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Résumé 
 

La méthodologie de Modélisation Déclarative offre au concepteur la possibilité de 

décrire un objet ou un environnement en utilisant des termes abstraits, au lieu des valeurs 

explicites pour des propriétés géométriques concrètes. L’avantage principal de cette approche, 

particulièrement pendant la première phase de conception, est de permettre  au concepteur de 

se concentrer sur des caractéristiques qui sont plus près à l’intuition humaine. La 

Modélisation Déclarative peut proposer des solutions acceptables, souvent originales, aux 

quelles le concepteur n’aurait peut-être pas pensé. D’autre part, son désavantage principal 

provient du fait qu’une description déclarative mène généralement à un grand nombre de 

représentations géométriques alternatives, toutes solutions légitimes, dans le sens de la 

conformité avec la description soumise, pourtant pas équitablement préférées par le 

concepteur. 

Le but du présent travail a été l’étude et l’implémentation d’une méthodologie pour 

l’acquisition et la représentation des préférences du concepteur sous une forme de modèle 

informatique. Un tel modèle devrait être capable de fournir un environnement déclaratif de 

conception avec un comportement intelligent en ce qui concerne les préférences d’utilisateur. 

La méthodologie proposée, combine des éléments de domaine de l’apprentissage 

automatique et de l’aide à la décision offrant deux modèles respectifs de préférence. Le 

noyau du premier modèle est un mécanisme d’apprentissage incrémental, basé sur 

l’évaluation des solutions par l’utilisateur, durant l’utilisation régulière du système, tandis que 

le deuxième comporte un ensemble des vecteurs, représentant l’importance et la graduation 

d’une série d’attributs observés selon l’utilisateur spécifique. 

Un Module Intelligent de Profil d’Utilisateur, qui implémente les deux modèles de 

préférence et les composants additionnels exigés par le système d’information, a été intégré à 

un environnement déclaratif de conception, permettant la comparaison et l’essai. Une série 

d’expériences a été entreprise, avec différentes configurations du module et différents profils 

d’utilisateur, donnant des résultats qui suggèrent qu’un environnement déclaratif de 

conception puisse tirer bénéfice de l’application des modèles de préférence proposés.

 



 

 

 



 

Abstract 
 

The Declarative Modelling methodology offers the designer the ability to describe an 

object or an environment using abstract terms instead of explicit values for concrete 

geometric properties. The major advantage of this approach, especially during early-phase 

design, is that it allows concentration on characteristics which are closer to human intuition. 

Moreover, it may yield acceptable geometric representations not originally conceived by the 

designer. On the other hand, its main disadvantage stems from the fact that a moderate 

declarative description generally leads to a large number of alternative geometric 

representations, all legitimate solutions, in the sense of compliance with the submitted 

description, yet not equally preferable on behalf of the designer. 

The aim of the current work has been the study and implementation of a methodology 

for the acquisition and representation of the designer’s preferences in the form of a 

computational model. Such a model should be capable of providing a declarative design 

environment with intelligent behaviour features with respect to user preferences. The herein 

proposed and implemented methodology combines elements from the areas of machine 

learning and decision support offering two respective preference models. The core of the 

former is an incrementally learning mechanism, based on user solution evaluation during 

regular system use, whereas the latter comprises a set of vectors, representing the importance 

and scaling for a series of observed attributes according to the specific user. 

An Intelligent User Profile Module, implementing both preference models and the 

required additional information system components, has been integrated to a declarative 

design environment, allowing comparison and testing. A series of experiments has been 

conducted, with respect to alternative module settings and user profiles yielding results 

suggesting that a declarative design environment may benefit from the application of the 

proposed preference models. 
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Introduction 

Nous allons tracer ici les grandes lignes des considérations qui ont motivé ce travail, 

définir ses objectifs et discuter brièvement du contexte dans lequel il a été réalisé ainsi des 

grands domaines scientifiques qui ont contribué à sa réalisation.  

Nous commençons par la suggestion que le problème que nous abordons ici est un cas 

spécial d’un problème déjà existant dans notre vie quotidienne et qui provient des 

performances constamment et rapidement améliorées des ordinateurs et des communications 

de données modernes: celui du débordement de l’information. Ensuite, nous procédons à une 

brève présentation de la méthodologie de la Modélisation Déclarative, des besoins qu’elle 

aborde et des problèmes inhérents qu’elle expose. Nous énonçons notre but et présentons un 

résumé de la solution que nous avons proposée et qui est mise en application dans le cadre de 

ce travail. Dans les sections restantes nous fournissons une vue d’ensemble des 

méthodologies et des domaines de recherche qui ont contribué à cette solution. 

Habiter dans la bibliothèque 

Une grande partie de notre vie quotidienne bénéficie, directement ou indirectement, de 

l’utilisation de l’ordinateur et des communications modernes de données. Les écoles et les 

universités utilisent cette combinaison pour des tâches fondamentales comme le traitement 

des textes et les présentations ainsi que pour la recherche avancée et pour l’enseignement à 

distance. Les entreprises effectuent également des tâches de recherche et de développement 

aussi bien que des tâches de prise de décision avec leur aide, tout en maintenant de vastes 

quantités de données concernant le marché, les finances et les clients et en effectuent du 

management à distance. Les transports bénéficient de l’aide des ordinateurs et des 
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communications pour la coordination et le contrôle, l’art a trouvé en eux de nouveaux moyens 

d’expression, la médecine est largement aidée dans des tâches avancées de diagnostic, de 

thérapie et de conception de médicaments. Les ordinateurs et les communications se sont 

installés pratiquement dans tous les aspects de l’activité humaine.  

Naturellement, il y a plus que des raisons adéquates pour cette mainmise. Les 

ordinateurs, d’une part, portent des qualités spécifiques jusqu’à un degré bien au delà de la 

capacité humaine. Ce sont ces qualités qui en font réellement un des outils les plus souples et 

les plus attrayants jamais conçus. Si nous essayions d’isoler les propriétés de base sur 

lesquelles ces qualités sont construites, nous observerions que les ordinateurs offrent, 

essentiellement, de la vitesse et de la fiabilité exceptionnelles concernant le traitement et 

l’enregistrement de données. Les communications modernes de données, d’autre part, offrent 

la capacité de transférer d’une façon rapide et efficace, souvent en temps réel, de grands 

volumes d’information sous forme d’images, de sons, de vidéo et de documents, mettant en 

valeur de ce fait les capacités des ordinateurs, les rendant pratiquement omniprésents dans 

notre vie quotidienne. 

Les innovations technologiques, pendant les vingt dernières années, ont sérieusement 

influencé le progrès de l’industrie des ordinateurs et des télécommunications, améliorant de 

façon spectaculaire les qualités mentionnées ci-dessus. En ce qui concerne les ordinateurs, le 

matériel dont l’utilisateur moyen pourrait seulement rêver pendant les années ‘80 peut 

maintenant être trouvé sur chaque bureau. Une configuration d’ordinateur personnel typique 

du milieu des années ‘80 comprenait une UC fonctionnant à 4,77 mégahertz, effectuant 

approximativement 1 million d’opérations en virgule flottante par seconde (1 MFLOP), 640 

Ko de Mémoire Vive et un lecteur de disquettes souples pour des disques 5,25” de capacité de 

360 Ko, accompagnés d’un moniteur monochrome de tube cathodique. En même temps, les 

communications pauvres de données pouvaient seulement offrir la voix et un transfert lent de 

texte à l’utilisateur moyen. Ces dispositifs, bien qu’objectivement non négligeables, n’étaient 

dans la pratique pas adéquats pour des applications de grande envergure. Aujourd’hui, une 

station de travail de même prix comporte une UC fonctionnant à 3,4 gigahertz, à 1 gigaoctet 

de Mémoire Vive et à un port USB 2.0 supportant les cartes de mémoire flash de capacité de 

256 Mo ou plus, typiquement accompagnés d’un écran couleur TFT capable d’afficher 

quelques milliards de couleurs. Par ailleurs, les taux de transfert de 512Kbps et des interfaces 

utilisateur de haut niveau rendent le transfert de données, de n’importe quelle forme, rapide et 
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facile. Ces nombres impliquent que les machines contemporaines représentent une 

amélioration d’environ 1000 fois sur chaque aspect de performance – voir par exemple les 

fréquences de l’UC mentionnées ci-dessus – et, bien plus impressionnant, elles sont 

comparables aux ordinateurs géants d’une valeur de millions des dollars des années ‘80 tel le 

célèbre Cray II. Grâce à ces avancées, la population d’utilisateurs d’ordinateur a rapidement 

augmenté. Les vieux besoins ont été transformés à de nouvelles demandes d’utilisateurs qui 

doivent être accomplies par ces machines puissantes et des canaux de télécommunication. 

Néanmoins, comme c’est presque toujours le cas, il faut plus que la puissance de calcul brute 

et la vitesse de transfert pour accomplir ces besoins d’une façon efficace. 

J.L. Borges, dans sa courte histoire excellente appelée Bibliothèque de Babel, présente 

une métaphore qui a beaucoup de similitudes avec l’ère moderne de l’information. L’histoire 

fait partie d’une collection appelée Labyrinthes [Borges92] et a été pour la première fois 

éditée dans les années ‘40, mais elle semble être remarquablement prédictive du futur. 

L’endroit est l’intérieur d’un bâtiment énorme d’une architecture compliquée qui ressemble à 

un labyrinthe. Les salles de ce bâtiment sont reliées par des couloirs étroits ou des escaliers et 

les murs de chaque pièce sont couverts d’étagères remplies de livres. L’histoire, en fait, 

tourne autour de ces livres: chaque livre contient une séquence aléatoire de lettres couvrant sa 

première jusqu’à sa dernière page et, comme c’est normal, la plupart du temps le livre entier 

ne semble avoir aucun sens. Les gens, qui vivent et agissent dans la bibliothèque durant toute 

leur vie, cherchent désespérément un certain livre unique, supposé contenir l’explication de 

tous autres livres ainsi que de l’existence de la bibliothèque elle-même. Parfois, pendant leur 

recherche, ils trébuchent sur un mot ou une expression signicatifs qui apparaissent parmi les 

pages incompréhensibles d’un livre. En conséquence, ils développent différentes manières de 

penser basées sur ces petits fragments de raison aléatoirement placés. Un aspect 

impressionnant de l’histoire c’est l’implication qu’une partie des livres les plus importants qui 

ont jamais été écrits ou qui seront écrits peut également être trouvé dans la bibliothèque 

simplement parce que, après tout, ce sont juste des séquences de lettres. Cependant, à cause 

de la fraction minuscule qu’ils représentent contre tous les ordres possibles de lettres, c’est 

extrêmement difficile de les découvrir. Par ailleurs, nous restons avec le sentiment que des 

gens qui ont vécu parmi des pages aléatoires et incompréhensibles pendant des années, 

puissent ne pas apprécier et tirer profit de ces livres vraiment importants même s’ils les 

découvraient. 
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L’analogie avec le débordement de l’information d’aujourd’hui, bien que non 

intentionnelle, est étonnante. A cause des progrès technologiques mentionnés plus haut, nous 

sommes entourés de vastes quantités d’information, disponible sur le bout de nos doigts ou à 

quelques pas plus loin sous forme de sites Web, de livres, de journaux, de magazines, 

d’émissions de TV, de titres multimédia ou de publications. Néanmoins, nous devons exercer 

notre jugement presque constamment, contre des medias et des approches divers, afin de 

pouvoir filtrer le flot d’information entrant et le transformer en un sous-ensemble acceptable 

de connaissance ou de divertissement non seulement en termes de taille mais également en 

termes de qualité. La plupart du temps, cette sélection n’est pas – et ne peut pas être – 

objective: habituellement nous filtrons la partie de l’information entrante qui satisfait à nos 

besoins à l’instant donné, ignorant les parties qui pourraient être intéressantes pour d’autres. 

