
Universitat Polit̀ecnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics

Programa de Doctorat de Software

Universit́e de Limoges
Ecole Doctorale Science - Technologie - Santé

Realistic Image Synthesis of
Surface Scratches and Grooves

PhD Dissertation

Carles Bosch

Advisors: Prof. Xavier Pueyo and Prof. Djamchid Ghazanfarpour

Barcelona, july 2007

Universitat Polit̀ecnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics

Universit́e de Limoges
Ecole Doctorale Science - Technologie - Santé

Thèse
pour obtenir le grade de

DOCTOR PER LA UNIVERSITAT POLIT̀ECNICA DE CATALUNYA
et

DOCTEUR DE L’UNIVERSITE DE LIMOGES

Sṕecialit́e: Informatique

présent́ee et soutenue par

Carles BOSCH

le 8 octobre 2007

Realistic Image Synthesis of
Surface Scratches and Grooves

Thése diriǵee par Prof. Xavier Pueyo et Prof. Djamchid Ghazanfarpour

Composition du jury:

Pŕesident: Pere Brunet Professeurà l’Universitat Polit́ecnica de Catalunya (Espagne)
Rapporteurs: Jean-Michel Dischler Professeurà l’Universit́e Louis Pasteur de Strasbourg

Mateu Sbert Professeurà l’Universitat de Girona (Espagne)
Examinateurs: George Drettakis Directeur de Rechercheà INRIA Sophia-Antipolis

St́ephane Ḿerillou Mâıtre de conf́erences̀a l’Universit́e de Limoges

To Maria and Aleix

Acknowledgments

First of all, I would like to thank Xavier Pueyo for having motivated me to do this thesis
and giving me a lot of support for its achievement. Without him, I would have never pro-
posed myself to carry out this thesis. I would also like to thank Djamchid Ghazanfarpour and
St́ephane Ḿerillou for their collaboration and help during the thesis and my numerous stays
in Limoges as well as their encouragement.

I am also very grateful to the people at the Graphics Group of Girona, for the treatment
that I have received during these years and the good work environment that I hope to enjoy as
much time as possible. Especially, I would like to thank Frederic Ṕerez and Gustavo Patow, for
their good ideas and the hours that they dedicated to improvemy work. To Albert,Àlex, and
Marité for the countless coffees and talks that have accompanied me all this time. To Nacho,
Gonzalo, Roel, and much others, for the good moments we have had inside and outside the
lab. To the system managers and the people at the secretary’soffice for their time and patience.
Also to Lászĺo Neumann, for its help with the comparisons of images.

I also want to thank the people at the MSI group for their welcome during my stays in
Limoges, especially to my PhD colleagues, for the good moments I spent with them. Thanks
also to the Touzin family and the friends that I met there, which made my stays more pleasant
and motivated me to return every time.

Thanks to my family, especially my brothers and parents, fortheir support and interest in
my work in spite of not understanding so much its purpose. I donot either forgot my friends
from Figueres and Girona, who made me had very good moments during these years.

Finally, I want to especially thank Maria, whose affection and understanding have accom-
panied me so many times along this thesis, and Aleix, who makes me feel so important in his
life. This thesis is dedicated to you.

Carles

The work that has led to this thesis has been funded by the following grants and projects:

• Cèl·lula d’inspeccío flexible (CIF). CeRTAP - Generalitat de Catalunya.

• Becas de postgrado para la formación de profesorado universitario. AP2001-1639.
MECD.

• CAD para seguridad vial basado en sistemas de simulación de iluminacíon. TIC2001-
2392-C03. MCyT.

• Sistema de interacción inmersiva en entornos de realidad virtual. TIC2001-2226-C02.
MCyT.

• Grup de recerca consolidat: Visualització d’Imatges Realistes. 2001-SGR-00296. Gen-
eralitat de Catalunya - DURSI.

• Disẽno de iluminacíon sostenible: optimización del disẽno de reflectores y aprovecha-
miento de luz natural. TIN2004-07672-C03-00. MEC.

• Grup de recerca consolidat: Visualització d’Imatges Realistes. 2005-SGR-00002. Gen-
eralitat de Catalunya - DURSI.

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Overview . 3

2 State of the Art 7
2.1 Realistic Rendering. 7

2.1.1 Modeling the Scene. 7
2.1.2 Illuminating the Scene. 9

2.2 Defects . 10
2.2.1 Dust. 10
2.2.2 Stains. 11
2.2.3 Oxidation and Corrosion. 11
2.2.4 Peeling . 12
2.2.5 Cracks and Fractures. 13
2.2.6 Erosion . 14
2.2.7 Other Defects. 15

2.3 Scratches. 15
2.4 Grooves. 17
2.5 Conclusions. 18

3 Modeling Grooves 21
3.1 Representation Overview. 21
3.2 Deriving the Geometry from a Scratching Process. 23

3.2.1 Measuring Real-World Scratches. 24
3.2.2 Deriving the Cross-Section Geometry. 26
3.2.3 Parameters Specification. 29

4 Rendering Grooves 31
4.1 Isolated Scratches. 32

4.1.1 Finding Scratches. 32
4.1.2 Scratch BRDF . 33

i

ii CONTENTS

4.1.3 Occlusion. 35
4.1.4 Results . 36

4.2 General Grooves. 42
4.2.1 Finding Grooves. 42
4.2.2 Detection of Special Cases. 44
4.2.3 Isolated and Parallel Grooves. 44
4.2.4 Special Cases. 49
4.2.5 Results . 56

4.3 Indirect Illumination . 64
4.3.1 Specular Reflections and Transmissions on the Grooved Surface . . . 64
4.3.2 Indirect Illumination from Other Objects. 65
4.3.3 Glossy and Diffuse Scattering. 65
4.3.4 Results . 66

5 Interactive Modeling and Rendering of Grooves 71
5.1 Rendering Grooves in Texture Space. 71

5.1.1 Groove Textures. 72
5.1.2 Finding Grooves. 74
5.1.3 Rendering Grooves. 74
5.1.4 Isolated Grooves. 75
5.1.5 Special Cases. 76
5.1.6 Ends and Other Special Cases. 79
5.1.7 Results . 80

5.2 Rendering Grooves as Quads. 86
5.2.1 Modeling Grooves. 86
5.2.2 Transferring Groove Data. 87
5.2.3 Rendering Grooves. 88
5.2.4 Visibility Textures . 90
5.2.5 Extending the Quads. 91
5.2.6 Ends . 91
5.2.7 Preliminary Results. 92

6 Conclusions and Future Work 97
6.1 Conclusions and Main Contributions. 97
6.2 Publications. 99
6.3 Future Work. 99

6.3.1 Improving the Modeling of Scratches. 100
6.3.2 Improving the Rendering. 101

CONTENTS iii

A Perception-Based Image Comparison 103
A.1 Pixel-by-Pixel Difference and Image Registration. 104
A.2 Perceptually Uniform Color Spaces. 105
A.3 Spatial Pre-Filtering. 106
A.4 Results. 107
A.5 Conclusions. 110

B Computational Complexity 113
B.1 Evaluating the Complexity. 113
B.2 Software-Based Algorithms. 114

B.2.1 Space Complexity. 114
B.2.2 Time Complexity. 115

B.3 Hardware-Based Algorithms. 126
B.3.1 Space Complexity. 126
B.3.2 Time Complexity. 126

B.4 Conclusions. 131

Bibliography 132

iv CONTENTS

List of Tables

4.1 Rendering times for different scenes (in seconds).. 42
4.2 Performance of the different methods for each figure. Rendering times are in

seconds and memory consumptions in kilobytes. For our method, the memory
represents the consumption due to our representation, without considering the
underlying mesh. This also applies for relief mapping.. 56

4.3 Performance of our method for each figure. Rendering timesare in seconds
and memory consumptions in kilobytes.. 66

5.1 Performance of our method for each figure, with the numberof rendered
frames per second, the memory consumption (in kilobytes), and the resolu-
tion of the two textures.. 81

5.2 Performance of our method and relief mapping in frames per second.. 84
5.3 Frame rates of our GPU methods for the rendering of each figure. 92

B.1 Parameters considered for the complexity calculations.. 113

v

vi LIST OF TABLES

List of Figures

1.1 Pictures of real surfaces exhibiting scratches or grooves. From left to right:
a polished pan with lots of micro-scratches, a metallic plate with isolated
scratches, and a door with big grooves between the wooden planks. 2

2.1 In [MDG01b], scratches are represented by means of a texture of paths and
a set of cross-sections. The cross-section geometry is specified by means of
two angles,αs andβs. 16

3.1 Grooves are represented in texture space by means of paths and cross-sections.21
3.2 Piecewise cross-section defined on theBW plane.. 22
3.3 (a) Scratched plate of aluminum with a close view of a scratch and its mea-

sured cross-section. (b) Scheme of the scratching process.. 23
3.4 Scratch tester used to perform controlled scratch tests. 24
3.5 Left: Nail used for our manual tests. Right: Close up of the tip. 25
3.6 Some scratch tests and measurements performed on an aluminum plate. Left:

Using the scratch tester with different applied forces. Right: Using the nail
with different orientations. 26

3.7 Scratch cross-section obtained by a profilometer and thedifferent measured
values. The tool used by the scratch tester is included to show the dependence
between the shape of the scratch groove and the tool geometry. 27

3.8 Close view of a real scratch intersection (left) and scratch end (right). 28

4.1 TheUV texture plane is uniformly subdivided into a grid storing the different
paths. In order to find if the pixel footprint contains a scratch, we get the cells
at the boundary of its bounding box and test the paths againstthe footprint. . 32

4.2 Cross-section geometry at a scratch point showing the different parameters
needed to compute the BRDF.. 33

4.3 Simulating scratches in Maya with our plug-ins.. 36
4.4 Scratches simulated using different tools (upper left), hardness (upper right),

forces (bottom left), and tool orientations (bottom right). 37
4.5 Top: real titanium plate scratched with the tester and seen from different view-

points. Bottom: corresponding images synthesized with our method. 38

vii

viii LIST OF FIGURES

4.6 Top left: real aluminum plate scratched with a nail usingdifferent forces along
the paths of scratches. Top right: the corresponding synthetic image. Bottom
Left: difference image computed using a perceptually-based metric, in false
color. Bottom right: most perceptible differences.. 39

4.7 Left: a real scratched metallic part. Middle: its corresponding synthetic im-
age. Right: detection of the scratches.. 40

4.8 Road sign with several imperfections on it, including scratches.. 40
4.9 Synthetic ring with an inscription.. 41
4.10 Left: scratch paths displayed using our 2D procedural texture. Middle: fi-

nal rendering of the scratches using our approach. Right: rendered with the
method of Ḿerillou et al. [MDG01b]. The small images on the bottom right
correspond to the dashed regions rendered from a closer viewpoint. 41

4.11 (a) Pixel footprint is affected by two grooves whose paths lie outside its
bounding box. This box must thus be enlarged according to their maximum
width and projected height,wmax andhmax,E. (b) At intersections, some in-
terior facets may be visible out of the boundaries of grooves. The bounding
box must also be enlarged according to their maximum projected depthpmax,E. 43

4.12 When the footprint is affected by isolated or parallel grooves, the different
operations are performed in cross-section space. (a) The projection of the
footprint onto the cross-section plane is done using its twoaxesA1 andA2.
(b) Once in cross-section space, the cross-sections are merged, projected onto
the base surface, and finally clipped.. 45

4.13 Occlusion is found by projecting the cross-section points according toθ′ and
then comparing their order onto the base line. For masking,θ′ = θ′r. 48

4.14 A different approach is used for these special situations. From left to right:
Intersection, intersected end, isolated end, and corner.. 49

4.15 Left: footprint is projected onto the current facet following the view direction.
Right: once in 2D facet space, the footprint is clipped to the bounds of the facet.50

4.16 The cross-sections of the intersecting grooves are projected onto the current
facet (left), and later intersected with the footprint in 2Dfacet space (right).. 51

4.17 For the occlusion, the blocking facet (solid profile) and the prolongations
of the intersecting grooves (dashed segments) are projected onto the current
facet. The final profile is obtained by unifying both projections in facet space. 52

4.18 Grooves protruding from the surface may produce occlusion to the surround-
ing surface. The occlusion of the ground facetRg or the external groove
facets, such asR1, is computed by only projecting their prolongations (peaks). 53

4.19 For special cases like intersected ends (left) or isolated ends (right), we need
to modify the different cross-sections that are projected during the intersection
step. 54

4.20 When computing occlusion at ends, the blocking facets (solid profile) and the
prolongations (dashed segments) can be greatly simplified.. 54

LIST OF FIGURES ix

4.21 Surface containing lots of parallel grooves showing smooth transitions from
near to distant grooves.. 57

4.22 Scratched surface containing intersecting grooves ofdifferent size. 59
4.23 Surface containing many intersecting grooves.. 60
4.24 Same models of Figure 4.23 illuminated with two point light sources and ren-

dered from a different point of view.. 61
4.25 Grooved sphere simulated with our method (top) and withrelief mapping (bot-

tom), rendered from different distances (left to right).. 63
4.26 Vinyls modeled using lots of concentric micro-grooves. Top: All the grooves

share the same cross-section, described by a symmetrical cross-section (left)
or an asymmetrical one (right). Bottom: Three different cross-sections have
been randomly applied to the grooves, seen from a distant viewpoint (left) and
a close one (right) . 63

4.27 (a) Groove undergoing specular inter-reflections and transmissions. The al-
gorithm is recursively executed for each visible facet and scattering direction.
(b) Computing the indirect illumination for facetR3 at one of the recursive calls.64

4.28 Image corresponding to top middle left of Figure 4.25 (left) after including
inter-reflections(middle) and refractions (right).. 66

4.29 Glass with grooves in the outside, rendered by considering different kinds of
light-object interactions. 67

4.30 Scene composed of several grooved surfaces, showing different special groove
situations, smooth transitions from near to distant grooves, and inter-reflections
(on the floor). Bump mapping is included to simulate erosion onthe columns. 69

4.31 Left: complex scene fully modeled and rendered with ourapproach. Top
right: underlying mesh geometry. Bottom right: another point of view. 69

5.1 Grooves are represented by means of a grid texture (left), which defines the
position of the grooves onto the surface, and a data texture (middle), which
contains the different groove elements (including the paths), cross-sections
and materials. Right: detail of the properties stored in the different data texels. 72

5.2 Pseudocode of fragment shader for rendering grooves.. 75
5.3 Pseudocode of functionProcess Isolated Groove. 76
5.4 Left: Groove intersections can be represented using CSG by subtracting the

volume of each groove from the basic flat surface. Right: Visibility can be
easily determined by tracing the ray through each volume andcombining the
obtained 1D segments.. 77

5.5 When computing groove intersections with CSG, all additions (peaks) should
be performed before any subtraction (grooves). The subtracting parts should
also be extended above the peaks in order to correctly removethe intersecting
peaks. 78

x LIST OF FIGURES

5.6 During visibility computations, we directly classify the ray segments as addi-
tions (green segments) or subtractions (red segments). These segments can be
directly combined in a single step using a special boolean operation. 78

5.7 Pseudocode for visibility computations of functionProcess Special Case. . . 79
5.8 Special cases related to groove ends are treated by giving priorities to some

facets of the grooves. When intersecting, prioritized facets prevail over the
non-prioritized ones and produce the end of these later.. 80

5.9 Flat plane with different groove patterns.. 81
5.10 Flat plane with different cross-sections for a set of intersecting grooves.. . . 82
5.11 Curved grooved surface rendered with our GPU program under different view-

ing and lighting conditions. Grooves use different materials and cross-sections
(top) as well as different patterns (bottom). The underlying mesh is shown
over the top right sphere.. 83

5.12 House rendered in real-time from different viewpointsusing our approach to
simulate the bricks. The underlying mesh is shown in the bottom left. 83

5.13 Comparison between our method (top) and relief mapping (bottom) for dif-
ferent view angles. 85

5.14 Comparison between our method (top) and relief mapping (bottom) for dif-
ferent distances and cross-sections.. 85

5.15 Grooves are modeled as a collection of quads over the object surface. Their
properties are then specified as vertex attributes.. 87

5.16 Pseudocode of fragment shader for rendering grooves asquads.. 89
5.17 Comparison between our two hardware-based methods for asurface contain-

ing non-intersecting grooves. Top to bottom: different points of view. Left to
right: first method, second method, and corresponding quads. 93

5.18 Comparison between our methods for a surface consistingof intersecting
grooves. Top to bottom: different points of view. Left to right: first method,
second method, and corresponding quads.. 94

5.19 Left to right: different groove patterns interactively modeled with our method.
Top to bottom: two points of view of the obtained patterns.. 95

A.1 Left and middle: comparison of two synthetic images obtained with different
rendering methods, which correspond to Figure 4.23. Right: image obtained
after a pixel-by-pixel color difference.. 104

A.2 Image registration process. Left: target image with theselected reference
points. Middle: after a projective image transformation. Right: difference
image between the registered image and the reference image (middle image
of Figure A.1). 105

A.3 Pixel-by-pixel difference images computed using different perceptually-based
metrics. From left to right: L*a*b*, S-CIELAB, and YCxCz/Lab. For a better
visual comparison, the images are codified in false color.. 106

LIST OF FIGURES xi

A.4 Spatial filtering with opponent color spaces.. 106
A.5 Top: comparison images of Figure A.3 after removing the less perceptible

differences. Bottom: histograms of error values.. 108
A.6 Another image comparison, this time corresponding to Figure 4.21. From left

to right: using L*a*b*, S-CIELAB, and YCxCz/Lab metrics. From top to
bottom: difference images in false color, same images afterremoving the less
perceptible differences, and histograms of error values.. 109

A.7 Image comparison between a real and a synthetic image, corresponding to
Figure 4.6. From left to right: using L*a*b*, S-CIELAB, and YCxCz/Lab
metrics. From top to bottom: difference images in false color, same images
after removing the less perceptible differences, and histograms of error values.110

xii LIST OF FIGURES

Chapter 1

Introduction

The quest for realism in the synthesis of images has become one of the most important subjects
in Computer Graphics. In order to achieve this realism, many aspects of the real world must
be taken into account, such as the variety of shapes of objects and surfaces, the complex struc-
tures of materials, or the physical behavior of light when interacting with them. Although less
effort has been applied to the simulation of defects, they represent another key aspect in this
quest, since defects are present in almost all real-world objects. We only have to take a look
around us to see objects with dust, stains, scratches, cracks, or corrosion, for example. The
accurate rendering of such defects is very important, but another important part is the simula-
tion of their generating processes, such as aging or weathering. The study of these processes
and their later reproduction, helps in the modeling and rendering of complex real objects, and
also in their interaction with the course of time. If such processes are taken into account, the
different defects on the objects can be included in an automatic way, avoiding their tedious
modeling by hand. Since defects are present in many situations, this may have a wide range
of applications, including the industry, where the physical validity of the simulations are of
great importance.

Over the last decade, the simulation of defects has gained more interest in the Computer
Graphics field. This has made possible the appearance of a certain number of models that
were not available many years ago. Some of the models that have been proposed are based on
empirical approaches, focusing on the simulation of the results better than on their processes.
The objective of these methods is to provide a set of tools to easily model or render the defects,
based on their observations. Other methods, instead, propose physically-based approaches
that try to faithfully reproduce the processes, which allows for the automatic and accurate
formation of the defects. Such methods, however, not alwaysgive enough importance to their
accurate rendering. Our objective in this thesis is to focuson both possibilities instead, that
is, their physically-based simulation and their accurate rendering.

One of the defects that still requires attention are scratches. Scratches are present on many
real world objects (see left and middle of Figure1.1) and are characterized by the grooves that
appear on the surfaces after their contact with other surfaces. Such kind of imperfection has

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Pictures of real surfaces exhibiting scratchesor grooves. From left to right: a
polished pan with lots of micro-scratches, a metallic platewith isolated scratches, and a door
with big grooves between the wooden planks.

not been treated sufficiently, especially with regard to their generating processes. The avail-
able methods, when do not simply simulate scratches empirically, assume that their properties
are known beforehand. One of these properties, for example,is their shape, usually character-
ized by means of a cross-section. Since scratches lie on the microscopic scale of the surface,
the only way to determine their cross-sections are by measuring the scratches with special-
ized devices. In some fields like in materials engineering, it is well-known that the shape of
scratches is related to the parameters of the scratching process, such as the scratching tool or
the surface material. If such parameters are available, cross-sections could be directly derived
from them, but this have not been considered until now.

Concerning the rendering of scratches, further research is also necessary. Previous meth-
ods only focus on specific kinds of scratches, like parallel micro-scratches distributed on the
overall surface, typical from polished metals (see left of Figure1.1), or isolated scratches that
are individually visible (see middle of Figure1.1). For each of these types, they considerably
restrict the kind of situations that can be simulated, whichresults in several limitations about
their geometry, size, or distribution over the surface. Theavailable models, for example, usu-
ally assume that scratches share the same geometry or that itdoes not change along their path.
In addition, none of them consider scratch intersections orends, or either bigger scratches for
which the geometry can be clearly visible. This similarly happens with transitions between
different scales, like from microscopic to macroscopic scale, which may happen when chang-
ing the distance of the viewer from the scratched object. Allthese restrictions can be very
important, especially if an accurate rendering of the scratched surfaces is required.

With the aim of improving the available scratch models, in this thesis we provide a general

1.1. CONTRIBUTIONS 3

method to simulate accurate scratched surfaces. Its main goal is to solve the most important
limitations of the previous approaches and its later generalization for the rendering of other
similar surface features, such as grooves (see right of Figure 1.1). As a complementary task,
we want to provide fast solutions for their interactive modeling and rendering as well. Our
purpose is to develop a set of methods that are, at the same time, general, accurate, fast, and
easy to use.

1.1 Contributions

The main contributions of this thesis are:

• A physically-based model to derive the complex micro-geometry of scratches from the
description of their formation process, using a small set ofsimple parameters.

• A general method to accurately render scratches and groovesof any geometry, size,
or distribution over the surface. Such method is able to perform smooth transitions
between different scales and deal with special cases such asintersections or ends of such
features. Furthermore, it considers multiple specular inter-reflections or transmissions
of light.

• Two approaches that implement the previous method onto the graphics hardware. These
approaches allow the modeling and rendering of grooved surfaces at real time frame
rates.

1.2 Overview

The rest of this dissertation is organized as follows.

Chapter 2. State of the Art

In this chapter, we first overview the available techniques for the generation of realistic syn-
thetic images. State of the art in the simulation of different defects is then summarized. We
finally present an in depth study of the previous work concerning the simulation of scratches
and grooves.

Chapter 3. Modeling Grooves

The representation used to model scratches and grooves is described, which is based on paths
and cross-sections. Paths are modeled as lines and curves defined in texture space, which

4 CHAPTER 1. INTRODUCTION

offers more accuracy than previous image-based representations. Cross-sections are then rep-
resented by piecewise lines, without restrictions on theirgeometry.

With regard to scratches, we later present the method used toderive their geometry from
the parameters of a scratch process. These parameters are: the material properties of the
surface, the shape of the tool, its orientation, and the applied force.

Chapter 4. Rendering Grooves

Our different approaches for rendering grooves are proposed, going from the rendering of
isolated scratches to general grooves of any size or distribution. For isolated scratches, we
propose a simple model that takes into account the derived cross-section of a scratch and
computes its total reflection, including occlusion. This model is later extended to handle
general isolated grooves as well as parallel grooves, by means of a fast 1D line sampling
approach. We then propose an area-based approach based on polygon operations for special
situations like groove intersections or ends.

At the end of this chapter, we extend the method to include indirect illumination, focus-
ing on the specular inter-reflections and refractions occurring on the same surface. This is
achieved by using a recursive approach and introducing someminor changes to the methods.

Chapter 5. Interactive Modeling and Rendering of Grooves Using Graph-
ics Hardware

In this chapter, we adapt our general method for its implementation onto the programmable
graphics hardware. We present two different approaches forthis purpose: one that renders the
grooves in texture space, and another that models and renders them in object space. In the
former, groove data is transferred to the GPU by means of two textures, which are processed
by a fragment shader in a single pass. In the latter, grooves are represented by a set of quads
lying onto the surface and data is transferred as vertex attributes. Rendering is then performed
in multiple rendering passes.

Chapter 6. Conclusions and Future Work

We conclude the thesis by summarizing our main contributions to the simulation of surface
scratches and grooves. We also describe the unsolved problems and give future research
directions in the context of this thesis.

Appendix A. Perception-Based Image Comparison

This appendix presents the details of the method used to compare some of the obtained images.
The method is based on image differences using perceptuallyuniform color spaces and on a

1.2. OVERVIEW 5

spatial pre-filtering step. The objective of this comparison is to determine the accuracy of our
method with respect to pictures taken from real grooved objects or to images rendered with
other methods.

Appendix B. Computational Complexity

In this appendix, we finally include the full derivation of the time and memory complexity of
our methods.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In this chapter, we present the state of the art about the simulation of scratches and grooves
in Computer Graphics. Since our work focus on the realistic rendering of these features, we
first summarize the different techniques that can be used forthis purpose. We then expose
previous work related to the simulation of defects and theirunderlying processes. The special
case of scratches and their generalization to grooves is finally treated, giving an in depth study
of the available works.

2.1 Realistic Rendering

In order to obtain realistic images of virtual scenes, thereare many aspects that must be
considered. Two of the most important aspects are the modeling of the scene geometry and its
illumination. Here, we will briefly describe the different techniques that can be used for each
case, which will help us to better understand the techniquesexplained in the next sections for
the simulation of defects, scratches and grooves.

2.1.1 Modeling the Scene

When modeling the objects of a virtual scene we basically needto specify two things: their
3D geometry and their appearance properties. The geometry of an object can be specified
in many ways, according to our needs. If only the surface of the object is required, we
can use polygonal or mesh models, splines and free-form surfaces [PT95, Far99], implicit
surfaces [Bli82a, BW97], subdivision surfaces [CC78, WW01], or point-based representa-
tions [LW85, RL00, ZPvBG01]. If, instead, we need to model the entire volume described
by the object, then we must use volumetric representations.These representations are typ-
ically based on the 3D discretization of the volume into voxels and other space partition-
ing schemes [KCY93, JH04], on tetrahedral meshes [Owe98], or on procedural representa-
tions [EMP+02]. Particle systems are also another kind of representation, commonly used for

7

8 CHAPTER 2. STATE OF THE ART

modeling fuzzy dynamic objects such as water, fire, and clouds [Ree83, RB85].
Concerning the appearance of the object, this mainly dependson its material, which

is described by a set of structural and optical properties aswell as by the local scattering
model, called the bidirectional scattering distribution function (BSDF). The BSDF describes
the object-light interaction, which will be detailed lateralong with the illumination and ren-
dering processes. The material properties then are used as inputs for the BSDF, and these
characterize both the material and the surface, like the diffuse and specular reflectance or the
surface roughness. When these properties are not constant along the surface they can be mod-
eled by means of surface textures. Textures are 2D patterns that are mapped onto the surface
and used to model different properties, such as the surface color [Cat74], specular and dif-
fuse reflection [BN76, MH84], transparency [Gar85], shadows [Coo84], depth [Wil78], and
many others [Hec86, HS93]. These textures can be either represented by images [Cat74] or
generated by some procedure [Per85].

Since the fine geometric detail of a surface is sometimes difficult to model and also ex-
pensive to render, a common practice is to store the detail into a texture and model the
base surface using a coarse version. Detail can be encoded bya single scalar function – a
height field – and later reconstructed by displacing the basesurface according to this func-
tion, for example, which is called displacement mapping [Coo84, PH96, SSS00]. Another
solution is to simply simulate the detail by means of normal perturbations, using the bump
mapping technique [Bli78]. These perturbations are used to modify the surface normals in
such a way that the shading make the surface look as if it had been displaced. This allows
for a fast approximation of the detail, since the base surface does not need to be modified;
however, occlusion, inter-reflections or silhouettes can not be included unless by precom-
puting them [Max88, HDKS00, SGG+00]. Some other techniques have also proposed to
simulate detail without needing to displace the surface, but including occlusion or silhou-
ettes [PHL91, HS98, WWT+03, POC05, Tat06]. Such kind of methods are based on tracing
rays through the detail, which is also represented by a texture of heights or depths.

According to all these different representations, objectsare usually modeled using a suc-
cession of a number of geometric models, each capturing a different level of detail. The largest
scale is captured by the surface geometric model, small-scale details by the texture, and the
smallest microscopic detail by the BRDF. Some authors have also proposed to unify texture
and BRDF by means of a bidirectional texture function (BTF) [Dis98, DvGNK99, MMS+05].
The BTF stores the surface appearance as a function of the viewing and illumination direc-
tions, like capturing a BRDF that varies per texture element, or texel. This BTFs are usu-
ally obtained by measuring a real material sample from different camera and light positions.
Another possibility is to represent geometry and texture bymeans of images, using image-
based modeling and rendering [LH96, GGSC96, SGwHS98]. For a given object or scene,
this technique consist on capturing one or several images from different viewpoints, and then
using them to synthesize new images from other viewpoints. This can save large model-
ing costs, especially for complex scenes. Some similar ideas have been used to simulate
surface detail too [SP99, OBM00], and other approaches have simulated more complex non-

2.1. REALISTIC RENDERING 9

height field details, like fur or grass, by slicing the surface detail into a set of transparent
images [MN98, KS01]. This kind of details are known as volumetric textures [KK89].

2.1.2 Illuminating the Scene

Apart from modeling the scene geometry and appearance, we need to determine how this
scene will be illuminated before its rendering. This depends on three main aspects: the light
sources, the propagation or transport of light through the scene, and its interaction with the
objects.

First, light sources are considered objects that emit lightinto the scene, and are usually
differentiated from those receiving it – although theoretically any object in the scene can emit
light. Such light sources are mainly characterized by theirpower and distribution of light, and
go from the simplest point, spotlights, or directional sources, to other more complex sources
such as area or general sources.

Concerning the propagation of light through the scene, it represents the core of the ren-
dering process. As such, it is the most complex part, since itdepends on the geometry and
scattering properties of all the objects in the scene. In order to compute light transport, the
rendering equation [Kaj86] must be solved:

L(p, ω) = Le(p, ω) +
∫

Ω

f(p, ω, ωi)Li(p, ωi) cos θidωi .

According to this equation, light exiting from a particularpointp in a directionω, L(p, ω),
is the sum of the emitted lightLe and the scattered light. This scattered light is the lightLi

incoming from all directionsωi that scatters in the directionω. The amount of scattered light
is determined by the scattering functionf , i.e. the BSDF, andcos θi is the light attenuation
due to its incident angle.

First of all, the BSDF or bidirectional scattering distribution function describes the inter-
action between light and an object’s surface, as stated before. This encompasses different
scattering effects that are commonly separated into two functions: the BRDF or bidirectional
reflectance distribution function, which describes the light reflected by the surface, and the
BTDF or bidirectional transmittance distribution function, which describes the light transmit-
ted through the surface. In order to model a BRDF, different strategies are commonly used.
Empirical models, for example, focus on the simulation of the visual aspect of the materials,
using simple and intuitive parameters [Pho75, Bli77, Sch94, Ban94, AS00]. Physically-based
models, instead, are based on their physical properties andtake into account the underly-
ing microgeometry of the surface. Such microgeometry is commonly represented by lots
of small statistically distributed microfacets [CT81, ON94, APS00], random Gaussian sur-
faces [HTSG91, Sta99], or parallel cylinders [PF90]. Some of these models have also been
extended to handle BTDFs [Sta01, He93]. On the other hand, BRDFs can also be measured
from real materials, using a gonioreflectometer, and then fitted to specific models [War92,
LFTG97]. Another possibility is to model the 3D micro-geometry by hand and use a virtual

10 CHAPTER 2. STATE OF THE ART

gonioreflectometer to capture the light reflected by the model [Kaj85, CMS87, WAT92], but
this is only feasible if the microstructure of a material is very complex and known.

All these previous models handle the reflection or transmission of light at the object sur-
face, assuming that light enters and leaves its material at the same position. For translucent
materials or layered surfaces, however, light can enter thematerial at one position and exit
at a different one, which is called subsurface scattering. This effect can not be handled by
the BSDF, but with a more general function called bidirectional surface scattering distribu-
tion function (BSSRDF). Several works have focused on the simulation of such kind of light
scattering [HK93, PH00, JMLH01, Sta01, MKB+05].

After modeling the light sources and the local scattering oflight at the objects, the last
step consists in computing the global scattering of light among the different objects in the
scene. This is called global illumination. Global illumination techniques compute the direct
and indirect illumination of the scene by solving a particular formulation of the previous
rendering equation. Some of the most popular techniques areray tracing [Whi80, Gla89,
SM03, CPC84], radiosity [GTGB84, ICG86, SAS92, BNN+98], path tracing [Kaj86, LW93,
VG94], metropolis light transport [VG97], or photon mapping [JC95, Jen01]. Such kinds of
techniques are often combined to get the best of each method,since some of them only handle
or are better suited for certain types of light transport paths.

2.2 Defects

Defects can be defined as any flaw or imperfection that spoils or changes the appearance of
something, i.e. an object or surface. In real-world situations, several factors can be responsi-
ble for their presence, such as the environment, the use applied to the object, or its properties,
like the material or shape. The different defects can be mainly distinguished according to the
processes generating them and their consequences on the affected object. A certain defect,
for example, can appear due to a physical or chemical process, and can be a continuous pro-
cess over time or an isolated case. The resulting defect thenprobably only affects the object
surface, or maybe some part of the object volume too.

Since defects can be very different between them, they are usually faced with distinct
approaches in Computer Graphics. In this section, we thus classify the different methods
according to the kind of defect that is being treated. For each defect, we first summarize the
main causes of its appearance and its consequences on the objects. Then, we shortly describe
the available methods that simulate it. Since our work is mainly related to the simulation of
scratches, state of the art in scratch simulation will be explained in more detail in Section2.3.

2.2.1 Dust

Dust are free microscopic particles of solid material, suchas dry earth, that accumulate onto
the surface of objects after being transported by air. Dust is usually considered as a kind

2.2. DEFECTS 11

of defect, since it changes the appearance of objects by means of modifying its reflection
properties.

Blinn [Bli82b] first simulated the rings of Saturn by considering them as homogeneous,
semi-transparent layers of dust particles. The model couldalso be used for surfaces com-
pletely covered by dust, but it only considers its realisticrendering, which is done by simulat-
ing the single scattering of light inside the layers. Later,Kajiya and Von Herzen proposed the
use of ray tracing in order to compute multiple light scattering on volume densities, such as
dust [KH84].

