5.18top 611.4 1557.2
5.18middle 147.1 1027.0
5.18bottom 103.4 636.7
5.19top left - 1933.0
5.19bottom left - 926.0

Table 5.3: Frame rates of our GPU methods for the renderiegdi figure.

done for the width parameter; we should only need to assigngtl of zero at the beginning
points and the total length of the quad at the ending ones.

Once the end would have been detected, such informatiod teutored in the visibility
texture for its later processing at the next pass, by meaadlaf for instance. At the subse-
guent pass, according to this flag and the one computed iuthent pass, the priorities could
be properly assigned and the visibility finally computed. Goning isolated ends, they could
be treated using the same approach by placing an extra geathem. Such quad should be
created as a square quad sized according to the width of trentigquad.

5.2.7 Preliminary Results

First, in Figure5.17, we show a comparison between our two hardware-based iegaeeth-
ods. The pattern is composed of a set of non-intersectingvgsand the cross-section cor-
responds to a scratch-like profile. As can be seen in thenefinaiddle columns, the quality
of the results is equivalent between the two methods. Thaeramg times, instead, are con-
siderably lower for the second method, as stated in Talde This may be due to different
factors, such as the few required texture look-ups, thelgiogiion of the shader, or the cor-
rect adjustment of the quads according to the viewing andie.first two factors allow a fast
execution of the shader, while the second one reduces theerwhfragments that need to be
processed, greatly improving the efficiency of the methddis Tan be observed in the right
column of Figures.17, which includes the quads generated for the grooves camelépg to
the middle column. Initially, the quads are adjusted to théthvof the grooves (top), but
when the surface is viewed from a grazing angle, their widtextended to correctly render
the grooves (bottom). Although no intersection is presethis case, the quads are extended
according to the projected depth of the grooves as wellgsiacprevious knowledge of the
kind of situation is available.

In Figure5.18 we have compared our methods with a pattern consistingvefakinter-
secting grooves and a different cross-section. As can berads in Table.3 the differences
in rendering time are much bigger in this case, which is nyaihle to the large separation
between the grooves. This makes our method more efficiechuse less fragments as well

5.2. RENDERING GROOVES AS QUADS 93

4

Figure 5.17: Comparison between our two hardware-basedosetor a surface containing
non-intersecting grooves. Top to bottom: different pooftsiew. Left to right: first method,
second method, and corresponding quads.

as shader executions need to be processed. In the previotes fige differences in rendering
time are smaller partly due to a biggest density of grooveésalso to the use of the same
algorithm for isolated grooves and intersections. Sincéawe no previous knowledge on the
number of grooves that are present at a pixel, we evaluatéshulity of isolated and inter-
secting grooves in the same way. If an extra step is addecetagusly count the number of
fragments per pixel, our timings could be improved by appmiya specific shader for the cases
where only one groove is found. Such shader would not needrtgpuate the different ray
segments or to store them on the visibility textures, anddcduectly compute the shadowed
parts during the same pass too. This counting step coulddilg parformed using the stencil
buffer, for instance.

Concerning the memory consumption, in the current methodimiypdepends on the visi-
bility textures, since the quads and the transferred grdat@does not represent an important
memory cost. The number of visibility textures that are mekid four for the visibility and
shadowing operations and two for the “ping-ponging”. Thesolution is the same as the
rendered image, which is 640x480 in all these examples. Eathre thus takes up 4.7Mb,
and this results in a total amount of 28Mb for the six textufasch amount of memory is a lot
bigger compared to the memory consumption of our first apgbrcas can be seen in Taldld,
but it does not represent a very important memory cost foranodraphic cards. Neverthe-
less, we could reduce the number of textures to the middleepsesenting the heights with
16 bits instead of 32 or by considering few ray intersectjpgisgroove.

Figure5.19finally shows some examples of groove patterns that haverbedeled in an

94 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure 5.18: Comparison between our methods for a surfacsistong of intersecting
grooves. Top to bottom: different points of view. Left tohtgfirst method, second method,
and corresponding quads.

interactive way, with a different cross-section selectedefich one (see left to right columns).
Our method allows the user to quickly create groove pattanasedit the different properties
of the grooves in real time, such as their position, crossis® or material. Although only
common intersections are handled for the moment, we thektitle method will become very
useful when all the cases will be included. Apart from cregatiew patterns from scratch, our
method could also be used to modify any of the available tex¢pace patterns, which would
only require its previous transformation into object spa&emilarly, the obtained patterns
could be transformed into texture space and use our firstoddthrender the grooves onto
different kinds of surfaces. This could be easily done esgfigdf the modeled surface is
correctly textured so that warpings and distortions aredaeb An advantage of our meth-
ods is that the geometry of the surface neither needs to bell@ed nor modified, thus the
complexity of the resulting surface is never increased.

Concerning the computational complexity of this second GRithad, it is similar to the

5.2. RENDERING GROOVES AS QUADS 95

A

Figure 5.19: Left to right: different groove patterns iatetively modeled with our method.
Top to bottom: two points of view of the obtained patterns.

one obtained for the first one)(gf). The cost of evaluating our shader(g f), but after
processing all theg grooves/quads projecting at a given pixel, this result®{gf). Note
that for isolated grooves, this then results(if), as before. With regard to the memory
consumption, it mainly depends on the resolution of thebiligy textures, which is the same
as the current image resolution, as stated before. Acaptdithis, if the image resolution is
x x y, the space complexity 19 (zy).

96 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Chapter 6

Conclusions and Future Work

This thesis has focused on the realistic simulation of sbhest and grooves in the field of
Computer Graphics, for which we have proposed differentt&ola. Next, we present the
conclusions and main contributions of our work, and we latEoduce some possible future
research directions.

6.1 Conclusions and Main Contributions

Scratches and grooves are present in many real-world ssréaed may be characterized ac-
cording to the process that generate them. While scratclkassaally considered as surface
defects produced by the contact of other surfaces, groowbsde surface details that have
been explicitly incorporated on objects such as manufadtor assembled objects. Due to
their similarities, in this thesis we have focused on botidkiof features. First, in Chapter 2
we have reviewed the previous work concerning the simulaifalefects and their processes,
giving special attention to the treatment of scratches. #Weelthen also studied the different
techniques concerning the simulation of more general serfetails such as grooves. The
models used to represent scratches and grooves have bemtuagd in Chapter 3, where
we have proposed a physically-based model to derive the gepiof the scratches from the
description of their scratch process. Based on the obtaiaethgtry, in Chapter 4 we have
proposed a method for the accurate rendering of isolatedcbas, which have been later gen-
eralized to handle all kinds of scratches and grooves. lyjnalChapter 5 we have presented
two different implementations of the method for the graptiardware that allow the interac-
tive modeling and rendering of such features. The differeotiels and algorithms described
in this dissertation offer new possibilities concerning tkalistic simulation of scratches and
grooves, but also for other similar features such as frastuidges, and many others. These
also offer several advantages with regard to previous @gpes, such as the quality of the
results or the memory consumption, which are obtained itth Extra computational effort.
The main contributions of this thesis are detailed next:

97

98

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

e We have presented a new physically-based model that alleevshitaining of the com-

plex micro-geometry of scratches from the simulation ofrtfmation process. The
microgeometry is derived from the following set of paramtéhe scratching tool and
its orientation, the force applied with the tool, and the enial hardness. Such param-
eters offer interesting features because hardness is phgsital property, thus can be
found in any material science book, the geometry of the taal lse easily modeled,
and the force and the orientation of the tool are easy to tekirduitive enough, which
is satisfying for both the design and the simulation. Acoogdo these parameters,
our model derives the scratch micro-geometry by taking atwount the real behavior
of the process, which has been determined by analyzing sora&ls models in the
field of materials engineering and by performing severatdtah tests” and measure-
ments. This results in a simple but accurate model thatke@revious methods, do
not require the knowledge or measurement of the scratch geprnd is not limited to
specific cross-section geometries. Furthermore, we cdly @asdel scratches whose
geometry changes along their path.

We have developed a new rendering method that is able todgederal scratch cross-
sections such as the ones obtained with our derivation mtdebased on an extension
of the method of Mrillou et al. MDGO01b], removing the limitations about the cross-
section shape, the number of facets, or their width with @esfo the overall cross-
section. Another improvement of this method compared toipus approaches is the
definition of the scratch paths by means of curves insteadsimiguan image. This
representation offers the advantage of being independethe image resolution or
the viewer’s distance, and accurately provides some of #inanpeters needed for the
scratch BRDF, such as the scratch direction.

We have extended the previous rendering method to handitekes of all sizes as well
as non-isolated scratches, i.e. more than a scratch pdr @xeh method is able to
perform accurate smooth transitions between differentrggoc scales and to simulate
other similar surface features, like general grooves. We ladso proposed a differ-
ent approach that correctly handles special situatiomsititersections or ends of such
features, and both methods have been extended to includ®tmgutation of indirect
illumination due to inter-reflections as well as refractonThis results in a general
method that performs a realistic rendering of all kinds ohsthed and grooved sur-
faces and solves most of the limitations of previous methesigecially of anisotropic
BRDFs and scratch models, which are limited to pixel-sizeuiegt and neither handle
special cases nor indirect illumination. We have also shig/benefits with respect
to ray traced geometry or techniques like displacement l@f@apping, such as its
low memory consumption due to the compact representatitimecjrooves or the high
quality of the results without the need for supersamplireggixel.

e Finally, we have presented two implementations for the agnable graphics hard-

6.2. PUBLICATIONS 99

ware. In the first implementation, scratches and groovesraieely rendered in texture
space, where a new approach have been proposed to effidiantlje intersections and
ends on the GPU. With this approach, the rendering of thevg@s performed in
real time frame rates; furthermore, it offers several athges with respect to previous,
iImage-based techniques like relief mapping: the two tesureeded to represent the
grooves have a very low memory consumption, and our geoereghproach can accu-
rately represent grooves even for extremely close views s@ctond method proposes a
different approach by representing the grooves as a setaofsqnto the object surface.
Since groove data is transferred as vertex attributesadstébeing stored as textures,
the location and properties of the grooves can be modeled intaractive way. In ad-
dition, it results on an even faster rendering of the groaltesto the reduced number
of texture look-ups and the simplification of the shader.

The different contributions of this thesis have helped tlvesanany of the limitations
present in the simulation of scratches and grooves in Com@ugphics. Some of the possible
applications of our solutions are: the study of the appearah manufactured products when
scratched or polished under certain conditions, the tigiof computer vision systems for the

detection of scratched objects, the simulation of brickatlsror tiled floors for architectural
walk-throughs or games, or even the non-photo realistidegng of grooved surfaces.

6.2 Publications

During the development of this thesis, the following puétions have been produced:

e Sintesi d'imatges d’objectes amb ratllades (technical igpocatalan) BP0O3

e A Physically-Based Model for Rendering Realistic ScratchesC@mputer Graphics
Forum) [BPMGO04

e General Rendering of Grooved Surfaces (submittB®NG0Y

e Real Time Scratches and Grooves Rroceedings of XVII Congreso Edjpa de In-
forméatica Grafica 2007 accepted)BP07

6.3 Future Work

In the context of this thesis, there are still some open rokland possible research direc-
tions. These are discussed next, and are related to the impdeld rendering of scratches
and grooves.

100 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.3.1 Improving the Modeling of Scratches
6.3.1.1 Non-Metallic Materials

For the derivation of the geometry of scratches, our modslrainly considered their be-
havior over metals and alloys, which is basically relatedht® hardness property of such
materials. In order to properly derive the scratch geomietrynaterials like ceramics (e.g.
glass, porcelain) or polymers (e.g. plastic, rubber), ofiteperties should be considered as
well. One of these properties is elasticity, which is resole for the shape recovery of the
scratches on such kind of materials. Other kinds of magetlat would be interesting to
examine are those related to multi-layered or painted sesfavhich are based on the combi-
nation of different materials.

6.3.1.2 Acquisition of the Scratch Process Parameters

Since the availability of all the parameters concerningratst process is not always possible,
one solution could be their acquisition from a set of imades i@al scratched surface. This
could be done by fixing the known parameters and determimagést from the acquired
reflection values, which consists on an inverse problentisoluDepending on the number of
parameters to fit and the kind of parameters, the solutiordhmeimore or less complicated to
be found. If the geometry of the tool (tip) is known, force oeatation values could probably
be easy to fit, while on the contrary, maybe a starting set ofroon tips should be used to
guide the process.

6.3.1.3 Automatic Placement of Scratches

Instead of placing the scratches by hand as currently dbai,gutomatic placement over the
surface could be achieved by taking into account the prigseof the object and its environ-
ment. The real distribution of the scratches over a certaifase tend to depend on several
factors, such as the shape of the object, its usage, or tleetslihat interact with him. If
such parameters are known and can be related to the finatisdhiatributions, the different
scratches could be automatically placed over the objectrding to these parameters.

6.3.1.4 Weathering and Aging Effects

Weathering and aging processes tend to modify the reflectishape of real world scratches.
Their reflection properties may be affected by dust accutimmar by stains produced after
rain flow and the corresponding material depositions. Orother hand, the daily use of the
scratched objects may produce the wear and tear of the Isesaand their profiles. Such kind
of processes should be considered if a more realistic stionlaf the scratched surfaces is
desired.

6.3. FUTURE WORK 101

6.3.2 Improving the Rendering
6.3.2.1 Curved Grooves and Surfaces

Our pixel level approximation of the local geometry by a seplanar faces may result on
undesired effects for highly curved grooves or surfacesis Ehespecially noticeable with
regard to occlusion effects, as for example, shadows pemtlbg grazing light source direc-
tions. In order to correctly render curved features, we khtake into account the curvatures
of the grooves and of the surface during the different comtputs of our algorithm. For
our GPU implementations, the algorithm has been directiiricted to polygonal grooves for
simplicity and fast computations. In this case, curved gattould thus be considered as well.