En tout cas, au lieu de choisir le meilleur, nous choisissons simplement ce que nous 

considérons comme le meilleur pour nous, tendant à filtrer cette partie de l’entrée qui est plus 

près de nos préférences.  

Modélisation Déclarative et première phase de 

conception  

La Modélisation Déclarative est une méthodologie puissante visant à soulager le 

créateur de la tâche pénible d’énoncer explicitement les propriétés géométriques d’un objet 

(ou d’un environnement) pendant la première phase de conception. À ce stade, le créateur  

s’intéresse plus aux idées et aux conditions fonctionnelles, recherchant l’intuition associée à 

l’utilisation pratique. Par conséquent, la Modélisation Déclarative offre au créateur la 

possibilité de décrire un objet à travers un ensemble de propriétés et de relations ambiguës qui 

pourraient être interprétées de plusieurs façons en ce qui concerne les résultats géométriques 

finals. Cette flexibilité permet au créateur d’examiner ces objets alternatifs, tous conformes à 

la description abstraite, et de choisir peut-être par la suite celui ou ceux étant plus proches de 

son intuition.  

Cependant, il y a un prix à payer puisque l’avantage de la flexibilité et de la liberté 

pendant la conception d’un objet est traduit en un désavantage en termes de calcul pendant la 

génération et la visualisation des solutions. En fait, tous les objets conformes à la description 
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suggérée, ne sont pas intéressants à niveau égal. Les versions alternatives peuvent être très 

nombreuses et le créateur n’est pas toujours capable ou prêt à les examiner toutes afin de 

sélectionner les versions les plus intéressantes. On a proposé plusieurs approches pour 

aborder ce problème basées sur les réseaux neuronaux, les algorithmes génétiques, le dialogue 

supplémentaire avec l’utilisateur, les exemples de représentations géométriques ou les 

combinaisons de ces mécanismes.  

L’objectif 

L’objectif principal de ce travail est de fournir un mécanisme capable de choisir et de 

présenter à l’utilisateur le sous-ensemble des solutions, correspondant à une description 

déclarative donnée, le plus proche des préférences de l’utilisateur spécifique.  

La méthodologie proposée 

Afin d’accomplir l’objectif mentionné ci-dessus, nous avons proposé et implémenté un 

module intelligent de profil d’utilisateur dans le contexte de l’environnement de conception 

déclarative Open-MultiCAD. Ce module est responsable de l’acquisition et du maintien des 

préférences de l’utilisateur dans une base de données dédiée en appliquant deux mécanismes 

alternatifs: 

• Un mécanisme d’apprentissage automatique transparent, entraîné par des sélections 

réelles de l’utilisateur pendant l’utilisation régulière du système. 

• Un mécanisme d’aide à la décision, initialisé explicitement par l’utilisateur pour refléter 

ses préférences personnelles. 

Ces préférences sont invoquées chaque fois qu’une description déclarative est donnée 

par l’utilisateur et traitée par le système, qui présente ainsi seulement le sous-ensemble le plus 

intéressant, c’est-à-dire le sous-ensemble préféré de la population de solutions générée.  
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Domaines de recherches connexes 

Ce travail et le prototype correspondant réalisé, utilisent des notions d’un éventail de 

domaines connexes. Une représentation visuelle du chevauchement de ces domaines apparaît 

sur la Figure 1. 

L’Analyse de Décision est un exemple d’un domaine où les préférences et l’expertise 

du décideur doivent être traduites en un modèle significatif qui permettra la sélection des 

options les appropriées ou préférables parmi un certain nombre d’options alternatives. 

Plusieurs mécanismes ont été développés pour faciliter ce transfert de l’intuition à la 

représentation concrète correspondante. L’échange que les chercheurs doivent habituellement 

résoudre dans cette région est celui entre la rétroaction adéquate de l’utilisateur et sa 

surcharge minimale en termes de temps et de complexité concernant l’acquisition de cette 

rétroaction. Par exemple, il existe des méthodes qui exigent des comparaisons par paires de 

toutes les alternatives en ce qui concerne chaque attribut influant sur la sélection globale. Les 

comparaisons par paires constituent une des méthodes des plus largement acceptées et des 

plus directes pour obtenir les préférences de l’utilisateur, puisque leur adoption contribue à la 

simplicité. D’autre part, quoique simples et directes pour l’utilisateur, ces méthodes 

deviennent impraticables quand plus de quelques dizaines d’options alternatives doivent être 

évaluées puisque le nombre de paires à comparer devient prohibitif en termes de temps.  

Quelques méthodes réduisent ce besoin de comparaison des options alternatives par 

paires en le compensant avec l’hypothèse de la transitivité de la préférence. Le dernier n’est 

pas toujours vrai en réalité, dans le sens où l’option A peut être préférée à l’option B et 

l’option B peut être préférée à l’option C mais, néanmoins, l’option C peut être préférable à 

l’option A pour l’utilisateur.  
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Figure 1 Domaines connexes à ce travail 

 

Ce problème est l’un des soucis de la modélisation de préférences, un domaine qui 

vise à modeler la notion intuitive de la préférence humaine en ce qui concerne les options 

alternatives. Bien que proche de l’analyse de décision, ce domaine a ses propres fondements 

mathématiques robustes tout en incorporant des contributions de la science cognitive. Des 

définitions alternatives, concernant l’indifférence ou les degrés de préférence, ont été données 

afin de compenser des problèmes comme, par exemple, le célèbre problème du «sucre» : nous 

pouvons être indifférents entre deux cuillerées de sucre différant d’une graine seulement; 

cependant l’accumulation de cette indifférence, graine par graine, peut mener à la préférence 

claire en réalité.  

L’apprentissage automatique est une région classique de l’intelligence artificielle 

consacrée à l’acquisition de la connaissance ou à la simulation du comportement basée sur 

une aide limitée sous forme d’exemples ou de règles. Il y a généralement deux catégories de 

méthodes, celles qui visent à acquérir la connaissance sous une forme compréhensible par les 
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gens – l’approche de boîte blanche – et celles centrées principalement sur le comportement 

intelligent et moins sur la représentation de la connaissance intrinsèquement – l’approche de 

boîte noire. Puisque la plupart des méthodes dans ce domaine est fondée sur l’apprentissage à 

partir des exemples, même si un ensemble de règles a été prédéfini par des experts, des 

problèmes liés à la qualité et à la quantité de ces exemples surgissent. Un des problèmes dans 

ce domaine provient de l’incompatibilité potentielle entre la simplicité parfois implicite d’un 

ensemble fini d’exemples et la complexité grandissante de la fonction réelle ou du mécanisme 

à simuler. Un autre problème est celui de surapprentissage, où le mécanisme artificiel ne peut 

pas se comporter correctement quand de nouveaux exemples lui sont présentés. Dans ce cas-

ci, le mécanisme est considéré comme incapable de généraliser sa connaissance à un degré 

acceptable.  

Un exemple de généralisation incorrecte est présenté de façon vivante dans le puzzle 

logique célèbre qui concerne l’espion caché près d’une porte gardée essayant d’apprendre la 

combinaison du mot passe – réponse. L’histoire veut que, pendant que l’espion se cache tout 

près, un étranger arrive et demande d’entrer par la porte. Le garde crie «six» s’attendant à la 

réponse correcte du venu. L’étranger répond «trois» et le garde, satisfait de la réponse, le 

laisse entrer. Après un moment, une autre personne vient et cette fois-ci le garde crie «huit» 

auquel la personne répond «quatre». Le garde est de nouveau satisfait de la réponse et laisse 

la personne entrer. Pendant ce temps, l’espion pense qu’il a pris conscience du mécanisme 

pour fournir la réponse correcte au garde: c’est toujours la moitié du nombre prononcé par la 

garde. Par conséquent, il se montre et demande d’entrer et cette fois-ci le garde crie «dix». 

L’espion répond avec confiance «cinq» se trouvant immédiatement arrêté. «La réponse 

correcte était «trois» dit le garde comme l’espion est emporté. Évidemment la généralisation 

de l’espion, bien que conforme aux exemples qu’il a eus à sa disposition, n’a pas été celle 

correspondant à la réalité. La règle utilisée par le garde est vraiment simple mais différente et 

le but du puzzle lui-même est de trouver cette règle fondé sur tous les trois exemples – un 

avantage qui n’a jamais été offert à l’espion malheureux. Néanmoins, même la règle du garde 

n’est pas la seule conforme avec les exemples disponibles, laissant du champ, par conséquent, 

pour des généralisations alternatives.  
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Organisation de la thèse 

L’organisation des chapitres restants suit une structure similaire. En particulier, le 

deuxième chapitre traite de la modélisation déclarative et des applications appropriées, en 

mettant l’accent sur l’environnement déclaratif de conception Open–MultiCAD parmi ces 

derniers, qui a servi de banc d’essai de la méthodologie proposée dans ce travail. Le troisième 

chapitre présente les bases de la modélisation de préférences, en se basant sur les notions 

appliquées dans le contexte actuel, et discute en détail les méthodologies d’aide à la décision à 

multi-critères utilisées dans ce travail, ainsi que les solutions alternatives les plus importantes. 

Le quatrième chapitre aborde l’apprentissage automatique, discutant des notions 

fondamentales et des algorithmes les plus significatifs du domaine ainsi que de leur 

applicabilité au contexte actuel. Le cinquième chapitre présente en détail le Module Intelligent 

de Profil d’Utilisateur proposé, décrit ses composants et aborde quelques questions 

d’implémentation. Le sixième chapitre décrit les expériences qui ont été menées afin d’ajuster 

et d’évaluer ultérieurement le prototype du Module Intelligent de Profil d’Utilisateur. Le 

dernier chapitre fournit les conclusions tirées de ce travail actuel et pose un certain nombre 

d’axes pour de recherche future. 
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1 Introduction 

The current chapter aims to outline the motivation that has triggered this work, set the 

corresponding objectives and briefly discuss the context in which it has taken place as well as 

the contributing fields of the corresponding scientific areas.  

We start with the suggestion that the problem we address here is a special case of a 

problem already existing in our everyday lives originating from the constantly and steeply 

improving performance of modern day computers and communications: that of information 

overflow. Next, we proceed to a brief presentation of the Declarative Modelling methodology, 

the needs it addresses and the inherent problems it exhibits. We state our goal and present a 

summary of the solution we have proposed and implemented within the scope of this work. In 

the remaining sections we provide an overview of the methodologies and corresponding 

research fields that have contributed to the solution. 

1.1 Living in the Library 

A large part of our everyday life benefits, directly or indirectly, from computer use and 

modern data communications. Schools and universities rely on this combination for basic 

tasks like text processing and presentations as well as for advanced research and distance 

learning. Businesses also perform research and development as well as executive decision 

making with their aid, while maintaining vast amounts of market, financial and customer data 

and performing remote management. Transportation relies on them for coordination and 

control, art has found new ways of expression, medicine is seriously supported in advanced 

tasks of diagnosis, therapy and drug design, it seems that computers and communications 

have spread into practically all aspects of human activity.  
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Of course, there is more than adequate reason for this penetration. Computers, on one 

hand, bear specific qualities to an extent far beyond human capacity. It is these qualities that 

actually make them one of the most versatile and attractive tools ever built. If we tried to 

isolate the core features upon which these qualities are built we would observe that 

computers, essentially, offer exceptional speed and reliability when it comes to performing 

data computations and data storage. Modern data communications, on the other hand, offer 

the ability to transfer in a fast and efficient manner, often in real-time, large volumes of 

information in the form of images, sounds, video and documents thus enhancing computers’ 

abilities, making them practically ubiquitous in our everyday life. 