In order to determine the zones prone to accumulate defects like dust, stains, or corrosion,
Miller [Mil94] proposes different methods to compute the local and globalaccessibility of a
surface. This accessibility mainly depends on the surface curvature and the proximity between
surfaces. Hsu and Wong [HW95], and later Wong et al. [WNH97], simulate the accumulation
of dust using a set of dust sources, similar to light sources.These sources “emit” dust that
is accumulated on the surfaces based on their inclination, stickiness, exposure, or scraping
against other objects. Recently, Chen et al. [CXW+05] have extended this idea usingγ-ton
tracing, in which weathering effects are traced from the sources and accumulated in the scene
in a way similar to photon mapping, considering global transport or multi-weathering effects.

Other authors have also treated the animation and renderingof dust clouds, generated
by the foot impact of hopping creatures [AC99] or by a moving vehicle on an unpaved sur-
face [CF99, CFW99, CG06].

2.2.2 Stains

Stains, like dust, affect the appearance of the surface of objects too. These usually appear
after the contact of some liquids with the surface, due to themovement of material particles
by the flux and its subsequent drying.

Becket and Badler [BB90] introduce a system for the simulation of different kinds of
surface imperfections that includes stains. This simply operates on 2D textures, and the
distribution and shape of the stains are modeled using simple fractal techniques. Dorsey et
al. [DPH96] later propose to simulate stains produced by water flows. Water is modeled as a
system of particles that moves over the surface dissolving and transporting surface material
until its absorption. This results on stains with very realistic patterns. Liu et al. [YLW05]
also treats the water flow on surfaces, proposing an interactive framework to simulate the
flow, wetting, erosion, and deposition processes. Chen et al.then use itsγ-ton technique to
simulate stains due to dirty water flown or splattered between close objects [CXW+05].

2.2.3 Oxidation and Corrosion

Corrosion is a gradual process that wears and destroys materials due to oxidation or chemical
action, mainly affecting metals. It usually produces superficial effects, but other kinds of

12 CHAPTER 2. STATE OF THE ART

corrosion can also affect the structure of the object itself. Two common examples of corrosion
due to oxidation are rust and patina.

In the system proposed by Becket and Badler [BB90], rust is modeled using a rule-guided
aggregation technique. A set of rules specify the zones withhigh rusting probability, then
an iterative process simulates the diffusion of randomly particles that accumulate on these.
Corrosion is also simulated, but by means of fractal-based intensity distributions. In order
to simulate metallic patinas, Dorsey and Hanrahan [DH96] use a set of operators that suc-
cessively cover, erode, and polish the surface. The rendering is then performed using the
Kubelka-Munk reflection model [KM31], thus taking into account subsurface scattering. Go-
bron and Chiba [GC97, GC99] use a similar approach for corrosion due to liquid flow, which
works by selecting a set of wet points on the surface and then propagating corrosion to neigh-
boring points. Wong et al. have extended their system of dustsources [HW95] to simulate
other kinds of imperfections, such as patina [WNH97]. Here, patina is uniformly placed over
the surface using an ambient source, and then removed from higher exposed zones based on
a computed surface exposure. Chang and Shih [CS00] use L-systems to model the growth
of patinas in underground objects. The zones prone to develop patinas are described by ten-
dency maps [WNH97] based on the soil properties as well as on the curvature, accessibility,
and water retention of the surface. This model is later extended to simulate rust on objects
under dynamic environments, such as seawater [CS03]. Mérillou et al. [MDG01a] propose a
phenomenological method that allows the simulation of different kinds of corrosion, taking
into account appearance and geometry changes. In this method, corrosion propagates over
and into the object using a random walk propagation scheme that is controlled by a set of
rules and parameters.

Recently, Gu et al. [GTR+06] have proposed a data-driven approach to simulate time-
varying processes like corrosion. From a set of acquired samples, they separate time-varying
properties from the spatially-varying ones. These are thentransferred to new surfaces, such as
transferring rust from an old metal to a new one. With similarpurposes, Zhou et al. [ZDW+05]
propose an interactive painting process based on BTFs, whereimperfections are captured from
BTF samples and then painted onto new surfaces after the BTF synthesis.

2.2.4 Peeling

Peeling appears on layered surfaces, like painted or leather surfaces, due to weathering pro-
cesses over long time periods. Common consequences of peeling are cracks, loss of adhesion,
and curling effects, which mainly affect the external layerof surfaces.

In order to simulate peeling, Wong et al. [WNH97] use their imperfection sources and
the local surface curvature to determine its tendency distribution. At each surface point, the
current visible layer is given by the tendency and the thickness thresholds specified for each
layer. Gobron and Chiba [GC01b] generate the crack patterns using their 3D cellular au-
tomata [GC01a]. This crack pattern determines the geometry of the detached pieces, as well
as their order of detachment. Paquette et al. [PPD02] later propose a more physical approach

2.2. DEFECTS 13

for painted surfaces. Cracks appear according to the paint strength and tensile stress, and
peeling due to the loss of adhesion around the cracks. This model takes into account partial
peeling and simulate curling effects by creating additional geometry over the surface.

2.2.5 Cracks and Fractures

Cracks and fractures appear under the action of stress, producing the breakage of an object
into several parts. If the result is the complete separationof the parts, this produces fractures;
otherwise, it produces cracks or partial fractures. Fracture effects are usually classified into
brittle and ductile fracture. In ductile fracture, a plastic deformation takes place before the
fracture that is not present in brittle fracture.

Concerning cracks, Hirota et al. [HTK98] simulate surface cracks on drying mud by means
of a mass-spring system. The method is later extended to alsohandle volume cracks on
clay [HTK00]. Gobron et al. [GC01a] simulate the propagation of cracks by means of a
3D cellular automata, where the obtained pattern is rendered as simple antialiased line seg-
ments. Federl and Prusinkiewicz [FP02, FP04] use finite elements to model crack formation
on surfaces of bi-layered materials, such as drying mud and tree bark. Fractures on bark
have also been addressed by Lefebvre and Neyret [LN02]. Desbenoit et al. [DGA05] animate
cracks by means of an interactive non-physical approach. For different types of materials,
they first create an atlas of crack patterns composed of 2D paths and profiles. These patterns
can then be mapped onto an object, edited, and carved out as a procedurally generated swept
volume. Hsieh and Tai [HT06] simulate cracks by simply vectorizing images with crack pat-
terns. These patterns are then projected onto the objects and bump mapping is used to simulate
depth on the cracks. Iben and O’Brien [IO06] combine a physically based simulation with tra-
ditional appearance driven heuristics, giving more control of the cracking process to the user.
Some authors have also addressed the simulation of cracks for non-photorealistic rendering.
Wyvill et al. simulate Batik painting cracks using a distancetransform algorithm [WvOC04],
while Mould computes Voronoi regions for image-guided crack patterns [Mou05].

The first attempt to model brittle fracture is done by Terzopoulus and Fleischer [TF88],
which simulate tearing cloth and paper. Here, the underlying elasticity equations are solved
using finite difference schemes. Norton et al. [NTB+91] then uses a mass-spring system to
model breaking teapots, by means of voxels attached to springs. Using a similar approach,
Mazarack et al. [MMA99] also model fracture induced by explosions. Fracture in thecontext
of explosions has been explored by other authors as well [NF99, YOH00, MBA02]. Neff
and Fiume, for example, propose a recursive pattern generator to divide a planar region into
polygonal fragments [NF99]. Yngve et al. [YOH00], instead, use a combination of spatial
voxelization and finite elements, and Martins et al. [MBA02] simulate real-time blast wave
fractures using a connected voxel model, which allows arbitrary voxels. Brittle fracture on stiff
materials is addressed by O’Brien and Hodgins [OH99], using finite element methods in order
to approximate the continuum mechanics equations. This model is later extended in [OBH02]
to include ductile fractures as well, by adding a plasticitymodel. Smith et al. [SWB01]

14 CHAPTER 2. STATE OF THE ART

propose a real-time approach by representing objects as a set of point masses connected by
distance-preserving linear constraints. This allows for an easy control of the fracture patterns.
Müller et al. [MMDJ01] simulate deformation and brittle fracture in real-time using an hybrid
approach, which alternates between a rigid body dynamics simulation and a continuum model.
A multi-resolution approach is later proposed in [MG04], which allows fracture animation on
high resolution surface meshes over coarser volumetric meshes. Molino et al. propose a virtual
node algorithm that fractures objects along arbitrary piecewise linear paths [MBF04]. Finally,
Pauly et al. [PKA+05] simulate brittle and ductile fracture using point-based representations,
which avoid many of the stability problems of traditional mesh-based techniques.

2.2.6 Erosion

Erosion is a gradual process that wears and disintegrates rocks and minerals. Its process
consists in the extraction, transport, and deposition of material from eroded to other different
parts. According to the factor that produces it, erosion is usually classified into hydraulic
erosion, wind erosion, thermal erosion, or erosion due to biological influences. Such kind of
processes are distinguished from weathering, where no movement is involved.

Kelley et al. [KMN88] uses hydraulic erosion to model terrains with stream networks.
Given an initially uneroded surface, they create a terrain around a previously generated frac-
tal river network. Musgrave et al. [MKM89] then propose a physically based approach to
simulate thermal and hydraulic erosion. Thermal erosion isbased on a low-pass filter that
smooths terrains previously modeled by fractal techniques. Hydraulic erosion is based on
material transport using simple gradient-based diffusion. This method is later extended by
Roudier et al. [RPP93], in order to take into account geological heterogeneity ofthe ground
from a given 3D geological model. Marak et al. [MBS97] represent terrain patches by means
of matrices. Such matrices are rewritten using a set of rulesdescribing the erosion process.
Nagashima [Nag98] focus on the modeling of valleys and mountains with earth layer patterns
on their surfaces, which considers hydraulic erosion of river flows and rainfall, as well as
thermal erosion. Thermal erosion is also treated in Benes et al. [BMŠS97], by means of a
semi-adaptive algorithm that only erodes on areas with highgradient or importance. Chiba
et al. [CMF98] use a quasi-physically based approach to simulate hydraulic erosion based on
velocity fields. By simulating the flow of water with particles, they take into account erosion
produced by the motion and collision of water with the ground, but infiltration and evapora-
tion are ignored. Benes and Forsbach [BF01] propose a new data structure between classical
height fields and voxel representations that is based on horizontal stratified layers of materi-
als. This representation is later used in [BF02] for a fast and easy-to-control simulation of
the hydraulic erosion process. Such process is divided intofour independent steps that can
be applied as desired: water appearance, erosion, transport, and evaporation. Inspired by the
same structure, Neidhold et al. [NWD05] present an interactive approach to simulate fluid and
erosion effects, where the artist can influence them in real-time. Benes and Arriaga [BA05]
later proposes an efficient method for the visual modeling oftable mountains (mesas). In this

2.3. SCRATCHES 15

method, the initial scene is composed of a rock that is erodedand changed into sand. The
sand then falls down and finally forms the hillside. Benes et al. [BTHB06] have also recently
proposed a generalized physically based solution for the modeling of hydraulic erosion. Such
method is based on velocity and pressure fields and uses a fully 3D approach that is able to
simulate receding waterfalls, meanders, or springs of water.

Besides terrain erosion, Dorsey et al. [DEL+99] treats the weathering of stones. This is
done using a physically based technique that takes a surface-aligned layer of voxels around
the stone, calledslab structure, and simulates the effects of water flow. The slab is finally
rendered using subsurface Monte Carlo ray tracing and a volume photon map. Such technique
is later incorporated into a procedural authoring system too [CDM+02]. Chen et al. simulates
erosion with their method ofγ-ton tracing, where displacement mapping is used to modify
the original geometry. Finally, Valette et al. [VHLL05, VPLL06] have recently developed
a dynamic simulator of rainfall erosion on small-scale soils. This simulator is based on an
extended 3D cellular automata that uses a regular subdivision of the space in voxels. It also
takes into account processes such as evaporation, splash, and crusting, which have been rarely
considered by previous models.

2.2.7 Other Defects

Other kinds of defects that have been treated in Computer Graphics, although in a less ex-
tensive way, are impacts [PPD01] or efflorescence [SMG05]. Some other works have also
simulated natural phenomena that could be considered as imperfections, since these change
the appearance or geometry of objects. These are, for example, lichen growth [DGA04], foot-
prints in sand [SOH99, ON05], skin wrinkles [WKMMT99, BKMTK00, VLR05], or wetting
and drying of surfaces [NKON90, JLD99, LGR+05].

2.3 Scratches

The physical damage produced by the contact and friction of two surfaces, results in grooves
onto these that are known as scratches. According to their size and distribution over the
surface, two types of scratches can be distinguished: microscratches and isolated scratches.
Microscratches are very small, imperceptible scratches that are uniformly distributed along
the overall surface. These usually provide an homogeneous anisotropic aspect to the surface
according to their preferred orientation, and are typically found on brushed or polished sur-
faces (see left of Figure1.1). Isolated scratches, also called individually visible scratches, are
small isolated scratches that are individually perceptible by the human observer, but where
their geometry still remains invisible (see middle of Figure 1.1). A third type of scratches
could also be devised by considering bigger or macroscopic scratches, for which the geome-
try is clearly visible. However, scratches are rarely considered to fall into this category, and
this is rather associated to other types of grooves (see right of Figure1.1). In this section, we

16 CHAPTER 2. STATE OF THE ART

αs

βs

pixel projected onto a scratch

scratch (ps)

4 equal zones

2 equal zones

Figure 2.1: In [MDG01b], scratches are represented by means of a texture of paths and a set
of cross-sections. The cross-section geometry is specifiedby means of two angles,αs andβs.

focus on the simulation of isolated scratches, which are theones that are typically considered
as imperfections. Previous work on other types of scratchesand grooves will be presented in
the next section.

Concerning the simulation of isolated scratches, all the available literature is based on
the same principle. Since their reflection is visible but nottheir geometry, scratches lie
into a representation scale between texture and BRDF. A texture specifies the location of
the scratches over the object’s surface, while a BRDF models the specific light reflection on
each scratch point. With regard to the texture, it is represented by an image with the scratch
paths painted on it that is then mapped onto the surface. Thisserves to determine if a point
(projected pixel) on the surface contains or not a scratch. If it contains a scratch, then its light
reflection is computed using the specific BRDF, otherwise the common surface BRDF is used.

Becket and Badler [BB90] are the first to consider the rendering of isolated scratches. In
their system of surface imperfections, scratches are placed onto the texture as straight lines
with random lengths and directions. Their reflection is thensimulated by simply assigning a
random intensity to each scratch, without taking into account the underlying geometry nor its
anisotropic behavior. Buchanan and Lalonde propose a Phong-like BRDF in order to take into
account this behavior [BL99]. Scratches are also modeled as straight lines randomly placed
onto the texture, but saving on each texel a list of all the scratches traversing it. Then, during
the rendering pass, they compute the maximum specular highlight for the scratches at the cur-
rent texel and add this to the reflection of the surface. Thesehighlights are computed using
the BRDF. Kautz and Seidel [KS00] present a simple method to render scratched surfaces at
interactive frame rates, by means of shift-variant BRDFs. Here, the texture directly stores
the parameters of the BRDF, which is based on a general anisotropic model [War92, Ban94].
At scratched points, they store anisotropic parameters according to the current scratch direc-
tion. At non-scratched points, they store isotropic parameters corresponding to the surface

2.4. GROOVES 17

reflection. These parameters are then used to compute the BRDF during the rendering stage.
Mérillou et al. [MDG01b] later propose the first physically based approach, which computes
the BRDF according to the underlying scratch microgeometry. In this method, each scratch
is first represented by a path and a cross-section: paths are painted onto the texture as de-
sired, and cross-sections are specified apart (see Figure2.1). After having measured different
cross-sections of real scratches, they state that cross-sections consist of a groove surrounded
by two peaks, and they assume that these can be described by means of two angles (see fig-
ure). During the rendering pass, if the current texel contains a scratch, the BRDF computes
its reflection using the associated cross-section. Occlusion is then considered after correctly
locating the cross-section according the scratch direction, determined by analyzing the texture
too. The proposed model has several advantages, since it respects the anisotropic behavior of
scratches, includes shadowing and masking effects, and is physically correct. Furthermore, it
allows the use of a different cross-section for each scratch, as well as the use of different re-
flection properties for each facet, e.g. to simulate scratches on multilayered surfaces in which
internal and external facets belong to different layers.

2.4 Grooves

Grooves are surface features that are very similar to scratches, but they can also represent
other features as well, such as those appearing on assembledor tiled surfaces, for example
(see right picture of Figure 1). According to this, they can be seen as a generalization of
scratches, with no limitations on their geometry or size. Their main characteristic is basically
the elongated shape, which can also be represented by means of a path over the surface and a
cross-section [CGF04].

In Computer Graphics, grooves have been treated by differentkinds of models. These can
be classified into three main categories as before, depending on the type or size of the groove
that is simulated: anisotropic reflection models, scratch models, and macro-geometric models.
Since in the previous section we have already described scratch models, facing isolated micro-
grooves, we here focus on the other two categories.

Anisotropic models simulate very small grooves uniformly distributed over the surface,
such as the previously mentioned micro-scratches (see Section 2.3). Due to their microscopic
nature, this kind of grooves is usually modeled by the local reflection model or BRDF. From
all the available anisotropic BRDFs, most use an empirical approach based on simple and in-
tuitive parameters, which is suitable when the micro-geometry is not known [War92, Sch94,
Ban94, AS00]. Physically-based models are also available, but only forcertain types of micro-
geometry, like parallel cylinders [PF90] or random Gaussian surfaces [Sta99]. For general
types of geometry, brute force methods precompute the reflection for a subset of directions.
These values are then stored into tables [Kaj85] or approximated by means of spherical har-
monics [CMS87, WAT92]. Some anisotropic models are proposed to fit their parameters from
real measurements [War92, LFTG97]. Others, can be generated from arbitrary normal distri-

18 CHAPTER 2. STATE OF THE ART

butions, which has been applied for ideal V-shaped grooves [APS00]. Some of these previous
models and other similar ones, have been also implemented using the programmable graphics
hardware [HS99, KM99, MAA01, IB02, LK03].

Macro-geometric models, on the other hand, are general models that allow the simulation
of different kinds of surface details. These are especiallyuseful to simulate bigger surface
features, such as grooves found on engraved wood or on tiled walls. Some of the most pop-
ular techniques are bump mapping, displacement mapping, orrelief mapping, which have
been introduced in Section2.1.1. Naturally, such kind of surface details can also be directly
included into the geometry model of the objects. This approach is usually taken for inter-
active sculpting or editing of surfaces, and many recent works can be found on subdivision
surfaces [BMZB02, CGF04], CSG models [MOiT98], or volumetric models [BIT04].

Notice that the size of the different grooves is always relative to the projected pixel size.
Macro-grooves can become micro-grooves, or the opposite, if we change the camera resolu-
tion, distance, or view angle, for example. Since the previous techniques are often limited by
the size of the surface features, it is thus very difficult to choose which is the best technique
to represent them. In order to solve this, a common practice is to use different representa-
tions or resolutions of the surface detail, one for each scale or distance, and then performing
smooth transitions between these. Becker and Max [BM93], for example, address the transi-
tion among displacement mapping, bump mapping, and BRDF. Thiskind of transition, how-
ever, must be approximated due to the inconsistencies between the different representations,
and shadowing is neglected. Other authors have suggested the use of multiple resolutions for a
single representation based on normal distributions or roughness maps [Fou92, Sch97, CL06].
Such methods perform a kind of efficient mip mapping [Wil83] of normal and bump maps by
storing distributions of normals. However, since these methods only use normals, not heights
or geometry, occlusion effects like shadowing or masking can not be taken into account unless
precomputing them, as happens with bump mapping.

Policarpo et al. have recently applied mip mapping for relief textures too [POC05], but
directly pre-filtering heights or normals rarely yields correct results [Fou92]. A single normal,
for instance, can not well represent a group of normals. At least, these should be represented
by a distribution of normals, as in the above methods.

2.5 Conclusions

In this chapter, we have described a large number of different works and approaches that
directly or indirectly focus on the same goal: the obtainingof realistic computer generated
images. Most of these works usually concentrate on the geometry modeling of objects and
surfaces, the representation of materials, or the simulation of local and global illumination,
while only some of them, on the simulation of defects and their processes. This is especially
true for certain kinds of imperfections, for which there is still much room for improvement.

One of the imperfections that still requires further research is scratches. As we have seen,

2.5. CONCLUSIONS 19

scratches have only been treated by a few methods and in a verylimited way, especially
isolated scratches. Other kinds of scratches have been treated as surface grooves in general,
but although more research has been done in this sense, it is still not sufficient.

The first drawback that is found on the available works, especially on those that explicitly
treat scratches, is that they only focus on their rendering,not on their generating processes.
If the scratching process is not taken into account, it is very difficult to correctly simulate a
scratched surface. In addition, the scratches must be modeled by hand too. Some of the few
accurate models that compute the reflection of scratches according to their micro-geometry
assume that this geometry is previously known [PF90, MDG01b]. However, such geometry
can only be known by measuring it with specific devices. If instead some information is
known about the processes that generated the scratches, such geometry could be derived from
this, for instance.

Concerning the rendering of these features, none of the available methods is enough
general to efficiently simulate all kinds of grooves or scratches. Despite the number of
existing methods, most of them are very restrictive with respect to their size, geometry,
or distribution over the surface. As we have seen, physically-based models mainly handle
parallel identical micro-grooves [PF90], specific statistical distributions [Sta99], or isolated
grooves [MDG01b]. All these methods, for example, limit the size of grooves to the pixel
size, i.e. the size of the pixel once projected onto the surface. Anisotropic reflection models
assume that pixel projects onto many grooves, while scratchmodels assume that this projects
onto a single groove, with all its cross-section contained in the pixel. This means that bigger
grooves or closer views are not possible, nor smooth transitions between micro and macro-
geometry. Furthermore, most assume that scratches share the same geometry or that their
geometry does not change along the path, which rarely happens in real situations. Finally,
special geometric situations like intersections or grooveends are neglected as well. All these
constraints are very significant, because light reflection on a real world scratch may drastically
change according to its geometry.

Macro-geometry models rarely pose restrictions on the geometry or distribution of the
grooves. However, these are more suitable for bigger grooves, since most of the techniques
are based on point-sampling. For small scale or pixel-sizedgrooves, they require good an-
tialiasing or filtering methods that can be very time consuming, especially as the distance to
the viewer increases or for highly detailed surfaces. In such cases, higher resolution for the
maps are also needed to correctly represent the features.

With regard to visibility and lighting effects, although masking and shadowing are usually
considered by the previous methods, this rarely happens with the multiple scattering of light.
Scratch models, for instance, have never considered them before, despite the fact that inter-
reflections and transmissions can greatly affect the appearance of a grooved surface. This is
especially noticeable on highly specular or transparent surfaces, such as metals or glass, thus
is another important point that should be considered.

All these restrictions have motivated us for the development of a new general method to
render scratched surfaces of all kinds, which will be described in the following chapters.

20 CHAPTER 2. STATE OF THE ART

Chapter 3

Modeling Grooves

This chapter describes the process of modeling grooves and scratches. The representation
used to specify their geometry is first introduced. Next, we explain how this geometry, in the
case of scratches, may be derived from certain parameters describing the scratching process.

3.1 Representation Overview

In order to model grooves and similar features, previous works have usually characterized
them by means of paths and cross-sections [KS99, MDG01b, CGF04]. Paths are defined as
lying on the object’s surface, and are either represented bycurves or piecewise lines in 3D
object space [KS99, CGF04] or by a 2D texture with the paths “painted” on it [MDG01b].
Cross-sections are similarly represented as curves or piecewise lines, but in 2D world space.
The geometry of a groove is then described by its cross-section swept along the associated
path, where the cross-section is sometimes allowed to change or to be perturbed along it, in
order to describe non-uniform features [KS99, CGF04].

T V W

B W

U

paths

P

Figure 3.1: Grooves are represented in texture space by means of paths and cross-sections.

21

22 CHAPTER 3. MODELING GROOVES

 path

Ci=(C ib
,Ciw

)

Ci+1

Ri

Ni

B

W

Figure 3.2: Piecewise cross-section defined on theBW plane.

In our case, we use a similar representation but mainly in texture space (see Figure3.1).
The geometry of each groove is described by a 2D path and a 2D cross-section: the path is
specified as lying on theUV texture plane and the cross-section as being perpendicularto it,
following the path. For a given pointP on the path, its local frame is described by the path
tangentT atP , the binormalB perpendicular toT , and the texture vectorW . Cross-sections
lie on theBW plane of this frame.

Concerning their geometry, paths are represented by means ofa curve or a line segment,
while cross-sections by means of a piecewise line. Curved cross-sections will thus be ap-
proximated by piecewise lines, which are preferred for a faster computation of the occlusion
effects. When modeling paths, these may be either specified directly in texture space or in 3D
object space, i.e. by first defining them onto the object surface and later transforming them
into texture space. Cross-sections may be similarly specified in texture or in world space.
The latter is useful when deriving their geometry from a realscratch process, for instance
(see Section3.2). Such cross-sections will later be transformed in texturespace, as explained
in Section4.1. An example of such a piecewise cross-section is shown in Figure 3.2. This
consists of a set of pointsCi = (Cib , Ciw) with coordinates defined with respect to the path,
where every pair of two consecutive points defines a facetRi = [Ci, Ci+1] with normalNi.
As can be seen, cross-sections may penetrate the surface, protrude from it, or both.

For each groove, we can also assign a perturbation function and specific material proper-
ties. The perturbation function allows a groove to change its shape along the path, by means of
modifying its cross-section according to the current parametric position in the path. Usually,
we use such perturbation to simply scale the cross-section.The specific material properties
are useful when the groove do not share the same properties ofthe base surface. In that case,
a different material can be specified for the entire cross-section or for each of its facets. The
latter is useful, for example, to simulate scratches on painted or layered surfaces or to simulate
a bricked wall by means of grooves, where some of the facets have the properties of the bricks
and others the properties of mortar. In addition, each material may be represented using a dif-
ferent model of reflection (BRDF) or transmission (BTDF), like Phong, Cook and Torrance,
etc.

This representation has several advantages with respect toother representations. In front

3.2. DERIVING THE GEOMETRY FROM A SCRATCHING PROCESS 23

(a)

θt

φt

N

scratch
 direction

FN

(b)

Figure 3.3: (a) Scratched plate of aluminum with a close viewof a scratch and its measured
cross-section. (b) Scheme of the scratching process.

of previous scratch methods, our representation of paths iscontinuous and compact, thus its
accuracy and memory consumption does not depend on the imageresolution. In addition,
we can compute different required properties for the scratches very easily, like the scratch
direction (path tangent) or the intersection and end points. Most representations used for
grooves and other features are also image-based [Bli78, Coo84, WWT+03, OBM00], thus
suffer from similar accuracy and memory problems. Previousgeometry-based representations
of grooves [KS99, CGF04] are similar to ours, but our texture space representation can be
easily applied to any surface having a texture parametrization, without the need of reprojecting
the paths between different surfaces. Furthermore, paths can be easily evaluated in 2D.

3.2 Deriving the Geometry from a Scratching Process

In the case of scratches, it is very difficult to model their geometry by hand. Since scratches
lie on the microscopic scale of the surface, their cross-sections can only be determined by
measuring them with specialized devices, as mentioned before (see Figure3.3(a)). One can
notice, however, that the geometry of the obtained grooves is related to the scratching process.
If such process is relatively known, we could find a way to derive their microgeometry without
needing any measurement.

In the field of materials engineering, some works study the scratch resistance of materials
on the basis of the scratching processes, especially for polymers and thin coatings [BEPS96].

24 CHAPTER 3. MODELING GROOVES

Figure 3.4: Scratch tester used to perform controlled scratch tests.

These works state that the microgeometry of a scratch depends on the parameters involved
in its formation process, like the material properties of the object, the scratching tool, or the
applied force. Some have also quantified the contribution ofthese parameters to the final
scratch geometry [JZLM98, Buc01].

Based on this relation, we here propose a physically-based model that is able to de-
rive the invisible geometry of scratches from the parameters describing their scratching pro-
cess [BPMG04]. For this purpose, we have considered the real behavior of the scratch pro-
cesses by taking into account the existing models in the fieldof materials engineering and by
performing several “scratch tests” and measurements. Suchstudy is focused on scratching
processes over metals and alloys because their behavior is more common than for other mate-
rials, like ceramics (glass, porcelain, . . .) or polymers (plastic, rubber, . . .) [Cal94]. However,
the model could be extended to incorporate those types of materials as well.

For our model we consider the following parameters: the geometry of the tool used to
scratch, its orientation (θt, φt) relative to the surface normal and the scratch direction, the
forceFN applied with the tool, and the hardness of the surface material (see Figure3.3(b)).

3.2.1 Measuring Real-World Scratches

In order to understand the behavior of scratches on metals, we have first performed differ-
ent tests using a scratch tester, which is an instrument thatoffers the possibility to perform
controlled and accurate scratch tests (see Figure3.4). This kind of device allows the precise
specification of the load (force) that is applied to the tool,but other kind of parameters are
fixed, such as the scratching direction, the orientation of the tool, or the tool itself, which in
our case is a Rockwell diamond cone (see right of Figure3.4and Figure3.7). For this reason,
the scratch tester has been basically used to study the effect of different forces and its behav-
ior with samples of different hardness. The different materials used for these samples are:

3.2. DERIVING THE GEOMETRY FROM A SCRATCHING PROCESS 25

Figure 3.5: Left: Nail used for our manual tests. Right: Close up of the tip.

aluminum, brass, steel, and titanium. Then, for each one, wehave made different scratches
applying loads from 0.5 to 4 kg. Figure3.6 left, shows three scratches obtained with the alu-
minum sample by applying loads of 0.5, 1, and 1.5 kg. A close upof the scratches is shown
in the top, while the corresponding measured cross-sections are shown on the bottom. Note
that the horizontal resolution of these measurements has a scale ratio of 1:2.5 with respect to
the vertical one.

Since the scratch tester do not allow the study of different tool orientations, we have also
performed some manual tests. These tests, although less accurate, have been used to determine
how orientation approximately affects the resulting scratch geometry. For this purpose, we
have used a sample of aluminum alloy and a nail, representingthe tool (see Figure3.5). Then,
different scratches have been made onto the alloy changing the orientation of the nail, i.e.
changingθt andφt. Figure3.6 right, shows the aluminum plate with the different scratches
generated with the nail, changing its orientation for each one (top). Some of the measured
cross-sections are shown on the bottom, corresponding to tool orientations of (0,-90), (45,-90),
and (60,-90), withθt being relative to the surface normal andφt being relative to the scratch
direction, as stated above. In this case, the horizontal resolution of these cross-sections has a
scale ratio of 1:5 with respect to the vertical one.

After performing the tests, we have measured each scratch with a Hommelwerke T2000
profilometer, which allows the measuring of their cross-sections in the microscopic scale. For
each profile we have measured the depthp of the groove, the heighth of each peak, and
its anglesα andβ (see Figure3.7). Then, for each material sample, we have measured its
hardness using a static hardness tester. Hardness has been measured on the Vickers scale,
which is one of the common hardness scales [Cal94]. This hardness value will be used to
relate the behavior of the scratches to the properties of thematerial.

26 CHAPTER 3. MODELING GROOVES

Figure 3.6: Some scratch tests and measurements performed on an aluminum plate. Left:
Using the scratch tester with different applied forces. Right: Using the nail with different
orientations.

3.2.2 Deriving the Cross-Section Geometry

As stated in [MDG01b], the cross-section geometry of a scratch is composed of a groove and
two peaks. During a scratch process, the groove is due to the penetration of the tool into the
material, and the peaks due to the flow and pile-up of materialaround the tool [JZLM98]. As
a result, the shape of the internal part of a cross-section clearly depends on the geometry of the
tool, as shown in Figure3.7. Such dependence can be assumed as direct for metals, because
metals have no significant shape recovery after a scratch [BEPS96].

Apart from the shape, the depthp of the central groove from the base surface is related
to the force applied with the tool and the material properties of the object. Specifically, the
wear volume is proportional to the applied force and inversely proportional to the material

3.2. DERIVING THE GEOMETRY FROM A SCRATCHING PROCESS 27

0.1mm

h

p

α β

we wi

Figure 3.7: Scratch cross-section obtained by a profilometer and the different measured val-
ues. The tool used by the scratch tester is included to show the dependence between the shape
of the scratch groove and the tool geometry.

hardness [JZLM98]. According to this rule and the measurements obtained by the scratch
tester, the penetration depth is computed using the following expression:

p = 0.182

√

FN

HV

+ 0.0055 − 0.014 ,

wherep is the depth represented in mm,FN the applied force in kg, andHV the Vickers
hardness of the material in kg/mm2. Although the previous expression may vary for different
geometries of tools [Buc01], we assume that force and hardness will be usually specifiedas
approximate values (see Section3.2.3), thus the loss of accuracy can be neglected in this case.

With regard to the geometry of the peaks, we have found a linear relation between the
internal angleα and the external angleβ, based on the results obtained from our measurements
and the work of Bucaille [Buc01]. According to this, for each peak,α is directly derived from
the shape of the tool andβ is then computed as:

tan β = −0.56 + 2.54 tan α .

Next, in order to find their heighth, we assume that there is no loss of material dur-
ing the scratch process, which for metals is accomplished ifthe scratching tool is not too
sharp [Buc01]. As a result, we can consider that the sum of the areas of the peaks is equiv-
alent to the areaA of the central groove, and each peak height can then be easilyobtained
using the following expression:

h =

√

A

cot α + cot β
.

Finally, the width of both the internal and external parts ofpeaks,wi andwe, is obtained
by simple trigonometry:

wi = h cot α ,

28 CHAPTER 3. MODELING GROOVES

Figure 3.8: Close view of a real scratch intersection (left) and scratch end (right).

we = h cot β .

According to all this, the geometry of a scratch can be derived from the process parameters
using the following relations:

1. The shape of the tool relates to the shape of the groove and the two peaks.

2. The material hardness and the applied force relate to the depth and height of these.

Another important parameter of the scratch process that we have not still considered is the
orientation of the tool. In the different analyzed works, the tool is assumed to be completely
perpendicular to the object’s surface, as happens on a scratch tester. However, our manual tests
and measurements show that the orientation of the tool can considerably affect the geometry of
the scratches (see right of Figure3.6). Although these tests are less precise than the ones made
with the scratch tester, we have found that this orientationbasically supposes a rotation on the
geometry of the tool. This means that the orientation parameter can be taken into account
by simply rotating the tool before deriving the cross-sections, using the same expressions as
before.

In this study, we have not considered the geometry resultingat scratch intersections or ends
because this is quite more complex. According to some measurements that we have made,
intersections tend to result on X-shaped geometries, wherethe peaks of the two scratches
have almost disappeared. In some cases, however, part of thepeaks for the latest scratch
may still remain, as shown in Figure3.8. At scratch ends, the resulting shape depends on the
material that have been piled up around the end (see right of the figure). This accumulated
material, furthermore, tend to be more important than the one forming the peaks along the
scratch [Buc01].