6.3.2.2 Silhouettes

On curved surfaces or at the boundaries of the surfaces¢clsesand grooves may consider-
ably affect the silhouettes due to the subtraction or amlulitif material. Such silhouettes are
especially noticeable when seen from close views, and calstul be taken into account by
considering the surface curvature as well as its boundaries

6.3.2.3 Antialiasing

Our software methods of Chapter 4 perform antialiasing byma@h a simple box filter. For
better antialiasing, other kinds of filtering shapes shdddconsidered, such as a Gaussian
filter for example. The line sampling method that we have psegl, could be easily adapted
to other filters by precomputing a 1D summed area table of tiee &ind later accessing this
table using the current footprint segments, similar to ghereach proposed inJP0Q. For
area sampling methods, like our polygon based method farvgrintersections and ends,
such an approach is more difficult to be used, thus furthexares is needed in this sense.

Concerning our GPU algorithms, no implicit antialiasing usrently performed, because
a point sampling strategy is used. Although multiple saspler pixel could be taken, we
should study if its computational cost is not higher thamgdine sampling. For groove
intersections and other special cases, line sampling wegldgire multiple samples, while the
polygon approach is not feasible. Probably point samplingld be the easiest solution for
such cases, but it should be confirmed.

6.3.2.4 Other Surface Details

As stated along this dissertation, our methods could be gssihulate other surface details
different from scratches or grooves. This is especiallg far our GPU ray tracing approach
based on treating the grooves as CSG primitives, which caupblied to any feature able to
be efficiently represented in the same way. In this sensentdst complex part would be the
computation of the ray intersections with these featurasfdr non-complex features such

102 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

as certain bumps, holes, and similar, it would probably eptesent a great computational
effort.

6.3.2.5 Rendering Scratches as a Post-Process

Another interesting research direction would be the disaniulation of scratches and other
defects onto real images. The idea would consist in allovimguser to simulate different
defects on the images without previously modeling the ersiiene. This could be achieved
using a kind of post-processing approach, by first rende¢hegcratches on a virtual environ-
ment and then blending the result with the original imagechSavirtual environment could
be automatically detected from the input images probaldggth information and some ma-
terial properties were available apart from color inforimat This kind of method could then
be useful for augmented reality applications, for example.

6.3.2.6 Diffraction and Interference

Wave-like phenomena such as diffraction or interferencaishbe finally taken into account
for scratches and grooves smaller than the wavelength it I§ome works have considered
this kind of phenomena for anisotropic random Gaussiarasas5ta99, but a more special-
ized approach is still needed for grooved surfaces withiBpetistributions of grooves and
cross-sections.

Appendix A

Perception-Based Image Comparison

When comparing synthetic images with the correspondingipsttaken from real objects,
or with other synthetic images rendered with different md#) the most common way is to
simply put them side by side and let the reader to compare thamally. Such kind of com-
parison, however, is very difficult to be performed, espéciathe images are very similar,
and the reader waste time searching the possible diffeseineaddition, the comparison is
very subjective and it may differ depending on the deviceratire images are represented
(e.g. from one printer to another or for different monitoiSg¢e for example Figur.1, where
two similar synthetic images rendered with different methbave been placed side by side.
Due to their high similarities, the visual comparison isydifficult to be done, as can be
observed.

In order to help the reader to compare the images, our purpasdeen to look for a
method able to determine the main differences between tRenthis method, we have given
special attention to the fulfilling of the following conditis:

e Human visual perception is taken into account.
e Qualitative and quantitative comparisons are possible.

e Local and global differences may be determined.

After having analyzed several methods in the field of imageg@ssing and human per-
ception, we have found a procedure that can easily compwatgardifferences and fulfills the
previous requirements. This procedure is based on a cotidnnaf techniques, like image
registration, pixel-by-pixel color differences, and pileering with opponent color spaces,
and is the one that has been used to compare some of the asknted along this disser-
tation. The details of this procedure and the tests used datlfie best metric for the image
comparisons will be described in this appendix.

103

104 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

Figure A.1: Left and middle: comparison of two synthetic gea obtained with different
rendering methods, which correspond to Figti23 Right: image obtained after a pixel-by-
pixel color difference.

A.1 Pixel-by-Pixel Difference and Image Registration

One of the most common ways to find the differences betweernnages is to compute the
absolute color difference for every pixel. The obtainedigalare then usually displayed into
an image that helps to localize the most important diffeesrnic a visual way (see Figufel),

or averaged into a single value according to a metric like RM&tich quantifies how much
different are the two images.

When computing the pixel-by-pixel color difference, howewse major drawback is the
possible misalignment of the images, which typically appeehen a slightly different point
of view has been used or the geometry of the represented sceokeexactly the same. Such
kind of misalignment may not be noticeable by the observérthe pixel differences are very
susceptible to them, as shown in Figsel. This usually results in a set of “edges” on the
final image that tend to produce high error values and coraditieaffect the average error of
the images as well.

In order to avoid misalignments, a common practice is theofismage registration. Im-
age registration is a technique used in computer vision aedical imaging that consists in
transforming or warping an image, the target image, acogrti another image, the reference
image. For this, a point-by-point correspondence betwleemtages is usually first required,
and the transformation is computed according to these gmorelences. The number of nec-
essary correspondences then basically depends on theactjainsformation: linear, affine,
projective, etc.

In FigureA.2, we show an example of image registration performed on tlagé@s of Fig-
ureA.1, using the left image as the target image and the middle otieea®ference image.
After having established the point-by-point corresporm@srbetween the reference and target
image (the latter shown in the left), the transformation lbe@sn computed and the target im-
age properly warped (see middle image). The pixel-by-pié&trences computed using the
new registered image is then shown on the right. As can be #gisrimage produces less
difference errors than with the original misaligned imafgee right of Figuré\.1). The reg-

A.2. PERCEPTUALLY UNIFORM COLOR SPACES 105

Figure A.2: Image registration process. Left: target imagh the selected reference points.
Middle: after a projective image transformation. Right:feliénce image between the regis-
tered image and the reference image (middle image of FigLire

istration process has produced a black stripe on the registmage that also produces some
considerable errors after the difference operation (se@det of middle and right images),
but this is later removed to better compute the final diffeesn

A.2 Perceptually Uniform Color Spaces

Apart of the misalignment problem, the computation of thiercdifferences in the RGB space
is not correct from the point of view of perceptual uniforynisince small changes or differ-
ences on the RGB component values are not equally perceptitmes their range. In order to
correctly compute the differences, a perceptually unifspace is required, such as the well-
known CIELAB (L*a*b*) or CIELUV (L*u*v*) color spaces. Thesefsaces are designed to
approximate human vision response, thus are more appt®poiamage comparison.

In our case, we have decided to use the L*a*b* space (CIE 19€@ause it is the most
commonly used. In this space, L* represents lightness, presents the red/green axis, and
b* represents the yellow/blue axis, which is called an ogmbrcolor representation. The
conversion of the images from RGB to L*a*b* spaces is first perfed before the pixel-by-
pixel color differences. Then, after the conversion, thaltdifference between each pair of
pixels is determined using the Euclidean distance in thagspwhich is called\ Fx:

AFEx = \/AL*2 + Aax? + Abs? |

whereA Lx, Aax, andAbx represent the difference values for each L*a*b* component.

In the left of FigureA.3, we show the difference image computed in L*a*b* space, with
the distancea E'x codified using a false color palette. This palette uses araomis range of
blue, green, and red: blue represents very small, impeabteplifferences and red represents
highly perceptible differences. The error values have thesn clamped to a value of 20 and
later normalized to better see the error distribution. Aslwaseen, the perceptible differences
mainly appear on the edges of the grooves and of the surface.

106 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

Figure A.3: Pixel-by-pixel difference images computedngsdifferent perceptually-based
metrics. From left to right: L*a*b*, S-CIELAB, and YCxCz/Lab. Fa better visual compar-
ison, the images are codified in false color.

Opponent
color space

Spatial
filtering

L*a*b* AE*

Original image

R/IG
—_—

B/Y

Figure A.4: Spatial filtering with opponent color spaces.

A.3 Spatial Pre-Filtering

The CIELAB system was designed for low spatial frequencidsclvmeans that is good for
measuring color differences between objects or paintsit lpgrforms rather bad for certain
images. It does not take into account, for instance, thalhtimean visual system tend to filter
high frequency changes on the images, or that it is more ldernsi luminance changes than
for chrominance ones (red/green and yellow/blue compahend solve this, certain metrics
have proposed to perform a spatial filtering of the imageereetomputing the differences,
and to use a different kernel for each color component, a@oegrto the visual spatial sen-
sitivity of each component. Some of the most popular metiresS-CIELAB gW97] and
YCxCz/Lab KB95], which we have analyzed.

A.4. RESULTS 107

In order to perform the spatial filtering, the images must ks fransformed into an op-
ponent color space similar to L*a*b*, as depicted in Fightd. For each component in this
space, the obtained image must be convolved with the camelspy kernel, which depends
on the kind of metric that is used and on a set of parameteesdph(dots per inch) of the
monitor and the observer distance to the monitor (also ihasf Typical values are 72 dpi
and 18 in., respectively. After the filtering, the images tsa@sformed to the L*a*b* space
and the color differences are computed usingdtie expression, as before.

In the middle and right of Figurd&.3, we show the difference images computed using
the S-CIELAB and YCxCz/Lab metrics. Compared to the left imalge Spatial filtering has
blurred the high frequency details from the far regions efdghooved plane, which makes the
error to considerably decrease in such regions, as can eevebls

A.4 Results

Our image comparison procedure has been implemented uskid.AMB ® and its Image
Processing Toolbox. This software is very used in imagegssiag, and the source code for
S-CIELAB and YCxCz/Lab metrics is also available for this path. S-CIELAB code can be
found onhttp://white.stanford.edu/ brian/scielab/scielab.html and
YCxCz/Lab onhttp://cobweb.ecn.purdue.edu/"bouman/software/YCxCz

In this section, we present the details of the image compasigncluded during this dIS-
sertation. These examples have been also used to deterrhioke & the best comparison
metric in our context. First example corresponds to Figu2& and is the one that have been
used along this chapter. In this case, two synthetic images heen compared, one being
obtained with our rendering method and the other with raged geometry. The comparison
images obtained with the different metrics have been iredud FigureA.3, while FigureA.5
shows more details about these comparisons. The top rowsdétter figure shows the differ-
ence values equal or greater than N¥F{x > 10), which are considered as quite perceptible.
The spatial filtering has considerably decreased the diffe¥s in certain regions, as stated
before, this being more accentuated with the YCxCz/Lab mefie histograms on the bot-
tom of this figure then show the frequency of appearance d¢f eaor value. S-CIELAB and
YCxCz/Lab metrics make the distributions of errors to be @isptl to the left, as can be ob-
served, which confirms that the number of pixels with lessggtible errors increases and the
number of pixels with more perceptible errors decreasesh Wia*b*, 1.84% of the pixels
have an error> 10, while with S-CIELAB and YCxCz/Lab, only 0.56% and 0.32%, raspe
tively. Although these results show that there are still egrarceptible differences between
the images, note that such differences are mainly due to tealignments of the original
images. After choosing different image transformationsrduthe registration step, we have
selected the one that gives the better results, but somdigniseents are still present. Using
a better transformation, the results could be further irmgdo

In Figure A.6, we show a second comparison example between an image exbtaith

http://white.stanford.edu/~brian/scielab/scielab.html
http://cobweb.ecn.purdue.edu/~bouman/software/YCxCz

108 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

1 3 5 7 El " 13 15 17 13 21 1 3 5 7 El " 13 15 17 13 21 1 3 5 7 El " 13 15 17 18 21

Figure A.5: Top: comparison images of Figuke3 after removing the less perceptible differ-
ences. Bottom: histograms of error values.

our rendering method and another obtained with ray-traesingtry, which correspond to
Figure4.21 As can be seen, this time the image registration performgwell, since no
misalignments produces highly perceptible differencelse most important differences are
only found on the boundary of the plane, which is probably wuine the lack of silhouettes
in our case. Such differences become less perceptibleagdfdying the spatial filtering (see
middle and right columns). The percentage of pixels withmare> 10 is, from left to right,
0.16%, 0.1%, and 0%. In this case, the YCxCz/Lab metric alsesgbetter results, as can be
noticed.

Finally, FigureA.7 shows the comparison between a real image and the corraagond
synthetic image obtained with our scratch method, whicbrogko Figure4.6. In this case,
the differences are clearly perceptible, since the poinvief or the lighting conditions were
approximated by hand for our simulation. Furthermore, tla@e has not the same surface
texture and details than the original one, such as the diftenumbers near the scratches,
which produce a considerable error too. The image regstréias been very difficult to be
performed, and while the scratches are more or less alighedoundaries of the plane are
greatly misaligned and disproportionate. All these fexigpenerate great perceptible errors
that can be seen in red in the top row images and in green inidhdlemrow. In this case, the
percentage of pixels with an error 10 is, from left to right, 5.76%, 4.1%, and 3.7%. Some
surface details are blurred due to the spatial filtering &eddifferences in such regions are
less perceptible (see middle and right images), but theififeloes not affect other important

A.4. RESULTS 109

10" 10"
25 3

L L L L L L L o L L L L L L L L L L L L L L L L L
1 3 5 7 9 1 13 15 7 19 21 1 3 5 7 9 11 13 15 7 19 21 1 3 5 7 9 11 1315 7 19 21

a

Figure A.6: Another image comparison, this time corresjpogdo Figure4.21 From left
to right: using L*a*b*, S-CIELAB, and YCxCz/Lab metrics. Frompdo bottom: differ-
ence images in false color, same images after removing fiseplerceptible differences, and
histograms of error values.

differences. Focusing on the scratches, however, whictesept the most important part
of our study, they do not present highly perceptible diffeies. Only the central scratch
shows considerable errors, but this is again due to migakgr problems. We have tried
other alignments that make these errors to almost disadp#iahey then appear on the other
scratches. All these problems suggest that, for a bettepanson, the image should be
recomputed trying to use the same parameters than in thenmagé.