Technological innovations during the last twenty years have seriously influenced the 

progress of computer industry and telecommunications thus dramatically improving the 

aforementioned qualities. Focusing on the former, hardware that the average user could only 

dream of during the eighties can now be found on every desk. A typical personal computer 

configuration of the middle-eighties included a CPU operating at 4.77 MHz handling roughly 

1 million floating-point operations per second (1 MFLOP), 640 KB of RAM, and a floppy 

disk drive for 5.25” disks of 360 KB capacity, accompanied by a monochrome CRT monitor. 

At the same time, poor data communications could only offer voice and slow plain-text 

transfer to the average user. These features, although objectively not negligible, were 

practically not adequate for large scale applications. Today, a similarly priced workstation 

features a CPU operating at 3.4 GHz, 1 GB of RAM and a USB 2.0 port supporting flash 

memory sticks of 256 MB capacity or more, typically accompanied by a TFT colour monitor 

able to display a few billion colours. Moreover, transfer rates of 512Kbps and user friendly 

interfaces make data transfer of any form fast and easy. These numbers imply that 

contemporary machines represent an improvement of roughly 1000 ratio on every 

performance aspect – notice, for example, the aforementioned CPU frequencies – and, even 

more impressive, they are comparable with multi-million dollar supercomputers of the 

eighties as the famous Cray II. As a result of these advances, the computer user population 

has steeply increased. Old needs have transformed into new user demands that have to be 

fulfilled by these powerful machines and telecommunication channels. Nevertheless, as it is 

almost always the case, it takes more than raw computing power and transfer speed to fulfil 

these needs in an efficient manner. 
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J.L.Borges, in his excellent short story called Library of Babel, presents a metaphor 

that bears a lot of similarities with the modern day information era. The story is part of a 

collection called Labyrinths [Borges92] and was first published back in the 1940’s, yet it 

appears to be remarkably predictive of the future. The location is the interior of a huge 

building of complicated architecture that resembles a labyrinth. The rooms of this building are 

connected through narrow corridors or staircases and the walls of every room are covered by 

shelves filled with books. The story is, in fact, revolving around these books: each book 

contains a random sequence of letters spanning from its first to its last page and, as it is only 

natural, most of the times the entire book does not make any sense. People, who live and act 

in the library throughout their lives, desperately seek a certain unique book that is assumed to 

contain the explanation of all other books as well as of the existence of the library itself. 

Sometimes, during their search, they stumble upon a meaningful word or phrase that appears 

among the otherwise incomprehensible pages of a book. As a result, they develop different 

ways of thinking based on these small fragments of randomly positioned reason. An 

impressive aspect of the story is the implication that some of the most important books that 

have ever been written or that will be written can also be found in the library simply because, 

after all, they are just sequences of letters. However, due to the miniscule fraction they 

represent against all possible letter sequences, these really important books are extremely hard 

to discover. Moreover, we are left with the feeling that people who have been living among 

random, incomprehensible pages for years, might not be able to appreciate and take advantage 

of these truly important books even if they discovered them.  

The analogy with today’s information overflow, although not intentional, is striking. 

Due to the aforementioned technological advances, we are surrounded by vast amounts of 

information, available under our fingertips or a few steps away in the form of websites, books, 

newspapers, magazines, TV shows, multimedia titles or publications. Nevertheless, we have 

to exercise our judgement almost constantly, against diverse media and approaches, in order 

to be able to filter the incoming stream of information and transform it to an acceptable subset 

of knowledge or entertainment not only in terms of size but also in terms of quality. Most of 

the times, this selection is not – and can not be – objective: we usually filter in that part of the 

incoming information that satisfies our needs at the time, ignoring parts that could be 

interesting for others. One way or the other, instead of selecting the best, we merely select 

what we consider as the best for us, tending to filter in that part of the input that is closer to 

our preferences.  
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1.2 Declarative Modelling and Early Phase Design 

Declarative Modelling is a powerful methodology aiming to relieve the designer from 

the tedious task of explicitly stating the geometric properties of an object (or an environment) 

during early phase design. At this stage, the designer is more interested in ideas and 

functional requirements, seeking intuition coupled with practical use. Hence, Declarative 

Modelling offers the designer the ability to describe an object through a set of ambiguous 

properties and relations that could be interpreted in more than one ways with respect to the 

final geometric outcome. This versatility allows the designer to inspect alternative objects, all 

complying with the abstract description, and eventually choose that or those closer to his/her 

intuition.  

However, there is a price to pay since the advantage of versatility and freedom during 

object design is translated to a computational disadvantage during solution generation and 

visualisation. Not all objects that conform to the submitted description are equally interesting. 

The alternative versions may be thousands and the designer is not always able or willing to 

inspect all of them in order to pick the most preferable designs. Several approaches have been 

proposed to address this problem based on neural networks, genetic algorithms, additional 

user feedback, example geometric representations or combinations of these mechanisms.  

1.3 The Objective 

The main objective of the current work is: to provide a mechanism able to select and 

present to the user the subset of the solutions corresponding to a submitted declarative 

description closer to the specific user’s preferences.  

1.4 The Proposed Methodology 

In order to accomplish the aforementioned objective, we have proposed and 

implemented an Intelligent User Profile Module in the context of the Open-MultiCAD 

declarative design environment. This module is responsible for acquiring and maintaining 

user’s preferences in a dedicated database by applying two alternative mechanisms: 
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• A transparent Machine Learning mechanism, trained by actual user selections during 

regular system use. 

• A Decision Support mechanism, explicitly initialised by the user to reflect his/her 

personal preferences. 

These preferences are then invoked whenever a declarative description is submitted by 

the user and processed by the system, thus presenting only the most interesting, i.e. 

preferable, subset of the generated solutions population.  

1.5 Contributing Areas 

The current work and the corresponding prototype combine notions from a wide range 

of fields. A visual representation of the interleaving of these fields appears in Figure  1.1. 

Decision Analysis is one example of a field where the Decision Maker’s preferences 

and expertise have to be translated into a meaningful model that will allow the selection of the 

most appropriate or preferable of a number of alternative options. Several mechanisms have 

been developed to facilitate this transfer from intuition to the corresponding concrete 

representation. The trade-off researchers usually have to resolve in this area is that between 

adequate user feedback and minimal user overhead in terms of time and complexity regarding 

the acquisition of this feedback. For example, there exist methods that require pair-wise 

comparisons of all alternatives with respect to each attribute affecting the overall selection. 

Pair-wise comparisons are one of the most widely accepted and straightforward methods for 

obtaining user preferences, since their adoption contributes to simplicity. On the other hand, 

albeit simple and straightforward for the user, these methods become impractical when more 

than a few tens of alternative options need to be evaluated since the number of pairs to be 

compared becomes prohibitive in terms of time.  

Some methods relax that need for pair-wise comparison of alternative options 

compensating for it with the assumption of transitivity of preference. The latter is not 

necessarily true in real world in the sense that option A may be preferred over option B and 

option B preferred over option C but, nevertheless, option C may be preferable over option A 

for the user.  
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Figure  1.1 Fields contributing to this work 

 

This issue is one of the concerns of Preference Modelling, a field that aims to model 

the intuitive notion of human preference with respect to alternative options. Although relative 

to Decision Analysis, this field has its own sound mathematical foundations while 

incorporating contributions from cognitive science. Alternative definitions regarding 

indifference or degrees of preference have been given in order to compensate for problems 

like the famous “sugar” example: we may be indifferent between two spoonfuls of sugar 

differing by only one grain; however the accumulation of this indifference, grain by grain, 

may lead to clear preference in reality.  

Machine Learning is a classical field of Artificial Intelligence dedicated to the 

acquisition of knowledge or the simulation of knowledgeable behaviour based on limited 

guidance in the form of examples or rules. There are generally two categories of machine 

learning methods, those aiming to acquire knowledge in a form understandable by humans – 

the white box approach – and those concentrating mainly on intelligent behaviour and less on 
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the knowledge representation per se – the black box approach. Since most methods in this 

area are based on learning by examples, even if a set of rules has been pre-defined by experts, 

problems connected with the quality and quantity of these examples arise. One of the 

problems in this field stems from the potential incompatibility between the simplicity 

sometimes implied by a finite set of examples and the increased complexity of the actual 

function or mechanism to be simulated. Another problem is that of overfitting to the 

examples, where the artificial mechanism is unable to behave correctly when new examples 

are presented to it. In this case, the mechanism is considered to be unable to generalise its 

knowledge to an acceptable degree.  

An example of erroneous generalisation is vividly presented in the famous logical 

puzzle about the spy lurking by a guarded gate trying to learn the catchword-watchword 

combination. The story wants it that, while the spy lurks nearby, a stranger arrives and asks to 

enter the gate. The guard shouts “six” expecting the correct answer by the newcomer. The 

stranger replies “three” and the guard, satisfied by the answer, lets him in. After a while, 

another person comes along and this time the guard shouts “twelve” in which case the person 

replies “six”. The guard is once again satisfied by the answer and lets the person in. By this 

time, the spy thinks he has realised the mechanism to supply the correct answer to the guard: 

it is always half the number uttered by the guard. Hence, he shows up and asks to enter and 

this time the guard shouts “eight”. The spy confidently answers “four” only to find himself 

instantly arrested. “The correct answer was ‘five’” says the guard as the spy is taken away. 

Obviously the spy’s generalisation, although compliant with the examples he had available, 

has not been the one corresponding to reality. The rule used by the guard is really simple but 

different and the purpose of the puzzle itself is to find this rule based on all three examples – 

an advantage that was never offered to the unlucky spy. Nevertheless, even the guard’s rule is 

obviously not the only one fitting the available examples hence leaving room for alternative 

generalisations. 

1.6 Thesis Organisation 

The organisation of the remaining chapters follows a similar structure. In particular, 

the second chapter elaborates on Declarative Modelling and the relevant applications, 

focusing on the Open-MultiCAD declarative design environment among the latter, which has 
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served as the test bed of the herein proposed methodology. The third chapter presents the 

fundamentals of Preference Modelling, focusing on the notions applied in the current context, 

and discusses in detail the Multicriteria Decision Support methodologies employed in the 

current work as well as the most important alternatives. The fourth chapter addresses Machine 

Learning, discussing the basic notions and the most significant algorithms of the area as well 

as their applicability to the current context. The fifth chapter presents the proposed Intelligent 

User Profile Module in detail, describes the comprising components and addresses some 

implementation issues. The sixth chapter demonstrates the experiments that were conducted 

in order to adjust and subsequently evaluate the prototype Intelligent User Profile Module.  

The last chapter provides the conclusions drawn from the current work and sets a number of 

future work axes. 
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2 Declarative Modelling 

Declarative Modelling is a powerful methodology for early phase design. Unlike 

Imperative Modelling, where all geometric details are explicitly defined by the designer, 

Declarative Modelling offers the ability to describe an object or an environment through a set 

of ambiguous terms. Different interpretations are then possible, leading to alternative final 

outcomes all based on the same abstract description. The current chapter commences with the 

origins and the rationale of the declarative modelling methodology. Next, Declarative 

Modelling by Hierarchical Decomposition is discussed focusing on its main differences when 

compared to the original concept. The most important software applications supporting 

declarative modelling design principles are presented. Among the latter, special emphasis is 

given to the Open-MultiCAD design environment that forms the context for the prototype that 

was designed and implemented within the scope of the current work. 