3.2. DERIVING THE GEOMETRY FROM A SCRATCHING PROCESS 29

3.2.3 Parameters Specification

When specifying the parameters of the scratch process, we have to take into account some
considerations. Concerning the tool, for example, we assumethat this is given as a 3D model
with real-world coordinates (µm, mm, . . .), so the geometry of the scratch’s groove can be
directly obtained from the model. If the shape of the tool is not known but the tool is available,
the size or shape of the tip could be approximately measured using a microscope, for instance.
For a given scratch, the orientation of the tool and the forcecan be specified as either single
values for the entire scratch or as a set of different values along the scratch path. In the latter,
the values are linearly interpolated, and this results in a scratch where the geometry, and
thus its reflection, changes along the path. If forces are unavailable, they can be determined
by observing the obtained scratches, since force is closelyrelated to their final width. This
similarly happens with hardness, but the width is then affected in an inverse way, as stated
before. Hardness, however, is usually easier to determine if the surface material is relatively
known, since there are many lists of materials with available hardness values [Cal94]. Finally,
for complex surfaces consisting of several materials, hardness variations may be specified by
means of a texture too.

The purpose of our model is to derive an approximated but physically-correct cross-
section. The result will be more accurate if the exact parameters of the scratch process are
known, but since the knowledge of the exact values is very difficult and not necessary for
many applications, approximate values can also be used.

30 CHAPTER 3. MODELING GROOVES

Chapter 4

Rendering Grooves

This chapter covers our software-based approaches for rendering scratched and grooved sur-
faces. Their purpose is the realistic rendering of this kindof surfaces, by means of taking into
account the specific geometry of each groove, occlusion effects such as masking and shadow-
ing, and the correct solving of aliasing problems. First, inSection4.1we propose a rendering
method to handle isolated scratches [BPMG04]. This focus on situations where only a scratch
or micro-groove must be processed at a time, and where its contribution to the reflection of
the surface, at a given point, is determined by its entire cross-section. Next, in Section4.2, we
propose a more general method to handle grooves of all kinds [BPMG05]. On one hand, we
extend the previous method to handle isolated macro-grooves and multiple parallel grooves,
thus removing its restrictions to micro-grooves or isolated grooves. On the other hand, we
propose a different method for special geometric situations, such as intersections of grooves,
groove ends, and other similar cases. The result is a generalmethod that efficiently simulates
grooves of any geometry, size, or distribution over the surface, allowing smooth transitions
from micro-geometry to macro-geometry, among others. In Section 4.3, we finally propose
the extension of this method in order to include indirect illumination as well. This extension
especially focuses on the specular inter-reflections and transmissions occurring on the same
surface, which are important for specular or transparent surfaces such as metals or glass.

With these solutions, we can efficiently treat the specific geometric situations according
to their needs. Furthermore, the scratches and grooves are simulated without modifying the
geometry model of the surfaces, which gives an important memory save and an easy to specify
model that is appropriate for all kinds of surfaces. In orderto simplify them, however, we here
take several assumptions about the geometry of the grooves and that of the surface at the pixel
level:

1. Cross-sections of grooves suffer low perturbations alongthe paths.

2. Paths of grooves have low curvature changes.

3. Surface curvature is low.

31

32 CHAPTER 4. RENDERING GROOVES

F

footprint
footprint’s

bounding box

x

y

P1

P2

U
V

Figure 4.1: TheUV texture plane is uniformly subdivided into a grid storing the different
paths. In order to find if the pixel footprint contains a scratch, we get the cells at the boundary
of its bounding box and test the paths against the footprint.

Since dealing with all possible geometries can be very expensive, at a pixel level, these
assumptions allow us to approximate the surface local geometry by a set of flat facets. This
means that, inside a pixel, cross-section perturbations may be assumed to be constant, curved
paths may be approximated by straight paths, and the base surface by means of a plane, which
considerably simplifies our methods.

4.1 Isolated Scratches

In order to render isolated scratches, the present method uses a similar approach to the one
proposed by Ḿerillou et al. [MDG01b]. This consists in determining if the current projected
pixel contains any scratch and on evaluating the appropriate BRDF according to this. When a
certain scratch is found, the reflection at the current pointis computed using the scratch BRDF,
which takes into account the current cross-section; otherwise, the reflection is computed using
the surface BRDF. One of the improvements of our method is that the search for the current
scratch is based on our geometric representation of the paths, which offers more accurate
results than evaluating an image of paths. Furthermore, we do not put restrictions to the
geometry of the scratch cross-sections, which allows a better reproduction of their reflection
behavior. Such improvements make the method suitable for the rendering of isolated micro-
grooves in general.

4.1.1 Finding Scratches

Once the current pixel has been projected onto the scratchedsurface, obtaining what is called
the pixel footprint (see Figure4.1), we may determine if this contains a scratch by evaluating

4.1. ISOLATED SCRATCHES 33

αk

αk,k+1

αk,j k

k+1 j

lk lk,k+1 lk,j

ps

Nk

θr θi

j+1

Figure 4.2: Cross-section geometry at a scratch point showing the different parameters needed
to compute the BRDF.

its footprint against the different scratch paths. First, theUV plane is subdivided into a uni-
form grid, saving in each cell a list of all the paths crossingit. This grid is used to avoid doing
the tests with all the scratch paths and is computed in a previous stage. At the current stage,
we determine the bounding box of the pixel footprint onto thegrid, and then get the paths
stored in the cells at the boundary of this box (see solid cells in Figure4.1). Since paths are
rarely shorter than a pixel footprint, current paths can be found without needing to consider
all the cells inside the footprint, which reduces the numberof cells to examine fromx × y to
2x + 2(y − 2), wherex andy are the box dimensions.

Once obtained the paths from the corresponding cells, we check if a path is really con-
tained in the footprint by first computing the pointP on the path nearest to the footprint
centerF (seeP1 andP2 in Figure4.1). This point is then evaluated using a point-in-ellipse
test [GH86] to determine if this lies inside the footprint. Since the method only considers one
scratch per pixel, the path inside the footprint nearest toF is selected as the current scratch
(P1 in the figure).

In order to find the paths close to a footprint, note that we have chosen a uniform space
subdivision because it is easy to compute and gives a good performance in this case, but other
subdivision could also be used.

4.1.2 Scratch BRDF

When a pixel footprint contains a scratch, the local geometrydefined by the scratch and the
surface can be described by a 2D cross-section. This greatlysimplifies the evaluation of the
scratch BRDF by removing one dimension to the problem, and is due to the assumptions stated
at the beginning of this chapter. At a given scratch point, the cross-section will be composed
of a set ofn = m+2 facets, wherem is the number of facets of the current cross-section, and

34 CHAPTER 4. RENDERING GROOVES

the other two facets represent the surrounding surface (seeFigure4.2).
In Mérillou et al. [MDG01b], some additional assumptions are introduced in order to

compute the scratch BRDF:

1. Scratch cross-section consist of four facets with equal widths.

2. Scratch width is less than half the pixel size.

3. Scratch is always centered on the footprint.

4. Footprint shape can be neglected.

First assumption is based on their definition of a scratch cross-section by means of two
angles, which greatly simplifies the obtained geometry (seeFigure 2.1). Since the cross-
section of a real scratch rarely has such a specific profile, asshown during the derivation
process (see Section3.2), we improve on this by allowing the use of a generic cross-section.
Such cross-section has no restrictions on the shape, the number of facets, or their width onto
the surface.

Concerning the second assumption, this limits the scratch width to ensure that its geome-
try is never visible, but only its reflection behavior. This one along with the third assumption,
guarantee that the scratch cross-section is entirely contained in the footprint, so that no clip-
ping with the footprint is necessary. Last assumption then also results from these two, since
if the scratch is small and centered on the footprint, the exact shape of the footprint can be
neglected without introducing an important loss of accuracy. These three premises are also
considered in our case.

In order to determine the cross-section geometry at a scratch point, the total part occupied
by the scratch will be described by the relative width of the scratch over the footprint size,
which is called scratch proportion orps [MDG01b]. Such proportion depends on the scratch
width and also on the viewer distance, its angle, or the imageresolution, but it can never
exceed half the pixel size, as stated (ps ∈ [0, 0.5]). According to thisps value, the total width
occupied by the two external facets is1 − ps, and since the scratch is centered, each one has
a width of(1 − ps)/2.

When computing theps value, if the scratch cross-section has been derived from a scratch-
ing process, its width will be represented in world coordinates (usually inµm). Since the foot-
print is represented inUV texture coordinates, we then need to determine the pixel dimen-
sions onto the surface before being transformed into texture space, and use these dimensions
to computeps.

According to the cross-section geometry at a scratch point,the scratch BRDFfr,scratch is
finally computed as the sum of the light reflected by each facetk [MDG01b]:

fr,scratch =
n

∑

k=1

fr,krkGk , (4.1)

4.1. ISOLATED SCRATCHES 35

wherefr,k is the BRDF associated to each facet,rk its contribution to the total reflection, and
Gk the geometrical attenuation factor, later described in Section 4.1.3.

For each facet, the reflection contribution,rk ∈ [0, 1], will be:

rk =
lk cos θi,k cos θr,k

cos αk cos θi cos θr

,

wherelk is the relative area of the facet over the total footprint area, αk its angle from the
surface,θi,k andθr,k the angle described by the incident light and the observer with respect to
the facet, andθi andθr the same angles with respect to the surface normal (Figure4.2). Note
thatcos θi,k = Nk × ωi andcos θr,k = Nk × ωr, whereNk is the facet normal,ωi the incident
vector, andωr the viewing vector. Also note thatlk is determined according to previousps
and the relative width of each facet.

4.1.3 Occlusion

The geometrical attenuation factor,Gk ∈ [0, 1], represents the occlusion term of each facet,
describing which part of the facet is visible and lit, i.e. not masked or shadowed by other
facets. In [MDG01b] and [ON94], such term is derived from the cross-section geometry and
later transformed to 3D, but they assume that grooves have a perfect V shape. In our case,
we use a similar approach but for a generic cross-section, thus solving each facet term in a
generic way.

For each facetk, its occlusion termGk is divided into three components: self-occlusion,
GSk, occlusion coming from the left,GLk, and occlusion coming from the right,GRk:

Gk = max (0, GSk (GLk + GRk − 1)) .

Each of these terms is computed using the following expressions:

GSk = max (0, min (1, gk (ωi) , gk (ωr))) ,

GLk = max (0, min (1, gk,k+1 (ωi) , gk,k+1 (ωr) , · · · , gk,n (ωi) , gk,n (ωr))) ,

GRk = max (0, min (1, gk,k−1 (ωi) , gk,k−1 (ωr) , · · · , gk,0 (ωi) , gk,0 (ωr))) ,

wheregk(ω) represents self-occlusion, andgk,j(ω) the occlusion ofk from j, this being com-
puted for each facetj lying on the corresponding side ofk (left side forGLk or right side for
GRk). For these terms, masking is determined usingω = ωr, and shadowing usingω = ωi.

The previous termsgk andgk,j are finally computed by the following expressions:

gk(ω) =
1

Nk × ω
,

36 CHAPTER 4. RENDERING GROOVES

Figure 4.3: Simulating scratches in Maya with our plug-ins.

gk,j (ω (θ, φ)) = 1 +
lk,j

lk
cos αk

cos θ − tan αk,j sin θ cos (φ − φscratch)

Nk × ω
,

wherelk,j is the distance between facetsk andj, αk,j is the angle between them, andφscratch

is the azimuthal orientation of the scratch cross-section onto the surface, obtained from the
current scratch direction, i.e. the path tangentT . Note thatlk,j andαk,j are computed from
the point on the current facet nearest to facetj (Figure4.2).

In order to avoid computinggk,j between each facet and the rest of facets of the cross-
section, we can previously determine which may occlude a certain facet and compute occlu-
sion only for these candidates. Such candidate facets can befound by first considering all
the facets higher than the current one (j, j + 1, andk + 1 for facetk in Figure4.2), and then
neglecting those candidates that are always occluded by another candidate (in Figure4.2, j+1
is always occluded byj whenk is occluded).

4.1.4 Results

In this section, we present the results of our method for rendering isolated scratches as well as
the results obtained with our derivation model, described in Section3.2. These methods have
been implemented as two plug-ins for the MayaR© software, using a shader for the reflection
model and the derivation process, and a 2D procedural texture for the scratch pattern. Maya
has been also used to model the paths of the grooves directly onto the objects and to model

4.1. ISOLATED SCRATCHES 37

Figure 4.4: Scratches simulated using different tools (upper left), hardness (upper right),
forces (bottom left), and tool orientations (bottom right).

the different tools for the derivation process (see Figure4.3).
First, Figure4.4 shows some synthetic scratches modeled by changing the different pa-

rameters of the scratch process and rendered with our approach. The cross-section geometry
derived from these parameters is included below the scratches. Tested tools (upper left image)
are: a nail, a screwdriver, the scratch tester’s cone, and a pyramidal tip. Hardness values (upper
right image) increase from left to right, as well as forces (bottom left image). Finally,(θt, φt)
orientations (bottom right image) are, from left to right: (0,0), (40,0), (60,90), and (45,45).
All these images have been generated using a light source facing the camera, located in the
opposite side of the scratched plate. As shown, the geometryand reflection of the scratches
greatly depend on the specified parameters. In the case of scratches with high peaks, the shad-
owing/masking effects produce a considerable darkening ofthese. All this demonstrates how
important is to take into account the specific geometry of scratches. Note that with the model
proposed by Ḿerillou et al. [MDG01b], none of the obtained cross-sections could be correctly
represented, because either the number of facets is more than four, their widths are different,
or the angles of the two peaks do not coincide, i.e. the cross-section is asymmetrical.

In Figure4.5we compare some pictures of a real scratched surface with images obtained
using our method. The object corresponds to the titanium plate used for the tests that were
made with the scratch tester, and the tool is the tester’s conical tip, without any specific orien-

38 CHAPTER 4. RENDERING GROOVES

Figure 4.5: Top: real titanium plate scratched with the tester and seen from different view-
points. Bottom: corresponding images synthesized with our method.

tation. In this case, we performed five parallel scratches with different forces, which decrease
from left to right on the first image, from right to left on the second, and from bottom to upper
on the third. For the synthetic images, these parameters as well as the titanium hardness are
taken into account. The light source is here placed besides the camera because pictures were
made with flash. As can be seen, our model allows an accurate simulation of the real behavior
of the scratches. When rotating the camera around the plate, along with the light source, the
simulation of their reflection closely matches the real reflection without needing to change the
process parameters or the reflection properties.

Figure4.6 shows another comparison between a real scratched surface and a synthetic
one obtained with our method. In this case, the object corresponds to an aluminum plate that
has been manually scratched with a nail, without any specificorientation. This presents five
scratches, which are numbered onto the real plate (top left). For the first and fourth scratches,
the force is low and nearly constant. For the second and fifth scratches, the force is higher and
diminishes at the end of their paths. The third one finally presents different forces along the
path. The results obtained with our method (top right) show how the variability of the force
parameter is properly handled along the scratch paths. In this case, force was specified by
hand, after visually inspecting the real scratched plate.

In the bottom, we include two comparison images to show the perceptible differences
between the two images. These comparison images have been computed using the method
detailed in Appendix A. Left image shows the pixel-by-pixelperceptual differences in false
color, where blue represents imperceptible differences and red represents highly perceptible

4.1. ISOLATED SCRATCHES 39

Figure 4.6: Top left: real aluminum plate scratched with a nail using different forces along
the paths of scratches. Top right: the corresponding synthetic image. Bottom Left: differ-
ence image computed using a perceptually-based metric, in false color. Bottom right: most
perceptible differences.

differences. Right image only shows the most perceptible differences, which basically ap-
pear at the boundaries of the plane, at certain regions of itssurface, and at some parts of
the scratches. Most of these differences, however, are due to the misalignment of the two
images, since we mainly modeled the scene by hand. We have tried to correctly align the
different scratches above all, but some misalignment problems can still be found, especially
for the central scratch. Nevertheless, the differences arealmost imperceptible for the rest of
scratches, as can be observed. See SectionA.4 for more details about this comparison.

Next, we present some application examples of our method. Figure 4.7 shows a real
scratched metallic component from a car (left) and the corresponding synthetic image (mid-
dle). The synthetic image belongs to a bank of images that wasused to train computer vision
systems for the correct detection of scratched parts in manufacturing and inspection processes.
Right image shows the results obtained with one of these systems using our synthetic image.

40 CHAPTER 4. RENDERING GROOVES

Figure 4.7: Left: a real scratched metallic part. Middle: its corresponding synthetic image.
Right: detection of the scratches.

Figure 4.8: Road sign with several imperfections on it, including scratches.

Notice how the scratches are correctly detected. Figure4.8 then shows two synthetic images
of a deformed road sign with dust and scratches on it, the latter being simulated with our
method. These images belong to a CAD for road safety developedto study, among others,
the visibility of old road signs in adverse circumstances, such as night scenes (see right im-
age) or scenes with fog or rain. Figure4.9shows a synthesized gold ring with an inscription.
This example illustrates how our model could be used for engraving processes, in order to test
different designs, tools, or other parameters over metals before engraving them, for instance.
This could avoid possible mistakes and reduce important costs.

On the other hand, our representation based on curves may also be useful to render any
type of surface annotation (geometric lines) [SKHL00] or 2D vector graphics. This is shown in
Figure4.10, where our procedural texture is used to display the scratchpaths onto the object’s
surface (left). In our case, we use this functionality to quickly display the position or shape
changes of the paths when modifying the texture parametrization of the surface. However,
it could be used to accurately display any kind of pattern or 2D graphic over a surface. Our

4.1. ISOLATED SCRATCHES 41

Figure 4.9: Synthetic ring with an inscription.

Figure 4.10: Left: scratch paths displayed using our 2D procedural texture. Middle: final
rendering of the scratches using our approach. Right: rendered with the method of Ḿerillou
et al. [MDG01b]. The small images on the bottom right correspond to the dashed regions
rendered from a closer viewpoint.

main purpose of using a geometric representation of the paths is to be able to correctly render
surface scratches at any image resolution or distance from the viewer (see middle). If paths
are represented by means of an image, as in Mérillou et al. [MDG01b], the aliasing problems
are clearly noticeable as the viewer approaches to the surface (see right).

In Table4.1, we finally compare the performance of our method with respect to the method
of Mérillou et al. [MDG01b]. With this purpose, we have used three scenes with a different
number of scratches over an object: 5, 50, and 500. Each scenehas been rendered on a
Pentium 4 (1.8 GHz) with 1Gb RAM, and the same scene without scratches was rendered
in 4 sec. As expected, the rendering times for the two models increase with the number of
scratches, since more computations are necessary. The performance difference of our method

42 CHAPTER 4. RENDERING GROOVES

Scratches Our method [MDG01b]
5 10 8 (10)
50 19 15 (17)
500 67 41 (55)

Table 4.1: Rendering times for different scenes (in seconds).

is mainly due to the computations required by the curves, especially when finding the nearest
path contained in a pixel footprint. The model of Mérillou et al., however, needs extra pixel
samples in order to obtain a similar quality, which increases the rendering time, as shown in
brackets. On the other hand, their model has many problems tocompute the scratch directions
from the pattern image, especially when the number of scratches is high. This is due to their
calculation of the scratch directions by means of analyzingthe neighboring texels at each
point. Such kind of analysis becomes very difficult at intersections or places with very close
scratches.

In order to evaluate the efficiency of our method we have also derived its time and space
complexity. In the worst case, the rendering of isolated scratches is achieved inO(g(n +
m) + lf 2) time, whereg is the number of scratches in the pattern,n ∗ m the resolution of the
grid, l the number of light samples, andf the number of cross-section facets of the scratch.
Concerning the representation of the scratches, its memory cost isO(g(pp + pt + f)), where
pp are the (maximum) number of control points of the paths, andpt the (maximum) number
of control points of the perturbation functions. The grid ofpaths and the lists of possible
blocking facets then have a space complexity ofO(nmg) andO(gf 2), respectively, and are
precomputed inO(g(pp + nm)) andO(g(pt + f 2)) time, also respectively. In Appendix B,
you can find more details about the derivation of these complexities.

4.2 General Grooves

This section introduces our general method for rendering grooved surfaces, which improves
on the previous method by allowing scratches or grooves of any size and distribution onto the
surface. For this purpose, two approaches are presented, asstated before: a fast 1D sampling
approach for isolated and parallel grooves and an area sampling approach for special situations
like groove intersections or ends.

4.2.1 Finding Grooves

First of all, we need to find which grooves are contained in or affect the current pixel footprint,
that is, visible grooves as well as grooves casting shadows on it. For this purpose, we may
use the same approach of Section4.1.1, by means of evaluating the footprint against the paths
stored into the grid. In this case, however, the size or bounding box of the footprint is not

4.2. GENERAL GROOVES 43

wmax

hmax,E

E θr

footprint

footprint’s
bounding box

enlarged
bounding box

V
W

U

(a)

E

θr

wmax pmax,E

(b)

Figure 4.11: (a) Pixel footprint is affected by two grooves whose paths lie outside its bound-
ing box. This box must thus be enlarged according to their maximum width and projected
height,wmax andhmax,E. (b) At intersections, some interior facets may be visible out of the
boundaries of grooves. The bounding box must also be enlarged according to their maximum
projected depthpmax,E.

sufficient to find all the contained grooves, since bigger or nearest grooves may be partially
contained without containing its path, as shown in Figure4.11(a).

In order to solve this, here we must consider the dimensions of their cross-sections as well,
and use these values to enlarge the footprint bounding box before getting the corresponding
grid cells. Such values are the width (half-width), height,and depth of the grooves, but since
these are different for each groove and also change with the perturbation functions, we instead
use their maximum values for all the grooves:wmax, hmax, andpmax. These values are easily
computed in a preprocessing step, during the computation ofthe grid.

In Figure4.11(a), we show an example of a footprint affected by two grooves whose paths
lie outside its bounding box. By enlarging this bounding box according towmax, we can found
the paths for the grooves directly contained in the footprint (left groove in the figure). For
grooves casting shadows or seen far from their bounds (rightgroove), we must considerhmax

too, specifically its projection according to the view/light direction. For the view direction
E = (Eu, Ev, Ew) in texture space, the box is thus enlarged according to:

hmax,E = hmax tan θr ,

whereθr is the viewing angle andtan θr is obtained by:

tan θr =

√

1 − E2
w

Ew

.

44 CHAPTER 4. RENDERING GROOVES

For intersections and similar situations, we need to consider pmax as well. This must
be done to find the grooves that may be visible through an intersection, as shown in Fig-
ure4.11(b). For non-intersecting grooves, the interior facets of these grooves are always seen
inside their boundaries, even at grazing angles. At intersections, instead, those facets might
not be masked due to the removed geometry and thus remain visible. In order to find the
corresponding path we must then enlarge the bounding box according to:

pmax,E = pmax tan θr .

Note that in the previous case, the bounding box is enlarged following the viewer direction,
and in this case, in the inverse direction.

In order to find the grooves casting shadows on the footprint,similar values have to be
computed for each light source directionL above the surface, i.e.Lw > 0. In this case, the
bounding box must be always enlarged in the direction of the light source, which reduces the
previous expressions into a single expression:

hpmax,L = (hmax + pmax) tan θi ,

whereθi is the light source angle. Since all these enlargements mustbe independently done
for each light source and the viewer, in practice, we first compute the maximum enlargement
of the box in its four possible directions and finally enlargethe box accordingly. The resulting
box may contain paths of grooves not affecting the footprint, but these will be discarded during
the clipping step (see Sections4.2.3.2and4.2.4.1).

Once the box has been properly expanded, we finally get the cells lying on the boundary
of the box, as before (see solid cells in the figures). Note that for repeating patterns, if the
bounding box exceeds the limits of the grid, we then considerthe cells from the other sides
too.

4.2.2 Detection of Special Cases

In order to select the appropriate rendering approach for the grooves found on the previous
step, we need to determine if there is any special case, such as a groove intersection or end.
First, if two grooves are not parallel, i.e. if their tangentdirectionsT differ, we assume that
these probably intersect. Then, we test if any of the two end points of a path lies inside the
current bounding box. If any of these conditions is satisfied, we use the rendering method of
Section4.2.4; otherwise, we use the method of the following section.

4.2.3 Isolated and Parallel Grooves

When a pixel footprint does not contain any special case, the local geometry at the current
point can be represented by a 2D cross-section, as before. This local geometry, however, is
not as restricted as in Section4.1.2, since we want to handle more than a groove per pixel,

4.2. GENERAL GROOVES 45

A1

A2

F

d

T

W B

projA2

projA1

footprint

E

θ’r

P

(a)

C’1

C’4

projC4

C’3

C’2

C’0

C’5

 C’6

C’7

C’8

C’9

θ’r

projR3

 SR3

B

projC3

R3

W

S

(b)

Figure 4.12: When the footprint is affected by isolated or parallel grooves, the different op-
erations are performed in cross-section space. (a) The projection of the footprint onto the
cross-section plane is done using its two axesA1 andA2. (b) Once in cross-section space, the
cross-sections are merged, projected onto the base surface, and finally clipped.

grooves wider than the footprint size, or grooves not centered on the footprint. To handle such
cases, the main difference is that we need to clip the cross-section to the boundaries of the
footprint, and this implies that the footprint shape must betaken into account as well.

The proposed method consists in the following steps:

1. Merge cross-sections of grooves into a single cross-section.

2. Clip the cross-section facets to the footprint.

3. Compute masking and shadowing.

4. Compute reflection for each obtained facet.

4.2.3.1 Merging Cross-Sections

Merging is performed to unify the different groove cross-sections and the base surface into a
single cross-section. In this way, multiple grooves can be evaluated as a single cross-section
and the occlusion between the different cross-sections canbe easily handled. For the merging,
we basically need to translate each cross-section according to its position with respect to the
footprint centerF , which can be achieved by first computing the pointP on the path nearest
to F , and then computing its signed distanced with the following expression:

d = BuFu + BvFv − B · P = B · (F − P) , (4.2)

whereB = (Bu, Bv) is the path binormal atP andF = (Fu, Fv) is the footprint center
(see Figure4.12(a)). The different cross-section pointsCk of each groove are translated using

46 CHAPTER 4. RENDERING GROOVES

C ′
k = Ck+d, and then finally merged (see Figure4.12(b)). The obtained cross-section directly

includes the surface between the different grooves, as can be seen, and the rest of the surface
is included by adding two extra facets at the beginning and end of the cross-section.

4.2.3.2 Footprint Clipping

Clipping is used to remove the portions that remains outside of the current footprint, and this
consists in three steps:

1. Project the footprint onto the cross-section plane.

2. Project the cross-section onto the surface following theview direction.

3. Clip each facet to the footprint.

In the first step, the footprint is projected onto theBW plane in order to compute clip-
ping and other operations in cross-section space. As usual,the shape of a pixel footprint is
originally represented by an oriented ellipse (see Figure4.12(a)). This shape must be thus
projected onto the plane, but we can approximate this projection using its two main axesA1

andA2. The axis with the largest projection is the one that better represents the original shape,
and is computed as:

projmax = max(|projA1
|, |projA2

|) ,

whereprojA1
= A1 · B andprojA2

= A2 · B. According toprojmax, the resulting footprint
segment is:

S = [−projmax, projmax] ,

defined with respect to the footprint centerF . In Figure4.12(a), for example, the largest
projection isprojA1

, thusS = [−projA1
, projA1

].
The next step is the projection of the merged cross-section according to the angleθ′r. This

angle represents the angle of the view vectorE once projected onto the cross-section plane, as
shown in Figure4.12. Note that this angle is signed, being negative whenE andB directions
remain on the same side, and positive otherwise. For each point on the unified cross-section
C ′

k = (C ′
kb

, C ′
kw

), its projected point is:

projCk
= C ′

kb
+ C ′

kw
tan θ′r ,

where

tan θ′r =
−B · (Eu, Ev)

Ew

. (4.3)

The previous step results in a set of 1D facets lying on the surface base line defined by the
binormalB. Since the footprint is also represented onto this line as a 1D segment, clipping

4.2. GENERAL GROOVES 47

may be done using simple 1D operations. The footprint segment S = [S0, S1] is thus clipped
with each projected facetprojRk

= [projCk
, projCk+1

] using the following expression:

SRk
=

{

null if S0 > projCk+1
or S1 < projCk

[max(S0, projCk
), min(S1, projCk+1

)] otherwise
(4.4)

First case occurs whenS is completely outside of the current facetprojRk
, and second

case, whenS is partially or totally inside the facet. In the example of Figure4.12(b), when the
footprint segmentS is clipped with the facetprojR3

, this results in a partially inside segment
SR3

.

4.2.3.3 Occlusion

Occlusion could be computed using the approach of Section4.1.3, but this method requires
several computations that can be costly as the number of processed facets increases. In this
section, we propose a different method that is simple and fast, and does not require any pre-
computation of the occluding facets. It consists in first projecting the different cross-section
points according to the view or light direction. The order that follow these projected points
onto the base line is then used to determine which facets are occluded.

Given a vector in cross-section space from which we must compute occlusion, its signed
angle with respect toW is θ′. According to the sign of this angle, two different cases are
differentiated. Whenθ′ > 0, points are sequentially projected from left to the right, and the
occlusion of each facetRk is computed using the following expression:

projR′

k
=











null if projCk+1
≤ projCj

, with j ≤ k

[projCj
, projCk+1] if projCk

< projCj
< projCk+1

, with j < k

projRk
otherwise

This expression computes the occlusion by comparing the order in which the projected
points lie on the base line, as stated above. A facet is completely occluded (first case) if its
projected end pointprojCk+1

lies before any previously projected pointprojCj
, with j < k.

Self-occlusion, for example, appears when the end point of the facet lies before its begin
point,projCk+1

≤ projCk
. WhenprojCj

lies between the two facet points, the facet is then par-
tially occluded (second case). In that case, the non-occluded part is computed as the segment
between this point and the facet’s end point. Finally, if none of the previous cases applies, the
facet is completely visible and remains as is (third case).

In the example of Figure4.13, we can see such different occlusion situations. Here,R2,
R5, andR3 are completely occluded:R2 andR5 are self-occluded whileR3 is occluded by
R1. FacetR4 is partially occluded byR1, resulting in[projC2

, projC5
], andR6 by R4. R0 and

R1 are the only completely visible facets.

48 CHAPTER 4. RENDERING GROOVES

projC1

B

W

projC0 projC7 projC5 projC6

projC2

projC4
projC3

R0

R1

R2

R3

R4

R5

R6

θ’r

projR’4

Figure 4.13: Occlusion is found by projecting the cross-section points according toθ′ and
then comparing their order onto the base line. For masking,θ′ = θ′r.

Whenθ′ < 0, the previous process is then inverted. The different cross-section points are
sequentially projected from right to left, and the previousexpression results in:

projR′

k
=











null if projCk
≥ projCj

, with j > k

[projCk
, projCj

] if projCk
< projCj

< projCk+1
, with j > k + 1

projRk
otherwise

These expressions are used to compute both masking and shadowing. Masking is com-
puted during the clipping operation, so that clipping is done with only the visible parts of the
cross-section. Shadowing is computed after that, and partially shadowed facets are intersected
with their corresponding clipped parts using an expressionsimilar to Equation (4.4).

4.2.3.4 Reflection Contribution

The total reflection inside the footprint is finally computedusing the following expression:

fr,grooves =
n

∑

k=1

fr,krk . (4.5)

This expression is similar to Equation (4.1), but hererk directly includes the geometrical
attenuation factor. Therk value thus represents the contribution of each facet to the total
reflection after clipping and occlusion operations, and is computed as:

rk =
SRk1

− SRk0

S1 − S0

,

whereSRk
= [SRk0

, SRk1
] is the current facet segment after these operations, andS the origi-

nal footprint segment.

4.2. GENERAL GROOVES 49

paths

Figure 4.14: A different approach is used for these special situations. From left to right:
Intersection, intersected end, isolated end, and corner.

4.2.4 Special Cases

At points where grooves intersect or end, there can be found different special situations, such
as common intersections, intersected ends, isolated ends,or corners (see Figure4.14). For
such kind of situations, the local geometry is significantlymore complex than in the previ-
ous case, and can not be approximated with a single cross-section or sampled with a single
footprint segment. In these cases, we rather need to consider the 3D geometry of the grooves
as well as the entire pixel footprint, i.e. using an area sampling approach. This kind of sam-
pling will be done by considering the footprint’s original shape and computing the different
operations in a per-facet basis, using the following algorithm:

for each groove:

for each facet:

1. Project footprint onto the facet and clip.

2. Remove intersected part.

3. Compute masking.

for each light source:

3′. Compute shadowing.

4. Add reflection contribution.

Next, we describe the details of the different algorithm steps for the case of common
intersections. Their extension to handle the other specialcases is explained in Section4.2.4.5.

4.2.4.1 Footprint Clipping

In order to consider the footprint’s original shape for the following operations, we represent it
as a polygon lying on theUV plane and defined by a set ofFi points (see Figure4.15). If the
footprint is originally represented by an elliptical shape, we can approximate it by means of a
polygonal, but a quadrilateral usually gives good enough results.

50 CHAPTER 4. RENDERING GROOVES

F
 Fi

E

Ck

projFi

 Rk

projFi

facet
space

projected
footprint

clipped footprint

Rk

d

Figure 4.15: Left: footprint is projected onto the current facet following the view direction.
Right: once in 2D facet space, the footprint is clipped to the bounds of the facet.

For the clipping step, the polygonal footprint is first projected onto the current facet using
common line-plane intersections in 3D groove space. The footprint points are transformed
into this space according toT andB vectors and its distanced to the groove, by means of a
simple rotation and translation. These points along with the view vectorE describe the set of
lines that must be intersected with the facet plane, which isrepresented by the facet normal
Nk and one of the two facet points, such asCk.

Once projected onto the facet plane, the footprint is transformed into 2D facet space by
simply dropping the most representative coordinate of the plane and the projected points
projFi

. Clipping is then easily performed with an axis-aligned plane bounded by two hori-
zontal lines (see right part of Figure4.15), where the footprint is directly neglected if all the
pointsprojFi

fall outside one of these lines, and used as is if all of them fall inside. In any
other case, the footprint is clipped using 2D line-polygon intersections.

The base surface around the grooves is here treated as an extra facet representing theUV
texture plane. In this case, no projection or clipping is necessary because the footprint already
lies on theUV plane and this is considered as unbounded. The footprint portion that actually
belongs to the surface will be determined in the following step.

4.2.4.2 Intersection Removal

This step is used to remove the portion lost during a groove intersection. For a certain facet,
this portion is represented by the cross-sections of the intersecting grooves (see Figure4.16),
thus we simply need to project these cross-sections onto thecurrent facet and remove them
from the polygon obtained in the previous step.