110 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

1 3 5 7 9 " 13 15 17 19 21 1 3 5 7 9 " 13 15 17 19 21 1 3 5 7 9 " 13 15 17 L

Figure A.7: Image comparison between a real and a synthratige, corresponding to Fig-
ure4.6. From left to right: using L*a*b*, S-CIELAB, and YCxCz/Lab mets. From top
to bottom: difference images in false color, same images affmoving the less perceptible
differences, and histograms of error values.

A.5 Conclusions

Since visually comparing two similar images may be very clift, we have proposed a pro-
cedure that facilitates this task to the reader. This proediainly consist in three steps:
an image registration step for the correctly alignment efithtial images, a spatial filtering

in an opponent color space to remove the imperceptibleldetaid the pixel-by-pixel color

differences in L*a*b* space to compute their perceptuallyform differences. This results
in a procedure that is able to show local and global diffeesraf the images and to perform
qualitative and quantitative comparisons as well.

For the image comparisons, we have basically analyzed t¥fereit metrics: the S-
CIELAB and YCxCz/Lab. After performing several tests, we hagershow these metrics

A.5. CONCLUSIONS 111

perform better than using the L*a*b* alone, and how the YCx@k/lgives better results than
the S-CIELAB. This is not coincidence, since as stated by Matgsd,, the YCxCz/Lab met-
ric is more accurate than S-CIELAB and other similar metid&EQ03. For this reason, the
comparisons presented along the dissertation are dong thésrmetric.

112 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

Appendix B

Computational Complexity

In order to determine the cost of the different methods agped in this thesis, we have
evaluated their memory consumption and computational éaxitp. Along this dissertation,
we have already stated the overall complexity of each ofetimesthods in its corresponding
section, while in this appendix, we include the full derigat of these complexities. For
each representation, we first evaluate its space complaxityfor each method, we briefly
list its algorithm and the complexity of each part, expagdimose parts that are difficult to
understand or those having a bottleneck within.

B.1 Evaluating the Complexity

As stated above, our objective is the evaluation of the time& space complexities of our
methods. The time complexity can be seen as the number gis*stieat it takes to an algo-
rithm to solve an instance of the problem, while the spaceptexity measures the amount
of memory required by the associated models. Both kinds ofptexities must be expressed
as a function of the problem size, that is, the size of thedbffit inputs. The objective is then

g Number of grooves in the pattern

f Number of facets per groove (max. value)

Dp Number of control points per path (max. value)

D Number of control points per perturbation function (maxuea
n,m | Grid dimensions

Cp Number of grid cells occupied by a groove path (max. value
[Number of light sources in the scene (light samples)

d Recursion depth for multiple reflections/transmissions

x,y | Image resolution

Table B.1: Parameters considered for the complexity caionis.

113

114 APPENDIX B. COMPUTATIONAL COMPLEXITY

to find a relation between the size of the input and the timeraaohory requirements of the
algorithms. The inputs that are considered in our case aheded in TableB.1.

In order to measure the complexities, the usual way is toidenghe worst case for the
given inputs, which is the approach used in this chapter. s&lwmplexities will also be
expressed using the well-known “Big O” notation, also catleel “order” of the calculation.
In the following section, we start by evaluating the cost®oif software-based algorithms,
and in SectiorB.3, we evaluate our hardware-based methods.

B.2 Software-Based Algorithms

In this section, we derive the space and time complexitieshfe representations and algo-
rithms presented in Chapter 3 and 4, corresponding to owadtbased solutions.

B.2.1 Space Complexity

Concerning the space complexity, this is mainly related &r#dpresentation of the grooves
proposed in Chapter 3 and to some data structures used tongatminformation about them
for the rendering pass. The memory requirements of our septation is detailed next:

Per groove:

e Path (2D line or curve}- O(p,)
e Cross-section (2D polyline)> O(f)
e Perturbation function (2D curve or analytic expressien))(p;)

Per cross-section facet:

e Material properties— O(1)

Given a pattern witly grooves, the worst case is to have a different path, crag®oee
and perturbation function per groove. The paths are defise2Dalines or 2D parametric
cubic curves, which storage is linearly related to their imasm number of control pointg,.
The cross-sections are defined by polylines with a maximughfatets, which are delimited
by f + 1 points and have an associated normal. Finally, the petiorbunctions are either
defined by an analytical expression or by a 2D parametricecafthe desired degree. In our
case, we define the perturbations by means of piecewise tneges, which storage depends
on the maximum number of control poinig as happens with paths.

Concerning the materials, the worst case is having a difterexterial per facet, which
means thatD(f) materials are needed per groove. Such materials, howeseg, d finite

B.2. SOFTWARE-BASED ALGORITHMS 115

number of properties that are independent of the input petens, thus its complexity can be
assumed to be constant. According to this, the total spaolexity finally results on:

9-(O(py) +O(f) +O(py) + f - O(1)) = O(g(pp + pe + [))

With regard to the precomputed information, it basicallpsists in the grid of paths and
the lists of possible blocking facets introduced in Chapteife former is defined by
m cells, where in the worst case, every cell may be traversedvlyy groove, resulting
in a total space complexity aD(nmg). In the latter, each cross-section facet requires a
list of all its neighboring facets that may occlude it at atairtime. Thus, for each cross-
section, it represents a quadratic cost with respect to tineber of facetsO(f?). Another
precomputation that is also performed is the maximum sitleeofross-sections, but since this
size is always represented by three values.(, hmq., andp,,.., as stated in Sectioh2.1),
its cost is constant.

B.2.2 Time Complexity

In this section, we detail the time complexity of the diffietalgorithms presented in Chapter
4. First, we develop the complexity of the different precanapions required by our rendering
algorithms, and later, we focus on the complexity of suclo@ilgms.

B.2.2.1 Precomputations

As stated above, the different precomputations that arsidered are the grid of paths, the
lists of possible blocking facets, and the maximum cross$i@e size. In the following proce-
dure, we first derive the complexity for the grid computation

procedure Computegrid
for (each groove)

Get pathlength() — O(pp)

for (each length increment)
Get point.atlength() O(1)
Getcell_at_point() O(1)
Storeindex.into_cell() — O(l)

endfor — ¢, - 0(1) = 0(cp)

endfor —9-0(pp+¢) = O(g(pp + &)
endproc — O(g9(pp +) = O(g(pp + nim))

As can be observed, the cost of creating the grid dependsequaths that must be stored
and the complexity of such paths. The number of paths is tme s& the number of grooves

116 APPENDIX B. COMPUTATIONAL COMPLEXITY

g, while their complexity is represented by their number ahpp, and the amount of cov-
ered cellsc,. The number of control points affects the cost of calcutatine path length
(Getpathlength()), because they define the number of segments thettbalevaluated. For
straight pathsp, = 2, thus its cost i$)(1), but for curved paths, it requires the evaluation of
the arc length of each segment, which usually consists imn@engal integration over each
curve segment. Concerning the number of occupied egllg defines the number of times
that a path must be evaluated and its index stored in thespmneling cell. Since we evaluate
the worst case, we could consider that the paths may be enonigér and complex to cover
all the grid cells, which means thék(c,) can be replaced b§(nm). In such case, the total
computational complexity will b€ (g(p, + nm)).

procedure Computecrosssectionsize and occlusiondata
for (each cross-section)
/I Cross-section size

Getmax perturbation() — O(py)
Computecrosssectionsize() — O(f)
Updatemaxsize() — 0(1)

I/l Occlusion info
for (each facet i)
for (each facet)
Checkpossibleocclusion(i,j)) — O(1)

if (possibly occluding) — O
Storefacetindex()) — O
endif — O

endfor — f-0(1) =0O(
endfor — f-O(f) = O0(f?)
endfor —g-O(pi+ f+1+f3)=

endproc — O(g(p: + f?)

The calculations required to determine the maximum sizénefcross-sections and the
aforementioned lists of blocking facets depends on the mummicross-sections, which in the
worst case, is the same as the number of grogvesr the cross-section size, the perturbation
function associated to each cross-section must be firstaeal to find its greater value, i.e.
its global or absolute maxima (Getax perturbation()). If a piecewise linear or cubic curve
is used to represent the perturbation, this will requireeiveduation of all of its segmenis,
thus having a cost ad(p;). Once the maximum perturbation has been determined, tiss-cro
section size is updated according to the current crosseseand this perturbation value (see
Computecrosssectionsize()), which also has a linear coét(). With regard to the different

B.2. SOFTWARE-BASED ALGORITHMS 117

occlusion lists, these must be finally found between eaahgbdacets, thus requiring a total
cost of O(f?) per cross-section. At the end, the overall cost is Bug(p; + f?)).

B.2.2.2 Rendering Isolated Scratches

The algorithm for rendering isolated scratches that has peesented in Sectiof.1 has a
cost ofO(g(n + m) + [f?) time. The main parts of this algorithm and its complexityadlet
are described next.

algorithm Renderisolatedscratches

Find_currentscratch() — O(g(n+m))
if (! scratch) — O(1)
ComputeBRDF() — O(1)
else
Get pathdirection() — O(1)
Perturbcrosssection() — O(f)
Computeps() — O(1)
for (each facet)
ComputeBRDF() — O(1)
Facetcontribution() — O(1)
ComputeGk() — O(lf)
endfor — f-O(lf) = O(lf?)
endif — O(1f?)
endalg — O(g(n+m) +1f%)

The total complexity of this algorithm comes from the conation of the cost associated
to finding the current scratcld}(g(n + m)), and the cost for rendering the scratch/ f?).
Finding the nearest scratch contained by the footprintiregthe computation of its bounding
box on the grid, the obtaining of the paths that remain wijtaimd the evaluation of the nearest
one, as depicted in the following procedure:

procedure Find_currentscratch

Computefootprint bbox() — O(1)
Get pathsat bbox() — O(g9(2n+2(m — 2))) = O(g(n +m))
Get nearestipath() — O(g)

endproc — O(g(n +m))

As can be seen, th@(g(n + m)) cost is due to the obtaining of the paths at @athsat.
bbox(). Since in the worst case the footprint bounding boy aver the entire grid, the

118 APPENDIX B. COMPUTATIONAL COMPLEXITY

number of cells that should be evaluatedis+ 2(m — 2) (remember from Sectiod.1.1
that only the cells at the boundary of the bounding box hausetaccessed). Then, for each
of these cells, the traversing paths must be retrieved, w@presents a cost 6f(g). The
nearest path is finally found in Geearesipath(), by evaluating all the paths found on this
previous step. This procedure computes the point on eabhneatest to the footprint center
and takes the closest on@{(g).

Concerning the rendering of the current scratch, the mosiyyquat is the evaluation of the
scratch BRDF, i.e. théor sentence in Rendesolatedscratches. For each facet of the cross-
section, this requires the computation of its base BRDF, idritutionr,, and its occlusion
or geometrical attenuation facto;; this later being done using the following procedure:

procedure ComputeGk
for (each light+ 1)
Computeself occlusion() — O(1)

for (each possibly occluding facet)

Computegkj() — O(1)
endfor — f-O(1) = O(f)
endfor — (I4+1)-0O(f) = O(lf)
endproc — O(lf)

The G, factor is computed by means of determining the self-ocalusif each facet and
their occlusion due to the other facets of the same croggse®@lthough the precomputed
lists of blocking facets (see above) allows the evaluatioondy a few neighboring facets, in
the worst case, all the cross-section facets may be evdlt@tthe current one, thus requiring
aO(f) time. These tests must be then performed with respect toi¢leswand the different
light sources, thus finally resulting @((1 + 1) f) = O(lf).

B.2.2.3 Rendering General Scratches and Grooves

The computational complexity associated to the renderfrgeoeral scratches and grooves
is separated in two parts, depending on the kind of situatwam is rendered: parallel or
isolated grooves, and special cases like intersectiongads. Without considering indirect
illumination, the former is achieved A (g(n+m-+1f)), and the latter it (g(n+m+1f/9 +
g)), as shown next:

algorithm Rendergroovesdirect
Find_currentgrooves() — O(g(n+m) +1)

if (! grooves) — O(1)
ComputeBRDF() — O(1)

B.2. SOFTWARE-BASED ALGORITHMS 119

else
/I Prepare grooves
for (each groove)

Getstraightpath() — O(1)
Perturbcrosssection() — O(f)
endfor — g-0(f) = Olgf)
// Direct illumination
if (No_specialcases()) — O(g)
Reflectionparallelgrooves()— O(lgf) = Opar
else
Reflectionspecialcase() — O(¢* +1gf79) = Ogpe
endif — Opar | Ospe
endif — O(9./) + [Opar | Ospe] = Opar | Ospe
endalg — O(g(n+m) + 1) + [Opar | Ospe] =

O(g(n+m+[Lf | Lf79 + g]))

The first part of the algorithm consists in finding the groogestained or affecting the
current footprint. This part is similar to the one perfornfedisolated scratches, but since
all the grooves must be later evaluated, we do not need tondieie the nearest groove in
this case. In contrast, we need to enlarge the footprint éhogrbox according to the cross-
sections’ maximum projected size, which must take into antthe different viewer and light
sources directions. This results itDdg(n + m) + [) complexity, as detailed next:

procedure Find_currentgrooves

Computefootprint bbox() O(1)

Enlargebbox() O(l+1)

Get pathsat bbox() O(g(n+m))
endproc O(g(n+m) +1)

If any groove is found, the next part prepares the geometiyeofrooves for its subsequent
processing, which consists in approximating the curveags by means of local straight
paths and in perturbing their cross-sections, if neces3dug approximation to straight paths
requires the computation of the current local frame of theveuwhich mainly consists in
finding the nearest point on the pathand the current tangent directidn After this, we
must detect if any special case is found on the footprint otlepoto select the appropriate
rendering method. The procedure Npecialcases() computes this by checking if the paths
are parallel or not and by looking if any of their ends is camd in the current bounding box.
Since both of these tests hav®#gj) complexity, the detection is performeddn(g) time.