2.1 Declarative Modelling Concept 

During the early stages of the design process, the designer is usually not fully aware of 

the exact geometric properties of the object or environment to be created. The focus, at this 

stage, is on abstract characteristics rather than on concrete geometric properties. A typical 

example is a house, for which the following description appears to be quite natural and 

straightforward: 

“It is a large house with two bedrooms and a rather spacious living room. The kitchen 

is not very big, but it is adjacent to the living room and communicates with it through a pass 

on their common wall. The bathroom is quite roomy and conveniently placed near the 
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bedrooms. The bedrooms are placed next to each other. The WC is near the living room 

which places all the public spaces on the east part of the house.” 

However, there are more than one ways to describe a house. The description for the 

same house could be as follows: 

“The house is 10m wide and 15m long. The kitchen is 5m by 4m and the living room is 

10m by 4m. One bedroom is 2.5m wide and 5m long whereas the other is 5m by 5m. The 

bathroom is 4m by 4m. Starting from the bottom left of the top view, the arrangement of the 

rooms is Bedroom, Kitchen, Living Room whereas from the top left it is Bedroom, Bath, WC 

and the same Living Room.” 

Notice that, in order to make the difference sharper, we have provided a geometric 

description as an alternative, avoiding any intuition regarding the house, concentrating on 

pure geometric properties. It is obvious that the former of the two descriptions is closer to the 

human way of thinking with respect to object or environment design. However, it is the latter 

kind of description, non-intuitive and purely geometric, that has to be specified by the 

designer in order to comply with the requirements of most commercial Computer Aided 

Design applications. In particular, in order to provide the visualisation of an object, CAD 

software requires a high degree of precision regarding the object’s geometric properties. This, 

in turn, implies that by the time the object is visualised the designer has already performed the 

most interesting task without any assistance from the system: the task of object design. In 

other words, the CAD application can not be used to assist in idea generation but only to 

visualise ideas already conceived by the designer. This lack of support during the creative 

stage of the design process has led to the concept of declarative modelling and the 

corresponding modelling tools. 

2.2 Declarative Modelling Design Process 

In the Declarative Modelling context the scene is the object or environment to be 

designed. This scene may be described by declarative means, yielding the declarative 

description of the scene, or through a geometric representation – yielding a solution for the 

specific declarative description. The Declarative Modelling Design Process comprises three 



DECLARATIVE MODELLING 

GEORGIOS BARDIS  23 

distinct stages covering the transition from the abstract declarative description of the scene to 

the resulting visualised solutions [Lucas89], [Plemenos95], namely: 

• Scene Description. The definition of the declarative description of the scene. 

• Scene Generation. Generation of geometric representations of the scene. 

• Scene Understanding. Visualisation and information acquisition from the visualised 

solutions. 

Each stage encompasses more than one steps of the overall procedure. In particular, 

the designer initiates the cycle by submitting a declarative description of the scene. This 

description integrates a mixture of design ideas, functional requirements, intuition, etc. As 

soon as the declarative description has been submitted one or more solutions complying with 

the description are generated and visualised by the corresponding mechanism. Subsequently, 

the designer is able to gain enhanced insight regarding the scene, enriched with ideas that may 

have not been obvious during the definition. Knowledge acquisition during scene 

understanding may be based simply on the designer’s intuition or may be aided by the system. 

This is a topic of on-going research part of which is the current work as well as [Barral00]. 

The designer is then able to refine the declarative description in order to guide the solution 

generation to a more desirable result. Notice that the aforementioned stages actually form a 

cycle that may be repeated many times until the designer is satisfied with the final outcome. 

The interconnection of the three stages and the information exchange is shown in Figure  2.1. 

According to the techniques applied for each of the aforementioned stages and their 

comprising steps, declarative modelling approaches can be distinguished in several 

subcategories. The main distinction is usually set regarding the mode of operation with 

respect to the generated solutions according to the corresponding declarative description 

input, namely: 

• Exploration mode. The designer submits a declarative description and expects 

exploration of the entire solution space that fulfils this description. His/her purpose is to 

obtain novel or alternative ideas that conform to the submitted set of rules. 

• Solution Search mode. The designer submits a declarative description and expects a 

single solution as a result. The task of narrowing down the range of the produced outcome 

to a single solution may be aided by additional feedback on behalf of the designer or 

restrictive interpretation of the submitted description. 
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Figure  2.1 Declarative Modelling Design Process 

 

One may argue that the Solution Search mode should be considered a special case of 

the Exploration mode since a single solution may always be picked among the solution space 

produced by the latter. Although formally this is true, the Solution Search mode usually 

incorporates the notion of optimisation in the sense that one of the best solutions complying 

with the submitted description is quested in contrast with the less strict approach inherent to 

the Exploration mode regarding the quality of the solutions. On the other hand, techniques to 

improve the quality of the solutions by concentrating on the most interesting solution sub-

spaces have also been presented with regard to the Exploration mode in order to overcome 

time and space problems caused by the combinatorial explosion inherent to the task. These 

techniques are further discussed in the next sections presenting the most important 

Declarative Modelling tools. 
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2.3 Declarative Modelling by Hierarchical 

Decomposition 

Although powerful and flexible enough to handle the definition of a wide range of 

objects or environments, the declarative modelling methodology may lead to complicated 

descriptions when dealing with complex scenes containing numerous objects and relations 

among them. Declarative Modelling by Hierarchical Decomposition (DMHD) [Plemenos95] 

attempts to reduce this complexity by separating the overall description into a set of simple 

descriptions of sub-scenes, each appropriately positioned in a hierarchy representing the 

complete scene. Following from this, it becomes apparent that DMHD may be applied only 

when two fundamental characteristics for the scene (object or environment) to be modelled 

are both present: 

• Increased Complexity. The scene’s complexity prohibits its modelling at a single level of 

decomposition. 

• Structural Knowledge. The scene’s structure is known to an extent that allows its 

recursive decomposition as a set of sub-scenes of reduced complexity.  

In a sense, DMHD addresses the problem posed by the former of the two 

aforementioned characteristics, by taking advantage of the latter. This top-down approach of 

declarative design can be formally defined by the following set of recursive rules, adapted 

from the rules appearing in [Bonnefoi04]: 

DMHD(currentscene) 

if (currentscene can be described by a small set of pre-defined high level 
     declarative relations and properties)  

 create the corresponding declarative description for currentscene 

else  

 create a declarative description for currentscene  
  using subscenes wherever needed to reduce complexity 

 for each subscene used 

  DMHD(subscene) 

Algorithm  2.1 The Declarative Modelling by Hierarchical Decomposition technique 
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2.4 Declarative Description by Hierarchical 

Decomposition 

The declarative description methodology, regardless of the explicit language or tool 

used for its representation, comprises a set of basic elements used to express the semantics of 

the description and serve as rules for the solution generation process. In particular, each scene 

described in a declarative manner usually consists of the following: 

• A set of declarative objects 

• A set of declarative properties required for or exhibited by these objects 

• A set of declarative relations among these objects 

In the case of Declarative Modelling by Hierarchical Decomposition the objects may 

well be sub-scenes that are recursively described in the same manner. In the following we 

concentrate on the declarative description of physical, visually representable, objects. Hence, 

the objects, relations and properties that are mentioned, are connected with morphological and 

spatial elements. In particular, in order to clarify the aforementioned declarative description 

notions we consider an example of a typical habitation. The declarative objects of the 

corresponding scene appear in Table  2.1. 

Declarative 
Objects 

Public Zone 
Private Zone 
Children’s Bedroom 
Parents’ Bedroom 
Bathroom 
Kitchen 
Living-Room 
WC 
Corridor 

Table  2.1 Declarative Objects of Habitation scene 

 

The designer may require each one of these objects to demonstrate certain abstract 

properties. An example set of declarative properties for the objects of Table  2.1 appears in 

Table  2.2.  
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Declarative Properties 
Corridor is long and narrow 
Parents’ Bedroom is big and square shaped 

Table  2.2 Declarative Properties of the Habitation scene objects 

 

Declarative properties are abstract and closer to the human way of thinking in the 

sense that, although they are connected with an object’s morphology, they allow for 

alternative, yet all valid, interpretations of it. The explicit range of these interpretations is, up 

to an extent, connected with the specific tool used for solution generation in a given context. 

The relations that may appear in a declarative description of a scene fall into three 

categories [Miaoulis02] according to the kind of connection they represent between the 

related objects. These categories refer to binary relations but they may be trivially extended to 

include relations with an arbitrary number of members.  

• Meronymic. One of the two objects forms part of the other. It is worth noticing that, 

although in the present context we focus on visually representable objects, this part-of 

category of relations does not necessarily imply physical interconnection between the 

objects. In a wider sense, meronymic relations may support the notion of containment 

among logical objects rather than strictly physical.  

• Correlational. One (or more) of the properties of the two objects are connected by means 

of comparison. Similarly to the previous category, in a broader context, the relation may 

refer to physical properties like length, colour, texture, as well as logical properties under 

the condition that the latter have been concretely defined and, thus, they are comparable. 

• Spatial. The positions of the two objects are comparatively related. Typically, the 

category of Spatial relations may be considered as a special case of the Correlational 

category, in the sense that the relative position of an object with respect to another may be 

defined as a set of rules regarding its geometric properties specifying its position and size. 

However, this translation is, generally, not trivial and, at the declarative description level, 

we deal with the relations in a form closer to the human way of thinking. In other words, a 

simple spatial relation seems more natural and closer to the declarative modelling 

rationale than its equivalent set of correlational relations. This distinction will become 

more evident during the discussion of the Open-MultiCAD environment, in subsequent 

sections. A set of declarative relations for the running example appears in Table  2.3. 



DECLARATIVE MODELLING 

GEORGIOS BARDIS  28 

 

Meronymic 

 

Public Zone is part of the Habitation 
Private Zone is part of the Habitation  
Corridor is part of the Habitation  
Children’s Bedroom is part of the Private Zone 
Parents’ Bedroom is part of the Private Zone 
Bathroom is part of the Private Zone 
Kitchen is part of the Private Zone 
Living-Room is part of the Public Zone 
WC is part of the Public Zone 

Correlational 
Bathroom is larger than the WC 
Living-Room is larger than the Kitchen 

Declarative 
Relations 

Spatial 

Bathroom is near Children’s Bedroom 
Parents’ Bedroom is adjacent to Children’s Bedroom 
south 
WC is near Living-Room 
Public Zone is adjacent to the Private Zone on its east 

Table  2.3 Declarative Relations among the Habitation scene objects 

 

Notice that in the specific description we have applied Declarative Modelling by 

Hierarchical Decomposition since the Public Zone and Private Zone objects are actually sub-

scenes, containing some of the subsequent objects.  

The description assembled by Table  2.1, Table  2.2 and Table  2.3, although complete 

and accurate in terms of content, fails to provide an intuitive overview of the declarative 

aspects of the scene. In a sense, although the visual interpretation of the actual geometric 

representation of the scene is not desired at this level, visual information regarding the 

declarative description itself, in a more intuitive manner, is welcome. Hence, an enriched tree 

structure forms a very common alternative method for the representation of a declarative 

description. Figure  2.2 presents a graphical equivalent of the Habitation scene, based on the 

guidelines proposed in [Miaoulis02]. At this point, it is worth noting that, for the sake of 

uniformity, we have based the Habitation scene example on the verbal house description 

given at the beginning of this chapter. 
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Figure  2.2 Graphical Representation of the Declarative Description of the Habitation scene 

2.5 Declarative Modelling Tools 

Since the introduction of declarative modelling methodology a number of efforts have taken 

place in the form of applications applying its principles, referred as Declarative Modellers.  