For each intersecting groove, its cross-section is projected onto the facet using 3D line-
plane intersections, as before. In this case, the projection direction is the groove direction
T2, and the cross-section pointsC2k

are transformed into the current groove space using the

4.2. GENERAL GROOVES 51

intersection
profiles Rk

F

d

d2

T2

T

B

B2

C’2k

projected
footprint

facet
space

Rk

Rj

Rj

Figure 4.16: The cross-sections of the intersecting grooves are projected onto the current facet
(left), and later intersected with the footprint in 2D facetspace (right).

binormalB2 and the footprint’s distance to each groove,d andd2, as:

C ′
2k

=
(

B2u
(C2kb

− d2), B2v
(C2kb

− d2) + d, C2kw

)

.

For the ground facet representing the surrounding surface,the portion to be removed is
simply defined by the bounds of each groove onto the surface, i.e. by the two lines specified by
its T direction and its initial and final cross-section points. A similar portion is also obtained
for facets parallel to the surface, such asRj in Figure4.16. In this case, however, the different
lines are specified by the intersection points of the given cross-section with the current facet’s
height.

4.2.4.3 Occlusion

Concerning the occlusion, this can also be treated as a portion or profile that lies onto the
current facet and must be removed from the current polygon. Such profile is here obtained
from the projection of the blocking facet according to the occlusion direction (see solid profile
in Figure4.17), as well as the projection of the prolongations of the intersecting grooves (see
dashed segments in the figure). A blocking facet is a facet belonging to the same groove that
cast occlusion to the current facet. Since this facet is alsointersected, its profile is mainly de-
scribed by the cross-sections of the intersecting grooves.Prolongations then represent straight
open-ended segments that start on this blocking facet and follow the highest points or peaks
of the intersecting grooves.

According to this, the occlusion at the current facet is determined by projecting the block-
ing facet profile and the different prolongations onto the facet. Then, once in 2D facet space,
the obtained projections are unified to determine the final occlusion profile and this is finally
removed from the current footprint polygon.

52 CHAPTER 4. RENDERING GROOVES

R1

R2

Figure 4.17: For the occlusion, the blocking facet (solid profile) and the prolongations of the
intersecting grooves (dashed segments) are projected ontothe current facet. The final profile
is obtained by unifying both projections in facet space.

Such procedure, however, is not always necessary in most cases. First, we only need to
process those facets that are visible from the current occlusion direction, i.e. not self-occluded.
Then, for these facets, only the blocking facets that are self-occluded may cast occlusion on
them, and thus need to be tested. In Figure4.17, for example,R2 may cast shadows onR1

because it is self-shadowed, i.e.N2 · L < 0. Note that the list of blocking facets that may
occlude a given facet can also be precomputed as in Section4.1.3.

Concerning the surrounding surface, its occlusion is only computed when grooves pro-
trude from the surface. In such cases, only their prolongations must be considered for its
occlusion, and this similarly happens for the external facets of the grooves. In Figure4.18,
the ground facetRg is shadowed by the peaks or prolongations of the two grooves,while the
external facetR1 is shadowed by the peak of the other groove.

4.2.4.4 Reflection Contribution

The total reflection inside the footprint is finally computedusing Equation (4.5). The only
difference is that here the area ratiork is computed by means of polygon areas:

rk =
AR

AF

,

whereAF is the area of the footprint polygon once projected onto the facet, andAR its area
after the clipping, intersection, and occlusion steps.

4.2. GENERAL GROOVES 53

R1

Rg

Figure 4.18: Grooves protruding from the surface may produce occlusion to the surrounding
surface. The occlusion of the ground facetRg or the external groove facets, such asR1, is
computed by only projecting their prolongations (peaks).

4.2.4.5 Ends and Other Special Cases

As stated in Section4.2.4, the proposed method can be adapted to handle other situations as
well, such as isolated ends, intersected ends, or corners. These situations are all related to
groove ends, since intersected ends are grooves ending in the middle of another groove and
corners consist of two grooves ending at the same point (see Figure4.14).

First of all, when some of the grooves inside a footprint are ends, we must detect which
kind of situation is defined by each one. Intersected ends arefirst detected by checking if the
distance between an end point and the path of a non-ending groove is less than the sum of
their half-widths. Corners are detected in a similar way, butcomputing the distance between
the end points of the corresponding grooves. Then, isolatedends are found as the ends that
neither form an intersected end nor a corner. Note that all these tests can be precomputed in a
previous stage if desired.

In order to render each situation, we can treat them as special intersection cases then.
Intersected ends, for instance, can be treated as half-intersections, isolated ends as grooves
being intersected by a sort of perpendicular groove with half the same cross-section, and
corners as a combination of both. This means that each case may be handled by mainly
modifying the different cross-sections that are projectedduring the intersection and occlusion
steps.

Concerning the intersection step, such modifications dependon the current facet and the
groove to which it belongs. If the facet belongs to an intersected end, the cross-section of
the intersecting groove must be extended following the ending direction, as shown in the left

54 CHAPTER 4. RENDERING GROOVES

R1

R1

extended
cross-section

footprint

R2

 R1

R2

R1

Figure 4.19: For special cases like intersected ends (left)or isolated ends (right), we need to
modify the different cross-sections that are projected during the intersection step.

R1

R1

Figure 4.20: When computing occlusion at ends, the blocking facets (solid profile) and the
prolongations (dashed segments) can be greatly simplified.

of Figure4.19. If this facet belongs to an isolated end, instead, such cross-section must be
extended in a similar direction or in both directions, but without including the cross-section
in itself (see right of Figure4.19). For corners and for external facets protruding from the
surface, these modifications are performed in a similar way.

For the occlusion step, the different modifications depend on the blocking facet, and this

4.2. GENERAL GROOVES 55

facet as well as the groove prolongations can be greatly simplified in this case. When the
current facet belongs to an intersected end, such asR1 on the left of Figure4.20, its blocking
facet is then represented by only half the cross-section of the intersecting groove, for instance.
In addition, only one prolongation needs to be projected, ascan be seen. For facets belonging
to isolated ends, blocking facets can even be represented assingle straight lines (see right of
Figure4.20), since the produced occlusion does not depend on any cross-section. At corners,
the different blocking facets and prolongations depend on the current facet, and they can be
represented in the same way.

Besides these cases, our algorithm could be adapted to handleother kinds of situations as
well, such as intersections where one of the groove predominates over the other, for example.
This kind of situation is sometimes found on real scratch intersections and happens when the
peaks of one scratch appear inside the intersection (see Section 3.2.2). This case could be
handled using other modifications similar to the ones proposed here.

4.2.4.6 Efficiency Issues

The algorithm presented in this section requires several projections and polygon operations
that can be very time consuming compared to the method for isolated or parallel grooves (see
Section4.2.3). The increase in time is nearly imperceptible in most cases, since grooved
surfaces usually contain few intersections or ends, but this becomes noticeable as the number
of intersections and other special situations increases. In order to solve this, here we propose
some ways to improve the efficiency of the algorithm, especially on certain situations.

On close views, for example, most groove facets rarely contribute to the final reflection of a
footprint, but they are also treated by the algorithm. In this case, such facets can be avoided by
simply starting processing the facets lying on the same sideof the footprint center and stopping
when the contribution of the footprint is fulfilled, i.e. when

∑

rk ≈ 1. In order to reduce
the number of projections, we can also reuse the projected cross-sections from one footprint
to another by means of a cache structure, which is especiallyuseful when cross-sections and
projection directions do not vary between them. With these improvements, however, the speed
up is not very important in general (≈ 10%).

Since the most consuming part are the different polygon operations, we could substitute
these polygons by other shapes giving better performances.For close views or big grooves
where not much detail is included in the footprint, the footprint shape may be approximated
using a set of lines, for instance. Jones and Perry [JP00] uses a screen-space approach that per-
forms antialiasing by means of two perpendicular line segments, and state that two segments
are usually enough to correctly capture the detail. Using the same idea, we have considered
the two footprint axes to sample our grooves. Each of these axes or segments is projected
onto the facets, clipped, and then subtracted with the intersection and occlusion profiles, as
with polygons. Then, the reflection values of the two segments are finally combined taking
into account which one better represents the current detail, e.g. according to the number of
intersected edges or the intersection angles [JP00]. With this approach, the algorithm speeds

56 CHAPTER 4. RENDERING GROOVES

Our method Geometry Relief mapping
Figure time memory time memory time memory
4.21 26 16 95 656 0.043 256
4.22 27 19 114 53000 0.029 4096
4.23 47 14 130 2116 − −
4.24 20 / 13 14 71 2116 − −
4.25middle left 21 16 − − 0.028 256
4.26bottom left 32 124 − − − −
4.26bottom right 43 124 − − − −

Table 4.2: Performance of the different methods for each figure. Rendering times are in
seconds and memory consumptions in kilobytes. For our method, the memory represents the
consumption due to our representation, without considering the underlying mesh. This also
applies for relief mapping.

up considerably (≈ 40%) and the result is quite similar to the one obtained with polygons.
However, as the viewer moves away from the surface, some facets may be missed by the lines
and the error becomes considerable. Jones and Perry state that more line samples could also
be used for better results, but then a polygon could perform better antialiasing with a similar
computation time.

4.2.5 Results

Our general method for rendering grooved surfaces has been also implemented as a plug-in for
the MayaR© software. The images and timings have been obtained on a Pentium 4 processor
at 1.6 GHz, and are shown in Table4.2 along with the memory consumption. Note that the
images generated with our method are differentiated in thissection by including the different
cross-sections used for the grooves, usually on the upper left corner.

First, we introduce different examples of grooved surfacesthat have been used to study
the performance of our method. Our purpose is to test the accuracy of our method with re-
spect to ray traced geometry, which offers high quality results, and to one of the techniques
that also simulate surface detail without explicitly generating geometry, such as relief map-
ping [POC05].

The model used in Figure4.21 first corresponds to a surface containing lots of parallel
grooves, each having the same cross-section and without anyspace between them. In Fig-
ure4.21(a), it has been modeled using a flat surface, a set of parallel paths, and a single cross-
section (see upper left of the image). The scene has then beenrendered using the method of
Section4.2.3for parallel grooves. In Figure4.21(c), the same scene has been modeled using
explicit geometry and then ray traced with Mental RayR©, which offers better performances
than Maya for such cases. This ray tracing is only needed to capture the shadows on the
grooves, and is done using 1 shadow ray and adaptive supersampling. In order to obtain a

4.2. GENERAL GROOVES 57

(a) Our method

(b) Relief mapping

(c) Ray traced geometry

(d) Comparison image between (a) and (b)

Figure 4.21: Surface containing lots of parallel grooves showing smooth transitions from near
to distant grooves.

similar quality for the distant grooves, 4 up to 64 samples are required for this image. As
can be seen, both images show a smooth transition from near todistant grooves, i.e. from
macro-geometry to micro-geometry. The difference in colorfrom left to right on the far side
is due to the masking effect, and shadowing is present in all the grooves due to a light source
placed far away on the right part of the scene. These images are nearly indistinguishable, as
can be observed, but our method is much faster in such situations, since no supersampling is
needed (see Table4.2). Aliasing is still visible at some places on both images, which in our

58 CHAPTER 4. RENDERING GROOVES

case, is due to the use of a non-weighted sampling scheme. This could be improved using
weighted filter shapes, such as a Gaussian filter, for example. Jones and Perry have proposed
a method to perform weighted line sampling in image space that could be easily applied to
our method [JP00]. Even so, the aliasing is less perceptible with our method,as shown in the
close views on the top of the images. This suggests that even more samples should be used
for the ray traced geometry.

In Figure4.21(b), the same scene has been rendered using relief mapping. First, the re-
lief texture with the normals and heights has been generatedwith a modified version of our
method (which samples the heights and normals of the groovesinstead of evaluating the re-
flection). Then, the textures have been transferred to the GPU shader, which rendered the
detail. With this technique, although the rendering of the grooves is done at interactive frame
rates, as shown in Table4.2, the quality of the image decreases substantially. For closest
grooves, the aliasing on the shadows is very perceptible, which is mainly due to the use of
a simple ray intersection approach with the detail. For distant grooves, the smoothing or
blurring of the grooves is due to the use of mip mapping, whichpre-filters the relief texture.
Such kind of pre-filtering is not adequate for normal or height values, as stated in Section2.4,
since this considerably smooths the detail. To improve the quality of the shadows, a better ap-
proach could be used for the ray intersections, such as the one proposed by Tatarchuk [Tat06].
Distant detail, however, would require supersampling, as happens with common ray tracing
techniques. This also applies for other similar techniques[WWT+03, Don05, Tat06]. In Ta-
ble4.2, we include the timings for relief mapping, which have been obtained with a NVIDIA
GeForce 6200 card. Naturally, its performance is difficult to be compared with our method,
since the latter is implemented in software.

Figure4.21(d)finally includes a comparison image for the two images on the top, show-
ing their perceptible differences. Since the images are correctly aligned, only some small
differences are noticeable in this case. The most perceptible ones appear on the boundary
of the plane, but for the rest they are almost imperceptible.The image showing the highly
perceptible differences is not included because its completely black, which means that even
the differences on the boundary are not so important (see Section A.4 for more details).

For the next example, we have used a scratched surface consisting of a set of crossing
grooves of different size (see Figure4.22). In this case, both algorithms of Sections4.2.3
and4.2.4are used for Figure4.22(a), since this contains intersections. For Figure4.22(b),
the geometry has been generated by means of displacement mapping, using a height texture
generated with our method, as before. Part of this mesh is shown in the bottom right. Even if
using a feature-based approach, the number of generated triangles are in the order of 500,000,
which greatly increases the memory cost. Its time cost is notconsiderably increased despite of
this because 1 to 16 samples are enough to correctly filter thedetail in this case (see Table4.2).
As expected, the quality of the results obtained with displacement or relief mapping greatly
depends on the resolution of the input textures. The filtering performed on these textures
avoids some artifacts, but then the detail is considerably smoothed. Here, for example, we
have used a resolution of 1024 x 1024 in order to adequately represent the smallest grooves.

4.2. GENERAL GROOVES 59

(a) Our method

(b) Ray traced geometry

(c) Relief mapping

Figure 4.22: Scratched surface containing intersecting grooves of different size.

Big grooves, however, still have rounded shapes, and some smallest grooves are missed at
certain places, especially with relief mapping (see close views at the bottom of the figures).
This suggests that even a higher texture resolution should be used in this case, which would
suppose an increase in memory as well as in speed, since more texels must be processed.

The memory requirements of our method mainly depends on the resolution of the grid
of paths too. However, this resolution does not affect the quality of the results, but only our
efficiency when finding the grooves that are actually contained in the footprint. In general,
we have found that grid resolutions of 100×100 or 200×200 have a good trade-off between
speed and memory, which are the ones used in all these examples. High resolutions are more
efficient, but while the memory increase is noticeable, the savings in time are low. Concerning
the performance of our method, the area sampling approach used for the intersections requires

60 CHAPTER 4. RENDERING GROOVES

(a) Our method

(b) Comparison image

(c) Ray traced geometry

(d) Highest perceptual differences

Figure 4.23: Surface containing many intersecting grooves.

more computations than the line sampling used for the non-intersected parts. In this case, the
special situations are very localized, as usually happens,thus the increase in rendering time is
not very noticeable. However, even with more intersections, its performance tend to be better
than using ray traced geometry, as will be shown in the following example. This is especially
true for small or distant grooves, for which more samples aregenerally needed using point
sampling techniques. Also notice that this kind of scratched surfaces could not be simulated
with our previous method (see Section4.1) or with any currently available scratch model,
since these only consider isolated, pixel-size scratches.

4.2. GENERAL GROOVES 61

(a) Our method: polygon sampling (b) Our method: line sampling (c) Ray traced geometry

Figure 4.24: Same models of Figure4.23 illuminated with two point light sources and ren-
dered from a different point of view.

In Figure4.23, we have simulated a tiled surface consisting of many crossing grooves,
which shows transitions from near to far grooves. Figure4.23(a)has been modeled and ren-
dered using our approach, while Figure4.23(c)has been modeled as a mesh of∼ 4500 poly-
gons and ray traced using 4 up to 64 adaptive samples, in orderto properly capture the distant
detail. Note how our method is able to perform correct antialiasing with only one sample,
even for grazing angles. This is due to the consideration of oriented footprints and the correct
sampling of the intersections of grooves contained within.Since the two images are nearly
indistinguishable, we have also included their differenceimages in the bottom. As can be
noticed, the perceptible differences mainly appear on the edges of the grooves, which again
is produced by the misalignment of the images. We have tried to find the best transformation
for their correct matching but some misalignments are stillpresent. For most of the grooves,
however, no important differences are found between the twoimages (see Figure4.23(d)).

In Figure4.24, the same surfaces are illuminated using two near point light sources and
rendered from a distant point of view. In this case, for the grooved surface modeled with
our representation, we compare its rendering using our polygon approach (left) and using the
two line samples approach proposed in Section4.2.4.6(middle). For the ray traced version
(right), the mesh has been rendered using up to 64 samples, asbefore. The timings of these
methods are included in Table4.2, where the ones obtained with our model are separated by a
bar: the first one corresponds to our polygon approach, and the latter to the line sampling. As
expected, the line sampling approach is faster than the polygon one, but as shown in the top
of the figures, antialiasing is better performed with the polygon approach, since it samples the

62 CHAPTER 4. RENDERING GROOVES

entire footprint area.

Another example demonstrating the benefits of our method is shown in Figure4.25. This
consisting of a grooved sphere with a pattern similar to the one of Figure4.21. The sphere
on the top shows up two highlights due to a light source placednear the sphere and a shared
cross-section consisting of two facets. When one of these twofacets is properly aligned with
respect to the viewer and the light source, then the highlight appears. As can be seen from
left to right, even if the viewer moves away from the object the highlights remain on the same
place, as expected. With relief mapping, instead, such highlights are very different for each
viewpoint (see bottom images). At close views, the smoothing of the detail makes highlights
to appear on the peaks of most of the grooves. Then, as the viewer moves away from the
object, the highlights turn into a single centered highlight due to the smoothing effect of mip
mapping.

In Figure4.26, we have finally simulated three vinyls using our method. These have been
modeled using lots of small concentric grooves, without anyspace between the grooves except
for the separation of the different tracks. The only difference between the vinyls is the cross-
section used for the grooves. For the top vinyls, we have useda similar cross-section, the
right one being an asymmetrical version of the left one. Froma certain distance, both vinyls
show an anisotropic reflection on its overall surface that clearly depends on the type of cross-
section that is used, as can be observed. On the bottom, threedifferent cross-sections have
been randomly applied to the grooves, resulting in a very different effect. The right image
represents the same vinyl on the left but rendered from a closest viewpoint. For all these
different vinyls, notice that common anisotropic BRDF modelswould not be appropriate.
The model of Poulin and Fournier [PF90], or one of the available empirical models, could be
used to approximate the effect on the first vinyl, but these would fail to represent the other two.
Furthermore, BRDF models are limited to distant viewpoints, not allowing closer viewpoints
like in the bottom right image, where the geometry is clearlyvisible. With our model, we are
able to correctly simulate such kind of small micro-grooves, or the ones present on polished
surfaces, from any distance and with any cross-section.

More examples of grooved surfaces simulated with our general method are later presented
in Section4.3.4as well.

In order to evaluate the efficiency of the method we here finally summarize its time com-
plexity. With regard to the rendering of isolated and parallel grooves, we have found that its
complexity isO(g(n + m + lf)). Compared to our previous method for isolated scratches
(see Section4.1.4), the quadratic cost with respect to the number of facetsf is removed due
to the use of a different approach for the occlusion computations (see Appendix B for more
details). For the rendering of groove intersections and ends, its cost isO(g(n+m+ lf fg +g))
then. As can be seen, the algorithm is far more costly, which is due to the different polygon
operations that are performed. This cost, however, would only be obtained with very complex
polygons. Since groove cross-sections and pixel footprints usually tend to be very simple, its
complexity is considerably lower on average (see Appendix B).

4.2. GENERAL GROOVES 63

Figure 4.25: Grooved sphere simulated with our method (top)and with relief mapping (bot-
tom), rendered from different distances (left to right).

Figure 4.26: Vinyls modeled using lots of concentric micro-grooves. Top: All the grooves
share the same cross-section, described by a symmetrical cross-section (left) or an asymmet-
rical one (right). Bottom: Three different cross-sections have been randomly applied to the
grooves, seen from a distant viewpoint (left) and a close one(right)

64 CHAPTER 4. RENDERING GROOVES

Nk

Nk-1

E

Er

Et E’r

E’t

ray traced
reflection

ray traced
transmissions

(a)

E

R0

SR3

R1

R2

projC2

projC3

new footprint

R3

(b)

Figure 4.27: (a) Groove undergoing specular inter-reflections and transmissions. The algo-
rithm is recursively executed for each visible facet and scattering direction. (b) Computing
the indirect illumination for facetR3 at one of the recursive calls.

4.3 Indirect Illumination

The different methods that we have proposed to render scratched and grooved surfaces only
take into account the direct illumination, that is, the light coming directly from the light
sources. In order to achieve more realistic results, here wepresent an extension of our previous
general method to include indirect illumination as well, which comes from the light reflected
and transmitted by the objects in the scene. In this section,we first focus on the specular inter-
reflections and transmissions taking place on the grooved surface, which are easily included
with some changes on the original algorithm. We later describe how the indirect illumination
from the rest of the scene is also considered and how the method could be extended to include
diffuse illumination as well.

4.3.1 Specular Reflections and Transmissions on the Grooved Surface

In order to simulate light scattering on a specular grooved surface, the basic idea is to perform
a kind of beam tracing [HH84]. This mainly consists in recursively projecting the current
footprint, or part of it, for each reflection and transmission direction (see Figure4.27(a)). Once
computed the visibility and direct illumination on the original footprint, the visible portion of
each facet is used as a new footprint. Then, the reflection andtransmission directions,Er and
Et, represent the new view vectors. The algorithm must thus be recomputed using each new
footprint and view direction, and this is done in a recursiveway.

The scattering directionsEr andEt are computed according to the current vectorE and
the facet’s normalNk, using the classical expressions [Gla89]. In order to recompute the
algorithm, since the algorithm expects a footprint lying onthe surface, the visible portion of
each facet is previously projected onto theUV plane according to the corresponding direction.
Such direction is then inverted to represent the new view vector, since an outgoing vector is

4.3. INDIRECT ILLUMINATION 65

also expected. This setup is depicted in Figure4.27(b).
During the recursive execution of the algorithm, some different considerations must be

taken into account. First, the new vectorE may have a negative height now, i.e.Ew < 0, as
shown in Figure4.27(b). When looking for the grooves affecting the new footprint, this means
that the footprint’s bounding box has to be enlarged in the opposite direction, sincehmax,E or
pmax,E result in negative values as well (see Section4.2.1). For isolated or parallel grooves, a
negative height also affects the computation of the occlusion effects, thus the different tests of
Section4.2.3.2must be similarly inverted. In Figure4.27(b), for example,R2 will not be self-
masked whenprojCk

≥ projCk+1
, but whenprojCk

< projCk+1
, i.e. projC2

< projC3
. Finally,

during a recursive pass, and independently of a negative or positiveEw, we can only process
those facets lying on the current visible part of the cross-section (R0 from R2 in the figure).
If all the cross-section facets are processed like in the first pass, some previous non-visible
facets can mask the visible ones, which is incorrect.

After each execution of the algorithm, the returned value represents the indirect illumi-
nation of the current visible facet coming from the given direction. As with the direct illu-
mination, this illumination must be added to the total reflection of the current footprint once
weighted by its actual contribution, which is computed asfspec,k · rk. Here,fspec,k is the spec-
ular term obtained from the BRDF or BTDF of the facet, depending on the case, andrk is
the area ratio of the facet, which is computed as in Sections4.2.3.4and4.2.4.4but without
considering the shadowed portion of the facet.

4.3.2 Indirect Illumination from Other Objects

During the execution of the previous algorithm, part of the new footprint may not project onto
the neighboring grooves or surface. This part represents the indirect illumination that comes
from the other objects of the scene or from the other faces of the same object, such as side
or back faces (see Figure4.27(a)). In order to account for this indirect illumination, we then
propose to use ray tracing. When the contribution of the new footprint is not fulfilled at the
end of each execution, i.e.

∑

rk < 1, we trace one or several rays in the current direction.
The obtained illumination from each ray is then averaged andadded to the footprint total
reflection, weighted according to1 −

∑

rk. Note that ray tracing is here used for availability,
but other techniques could also be used [HH84, Kaj86, JC95].

4.3.3 Glossy and Diffuse Scattering

Although not considered in this thesis, reflections and transmissions on glossy and diffuse
surfaces could be included using the same approach described above. Instead of using the
perfectly specular directionsEr andEt, we could then use a set of randomly chosen directions,
as done in distribution ray tracing [Coo84] or path tracing [Kaj86]. Such approach, however,
can be very time consuming if a considerable number of directions is necessary, thus a better
solution should be found. An easy way to approximate glossy or blurred reflections is to

66 CHAPTER 4. RENDERING GROOVES

Figure Time Memory
4.28left 21 16
4.28middle 24 16
4.28right 251 16
4.29(a) 12 49
4.29(c) 164 49
4.29(b) 290 49
4.29(d) 382 49
4.30 258 283
4.31left 81 679
4.31bottom right 89 679

Table 4.3: Performance of our method for each figure. Rendering times are in seconds and
memory consumptions in kilobytes.

Figure 4.28: Image corresponding to top middle left of Figure4.25(left) after including inter-
reflections(middle) and refractions (right).

enlarge the footprint before calling the algorithm, as donein [Ama84], but the obtained results
might not be very realistic then.

4.3.4 Results

This sections presents the results of the extension of our general method to include indirect
illumination. The rendering timings and memory consumption for the different examples are
shown in Table4.3.

First, Figure4.28shows the grooved sphere of Figure4.25prior to and after including in-
direct illumination. Left image shows the original image with direct illumination only. Middle
image then includes inter-reflections computed using our recursive approach, which results in
a brighter surface. This is especially perceptible betweenthe two original highlights of the
left image. Right image, instead, includes refractions due to a glass-like material associated

4.3. INDIRECT ILLUMINATION 67

(a) Direct illumination

(b) Refractions

(c) Reflections

(d) Reflections and refractions

Figure 4.29: Glass with grooves in the outside, rendered by considering different kinds of
light-object interactions.

to the sphere. In this case, ray tracing is enabled to also capture the illumination coming from
the grooves in the back of the sphere as well as the textured box around the sphere. This
considerably increases the rendering time of the image, since multiple bounces are computed.
Note, however, that ray tracing is performed using a single sample per refracted footprint,
i.e. without using supersampling. These images demonstrate the importance of taking into
account indirect illumination on a grooved surface, especially for specular objects such as the
ones used in this example.

In Figure 4.29, we show a similar scene but with a grooved glass, rendered bytaking
into account different kinds of light-object interactions. Figure4.29(a)first shows the glass

68 CHAPTER 4. RENDERING GROOVES

rendered with only direct illumination, while Figure4.29(c) includes indirect illumination
due to inter-reflections, mainly coming from the floor and thewalls. In Figure4.29(b), we
have considered transmitted indirect illumination using an index of refraction of 1.5, and
Figure4.29(d)finally shows the combination of both reflection and transmission. As in the
previous case, the high rendering time (see Table4.3) is basically due to the ray tracing of the
scene, in order to account for the reflection and transmission coming from the other surfaces.
If we disable ray tracing and only consider the inter-reflections and transmissions coming
from the same grooves of the glass, the rendering time is 17 seconds.

Next, in Figure4.30, we can see a scene composed of many stone columns over a tiled
floor. The hieroglyphics on the columns have been mainly modeled using the first cross-
section, and the tiles and fracture of the floor, using the third one (see top left of the figure).
Some hieroglyphics are simulated by perturbing their cross-sections along the paths, as in the
snakes. Wider details such as circles or triangles are better simulated using a contouring path
and then using the second cross-section. Bump map is also applied to simulate erosion on the
columns, by modifying the surface normal before applying our method. The floor has specular
properties and includes inter-reflection, and ray tracing is then used to capture the reflections
of the columns onto the floor as well as the shadows between thedifferent objects. As can be
realized, the grooves on the floor and the columns are correctly simulated independently on
their distance to the camera.

In the bottom left of the figure, we can see a closer view of someof the hieroglyphics from
the nearest column, where bump mapping has been removed to better see the grooves. The
view shows some grooves with highly curved paths that have not been properly simulated in
this case. Notice that the upper groove is correctly simulated because of its smooth curvature,
but the two lower, highly curved grooves exhibit shadowing mistakes. These mistakes are
due to our local approximation of the paths by means of straight lines, and is related to our
assumption or restriction to non-highly curved paths (see the introduction of this chapter).
In order to solve this, the curvature of the grooves should betaken into account during their
processing, especially during the computation of the occlusions, but further research is still
needed in this sense.

Finally, in Figure4.31we use our method to simulate a more complex scene, consisting of
a house and its surroundings. The underlying mesh geometry only contains 88 polygons (see
top right image), and almost all the surfaces contain grooves. Such a scene entirely modeled
with geometry would consist of at least≈200,000 polygons. Ray tracing is used to capture the
shadows and reflections between the different objects. Concerning reflections, these mainly
appear on the swimming pool and on the windows, the latter being modeled with protruding
grooves using the third cross-section. Bottom right image corresponds to another point of
view, which shows how these grooved surfaces are correctly rendered at grazing angles too.
The roof and the chimney are simulated with intersected ends, as can be observed.

These scenes represent some examples of the kind of situations where our method could
be applied. Grooves and similar features are very common in real world scenes, thus many
applications could profit from the methods proposed here.

4.3. INDIRECT ILLUMINATION 69

Figure 4.30: Scene composed of several grooved surfaces, showing different special groove
situations, smooth transitions from near to distant grooves, and inter-reflections (on the floor).
Bump mapping is included to simulate erosion on the columns.

Figure 4.31: Left: complex scene fully modeled and renderedwith our approach. Top right:
underlying mesh geometry. Bottom right: another point of view.

70 CHAPTER 4. RENDERING GROOVES

Concerning the complexity that results after including indirect illumination, it strongly
depends on the number of light bounces that are considered, i.e. the maximum depth recur-
sion ord. According to this value, we have found that the complexity of the algorithm is
O(gdfd) · Odir, whereOdir is the cost of computing the direct illumination at each recursion
level. Replacing this cost with the ones obtained for the original method (see Section4.2.5),
this results in a time complexity ofO(gdfd(n + m + l)) for isolated and parallel grooves and
O(gdfd(n + m + lf fg)) for the special situations like intersections or ends.

Chapter 5

Interactive Modeling and Rendering of
Grooves Using Graphics Hardware

For many applications, the interactive rendering of the objects and their surface detail may
be of great interest, especially in walk-throughs, games, or pre-visualization tools before a
complex rendering setup. Our previous methods presented inChapter 4 allow the rendering
of scratched and grooved surfaces in relatively short times, but each image may take several
seconds to be rendered, which is far from being interactive.Since current programmable
graphics hardware tend to out perform most CPU-based algorithms, in this chapter we pro-
pose to implement our methods on this platform. For this, we present two different solutions:
a first approach that focus on the interactive rendering of the grooves in texture space [BP07],
and a second one that allows their rendering as well as modeling in object space. Both ap-
proaches are based on a representation of the grooves similar to the one proposed in Chapter
3, but in the first case, these are transferred to the graphicsunit (GPU) as a set of textures, and
in the second, as a set of quads over the object surface. Concerning the second method, we
show its feasibility and we present some preliminary results that demonstrate its advantages
with respect to the first one, such as its interactive editingof the grooves or its fast render-
ing times. Although these methods are not as general as our software-based solutions, we
achieve real-time frame rates on current available graphics hardware and offer several advan-
tages with respect to image-based techniques [WWT+03, POC05, Tat06], such as an accurate
representation of the detail or a low memory consumption.

5.1 Rendering Grooves in Texture Space

In order to render the grooves in texture space, our first approach represents and transfers
groove data to the GPU by means of a set of textures. A fragmentshader is then proposed
to evaluate this data and render the grooves in a single rendering pass. As in the previous
chapter, isolated grooves and special cases like groove intersections or ends are treated with

71

72 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Groove elements

Cross-sections

Materials

path.A
path.B
path.C

priority
next

C1.b
C1.w
C2.b

R G B A
power

R G B A diffuse

specular

C2.w

Data textureGrid texture

Figure 5.1: Grooves are represented by means of a grid texture (left), which defines the posi-
tion of the grooves onto the surface, and a data texture (middle), which contains the different
groove elements (including the paths), cross-sections andmaterials. Right: detail of the prop-
erties stored in the different data texels.

different approaches. For the latter, however, we present anew approach similar to the ray
tracing of CSG primitives that efficiently computes their visibility. All this results in a method
that is fast and enough general to handle all kinds of groove situations.

5.1.1 Groove Textures

The information and structures concerning the grooves are stored in a set of textures in order
to properly transfer them on the GPU. For this purpose, two textures are used: a 2D texture
that plays the role of the grid (similar to the one used in Section 4.1.1) and a 1D texture
that sequentially contains all the data about the grooves, such as paths, cross-sections, and
materials (see Figure5.1).

In the grid texture, each texel represents a cell that may be traversed by a set of grooves.
The list of grooves crossing a certain cell is stored in the data texture, while the cell only
stores a reference to this list. When no groove crosses the cell, a null reference is then stored.
Unlike our original grid, note that not only the crossing paths are considered in this case, but
the entire grooves.

In the data texture, we first store the different lists of grooves associated to the grid tex-
ture. Each groove is here represented by a groove element that contains all the information
necessary for the groove, consisting of: the path, the associated cross-section and material, a
priority value, and a flag for the next groove element. Concerning the path, we assume that
paths are modeled by means of piecewise lines in this case. These are preferred to curved
paths because they require less computational effort and storage room. Furthermore, they can

5.1. RENDERING GROOVES IN TEXTURE SPACE 73

be treated as a set of straight line segments and corners, which means that, at a given cell, the
local path of a groove may be specified by a single line equation. If the current cell contains
a corner, we then specify this by means of two groove elementswith straight paths forming a
corner between them. Paths are stored in the same groove elements using their implicit line
equations, which only require three floating-point values.