120 APPENDIX B. COMPUTATIONAL COMPLEXITY

When no intersection or end have been found in the detectem 8te next procedure is
called:

procedure Reflectionparallelgrooves
Merge crosssections() — O(gf)
Projectfootprint axes() — O(1)

/l Masking and clipping
for (each facet)

Projectand find_occlusion() — O(1)
Clip_facet() — O(1)
endfor —gf-0(1) = O(g/f)

/I Shadowing and reflection
for (each light)
for (each visible facet)
Projectandfind_occlusion() — O(1)
Facetcontribution() — O(1)

if (facet contributes) — 0(1)
ComputeBRDF() — O(1)
1

endif — O(1)
endfor —gf-0(1)=0(gf)
endfor —1-O(gf) =0(gf)
endproc — O(lgf)

In this procedure, the reflection of the grooves is compusedescribed in Sectioh.2.3
Basically, the cost of the several parts is related to the rurobfacets to evaluateX(gf))
and, for the shadowing and the reflection calculation, tonti@ber of light samplesJ(/)).
This derives in an algorithm with@(lg f) order of complexity, as can be seen. This complex-
ity (called O,,, in Rendergroovesdirect), plus the one needed for the previous operations,
results in a total complexity of:

O(g(n+m) +1)+O(gf) + O(lgf) = O(g(n +m) +1gf) = O(g(n + m +1f)).

On the other hand, the rendering of groove intersectionds,eand similar situations is
done using the following procedure:

B.2. SOFTWARE-BASED ALGORITHMS 121

procedure Reflectionspecialcase
Classify.ends() — O(g%)

for (each groove and facet)
/l Clipping and intersection
Projectfootprintandclip() — O(1)

Intersectionstep() — O(ep f9) = O(f9)
/Il Masking
Occlusionstep(viewer) — O(ep f19) = O(f9179) = O(f79)

I/l Shadowing and reflection
for (each light)
Occlusionstep(light) — Olep, f19) = O(f9f79) = O(f19)

/I Current footprint area
Facetcontribution() — O(f719)

if (facet contributes) — O(1
ComputeBRDF() — O(1
1

— —

endif — O(
endfor — - O(f9) = O(1f19)
endfor — gf - O(Lf9) = O(lgf/9)
endproc — O(g? +1gf79)

In this case, notice that the complexity is considerablyaggethan in the previous case.
The most costly part is the evaluation of the different iséetion and occlusion steps, which
is due to the different polygon operations that must be peréa between the footprint and
the cross-sections or profiles projected onto the curreetfa he cost of each polygon inter-
section or difference depends on the number of edges of plug jpolygons and on the number
of obtained intersections, and these may considerablgaser from one operation to another.

For convex polygons, their intersection may be compute@ (e, + ¢;) time, wheree;
ande; are the number of edges/vertices of each polyd®83. This can also be written as
O(e), wheree = ¢; + ¢;. In such cases, the computational cost only depends on thbetu
of polygon edges, and the obtained polygon is convex toonga maximum ofe edges.
However, a difference operation rarely results in a convaygon, thus we have needed to
consider operations between general non-convex polygoosricase.

For non-convex polygons, the complexity of an intersectiepends on the number of
edges but also on the number of obtained intersectipmghere the best algorithm performs
in O(k + eloge) time [PS8Y. If the polygons do not intersect (= 0), the algorithm takes

122 APPENDIX B. COMPUTATIONAL COMPLEXITY

O(eloge) time, but in the worst case, every edge of a polygon may ietersvery edge of
the other polygon, resulting ih = e;e; intersections. This means that the intersection will be
found inO(e;e; + eloge) time, which derives on a quadratic algorithnejf~ e;:

O(e? + 2¢;log 2e;) = O(e? + e;loge;) = O(e?).

For polygon differences, the complexity is similar, andhaligh the obtained polygon may
havee; + k = e; + ¢? edges and vertices in the worst case, it derives (ief) edges too.

Analyzing our algorithm, we found the first polygon operatia Projectfootprint and
clip(), where the footprint must be intersected with theetaooundaries. In this case, we
assume that both polygons have four edges, thus the coststar. The following polygon
operation is found in Intersectiostep(), which is detailed next:

procedure Intersectionstep
for (each intersecting groove)
Projectcrosssection() — O(f)

if (no common intersection) — O(1)
Modify _profile() — O(1)
endif — O(1)

/I 2D polygon difference
Removeintersectedoart() — Ole,f)

endfor — O(ep, [9)

endproc — O(ep, [9)

In this case, the operation is a polygon difference that inegterformed between the cur-
rent footprint polygon and all the cross-sections of thernsgcting grooves (see Remove
intersectecpart()). At each iteration, assuming that the current fontppolygon hase,
edges and each cross-section lfasdges, the polygon difference is computedCfk +
(e, + f)log(e, + f)) time. In the worst casey = e;e; = e,f, as seen before, thus the
complexity derives inD(e,f) for both the execution time and the number of edges of the
obtained polygon. In the first iteration, this resultstite, f) = O(e,, f), wheree,, repre-
sents the number of edges of the input footprint polygon.eAfivo iterations, the cost is
O(e,f) = O((ep /) f) = Olep, f?), and afterg iterations,O((((epy f) f)---f)) = Oep, f2).

For the intersection step, since the number of edges of ttpriat polygon after clipping can
be assumed to be constagt, can be removed from the expression and the final computétiona
cost isO(f9) (see Reflectiorspecialcase procedure).

For the occlusion step, its computational cost is derivea similar way, as detailed next:

B.2. SOFTWARE-BASED ALGORITHMS 123

procedure Occlusionstep(direction)
for (‘each possibly occluding facet)
if (self occluded) — 0(1)
Projectblocking facet() — O(1)

for (each intersecting groove)
Projectprolongation() — 0(1)

/I External facets and certain facets of ends do
/I not require the cross-section projection
if (cross-sectionisneeded) — O(1)
Projectcrosssection() — O(f)
Unify _with_prolongation() — O(f)
endif O(f)

/l Remove from the projected blocking facet
Il = 2D polygon difference
Removeintersectingprofile() — O(eyf)

endfor — O(ep, f9) = O(f9)

/l Remove from the footprint polygon
Il = 2D polygon difference

Removeblocking facet() — O(epf9)

endif — O(e,f9)
endfor — O(ep, f19)
endproc — O(ep, f79)

In this case, two polygon differences must be performed. fifbeone is used during the
computation of the occlusion profile from a given blockingdg and consists in subtracting
the cross-sections of its intersecting grooves once piegjeanto the current facet (see Re-
move intersectingprofile()). Its cost is similar to the difference operatiogsdribed before,
that isO(e, f) for a given iteration and(e,, f7) after g iterations. In these expressions,
represents the current number of edges of the blocking et its initial value. The
latter, however, is always four for an initial facet, thus@so be directly removed from the
expressionO(7).

The second difference operation, on the other hand, is asesrtove the final occlusion
profile from the current footprint polygon. Since the blogkifacet has)(f?) edges in the
worst case, this operation is computed(ie;e;) = O(e,f?) time. After f iterations, i.e.
the maximum number of blocking facets, its cost is tligfe,, f/?), which is also derived
as before. When this procedure is called to compute the n@sifact,e,, is the number

124 APPENDIX B. COMPUTATIONAL COMPLEXITY

of polygon edges obtained from the intersection step, thus= f?. When it is called for
the shadowing effect,,, = f/¢ instead, which corresponds to the amount of edges after the
masking step (see Reflecti@pecialcase procedure).

The total cost of evaluating Reflecti@mpecialcase is finallyO(g> + lgf/9). O(lgf/9)
comes from the computation of the several clipping, inteisa, and occlusion steps, and
O(g?) comes from a first procedure called Classiyds(). When the footprint is affected
by groove ends, this procedure is used to classify them assetted ends, isolated ends, or
corners. Its quadratic cost is due to the evaluation of tfierdnt groove ends with respect to
the rest of grooves in the current footprint.

At the end, the final complexity for rendering groove intetgens and ends is found by
adding the costs of the rest of operations performed in Regidevesdirect, which result in:

O(g(n+m)+1)+0(gf)+O0(g*Hgf'?) = O(g(n+m)+g°+1gf'?) = O(g(n+m-+g+1f79)).

B.2.2.4 Indirect lllumination
In order to include indirect illumination in the previougyatithms, the computational com-

plexity grows toO(g¢f4(n+m+1)) for parallel and isolated grooves and®¢g? f¢(n +m +
1f19)) for the special cases. The derivation of this complexityetaded in this section.

algorithm Rendergroovesindirect

Rendergroovesdirect() — O(g(n+m+[If | 179+ g]) = Ou
if (depth>0) — O(1)
/I Indirect illumination from the grooved surface
Indirectillumination() — O(g?fin+m+1-[1] 1)) = Oina

/I Indirect illumination from other surfaces
if (! all footprintcovered) — O(1)

Raytrace() — 0(1)

endif — 0(1)

endif — Oina
endalg — Ogir + Oing = Ojna

After calling our previous algorithm to compute the dirdlctrnination, the new algorithm
uses the procedures Indiraitmination() and Raytrace() to account for the indireceéoifihe
former is used to compute the illumination coming from theearooved surface, while the
latter ray traces the scene to include the illumination efrigst of surfaces. The most costly
part is the procedure Indiredtumination(), which is detailed next:

B.2. SOFTWARE-BASED ALGORITHMS 125

procedure Indirectillumination
for (each visible facet)
for (reflectionand transmission)

Computedirection() — 0O(1)
Reprojectfootprint() — O(e,) = O(f19)
Rendergroovesindirect() — O(¢%f4(n+m+1-[1| f/9])) =
Oina
Add_contribution() — 0(1)
endfor — 2+ Oinag = Oina
endfor — gf Oina = Oinag
endproc — Oind

As described in Sectiod.3 the specular reflections and transmissions occurring on a
grooved surface are handled by recursively calling ourrétlyo for each visible facet and
scattering direction. The computation of this directiord ahe reprojection of the visible
portion of each facet onto the surface is performed by thetfirs operations. The algorithm
is then recomputed and the obtained reflection is added @diagoto its contribution to the
overall reflection.

The recursive execution of the algorithm is usually perfednantil a specified recursion
depthd is achieved. This value will be used to evaluate the compleodi our algorithm,
and represents the number of light bounces that are coesdid&vhend = 1, the cost of
computing the indirect illumination of a given facé&d,(,,) is given by the cost of computing
the direct illumination Q) after a first light bounce. Such indirect illumination isxgputed
for each scattering direction and currently visible faedtich means that its complexity must
be weighted by 2 andgf, as shown in this procedure. At the end of the algorithm,¢bit is
finally added to the cost of the current direct illuminatitmys resulting in:

Odir + 9f + Oina = Ogir + gf - Oair
For two light bounces, the same process is repeated:

Odir + gf : Oind = Odir + gf ' (Odir + gf ' Oznd) = Odir + gf : (Odir + gf : Odir) =
Odir + gf . Odir -+ g2f2 . Odir‘-

Finally, afterd iterations, this results in:

Ougir + 9f + (Oair + 9f - (Oair + gf - (O + ...))) =
Odir + gf : Odir + g2f2 : Odir + ...+ gdfd : Odir - O(gdfd) ' Odir

For non-special groove situation8y;, = O(g(n + m + [f)), thus the indirect illumina-
tion will be computed inO(g¢ flg(n +m + 1f)) = O(g?f4(n + m + 1)) time. For groove
intersections and end®y;, = O(g(n + m + 1f79 + g)), thus inO(g¢feg(n + m + 1f79 +

126 APPENDIX B. COMPUTATIONAL COMPLEXITY

9)) = O(g%f%n + m + 1f/9)) time. Joining both terms, we have a total complexity of
O(gefi(n+m+1-[1] f79)), which represents the cost of calling Rendeoovesindirect()

in the procedure Indireatlumination (see above). Notice that such cost remaindhanged
after being weighted by f or after adding the direct illumination in the procedure Ren-
dergroovesindirect, for the top recursion level.

B.3 Hardware-Based Algorithms

In this section, the space and time complexities of our GPthaus presented in Chapter 5
are described in detalil.

B.3.1 Space Complexity

Concerning our first GPU method, its space complexity dependbke resolutions of the two
textures that are used to store the different groove dagagrl texture and the data texture.
For the grid texture, it$: * m resolution is fixed by the user, which results in a memory
consumption of)(nm). For the data texture, instead, the resolution is adjustedrding to
the amount of groove elements, cross-sections, and nlatdré are needed to represent the
grooves. The total number of groove elements depends onuthéer of grid cells, i.e. the
grid resolution, and the number of grooves traversing eatlh in the worst case, each cell
may be traversed by every groove, as stated in SeBtidri, thus resulting in a total memory
cost of O(nmg). Concerning the cross-sections and materials, their memmgumption
depends on the number of groovgssince each groove may have a different cross-section
and material, and the number of texels needed to store thenth& materials, a single texel
is needed, while for the cross-sections, the number of reduexels is half the number of
facetsf. According to this, the total memory cost of the data texisre

O(gnm +gf +g) = O(g(nm + f)) .

For our second GPU method based on quads, its space commepiends on the reso-
lution of the two visibility textures used to transfer thesibility data between the different
rendering passes. Since their resolution is the same asittentimage resolutiomn; * y, the
cost isO(zy).

B.3.2 Time Complexity

As before, in this section we start by evaluating the time glexity of the different pre-
computations required by our GPU algorithms, and later welde the complexity of such
algorithms.