We may generally distinguish two kinds of modellers depending on their goal in regard to the 

design procedure. In particular, we have 

• Dedicated Modellers. Modellers falling into this category concentrate on a specific kind 

of object or environment to be designed. The advantage of this approach is the fact that 

the corresponding applications often provide additional tools, specialised in the treatment 

of a particular type of scenes, further facilitating the designer’s work. 

• General Purpose Modellers. The modellers of this category aim to handle a wide variety 

of objects or environments without focusing on a specific paradigm or domain. This forms 

their main advantage, due to their flexibility and their ability to adapt to the needs of the 

designer regardless of the specifics of the scene to be processed. 

In the following, we provide a brief description of projects and applications that have 

employed the principles of declarative modelling in various fields and to different extents. We 
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dedicate a large part of the remaining part of this chapter to the Open-MultiCAD Declarative 

Design Environment since it incorporates part of the preliminary stages of the current work 

and has also served as the basis for its main part, the Intelligent User Profile Module, which is 

described in the next Part of this thesis. 

2.5.1 Dedicated Modellers 

2.5.1.1 VoluFormes 

This dedicated modeller [Chauvat94] consists of two modules: 

• VoluBoites. This module is responsible for generating alternative placements of bounding 

boxes in a 3D space. The arrangements are produced serially and they are subject to user 

approval or rejection. Once the user’s approval is available the operation of the next 

module is taking place. VoluBoites applies a declarative modelling methodology for the 

description of the placement of the control boxes. 

• VoluScenes. This module is taking advantage of the placement of the control boxes 

decided in the previous module in order to create forms based on growth mechanisms. 

The output of the two modules, as presented in [Plemenos04], appears in Figure  2.3. 

 

Figure  2.3 Bounding box arrangement (left) and the corresponding final scene (right) 

2.5.1.2 DEM2ONS 

This project covers the entire range between the abstract conceptual form of an object 

or environment and its visual representation [Gaildrat03]. It has launched several sub-projects 

implementing alternative methods for the exploration of the solution space, concentrating on 
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the domains of Architecture and Interior Design. Table  2.4 summarises the alternative 

methods used in the context of these sub-projects for the resolution of the constraints 

comprising the declarative description. 

Approximative 
Algebraic 

Exact 

Expert Systems 
Deductive 

Re-writing Systems 

Descending 
Constructive 

Ascending 

Propagation of Conflicts 
Local Propagation 

Propagation of Degrees of Freedom (DOF)  

Hierarchical 

Dynamic  CSP 

Numerical  

Local Search 
Metaheuristics 

Genetic Algorithms 

Table  2.4 Constraint Resolution Methods Applied in DEM2ONS Projects [Gaildrat03] 

 

An example of the output of the DEM2ONS_GA tool [Sanchez00], based on genetic 

algorithms for solution generation, appears in Figure  2.4. 
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Figure  2.4 Part of scene produced by DEM2ONS as it appears in [Gaildrat03] 

2.5.1.3 PolyFormes 

PolyFormes comprises a tool for the generation of regular or semi-regular polyhedra 

based on a declarative description [Martin99]. This description may correspond to one or 

more geometric representations in which case all solutions complying with it are provided by 

the system, when the number of solutions is finite. In the opposite case, where the description 

suggests an infinite number of alternative polyhedra, and this is possible with the specific 

description mechanism provided by the tool, the system stops at a certain depth the 

exploration of the solution space. An example semiregular polyhedron generated by the 

system appears in Figure  2.5. 

 
Figure  2.5 A semi-regular polyhedron (foreground) and its exploded version showing its 

constituents (background) [Martin99] 
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2.5.1.4 MégaFormes 

This is a dedicated declarative modeller aiming to represent megalithic sites through 

the process of declarative arrangement of bounding boxes and subsequent replacement of 

them by rendered representations of the corresponding objects [Poulet96]. The approach is 

similar with the one used in VoluFormes in the sense that only the first part of the 

methodology used is explicitly based on declarative modelling. An example of the system’s 

output, as shown in [Gaildrat05], appears in Figure  2.6. 

 

Figure  2.6 MégaFormes output as shown in [Gaildrat05] 

2.5.1.5 BatiMan 

This is a significant declarative modelling tool [Champciaux98a], [Champciaux98b] in 

the sense that it combines Constraint Satisfaction Problem (CSP) techniques for solution 

generation and Machine Learning mechanisms to assist the user during the scene 

understanding phase of the declarative modelling process to define the target concept which 

resembles the notion of user preferences of the current context. In particular, the tool models 

buildings based on a finite set of representative elements that are combined to provide the 

alternative solutions. It maintains a tree structure for the unsupervised classification of the 

solutions in concepts and offers the user the ability to examine the representative solutions for 

each class in order to create a subset of solutions describing the target concept. This is 

accomplished based on subsequent user evaluation of class representatives which have been 

selected based on the degree of class characteristics they share.  

The machine learning component of this tool is based on the quite restrictive 

assumption that user preference, as reflected in the target concept, is similar for similar 

solutions. As a result, user’s preferences are modelled based on the solution classes and not 
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on the solutions themselves. In other words, by its construction, the tool prevents the user 

from approving solutions from alternative classes while, concurrently, rejecting solutions 

from the same classes. 

2.5.2 General Purpose Modellers 

2.5.2.1 WordsEye 

This tool, currently undergoing beta testing, accepts a paragraph as input and generates 

an image interpretation of the text. It is based on pre-defined objects and properties and 

produces a single solution for the given description. Figure  2.7 presents the output created 

based on the following phrase: 

“The couch is against the wood wall. The window is on the wall. The window is next 

to the couch. The door is 2 feet to the right of the window. The man is next to the couch. The 

animal wall is to the right of the wood wall. The animal wall is in front of the wood wall. The 

animal wall is facing left. The walls are on the huge floor. The zebra skin coffee table is two 

feet in front of the couch. The lamp is on the table. The floor is shiny.” 

 

Figure  2.7 WordsEye output based on text scene description [SemanticLight06] 

2.5.2.2 SpatioFormes 

This general purpose modeller accepts a description defining the declarative properties 

of a scene as input based on a specific vocabulary and the corresponding syntax rules. The 
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mechanism generates alternative geometric representations of the declarative description in 

the 3D space as voxel sets. The generation of the solution space takes place through the 

breadth-first exploration of the tree of alternative valid solution representations [Poulet94].  

2.5.2.3 CAPS 

Constraint-based Placement for Scene composition (CAPS) [Xu02] offers a realistic 

arrangement of objects in a three dimensional space. The arrangement is based on abstract 

user constraints combined with pseudo-physics for the calculation of position in terms of 

stability and friction. In addition, each object is enhanced by semantic content that affects its 

placement with respect to the other objects of the scene. The modeller provides a single 

arrangement considering all available information. Alternative arrangements may be obtained 

either through direct manipulation of an object’s position or through the alteration of each 

object’s probability to support (or rest) on another. Nevertheless, the modeller should 

generally be considered to operate in solution search mode rather than exploration mode. 

Figure  2.8 shows an example scene generated by CAPS. 

 

Figure  2.8 Object arrangement generated by the CAPS tool [Xu02] 

 

2.5.2.4 MultiFormes 

This is a general purpose declarative modeller that combines Constraint Satisfaction 

Problem resolution techniques with heuristic methods to accelerate solution generation 

[Plemenos91],[Ruchaud02] and has evolved through several versions. Each scene is described 

as a set of geometric objects and a set of relationships among these objects, expressed in a 
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special declarative modelling language implementing Declarative Modelling by Hierarchical 

Decomposition. Relationships can be high-level (imprecise) as well as low-level (precise) and 

solution generation is geometry-based. Boxes and convex polygons are currently supported by 

the tool, sufficing to produce highly detailed results as the example appearing in Figure  2.9. 

Machine Learning techniques have been proposed in the context of this environment either in 

the form of detail reduction techniques [Boughanem94], through neural networks learning 

positions and dimensions of solution objects [Boughanem94] or declarative scene hierarchies 

[Plemenos02] as well as by using a genetic algorithm [Plemenos02] guided by the user to 

gradually concentrate on interesting solutions. 

 

Figure  2.9 Example MultiFormes output of a Romanesque church description [Ruchaud02] 

2.5.2.5 XMultiFormes 

The specific project [Sellinger97],[Sellinger98] implements the Cooperative Computer 

Aided Design (CCAD) framework for generative modelling systems. It combines the 

MultiFormes declarative modelling tool with an imperative, interactive modeller allowing 

modification of the geometric scene representation. A key feature of the environment is the 

ability to reverse engineer a, possibly modified, geometric representation of a submitted 

declarative scene, thus extracting new or modified semantic information. The latter may be 

enriched with information originating from the original declarative description, the 

corresponding geometric representation or direct user feedback. 
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2.6 The Open-MultiCAD Environment 

Open-MultiCAD is an intelligent information system, comprising an integrated design 

environment that supports the entire cycle of the Declarative Modelling methodology. The 

declarative description methodology supported by the environment applies the principles of 

Declarative Modelling by Hierarchical Decomposition (DMHD) [Plemenos95] whereas the 

main solution generator module is based on Constraint Satisfaction Problem resolution 

techniques and forms an evolution of the corresponding module of the MultiFormes 

environment [Plemenos91],[Ruchaud02]. The initial MultiCAD environment has been 

described in detail in [Miaoulis02]. The current state of the project, and the corresponding 

prototype, comprises tools for a number of tasks related with the transition from the abstract 

scene definition to its geometric counterpart and vice versa as well as with the understanding 

of the scene.  

2.6.1 Modules 

Research has taken place and corresponding results have been presented, within the 

context of the following tasks: 

• Normalisation and refinement of the declarative description according to the rules 

governing a specific domain of application, e.g. Architecture [Makris03]. 

• Generation of solutions conforming to the declarative description through the use of 

genetic algorithms in order to focus on interesting subsets of the solution space 

[Vassilas03]. 

• Generation of the entire solution space conforming to the declarative description through 

the use of constraint satisfaction techniques [Bonnefoi02]. 

• The current work, applying intelligent selection of generated solutions based on previous 

evaluations and/or predefined rules using machine learning and decision analysis 

techniques initially presented in [Bardis04] and [Bardis06]. 

• Design and implementation of specialised repositories supporting the aforementioned 

efforts with the capability of incorporating of knowledge from a new domain with 

minimal effort [Ravani03]. 
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• Reverse engineering of the geometric representation of a scene yielding the corresponding 

declarative description which, in turn, is used to generate solutions similar to the original 

[Golfinopoulos05]. 

• Modelling of Architectural Styles as a set of strict (hard) and flexible (soft) constraints. 

Application of the resulting style model, through genetic algorithms, to the solution 

generation in order to improve conformity of the generated solutions to a specific 

architectural style [Makris05]. 

• Construction of a collaborative design environment to support the simultaneous definition 

and processing of the declarative description by a team of designers. Support of a 

distributed architecture, allowing the designers to be at distant locations and communicate 

with the system as well as with the rest of the team using standard network protocols 

[Dragonas05]. 

• Implementation of tools featuring open architecture, being able to support alternative 

domains through the definition of the relevant declarative relations and properties in the 

supporting database. Minimal changes are required to the prototype itself in order to 

support alternative domains. This feature has been the result of contributions from all 

aforementioned works. 