With regard to cross-sections and materials, these are usually shared by several grooves
at the same time, thus they are stored apart (see Figure5.1). In the groove element, we then
simply store two references to their corresponding positions in the texture. The priority value
is only needed when the cell contains more than one groove. This value will be used for the
evaluation of intersected ends, isolated ends, and corners, and is explained in more detail in
Section5.1.6. The flag for the next element finally indicates if the next groove element in the
texture belongs to the same grid cell or not. All this information concerning a groove element
may be stored in a single texel along with the path, as depicted in Figure5.1. The data texture
is defined as a four-component floating point texture (RGBA32). First three components are
used to store the implicit line equation of the path, and the fourth one (alpha) is used for the
rest, by packing the different values. For the cross-section and material references we use
the highest three bytes: two for the cross-section and one for the material. This allows us to
access up to 1024 cross-sections of 128 points each one, for example, and 256 materials (see
below). The priority and the flag are then packed in the lowestbyte, although only three bits
are required for them.

Following the different groove elements, the data texture contains the cross-sections and
the material properties. Cross-sections are specified as lists of 2D points with floating-point
coordinates, which means that every texel may store a pair ofpoints, i.e. one coordinate per
component. Since each cross-section has a different numberof points, this number is also
stored at the beginning of each cross-section. In order to represent cross-sections using and
odd number of texel components, we can store this number intothe W coordinate or height
of the first point (C1w

), which is always zero. For the materials, their propertiesare packed
using a single texel. For a common Phong-like BRDF we pack the diffuse and specular colors
in the first two components of the texel, as RGBA8 colors, and the specular power in the third
component. For other kinds of BRDFs, other properties could also be included in the fourth
component of the texel or even in the third one along with the specular power if necessary.

After storing the cross-sections and materials, their starting positions into the data texture
are kept for its later use on the GPU shader. These positions allow us to access the different
cross-sections and materials by means of relative positions, which require less precision than
absolute positions and can be packed into a single texel component of a groove element,
as seen before. Since 1D textures are very limited in resolution, the data texture will be
transferred to the GPU as a 2D texture as well. This means thatall the different positions will
need to be transformed to 2D texture coordinates before accessing the texture.

The different packings of groove elements, cross-sections, and materials have been per-
formed with the objective of reducing to a minimum the numberof texels needed for the data
texture. This reduction represents less memory storage as well as less texture accesses at

74 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

rendering time, which is one of the most expensive operations in a GPU shader. Notice that
perturbations along the grooves have not been considered inthis implementation. If perturba-
tions are necessary, they could be stored as piecewise functions in the data texture and then
a reference to their position should be stored on each grooveelement as well. In order to
evaluate them, we should later determine the path length at the current position and read the
corresponding perturbation.

5.1.2 Finding Grooves

In our software implementations, current grooves are foundby checking several cells on the
grid according to the footprint shape, groove dimensions, or view and light directions (see
Section4.1.1and Section4.2.1). This strategy is difficult to be ported to the GPU because of
the inherent computational cost in terms of texture look-ups, thus we here propose a simpler
approach. As explained later, footprint shape does not needto be considered because we
will only sample at the pixel center in this case. Furthermore, the width of the grooves is
directly considered by the cells by means of storing the listof crossing grooves instead of the
paths. If grooves do not protrude from the surface, this means that current grooves can be
found by simply checking the cell at the pixel center. In the case of grooves with protruding
parts, which may be seen or may cast shadows far from their bounds (width), the current
approach is not sufficient. For such cases, we propose to use akind of mip mapping strategy
by storing different resolutions of the grid texture. Then,during the rendering stage, we select
the appropriate texture according to the view and light angles. Another solution could be the
traversal of the grid texture in the given view or light direction, but this may require several
texture look-ups.

5.1.3 Rendering Grooves

In order to evaluate the grooves at the current cell, our software sampling strategies based on
line segments or polygons require lots of computations or are not either feasible for a GPU
implementation. In this case, we have thus decided to use a simple point sampling strategy.
This only consists in sampling the grooves at the current pixel or footprint center, which
greatly simplifies our method.

In Figure5.2, we show the main structure of our fragment shader algorithm. The process
starts by retrieving the corresponding cell from the grid texture at the current texture coor-
dinatesuv, representing the footprint center. If no reference to a groove element is found,
we evaluate the BRDF using the surface normalN and material propertiesmat set at the
beginning. When the current cell is crossed by any groove, we then retrieve the data for the
first groove and evaluate the current visible facet. In this case, we also propose a different
approach for isolated grooves and for special situations like intersections or ends. Once the
visible facet has been determined,mat andN are set according to this facet and returned by
the corresponding procedure to compute its BRDF.

5.1. RENDERING GROOVES IN TEXTURE SPACE 75

Using surface attributes→ mat,N
Read cell from grid texture (uv) → ref groove

if (ref groove 6= −1)
Read data for 1st groove from data texture (ref groove)

→ path, ref prof , ref mat , next flag , etc.
Read cross-section points from data texture (ref prof)

→ profile

if (next flag = 0)
Process Isolated Groove (path, profile) → mat,N

else
Process Special Case (path, profile) → mat,N

endif
endif

Compute shading (mat,N) → color

Figure 5.2: Pseudocode of fragment shader for rendering grooves.

5.1.4 Isolated Grooves

The pseudocode for isolated grooves can be found in Figure5.3. The computations are di-
vided in two main parts: visibility and shadowing. In the first one, the visible facet is found by
projecting the 2D cross-section onto the surface followingthe view direction. The projected
facet that contains the pixel center (uv) then represents the visible one. Like in Section4.2.3.3,
masking is taken into account by checking the order of the projected points onto the surface
base line. In addition, pixel center is previously transformed into cross-section space ac-
cording to its distance from the current groove path too. Such distance is computed as in
Equation (4.2), but using the path’s implicit equation stored at the current groove element.

For shadowing, the visible point is reprojected onto the surface, if necessary, and the pro-
cess is repeated using the light source direction. If a different facet is found (k 6= k′) the point
is in shadow; otherwise, the material of the facet is retrieved and its normal is computed. Such
normal can be easily determined using the 2D coordinates of the facet and later transformed
into 3D texture space using its path binormal, also obtainedfrom its equation.

In our current implementation, when several grooves are found on the same cell, these are
automatically treated as special cases using the algorithmof the next section. If such grooves
are isolated, we could also treat them using the previous algorithm by sequentially processing
the different cross-sections, for example. Another possibility would be to treat them as a
single groove by first merging their profiles, like in Section4.2.3.1. In our case, however,

76 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

// Visibility
Project cross-section and find visible facet (profile, uv , view dir) → k

// Shadowing
Project point from the facet to the surface (k , uv , light dir) → uv′

Project cross-section and find illuminated facet (profile, uv ′, light dir) → k′

// Set new material and normal
if (k 6= k′) // if shadowed

mat = 0 // black material
else if(k > 0 and k < prof points) // if facet belongs to the groove

Read material from data texture (ref mat) → mat
Compute normal of visible facet and transform to 3D

texture/tangent space→ N
endif

Figure 5.3: Pseudocode of functionProcess Isolated Groove.

these approaches have not been considered in order to not do further complicate our shader.

5.1.5 Special Cases

At groove intersections and other special cases, their complex geometry requires a different
strategy for the visibility operations. This strategy mustbe able to handle all kinds of situa-
tions, with any shape, or any number of grooves, and to allow the evaluation of each groove
independently of the others as much as possible. One method that fulfills this criterion and
can be adapted for our cases is the use of Constructive Solid Geometry (CSG).

If we take a look to the formation process of scratches and grooves, we can see that these
are generated by removing material from some areas (grooves) and accumulating material to
other ones (peaks). In CSG, we can represent the same process using a set of primitives and
regularized boolean operations, as shown in the left of Figure 5.4. The most interesting part,
however, is that visibility can be easily evaluated by tracing rays on the corresponding CSG
tree [GN71, FvDFH90]. This offers the advantage that each primitive can be independently
intersected with the ray and the result be combined using simple 1D boolean operations. In
the right of Figure5.4, we can observe how the ray segments or spans resulting from the
intersections of the ray with each primitive are combined according to the corresponding
boolean operation (a subtraction in this case). The visiblepoint is then determined as the first
point of the resulting segments, as can be seen in the bottom right.

In order to apply this method, the first step is to determine how to build our special situ-
ations of grooves using CSG. For this, we will focus here on common groove intersections,
while the other situations will be addressed in Section5.1.6. As we have seen in Figure5.4,

5.1. RENDERING GROOVES IN TEXTURE SPACE 77

Eye/light ray

1

3

1

2

3

Visible point

2
1

1

1

1

Figure 5.4: Left: Groove intersections can be represented using CSG by subtracting the vol-
ume of each groove from the basic flat surface. Right: Visibility can be easily determined by
tracing the ray through each volume and combining the obtained 1D segments.

if grooves do not protrude from the surface, groove intersections can be easily built by sub-
tracting the grooves from the flat surface (difference operation). If such grooves also protrude
from the surface, the corresponding peaks must be added as well (union), but then they should
be added just before the subtractions for a correct result (see Figure5.5). Furthermore, we
must subtract not only the part of the groove that is strictlyunder the base surface, but the
whole wedge extending above the peaks. When computing the visibility, this means that we
should first intersect the ray with the surface and the protruding parts of the grooves and unify
the obtained segments. Then, we should compute the ray intersections with the penetrating
parts and remove these segments from the previous ones.

In practice, the different additions and subtractions can be computed at the same time for
each groove. During visibility computation, this is achieved by sequentially classifying the
different intersection segments of the ray as additions andsubtractions (see Figure5.6). If the
ray starts hitting an external facet (top groove in the figure), it sequentially adds and subtracts
material for each intersection with the groove, but the firstsegment is not classified. If the
ray instead starts hitting an internal facet (bottom groovein the figure), it also sequentially
adds and subtracts material, but the initial segment of the ray is classified as a subtraction
segment then. This is done to simulate the subtraction of thecentral wedge extending above
the peaks, as stated before. Once computed the different raysegments for the two grooves, we
combine them using a special operation that works in the following way. At points where one
of the segments is a subtraction, the result is always a subtraction. At points where there are
two additions or one addition and no operation (non-classified segment), the result is then an

78 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

=

Figure 5.5: When computing groove intersections with CSG, alladditions (peaks) should be
performed before any subtraction (grooves). The subtracting parts should also be extended
above the peaks in order to correctly remove the intersecting peaks.

2
4

1

Eye/light ray

4

3

12

Subtracting segmentAdding segment

3

1st

2nd

result

1st

2nd

Visible point

Figure 5.6: During visibility computations, we directly classify the ray segments as additions
(green segments) or subtractions (red segments). These segments can be directly combined in
a single step using a special boolean operation.

addition. Finally, if the two segments are not classified, the result is a non-classified segment
too. This procedure is repeated for every groove present in the current cell, combining the
segments obtained for the current groove with the ones from the previous operation, as shown
in the algorithm of Figure5.7. At the end, the visible point of the intersection is the first
addition point found of the final segments (see right of Figure5.6).

Concerning the computation of the intersection points between the ray and the different
grooves, we use an approach similar to the one used for isolated grooves. In this case, however,
all the intersections must be taken into account, thus masking is not considered. In order
to classify the ray segments, the definition of external and internal facets is currently done
in an approximate way. In our current implementation, all the facets above the surface are
considered as external, and the rest are considered as internal, which correctly works for the
kinds of cross-sections we are using. For a more general detection process, we should start
on both ends of the cross-section towards the center and classify every facet as external until
the orientation of the facet is downwards, i.e. the height ofits first point is greater than the

5.1. RENDERING GROOVES IN TEXTURE SPACE 79

// Visibility
Find intersection points for 1st groove (profile, uv , view dir) → intSegs

while next flag 6= 0
ref groove = ref groove + 1
Read data for next groove from data texture (ref groove)

→ ref prof , next flag , etc.
Read cross-section points from data texture (ref prof) → profile

Find intersection points for this groove (profile, uv , view dir) → intSegs′

Combine (intSegs, intSegs′) → intSegs
endwhile

// Get visible facet
Get first point (intSegs) → k

Figure 5.7: Pseudocode for visibility computations of function Process Special Case.

height of its last point. This classification could also be precomputed and stored along with
the cross-section points, if desired, which would require asimple flag per point.

5.1.6 Ends and Other Special Cases

For the other special cases such as intersected ends, isolated ends, or corners, we propose a
variation of the previous approach that consists on the use of “priority” flags. Priority flags
are associated to the facets of the grooves according to the kind of situation, and serve to
produce the end of other non-prioritized facets when traversing them. In an intersected end,
for example, some facets of the non-ending groove are prioritized with respect to the groove
that ends. These facets are the ones that remain on the opposite side of the end, that is,
the non-intersected facets (see left of Figure5.8). When evaluating the ray intersections,
the intersection segments from a prioritized facet will always take precedence over the non-
prioritized ones, independently if they are adding or removing material. This will produce
the complete visibility of the prioritized facets and the simulation of the ending for the other
groove.

Concerning isolated ends, these are modeled as a kind of intersected end too, but giving
priority to all the facets of the ending groove as well, as shown in the middle of Figure5.8.
When two intersecting grooves have facets with priority, themain difference is with respect
to the classification of the first ray segments, which must be inverted. In this case, if the
ray first intersects an exterior facet, it is classified as a subtraction segment, and when it first
intersects an interior facet, it is not classified. The obtained segments can then be combined
as usual, taking into account if they add or subtract material. Such inverse classification is

80 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

priority priority

priority

priority

priority

Figure 5.8: Special cases related to groove ends are treatedby giving priorities to some facets
of the grooves. When intersecting, prioritized facets prevail over the non-prioritized ones and
produce the end of these later.

performed to obtain the appropriate shape of these ends, andthis also holds for corners. The
main difference is that, at corners, the prioritized facetsdepend on the side where they lie, as
can be seen in the right of Figure5.8. If facets lie on the external side of the corner they are
labeled with priority, independently of the groove where they lie.

All these different priority flags are stored in the data texture, as stated in Section5.1.1.
Since priorities always affect one side or another of the groove, we do not store one flag per
facet, but a single value that identifies which sides of the groove have priority. Such value is
stored at the groove element, and four states are used: no priority, priority on the left, priority
on the right, and priority on both sides. According to this value, the cross-section facets are
then labeled depending on the side where they lie.

5.1.7 Results

Our method has been implemented as a fragment shader using Cg and the OpenGL API. The
rendering times for the next images are included in Table5.1, and correspond to the shader
running on a GeForce 8800. As can be seen, this table also includes the memory consumption
due to our different textures as well as their resolution.

In Figure5.9 we can see some first results of our method for a flat plane consisting of
different groove patterns. For these patterns, the same cross-section have been used, as shown
in the top left of the first image. This corresponds to a scratch-like profile consisting of two
peaks and a central groove. Observe that the images show masking and shadowing effects and
different special situations like groove intersections, ends, or corners. Our method allows the
correct rendering of all these effects at real-time frame rates, as shown in Table5.1. Further-
more, our textures require low memory consumption. The resolution of the grid textures used
in these examples goes from 60x60 to 150x150 (see Table5.1), and data textures are even
lower, with a mean resolution of 60x60.

As in our software approaches, the resolution of the grid texture only determines our
efficiency when finding if the current point contains a certain groove or not. In general, when

5.1. RENDERING GROOVES IN TEXTURE SPACE 81

Figure Frame rate Memory Textures resolution
5.9top left 895.5 72 60x60 / 61x61
5.9top middle 621.7 158 150x150 / 67x67
5.9bottom right 318.7 131 150x150 / 53x53
5.10bottom left 484.5 8 25x25 / 16x16
5.10bottom right 109.4 8 25x25 / 16x16
5.11bottom left 352.5 52 60x60 / 49x49
5.11bottom right 425.6 8 25x25 / 16x16
5.12top left 127.0 100 100x100 / 62x62
5.12top middle 73.7 100 100x100 / 62x62
5.12bottom right 169.1 100 100x100 / 62x62

Table 5.1: Performance of our method for each figure, with thenumber of rendered frames
per second, the memory consumption (in kilobytes), and the resolution of the two textures.

Figure 5.9: Flat plane with different groove patterns.

less grooves are contained in the cells, more faster becomesthe shader. Concerning the data
texture, its resolution depends on the number of groove elements, cross-section and materials.
Its resolution thus depends on the resolution of the grid andon the pattern or properties of the
grooves.

Figure5.10shows a similar flat plane with a groove pattern consisting ofa set of inter-
secting grooves. In this case, different cross-sections have been used for each image, which
are included in their top left. Such kind of pattern can be efficiently rendered with very low
resolution textures, where its memory consumption is nearly imperceptible (see Table5.1). In

82 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure 5.10: Flat plane with different cross-sections for aset of intersecting grooves.

the bottom right image, the viewpoint is placed very close tothe surface, which shows how
the quality of the visualization holds even for close-up views.

In Figure5.11, we can see some other similar patterns applied to a non-flat surface, here
represented by a sphere. In the top row, we have used a set of parallel grooves and then
applied different cross-sections and material propertieson them. The middle image has been
rendered from a viewpoint pointing towards the top of the sphere, and the right image shows
the underlying mesh. With our method, the visibility and shadowing of the different grooves
can be properly simulated without modifying the surface geometry, as can be observed. In the
bottom row, we have applied two different groove patterns that include ends and intersections.
In this case, the image on the right shows the same sphere usedin the middle image but
rendered from a closer viewpoint. This close-up corresponds to the selected region in the
middle image.

Figure5.12then shows an example of a more complex scene composed of several grooved
surfaces, which represents a variation of the house model used in Figure4.31. For these
surfaces, we have used the same groove pattern as in the top right image of Figure5.9properly
tiled on them. Then, to simulate the bricks, some of the facets use the material properties of
the base surface (bricks) and others the properties of the grooves (mortar). This is especially
noticeable in the bottom right image, which represents a close-up of the region shown in the
bottom middle image too. Such images as well as the ones on thetop show different parts

5.1. RENDERING GROOVES IN TEXTURE SPACE 83

Figure 5.11: Curved grooved surface rendered with our GPU program under different viewing
and lighting conditions. Grooves use different materials and cross-sections (top) as well as
different patterns (bottom). The underlying mesh is shown over the top right sphere.

Figure 5.12: House rendered in real-time from different viewpoints using our approach to
simulate the bricks. The underlying mesh is shown in the bottom left.

84 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure Our method Relief mapping
5.13left 485.0 1064.0
5.13middle 719.6 771.2
5.13right 1304.3 677.8
5.14left 323.2 1165.9
5.14middle 128.7 1439.3
5.14right 128.7 1440.7

Table 5.2: Performance of our method and relief mapping in frames per second.

of the house rendered from different viewpoints, the top right one corresponding to its inside.
Since several groove surfaces must be processed and these contain many grooves, the frame
rates are much lower in this case (see Table5.1). Nevertheless, the timings are fast enough
and the real time is not lost.

Notice that indirect illumination has not been still addressed in this method. This illu-
mination, however, could be easily included using the same approach than for visibility and
shadows. It would basically consist on following the different bounces of the rays, by tracing
them through the grooves as before, but in the reflection or refraction direction.

In order to evaluate the performance and accuracy of our method, we finally compare
our method with the relief mapping technique [POC05]. First, Figure5.13compares the two
methods for different viewing angles. For this comparison,we have used the spiral groove
of Figure 5.9 and the cross-section shown in the top left. The resolution of our textures
is 100x100 for the grid and 50x50 for the data, while the resolution of the relief map is
512x512. From left to right, the viewing angle is changed, which affects the performance of
both methods (see Table5.2). As can be observed, the performance of our method increases
with the viewing angle, because the number of fragments to beprocessed decreases. On the
contrary, the performance of the relief mapping technique decreases, because the number of
texels that must be evaluated during the ray tracing increases.

In Figure5.14, the same surface has been rendered from closer distances. As shown in
the bottom left, the current resolution of the relief texture is not suitable for such a closer
viewpoint, since the artifacts produced by the regular sampling of the detail are clearly visi-
ble. Using a 1024x1024 texture, these artifacts become lessperceptible, but its performance is
considerably decreased from 1165.9 (see Table5.2) to 304 frames per second. This resolution
has been used for the closer views of the bottom middle and right images, where shadows
are also included. For these images, the performance of relief mapping is much better de-
spite the increase in the resolution, because the number of processed texels decreases at closer
views. Nevertheless, its quality is lower compared to our results (top row), which becomes
more noticeable when the pattern contains high frequency changes (right). In the right, a more
squared cross-section has been applied to the groove, producing more high frequency changes
with respect to its height/depth. Note that if the base of thecross-section were further elon-
gated, the obtained detail would then result in a non-heightfield, which can not be correctly

5.1. RENDERING GROOVES IN TEXTURE SPACE 85

Figure 5.13: Comparison between our method (top) and relief mapping (bottom) for different
view angles.

Figure 5.14: Comparison between our method (top) and relief mapping (bottom) for different
distances and cross-sections.

represented with this technique. In order to handle this kind of grooves, the extension of relief
texture mapping for non-height fields could be used [PO06], but this would then require an
extra texture to store the different depths at each texel.

Finally, concerning the space and time complexity of our method, we have found the fol-

86 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

lowing results. In the worst case, the storage of the two textures has a space complexity of
O(nm) for the grid texture andO(g(nm + f)) for the data texture, while its precomputation
is achieved inO(g(nm(n+m)+f)) time. Then, the rendering of the grooves is performed in
O(f) time for isolated grooves andO(gf) for the rest of situations. As expected, the compu-
tational complexity is greatly reduced compared to our software solutions (see Section4.2.5).
This, among others, is due to the use of a simple point-sampling strategy that do not require
the evaluation of polygons or line samples, or the consideration of a single light sample, as
stated in Appendix B.

5.2 Rendering Grooves as Quads

In our previous approach, the use of textures for the storageof the geometry and properties of
the grooves introduces some important limitations. A first limitation is that textures need to
be precomputed, which greatly difficult the editing of the grooves or their properties. Another
limitation is that these textures must later be accessed at run time in order to recover the data,
and this introduces a considerable decrease in the performance of our shader.

To solve these limitations, this section proposes a different approach. Instead of using a
set of textures, grooves are represented as a collection of quads onto the object surface, and
the different data concerning the grooves are transferred as vertex attributes. The rendering
of the grooves is computed with a fragment shader, as before,but only processing a groove at
the same time. This kind of approach requires the evaluationof intersections and other special
cases by means of multiple rendering passes, but the shader is considerably simplified in this
way. Such kind of simplification along with the reduction of the number of texture look-ups
results in a faster rendering of the grooves. In addition, asno textures need to be precomputed,
grooves can be easily edited in an interactive way.

For this second method, although its full implementation isnot yet available, we have
obtained some preliminary results that demonstrate its feasibility and benefits. We present
them in the following sections.

5.2.1 Modeling Grooves

In order to model a groove, the user first have to define its pathby selecting a set of points over
the object surface. Each pair of points represents a path segment, and around each segment,
we create a quad. The orientation of the quad is determined bythe surface normal and its size
is given by the width of the associated cross-section, whichcan also be selected or edited by
the user. The result of such procedure is depicted in Figure5.15. Notice that paths are modeled
in object space in this case, while cross-sections are specified in world space coordinates.

In our current implementation, we have only focused on planar surfaces for simplicity.
In order to handle curved surfaces, the previous process will probably require the projection
of the previous path segments onto the surface mesh. The obtained segments should then be

5.2. RENDERING GROOVES AS QUADS 87

Figure 5.15: Grooves are modeled as a collection of quads over the object surface. Their
properties are then specified as vertex attributes.

subdivided for their adaptation to the surface geometry, thus obtaining a set of quads for each
original segment.

5.2.2 Transferring Groove Data

The different properties of the grooves, such as their cross-section or material, are transferred
to the shader as vertex attributes of the quads. These attributes are temporally stored using the
available GPU registers, which may represent RGBA32 values too. For the cross-section, each
pair of points may be stored in a single RGBA32 value, as seen inSection5.1.1. According
to this, the number of required registers will be half the number of points, but since cross-
sections usually consist of few points, a small number of registers is actually needed. If not
enough registers are available, however, they could also bepacked using less precision per
coordinate or transferred by means of a texture, as before. Concerning the material, diffuse
and specular colors can be packed as RGBA8 values and stored along with the power in a
single RGBA32 value, as also stated in Section5.1.1. This requires its later unpacking in the
shader, thus we better prefer to transfer each color in a single register without any packing,
which only supposes an extra register. The specular power can then be passed through the
alpha component of the specular color.

In this case, the path equation or the currentuv position are not needed by the shader for
the visibility computations. It only requires the 1D distance between each point and the center
of the quad, here representing the local path. For the two vertex points lying on the left of the
path, we assign the negative width of the cross-section to each vertex, and for the other two,
the positive width. The distance will then be automaticallycomputed during the interpolation
of this value at the GPU.

88 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

5.2.3 Rendering Grooves

As in our previous approach, the visibility and shading of the grooves are computed by means
of a fragment shader. For each fragment belonging to the quads, the shader evaluates the
data stored at the input registers and computes the corresponding operations. In this case,
however, only the data for the current groove are available for each fragment, which means
that intersections and other special cases must be handled using multiple rendering passes. At
each fragment, the basic idea is to compute the visibility ofthe current groove (associated to
the current quad) and combine it with the visibility computed for the previous groove, if any.
Such visibility is computed and combined as in Section5.1.5, by means of our CSG-based
approach. The only difference is that the distinct grooves overlapping at a certain point will be
sequentially processed using several rendering passes. This is achieved by performing depth
peeling [Eve01].

Depth peeling is a technique that produces a depth-sorted sequence of fragment layers by
rendering the scene in several passes. At each pass, the depths of the incoming fragments
are compared with the previous depth layer by means of commondepth tests. The closest
fragments that pass the depth test are then selected for the current layer, thus resulting in a
layer with the next nearest fragments seen from the viewer. In order to apply this technique,
we must first take into account that fragments of different quads must result on different
depths to be correctly sorted. When the quads are created, this can be easily solved by slightly
displacing each quad from the surface using a distance or height offset. Such offset is selected
so that it is sufficiently big to avoid depth collisions between the grooves and the surface, and
sufficiently small to be imperceptible when viewed at grazing angles. For the peeling process,
the algorithm of Figure5.16is then applied. First, depth and color buffers are initialized by
rendering the surface and the rest of the scene. The quads areprocessed next and from back
to front, in order to avoid processing quads occluded by closest objects. This means that
we actually perform an inverse depth peeling, which only consists in changing the sense of
the depth test operation. For each pass, the quads must be sent to the graphics pipeline and
the different overlapping fragments will be sequentially processed according to the associated
depth. Once all the grooves have been processed, we must later repeat the same process to
determine the shadowed parts as well. Then, at the end, we only need to combine the results
from both operations and output the corresponding reflection color.

The number of required passes for the visibility operationswill depend on the maximum
number of grooves intersecting at a certain point, that is, the maximum number of quads
overlapping at a pixel. Since determining this maximum overlapping for all the pixels can be
tedious, we simply stop each operation when no pixel has beenupdated in the last pass, which
can be easily done using hardware occlusion queries (ARBocclusionquery extension).

One little drawback of the previous peeling process is the need for displacing the quads
using a different offset. If a considerable number of quads have to be rendered, some of the
latest quads may have an important offset with respect to thesurface that could be perceptible
at grazing angles. In order to solve this, one possible solution could be the use of identifiers

5.2. RENDERING GROOVES AS QUADS 89

// Scene pass
Enable depth test with less operation
Enable back-face culling
Draw scene

// Visibility of grooves
Set depth test with greater operation
Enable render to texture for visibility textures
Enable shader
Draw quads
while (any fragment has been updated)

Ping-pong depth and visibility textures
Draw quads

endwhile

// Shadowing of grooves
Recover depth buffer of the scene
Draw quads
while (any fragment has been updated)

Ping-pong depth and visibility textures
Draw quads

endwhile

// Final pass
Disable render to texture
Disable depth test
Enable final shader
Evaluate visibility textures using a screen-sized quad

Figure 5.16: Pseudocode of fragment shader for rendering grooves as quads.

instead of depths. Depth comparisons would be also requiredto handle occlusions due to
other objects of the scene. Nevertheless, quads could be sorted by comparing their identifiers
instead. Each quad would be assigned with a different identifier, and peeling would generate
layers with fragments sorted by their corresponding identifier. In this way, quads would only
require a fixed small displacement from the surface. Moreover, if the current surface can not
block these quads, the surface could be discarded for the depth tests and no displacement
should be even necessary for them.

Concerning the visibility and shadowing operations, the main difference between them
is that shadowing requires the use of the visible point foundduring the visibility operation.

90 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Before computing the visibility from the light source’s point of view, this visible point should
be reprojected onto the surface (quad) following the light source direction and its distance
from the local path be then computed. From the observer’s point of view, the required distance
is directly available in one of the input registers (see Section 5.2.2), but from the light source,
it must be determined. Using the distanced of the current point (the one in the register) and
the heighth of the visible point obtained from the previous operation, we can compute the
new distanced′ with the following expression:

d′ = d − h tan θ′r + h tan θ′i ,

wheretan θ′r andtan θ′i are calculated as in Equation (4.3).
Once both operations have finished, the last pass consists inevaluating their visibility

results to check if the visible point is in shadow or not (see algorithm of Figure5.16). If the
two visible points coincide, the point is illuminated and its color is written in the output color
buffer; otherwise, a black or ambient color is written. Thislast pass is done by rendering a
screen-sized quad with the associated textures and using a simple fragment shader to evaluate
them.

5.2.4 Visibility Textures

During the different rendering passes, the groove fragments must evaluate the visibility of
a possible intersection by taking into account the visibility results from the previous passes,
as stated before. In order to transfer such results from one pass to another, we simply store
the different values into a set of textures and later read them in the following pass. Using
the render-to-texture extension, we can read and write ontothe textures without needing to
copy their contents between the different passes. Then, we perform “ping-ponging” to avoid
reading and writing at the same time, which consists on commuting between two versions of
the different textures.

The visibility data that must be transferred to the next passbasically consists on the ray
segments from the current pass and the reflection color at each possibly visible point. The
ray segments are represented by the different intersectionpoints and a flag indicating if the
starting segment is labeled as a subtraction segment or not (see Section5.1.5). The number of
intersected points that need to be stored will depend on the complexity of the situation and the
cross-sections of the grooves, but usually three or five points suffices. For such points, notice
that only the heights are necessary. Concerning the reflection colors, they are computed at
each intersection point facing the viewer, and are used in cases where the visible point changes
in subsequent passes and its shading must be determined. Since storing their normals along
with the groove material would require a considerable amount of space, we prefer to directly
compute the shading of each new point at the corresponding pass and then transfer this to the
next passes. The number of colors that are then needed is halfthe number of ray segments,
and each is packed as a RGBA32 value.

5.2. RENDERING GROOVES AS QUADS 91

Assuming that we have a maximum of 6 ray segments, altogetherwe require five floating-
point values for the heights and 3 floating-point values for the packed colors, which can be
stored using two 32-bit floating-point textures. The flag forthe first segment only requires a
single bit and can be easily codified with one of the heights. Notice that since two textures are
necessary, we have to use multiple render targets (MRT), which allows the output of several
colors or values at the same time.Also notice that for the shadowing case, the reflection color
does not need to be computed or stored in the visibility textures.

5.2.5 Extending the Quads

When grooves are seen at grazing angles, some of their facets may project out of their bounds
or width, as described in Section4.2.1. In our current method, quads are only created accord-
ing to the width of each groove, thus part of their facets may not be visible in such situations.
In order to solve this, we propose to extend the different quads according to the view/light
angle and the cross-section dimensions, i.e. the projectedheight and depth of the grooves.
This will be easily done in the vertex shader.

When the quads are send to the graphics card, the vertex shaderfirst decides if the current
vertex must be displaced according to the height or depth of the groove. This is done by
checking if the vertex and the viewer are on the same “side” with respect to the groove path:
the side of the current vertex is given by the sign of its associated width value, while the side
of the viewer is given by the sign of the dot product between the view vector and the quad
binormal (E · B). Once the corresponding height or depth value is selected,it is projected
according to the view/light angle as in Section4.2.1. Finally, the vertex position is updated
and the associated width accordingly increased with the same amount.

5.2.6 Ends

In our current implementation, common groove intersections have been treated to demon-
strate the feasibility of the method in handling special situations as well as isolated grooves.
Although the other special cases related to groove ends are not still supported, these could be
treated using the same approach described before. At such kind of situations, the visibility
could also be computed as in Section5.1.6, by means of using priorities for their facets. The
only difference is that, in this case, the priority flags can not be fixed for the facets associated
to a given quad. A quad may produce a corner in one end and an isolated end on the other,
for example, and this would require different priority assignments. In such cases, we should
better locally detect at each fragment which kind of situation is produced and then assign the
appropriate priorities before the visibility computations.

First of all, we should detect if the current fragment corresponds to a groove end or not.
This could be determined by means of the length of the quad at the current point and a given
threshold, from which the fragment would be detected as an end. The length of the quad could
by assigned per vertex and automatically interpolated during the rasterization, as previously

92 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure First method Second method
5.17top 682.8 912.5
5.17bottom 484.8 755.2
5.18top 611.4 1557.2
5.18middle 147.1 1027.0
5.18bottom 103.4 636.7
5.19top left - 1933.0
5.19bottom left - 926.0

Table 5.3: Frame rates of our GPU methods for the rendering ofeach figure.

done for the width parameter; we should only need to assign a length of zero at the beginning
points and the total length of the quad at the ending ones.

Once the end would have been detected, such information could be stored in the visibility
texture for its later processing at the next pass, by means ofa flag for instance. At the subse-
quent pass, according to this flag and the one computed in the current pass, the priorities could
be properly assigned and the visibility finally computed. Concerning isolated ends, they could
be treated using the same approach by placing an extra quad over them. Such quad should be
created as a square quad sized according to the width of the current quad.

5.2.7 Preliminary Results

First, in Figure5.17, we show a comparison between our two hardware-based rendering meth-
ods. The pattern is composed of a set of non-intersecting grooves and the cross-section cor-
responds to a scratch-like profile. As can be seen in the left and middle columns, the quality
of the results is equivalent between the two methods. The rendering times, instead, are con-
siderably lower for the second method, as stated in Table5.3. This may be due to different
factors, such as the few required texture look-ups, the simplification of the shader, or the cor-
rect adjustment of the quads according to the viewing angle.The first two factors allow a fast
execution of the shader, while the second one reduces the number of fragments that need to be
processed, greatly improving the efficiency of the method. This can be observed in the right
column of Figure5.17, which includes the quads generated for the grooves corresponding to
the middle column. Initially, the quads are adjusted to the width of the grooves (top), but
when the surface is viewed from a grazing angle, their width is extended to correctly render
the grooves (bottom). Although no intersection is present in this case, the quads are extended
according to the projected depth of the grooves as well, since no previous knowledge of the
kind of situation is available.