B.3. HARDWARE-BASED ALGORITHMS 127

B.3.2.1 Precomputations

The only algorithm that requires some kind of precomputaitothe method based on ren-
dering the grooves in texture space. For this renderingntbthod requires the previous
computation of the two input textures, which is done usirggftlowing procedure:

procedure Computetextures
// Compute grid and groove elements
for (each grid cell)
Computebbox() — O(1)
Get pathsat bbox() — O(g(n+m))

// Only store the traversing grooves
for (each path)
if (Groovetraversescell()) — O(1)
Storegrooveelement() — O(1)
Storegroovereference() — O(1)
(1

endif — O(1)
endfor —g-0(1) =0(g)
endfor —nm-0(g(n+m)) =
O(gnm(n 4+ m))
Storecrosssections() — O(gf)
Storematerials() — O(g)
endproc — O(gnm(n+m) +gf) =
O(g(nm(n+m) + [))

In order to compute the grid texture, we take advantage dajtikdeof paths used in our soft-
ware approaches. The main difference between them is thaeth grid must consider all the
grooves traversing each cell/texel, not only their patloscréate this texture, we first compute
a bounding box around each cell according to the maximunwatithe groovesy,,.... Using
this bounding box, we obtain the paths stored in the old @Bt pathsat bbox()) and check
if the associated grooves are actually traversing the sticed! (Groovetraversescell()). This
test simply consists in comparing if the path-cell distaisckess than the groove width, and
if so, we add the groove data (groove element) in the dataresnd its reference in the grid
texture, if it is the first groove of the cell.

The most costly part for the previous grid computation iseb@luation of Gepathsat
bbox(), whose cost is the same as the one obtained in thedun@E€indcurrent grooves()
of SectionB.2.2.3 that is,O(g(n + m)). After processingum cells, this cost then results
in O(gnm(n +m)), as can be observed. The rest of operations finally cons&bing the
different cross-sections and materials onto the datarexat the end, the overall complexity

128 APPENDIX B. COMPUTATIONAL COMPLEXITY

of computing the textures 8(g(nm(n +m) + f)). If the grid is squarer{ = m), as usually
happens, this expression can then be rewritte®@gn® + f)). In addition, if the grid of
paths is not already computed, the sum of both cost¥(ign® + f)) + O(g(p, + nm)) =
O(g(n3 +f+pp+ n2>> = O(Q(n3 + f+pp))-

B.3.2.2 Rendering Grooves in Texture Space

The time complexity of the GPU algorithm proposed in Secbdhis also separated in two
parts in this case. The rendering of isolated grooves iegetdiinO(f) time, and the rest of
situations inD(g f) time, as will be detailed next. Note that only one light sagnplconsidered
by the algorithm, thug does not affect its final cost. If several light samples orsesiwere

considered, the costs would b&/f) andO(lgf), respectively.

algorithm Rendergroovestextures

Init_materialand.normal() — O(1)
Readgrid_cell() — O(1)
if (any groove) — O(1)
Readgroovedata() — O(1)
Readcrosssection() — O(f)
if (! more grooves) — O(1)
ProcesdsolatedGroove() — O(f)
else
ProcessSpecialCase() — O(gf)
_endif — O(f) | O(gf)
endif — O(f) | O(gf)
Computeshading() — O(1)
endalg — O(f) | O(gf)

As can be observed, the most important part of the algorithitneé processing of the
different groove situations. For isolated grooves(ity) time is obtained with the following
procedure:

procedure ProcesdsolatedGroove
I Visibility
Find visible facet(viewer) — O(f)

B.3. HARDWARE-BASED ALGORITHMS 129

/I Shadowing
Projectvisible_pointto_surface() — O(1)
Find_visible facet(light) — O(f)
/I Set material and normal
if (shadowed) — O(1)
material = 0 — O(1)
else if(groove facet) — O(1)
Readmaterial() — O(1)
Computenormal() — O(1)
endif — O(1)
endproc — O(f)

Since only one groove must be processed, the computatiosabt this procedure only
depends on the number of facetof one cross-section. Such facets are sequentially pro-
cessed during the visibility computations performed indBisible_facet(), in which they are
projected onto the surface in order to find the first facetr(eag) containing the pixel center.

When the current cell contains more than a groove or a spétiatisn like an intersection
or end, the following procedure is called instead:

procedure ProcessSpecialCase

/1 Visibility

Find.visible_facetspec() — O(gf)

I/l Shadowing

Projectvisible_point to_surface() — 0(1)

Find.visible_facetspec() — O(gf)

/I Set material and normal

if (shadowed) — O(1)
material =0 — 0(1)

else if(groove facet) — 0(1)
Readmaterial(visible groove) — O(1)
Computenormal(visible facet) — O(1)

endif — O(1)

endproc — O(gf)

This procedure is almost identical to the previous one, aseaseen. The main differ-
ence relies on the visibility computations because more ghgroove must be considered in
this case. The visibility is resolved using our CSG-basednaging approach introduced in

130 APPENDIX B. COMPUTATIONAL COMPLEXITY

Section5.1.5 by means of the following procedure:

procedure Find.visible facetspec

Find_ray.intersections() — O(f)

while (more grooves)
Readgroovedata() — O(1)
Readcrosssection() — O(f)
Find_ray_intersections() — O(f)
Combineintersectionsegments() — O(f)

endwhile —g-0(f) = 0(gf)

Getvisible_facet() — O(1)

endproc — O(gf)

In order to determine the current visible facet, the diffiergrooves are iteratively pro-
cessed. For each groove, its data and cross-section isdirgved from the data texture,
unless for the first one. Then, the ray is intersected withdifierent facets and the obtained
ray segments are combined with the ones obtained in thequ®weration. Each of these
operations is computed i@(f) time, including the combination of the two current lists of
O(f) ray segments. This latter operation has the same cost tiabiging two sorted arrays,
ordered by the height of the intersected points in this cAsthe end, the final cost i©(gf)
afterg iterations.

B.3.2.3 Rendering Grooves as Quads

For our second GPU algorithm, presented in Sedii@nits time complexity isD(f):

algorithm Rendergroovesquads

/1 Visibility

Find_ray.intersections() — O(f)
/l Combine with previous intersections

Get previousray_segments() — O(f)
Combineintersectionsegments() — O(f)

/l Compute shading of all possibly visible facets
Computeshading() — O(f)

B.4. CONCLUSIONS 131

/I Pack shading and intersection segments

/I for their storage on the visibility texture

Packdatafor_output() — O(f)
endalg — O(f)

Since only one groove is processed at a time, every requppecaton is performed in
O(f) time. This results in an overall complexity 6f(/) too. This algorithm, however, is
executed for every groove fragment projecting onto theemurpixel, thus the final cost is
O(gf) in fact. For the shadowing computations, the same grooves beuprocessed again,
but the previous complexity is not affected unless sevéghl lsamples are considered. In
such case, the time complexity would ©¢lg f), as stated for our texture-based algorithm.

B.4 Conclusions

In this appendix, we have derived the space and time contige)of our different models
and algorithms proposed in the thesis. Concerning the spacemory complexity, we have
obtained the following results:

e For our software-based algorithms, the amount of memoryired by the represen-
tation of scratches and grooves(%g(p, + p: + f)), which depends on: the number
of groovesy, the control points of their paths,, the control points of the perturbation
functionsp,, and the cross-section facgts

e The grid of paths and the lists of possible blocking faceishaspace complexity of
O(nmg) andO(g f?), respectively, where x m is the resolution of the grid.

e For our texture-based GPU algorithm, the total memory cébshe grid texture is
O(nm), and for the data textur€}(g(nm + f)).

e For our quad-based method, the memory requiremerid$ag), which depends on the
x * y resolution of the visibility textures, i.e. the current igearesolution.

As can be observed, all these costs are linear with respdioe tmput parameters unless
for the computation of the blocking facets, which has a ga@alcost.
With regard to the time complexity of the different algonth, we have then found that:

e The precomputation of the grid of paths is doneCity(p, + nm)) time, while the
maximum cross-section size and the lists of blocking faaetscomputed i (g(p; +
f?)) time.

e The rendering of isolated micro-scratches is achieved(in(n + m) + [f?), wherel is
the number of light samples.

132 APPENDIX B. COMPUTATIONAL COMPLEXITY

e Its extension for rendering all kinds of scratches and gesdwas a time complexity of
O(g(n +m + 1f)) for isolated and parallel grooves, atdg(n + m + [f/9 + g)) for
groove intersections and ends.

¢ If multiple inter-reflections and transmissions are coessd, the costs increase up to
O(g?fin+m+1)) andO(g? f¢(n+m+1f79)), respectively, wherd is the maximum
recursion depth.

e For our first hardware approach, the precomputation of theired textures is done in
O(g(nm(n +m) + f)) time. The rendering of the grooves is then performediif)
time for isolated grooves ard(g f) for the rest of situations.

e For our second quad-based approach, a similar compleXityailly obtained:O(gf).

Looking at these results, we can observe how our softwareoapbes have a greater
complexity than our hardware approaches, as expected.afiee dnly read one grid cell at a
time and consider a single light sample, thus removingthgn + m)) andO(l) dependen-
cies. The algorithm for isolated scratches also has a greast than our general method for
grooves, if only considering isolated features, which is thuthe use of a different approach
to evaluate the occlusion of the facets. In the former, tledusoon of each facet is evaluated
with respect to all the other neighboring facets possibigluating the current oneJ(f?)).

In the latter, the occlusion of all the facets is evaluatedéguentially projecting them in a
single pass, which is more efficient if the number of evaldd&eets is important{(f)).

For groove intersections and ends, its rendering is far roosdy and the resulting com-
plexity is exponential with respect to the number of facéxsf(’?)). This is due to the different
polygon operations that are performed along the algoritNaturally, here we have consid-
ered the worst case of such operations, in which the numtesigefs grows in a quadratic way
after each operation. Such kind of behavior is achieved watly complex polygons such as
star-shaped polygon®§£89; our cross-sections and footprints are very simple angtig-
gon operations tend to result in a small number of edgesoAlh not detailed, we have also
tried to derive the complexity of the algorithm considerthg best case for the polygon oper-
ations, which happens when no intersection is found betweepolygons. Since the number
of edges does not grow from one operation to another, thengst@omplexity is then poly-
nomial: O(g(n +m + lgf3log(gf))). According to this, the average complexity between
the best and worst cases can be considered as polynomiallagvineh greatly reduces its
complexity.

Finally, the most costly part is the computation of the iadirillumination on the same
grooved surface, which requires the multiple evaluatiotinefalgorithm. Since the algorithm
is recursively executed for each new visible facet, its gostvs exponentially with respect to
the number of grooveg and facetsf, and the recursion depthof the algorithm (number of
light bounces).

Bibliography

[AC99]

[Ama84]

[APS00]

[ASO0]

[BAOS]

[Ban94]

[BBIO]

[BEPS96]

[BFO1]

Golam Ashraf and Wong Kok Cheong. Dust and water splaginodels
for hopping figures.The Journal of Visualization and Computer Animation
10(4):193-213, October - December 1999.

John Amanatides. Ray tracing with cones Clomputer Graphics (Proceed-
ings of SIGGRAPH 84yolume 18, pages 129-135, July 1964.

Michael Ashikhmin, Simon Premoze, and Peter S.I8hir A microfacet-
based BRDF generator. Proceedings of ACM SIGGRAPH 2Q@@omputer
Graphics Proceedings, Annual Conference Series, paged 654y 2000.9,
18

Michael Ashikhmin and Peter S. Shirley. An anisotogghong BRDF model.
Journal of Graphics Tool$(2):25-32, 20009, 17

Bedfich Ben& and X. Arriaga. Table mountains by virtual erosion.Elro-
graphics Workshop on Natural Phenomepages 33-40, August 20054

David C. Banks. lllumination in diverse codimensioris. Proceedings of
SIGGRAPH 94Computer Graphics Proceedings, Annual Conference Series,
pages 327-334, July 1998, 16, 17

Welton Becket and Norman I. Badler. Imperfection for ret&d image syn-
thesis.Journal of Visualization and Computer Animatjdr{1):26—-32, August
1990.11,12 16

Brian J. Briscoe, P. D. Evans, E. Pelillo, and Suje&ikha. Scratching maps
for polymers.Wear, 200(1):137-147, 199&3, 26

Bedich Ben& and Rafael Forsbach. Layered data representation forl visua
simulation of terrain erosion. I8pring Conference on Computer Graphics
2001.14

133

134

[BFO2]

[BITO4]

[BKMTKOO]

[BLOY]

[BIi77]

[BIi78]

[Blig2a]
[Blig2b]

[BMO3]

[BMSS97]

[BMZBO02]

[BN76]

BIBLIOGRAPHY

Bedich Bené& and Rafael Forsbach. Visual simulation of hydraulic emsio
In International Conference in Central Europe on Computer Graphand
Visualization (Winter School on Computer Graphjgsgges 79-94, 20024

Pravin Bhat, Stephen Ingram, and Greg Turk. Geomésiture synthesis by
example. IProceedings of the 2004 Eurographics/ACM SIGGRAPH Sympo-
sium on Geometry Processingages 41-44, 2004.8

Laurence Boissieux, Gergo Kiss, Nadia Magnenaglfitann, and Prem Kalra.
Simulation of skin aging and wrinkles with cosmetics insighh Computer
Animation and Simulation 200@ages 15-27, August 20005

John W. Buchanan and Paul Lalonde. An observationaletiod illuminating
isolated scratches. lroceedings of the Western Computer Graphics Sympo-
sium 1999 (SKIGRAPH99March 1999.16

James F. Blinn. Models of light reflection for compumthesized pictures.
In Computer Graphics (Proceedings of SIGGRAPH, @dlume 11, pages
192-198, July 1977

James F. Blinn. Simulation of wrinkled surfaces.Gomputer Graphics (Pro-
ceedings of SIGGRAPH 78)olume 12, pages 286-292, August 1978.
23

James F. Blinn. A generalization of algebraic suefdcawing. ACM Transac-
tions on Graphics1(3):235-256, July 1982

James F. Blinn. Light reflection functions for simtita of clouds and dusty
surfaces. IrProc. SIGGRAPH '82volume 16, pages 21-29, 198P1