 

2.6.2 Open-MultiCAD Database 

All information related to the declarative modelling cycle is stored and maintained in a 

specialised database. This repository has been designed and implemented in a manner that 

makes it capable of supporting and representing alternative domains and the corresponding 

declarative objects, properties and relations. The ER diagram of the MultiCAD database 

appears in Figure  2.10. Since this database incorporates all notions supported by the core 

Open-MultiCAD environment, we elaborate on it, explaining the role of all entities appearing 

therein. 
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solution_geo_value

PK,FK1,I1,I2 param_id
PK,FK2,I4,I3 solution_object_id

geo_value

dm_object

PK,I2 object_id

object_name
FK2,I1,I4 scene_id
FK1,I3 parent_object_id
FK3,FK4,I7,I6,I5 type_object_id

solution_object

PK,I3 solution_object_id

FK3,I6,I5 solution_id
FK2,I4 primitive_id
FK4,I1,I7 type_object_id
FK1,I2 dm_object_id

type_relation

PK,I1 typ_relation_id

typ_relation_name
typ_relation_formula
o1p1
o1p2
o1p3
o1p4
o1p5
o1p6
o1p7
o2p1
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Figure  2.10 The Open-MultiCAD Database 

  

In particular, each submitted scene is stored in the entity dm_scene, including 

information regarding the author, a small verbal description and the project type it 

corresponds. The project type represents the kind of building assembly the scene represents, 

e.g. ‘habitation’, ‘office’, ‘hospital’, etc. all stored in tbl_project_type. As already discussed 

in the previous sections, each scene contains declarative objects, having declarative properties 
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and connected through declarative relations. These declarative objects are stored in 

dm_object. Each one of these objects may be part of a parent object, due to hierarchical 

decomposition, and is of a specific type. Object types are stored in type_object and some 

examples are ‘kitchen’, ‘bedroom’, ‘living-room’, etc. In other words, the contents of 

type_object represent the classes of declarative objects available to instantiate and include in a 

declarative description. These classes are connected with one or more geometric primitives, 

e.g. ‘parallelepiped’, ‘hemisphere’, etc. These geometric primitive solids – stored in 

geo_primitive – are used during solution generation for the geometric interpretation of the 

declarative object. As an example, an object of the object type ‘kitchen’ may be allowed to be 

represented only by a ‘parallelepiped’ in the geometric representation whereas an object of 

the object type ‘roof’ may be allowed to be represented by a ‘hemisphere’, a ‘prism’, etc. This 

connection is suggested in the type_object_geo_primitives entity that actually represents the 

implementation of a many-to-many relationship between the type_object and the 

geo_primitive entities. The geo_parameter entity relates the different geometric properties – 

stored collectively in geo_property – with different geometric primitive solids. For example, 

the ‘hemisphere’ is only connected with the ‘radius’, the cylinder with the ‘radius’ and the 

‘height’, the parallelepiped with the ‘length’, the ‘width’ and the ‘height’, etc. The entity 

solution_object contains the instances of all objects appearing in all solutions. Following from 

the previous discussion, each object participating in a solution corresponds to a geometric 

primitive, having certain properties of a specific value. The latter are stored in the separate 

entity solution_geo_value. 

The declarative properties available are stored in the type_property entity. An example 

declarative property contained therein is the ‘is long’ property that is translated to the higher 

portion of the overall range of the length geometric property, as suggested by the appropriate 

entity attribute geo_prop_id. A declarative property may also be combined with one of 

alternative modifiers, for example ‘very’ thus giving a declarative property of the form “is 

very long”. The valid modifiers for each declarative property are stored in the 

type_property_parameter_value attributes of the type_property entity. The interpretation of 

the modifier is an equal portion of the sub-range corresponding to the specific declarative 

property. In order to clarify this connection between the declarative property and the modifier 

consider the example: assuming that the geometric interpretation of length for an object varies 

from 1 to 100, in case the object has been described as is long, its length will range from 70 to 

100 in the corresponding solutions. This is suggested by lowest_percentage_of_range and 
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highest_percentage_of_range being 70 and 100 respectively. Moreover, there are three 

modifiers for ‘is long’, namely ‘a little’, ‘medium’, ‘very’, thus yielding ‘is a little long’, ‘is 

medium long’ and ‘is very long’. These are stored in type_property_parameter_value0, 

type_property_parameter_value1 and type_property_parameter_value2 respectively. The 

corresponding sub-range for ‘is very long’ is then from 90 to 100. The aforementioned 

numbers are summarised in Table  2.5. 

Valid Range for “length” geometric property (defined by the environment) 1..100

lowest percentage of range for “Is Long” declarative property (stored in database) 70% 

highest percentage of range for “Is Long” declarative property (stored in database) 100% 

Declarative Property Modifier Final Declarative Property 
Corresponding Range 
for geometric property 

“length” 

Is Long - Is Long 70..100 

Is Long Very Is Very Long 90..100 

Is Long Medium Is Medium Long 80..90 

Is Long A Little Is A Little Long 70..80 

Table  2.5 Declarative property and geometric interpretation example 

 
Although the actual numerical interpretation of the declarative property and its 

modifiers may be argued – this is an abstract ambiguous property after all – this is an example 

of the care that has been taken to create an open system able to support new declarative 

properties or modifications to existing ones by just adding or modifying records to the 

appropriate database tables. This open architecture is further stressed by the representation of 

the declarative relations in the Open-MultiCAD database that is discussed next. 

The declarative relations available are stored in a special format in the type_relation 

entity. Each relation connects the geometric properties of two objects however the objects 

themselves are not stored in the entity. This connection is accomplished via the 

object_relation entity. The type_relation entity contains geometric properties and their 

interconnection in a special formatting that can be translated and evaluated by the application 

performing the solution generation. In order to clarify this connection consider the excerpt of 
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the  object_relation table of the Open-MultiCAD database representing the ‘attached to the 

south of’ declarative relation appearing in Table  2.6, shown in a vertical form while it really 

represents a record, i.e. a single row, of the table. The typ_relation_formula field contains the 

arithmetic formula that connects the geometric properties participating in the specific 

declarative description. The specific properties appear in the same record in a highly 

organised manner. In particular, the properties referring to the first of the two related objects 

can be found in the fields o1p1,…, o1p7 of the same record. Similarly, the properties that 

participate in the specific declarative relation and correspond to the second object are stored 

in the o2p1,…,o2p7 fields. The syntax of the arithmetic formula itself is quite straightforward 

and easily translated by the solution generator. As an example we translate the first term of 

the formula, when referring to the declarative relation 

Parents’ Bedroom is adjacent to Children’s Bedroom south 

that appears in Table  2.3. In this case, the parallelepiped representing the parents’ 

bedroom is considered to be object1 (o1) and the parallelepiped representing the children’s 

bedroom is object2 (o2). Therefore, the first term of the formula  

( o2p1 <= o1p1 + o1p4 ) 

can be translated as  

the x coordinate of the children’s bedroom must be less or equal to the sum of the x 

coordinate of the parents’ bedroom and the parent’s bedroom length 

because o2p1 contains ox (x-coordinate) while o1p1 contains ox (x-coordinate) and 

o1p4 contains l (length). x-coordinate and length are defined as such in the geo_property 

table. 

Field Name Field Value 

typ_relation_id as 

typ_relation_name adjacent south 

typ_relation_formul
a 

( o2p1 <= o1p1 + o1p4 ) & ( o2p1 + o2p4 >= o1p1 ) &  
( o2p2 = o1p2 + o1p5 ) &  
( o2p3 + o2p6 >= o1p3 ) & ( o2p3 <= o1p3 + o1p6 ) 

o1p1 ox 
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o1p2 oy 

o1p3 oz 

o1p4 l 

o1p5 w 

o1p6 h 

o1p7  

o2p1 ox 

o2p2 oy 

o2p3 oz 

o2p4 l 

o2p5 w 

o2p6 h 

o2p7  

Table  2.6 Record from type_relation representing ‘adjacent_south’ declarative relation 

 

2.6.3 Open Architecture and Flexibility 

It is important to notice that the overall approach of the Open-MultiCAD database is 

flexible enough to support declarative properties that are not necessarily connected with 

geometric properties. We could, for example, model the declarative relation 

is darker than  

by adding the appropriate records to the corresponding tables. In particular, the 

relation itself could be represented in the type_relation table as an additional record 

containing the values appearing in Table  2.7. The meaning here is that the luminosity of 

object 1 is less than the luminosity of object 2. The formula could be much more complicated, 

including more properties representing colours, shading, etc. The appropriate entries for these 

properties, as the property luminosity of the specific simplified example, will have to be added 

– if not already present – in the geo_property table containing all properties participating in 

the solution representation.  
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Field Name Field Value 

typ_relation_id dt 

typ_relation_name darker than 

typ_relation_formul
a 

( o1p1 < o2p1 ) 

o1p1 lum 

o1p2  

o1p3  

o1p4  

o1p5  

o1p6  

o1p7  

o2p1 lum 

o2p2  

o2p3  

o2p4  

o2p5  

o2p6  

o2p7  

Table  2.7 Record in type_relation representing new declarative relation 

 

It is also worth noting that the specific approach makes it possible to express 

declarative properties that involve more than one property of an object as special cases of 

declarative relations, i.e. unary relations. For example, the declarative property 

is square shaped 

could be expressed by the record shown in Table  2.8 in the type_property table. 
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Field Name Field Value 

typ_relation_id sq 

typ_relation_name squared shaped 

typ_relation_formul
a 

( o1p1 = o1p2 ) 

o1p1 l 

o1p2 w 

o1p3  

o1p4  

o1p5  

o1p6  

o1p7  

o2p1  

o2p2  

o2p3  

o2p4  

o2p5  

o2p6  

o2p7  

Table  2.8 Record in type_relation representing a special declarative property 

 

In addition to the aforementioned capabilities, Open-MultiCAD is able to cooperate 

with alternative solution generators based on a concretely defined information exchange 

interface. In particular, each declarative description is translated to a set of arithmetic 

expressions and inequalities representing the constraints that have to be satisfied by the 

corresponding solutions. This set of constraints can be appropriately translated, with minimal 

effort, in order to be used in alternative Constraint Satisfaction tools as well as to be applied 

as a fitness function in the context of a genetic algorithm.  
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Moreover, the module supporting reverse engineering is capable of accepting 

geometric representations, based on a simple syntax, and yield a declarative description that 

complies with these representations. Geometric representations originating from various 

design environments can be translated to conform to the aforementioned syntax and 

subsequently be used in order to produce declarative descriptions based on examples. 

A similar approach has been applied to the Intelligent User Profile Module, proposed 

and implemented within the context of the current work. In particular, our methodology has 

maintained the requirement for open architecture, thus concentrating on the ability to support 

input from multiple sources and the comparability of this input with respect to the user’s 

preferences. 

2.6.4 Solution Generation 

A number of alternative approaches have been applied to the design and 

implementation of the solution generator module for the Open-MultiCAD environment. 

Nevertheless, despite the different methods used, these generators share a set of 

characteristics that are dictated by the declarative modelling methodology and its 

incorporation to the specific environment. 

In particular, each object, either complex, i.e. containing other objects, or simple, i.e. a 

terminal node in the corresponding declarative hierarchy, is initially represented in the 

geometric scene interpretation as a bounding box. This implies that, in the case of complex 

objects, all children nodes are placed within the topological limits of the parent bounding box. 

As a result, there is a top-down interpretation of the declarative relations between objects. For 

example, if the public zone is requested to be adjacent east to the private zone, then 

requesting the living room, which belongs to the public zone, to be adjacent west to the 

kitchen, which belongs to the private zone, leads to a contradiction and, as a result, does not 

yield any solutions for the specific description. Nevertheless, a relation between two objects 

belonging to two different parent objects generally makes sense, since the user may explicitly 

require the living room to be adjacent east to the kitchen. Notice that the latter is not 

necessarily implied by the previous declarative relation between the public and private zone. 