In Figure5.18, we have compared our methods with a pattern consisting of several inter-
secting grooves and a different cross-section. As can be observed in Table5.3, the differences
in rendering time are much bigger in this case, which is mainly due to the large separation
between the grooves. This makes our method more efficient, because less fragments as well

5.2. RENDERING GROOVES AS QUADS 93

Figure 5.17: Comparison between our two hardware-based methods for a surface containing
non-intersecting grooves. Top to bottom: different pointsof view. Left to right: first method,
second method, and corresponding quads.

as shader executions need to be processed. In the previous figure, the differences in rendering
time are smaller partly due to a biggest density of grooves but also to the use of the same
algorithm for isolated grooves and intersections. Since wehave no previous knowledge on the
number of grooves that are present at a pixel, we evaluate thevisibility of isolated and inter-
secting grooves in the same way. If an extra step is added to previously count the number of
fragments per pixel, our timings could be improved by applying a specific shader for the cases
where only one groove is found. Such shader would not need to compute the different ray
segments or to store them on the visibility textures, and could directly compute the shadowed
parts during the same pass too. This counting step could be easily performed using the stencil
buffer, for instance.

Concerning the memory consumption, in the current method it mainly depends on the visi-
bility textures, since the quads and the transferred groovedata does not represent an important
memory cost. The number of visibility textures that are needed is four for the visibility and
shadowing operations and two for the “ping-ponging”. Theirresolution is the same as the
rendered image, which is 640x480 in all these examples. Eachtexture thus takes up 4.7Mb,
and this results in a total amount of 28Mb for the six textures. Such amount of memory is a lot
bigger compared to the memory consumption of our first approach, as can be seen in Table5.1,
but it does not represent a very important memory cost for modern graphic cards. Neverthe-
less, we could reduce the number of textures to the middle by representing the heights with
16 bits instead of 32 or by considering few ray intersectionsper groove.

Figure5.19finally shows some examples of groove patterns that have beenmodeled in an

94 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Figure 5.18: Comparison between our methods for a surface consisting of intersecting
grooves. Top to bottom: different points of view. Left to right: first method, second method,
and corresponding quads.

interactive way, with a different cross-section selected for each one (see left to right columns).
Our method allows the user to quickly create groove patternsand edit the different properties
of the grooves in real time, such as their position, cross-section, or material. Although only
common intersections are handled for the moment, we think that the method will become very
useful when all the cases will be included. Apart from creating new patterns from scratch, our
method could also be used to modify any of the available texture-space patterns, which would
only require its previous transformation into object space. Similarly, the obtained patterns
could be transformed into texture space and use our first method to render the grooves onto
different kinds of surfaces. This could be easily done especially if the modeled surface is
correctly textured so that warpings and distortions are avoided. An advantage of our meth-
ods is that the geometry of the surface neither needs to be tessellated nor modified, thus the
complexity of the resulting surface is never increased.

Concerning the computational complexity of this second GPU method, it is similar to the

5.2. RENDERING GROOVES AS QUADS 95

Figure 5.19: Left to right: different groove patterns interactively modeled with our method.
Top to bottom: two points of view of the obtained patterns.

one obtained for the first one:O(gf). The cost of evaluating our shader isO(f), but after
processing all theg grooves/quads projecting at a given pixel, this results inO(gf). Note
that for isolated grooves, this then results inO(f), as before. With regard to the memory
consumption, it mainly depends on the resolution of the visibility textures, which is the same
as the current image resolution, as stated before. According to this, if the image resolution is
x ∗ y, the space complexity isO(xy).

96 CHAPTER 5. INTERACTIVE MODELING AND RENDERING OF GROOVES

Chapter 6

Conclusions and Future Work

This thesis has focused on the realistic simulation of scratches and grooves in the field of
Computer Graphics, for which we have proposed different solutions. Next, we present the
conclusions and main contributions of our work, and we laterintroduce some possible future
research directions.

6.1 Conclusions and Main Contributions

Scratches and grooves are present in many real-world surfaces and may be characterized ac-
cording to the process that generate them. While scratches are usually considered as surface
defects produced by the contact of other surfaces, grooves include surface details that have
been explicitly incorporated on objects such as manufactured or assembled objects. Due to
their similarities, in this thesis we have focused on both kinds of features. First, in Chapter 2
we have reviewed the previous work concerning the simulation of defects and their processes,
giving special attention to the treatment of scratches. We have then also studied the different
techniques concerning the simulation of more general surface details such as grooves. The
models used to represent scratches and grooves have been introduced in Chapter 3, where
we have proposed a physically-based model to derive the geometry of the scratches from the
description of their scratch process. Based on the obtained geometry, in Chapter 4 we have
proposed a method for the accurate rendering of isolated scratches, which have been later gen-
eralized to handle all kinds of scratches and grooves. Finally, in Chapter 5 we have presented
two different implementations of the method for the graphics hardware that allow the interac-
tive modeling and rendering of such features. The differentmodels and algorithms described
in this dissertation offer new possibilities concerning the realistic simulation of scratches and
grooves, but also for other similar features such as fractures, ridges, and many others. These
also offer several advantages with regard to previous approaches, such as the quality of the
results or the memory consumption, which are obtained with little extra computational effort.

The main contributions of this thesis are detailed next:

97

98 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• We have presented a new physically-based model that allows the obtaining of the com-
plex micro-geometry of scratches from the simulation of their formation process. The
microgeometry is derived from the following set of parameters: the scratching tool and
its orientation, the force applied with the tool, and the material hardness. Such param-
eters offer interesting features because hardness is a realphysical property, thus can be
found in any material science book, the geometry of the tool can be easily modeled,
and the force and the orientation of the tool are easy to test and intuitive enough, which
is satisfying for both the design and the simulation. According to these parameters,
our model derives the scratch micro-geometry by taking intoaccount the real behavior
of the process, which has been determined by analyzing some scratch models in the
field of materials engineering and by performing several “scratch tests” and measure-
ments. This results in a simple but accurate model that, unlike previous methods, do
not require the knowledge or measurement of the scratch geometry and is not limited to
specific cross-section geometries. Furthermore, we can easily model scratches whose
geometry changes along their path.

• We have developed a new rendering method that is able to handle general scratch cross-
sections such as the ones obtained with our derivation model. It is based on an extension
of the method of Ḿerillou et al. [MDG01b], removing the limitations about the cross-
section shape, the number of facets, or their width with respect to the overall cross-
section. Another improvement of this method compared to previous approaches is the
definition of the scratch paths by means of curves instead of using an image. This
representation offers the advantage of being independent on the image resolution or
the viewer’s distance, and accurately provides some of the parameters needed for the
scratch BRDF, such as the scratch direction.

• We have extended the previous rendering method to handle scratches of all sizes as well
as non-isolated scratches, i.e. more than a scratch per pixel. Such method is able to
perform accurate smooth transitions between different geometric scales and to simulate
other similar surface features, like general grooves. We have also proposed a differ-
ent approach that correctly handles special situations like intersections or ends of such
features, and both methods have been extended to include thecomputation of indirect
illumination due to inter-reflections as well as refractions. This results in a general
method that performs a realistic rendering of all kinds of scratched and grooved sur-
faces and solves most of the limitations of previous methods, especially of anisotropic
BRDFs and scratch models, which are limited to pixel-size features and neither handle
special cases nor indirect illumination. We have also shownits benefits with respect
to ray traced geometry or techniques like displacement or relief mapping, such as its
low memory consumption due to the compact representation ofthe grooves or the high
quality of the results without the need for supersampling the pixel.

• Finally, we have presented two implementations for the programmable graphics hard-

6.2. PUBLICATIONS 99

ware. In the first implementation, scratches and grooves areentirely rendered in texture
space, where a new approach have been proposed to efficientlyhandle intersections and
ends on the GPU. With this approach, the rendering of the grooves is performed in
real time frame rates; furthermore, it offers several advantages with respect to previous,
image-based techniques like relief mapping: the two textures needed to represent the
grooves have a very low memory consumption, and our geometric approach can accu-
rately represent grooves even for extremely close views. Our second method proposes a
different approach by representing the grooves as a set of quads onto the object surface.
Since groove data is transferred as vertex attributes instead of being stored as textures,
the location and properties of the grooves can be modeled in an interactive way. In ad-
dition, it results on an even faster rendering of the groovesdue to the reduced number
of texture look-ups and the simplification of the shader.

The different contributions of this thesis have helped to solve many of the limitations
present in the simulation of scratches and grooves in Computer Graphics. Some of the possible
applications of our solutions are: the study of the appearance of manufactured products when
scratched or polished under certain conditions, the training of computer vision systems for the
detection of scratched objects, the simulation of bricked walls or tiled floors for architectural
walk-throughs or games, or even the non-photo realistic rendering of grooved surfaces.

6.2 Publications

During the development of this thesis, the following publications have been produced:

• Śıntesi d’imatges d’objectes amb ratllades (technical report, in catalan) [BP03]

• A Physically-Based Model for Rendering Realistic Scratches (in Computer Graphics
Forum) [BPMG04]

• General Rendering of Grooved Surfaces (submitted) [BPMG05]

• Real Time Scratches and Grooves (inProceedings of XVII Congreso Español de In-
formática Gráfica 2007, accepted) [BP07]

6.3 Future Work

In the context of this thesis, there are still some open problems and possible research direc-
tions. These are discussed next, and are related to the modeling and rendering of scratches
and grooves.

100 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.3.1 Improving the Modeling of Scratches

6.3.1.1 Non-Metallic Materials

For the derivation of the geometry of scratches, our model has mainly considered their be-
havior over metals and alloys, which is basically related tothe hardness property of such
materials. In order to properly derive the scratch geometryfor materials like ceramics (e.g.
glass, porcelain) or polymers (e.g. plastic, rubber), other properties should be considered as
well. One of these properties is elasticity, which is responsible for the shape recovery of the
scratches on such kind of materials. Other kinds of materials that would be interesting to
examine are those related to multi-layered or painted surfaces, which are based on the combi-
nation of different materials.

6.3.1.2 Acquisition of the Scratch Process Parameters

Since the availability of all the parameters concerning a scratch process is not always possible,
one solution could be their acquisition from a set of images of a real scratched surface. This
could be done by fixing the known parameters and determining the rest from the acquired
reflection values, which consists on an inverse problem solution. Depending on the number of
parameters to fit and the kind of parameters, the solution would be more or less complicated to
be found. If the geometry of the tool (tip) is known, force or orientation values could probably
be easy to fit, while on the contrary, maybe a starting set of common tips should be used to
guide the process.

6.3.1.3 Automatic Placement of Scratches

Instead of placing the scratches by hand as currently done, their automatic placement over the
surface could be achieved by taking into account the properties of the object and its environ-
ment. The real distribution of the scratches over a certain surface tend to depend on several
factors, such as the shape of the object, its usage, or the objects that interact with him. If
such parameters are known and can be related to the final scratch distributions, the different
scratches could be automatically placed over the objects according to these parameters.

6.3.1.4 Weathering and Aging Effects

Weathering and aging processes tend to modify the reflectionor shape of real world scratches.
Their reflection properties may be affected by dust accumulation or by stains produced after
rain flow and the corresponding material depositions. On theother hand, the daily use of the
scratched objects may produce the wear and tear of the scratches and their profiles. Such kind
of processes should be considered if a more realistic simulation of the scratched surfaces is
desired.

6.3. FUTURE WORK 101

6.3.2 Improving the Rendering

6.3.2.1 Curved Grooves and Surfaces

Our pixel level approximation of the local geometry by a set of planar faces may result on
undesired effects for highly curved grooves or surfaces. This is especially noticeable with
regard to occlusion effects, as for example, shadows produced by grazing light source direc-
tions. In order to correctly render curved features, we should take into account the curvatures
of the grooves and of the surface during the different computations of our algorithm. For
our GPU implementations, the algorithm has been directly restricted to polygonal grooves for
simplicity and fast computations. In this case, curved paths should thus be considered as well.

6.3.2.2 Silhouettes

On curved surfaces or at the boundaries of the surfaces, scratches and grooves may consider-
ably affect the silhouettes due to the subtraction or addition of material. Such silhouettes are
especially noticeable when seen from close views, and couldalso be taken into account by
considering the surface curvature as well as its boundaries.

6.3.2.3 Antialiasing

Our software methods of Chapter 4 perform antialiasing by means of a simple box filter. For
better antialiasing, other kinds of filtering shapes shouldbe considered, such as a Gaussian
filter for example. The line sampling method that we have proposed, could be easily adapted
to other filters by precomputing a 1D summed area table of the filter and later accessing this
table using the current footprint segments, similar to the approach proposed in [JP00]. For
area sampling methods, like our polygon based method for groove intersections and ends,
such an approach is more difficult to be used, thus further research is needed in this sense.

Concerning our GPU algorithms, no implicit antialiasing is currently performed, because
a point sampling strategy is used. Although multiple samples per pixel could be taken, we
should study if its computational cost is not higher than using line sampling. For groove
intersections and other special cases, line sampling wouldrequire multiple samples, while the
polygon approach is not feasible. Probably point sampling would be the easiest solution for
such cases, but it should be confirmed.

6.3.2.4 Other Surface Details

As stated along this dissertation, our methods could be usedto simulate other surface details
different from scratches or grooves. This is especially true for our GPU ray tracing approach
based on treating the grooves as CSG primitives, which could be applied to any feature able to
be efficiently represented in the same way. In this sense, themost complex part would be the
computation of the ray intersections with these features, but for non-complex features such

102 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

as certain bumps, holes, and similar, it would probably not represent a great computational
effort.

6.3.2.5 Rendering Scratches as a Post-Process

Another interesting research direction would be the directsimulation of scratches and other
defects onto real images. The idea would consist in allowingthe user to simulate different
defects on the images without previously modeling the entire scene. This could be achieved
using a kind of post-processing approach, by first renderingthe scratches on a virtual environ-
ment and then blending the result with the original image. Such a virtual environment could
be automatically detected from the input images probably ifdepth information and some ma-
terial properties were available apart from color information. This kind of method could then
be useful for augmented reality applications, for example.

6.3.2.6 Diffraction and Interference

Wave-like phenomena such as diffraction or interference should be finally taken into account
for scratches and grooves smaller than the wavelength of light. Some works have considered
this kind of phenomena for anisotropic random Gaussian surfaces [Sta99], but a more special-
ized approach is still needed for grooved surfaces with specific distributions of grooves and
cross-sections.

Appendix A

Perception-Based Image Comparison

When comparing synthetic images with the corresponding pictures taken from real objects,
or with other synthetic images rendered with different methods, the most common way is to
simply put them side by side and let the reader to compare themvisually. Such kind of com-
parison, however, is very difficult to be performed, especially if the images are very similar,
and the reader waste time searching the possible differences. In addition, the comparison is
very subjective and it may differ depending on the device where the images are represented
(e.g. from one printer to another or for different monitors). See for example FigureA.1, where
two similar synthetic images rendered with different methods have been placed side by side.
Due to their high similarities, the visual comparison is very difficult to be done, as can be
observed.

In order to help the reader to compare the images, our purposehas been to look for a
method able to determine the main differences between them.For this method, we have given
special attention to the fulfilling of the following conditions:

• Human visual perception is taken into account.

• Qualitative and quantitative comparisons are possible.

• Local and global differences may be determined.

After having analyzed several methods in the field of image processing and human per-
ception, we have found a procedure that can easily compute image differences and fulfills the
previous requirements. This procedure is based on a combination of techniques, like image
registration, pixel-by-pixel color differences, and pre-filtering with opponent color spaces,
and is the one that has been used to compare some of the resultspresented along this disser-
tation. The details of this procedure and the tests used to find the best metric for the image
comparisons will be described in this appendix.

103

104 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

Figure A.1: Left and middle: comparison of two synthetic images obtained with different
rendering methods, which correspond to Figure4.23. Right: image obtained after a pixel-by-
pixel color difference.

A.1 Pixel-by-Pixel Difference and Image Registration

One of the most common ways to find the differences between twoimages is to compute the
absolute color difference for every pixel. The obtained values are then usually displayed into
an image that helps to localize the most important differences in a visual way (see FigureA.1),
or averaged into a single value according to a metric like RMSE, which quantifies how much
different are the two images.

When computing the pixel-by-pixel color difference, however, one major drawback is the
possible misalignment of the images, which typically appears when a slightly different point
of view has been used or the geometry of the represented sceneis not exactly the same. Such
kind of misalignment may not be noticeable by the observer, but the pixel differences are very
susceptible to them, as shown in FigureA.1. This usually results in a set of “edges” on the
final image that tend to produce high error values and considerably affect the average error of
the images as well.

In order to avoid misalignments, a common practice is the useof image registration. Im-
age registration is a technique used in computer vision and medical imaging that consists in
transforming or warping an image, the target image, according to another image, the reference
image. For this, a point-by-point correspondence between the images is usually first required,
and the transformation is computed according to these correspondences. The number of nec-
essary correspondences then basically depends on the required transformation: linear, affine,
projective, etc.

In FigureA.2, we show an example of image registration performed on the images of Fig-
ureA.1, using the left image as the target image and the middle one asthe reference image.
After having established the point-by-point correspondences between the reference and target
image (the latter shown in the left), the transformation hasbeen computed and the target im-
age properly warped (see middle image). The pixel-by-pixeldifferences computed using the
new registered image is then shown on the right. As can be seen, this image produces less
difference errors than with the original misaligned images(see right of FigureA.1). The reg-

A.2. PERCEPTUALLY UNIFORM COLOR SPACES 105

Figure A.2: Image registration process. Left: target imagewith the selected reference points.
Middle: after a projective image transformation. Right: difference image between the regis-
tered image and the reference image (middle image of FigureA.1).

istration process has produced a black stripe on the registered image that also produces some
considerable errors after the difference operation (see left part of middle and right images),
but this is later removed to better compute the final differences.

A.2 Perceptually Uniform Color Spaces

Apart of the misalignment problem, the computation of the color differences in the RGB space
is not correct from the point of view of perceptual uniformity, since small changes or differ-
ences on the RGB component values are not equally perceptibleacross their range. In order to
correctly compute the differences, a perceptually uniformspace is required, such as the well-
known CIELAB (L*a*b*) or CIELUV (L*u*v*) color spaces. These spaces are designed to
approximate human vision response, thus are more appropriate for image comparison.

In our case, we have decided to use the L*a*b* space (CIE 1976) because it is the most
commonly used. In this space, L* represents lightness, a* represents the red/green axis, and
b* represents the yellow/blue axis, which is called an opponent color representation. The
conversion of the images from RGB to L*a*b* spaces is first performed before the pixel-by-
pixel color differences. Then, after the conversion, the total difference between each pair of
pixels is determined using the Euclidean distance in this space, which is called∆E∗:

∆E∗ =
√

∆L∗2 + ∆a∗2 + ∆b∗2 ,

where∆L∗, ∆a∗, and∆b∗ represent the difference values for each L*a*b* component.
In the left of FigureA.3, we show the difference image computed in L*a*b* space, with

the distances∆E∗ codified using a false color palette. This palette uses a continuous range of
blue, green, and red: blue represents very small, imperceptible differences and red represents
highly perceptible differences. The error values have thenbeen clamped to a value of 20 and
later normalized to better see the error distribution. As can be seen, the perceptible differences
mainly appear on the edges of the grooves and of the surface.

106 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

Figure A.3: Pixel-by-pixel difference images computed using different perceptually-based
metrics. From left to right: L*a*b*, S-CIELAB, and YCxCz/Lab. For a better visual compar-
ison, the images are codified in false color.

L

R/G

B/Y

Opponent
color space

Original image

Spatial
filtering

∆E*L*a*b*

Figure A.4: Spatial filtering with opponent color spaces.

A.3 Spatial Pre-Filtering

The CIELAB system was designed for low spatial frequencies, which means that is good for
measuring color differences between objects or paints, butit performs rather bad for certain
images. It does not take into account, for instance, that thehuman visual system tend to filter
high frequency changes on the images, or that it is more sensible to luminance changes than
for chrominance ones (red/green and yellow/blue components). To solve this, certain metrics
have proposed to perform a spatial filtering of the images before computing the differences,
and to use a different kernel for each color component, according to the visual spatial sen-
sitivity of each component. Some of the most popular metricsare S-CIELAB [ZW97] and
YCxCz/Lab [KB95], which we have analyzed.

A.4. RESULTS 107

In order to perform the spatial filtering, the images must be first transformed into an op-
ponent color space similar to L*a*b*, as depicted in FigureA.4. For each component in this
space, the obtained image must be convolved with the corresponding kernel, which depends
on the kind of metric that is used and on a set of parameters: the dpi (dots per inch) of the
monitor and the observer distance to the monitor (also in inches). Typical values are 72 dpi
and 18 in., respectively. After the filtering, the images aretransformed to the L*a*b* space
and the color differences are computed using the∆E expression, as before.

In the middle and right of FigureA.3, we show the difference images computed using
the S-CIELAB and YCxCz/Lab metrics. Compared to the left image, the spatial filtering has
blurred the high frequency details from the far regions of the grooved plane, which makes the
error to considerably decrease in such regions, as can be observed.

A.4 Results

Our image comparison procedure has been implemented using MATLAB R© and its Image
Processing Toolbox. This software is very used in image processing, and the source code for
S-CIELAB and YCxCz/Lab metrics is also available for this platform. S-CIELAB code can be
found onhttp://white.stanford.edu/˜brian/scielab/scielab.html and
YCxCz/Lab onhttp://cobweb.ecn.purdue.edu/˜bouman/software/YCxCz .

In this section, we present the details of the image comparisons included during this dis-
sertation. These examples have been also used to determine which is the best comparison
metric in our context. First example corresponds to Figure4.23, and is the one that have been
used along this chapter. In this case, two synthetic images have been compared, one being
obtained with our rendering method and the other with ray-traced geometry. The comparison
images obtained with the different metrics have been included in FigureA.3, while FigureA.5
shows more details about these comparisons. The top row of this latter figure shows the differ-
ence values equal or greater than 10 (∆E∗ ≥ 10), which are considered as quite perceptible.
The spatial filtering has considerably decreased the differences in certain regions, as stated
before, this being more accentuated with the YCxCz/Lab metric. The histograms on the bot-
tom of this figure then show the frequency of appearance of each error value. S-CIELAB and
YCxCz/Lab metrics make the distributions of errors to be displaced to the left, as can be ob-
served, which confirms that the number of pixels with less perceptible errors increases and the
number of pixels with more perceptible errors decreases. With L*a*b*, 1.84% of the pixels
have an error≥ 10, while with S-CIELAB and YCxCz/Lab, only 0.56% and 0.32%, respec-
tively. Although these results show that there are still some perceptible differences between
the images, note that such differences are mainly due to the misalignments of the original
images. After choosing different image transformations during the registration step, we have
selected the one that gives the better results, but some misalignments are still present. Using
a better transformation, the results could be further improved.

In FigureA.6, we show a second comparison example between an image obtained with

http://white.stanford.edu/~brian/scielab/scielab.html
http://cobweb.ecn.purdue.edu/~bouman/software/YCxCz

108 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

Figure A.5: Top: comparison images of FigureA.3 after removing the less perceptible differ-
ences. Bottom: histograms of error values.

our rendering method and another obtained with ray-traced geometry, which correspond to
Figure4.21. As can be seen, this time the image registration performs very well, since no
misalignments produces highly perceptible differences. The most important differences are
only found on the boundary of the plane, which is probably dueto the the lack of silhouettes
in our case. Such differences become less perceptible afterapplying the spatial filtering (see
middle and right columns). The percentage of pixels with an error ≥ 10 is, from left to right,
0.16%, 0.1%, and 0%. In this case, the YCxCz/Lab metric also gives better results, as can be
noticed.

Finally, FigureA.7 shows the comparison between a real image and the corresponding
synthetic image obtained with our scratch method, which belong to Figure4.6. In this case,
the differences are clearly perceptible, since the point ofview or the lighting conditions were
approximated by hand for our simulation. Furthermore, the plane has not the same surface
texture and details than the original one, such as the different numbers near the scratches,
which produce a considerable error too. The image registration has been very difficult to be
performed, and while the scratches are more or less aligned,the boundaries of the plane are
greatly misaligned and disproportionate. All these factors generate great perceptible errors
that can be seen in red in the top row images and in green in the middle row. In this case, the
percentage of pixels with an error≥ 10 is, from left to right, 5.76%, 4.1%, and 3.7%. Some
surface details are blurred due to the spatial filtering and the differences in such regions are
less perceptible (see middle and right images), but the filtering does not affect other important

A.4. RESULTS 109

Figure A.6: Another image comparison, this time corresponding to Figure4.21. From left
to right: using L*a*b*, S-CIELAB, and YCxCz/Lab metrics. From top to bottom: differ-
ence images in false color, same images after removing the less perceptible differences, and
histograms of error values.

differences. Focusing on the scratches, however, which represent the most important part
of our study, they do not present highly perceptible differences. Only the central scratch
shows considerable errors, but this is again due to misalignment problems. We have tried
other alignments that make these errors to almost disappear, but they then appear on the other
scratches. All these problems suggest that, for a better comparison, the image should be
recomputed trying to use the same parameters than in the realimage.

110 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

Figure A.7: Image comparison between a real and a synthetic image, corresponding to Fig-
ure 4.6. From left to right: using L*a*b*, S-CIELAB, and YCxCz/Lab metrics. From top
to bottom: difference images in false color, same images after removing the less perceptible
differences, and histograms of error values.

A.5 Conclusions

Since visually comparing two similar images may be very difficult, we have proposed a pro-
cedure that facilitates this task to the reader. This procedure mainly consist in three steps:
an image registration step for the correctly alignment of the initial images, a spatial filtering
in an opponent color space to remove the imperceptible details, and the pixel-by-pixel color
differences in L*a*b* space to compute their perceptually uniform differences. This results
in a procedure that is able to show local and global differences of the images and to perform
qualitative and quantitative comparisons as well.

For the image comparisons, we have basically analyzed two different metrics: the S-
CIELAB and YCxCz/Lab. After performing several tests, we have seen how these metrics

A.5. CONCLUSIONS 111

perform better than using the L*a*b* alone, and how the YCxCz/Lab gives better results than
the S-CIELAB. This is not coincidence, since as stated by Mongaet al., the YCxCz/Lab met-
ric is more accurate than S-CIELAB and other similar metrics [MGE03]. For this reason, the
comparisons presented along the dissertation are done using this metric.

112 APPENDIX A. PERCEPTION-BASED IMAGE COMPARISON

Appendix B

Computational Complexity

In order to determine the cost of the different methods developed in this thesis, we have
evaluated their memory consumption and computational complexity. Along this dissertation,
we have already stated the overall complexity of each of these methods in its corresponding
section, while in this appendix, we include the full derivation of these complexities. For
each representation, we first evaluate its space complexity, and for each method, we briefly
list its algorithm and the complexity of each part, expanding those parts that are difficult to
understand or those having a bottleneck within.

B.1 Evaluating the Complexity

As stated above, our objective is the evaluation of the time and space complexities of our
methods. The time complexity can be seen as the number of “steps” that it takes to an algo-
rithm to solve an instance of the problem, while the space complexity measures the amount
of memory required by the associated models. Both kinds of complexities must be expressed
as a function of the problem size, that is, the size of the different inputs. The objective is then

g Number of grooves in the pattern
f Number of facets per groove (max. value)
pp Number of control points per path (max. value)
pt Number of control points per perturbation function (max. value)
n,m Grid dimensions
cp Number of grid cells occupied by a groove path (max. value)
l Number of light sources in the scene (light samples)
d Recursion depth for multiple reflections/transmissions
x, y Image resolution

Table B.1: Parameters considered for the complexity calculations.

113

114 APPENDIX B. COMPUTATIONAL COMPLEXITY

to find a relation between the size of the input and the time andmemory requirements of the
algorithms. The inputs that are considered in our case are included in TableB.1.

In order to measure the complexities, the usual way is to consider the worst case for the
given inputs, which is the approach used in this chapter. These complexities will also be
expressed using the well-known “Big O” notation, also calledthe “order” of the calculation.
In the following section, we start by evaluating the costs ofour software-based algorithms,
and in SectionB.3, we evaluate our hardware-based methods.

B.2 Software-Based Algorithms

In this section, we derive the space and time complexities for the representations and algo-
rithms presented in Chapter 3 and 4, corresponding to our software-based solutions.

B.2.1 Space Complexity

Concerning the space complexity, this is mainly related to the representation of the grooves
proposed in Chapter 3 and to some data structures used to precompute information about them
for the rendering pass. The memory requirements of our representation is detailed next:

Per groove:

• Path (2D line or curve)→ O(pp)

• Cross-section (2D polyline)→ O(f)

• Perturbation function (2D curve or analytic expression)→ O(pt)

Per cross-section facet:

• Material properties→ O(1)

Given a pattern withg grooves, the worst case is to have a different path, cross-section,
and perturbation function per groove. The paths are defined as 2D lines or 2D parametric
cubic curves, which storage is linearly related to their maximum number of control pointspp.
The cross-sections are defined by polylines with a maximum off facets, which are delimited
by f + 1 points and have an associated normal. Finally, the perturbation functions are either
defined by an analytical expression or by a 2D parametric curve of the desired degree. In our
case, we define the perturbations by means of piecewise linear curves, which storage depends
on the maximum number of control pointspt, as happens with paths.

Concerning the materials, the worst case is having a different material per facet, which
means thatO(f) materials are needed per groove. Such materials, however, have a finite

B.2. SOFTWARE-BASED ALGORITHMS 115

number of properties that are independent of the input parameters, thus its complexity can be
assumed to be constant. According to this, the total space complexity finally results on:

g · (O(pp) + O(f) + O(pt) + f · O(1)) = O(g(pp + pt + f))

With regard to the precomputed information, it basically consists in the grid of paths and
the lists of possible blocking facets introduced in Chapter 4. The former is defined byn ∗
m cells, where in the worst case, every cell may be traversed byevery groove, resulting
in a total space complexity ofO(nmg). In the latter, each cross-section facet requires a
list of all its neighboring facets that may occlude it at a certain time. Thus, for each cross-
section, it represents a quadratic cost with respect to the number of facets:O(f 2). Another
precomputation that is also performed is the maximum size ofthe cross-sections, but since this
size is always represented by three values (wmax, hmax, andpmax, as stated in Section4.2.1),
its cost is constant.

B.2.2 Time Complexity

In this section, we detail the time complexity of the different algorithms presented in Chapter
4. First, we develop the complexity of the different precomputations required by our rendering
algorithms, and later, we focus on the complexity of such algorithms.

B.2.2.1 Precomputations

As stated above, the different precomputations that are considered are the grid of paths, the
lists of possible blocking facets, and the maximum cross-section size. In the following proce-
dure, we first derive the complexity for the grid computation:

procedureComputegrid
for (each groove)

Get path length() → O(pp)

for (each length increment)
Get point at length() → O(1)
Get cell at point() → O(1)
Storeindex into cell() → O(1)

endfor → cp · O(1) = O(cp)
endfor → g · O(pp + cp) = O(g(pp + cp))

endproc → O(g(pp + cp)) = O(g(pp + nm))

As can be observed, the cost of creating the grid depends on the paths that must be stored
and the complexity of such paths. The number of paths is the same as the number of grooves

116 APPENDIX B. COMPUTATIONAL COMPLEXITY

g, while their complexity is represented by their number of points pp and the amount of cov-
ered cellscp. The number of control points affects the cost of calculating the path length
(Get path length()), because they define the number of segments that must be evaluated. For
straight paths,pp = 2, thus its cost isO(1), but for curved paths, it requires the evaluation of
the arc length of each segment, which usually consists in a numerical integration over each
curve segment. Concerning the number of occupied cellscp, it defines the number of times
that a path must be evaluated and its index stored in the corresponding cell. Since we evaluate
the worst case, we could consider that the paths may be enoughlonger and complex to cover
all the grid cells, which means thatO(cp) can be replaced byO(nm). In such case, the total
computational complexity will beO(g(pp + nm)).

procedureComputecrosssectionsizeandocclusiondata
for (each cross-section)

// Cross-section size
Get max perturbation() → O(pt)
Computecrosssectionsize() → O(f)
Updatemax size() → O(1)

// Occlusion info
for (each facet i)

for (each facet j)
Checkpossibleocclusion(i,j) → O(1)

if (possibly occluding) → O(1)
Storefacet index(j) → O(1)

endif → O(1 + 1) = O(1)
endfor → f · O(1) = O(f)

endfor → f · O(f) = O(f 2)
endfor → g · O(pt + f + 1 + f 2) =

O(g(pt + f 2))
endproc → O(g(pt + f 2))

The calculations required to determine the maximum size of the cross-sections and the
aforementioned lists of blocking facets depends on the number of cross-sections, which in the
worst case, is the same as the number of groovesg. For the cross-section size, the perturbation
function associated to each cross-section must be first evaluated to find its greater value, i.e.
its global or absolute maxima (Getmax perturbation()). If a piecewise linear or cubic curve
is used to represent the perturbation, this will require theevaluation of all of its segmentspt,
thus having a cost ofO(pt). Once the maximum perturbation has been determined, the cross-
section size is updated according to the current cross-section and this perturbation value (see
Computecrosssectionsize()), which also has a linear cost:O(f). With regard to the different

B.2. SOFTWARE-BASED ALGORITHMS 117

occlusion lists, these must be finally found between each pair of facets, thus requiring a total
cost ofO(f 2) per cross-section. At the end, the overall cost is thusO(g(pt + f 2)).

B.2.2.2 Rendering Isolated Scratches

The algorithm for rendering isolated scratches that has been presented in Section4.1 has a
cost ofO(g(n + m) + lf 2) time. The main parts of this algorithm and its complexity details
are described next.

algorithm Renderisolatedscratches
Find currentscratch() → O(g(n + m))

if (! scratch) → O(1)
ComputeBRDF() → O(1)

else
Get pathdirection() → O(1)
Perturbcrosssection() → O(f)
Computeps() → O(1)

for (each facet)
ComputeBRDF() → O(1)
Facetcontribution() → O(1)
ComputeGk() → O(lf)

endfor → f · O(lf) = O(lf 2)
endif → O(lf 2)

endalg → O(g(n + m) + lf 2)

The total complexity of this algorithm comes from the combination of the cost associated
to finding the current scratch,O(g(n + m)), and the cost for rendering the scratch,O(lf 2).
Finding the nearest scratch contained by the footprint requires the computation of its bounding
box on the grid, the obtaining of the paths that remain within, and the evaluation of the nearest
one, as depicted in the following procedure:

procedureFind currentscratch
Computefootprint bbox() → O(1)
Get pathsat bbox() → O(g(2n + 2(m − 2))) = O(g(n + m))
Get nearestpath() → O(g)

endproc → O(g(n + m))

As can be seen, theO(g(n + m)) cost is due to the obtaining of the paths at Getpathsat
bbox(). Since in the worst case the footprint bounding box may cover the entire grid, the

118 APPENDIX B. COMPUTATIONAL COMPLEXITY

number of cells that should be evaluated is2n + 2(m − 2) (remember from Section4.1.1
that only the cells at the boundary of the bounding box have tobe accessed). Then, for each
of these cells, the traversing paths must be retrieved, which represents a cost ofO(g). The
nearest path is finally found in Getnearestpath(), by evaluating all the paths found on this
previous step. This procedure computes the point on each path nearest to the footprint center
and takes the closest one:O(g).