Barry G. Becker and Nelson L. Max. Smooth transitionsasstn bump ren-
dering algorithms. IfProceedings of SIGGRAPH 98omputer Graphics Pro-
ceedings, Annual Conference Series, pages 183-190, Augedt 13

Bedich Bend, Ivo Maiak, PavelSimek, and Pavel Slé. Hierarchical ero-
sion of synthetical terrains. h3th Spring Conference on Computer Graphics
pages 93-100, June 199174

Henning Biermann, loana M. Martin, Denis Zorin, anduBto Bernardini.
Sharp features on multiresolution subdivision surfac€saphical Models
64(2):61-77, 200218

James F. Blinn and Martin E. Newell. Texture and refattin computer
generated image€ommunications of the ACM9(10):542-547, 197@

BIBLIOGRAPHY 135

[BNN+98]

[BPO3]

[BPO7]

[BPMG04]

[BPMGO5]

[BTHBO6]

[BucO1]

[BW97]

[Cal94]

[Cat74]

[CC78]

Philippe Bekaert, &szb Neumann, Attila Neumann, Mateu Sbert, and
Yves D. Willems. Hierarchical monte carlo radiosity. Eurographics Ren-
dering Workshop 199%ages 259-268, June 1998)

Carles Bosch and Xavier Pueyo. intsi dimatges d'objectes amb

ratllades. Research Report [l1IA03-07-RR, Institut d’Infatioa |
Aplicacions, Universitat de Girona, May 2003. Availableorfr
http://ima.udg.edu/"cbosch .99

Carles Bosch and Gustavo Patow. Real time scratches aadegt InXVII
Congreso Espi@ol de Infornatica Grafica (CEIG'07) September 2007Ac-
cepted Available fromhttp://ima.udg.edu/"cbosch . 71,99

Carles Bosch, Xavier Pueyo,éphane Mrillou, and Djamchid Ghazanfar-
pour. A physically-based model for rendering realisticascnes. Computer
Graphics Forum23(3):361-370, September 2004, 31, 99

Carles Bosch, Xavier Pueyo,éphane Mrillou, and Djamchid Ghazanfar-
pour. General rendering of grooved surfaces. Research REpOG-10-RR,
Institut d’Informatica i Aplicacions, Universitat de Girona, December 2005.
SubmittedAvailable fromhttp://ima.udg.edu/ cbosch . 31,99

Bedfich Bene, Vaclav Tésinsky, Jan Horng, and Sanjiv K. Bhatia. Hydraulic
erosion. Computer Animation and Virtual World47(2):99-108, May 2006.
15

Jean-Luc BucailleSimulation nurarique de I'indentation et de la rayure des
verres organiquesPhD thesis, Ecole Nationale Saneure des Mines de Paris,
2001.24, 27, 28

Jules Bloomenthal and Brian Wyvill, editordntroduction to Implicit Sur-
faces Morgan Kaufmann Publishers Inc., San Francisco, CA, USA719
P

William D. Callister. Materials Science and Engineering, an Introduction
John Wiley & Sons, 3rd edition, 19924, 25, 29

Edwin E. Catmull. A subdivision algorithm for computer display of curved
surfaces PhD thesis, University of Utah, December 1984.

Edwin E. Catmull and James H. Clark. Recursively genertsgline sur-
faces on arbitrary topological meshe€omputer-Aided Desigri0(6):350—
355, 1978.7

http://ima.udg.edu/~cbosch
http://ima.udg.edu/~cbosch
http://ima.udg.edu/~cbosch

136

[CDM*02]

[CF99]

[CFW99]

[CGO6]

[CGFO04]

[CLOB]

[CMF98]

[CMS87]

[Co084]

[CPC84]

[CS00]

BIBLIOGRAPHY

Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthiéiller, and Robert
Jagnow. A procedural approach to authoring solid mod&BM Transactions
on Graphics 21(3):302—-311, July 20025

Jim X. Chen and Xiaodong Fu. Integrating physics-basedputing and vi-
sualization: Modeling dust behavid@omputing in Science and Engineerjng
1(1):12-16, 199911

Jim X. Chen, Xiadong Fu, and Edward J. Wegman. Real-timalation of
dust behavior generated by a fast traveling vehicheCM Transactions on
Modeling and Computer Simulatip@(2):81-104, 199911

David N. Carr and Jim Geyer. Variants of a new volumetnimdel for dust
cloud representation and their comparison to existing auhInCGIV '06:
Proceedings of the International Conference on Computer Gicap Imaging
and Visualisationpages 317-322, Washington, DC, USA, 2006. IEEE Com-
puter Societyll

Chiara Eva Catalano, F. Giannini, and B. Falcidienorothicing sweep fea-
tures in modeling with subdivision surface®urnal of WSCG12(1):81-88,
2004.17, 18,21, 23

R. J. Cantand C.S. Langensiepen. Efficient anti-aliasetpomappingCom-
puters & Graphics30(4):561-580, August 20068

Norishige Chiba, Kazunobu Muraoka, and K. Fujita. Aoston model based
on velocity fields for the visual simulation of mountain segn The Journal
of Visualization and Computer Animatio®(4):185-194, October - December
1998.14

Brian Cabral, Nelson Max, and Rebecca Springmeyer. &itonal reflection
functions from surface bump maps. Gomputer Graphics (Proceedings of
SIGGRAPH 87)volume 21, pages 273-281, July 198D, 17

Robert L. Cook. Shade trees. @omputer Graphics (Proceedings of SIG-
GRAPH 84)volume 18, pages 223-231, July 198423, 65

Robert L. Cook, Thomas Porter, and Loren Carpenter.ibistd ray tracing.
In Computer Graphics (Proceedings of SIGGRAPH, 86lume 18, pages
137-145, July 198410

Yao-Xun Chang and Zen-Chung Shih. Physically-basedaiain for under-
ground objectsComputer Graphics Forupi9(3), August 200012

BIBLIOGRAPHY 137

[CS03]

[CT81]

[CXW*05]

[DEL+99]

[DGA04]

[DGAO5]

[DHO6]

[Dis98]

[Don05]

[DPH96]

[DVGNK99]

[EMP*+02]

Yao-Xun Chang and Zen-Chung Shih. The synthesis of mustawaterThe
Visual Computerl9(1):50-66, 200312

Robert L. Cook and Kenneth E. Torrance. A reflectance inodeomputer
graphics. InComputer Graphics (Proceedings of SIGGRAPH 8tjume 15,
pages 307-316, August 1984.

Yanyun Chen, Lin Xia, Tien-Tsin Wong, Xin Tong, Hujun Bao,ilBiag Guo,
and Heung-Yeung Shum. Visual simulation of weathering byiga-ton trac-
ing. ACM Transactions on Graphigc24(3):1127-1133, August 20051

Julie Dorsey, Alan Edelman, Justin Legakis, Henrik Walemsen, and
Hans Kghling Pedersen. Modeling and rendering of weath&tmw. InPro-
ceedings of SIGGRAPH 9€@omputer Graphics Proceedings, Annual Confer-
ence Series, pages 225-234, August 19%D.

Brett Desbenoit, Eric Galin, and Samir Akkouche. 8lating and modeling
lichen growth. Computer Graphics Forupn23(3):341-350, September 2004.
15

Brett Desbenoit, Eric Galin, and Samir Akkouche. Mbdg cracks and frac-
tures.The Visual ComputeR1(8-10):717-726, 2003.3

Julie Dorsey and Patrick M. Hanrahan. Modeling anadexing of metallic
patinas. InProceedings of SIGGRAPH 96omputer Graphics Proceedings,
Annual Conference Series, pages 387-396, August 1P®6.

Jean-Michel Dischler. Efficiently rendering mageometric surface struc-
tures with bi-directional texture functions. Eurographics Rendering Work-
shop 1998pages 169-180, June 1998.

William Donnelly. GPU Gems 2chapter Per-Pixel Displacement Mapping
with Distance Functions, pages 123-136. Addison-Wes[2§5258

Julie Dorsey, Hans Kghling Pedersen, and PatrickHishrahan. Flow and
changes in appearance.Rrmoceedings of SIGGRAPH 96omputer Graphics
Proceedings, Annual Conference Series, pages 411-420sA1@06.11

Kristin J. Dana, Bram van Ginneken, Shree K. Nagaig Jan J. Koenderink.
Reflectance and texture of real-world surfacRk€M Transactions on Graph-
ics, 18(1):1-34, January 1998.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, katir? and Steven
Worley. Texturing & Modeling: A Procedural Approach, Third Editid¢ithe

138

[EveO1]

[Far99]

[Fou92]

[FPO2]

[FPO4]

[FVDFH90]

[Gar85]

[GCI7]

[GC99]

[GCO1a]

[GCO1b]

BIBLIOGRAPHY

Morgan Kaufmann Series in Computer Graphic$jlorgan Kaufmann, De-
cember 20027

Cass Everitt. Interactive order-independent arsncy. Technical report,
NVIDIA Corporation, May 200188

Gerald E. FarinNURBS: From Projective Geometry to Practical Use K.
Peters, Ltd., Natick, MA, USA, second edition, 1999.

Alain Fournier. Normal distribution functions amdultiple surfaces. In
Graphics Interface '92 Workshop on Local llluminatigmages 45-52, May
1992.18

Pavol Federl and Przemyslaw Prusinkiewicz. Modglliracture formation
in bi-layered materials, with applications to tree bark amging mud. In
Proceedings of Western Computer Graphics Sympqgages 29-35, 2002.
13

Pavol Federl and Przemyslaw Prusinkiewicz. Fingenent model of fracture
formation on growing surfaces. International Conference on Computational
SciencelLecture Notes in Computer Science, pages 138-145, 2[04.

James D. Foley, Andries van Dam, Stephen K. Feised John F. Hughes.
Computer Graphics: Principles and Practicdddison-Wesley, 2nd edition,
1990.76

Geoffrey Y. Gardner. Visual simulation of cloudsn Computer Graphics
(Proceedings of SIGGRAPH 85)plume 19, pages 297-303, July 1985.

Séphane Gobron and Norishige Chiba. Visual simulation ofasion. In
Proceedings of IPSJ-Tohoku WorkshBgcember 199712

Sephane Gobron and Norishige Chiba. 3d surface cellular attornd
their applications. The Journal of Visualization and Computer Animation
10(3):143-158, July - September 1992

Séphane Gobron and Norishige Chiba. Crack pattern simulatiseadon 3d
surface cellular automatdhe Visual Computed 7(5):287-309, 200112, 13

Sephane Gobron and Norishige Chiba. Simulation of peelinggusid-
surface cellular automata. Bth Pacific Conference on Computer Graphics
and Applicationspages 338—-347, October 20aR

BIBLIOGRAPHY 139

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard Sgedisdl Michael F. Co-
hen. The lumigraph. I#®roceedings of SIGGRAPH 96omputer Graphics
Proceedings, Annual Conference Series, pages 43-54, AL@9618

[GH86] Ned Greene and Paul S. Heckbert. Creating raster omnimages from
multiple perspective views using the elliptical weighteg@ge filter. IEEE
Computer Graphics & Application$(6):21-27, June 198@3

[Gla89] Andrew S. GlassnerAn introduction to ray tracing Academic Press Ltd.,
London, UK, UK, 1989.10, 64

[GN71] Robert A. Goldstein and Roger Nagel. 3-D visual simafat Simulation
16(1):25-31, January 19716

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Gresgband Bennett Bat-
taile. Modelling the interaction of light between diffusergaces. InCom-
puter Graphics (SIGGRAPH '84 Proceeding®)lume 18, pages 212-22, July
1984.10

[GTRT06] Jinwei Gu, Chien-I Tu, Ravi Ramamoorthi, Peter Belhumeurjci&'oh Ma-
tusik, and Shree Nayar. Time-varying surface appearamcgtigtion, model-
ing and renderingACM Transactions on Graphic25(3):762—771, July 2006.
12

[HDKS00] Wolfgang Heidrich, Katja Daubert, Jan Kautz, andnd-Peter Seidel. lllu-
minating micro geometry based on precomputed visibilityPfoceedings of
ACM SIGGRAPH 20Q@Computer Graphics Proceedings, Annual Conference
Series, pages 455-464, July 20@0.

[He93] Xiao D. He. Physically-Based Models for the Reflection, Transmissiwh a
Subsurface Scattering of Light by Smooth and Rough Surfagts Appli-
cations to Realistic Image SynthesiBhD thesis, Cornell University, 1993.
9

[Hec86] Paul S. Heckbert. Survey of texture mappinGEE Computer Graphics &
Applications 6(11):56-67, November 1988.

[HH84] Paul S. Heckbert and Pat Hanrahan. Beam tracing pabigubjects. InCom-
puter Graphics (Proceedings of SIGGRAPH 8/4)lume 18, pages 119-127,
July 1984.64, 65

[HK93] Pat Hanrahan and Wolfgang Krueger. Reflection fronetag surfaces due to
subsurface scattering. FProceedings of SIGGRAPH 98omputer Graphics
Proceedings, Annual Conference Series, pages 165-174sA1@83.10

140

[HS93]

[HS98]

[HS99]

[HTO6]

[HTKO8]

[HTKOO]

[HTSGO1]

[HWO5]

[1BO2]

[ICG86]

[1006]

BIBLIOGRAPHY

Paul Haeberli and Mark Segal. Texture mapping as ddmental drawing
primitive. In Michael F. Cohen, Claude Puech, and Francoig8§jleditors,
Fourth Eurographics Workshop on Renderjpgges 259-266, June 1938.

Wolfgang Heidrich and Hans-Peter Seidel. Ray-tqgrocedural displace-
ment shaders. IGraphics Interface '98pages 8-16, June 1998.