In other words it may be the case that the public zone is adjacent east to the private zone and, 

at the same time, the living room is not adjacent east to the kitchen. 
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Based on the above discussion, in the case of constraint satisfaction solution 

generators, we may distinguish two separate sub-stages during solution generation. One relies 

entirely on the bounding boxes approach to generate the arrangement of the objects and the 

other incorporates specific geometric properties of the objects in order to produce the final 

geometric representation of the scene.  

The alternative placements of the objects are computed based on the corresponding 

bounding box whereas the final geometric interpretation incorporates the explicit geometric 

properties of the solids used to represent it. This distinction between the declarative 

description and the final geometric interpretation is also evident in the MultiCAD database, 

where all information covering the entire range of the declarative methodology is stored. 

Figure  2.11 shows a few example alternative bounding box arrangements for an igloo 

habitation scene, based on the declarative relations entrance is adjacent to main on its west, 

main is wider than entrance, main is longer than entrance, main is higher than entrance. We 

have restricted the height of the specific scene thus forcing the solution generator to a 

relatively limited number of solutions. Nevertheless, there is wide variety in the arrangement 

and the size of the bounding boxes. One may notice, for example that in case (iv) the width of 

the entrance is larger than the length of main which is valid since no declarative connection 

exists for these two properties.  

  
(i) (ii) 

  
(iii) (iv) 

Figure  2.11 Alternative bounding box arrangements for the igloo habitation 



DECLARATIVE MODELLING 

GEORGIOS BARDIS  48 

Figure  2.12 presents the two stages for a single bounding box arrangement where the 

geometric objects used for the final representation vary. The bounding box arrangement used 

for the example of Figure  2.12 is (ii) of Figure  2.11. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure  2.12 Bounding boxes arrangement (a) and final geometric representations (b),(c),(d) 
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2.6.5 Solution Representation 

At the present stage of the Open-MultiCAD project, the geometric representation of a 

scene has been intentionally kept simple. In particular, each object is represented by the 3-

dimensional location of its origin and the appropriate values defining its dimensions. The 

position of the origin with respect to the object, as well as the required dimensions may vary 

depending on the geometric primitive used for the representation. In order to clarify this, we 

have collected in Table  2.9 the properties defining an object in the geometric representation of 

the scene. Some additional properties, including colour, texture, material, etc. although not 

currently used during solution generation to produce alternative scene interpretations have 

been considered in the overall Open-MultiCAD architecture and already exist as potential 

properties in the system’s database. 

Geometric Primitive Properties Comment 

parallelepiped origin as x,y,z 

length 

width 

height 

Origin is positioned at the 
south west bottom vertex of 

the object 

hemisphere centre as x,y,z 

radius 

 

semi-cylinder origin as x,y,z 

radius 

direction 

length 

Origin is the centre of the 
semi-circle on the west or 
south (depending on the 

direction) 

Table  2.9 Example Geometric Primitives and their basic properties 

 

2.6.6 Open-MultiCAD Interface 

The current version of the Open-MultiCAD environment comprises a user interface 

supporting easy input of the declarative description and visualisation functionality. Figure 

 2.13 presents an example screenshot of the current state of the environment, exhibiting the 

declarative description by hierarchical decomposition on the left, a number of alternative 

visualised solutions on the right and the solution generator settings at the bottom. 
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Figure  2.13 The Open MultiCAD Declarative Design Environment Interface 
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3 Preference Modelling and Decision 

Analysis 

The current chapter consists of two main parts: the first part presents the theoretical 

foundation of Preference Modelling. The corresponding notation and the underlying intuition 

are also discussed. The second part concentrates on Decision Support techniques, 

implementing the notions of preference in the context of multicriteria decision problems. In 

this part, the main directions in the multicriteria decision support area as well as the 

differences among them are presented. The mechanisms that have contributed to the module 

proposed and implemented in the context of the current work are also discussed in detail. 

3.1 Preference Modelling 

In order to extract a practical measure of the user’s typically informal and 

immeasurable preference with respect to solutions, we present the preference model, using the 

terms of the area as presented in [Vincke92]. Our approach conforms, essentially, with other 

approaches in the area presented in [MCDA-SAS05] although the notation sometimes varies.  

3.1.1 Preference Structure 

Formally, the set of actions is the set of objects, decisions, candidates, etc. to be 

examined by the user as alternative options. In the present context, this is the set G of objects 

that comply with the declarative description submitted as input to the system. The specifics of 

the object generation mechanism were presented in the previous chapter and will be discussed 
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in detail again in the next part of this thesis. For the moment, we assume that this set of 

objects G possesses two fundamental properties, namely 

• it is finite and 

• it is stable, i.e. not changing during the decision making process. 

User Preference, Indifference or Incomparability between any two objects s1, s2 ∈ G is 

denoted as: 

21
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Notice that Indifference signifies equal preference whereas Incomparability signifies 

inability to compare for some reason; therefore they represent two distinct concepts.  

In order to have a valid preference structure the aforementioned relations must have 

the following properties [Vincke92]: 
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The latter implies that, for any two objects from the set of actions,  

• one may be preferred to the other,  

• they may be equally preferable or  

• they may be incomparable.  

It is worth noticing that the logical situation that arises complies with the four-valued 

logic [Doherty92] which has been proposed for the specific area in [Dubarle89]. Notice that 

the set of properties that has just been defined does not imply transitivity per se. In particular, 

it may be the case that s1 P s2 and s2 P s3 and, still, s3 P s1 without contradicting with the 

aforementioned properties. Thus, we may state that a valid preference structure does not 

necessarily require or imply transitivity. Nevertheless, in the following we present a number 

of reasons leading to the adoption of this assumption. 

3.1.2 User Preference as a Function 

We will use the term user preference for an unknown function f:G→ℜ expressing, in 

direct analogy, the unique numeric degree of a user’s preference for a specific solution. We 

will assume that such a function exists and we will try to approximate it through a function 

p:G→ℜ by means of a number of alternative methods. This assumption is in compliance with 

the classical approach of value function or utility function (when cost is involved) of the 

Decision Analysis literature [MCDA-SAS05] and implies a number of advantages and 

disadvantages. Moreover, this approach complies with popular decision making mechanisms 

that can be applied in the current context for reasons discussed in the Decision Support 

chapter. These mechanisms also attach a numerical value to each solution that uniquely 

identifies it, encapsulating all of its interesting properties. Hence, our efforts – as far as the 

Decision Support Module, which is described in the second part of this thesis, is concerned – 

have concentrated on the construction of the function p that will approximate as much as 

possible the user’s intuitive function f. Formally, our assumption includes the following 

definitions: 
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The consequences, under the light of the Preference Structure definitions presented in 

the previous section are the following: 

1. No two solutions are incomparable. Formally, J=∅. Since any two solutions are 

represented by two numbers they can always be compared. 

2. For any two solutions s1,s2 ∈G one of the following is true: ) I (), P (), P ( 211221 ssssss . 

Since any two solutions are represented by two numbers they obey the principle of 

trichotomy of numbers. 

The above ensure that we use a valid Preference Structure. Moreover, they imply that 

3. User preference is transitive, i.e. 313221  P  P      P ssssss ⇒∧ . This is due to the fact that 

the first clause of the hypothesis implies that p(s1)>p(s2) and the second clause implies 

that p(s2)>p(s3) which, combined, imply that p(s1)>p(s3). 

The latter is a convenient consequence of the preference function since, due to the 

increased number of alternative options to consider, it is practically impossible to require the 

user to provide pair-wise comparisons for all possible pairs of solutions. 

3.2 Multicriteria Decision Support 

The typical context of need for a Multicriteria Decision Support methodology arises 

when a set of alternative options have to be evaluated against a set of diverse criteria that each 

contributes positively or negatively to the final outcome. The corresponding field can be 

considered as part of the wider area of Decision Analysis that has been established during the 

1960’s as the formal procedure for the analysis of decision problems [Howard66]. Several 

multicriteria decision support mechanisms have been proposed, including the Analytic 

Hierarchy Process [Saaty80] and SMART [Goodwin04] – a variation of the Multi-attribute 

Utility Theory [Keeny76]. A similar approach, requiring, however, minimal input on behalf of 

the Decision Maker, relies on standard weight assignment for the attributes [Roberts02], and 

is also of interest in the present context. All of these mechanisms are based on the classical 

assumption that every alternative option can be mapped to a numerical value, typically 

calculated as a weighted sum. An alternative direction is represented by the family of 

outranking methods, including the variations of ELECTRE [Roy68] and PROMETHEE 
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[Brans85] mechanisms. A thorough and up-to-date overview of the Decision Analysis field 

can be found in [MCDA-SAS05]. 

The main difference of the two aforementioned directions is their flexibility regarding 

the incomparability of two options. The weighted sum approach circumvents this notion due 

to its construction: any two numbers are comparable and since each alternative option is 

mapped to a number, all options are mutually comparable. The outranking methods, on the 

other hand, are flexible in regard to incomparability, a fact that suggests several benefits with 

respect to reality representation as discussed in the User Preference Modelling chapter but 

may prove to be a drawback when the number of options increases. 

Both directions usually require the pair-wise comparison of alternative options, at 

some level, as part of their evaluation procedure. Nevertheless, outranking methods heavily 

rely on this information in order to provide adequate feedback. Pair-wise comparison of all 

alternative options is practically impossible to apply in the current context due to the 

prohibitive number of alternative options and the often subtle differences among them as will 

be discussed in the chapter covering the Intelligent User Profile Module. Hence, in the 

following, we have chosen to focus on the specifics of the first family of multicriteria decision 

support methods, covering AHP, SMART and the standard weights variation. 

For the rest of the chapter, we start by introducing a basic set of assumptions and 

definitions. Next, we briefly present the fundamentals of outranking techniques and the 

families of ELECTRE and PROMETHEE methods. Subsequently, we concentrate on the 

weighted sum methodologies, starting by a set of definitions forming the common foundation 

of all three multicriteria decision support methods to be examined. We present the specifics of 

each approach up to the degree of detail required by the current context. In particular, we 

elaborate on the weight assignment policy of each method but we do not focus on other 

concerns as, for example, the stability analysis, since they fall outside the scope of the current 

work. Finally, we discuss the main differences of the methods and the effect of their 

adaptation to the specific context. 

3.2.1 Assumptions and Definitions 

What are the criteria that make one of the available solutions more preferable to 

another one? Focusing on the current context, the user may have approved a solution because 

it contains big bedrooms, rejected another because it contains a kitchen which is too narrow, 
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etc. Moreover, the user may have also approved or rejected some solutions because (among 

other reasons) of the arrangement of rooms, although he/she may not be fully aware of this 

preference or its contribution to the selection. We can generally divide user criteria in two 

main categories: 

• Conscious criteria that the user consciously employs in order to evaluate solutions. 

• Subconscious criteria that contribute to the approval or rejection of a solution but are not 

realised by the user. 

In the following, we concentrate on the first kind, covering the case where the criteria 

are well known and, therefore, can be adequately represented, whereas the second kind is 

discussed, up to an extent, in the chapter covering Machine Learning methods. Under the 

assumption of awareness of the criteria on behalf of the user, the problem of solution selection 

according to user preferences in the context of Open-MultiCAD can be reduced to a 

Multicriteria Decision problem.  

In particular, a typical Multicriteria Decision problem starts with the assignment of the 

role of the Decision Maker (DM) to the person responsible for the evaluation of the 

alternative options and the selection of the most appropriate one(s). Next, two main 

components have to be determined, namely: 

• The set of actions or options and 

• the set of criteria. 

The DM’s objective is to select the best option(s) – or to order them in descending 

preference order – based on the specific criteria. In the current context, the DM is the user and 

the set of options is a set of solutions G generated based on the description submitted as input. 