Concerning the rendering of the current scratch, the most costly part is the evaluation of the
scratch BRDF, i.e. thefor sentence in Renderisolatedscratches. For each facet of the cross-
section, this requires the computation of its base BRDF, its contributionrk, and its occlusion
or geometrical attenuation factorGk; this later being done using the following procedure:

procedureComputeGk
for (each light + 1)

Computeself occlusion() → O(1)

for (each possibly occluding facet)
Computegkj() → O(1)

endfor → f · O(1) = O(f)
endfor → (l + 1) · O(f) = O(lf)

endproc → O(lf)

TheGk factor is computed by means of determining the self-occlusion of each facet and
their occlusion due to the other facets of the same cross-section. Although the precomputed
lists of blocking facets (see above) allows the evaluation of only a few neighboring facets, in
the worst case, all the cross-section facets may be evaluated for the current one, thus requiring
aO(f) time. These tests must be then performed with respect to the viewer and the different
light sources, thus finally resulting inO((l + 1)f) = O(lf).

B.2.2.3 Rendering General Scratches and Grooves

The computational complexity associated to the rendering of general scratches and grooves
is separated in two parts, depending on the kind of situationthat is rendered: parallel or
isolated grooves, and special cases like intersections andends. Without considering indirect
illumination, the former is achieved inO(g(n+m+ lf)), and the latter inO(g(n+m+ lf fg +
g)), as shown next:

algorithm Rendergroovesdirect
Find currentgrooves() → O(g(n + m) + l)

if (! grooves) → O(1)
ComputeBRDF() → O(1)

B.2. SOFTWARE-BASED ALGORITHMS 119

else
// Prepare grooves
for (each groove)

Get straightpath() → O(1)
Perturbcrosssection() → O(f)

endfor → g · O(f) = O(gf)

// Direct illumination
if (No specialcases()) → O(g)

Reflectionparallel grooves()→ O(lgf) ⇒ Opar

else
Reflectionspecialcase() → O(g2 + lgf fg) ⇒ Ospe

endif → Opar | Ospe

endif → O(gf) + [Opar | Ospe] = Opar | Ospe

endalg → O(g(n + m) + l) + [Opar | Ospe] =
O(g(n + m + [lf | lf fg + g]))

The first part of the algorithm consists in finding the groovescontained or affecting the
current footprint. This part is similar to the one performedfor isolated scratches, but since
all the grooves must be later evaluated, we do not need to determine the nearest groove in
this case. In contrast, we need to enlarge the footprint bounding box according to the cross-
sections’ maximum projected size, which must take into account the different viewer and light
sources directions. This results in aO(g(n + m) + l) complexity, as detailed next:

procedureFind currentgrooves
Computefootprint bbox() → O(1)
Enlargebbox() → O(l + 1)
Get pathsat bbox() → O(g(n + m))

endproc → O(g(n + m) + l)

If any groove is found, the next part prepares the geometry ofthe grooves for its subsequent
processing, which consists in approximating the curved grooves by means of local straight
paths and in perturbing their cross-sections, if necessary. The approximation to straight paths
requires the computation of the current local frame of the curve, which mainly consists in
finding the nearest point on the pathP and the current tangent directionT . After this, we
must detect if any special case is found on the footprint in order to select the appropriate
rendering method. The procedure Nospecialcases() computes this by checking if the paths
are parallel or not and by looking if any of their ends is contained in the current bounding box.
Since both of these tests have aO(g) complexity, the detection is performed inO(g) time.

120 APPENDIX B. COMPUTATIONAL COMPLEXITY

When no intersection or end have been found in the detection step, the next procedure is
called:

procedureReflectionparallel grooves
Mergecrosssections() → O(gf)
Projectfootprint axes() → O(1)

// Masking and clipping
for (each facet)

Projectandfind occlusion() → O(1)
Clip facet() → O(1)

endfor → gf · O(1) = O(gf)

// Shadowing and reflection
for (each light)

for (each visible facet)
Projectandfind occlusion() → O(1)
Facetcontribution() → O(1)

if (facet contributes) → O(1)
ComputeBRDF() → O(1)

endif → O(1)
endfor → gf · O(1) = O(gf)

endfor → l · O(gf) = O(lgf)
endproc → O(lgf)

In this procedure, the reflection of the grooves is computed as described in Section4.2.3.
Basically, the cost of the several parts is related to the number of facets to evaluate (O(gf))
and, for the shadowing and the reflection calculation, to thenumber of light samples (O(l)).
This derives in an algorithm with aO(lgf) order of complexity, as can be seen. This complex-
ity (calledOpar in Rendergroovesdirect), plus the one needed for the previous operations,
results in a total complexity of:

O(g(n + m) + l) + O(gf) + O(lgf) = O(g(n + m) + lgf) = O(g(n + m + lf)) .

On the other hand, the rendering of groove intersections, ends, and similar situations is
done using the following procedure:

B.2. SOFTWARE-BASED ALGORITHMS 121

procedureReflectionspecialcase
Classifyends() → O(g2)

for (each groove and facet)
// Clipping and intersection
Projectfootprint andclip() → O(1)
Intersectionstep() → O(ep0

f g) = O(f g)

// Masking
Occlusionstep(viewer) → O(ep0

f fg) = O(f gf fg) = O(f fg)

// Shadowing and reflection
for (each light)

Occlusionstep(light) → O(ep0
f fg) = O(f fgf fg) = O(f fg)

// Current footprint area
Facetcontribution() → O(f fg)

if (facet contributes) → O(1)
ComputeBRDF() → O(1)

endif → O(1)
endfor → l · O(f fg) = O(lf fg)

endfor → gf · O(lf fg) = O(lgf fg)
endproc → O(g2 + lgf fg)

In this case, notice that the complexity is considerably greater than in the previous case.
The most costly part is the evaluation of the different intersection and occlusion steps, which
is due to the different polygon operations that must be performed between the footprint and
the cross-sections or profiles projected onto the current facet. The cost of each polygon inter-
section or difference depends on the number of edges of the input polygons and on the number
of obtained intersections, and these may considerably increase from one operation to another.

For convex polygons, their intersection may be computed inO(ei + ej) time, whereei

andej are the number of edges/vertices of each polygon [PS85]. This can also be written as
O(e), wheree = ei + ej. In such cases, the computational cost only depends on the number
of polygon edges, and the obtained polygon is convex too, having a maximum ofe edges.
However, a difference operation rarely results in a convex polygon, thus we have needed to
consider operations between general non-convex polygons in our case.

For non-convex polygons, the complexity of an intersectiondepends on the number of
edges but also on the number of obtained intersectionsk, where the best algorithm performs
in O(k + e log e) time [PS85]. If the polygons do not intersect (k = 0), the algorithm takes

122 APPENDIX B. COMPUTATIONAL COMPLEXITY

O(e log e) time, but in the worst case, every edge of a polygon may intersect every edge of
the other polygon, resulting ink = eiej intersections. This means that the intersection will be
found inO(eiej + e log e) time, which derives on a quadratic algorithm ifei ∼ ej:

O(e2
i + 2ei log 2ei) = O(e2

i + ei log ei) = O(e2
i).

For polygon differences, the complexity is similar, and although the obtained polygon may
haveei + k = ei + e2

i edges and vertices in the worst case, it derives inO(e2
i) edges too.

Analyzing our algorithm, we found the first polygon operation in Projectfootprint and
clip(), where the footprint must be intersected with the facet boundaries. In this case, we
assume that both polygons have four edges, thus the cost is constant. The following polygon
operation is found in Intersectionstep(), which is detailed next:

procedure Intersectionstep
for (each intersecting groove)

Projectcrosssection() → O(f)

if (no common intersection) → O(1)
Modify profile() → O(1)

endif → O(1)

// 2D polygon difference
Removeintersectedpart() → O(epf)

endfor → O(ep0
f g)

endproc → O(ep0
f g)

In this case, the operation is a polygon difference that mustbe performed between the cur-
rent footprint polygon and all the cross-sections of the intersecting grooves (see Remove
intersectedpart()). At each iteration, assuming that the current footprint polygon hasep

edges and each cross-section hasf edges, the polygon difference is computed inO(k +
(ep + f) log(ep + f)) time. In the worst case,k = eiej = epf , as seen before, thus the
complexity derives inO(epf) for both the execution time and the number of edges of the
obtained polygon. In the first iteration, this results inO(epf) = O(ep0

f), whereep0
repre-

sents the number of edges of the input footprint polygon. After two iterations, the cost is
O(epf) = O((ep0

f)f) = O(ep0
f 2), and afterg iterations,O((((ep0

f)f)...f)) = O(ep0
f g).

For the intersection step, since the number of edges of the footprint polygon after clipping can
be assumed to be constant,ep0

can be removed from the expression and the final computational
cost isO(f g) (see Reflectionspecialcase procedure).

For the occlusion step, its computational cost is derived ina similar way, as detailed next:

B.2. SOFTWARE-BASED ALGORITHMS 123

procedureOcclusionstep(direction)
for (each possibly occluding facet)

if (self occluded) → O(1)
Projectblocking facet() → O(1)

for (each intersecting groove)
Projectprolongation() → O(1)

// External facets and certain facets of ends do
// not require the cross-section projection
if (cross-section is needed) → O(1)

Projectcrosssection() → O(f)
Unify with prolongation() → O(f)

endif → O(f)

// Remove from the projected blocking facet
// = 2D polygon difference
Removeintersectingprofile() → O(ebf)

endfor → O(eb0f
g) = O(f g)

// Remove from the footprint polygon
// = 2D polygon difference
Removeblocking facet() → O(epf

g)
endif → O(epf

g)
endfor → O(ep0

f fg)
endproc → O(ep0

f fg)

In this case, two polygon differences must be performed. Thefirst one is used during the
computation of the occlusion profile from a given blocking facet, and consists in subtracting
the cross-sections of its intersecting grooves once projected onto the current facet (see Re-
move intersectingprofile()). Its cost is similar to the difference operation described before,
that isO(ebf) for a given iteration andO(eb0f

g) after g iterations. In these expressions,eb

represents the current number of edges of the blocking facetandeb0 its initial value. The
latter, however, is always four for an initial facet, thus can also be directly removed from the
expression:O(f g).

The second difference operation, on the other hand, is used to remove the final occlusion
profile from the current footprint polygon. Since the blocking facet hasO(f g) edges in the
worst case, this operation is computed inO(eiej) = O(epf

g) time. After f iterations, i.e.
the maximum number of blocking facets, its cost is thenO(ep0

f fg), which is also derived
as before. When this procedure is called to compute the masking effect,ep0

is the number

124 APPENDIX B. COMPUTATIONAL COMPLEXITY

of polygon edges obtained from the intersection step, thusep0
= f g. When it is called for

the shadowing effect,ep0
= f fg instead, which corresponds to the amount of edges after the

masking step (see Reflectionspecialcase procedure).

The total cost of evaluating Reflectionspecialcase is finallyO(g2 + lgf fg). O(lgf fg)
comes from the computation of the several clipping, intersection, and occlusion steps, and
O(g2) comes from a first procedure called Classifyends(). When the footprint is affected
by groove ends, this procedure is used to classify them as intersected ends, isolated ends, or
corners. Its quadratic cost is due to the evaluation of the different groove ends with respect to
the rest of grooves in the current footprint.

At the end, the final complexity for rendering groove intersections and ends is found by
adding the costs of the rest of operations performed in Rendergroovesdirect, which result in:

O(g(n+m)+l)+O(gf)+O(g2+lgf fg) = O(g(n+m)+g2+lgf fg) = O(g(n+m+g+lf fg)) .

B.2.2.4 Indirect Illumination

In order to include indirect illumination in the previous algorithms, the computational com-
plexity grows toO(gdfd(n+m+ l)) for parallel and isolated grooves and toO(gdfd(n+m+
lf fg)) for the special cases. The derivation of this complexity is detailed in this section.

algorithm Rendergroovesindirect
Rendergroovesdirect() → O(g(n + m + [lf | lf fg + g])) ⇒ Odir

if (depth> 0) → O(1)
// Indirect illumination from the grooved surface
Indirect illumination() → O(gdfd(n + m + l · [1 | f fg])) ⇒ Oind

// Indirect illumination from other surfaces
if (! all footprint covered) → O(1)

Raytrace() → O(1)
endif → O(1)

endif → Oind

endalg → Odir + Oind = Oind

After calling our previous algorithm to compute the direct illumination, the new algorithm
uses the procedures Indirectillumination() and Raytrace() to account for the indirect one. The
former is used to compute the illumination coming from the same grooved surface, while the
latter ray traces the scene to include the illumination of the rest of surfaces. The most costly
part is the procedure Indirectillumination(), which is detailed next:

B.2. SOFTWARE-BASED ALGORITHMS 125

procedure Indirect illumination
for (each visible facet)

for (reflectionand transmission)
Computedirection() → O(1)
Reprojectfootprint() → O(ep) = O(f fg)
Rendergroovesindirect() → O(gdfd(n + m + l · [1 | f fg])) ⇒

Oind

Add contribution() → O(1)
endfor → 2 · Oind = Oind

endfor → gf · Oind = Oind

endproc → Oind

As described in Section4.3, the specular reflections and transmissions occurring on a
grooved surface are handled by recursively calling our algorithm for each visible facet and
scattering direction. The computation of this direction and the reprojection of the visible
portion of each facet onto the surface is performed by the first two operations. The algorithm
is then recomputed and the obtained reflection is added according to its contribution to the
overall reflection.

The recursive execution of the algorithm is usually performed until a specified recursion
depthd is achieved. This value will be used to evaluate the complexity of our algorithm,
and represents the number of light bounces that are considered. Whend = 1, the cost of
computing the indirect illumination of a given facet (Oind) is given by the cost of computing
the direct illumination (Odir) after a first light bounce. Such indirect illumination is computed
for each scattering direction and currently visible facet,which means that its complexity must
be weighted by 2 andgf , as shown in this procedure. At the end of the algorithm, thiscost is
finally added to the cost of the current direct illumination,thus resulting in:

Odir + gf · Oind = Odir + gf · Odir

For two light bounces, the same process is repeated:

Odir + gf · Oind = Odir + gf · (Odir + gf · Oind) = Odir + gf · (Odir + gf · Odir) =
Odir + gf · Odir + g2f 2 · Odir.

Finally, afterd iterations, this results in:

Odir + gf · (Odir + gf · (Odir + gf · (Odir + ...))) =
Odir + gf · Odir + g2f 2 · Odir + ... + gdfd · Odir = O(gdfd) · Odir

For non-special groove situations,Odir = O(g(n + m + lf)), thus the indirect illumina-
tion will be computed inO(gdfdg(n + m + lf)) = O(gdfd(n + m + l)) time. For groove
intersections and ends,Odir = O(g(n + m + lf fg + g)), thus inO(gdfdg(n + m + lf fg +

126 APPENDIX B. COMPUTATIONAL COMPLEXITY

g)) = O(gdfd(n + m + lf fg)) time. Joining both terms, we have a total complexity of
O(gdfd(n+m+ l · [1 | f fg])), which represents the cost of calling Rendergroovesindirect()
in the procedure Indirectillumination (see above). Notice that such cost remains unchanged
after being weighted bygf or after adding the direct illumination in the procedure Ren-
der groovesindirect, for the top recursion level.

B.3 Hardware-Based Algorithms

In this section, the space and time complexities of our GPU methods presented in Chapter 5
are described in detail.

B.3.1 Space Complexity

Concerning our first GPU method, its space complexity dependson the resolutions of the two
textures that are used to store the different groove data: the grid texture and the data texture.
For the grid texture, itsn ∗ m resolution is fixed by the user, which results in a memory
consumption ofO(nm). For the data texture, instead, the resolution is adjusted according to
the amount of groove elements, cross-sections, and materials that are needed to represent the
grooves. The total number of groove elements depends on the number of grid cells, i.e. the
grid resolution, and the number of grooves traversing each cell. In the worst case, each cell
may be traversed by every groove, as stated in SectionB.2.1, thus resulting in a total memory
cost ofO(nmg). Concerning the cross-sections and materials, their memoryconsumption
depends on the number of groovesg, since each groove may have a different cross-section
and material, and the number of texels needed to store them. For the materials, a single texel
is needed, while for the cross-sections, the number of required texels is half the number of
facetsf . According to this, the total memory cost of the data textureis:

O(gnm + gf + g) = O(g(nm + f)) .

For our second GPU method based on quads, its space complexity depends on the reso-
lution of the two visibility textures used to transfer the visibility data between the different
rendering passes. Since their resolution is the same as the current image resolution,x ∗ y, the
cost isO(xy).

B.3.2 Time Complexity

As before, in this section we start by evaluating the time complexity of the different pre-
computations required by our GPU algorithms, and later we develop the complexity of such
algorithms.

B.3. HARDWARE-BASED ALGORITHMS 127

B.3.2.1 Precomputations

The only algorithm that requires some kind of precomputation is the method based on ren-
dering the grooves in texture space. For this rendering, themethod requires the previous
computation of the two input textures, which is done using the following procedure:

procedureComputetextures
// Compute grid and groove elements
for (each grid cell)

Computebbox() → O(1)
Get pathsat bbox() → O(g(n + m))

// Only store the traversing grooves
for (each path)

if (Groovetraversescell()) → O(1)
Storegrooveelement() → O(1)
Storegroovereference() → O(1)

endif → O(1)
endfor → g · O(1) = O(g)

endfor → nm · O(g(n + m)) =
O(gnm(n + m))

Storecrosssections() → O(gf)
Storematerials() → O(g)

endproc → O(gnm(n + m) + gf) =
O(g(nm(n + m) + f))

In order to compute the grid texture, we take advantage of thegrid of paths used in our soft-
ware approaches. The main difference between them is that the new grid must consider all the
grooves traversing each cell/texel, not only their paths. To create this texture, we first compute
a bounding box around each cell according to the maximum width of the grooves,wmax. Using
this bounding box, we obtain the paths stored in the old grid (Get pathsat bbox()) and check
if the associated grooves are actually traversing the current cell (Groovetraversescell()). This
test simply consists in comparing if the path-cell distanceis less than the groove width, and
if so, we add the groove data (groove element) in the data texture and its reference in the grid
texture, if it is the first groove of the cell.

The most costly part for the previous grid computation is theevaluation of Getpathsat
bbox(), whose cost is the same as the one obtained in the procedure Findcurrent grooves()
of SectionB.2.2.3, that is,O(g(n + m)). After processingnm cells, this cost then results
in O(gnm(n + m)), as can be observed. The rest of operations finally consist instoring the
different cross-sections and materials onto the data texture. At the end, the overall complexity

128 APPENDIX B. COMPUTATIONAL COMPLEXITY

of computing the textures isO(g(nm(n + m) + f)). If the grid is square (n = m), as usually
happens, this expression can then be rewritten asO(g(n3 + f)). In addition, if the grid of
paths is not already computed, the sum of both costs isO(g(n3 + f)) + O(g(pp + nm)) =
O(g(n3 + f + pp + n2)) = O(g(n3 + f + pp)).

B.3.2.2 Rendering Grooves in Texture Space

The time complexity of the GPU algorithm proposed in Section5.1 is also separated in two
parts in this case. The rendering of isolated grooves is achieved inO(f) time, and the rest of
situations inO(gf) time, as will be detailed next. Note that only one light sample is considered
by the algorithm, thusl does not affect its final cost. If several light samples or sources were
considered, the costs would beO(lf) andO(lgf), respectively.

algorithm Rendergroovestextures
Init materialandnormal() → O(1)
Readgrid cell() → O(1)

if (any groove) → O(1)
Readgroovedata() → O(1)
Readcrosssection() → O(f)

if (! more grooves) → O(1)
ProcessIsolatedGroove() → O(f)

else
ProcessSpecialCase() → O(gf)

endif → O(f) | O(gf)
endif → O(f) | O(gf)

Computeshading() → O(1)
endalg → O(f) | O(gf)

As can be observed, the most important part of the algorithm is the processing of the
different groove situations. For isolated grooves, itsO(f) time is obtained with the following
procedure:

procedureProcessIsolatedGroove
// Visibility
Find visible facet(viewer) → O(f)

B.3. HARDWARE-BASED ALGORITHMS 129

// Shadowing
Projectvisible point to surface() → O(1)
Find visible facet(light) → O(f)

// Set material and normal
if (shadowed) → O(1)

material = 0 → O(1)
else if(groove facet) → O(1)

Readmaterial() → O(1)
Computenormal() → O(1)

endif → O(1)
endproc → O(f)

Since only one groove must be processed, the computational cost of this procedure only
depends on the number of facetsf of one cross-section. Such facets are sequentially pro-
cessed during the visibility computations performed in Find visible facet(), in which they are
projected onto the surface in order to find the first facet (segment) containing the pixel center.

When the current cell contains more than a groove or a special situation like an intersection
or end, the following procedure is called instead:

procedureProcessSpecialCase
// Visibility
Find visible facet spec() → O(gf)

// Shadowing
Projectvisible point to surface() → O(1)
Find visible facet spec() → O(gf)

// Set material and normal
if (shadowed) → O(1)

material = 0 → O(1)
else if(groove facet) → O(1)

Readmaterial(visible groove) → O(1)
Computenormal(visible facet) → O(1)

endif → O(1)
endproc → O(gf)

This procedure is almost identical to the previous one, as can be seen. The main differ-
ence relies on the visibility computations because more than a groove must be considered in
this case. The visibility is resolved using our CSG-based raytracing approach introduced in

130 APPENDIX B. COMPUTATIONAL COMPLEXITY

Section5.1.5, by means of the following procedure:

procedureFind visible facetspec
Find ray intersections() → O(f)

while (more grooves)
Readgroovedata() → O(1)
Readcrosssection() → O(f)

Find ray intersections() → O(f)
Combineintersectionsegments() → O(f)

endwhile → g · O(f) = O(gf)

Get visible facet() → O(1)
endproc → O(gf)

In order to determine the current visible facet, the different grooves are iteratively pro-
cessed. For each groove, its data and cross-section is first retrieved from the data texture,
unless for the first one. Then, the ray is intersected with thedifferent facets and the obtained
ray segments are combined with the ones obtained in the previous iteration. Each of these
operations is computed inO(f) time, including the combination of the two current lists of
O(f) ray segments. This latter operation has the same cost than combining two sorted arrays,
ordered by the height of the intersected points in this case.At the end, the final cost isO(gf)
afterg iterations.

B.3.2.3 Rendering Grooves as Quads

For our second GPU algorithm, presented in Section5.2, its time complexity isO(f):

algorithm Rendergroovesquads
// Visibility
Find ray intersections() → O(f)

// Combine with previous intersections
Get previousray segments() → O(f)
Combineintersectionsegments() → O(f)

// Compute shading of all possibly visible facets
Computeshading() → O(f)

B.4. CONCLUSIONS 131

// Pack shading and intersection segments
// for their storage on the visibility texture
Packdatafor output() → O(f)

endalg → O(f)

Since only one groove is processed at a time, every required operation is performed in
O(f) time. This results in an overall complexity ofO(f) too. This algorithm, however, is
executed for every groove fragment projecting onto the current pixel, thus the final cost is
O(gf) in fact. For the shadowing computations, the same grooves must be processed again,
but the previous complexity is not affected unless several light samples are considered. In
such case, the time complexity would beO(lgf), as stated for our texture-based algorithm.

B.4 Conclusions

In this appendix, we have derived the space and time complexities of our different models
and algorithms proposed in the thesis. Concerning the space or memory complexity, we have
obtained the following results:

• For our software-based algorithms, the amount of memory required by the represen-
tation of scratches and grooves isO(g(pp + pt + f)), which depends on: the number
of groovesg, the control points of their pathspp, the control points of the perturbation
functionspt, and the cross-section facetsf .

• The grid of paths and the lists of possible blocking facets have a space complexity of
O(nmg) andO(gf 2), respectively, wheren ∗ m is the resolution of the grid.

• For our texture-based GPU algorithm, the total memory cost of the grid texture is
O(nm), and for the data texture,O(g(nm + f)).

• For our quad-based method, the memory requirements isO(xy), which depends on the
x ∗ y resolution of the visibility textures, i.e. the current image resolution.

As can be observed, all these costs are linear with respect tothe input parameters unless
for the computation of the blocking facets, which has a quadratic cost.

With regard to the time complexity of the different algorithms, we have then found that:

• The precomputation of the grid of paths is done inO(g(pp + nm)) time, while the
maximum cross-section size and the lists of blocking facetsare computed inO(g(pt +
f 2)) time.

• The rendering of isolated micro-scratches is achieved inO(g(n + m) + lf 2), wherel is
the number of light samples.

132 APPENDIX B. COMPUTATIONAL COMPLEXITY

• Its extension for rendering all kinds of scratches and grooves has a time complexity of
O(g(n + m + lf)) for isolated and parallel grooves, andO(g(n + m + lf fg + g)) for
groove intersections and ends.

• If multiple inter-reflections and transmissions are considered, the costs increase up to
O(gdfd(n+m+ l)) andO(gdfd(n+m+ lf fg)), respectively, whered is the maximum
recursion depth.

• For our first hardware approach, the precomputation of the required textures is done in
O(g(nm(n + m) + f)) time. The rendering of the grooves is then performed inO(f)
time for isolated grooves andO(gf) for the rest of situations.

• For our second quad-based approach, a similar complexity isfinally obtained:O(gf).

Looking at these results, we can observe how our software approaches have a greater
complexity than our hardware approaches, as expected. The latter only read one grid cell at a
time and consider a single light sample, thus removing theO(g(n + m)) andO(l) dependen-
cies. The algorithm for isolated scratches also has a greater cost than our general method for
grooves, if only considering isolated features, which is due to the use of a different approach
to evaluate the occlusion of the facets. In the former, the occlusion of each facet is evaluated
with respect to all the other neighboring facets possibly occluding the current one (O(f 2)).
In the latter, the occlusion of all the facets is evaluated bysequentially projecting them in a
single pass, which is more efficient if the number of evaluated facets is important (O(f)).

For groove intersections and ends, its rendering is far morecostly and the resulting com-
plexity is exponential with respect to the number of facets (O(f fg)). This is due to the different
polygon operations that are performed along the algorithm.Naturally, here we have consid-
ered the worst case of such operations, in which the number ofedges grows in a quadratic way
after each operation. Such kind of behavior is achieved withvery complex polygons such as
star-shaped polygons [PS85]; our cross-sections and footprints are very simple and thepoly-
gon operations tend to result in a small number of edges. Although not detailed, we have also
tried to derive the complexity of the algorithm consideringthe best case for the polygon oper-
ations, which happens when no intersection is found betweenthe polygons. Since the number
of edges does not grow from one operation to another, the obtained complexity is then poly-
nomial: O(g(n + m + lgf 3 log(gf))). According to this, the average complexity between
the best and worst cases can be considered as polynomial as well, which greatly reduces its
complexity.

Finally, the most costly part is the computation of the indirect illumination on the same
grooved surface, which requires the multiple evaluation ofthe algorithm. Since the algorithm
is recursively executed for each new visible facet, its costgrows exponentially with respect to
the number of groovesg and facetsf , and the recursion depthd of the algorithm (number of
light bounces).

Bibliography

[AC99] Golam Ashraf and Wong Kok Cheong. Dust and water splashing models
for hopping figures.The Journal of Visualization and Computer Animation,
10(4):193–213, October - December 1999.11

[Ama84] John Amanatides. Ray tracing with cones. InComputer Graphics (Proceed-
ings of SIGGRAPH 84), volume 18, pages 129–135, July 1984.66

[APS00] Michael Ashikhmin, Simon Premoze, and Peter S. Shirley. A microfacet-
based BRDF generator. InProceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, pages 65–74, July 2000.9,
18

[AS00] Michael Ashikhmin and Peter S. Shirley. An anisotropic phong BRDF model.
Journal of Graphics Tools, 5(2):25–32, 2000.9, 17

[BA05] Beďrich Beněs and X. Arriaga. Table mountains by virtual erosion. InEuro-
graphics Workshop on Natural Phenomena, pages 33–40, August 2005.14

[Ban94] David C. Banks. Illumination in diverse codimensions.In Proceedings of
SIGGRAPH 94, Computer Graphics Proceedings, Annual Conference Series,
pages 327–334, July 1994.9, 16, 17

[BB90] Welton Becket and Norman I. Badler. Imperfection for realistic image syn-
thesis.Journal of Visualization and Computer Animation, 1(1):26–32, August
1990.11, 12, 16

[BEPS96] Brian J. Briscoe, P. D. Evans, E. Pelillo, and Sujeet K.Sinha. Scratching maps
for polymers.Wear, 200(1):137–147, 1996.23, 26

[BF01] Beďrich Beněs and Rafael Forsbach. Layered data representation for visual
simulation of terrain erosion. InSpring Conference on Computer Graphics,
2001.14

133

134 BIBLIOGRAPHY

[BF02] Beďrich Beněs and Rafael Forsbach. Visual simulation of hydraulic erosion.
In International Conference in Central Europe on Computer Graphics and
Visualization (Winter School on Computer Graphics), pages 79–94, 2002.14

[BIT04] Pravin Bhat, Stephen Ingram, and Greg Turk. Geometrictexture synthesis by
example. InProceedings of the 2004 Eurographics/ACM SIGGRAPH Sympo-
sium on Geometry Processing, pages 41–44, 2004.18

[BKMTK00] Laurence Boissieux, Gergo Kiss, Nadia Magnenat-Thalmann, and Prem Kalra.
Simulation of skin aging and wrinkles with cosmetics insight. In Computer
Animation and Simulation 2000, pages 15–27, August 2000.15

[BL99] John W. Buchanan and Paul Lalonde. An observational model for illuminating
isolated scratches. InProceedings of the Western Computer Graphics Sympo-
sium 1999 (SKIGRAPH’99), March 1999.16

[Bli77] James F. Blinn. Models of light reflection for computersynthesized pictures.
In Computer Graphics (Proceedings of SIGGRAPH 77), volume 11, pages
192–198, July 1977.9

[Bli78] James F. Blinn. Simulation of wrinkled surfaces. InComputer Graphics (Pro-
ceedings of SIGGRAPH 78), volume 12, pages 286–292, August 1978.8,
23

[Bli82a] James F. Blinn. A generalization of algebraic surface drawing.ACM Transac-
tions on Graphics, 1(3):235–256, July 1982.7

[Bli82b] James F. Blinn. Light reflection functions for simulation of clouds and dusty
surfaces. InProc. SIGGRAPH ’82, volume 16, pages 21–29, 1982.11

[BM93] Barry G. Becker and Nelson L. Max. Smooth transitions between bump ren-
dering algorithms. InProceedings of SIGGRAPH 93, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 183–190, August 1993. 18

[BMŠS97] Beďrich Beněs, Ivo Maŕak, PavelŠimek, and Pavel Slavı́k. Hierarchical ero-
sion of synthetical terrains. In13th Spring Conference on Computer Graphics,
pages 93–100, June 1997.14

[BMZB02] Henning Biermann, Ioana M. Martin, Denis Zorin, and Fausto Bernardini.
Sharp features on multiresolution subdivision surfaces.Graphical Models,
64(2):61–77, 2002.18

[BN76] James F. Blinn and Martin E. Newell. Texture and reflection in computer
generated images.Communications of the ACM, 19(10):542–547, 1976.8

BIBLIOGRAPHY 135

[BNN+98] Philippe Bekaert, Ĺaszĺo Neumann, Attila Neumann, Mateu Sbert, and
Yves D. Willems. Hierarchical monte carlo radiosity. InEurographics Ren-
dering Workshop 1998, pages 259–268, June 1998.10

[BP03] Carles Bosch and Xavier Pueyo. Sı́ntesi d’imatges d’objectes amb
ratllades. Research Report IIiA03-07-RR, Institut d’Informàtica i
Aplicacions, Universitat de Girona, May 2003. Available from
http://ima.udg.edu/˜cbosch . 99

[BP07] Carles Bosch and Gustavo Patow. Real time scratches and grooves. InXVII
Congreso Espãnol de Inforḿatica Gráfica (CEIG’07), September 2007.Ac-
cepted. Available fromhttp://ima.udg.edu/˜cbosch . 71, 99

[BPMG04] Carles Bosch, Xavier Pueyo, Stéphane Ḿerillou, and Djamchid Ghazanfar-
pour. A physically-based model for rendering realistic scratches.Computer
Graphics Forum, 23(3):361–370, September 2004.24, 31, 99

[BPMG05] Carles Bosch, Xavier Pueyo, Stéphane Ḿerillou, and Djamchid Ghazanfar-
pour. General rendering of grooved surfaces. Research ReportIIiA06-10-RR,
Institut d’Informàtica i Aplicacions, Universitat de Girona, December 2005.
Submitted. Available fromhttp://ima.udg.edu/˜cbosch . 31, 99

[BTHB06] Beďrich Beněs, Václav Ťěśınsḱy, Jan Horny̌s, and Sanjiv K. Bhatia. Hydraulic
erosion. Computer Animation and Virtual Worlds, 17(2):99–108, May 2006.
15

[Buc01] Jean-Luc Bucaille.Simulation nuḿerique de l’indentation et de la rayure des
verres organiques. PhD thesis, Ecole Nationale Supérieure des Mines de Paris,
2001.24, 27, 28

[BW97] Jules Bloomenthal and Brian Wyvill, editors.Introduction to Implicit Sur-
faces. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.
7

[Cal94] William D. Callister. Materials Science and Engineering, an Introduction.
John Wiley & Sons, 3rd edition, 1994.24, 25, 29

[Cat74] Edwin E. Catmull.A subdivision algorithm for computer display of curved
surfaces. PhD thesis, University of Utah, December 1974.8

[CC78] Edwin E. Catmull and James H. Clark. Recursively generatedB-spline sur-
faces on arbitrary topological meshes.Computer-Aided Design, 10(6):350–
355, 1978.7

http://ima.udg.edu/~cbosch
http://ima.udg.edu/~cbosch
http://ima.udg.edu/~cbosch

136 BIBLIOGRAPHY

[CDM+02] Barbara Cutler, Julie Dorsey, Leonard McMillan, MatthiasMüller, and Robert
Jagnow. A procedural approach to authoring solid models.ACM Transactions
on Graphics, 21(3):302–311, July 2002.15

[CF99] Jim X. Chen and Xiaodong Fu. Integrating physics-basedcomputing and vi-
sualization: Modeling dust behavior.Computing in Science and Engineering,
1(1):12–16, 1999.11