Wolfgang Heidrich and Hans-Peter Seidel. Realidtaxdware-accelerated
shading and lighting. IfProceedings of SIGGRAPH 9@omputer Graphics
Proceedings, Annual Conference Series, pages 171-178sA19©0.18

Hsien-Hsi Hsieh and Wen-Kai Tai. A straightforwanddaintuitive approach

on generation and display of crack-like patterns on 3d dbjelnn Computer
Graphics InternationglLecture Notes in Computer Science, pages 554-561,
2006.13

Koichi Hirota, Yasuyuki Tanoue, and Toyohisa KanekGeneration of crack
patterns with a physical modeThe Visual Computerl4(3):126-137, 1998.
13

Koichi Hirota, Yasuyuki Tanoue, and Toyohisa KaoekSimulation of three-
dimensional cracksThe Visual Computed6(7):371-378, 200QL3

Xiao D. He, Kenneth E. Torrance, Francois X. 8illiand Donald P. Green-
berg. A comprehensive physical model for light reflectiom Aomputer
Graphics (Proceedings of SIGGRAPH 9¢plume 25, pages 175-186, July
1991.9

Siu-Chi Hsu and Tien-Tsin Wong. Simulating dust acclatian. IEEE Com-
puter Graphics & Applications15(1):18-25, January 199%1, 12

John R. Isidoro and Chris Brennan. Per-pixel strand basesbtropic lighting.
In Wolfgang F. Engel, editoDirect3D ShaderX: Vertex and Pixel Shader Tips
and Tricks Wordware, Plano, Texas, 20023

David S. Immel, Michael F. Cohen, and Donald P. Greembe\ radiosity
method for non-diffuse environments. @omputer Graphics (SIGGRAPH
'86 Proceedings)volume 20, pages 133-142, August 1986.

Hayley N. Iben and James F. O’'Brien. Generating s@rfaack patterns. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium ampGier
Animation pages 177-185, Sept 20063

BIBLIOGRAPHY 141

[JCO5]

[Jen01]

[JHO4]

[JLD99]

[IMLHO1]

[JPOO]

[JZLMO8]

[Kaj85]

[Kaj86]

[KB95]

[KCY93]

[KH84]

[KK8O]

Henrik Wann Jensen and Niels Jgrgen Christensen. Phaps in bidirec-
tional monte carlo ray tracing of complex object€omputers & Graphics
19(2):215-224, March 1994.0, 65

Henrik Wann JenseRealistic image synthesis using photon mappigKk.
Peters, Ltd., Natick, MA, USA, 200110

Christopher Johnson and Charles Han$&sualization HandboakAcademic
Press, Inc., Orlando, FL, USA, 2004.

Henrik Wann Jensen, Justin Legakis, and Julie Bordeendering of wet
materials. InEurographics Rendering Workshop 1998ne 199915

Henrik Wann Jensen, Stephen R. Marschner, Marc y,emod Pat Hanrahan.
A practical model for subsurface light transport.Aroceedings of ACM SIG-

GRAPH 2001 Computer Graphics Proceedings, Annual Conference Series,

pages 511-518, August 20010

Thouis Jones and Ronald Perry. Antialiasing with $amples. IrRendering
Techniques 2000: 11th Eurographics Workshop on Rendguanges 197-206,
June 200055, 58, 101

Vincent P. Jardret, H. Zahouani, Jean-Luc Loubetd T. G. Mathia. Under-
standing and quantification of elastic and plastic defolwnaduring a scratch
test. Wear, 218:8-14, 199824, 26, 27

James T. Kajiya. Anisotropic reflection models.Gomputer Graphics (Pro-
ceedings of SIGGRAPH 85)lume 19, pages 15-21, July 198%), 17

James T. Kajiya. The rendering equationClomputer Graphics (Proceedings
of SIGGRAPH 86)volume 20, pages 143-150, August 198610, 65

B. Kolpatzik and C. Bouman. Optimized universal colorgité design for
error diffusion.Journal of Electronic Imaging4(2):131-143, 1995106

Arie E. Kaufman, Daniel Cohen, and Roni Yagel. Volumepgics. IEEE
Computer 26(7):51-64, 19937

James T. Kajiya and Brian P. Von Herzen. Ray tracing r@udensities. In
Computer Graphics (Proceedings of SIGGRAPH, 8)ume 18, pages 165—
174, July 198411

James T. Kajiya and Timothy L. Kay. Rendering fur witirée dimensional
textures. InComputer Graphics (Proceedings of SIGGRAPH, 88jume 23,
pages 271-280, July 1989.

142

[KM31]

[KM99]

[KMN8S]

[KS99]

[KS00]

[KSO01]

[LFTG97]

[LGR*05]

[LHO6]

[LKO3]

[LNO2]

BIBLIOGRAPHY

Paul Kubelka and Franz Munk. Ein beitrag zur optik darbanstriche.
Zeitschrift fir Technishen Physik2:593-601, 1931. (in Germarf)2

Jan Kautz and Michael D. McCool. Interactive rendegrimith arbitrary brdfs
using separable approximations. BEnrographics Rendering Workshop 1999
June 199918

Alex D. Kelley, Michael C. Malin, and Gregory M. Niets. Terrain simula-
tion using a model of stream erosion. Qmputer Graphics (Proceedings of
SIGGRAPH 88)volume 22, pages 263—-268, August 1988.

Andrei Khodakovsky and Peter Séker. Fine level feature editing for subdi-
vision surfaces. IProceedings of the 5th ACM Symposium on Solid Modeling
and Applicationspages 203—-211, 19991, 23

Jan Kautz and Hans-Peter Seidel. Towards intemadtiunp mapping with
anisotropic shift-variant BRDFs. 12000 SIGGRAPH / Eurographics Work-
shop on Graphics Hardwargages 51-58, August 20006

Jan Kautz and Hans-Peter Seidel. Hardware accetedisplacement map-
ping for image based rendering. @raphics Interface 20Q1pages 61-70,
June 20019

Eric P. F. Lafortune, Sing-Choong Foo, Kenneth Errdoce, and Donald P.
Greenberg. Non-linear approximation of reflectance fumsti InProceed-
ings of SIGGRAPH 97 omputer Graphics Proceedings, Annual Conference
Series, pages 117-126, August 199,717

Jianye Lu, Athinodoros S. Georghiades, Holly Rushm@ieglie Dorsey, and
Chen Xu. Synthesis of material drying history: Phenomenodetiog, trans-
ferring and rendering. Ifcurographics Workshop on Natural Phenomgna
pages 7-16, August 20055

Marc Levoy and Patrick M. Hanrahan. Light field renithgy. In Proceedings of
SIGGRAPH 96Computer Graphics Proceedings, Annual Conference Series,
pages 31-42, August 1998.

Jaakko Lehtinen and Jan Kautz. Matrix radiance tfandn 2003 ACM Sym-
posium on Interactive 3D Graphicpages 59—-64, April 20038

Sylvain Lefebvre and Fabrice Neyret. Synthesizimgkh InRendering Tech-
niques 2002: 13th Eurographics Workshop on Renderpapges 105-116,
June 200213

BIBLIOGRAPHY 143

[LW85]

[LWO3]

[MAAO1]

[Max88]

[MBAO2]

[MBFO4]

[MBS97]

[MDGO1a]

[MDGO1b]

[MGO04]

[MGEO3]

Marc Levoy and Turner Whitted. The use of points as a ldigprimitive.
Technical Report 85-022, Computer Science Department, taiiyef North
Carolina at Chapel Hill, January 1985.

Eric P. Lafortune and Yves D. Willems. Bi-directionagh tracing. In H. P.
Santo, editorProceedings of Third International Conference on Computa-
tional Graphics and Visualization Techniques (Compugraephb3), pages
145-153, Alvor, Portugal, 19930

Michael D. McCool, Jason Ang, and Anis Ahmad. Homombic factoriza-

tion of brdfs for high-performance rendering. Broceedings of ACM SIG-
GRAPH 2001 Computer Graphics Proceedings, Annual Conference Series,
pages 171-178, August 20013

Nelson L. Max. Horizon mapping: shadows for bumppmped surfacesThe
Visual Computer4(2):109-117, July 1983

Claude Martins, John Buchanan, and John AmanatidesmaAting real-time
explosionsThe Journal of Visualization and Computer Animatih8(2):133—
145, 2002.13

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtualdecalgorithm for
changing mesh topology during simulatioACM Transactions on Graphics
23(3):385-392, August 20044

Ivo Marak, Bedich Bené, and Pavel Slak. Terrain erosion model based on
rewriting of matrices. IrFifth International Conference in Central Europe on
Computer Graphics and Visualization (Winter School on Coep@taphics)
pages 341-351, February 19924

Sephane Mrillou, Jean-Michel Dischler, and Djamchid Ghazanfarp@or-
rosion: Simulating and rendering. Graphics Interface 20Qpages 167-174,
June 200112

S&phane Mrillou, Jean-Michel Dischler, and Djamchid Ghazanfarp&ur-
face scratches: Measuring, modeling and renderihge Visual Computer
17(1):30-45, 2002vii, viii, 16, 17, 19, 21, 26, 32, 34, 35, 37, 41, 42, 98

Matthias Miller and Markus Gross. Interactive virtual materials.Ah’04:
Proceedings of the 2004 conference on Graphics interfpages 239-246,
2004.14

Vishal Monga, Wilson S. Geisler, and Brian L. Evangdar, color separable,
human visual system models for vector error diffusion loaiftg.|[EEE Signal
Processing Lettersl0(4):93-97, April 2003111

144

[MH84]

[Mil94]

[MKB +05]

[MKM89]

[MMA99]

[MMDJO01]

[MMS+05]

[MN98]

[MOIT98]

[Mou05]

[Nag9s]

[NF99]

BIBLIOGRAPHY

Gene S. Miller and C. Robert Hoffman. Illumination aneflection maps:
Simulated objects in simulated and real environments.SIGGRAPH '84
Advanced Computer Graphics Animation seminar nately 1984.8

Gavin Miller. Efficient algorithms for local and gleal accessibility shading.
In Proceedings of SIGGRAPH 9€omputer Graphics Proceedings, Annual
Conference Series, pages 319-326, July 1994.

Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reetti Hans-Peter
Seidel. Efficient rendering of local subsurface scatter@gmputer Graphics
Forum 24(1):41-50, March 2005.0

F. Kenton Musgrave, Craig E. Kolb, and Robert S. Macéne Bynthesis and
rendering of eroded fractal terrains. Gomputer Graphics (Proceedings of
SIGGRAPH 89)volume 23, pages 41-50, July 1989!

Oleg Mazarak, Claude Martins, and John Amanatidesindating exploding
objects. InGraphics Interface '99pages 211-218, June 19938

Matthias Miller, Leonard McMillan, Julie Dorsey, and Robert Jagnow. IRea
time simulation of deformation and fracture of stiff ma&dsi InProceedings
of the Eurographic workshop on Computer animation and sinadapages
113-124, New York, NY, USA, 2001. Springer-Verlag New Yoirk;. 14

Gero Miller, Jan Meseth, Mirko Sattler, Ralf Sarlette, and Reinhéein.
Acquisition, synthesis, and rendering of bidirectionattee functions.Com-
puter Graphics Forum24(1):83—-110, March 2008

Alexandre Meyer and Fabrice Neyret. Interactivewktric textures. IfEu-
rographics Rendering Workshop 199fges 157-168, June 1998.

Shinji Mizuno, Minoru Okada, and Jun ichiro Toriwia Virtual sculpting and
virtual woodcut printing.The Visual Computei4(2):39-51, 199818

David Mould. Image-guided fracture. Froceedings of the 2005 confer-
ence on Graphics interfacgages 219-226, School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada, 2005. &k&n Human-
Computer Communications Society3

Kenji Nagashima. Computer generation of erodeceyadind mountain ter-
rains. The Visual Computetl 3(9-10):456—-464, January 19984

Michael Neff and Eugene L. Fiume. A visual model foasl waves and frac-
ture. InGraphics Interface '99pages 193—-202, June 19938

BIBLIOGRAPHY 145

[NKON9O]

[NTB+91]

[NWDO5]

[OBH02]

[OBMOOQ]

[OH99]

[ON94]

[ONO5]

[Owe9s]

[Per85]

[PF90]

Eihachiro Nakamae, Kazufumi Kaneda, Takashi O&wm and Tomoyuki
Nishita. A lighting model aiming at drive simulators. Gomputer Graphics
(Proceedings of SIGGRAPH 90jolume 24, pages 395-404, August 1990.
15

Alan Norton, Greg Turk, Bob Bacon, John Gerth, and PaulacBey Ani-
mation of fracture by physical modelinghe Visual Computei7(4):210-219,
1991.13

Benjamin Neidhold, Markus Wacker, and Oliver Deussbkneractive physi-
cally based fluid and erosion simulation. Enrographics Workshop on Natu-
ral Phenomenapages 25-32, August 20054

James F. O’'Brien, Adam W. Bargteil, and Jessica K. Hoslgi Graphical
modeling and animation of ductile fractur@BCM Transactions on Graphics
21(3):291-294, July 200243

Manuel M. Oliveira, Gary Bishop, and David McAllisteRelief texture map-
ping. InProceedings of ACM SIGGRAPH 20@obmputer Graphics Proceed-
ings, Annual Conference Series, pages 359-368, July Z)@3.

James F. O'Brien and Jessica K. Hodgins. Graphicalatmogl and anima-
tion of brittle fracture. InProceedings of SIGGRAPH 98omputer Graphics
Proceedings, Annual Conference Series, pages 137-146sA1g89.13

Michael Oren and Shree K. Nayar. Generalization afdart’s reflectance
model. InProceedings of SIGGRAPH 9€omputer Graphics Proceedings,
Annual Conference Series, pages 239-246, July 19985

Koichi Onoue and Tomoyuki Nishita. An interactivefdenation system for
granular materialComputer Graphics Forun24(1):51-60, March 2005L5

Steven J. Owen. A survey of unstructured mesh geoartechnology. In
Proceedings of the 7th International Meshing Roundtapleages 239-267,
October 19987

Ken Perlin. An image synthesizer. Qomputer Graphics (Proceedings of
SIGGRAPH 85)volume 19, pages 287-296, July 1985.

Pierre Poulin and Alain Fournier. A model for anisgic reflection. InCom-
puter Graphics (Proceedings of SIGGRAPH 9@)lume 24, pages 273-282,
August 19909, 17, 19, 62

146

[PHO6]

[PHOO]

[PHLO1]

[Pho75]

[PKA*05]

[PO06]

[POCO5]

[PPDO1]

[PPDO2]

[PS85]

[PTO5]

[RB85]

[Ree83]

BIBLIOGRAPHY

Matt Pharr and Pat Hanrahan. Geometry caching fotreaying displacement
maps. InEurographics Rendering Workshop 199&ges 31-40, June 1996.
8

Matt Pharr and Patrick M. Hanrahan. Monte carlo eatidun of non-linear
scattering equations for subsurface reflection.Ptaceedings of ACM SIG-
GRAPH 2000 Computer Graphics Proceedings, Annual Conference Series,
pages 75—-84, July 200Q0

John W. Patterson, Stuart G. Hoggar, and J. R. Logigerke displacement
mapping.Computer Graphics Forumi0(2):129-139, June 1998.

Bui-T. Phong. lllumination for computer generatettyres.Communications
of the ACM 18(6):311-317, June 1978.

Mark Pauly, Richard Keiser, Bart Adams, Philip DejtMarkus Gross, and
Leonidas J. Guibas. Meshless animation of fracturing sok€CM Transac-
tions on Graphics24(3):957-964, August 20034

Fabio Policarpo and Manuel M. Oliveira. Relief mapping of nwight-field
surface details. IProceedings of the 2006 Symposium on Interactive 3D
Graphics and Gamepages 55-62, March 20085

Fabio Policarpo, Manuel M. Oliveira, anddoL. D. Comba. Real-time relief
mapping on arbitrary polygonal surface®ACM Transactions on Graphics
24(3):935-935, August 2008, 18, 56, 71, 84

Eric Paquette, Pierre Poulin, and George Drett&usface aging by impacts.
In Graphics Interface 20QJpages 175-182, June 20ab

Eric Paquette, Pierre Poulin, and George Drettakise simulation of paint
cracking and peeling. IGraphics Interface 2002ages 59-68, 2002.2

Franco P. Preparata and Michael lan Shanm@msnputational Geometry: An
Introduction Springer-Verlag, 1985121, 132

Les Piegl and Wayne Tillel’he NURBS bookSpringer-Verlag, London, UK,
1995.7

William T. Reeves and Ricki Blau. Approximate and probiabd algorithms
for shading and rendering structured particle system&dmputer Graphics
(Proceedings of SIGGRAPH 8%)plume 19, pages 313-322, July 1985.

William T. Reeves. Particle systems — a technique fodeting a class of
fuzzy objects ACM Transactions on Graphic(2):91-108, 19838

BIBLIOGRAPHY 147

[RLOO]

[RPP93]

[SAS92]

[Scho4]

[Sch97]

[SGG'00]

[SGWHS98]

[SKHLOO]

[SMO3]

[SMGO5]

[SOH99]

[SP99]

Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multokgion point ren-
dering system for large meshes. Pnoceedings of ACM SIGGRAPH 2Q00
Computer Graphics Proceedings, Annual Conference Seriges®3-352,
July 2000.7

P. Roudier, B. &oche, and M. Perrin. Landscapes synthesis achieved
through erosion and deposition process simulatiGomputer Graphics Fo-
rum, 12(3):375-383, 199314

Brian E. Smits, James R. Arvo, and David H. Salesin. rApdrtance-driven
radiosity algorithm. InComputer Graphics (SIGGRAPH '92 Proceedings)
volume 26, pages 273-282, July 1992

Christophe Schlick. A survey of shading and reflex¢amodels.Computer
Graphics Forum13(2):121-131, June 1999, 17

Andreas Schilling. Toward real-time photoreaistndering: Challenges and
solutions. 1n1997 SIGGRAPH / Eurographics Workshop on Graphics Hard-
ware, pages 7-16, August 199718

Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugugspe, and John
Snyder. Silhouette clipping. IRroceedings of ACM SIGGRAPH 2Q@@om-
puter Graphics Proceedings, Annual Conference Seriess@#ye-334, July
2000.8

Jonathan Shade, Steven J. Gortler, Li wei He, aoldaRil Szeliski. Layered
depth images. IRroceedings of SIGGRAPH 98omputer Graphics Proceed-
ings, Annual Conference Series, pages 231-242, July ¥998.

Frank Suits, James T. Klosowski, William P. HormdaGeérard Lecina. Sim-
plification of surface annotations. IEEE Visualization 200Qpages 235-242,
October 200040

Peter Shirley and R. Keith Morleywealistic Ray TracingA. K. Peters, Ltd.,
Natick, MA, USA, 2003.10

Salman Shahidi, 8phane Mrillou, and Djamchid Ghazanfarpour. Phe-
nomenological simulation of efflorescence in brick condians. InEuro-
graphics Workshop on Natural Phenomepages 17-24, August 20055

Robert Sumner, James F. O’Brien, and Jessica K. Heddinimating sand,
mud, and snowComputer Graphics Forumi8(1):17-26, March 19995

Gernot Schaufler and Markus Priglinger. Efficienpldisement mapping by
image warping. IrEurographics Rendering Workshop 1998ne 19998

148

[SSS00]

[Sta99]

[Sta01]

[SWBO01]

[TatO6]

[TF88]

[VG94]

[VGI7]

[VHLLO5]

[VLRO5]

[VPLLOG]

BIBLIOGRAPHY

Brian Smits, Peter S. Shirley, and Michael M. Starkre® ray tracing of
displacement mapped triangles. Rendering Techniques 2000: 11th Euro-
graphics Workshop on Renderinmages 307-318, June 20@.

Jos Stam. Diffraction shaders. Rroceedings of SIGGRAPH 9€@omputer
Graphics Proceedings, Annual Conference Series, pagesl101August
1999.9, 17,19, 102

Jos Stam. An illumination model for a skin layer bded by rough surfaces.
In Rendering Techniques 2001: 12th Eurographics Workshopesmd&ing
pages 39-52, June 2004,.10

Jeffrey Smith, Andrew Witkin, and David Baraff. Fastdaoontrollable
simulation of the shattering of brittle objectsComputer Graphics Forum
20(2):81-91, 200113

Natalya Tatarchuk. Dynamic parallax occlusion piag with approximate
soft shadows. IrProceedings of the 2006 Symposium on Interactive 3D
Graphics and Gamepages 63—-69, 200®, 58, 71

Demetri Terzopoulus and Kurt Fleischer. Modelinglastic deformation: vis-
coelasticity, plasticity, fracture. IRroc. SIGGRAPH '88volume 22, pages
269-278, 198813

Eric Veach and Leonidas Guibas. Bidirectional estomafor light transport.
In Fifth Eurographics Workshop on Renderjngages 147-162, Darmstadt,
Germany, June 19940

Eric Veach and Leonidas J. Guibas. Metropolis lighansport. InProceed-
ings of SIGGRAPH 97Computer Graphics Proceedings, Annual Conference
Series, pages 65—-76, August 1990.

Gilles Valette, Michel Herbin, Laurent Lucas, addel Leéonard. A prelim-
inary approach of 3d simulation of soil surface degradabgrrainfall. In
Eurographics Workshop on Natural Phenomepages 41-50, August 2005.
15

Kartik Venkataraman, Suresh Lodha, and Raghu Raghavarkinematic-
variational model for animating skin with wrinkle€omputers & Graphics
29(5):756—770, October 20035

Gilles Valette, S. Prevost, Laurent Lucas, anélJdctonard. SoDA project:
a simulation of soil surface degradation by rainfallomputers & Graphics
30(4):494-506, aug 20085

BIBLIOGRAPHY 149

[War92] Gregory J. Ward. Measuring and modeling anisotrogilection. INComputer
Graphics (Proceedings of SIGGRAPH 92blume 26, pages 265-272, July
1992.9, 16,17

[WAT92] Stephen H. Westin, James R. Arvo, and Kenneth E. Taea Predicting re-
flectance functions from complex surfaces.damputer Graphics (Proceed-
ings of SIGGRAPH 92)olume 26, pages 255-264, July 1999, 17

[Whi80] Turner Whitted. An improved illumination model for atted display.Com-
mun. ACM 23(6):343-349, 198010

[Wil78] Lance Williams. Casting curved shadows on curvedaes. InComputer
Graphics (SIGGRAPH '78 Proceedingsjolume 12, pages 270-274, New
York, NY, USA, August 1978. ACM Press8

[Wil83] Lance Williams. Pyramidal parametrics. @omputer Graphics (Proceedings
of SIGGRAPH 83)pages 1-11, July 19838

[WKMMT99] Yin Wu, Prem Kalra, Laurent Moccozet, and Nadia Meggat-Thalmann.
Simulating wrinkles and skin agingThe Visual Computerl5(4):183-198,
1999.15

[WNH97] Tien-Tsin Wong, Wai-Yin Ng, and Pheng-Ann Heng. A gestry dependent
texture generation framework for simulating surface infgetrons. InEuro-
graphics Rendering Workshop 19%ages 139-150, June 1991, 12

[WvOCO04] Brian Wyvill, Kees van Overveld, and Sheelagh CarpendRendering cracks
in batik. INNPAR 2004pages 61-70, June 20043

[WWO01] Joe Warren and Henrik WeimeBubdivision Methods for Geometric Design:
A Constructive ApproachMorgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2001.7

[WWT*03] Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Biaig Guo, and
Heung-Yeung Shum. View-dependent displacement mappgid/ Transac-
tions on Graphics22(3):334-339, July 2003, 23, 58, 71

[YLWO5] Xuehui Liu Youquan Liu, Hongbin Zhu and Enhua Wu. Réate simulation
of physically based on-surface flowhe Visual Computef1(8-10):727—734,
2005.11

[YOHOOQ] Gary D. Yngve, James F. O’'Brien, and Jessica K. HoslgiAnimating ex-
plosions. InProceedings of ACM SIGGRAPH 2Q@omputer Graphics Pro-
ceedings, Annual Conference Series, pages 29-36, July 2600.

150 BIBLIOGRAPHY

[ZDW*05] Kun Zhou, Peng Du, Lifeng Wang, Y. Matsushita, Jiaoyirg, Baining
Guo, and Heung-Yeung Shum. Decorating surfaces with lutimeal tex-
ture functions.lEEE Transactions on Visualization and Computer Graphics
11(5):519-528, September-October 2003.

[ZPvBGO01] Matthias Zwicker, Hanspeter Pfister, Jeroen van,Baa Markus Gross. Sur-
face splatting. IfProceedings of ACM SIGGRAPH 2Q@omputer Graphics
Proceedings, Annual Conference Series, pages 371-378sA20@1.7

[ZW97] X. M. Zhang and B. A. Wandell. A spatial extension of CIEBAor digital
color image reproductionSociety for Information Display Journab(1):61—
63, 1997.106

	1 Introduction
	1.1 Contributions
	1.2 Overview

	2 State of the Art
	2.1 Realistic Rendering
	2.1.1 Modeling the Scene
	2.1.2 Illuminating the Scene

	2.2 Defects
	2.2.1 Dust
	2.2.2 Stains
	2.2.3 Oxidation and Corrosion
	2.2.4 Peeling
	2.2.5 Cracks and Fractures
	2.2.6 Erosion
	2.2.7 Other Defects

	2.3 Scratches
	2.4 Grooves
	2.5 Conclusions

	3 Modeling Grooves
	3.1 Representation Overview
	3.2 Deriving the Geometry from a Scratching Process
	3.2.1 Measuring Real-World Scratches
	3.2.2 Deriving the Cross-Section Geometry
	3.2.3 Parameters Specification

	4 Rendering Grooves
	4.1 Isolated Scratches
	4.1.1 Finding Scratches
	4.1.2 Scratch BRDF
	4.1.3 Occlusion
	4.1.4 Results

	4.2 General Grooves
	4.2.1 Finding Grooves
	4.2.2 Detection of Special Cases
	4.2.3 Isolated and Parallel Grooves
	4.2.4 Special Cases
	4.2.5 Results

	4.3 Indirect Illumination
	4.3.1 Specular Reflections and Transmissions on the Grooved Surface
	4.3.2 Indirect Illumination from Other Objects
	4.3.3 Glossy and Diffuse Scattering
	4.3.4 Results

	5 Interactive Modeling and Rendering of Grooves
	5.1 Rendering Grooves in Texture Space
	5.1.1 Groove Textures
	5.1.2 Finding Grooves
	5.1.3 Rendering Grooves
	5.1.4 Isolated Grooves
	5.1.5 Special Cases
	5.1.6 Ends and Other Special Cases
	5.1.7 Results

	5.2 Rendering Grooves as Quads
	5.2.1 Modeling Grooves
	5.2.2 Transferring Groove Data
	5.2.3 Rendering Grooves
	5.2.4 Visibility Textures
	5.2.5 Extending the Quads
	5.2.6 Ends
	5.2.7 Preliminary Results

	6 Conclusions and Future Work
	6.1 Conclusions and Main Contributions
	6.2 Publications
	6.3 Future Work
	6.3.1 Improving the Modeling of Scratches
	6.3.2 Improving the Rendering

	A Perception-Based Image Comparison
	A.1 Pixel-by-Pixel Difference and Image Registration
	A.2 Perceptually Uniform Color Spaces
	A.3 Spatial Pre-Filtering
	A.4 Results
	A.5 Conclusions

	B Computational Complexity
	B.1 Evaluating the Complexity
	B.2 Software-Based Algorithms
	B.2.1 Space Complexity
	B.2.2 Time Complexity

	B.3 Hardware-Based Algorithms
	B.3.1 Space Complexity
	B.3.2 Time Complexity

	B.4 Conclusions

	Bibliography