[CFW99] Jim X. Chen, Xiadong Fu, and Edward J. Wegman. Real-time simulation of
dust behavior generated by a fast traveling vehicle.ACM Transactions on
Modeling and Computer Simulation, 9(2):81–104, 1999.11

[CG06] David N. Carr and Jim Geyer. Variants of a new volumetricmodel for dust
cloud representation and their comparison to existing methods. InCGIV ’06:
Proceedings of the International Conference on Computer Graphics, Imaging
and Visualisation, pages 317–322, Washington, DC, USA, 2006. IEEE Com-
puter Society.11

[CGF04] Chiara Eva Catalano, F. Giannini, and B. Falcidieno. Introducing sweep fea-
tures in modeling with subdivision surfaces.Journal of WSCG, 12(1):81–88,
2004.17, 18, 21, 23

[CL06] R. J. Cant and C.S. Langensiepen. Efficient anti-aliased bump mapping.Com-
puters & Graphics, 30(4):561–580, August 2006.18

[CMF98] Norishige Chiba, Kazunobu Muraoka, and K. Fujita. An erosion model based
on velocity fields for the visual simulation of mountain scenery. The Journal
of Visualization and Computer Animation, 9(4):185–194, October - December
1998.14

[CMS87] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional reflection
functions from surface bump maps. InComputer Graphics (Proceedings of
SIGGRAPH 87), volume 21, pages 273–281, July 1987.10, 17

[Coo84] Robert L. Cook. Shade trees. InComputer Graphics (Proceedings of SIG-
GRAPH 84), volume 18, pages 223–231, July 1984.8, 23, 65

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.
In Computer Graphics (Proceedings of SIGGRAPH 84), volume 18, pages
137–145, July 1984.10

[CS00] Yao-Xun Chang and Zen-Chung Shih. Physically-based patination for under-
ground objects.Computer Graphics Forum, 19(3), August 2000.12

BIBLIOGRAPHY 137

[CS03] Yao-Xun Chang and Zen-Chung Shih. The synthesis of rust in seawater.The
Visual Computer, 19(1):50–66, 2003.12

[CT81] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer
graphics. InComputer Graphics (Proceedings of SIGGRAPH 81), volume 15,
pages 307–316, August 1981.9

[CXW+05] Yanyun Chen, Lin Xia, Tien-Tsin Wong, Xin Tong, Hujun Bao, Baining Guo,
and Heung-Yeung Shum. Visual simulation of weathering by gamma-ton trac-
ing. ACM Transactions on Graphics, 24(3):1127–1133, August 2005.11

[DEL+99] Julie Dorsey, Alan Edelman, Justin Legakis, Henrik WannJensen, and
Hans Køhling Pedersen. Modeling and rendering of weatheredstone. InPro-
ceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Confer-
ence Series, pages 225–234, August 1999.15

[DGA04] Brett Desbenoit, Eric Galin, and Samir Akkouche. Simulating and modeling
lichen growth.Computer Graphics Forum, 23(3):341–350, September 2004.
15

[DGA05] Brett Desbenoit, Eric Galin, and Samir Akkouche. Modeling cracks and frac-
tures.The Visual Computer, 21(8-10):717–726, 2005.13

[DH96] Julie Dorsey and Patrick M. Hanrahan. Modeling and rendering of metallic
patinas. InProceedings of SIGGRAPH 96, Computer Graphics Proceedings,
Annual Conference Series, pages 387–396, August 1996.12

[Dis98] Jean-Michel Dischler. Efficiently rendering macrogeometric surface struc-
tures with bi-directional texture functions. InEurographics Rendering Work-
shop 1998, pages 169–180, June 1998.8

[Don05] William Donnelly. GPU Gems 2, chapter Per-Pixel Displacement Mapping
with Distance Functions, pages 123–136. Addison-Wesley, 2005. 58

[DPH96] Julie Dorsey, Hans Køhling Pedersen, and Patrick M.Hanrahan. Flow and
changes in appearance. InProceedings of SIGGRAPH 96, Computer Graphics
Proceedings, Annual Conference Series, pages 411–420, August 1996.11

[DvGNK99] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar,and Jan J. Koenderink.
Reflectance and texture of real-world surfaces.ACM Transactions on Graph-
ics, 18(1):1–34, January 1999.8

[EMP+02] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven
Worley. Texturing & Modeling: A Procedural Approach, Third Edition(The

138 BIBLIOGRAPHY

Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann, De-
cember 2002.7

[Eve01] Cass Everitt. Interactive order-independent transparency. Technical report,
NVIDIA Corporation, May 2001.88

[Far99] Gerald E. Farin.NURBS: From Projective Geometry to Practical Use. A. K.
Peters, Ltd., Natick, MA, USA, second edition, 1999.7

[Fou92] Alain Fournier. Normal distribution functions andmultiple surfaces. In
Graphics Interface ’92 Workshop on Local Illumination, pages 45–52, May
1992.18

[FP02] Pavol Federl and Przemyslaw Prusinkiewicz. Modelling fracture formation
in bi-layered materials, with applications to tree bark anddrying mud. In
Proceedings of Western Computer Graphics Symposium, pages 29–35, 2002.
13

[FP04] Pavol Federl and Przemyslaw Prusinkiewicz. Finite element model of fracture
formation on growing surfaces. InInternational Conference on Computational
Science, Lecture Notes in Computer Science, pages 138–145, 2004.13

[FvDFH90] James D. Foley, Andries van Dam, Stephen K. Feiner, and John F. Hughes.
Computer Graphics: Principles and Practice. Addison-Wesley, 2nd edition,
1990.76

[Gar85] Geoffrey Y. Gardner. Visual simulation of clouds. In Computer Graphics
(Proceedings of SIGGRAPH 85), volume 19, pages 297–303, July 1985.8

[GC97] St́ephane Gobron and Norishige Chiba. Visual simulation of corrosion. In
Proceedings of IPSJ-Tohoku Workshop, December 1997.12

[GC99] St́ephane Gobron and Norishige Chiba. 3d surface cellular automata and
their applications. The Journal of Visualization and Computer Animation,
10(3):143–158, July - September 1999.12

[GC01a] St́ephane Gobron and Norishige Chiba. Crack pattern simulation based on 3d
surface cellular automata.The Visual Computer, 17(5):287–309, 2001.12, 13

[GC01b] St́ephane Gobron and Norishige Chiba. Simulation of peeling using 3d-
surface cellular automata. In9th Pacific Conference on Computer Graphics
and Applications, pages 338–347, October 2001.12

BIBLIOGRAPHY 139

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Co-
hen. The lumigraph. InProceedings of SIGGRAPH 96, Computer Graphics
Proceedings, Annual Conference Series, pages 43–54, August1996.8

[GH86] Ned Greene and Paul S. Heckbert. Creating raster omnimax images from
multiple perspective views using the elliptical weighted average filter. IEEE
Computer Graphics & Applications, 6(6):21–27, June 1986.33

[Gla89] Andrew S. Glassner.An introduction to ray tracing. Academic Press Ltd.,
London, UK, UK, 1989.10, 64

[GN71] Robert A. Goldstein and Roger Nagel. 3-D visual simulation. Simulation,
16(1):25–31, January 1971.76

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Bat-
taile. Modelling the interaction of light between diffuse surfaces. InCom-
puter Graphics (SIGGRAPH ’84 Proceedings), volume 18, pages 212–22, July
1984.10

[GTR+06] Jinwei Gu, Chien-I Tu, Ravi Ramamoorthi, Peter Belhumeur, Wojciech Ma-
tusik, and Shree Nayar. Time-varying surface appearance: acquisition, model-
ing and rendering.ACM Transactions on Graphics, 25(3):762–771, July 2006.
12

[HDKS00] Wolfgang Heidrich, Katja Daubert, Jan Kautz, and Hans-Peter Seidel. Illu-
minating micro geometry based on precomputed visibility. In Proceedings of
ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference
Series, pages 455–464, July 2000.8

[He93] Xiao D. He. Physically-Based Models for the Reflection, Transmission and
Subsurface Scattering of Light by Smooth and Rough Surfaces, with Appli-
cations to Realistic Image Synthesis. PhD thesis, Cornell University, 1993.
9

[Hec86] Paul S. Heckbert. Survey of texture mapping.IEEE Computer Graphics &
Applications, 6(11):56–67, November 1986.8

[HH84] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. InCom-
puter Graphics (Proceedings of SIGGRAPH 84), volume 18, pages 119–127,
July 1984.64, 65

[HK93] Pat Hanrahan and Wolfgang Krueger. Reflection from layered surfaces due to
subsurface scattering. InProceedings of SIGGRAPH 93, Computer Graphics
Proceedings, Annual Conference Series, pages 165–174, August 1993.10

140 BIBLIOGRAPHY

[HS93] Paul Haeberli and Mark Segal. Texture mapping as a fundamental drawing
primitive. In Michael F. Cohen, Claude Puech, and Francois Sillion, editors,
Fourth Eurographics Workshop on Rendering, pages 259–266, June 1993.8

[HS98] Wolfgang Heidrich and Hans-Peter Seidel. Ray-tracing procedural displace-
ment shaders. InGraphics Interface ’98, pages 8–16, June 1998.8

[HS99] Wolfgang Heidrich and Hans-Peter Seidel. Realistic,hardware-accelerated
shading and lighting. InProceedings of SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, pages 171–178, August 1999.18

[HT06] Hsien-Hsi Hsieh and Wen-Kai Tai. A straightforward and intuitive approach
on generation and display of crack-like patterns on 3d objects. In Computer
Graphics International, Lecture Notes in Computer Science, pages 554–561,
2006.13

[HTK98] Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko. Generation of crack
patterns with a physical model.The Visual Computer, 14(3):126–137, 1998.
13

[HTK00] Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko. Simulation of three-
dimensional cracks.The Visual Computer, 16(7):371–378, 2000.13

[HTSG91] Xiao D. He, Kenneth E. Torrance, François X. Sillion, and Donald P. Green-
berg. A comprehensive physical model for light reflection. In Computer
Graphics (Proceedings of SIGGRAPH 91), volume 25, pages 175–186, July
1991.9

[HW95] Siu-Chi Hsu and Tien-Tsin Wong. Simulating dust accumulation. IEEE Com-
puter Graphics & Applications, 15(1):18–25, January 1995.11, 12

[IB02] John R. Isidoro and Chris Brennan. Per-pixel strand basedanisotropic lighting.
In Wolfgang F. Engel, editor,Direct3D ShaderX: Vertex and Pixel Shader Tips
and Tricks. Wordware, Plano, Texas, 2002.18

[ICG86] David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity
method for non-diffuse environments. InComputer Graphics (SIGGRAPH
’86 Proceedings), volume 20, pages 133–142, August 1986.10

[IO06] Hayley N. Iben and James F. O’Brien. Generating surface crack patterns. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 177–185, Sept 2006.13

BIBLIOGRAPHY 141

[JC95] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in bidirec-
tional monte carlo ray tracing of complex objects.Computers & Graphics,
19(2):215–224, March 1995.10, 65

[Jen01] Henrik Wann Jensen.Realistic image synthesis using photon mapping. A. K.
Peters, Ltd., Natick, MA, USA, 2001.10

[JH04] Christopher Johnson and Charles Hansen.Visualization Handbook. Academic
Press, Inc., Orlando, FL, USA, 2004.7

[JLD99] Henrik Wann Jensen, Justin Legakis, and Julie Dorsey. Rendering of wet
materials. InEurographics Rendering Workshop 1999, June 1999.15

[JMLH01] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan.
A practical model for subsurface light transport. InProceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Conference Series,
pages 511–518, August 2001.10

[JP00] Thouis Jones and Ronald Perry. Antialiasing with linesamples. InRendering
Techniques 2000: 11th Eurographics Workshop on Rendering, pages 197–206,
June 2000.55, 58, 101

[JZLM98] Vincent P. Jardret, H. Zahouani, Jean-Luc Loubet,and T. G. Mathia. Under-
standing and quantification of elastic and plastic deformation during a scratch
test.Wear, 218:8–14, 1998.24, 26, 27

[Kaj85] James T. Kajiya. Anisotropic reflection models. InComputer Graphics (Pro-
ceedings of SIGGRAPH 85), volume 19, pages 15–21, July 1985.10, 17

[Kaj86] James T. Kajiya. The rendering equation. InComputer Graphics (Proceedings
of SIGGRAPH 86), volume 20, pages 143–150, August 1986.9, 10, 65

[KB95] B. Kolpatzik and C. Bouman. Optimized universal color palette design for
error diffusion.Journal of Electronic Imaging, 4(2):131–143, 1995.106

[KCY93] Arie E. Kaufman, Daniel Cohen, and Roni Yagel. Volume graphics. IEEE
Computer, 26(7):51–64, 1993.7

[KH84] James T. Kajiya and Brian P. Von Herzen. Ray tracing volume densities. In
Computer Graphics (Proceedings of SIGGRAPH 84), volume 18, pages 165–
174, July 1984.11

[KK89] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional
textures. InComputer Graphics (Proceedings of SIGGRAPH 89), volume 23,
pages 271–280, July 1989.9

142 BIBLIOGRAPHY

[KM31] Paul Kubelka and Franz Munk. Ein beitrag zur optik derfarbanstriche.
Zeitschrift f̈ur Technishen Physik, 12:593–601, 1931. (in German).12

[KM99] Jan Kautz and Michael D. McCool. Interactive rendering with arbitrary brdfs
using separable approximations. InEurographics Rendering Workshop 1999,
June 1999.18

[KMN88] Alex D. Kelley, Michael C. Malin, and Gregory M. Nielson. Terrain simula-
tion using a model of stream erosion. InComputer Graphics (Proceedings of
SIGGRAPH 88), volume 22, pages 263–268, August 1988.14

[KS99] Andrei Khodakovsky and Peter Schröder. Fine level feature editing for subdi-
vision surfaces. InProceedings of the 5th ACM Symposium on Solid Modeling
and Applications, pages 203–211, 1999.21, 23

[KS00] Jan Kautz and Hans-Peter Seidel. Towards interactive bump mapping with
anisotropic shift-variant BRDFs. In2000 SIGGRAPH / Eurographics Work-
shop on Graphics Hardware, pages 51–58, August 2000.16

[KS01] Jan Kautz and Hans-Peter Seidel. Hardware accelerated displacement map-
ping for image based rendering. InGraphics Interface 2001, pages 61–70,
June 2001.9

[LFTG97] Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P.
Greenberg. Non-linear approximation of reflectance functions. InProceed-
ings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference
Series, pages 117–126, August 1997.9, 17

[LGR+05] Jianye Lu, Athinodoros S. Georghiades, Holly Rushmeier,Julie Dorsey, and
Chen Xu. Synthesis of material drying history: Phenomenon modeling, trans-
ferring and rendering. InEurographics Workshop on Natural Phenomena,
pages 7–16, August 2005.15

[LH96] Marc Levoy and Patrick M. Hanrahan. Light field rendering. InProceedings of
SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series,
pages 31–42, August 1996.8

[LK03] Jaakko Lehtinen and Jan Kautz. Matrix radiance transfer. In 2003 ACM Sym-
posium on Interactive 3D Graphics, pages 59–64, April 2003.18

[LN02] Sylvain Lefebvre and Fabrice Neyret. Synthesizing bark. InRendering Tech-
niques 2002: 13th Eurographics Workshop on Rendering, pages 105–116,
June 2002.13

BIBLIOGRAPHY 143

[LW85] Marc Levoy and Turner Whitted. The use of points as a display primitive.
Technical Report 85-022, Computer Science Department, University of North
Carolina at Chapel Hill, January 1985.7

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In H. P.
Santo, editor,Proceedings of Third International Conference on Computa-
tional Graphics and Visualization Techniques (Compugraphics ’93), pages
145–153, Alvor, Portugal, 1993.10

[MAA01] Michael D. McCool, Jason Ang, and Anis Ahmad. Homomorphic factoriza-
tion of brdfs for high-performance rendering. InProceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Conference Series,
pages 171–178, August 2001.18

[Max88] Nelson L. Max. Horizon mapping: shadows for bump-mapped surfaces.The
Visual Computer, 4(2):109–117, July 1988.8

[MBA02] Claude Martins, John Buchanan, and John Amanatides. Animating real-time
explosions.The Journal of Visualization and Computer Animation, 13(2):133–
145, 2002.13

[MBF04] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for
changing mesh topology during simulation.ACM Transactions on Graphics,
23(3):385–392, August 2004.14

[MBS97] Ivo Maŕak, Beďrich Beněs, and Pavel Slavı́k. Terrain erosion model based on
rewriting of matrices. InFifth International Conference in Central Europe on
Computer Graphics and Visualization (Winter School on Computer Graphics),
pages 341–351, February 1997.14

[MDG01a] St́ephane Ḿerillou, Jean-Michel Dischler, and Djamchid Ghazanfarpour. Cor-
rosion: Simulating and rendering. InGraphics Interface 2001, pages 167–174,
June 2001.12

[MDG01b] St́ephane Ḿerillou, Jean-Michel Dischler, and Djamchid Ghazanfarpour. Sur-
face scratches: Measuring, modeling and rendering.The Visual Computer,
17(1):30–45, 2001.vii , viii , 16, 17, 19, 21, 26, 32, 34, 35, 37, 41, 42, 98

[MG04] Matthias M̈uller and Markus Gross. Interactive virtual materials. InGI ’04:
Proceedings of the 2004 conference on Graphics interface, pages 239–246,
2004.14

[MGE03] Vishal Monga, Wilson S. Geisler, and Brian L. Evans. Linear, color separable,
human visual system models for vector error diffusion halftoning.IEEE Signal
Processing Letters, 10(4):93–97, April 2003.111

144 BIBLIOGRAPHY

[MH84] Gene S. Miller and C. Robert Hoffman. Illumination and reflection maps:
Simulated objects in simulated and real environments. InSIGGRAPH ’84
Advanced Computer Graphics Animation seminar notes, July 1984.8

[Mil94] Gavin Miller. Efficient algorithms for local and global accessibility shading.
In Proceedings of SIGGRAPH 94, Computer Graphics Proceedings, Annual
Conference Series, pages 319–326, July 1994.11

[MKB +05] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth,and Hans-Peter
Seidel. Efficient rendering of local subsurface scattering. Computer Graphics
Forum, 24(1):41–50, March 2005.10

[MKM89] F. Kenton Musgrave, Craig E. Kolb, and Robert S. Mace. The synthesis and
rendering of eroded fractal terrains. InComputer Graphics (Proceedings of
SIGGRAPH 89), volume 23, pages 41–50, July 1989.14

[MMA99] Oleg Mazarak, Claude Martins, and John Amanatides. Animating exploding
objects. InGraphics Interface ’99, pages 211–218, June 1999.13

[MMDJ01] Matthias M̈uller, Leonard McMillan, Julie Dorsey, and Robert Jagnow. Real-
time simulation of deformation and fracture of stiff materials. InProceedings
of the Eurographic workshop on Computer animation and simulation, pages
113–124, New York, NY, USA, 2001. Springer-Verlag New York,Inc. 14

[MMS+05] Gero M̈uller, Jan Meseth, Mirko Sattler, Ralf Sarlette, and ReinhardKlein.
Acquisition, synthesis, and rendering of bidirectional texture functions.Com-
puter Graphics Forum, 24(1):83–110, March 2005.8

[MN98] Alexandre Meyer and Fabrice Neyret. Interactive volumetric textures. InEu-
rographics Rendering Workshop 1998, pages 157–168, June 1998.9

[MOiT98] Shinji Mizuno, Minoru Okada, and Jun ichiro Toriwaki. Virtual sculpting and
virtual woodcut printing.The Visual Computer, 14(2):39–51, 1998.18

[Mou05] David Mould. Image-guided fracture. InProceedings of the 2005 confer-
ence on Graphics interface, pages 219–226, School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada, 2005. Canadian Human-
Computer Communications Society.13

[Nag98] Kenji Nagashima. Computer generation of eroded valley and mountain ter-
rains.The Visual Computer, 13(9-10):456–464, January 1998.14

[NF99] Michael Neff and Eugene L. Fiume. A visual model for blast waves and frac-
ture. InGraphics Interface ’99, pages 193–202, June 1999.13

BIBLIOGRAPHY 145

[NKON90] Eihachiro Nakamae, Kazufumi Kaneda, Takashi Okamoto, and Tomoyuki
Nishita. A lighting model aiming at drive simulators. InComputer Graphics
(Proceedings of SIGGRAPH 90), volume 24, pages 395–404, August 1990.
15

[NTB+91] Alan Norton, Greg Turk, Bob Bacon, John Gerth, and Paula Sweeney. Ani-
mation of fracture by physical modeling.The Visual Computer, 7(4):210–219,
1991.13

[NWD05] Benjamin Neidhold, Markus Wacker, and Oliver Deussen. Interactive physi-
cally based fluid and erosion simulation. InEurographics Workshop on Natu-
ral Phenomena, pages 25–32, August 2005.14

[OBH02] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. Graphical
modeling and animation of ductile fracture.ACM Transactions on Graphics,
21(3):291–294, July 2002.13

[OBM00] Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief texture map-
ping. InProceedings of ACM SIGGRAPH 2000, Computer Graphics Proceed-
ings, Annual Conference Series, pages 359–368, July 2000.8, 23

[OH99] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and anima-
tion of brittle fracture. InProceedings of SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, pages 137–146, August 1999.13

[ON94] Michael Oren and Shree K. Nayar. Generalization of lambert’s reflectance
model. InProceedings of SIGGRAPH 94, Computer Graphics Proceedings,
Annual Conference Series, pages 239–246, July 1994.9, 35

[ON05] Koichi Onoue and Tomoyuki Nishita. An interactive deformation system for
granular material.Computer Graphics Forum, 24(1):51–60, March 2005.15

[Owe98] Steven J. Owen. A survey of unstructured mesh generation technology. In
Proceedings of the 7th International Meshing Roundtable, pages 239–267,
October 1998.7

[Per85] Ken Perlin. An image synthesizer. InComputer Graphics (Proceedings of
SIGGRAPH 85), volume 19, pages 287–296, July 1985.8

[PF90] Pierre Poulin and Alain Fournier. A model for anisotropic reflection. InCom-
puter Graphics (Proceedings of SIGGRAPH 90), volume 24, pages 273–282,
August 1990.9, 17, 19, 62

146 BIBLIOGRAPHY

[PH96] Matt Pharr and Pat Hanrahan. Geometry caching for ray-tracing displacement
maps. InEurographics Rendering Workshop 1996, pages 31–40, June 1996.
8

[PH00] Matt Pharr and Patrick M. Hanrahan. Monte carlo evaluation of non-linear
scattering equations for subsurface reflection. InProceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Conference Series,
pages 75–84, July 2000.10

[PHL91] John W. Patterson, Stuart G. Hoggar, and J. R. Logie. Inverse displacement
mapping.Computer Graphics Forum, 10(2):129–139, June 1991.8

[Pho75] Bui-T. Phong. Illumination for computer generated pictures.Communications
of the ACM, 18(6):311–317, June 1975.9

[PKA+05] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus Gross, and
Leonidas J. Guibas. Meshless animation of fracturing solids. ACM Transac-
tions on Graphics, 24(3):957–964, August 2005.14

[PO06] F́abio Policarpo and Manuel M. Oliveira. Relief mapping of non-height-field
surface details. InProceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, pages 55–62, March 2006.85

[POC05] F́abio Policarpo, Manuel M. Oliveira, and João L. D. Comba. Real-time relief
mapping on arbitrary polygonal surfaces.ACM Transactions on Graphics,
24(3):935–935, August 2005.8, 18, 56, 71, 84

[PPD01] Eric Paquette, Pierre Poulin, and George Drettakis. Surface aging by impacts.
In Graphics Interface 2001, pages 175–182, June 2001.15

[PPD02] Eric Paquette, Pierre Poulin, and George Drettakis. The simulation of paint
cracking and peeling. InGraphics Interface 2002, pages 59–68, 2002.12

[PS85] Franco P. Preparata and Michael Ian Shamos.Computational Geometry: An
Introduction. Springer-Verlag, 1985.121, 132

[PT95] Les Piegl and Wayne Tiller.The NURBS book. Springer-Verlag, London, UK,
1995.7

[RB85] William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms
for shading and rendering structured particle systems. InComputer Graphics
(Proceedings of SIGGRAPH 85), volume 19, pages 313–322, July 1985.8

[Ree83] William T. Reeves. Particle systems – a technique for modeling a class of
fuzzy objects.ACM Transactions on Graphics, 2(2):91–108, 1983.8

BIBLIOGRAPHY 147

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point ren-
dering system for large meshes. InProceedings of ACM SIGGRAPH 2000,
Computer Graphics Proceedings, Annual Conference Series, pages 343–352,
July 2000.7

[RPP93] P. Roudier, B. Ṕeroche, and M. Perrin. Landscapes synthesis achieved
through erosion and deposition process simulation.Computer Graphics Fo-
rum, 12(3):375–383, 1993.14

[SAS92] Brian E. Smits, James R. Arvo, and David H. Salesin. An importance-driven
radiosity algorithm. InComputer Graphics (SIGGRAPH ’92 Proceedings),
volume 26, pages 273–282, July 1992.10

[Sch94] Christophe Schlick. A survey of shading and reflectance models.Computer
Graphics Forum, 13(2):121–131, June 1994.9, 17

[Sch97] Andreas Schilling. Toward real-time photorealistic rendering: Challenges and
solutions. In1997 SIGGRAPH / Eurographics Workshop on Graphics Hard-
ware, pages 7–16, August 1997.18

[SGG+00] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John
Snyder. Silhouette clipping. InProceedings of ACM SIGGRAPH 2000, Com-
puter Graphics Proceedings, Annual Conference Series, pages 327–334, July
2000.8

[SGwHS98] Jonathan Shade, Steven J. Gortler, Li wei He, and Richard Szeliski. Layered
depth images. InProceedings of SIGGRAPH 98, Computer Graphics Proceed-
ings, Annual Conference Series, pages 231–242, July 1998.8

[SKHL00] Frank Suits, James T. Klosowski, William P. Horn, and Gérard Lecina. Sim-
plification of surface annotations. InIEEE Visualization 2000, pages 235–242,
October 2000.40

[SM03] Peter Shirley and R. Keith Morley.Realistic Ray Tracing. A. K. Peters, Ltd.,
Natick, MA, USA, 2003.10

[SMG05] Salman Shahidi, Stéphane Ḿerillou, and Djamchid Ghazanfarpour. Phe-
nomenological simulation of efflorescence in brick constructions. InEuro-
graphics Workshop on Natural Phenomena, pages 17–24, August 2005.15

[SOH99] Robert Sumner, James F. O’Brien, and Jessica K. Hodgins. Animating sand,
mud, and snow.Computer Graphics Forum, 18(1):17–26, March 1999.15

[SP99] Gernot Schaufler and Markus Priglinger. Efficient displacement mapping by
image warping. InEurographics Rendering Workshop 1999, June 1999.8

148 BIBLIOGRAPHY

[SSS00] Brian Smits, Peter S. Shirley, and Michael M. Stark. Direct ray tracing of
displacement mapped triangles. InRendering Techniques 2000: 11th Euro-
graphics Workshop on Rendering, pages 307–318, June 2000.8

[Sta99] Jos Stam. Diffraction shaders. InProceedings of SIGGRAPH 99, Computer
Graphics Proceedings, Annual Conference Series, pages 101–110, August
1999.9, 17, 19, 102

[Sta01] Jos Stam. An illumination model for a skin layer bounded by rough surfaces.
In Rendering Techniques 2001: 12th Eurographics Workshop on Rendering,
pages 39–52, June 2001.9, 10

[SWB01] Jeffrey Smith, Andrew Witkin, and David Baraff. Fast and controllable
simulation of the shattering of brittle objects.Computer Graphics Forum,
20(2):81–91, 2001.13

[Tat06] Natalya Tatarchuk. Dynamic parallax occlusion mapping with approximate
soft shadows. InProceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, pages 63–69, 2006.8, 58, 71

[TF88] Demetri Terzopoulus and Kurt Fleischer. Modeling inelastic deformation: vis-
coelasticity, plasticity, fracture. InProc. SIGGRAPH ’88, volume 22, pages
269–278, 1988.13

[VG94] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport.
In Fifth Eurographics Workshop on Rendering, pages 147–162, Darmstadt,
Germany, June 1994.10

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. InProceed-
ings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference
Series, pages 65–76, August 1997.10

[VHLL05] Gilles Valette, Michel Herbin, Laurent Lucas, andJõel Léonard. A prelim-
inary approach of 3d simulation of soil surface degradationby rainfall. In
Eurographics Workshop on Natural Phenomena, pages 41–50, August 2005.
15

[VLR05] Kartik Venkataraman, Suresh Lodha, and Raghu Raghavan. A kinematic-
variational model for animating skin with wrinkles.Computers & Graphics,
29(5):756–770, October 2005.15

[VPLL06] Gilles Valette, S. Prevost, Laurent Lucas, and Joẽl Léonard. SoDA project:
a simulation of soil surface degradation by rainfall.Computers & Graphics,
30(4):494–506, aug 2006.15

BIBLIOGRAPHY 149

[War92] Gregory J. Ward. Measuring and modeling anisotropic reflection. InComputer
Graphics (Proceedings of SIGGRAPH 92), volume 26, pages 265–272, July
1992.9, 16, 17

[WAT92] Stephen H. Westin, James R. Arvo, and Kenneth E. Torrance. Predicting re-
flectance functions from complex surfaces. InComputer Graphics (Proceed-
ings of SIGGRAPH 92), volume 26, pages 255–264, July 1992.10, 17

[Whi80] Turner Whitted. An improved illumination model for shaded display.Com-
mun. ACM, 23(6):343–349, 1980.10

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. InComputer
Graphics (SIGGRAPH ’78 Proceedings), volume 12, pages 270–274, New
York, NY, USA, August 1978. ACM Press.8

[Wil83] Lance Williams. Pyramidal parametrics. InComputer Graphics (Proceedings
of SIGGRAPH 83), pages 1–11, July 1983.18

[WKMMT99] Yin Wu, Prem Kalra, Laurent Moccozet, and Nadia Magnenat-Thalmann.
Simulating wrinkles and skin aging.The Visual Computer, 15(4):183–198,
1999.15

[WNH97] Tien-Tsin Wong, Wai-Yin Ng, and Pheng-Ann Heng. A geometry dependent
texture generation framework for simulating surface imperfections. InEuro-
graphics Rendering Workshop 1997, pages 139–150, June 1997.11, 12

[WvOC04] Brian Wyvill, Kees van Overveld, and Sheelagh Carpendale. Rendering cracks
in batik. InNPAR 2004, pages 61–70, June 2004.13

[WW01] Joe Warren and Henrik Weimer.Subdivision Methods for Geometric Design:
A Constructive Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2001.7

[WWT+03] Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and
Heung-Yeung Shum. View-dependent displacement mapping.ACM Transac-
tions on Graphics, 22(3):334–339, July 2003.8, 23, 58, 71

[YLW05] Xuehui Liu Youquan Liu, Hongbin Zhu and Enhua Wu. Real-time simulation
of physically based on-surface flow.The Visual Computer, 21(8-10):727–734,
2005.11

[YOH00] Gary D. Yngve, James F. O’Brien, and Jessica K. Hodgins. Animating ex-
plosions. InProceedings of ACM SIGGRAPH 2000, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 29–36, July 2000.13

150 BIBLIOGRAPHY

[ZDW+05] Kun Zhou, Peng Du, Lifeng Wang, Y. Matsushita, Jiaoying Shi, Baining
Guo, and Heung-Yeung Shum. Decorating surfaces with bidirectional tex-
ture functions.IEEE Transactions on Visualization and Computer Graphics,
11(5):519–528, September-October 2005.12

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Sur-
face splatting. InProceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, pages 371–378, August 2001.7

[ZW97] X. M. Zhang and B. A. Wandell. A spatial extension of CIELAB for digital
color image reproduction.Society for Information Display Journal, 5(1):61–
63, 1997.106

	1 Introduction
	1.1 Contributions
	1.2 Overview

	2 State of the Art
	2.1 Realistic Rendering
	2.1.1 Modeling the Scene
	2.1.2 Illuminating the Scene

	2.2 Defects
	2.2.1 Dust
	2.2.2 Stains
	2.2.3 Oxidation and Corrosion
	2.2.4 Peeling
	2.2.5 Cracks and Fractures
	2.2.6 Erosion
	2.2.7 Other Defects

	2.3 Scratches
	2.4 Grooves
	2.5 Conclusions

	3 Modeling Grooves
	3.1 Representation Overview
	3.2 Deriving the Geometry from a Scratching Process
	3.2.1 Measuring Real-World Scratches
	3.2.2 Deriving the Cross-Section Geometry
	3.2.3 Parameters Specification

	4 Rendering Grooves
	4.1 Isolated Scratches
	4.1.1 Finding Scratches
	4.1.2 Scratch BRDF
	4.1.3 Occlusion
	4.1.4 Results

	4.2 General Grooves
	4.2.1 Finding Grooves
	4.2.2 Detection of Special Cases
	4.2.3 Isolated and Parallel Grooves
	4.2.4 Special Cases
	4.2.5 Results

	4.3 Indirect Illumination
	4.3.1 Specular Reflections and Transmissions on the Grooved Surface
	4.3.2 Indirect Illumination from Other Objects
	4.3.3 Glossy and Diffuse Scattering
	4.3.4 Results

	5 Interactive Modeling and Rendering of Grooves
	5.1 Rendering Grooves in Texture Space
	5.1.1 Groove Textures
	5.1.2 Finding Grooves
	5.1.3 Rendering Grooves
	5.1.4 Isolated Grooves
	5.1.5 Special Cases
	5.1.6 Ends and Other Special Cases
	5.1.7 Results

	5.2 Rendering Grooves as Quads
	5.2.1 Modeling Grooves
	5.2.2 Transferring Groove Data
	5.2.3 Rendering Grooves
	5.2.4 Visibility Textures
	5.2.5 Extending the Quads
	5.2.6 Ends
	5.2.7 Preliminary Results

	6 Conclusions and Future Work
	6.1 Conclusions and Main Contributions
	6.2 Publications
	6.3 Future Work
	6.3.1 Improving the Modeling of Scratches
	6.3.2 Improving the Rendering

	A Perception-Based Image Comparison
	A.1 Pixel-by-Pixel Difference and Image Registration
	A.2 Perceptually Uniform Color Spaces
	A.3 Spatial Pre-Filtering
	A.4 Results
	A.5 Conclusions

	B Computational Complexity
	B.1 Evaluating the Complexity
	B.2 Software-Based Algorithms
	B.2.1 Space Complexity
	B.2.2 Time Complexity

	B.3 Hardware-Based Algorithms
	B.3.1 Space Complexity
	B.3.2 Time Complexity

	B.4 Conclusions

	Bibliography