A major step towards the solution of a Multicriteria Decision problem is, having determined 

the set of criteria, to map these criteria to a set of attributes. These attributes have to be 

common for all options and will serve as the quantifiers of the performance of each option 

against these criteria. 

3.2.2 Outranking Methods 

Outranking methods have been introduced in order to overcome certain difficulties 

that arise when attempting to apply weighted sum methodologies in specific contexts. In 

particular, there are cases where due to lack of information or inability of the Decision Maker 
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to select, two or more options may be incomparable. These methods aim to capture this fact 

and include it in the overall evaluation of the options.  

3.2.2.1 ELECTRE Methods 

Similarly to the weighted sum methodologies described in the subsequent sections, in 

ELECTRE1 I method each attribute participating in the options evaluation is assigned a 

weight. However, this weight is not used in order to calculate a weighted sum as is the case 

with the classical approach. The rationale is that, although there is the numerical 

representation of an option’s performance with respect to each attribute, this number is based 

on different and incomparable scales for each attribute; therefore a weighted sum would not 

be meaningful. Instead of this, the final decision regarding the fact that a is at least as good as 

b requires that the sum of weights of the attributes where a outranks b, i.e. its grade for the 

specific attribute is larger than or equal to the other’s, is over a certain concordance level s 

which is usually chosen to fall within the range [0.5, 1-minimum_weight] for normalised 

weights. In a sense, this sum represents the sum of the voting power (represented by their 

weights) of all attributes where a outranks b. An additional condition is required to hold, that 

of non-discordance. This condition requires the largest difference of grades, with respect to a 

single attribute, where b outranks a to be less than a certain threshold v. Intuitively, this 

condition represents the requirement that a should not be much worse than b in the context of 

any attribute. 

Subsequent ELECTRE methods have tried to eliminate certain issues arising in the 

real world that could not be represented by the original method. In particular, ELECTRE Iv 

introduced the notion of veto as a value which, depending on each option’s grade with respect 

to a specific attribute, would be added to its grade when calculating the discordance index. 

The meaning would be that, even if an option a outperformed b in many attributes, 

discordance with respect to a single attribute, amplified by a veto function (not an absolute 

number), independent of specific scales, could prevent a from being announced as a is at least 

as good as b. ELECTRE IS further enhanced the concordance and non-discordance 

conditions with pseudo-criteria in order to exploit fine differences of preference thus 

resolving indifference between options and yielding, as a result, a minimal set of selected 

options. 

                                                 
1 Acronym from the French title: ELimination Et Choix Traduisant la REalité 
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An alternative direction of the ELECTRE methods has aimed to the complete ordering 

of the available options from the most to the least preferable. ELECTRE II was the first of 

these methods, largely based on ELECTRE Iv. The main difference from the latter is that 

there were now two distinct concordance levels, representing strong and weak outranking, 

which are used repeatedly to partition the set of options to classes of preference. ELECTRE 

III was introduced as an improved version of ELECTRE II, able to handle inaccurate or ill-

defined data through the use of pseudo-criteria and a credibility index assigned to each 

outranking decision between any two options. ELECTRE IV applied a set of five outranking 

relations each representing a different degree of credibility in order to overcome the 

requirement for attribute weight assignment on behalf of the Decision Maker. Finally, 

ELECTRE TRI was introduced as a classification method, aiming to assign each option to a 

specific class, without relative consideration of alternative options. Instead of that, 

representative options for the upper and lower limit of every category were used and each 

option was evaluated against them according to the ELECTRE III methodology. 

3.2.2.2 PROMETHEE Methods 

The family of PROMETHEE methods is largely based on the similar to ELECTRE methods’ 

assumption that it is unacceptable to combine the performance of an option in the context of 

two or more attributes, usually measured in different scales, in order to obtain the option’s 

overall evaluation. Therefore, the additional information required by the method concerns the 

comparison of the attributes themselves and the varying degrees of preference within the 

context of a single attribute at a time. The idea of PROMETHEE II method is that an option a 

should be considered preferable to an option b when the algebraic sum of preference 

difference for all criteria and all other options is larger for a than for b. Intuitively, this 

algebraic sum represents the algebraic sum of the intensity of a when outranking other options 

in every attribute minus the intensity of a when being outranked by other options in every 

attribute. This algebraic sum actually yields a numerical value that is used to produce a 

complete order of all alternative options. When considered separately, the two parts of the 

sum, i.e. the outrank others and be outranked by others, lead to the partial ordering used by 

the PROMETHEE I method. The PROMETHEE V variation comprises an alternative 

methodology, applied whenever the requirement is to select a subset of the options without 

any particular interest in their order.  
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3.2.3 Attribute Tree 

All weighted sum methodologies examined in the subsequent sections rely on a set of 

attributes, appropriately organised in a hierarchical structure. In particular, attributes are 

defined by gradually constructing an attribute tree in a top-down manner. In our context the 

procedure starts with the root of the tree – Level 0 – which is the main goal of maximising 

user’s preference. Notice that user’s preference represents, in the current context, an option’s 

performance according to the DM. The general criteria that define this preference are 

translated to the initial general attributes yielding Level 1. These, in turn, are analysed to more 

specific attributes. This process is repeated, if necessary, until the lowest level attributes can 

be directly derived by the explicit properties of each option.  

The attribute tree should fulfil the following requirements [Keeny76]: 

• Completeness. The tree includes all attributes of interest to the DM. 

• Operationality. The DM can easily evaluate the lowest level attributes for each solution. 

• Decomposability. The evaluation of a solution with respect to an attribute should not 

depend or influence its evaluation against another attribute. 

• Absence of Redundancy. No two attributes represent the same feature. 

• Minimum Size. The tree has the minimum size possible, not affecting fulfilment of the 

previous requirements. 

 

Figure  3.1 Example Attribute Tree 
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Figure  3.1 is an example attribute tree as described above, based on selected criteria 

and resulting to the set of corresponding attributes. The specific attributes are discussed in 

detail in a next chapter, covering the proposed and implemented Intelligent User Profile 

Module. It is worth noticing that according to the definition of completeness, the same set of 

options may be evaluated by a different attribute tree depending on the DM’s criteria. In other 

words, the kind of options to be evaluated, e.g. building assemblies in the current context, 

does not necessarily suggest a unique set of attributes to be considered. As long as the other 

properties are preserved, completeness is at the discretion of the DM. 

3.2.4 Analytic Hierarchy Process – AHP 

The specific method has been initially described in the early seventies and has drawn 

considerable attention, being applied to diverse economic, governmental and commercial 

areas [Saaty80], implemented in commercial products [ExpertChoice05] and triggering 

interesting variations as in [Buckley85] and ANP [MCDA-SAS05]. In this section we 

describe the basic steps of AHP focusing on the points of interest within the current context.  

The AHP is based on four axioms:  

• Reciprocal judgments. 

• Homogeneous elements. 

• Hierarchic or feedback dependent structure. 

• Rank order expectations. 

Axiom (3) implies conformance to the aforementioned attribute tree, which AHP 

actually extends with an additional level as described below. Compliance with the rest of the 

axioms is mentioned within the respective context in the discussion that follows.  

In particular, after the construction of the attribute tree the method requires the 

extension of each attribute with the hierarchy of the options according to the specific 

attribute, thus adding an extra level under each attribute, containing all available options. The 

children of every node of the tree are supposed to be ordered according to their importance – 

or preference in the case of the ordering of options – for the DM. This implies that, regarding 

the general (A,B,C) or specific (A.1, A.2, etc.) attributes of the example of Figure  3.1, four 

different orderings are required, namely: 
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• Ordering of general attributes A, B, C, 

• ordering of specific attributes A.1, A.2, A.3, 

• ordering of specific attributes B.1, B.2 and 

• ordering of specific attributes C.1, C.2. 

Moreover, seven more orderings are required, since all available options have to be 

ordered with respect to each specific attribute separately. 

All of these orderings are achieved by means of a pair-wise comparison mechanism 

which is described in detail below. In the following we will refer to the items compared, 

implying the options or the attributes, since the mechanism is exactly the same for both cases. 

3.2.4.1 Pair-wise Comparison Matrix 

In order to provide an overall ordering of the n items of a specific level, a square 

matrix M is constructed containing one row and one column for each item (option or attribute) 

to be evaluated. The order of the items is the same for the rows and columns of M. Each cell 

of the matrix must be filled with a number ri,j revealing the ratio of preference (or 

importance) between the item corresponding to the specific row i and the item corresponding 

to the specific column j. According to the method, the acceptable values are 

},,1{,},9,8,7,6,5,4,3,2,1,
2
1,

3
1,

4
1,

5
1,

6
1,

7
1,

8
1,

9
1{, njir ji K∈∀∈  

The original values included only odd numbers (and the corresponding fractions) 

representing verbal ratios of importance as follows: 

• equally important: 1 

• weakly more important: 3 

• strongly more important: 5 

• very strongly more important: 7 

• extremely more important: 9 

Nevertheless, intermediate values may also be used to reveal slight variations of the 

degree of preference or importance. It easily becomes apparent that the diagonal of the matrix 

represents the ratios for each item against itself hence it should contain 1’s. Moreover, 
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symmetric cells, with respect to the diagonal, should contain reciprocal numbers since they 

refer to the same pair of items in reverse order. Formally, this is an implication of the 

aforementioned Reciprocal Judgements axiom (1) assumed by the method. Moreover, the 

ability to compare different items (attributes or options) according to a uniform scale of ratios 

of importance implies compliance with the Homogeneous Elements axiom (2). Therefore, the 

DM has to complete only the lower (or upper) part of the table since each half – below or 

above the diagonal – is implied by the other. Table  3.1 shows an example of the completed 

pair-wise comparison matrix regarding the importance of attributes under general attribute 

Space Morphology appearing in Figure  3.1. 

 
A.1 

Public Zone 
Area 

A.2 

Private Zone 
Area 

A.3 

Non-oblong Rooms 
Percentage 

A.1. Public Zone Area 1 3 9 

A.2. Private Zone Area 3
1  1 5 

A.3 Non-oblong Rooms 
Percentage 9

1  5
1  1 

 
Table  3.1 Example Pair-wise Comparison Matrix for the Space Morphology attributes 

 

Due to the pairing of attributes, this method may lead to a certain type of inconsistency 

regarding the product of importance ratios. In particular, considering the example of Table 

 3.1, since the Public Zone Area (A.1) has been rated as 3 times more important than the 

Private Zone Area (A.2) and the latter has been rated, in turn, 5 times more important than 

Non-oblong Rooms Percentage (A.3), one might expect that the Public Zone Area (A.1) 

should – automatically – be considered 3×5=15 times more important than Non-oblong 

Rooms Percentage. Nevertheless, the DM is free to assign another ratio for A.1 against A.3 

and not the implied 15. It is worth noticing that this fact has actually caused some criticism 

[Goodwin98] to the formal AHP approach since 15 is not one of the available ratios. 

3.2.4.2 Normalised Weights 

After the pair-wise comparison table M has been completed, the set of weights can be 

calculated for the corresponding items. The weight extraction method is based on the 
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calculation of the principal right eigenvector of M and the corresponding principal eigenvalue 

which, due to the construction of the table, is the only non-zero eigenvalue. Practically, both 

are calculated based on the fact that the sequence Mk converges to a matrix with identical 

columns, proportional to the principal right eigenvector of M as k grows. Setting k>10 is 

typically enough for adequate precision, therefore the algorithm for weight extraction consists 

of the following steps: 

1. Calculate Mk, for a k>10. 

2. Let C be any of the n columns of the square matrix Mk. Calculate weights as:  

∑
=

= n

r
r

i
i

c

cw

1

 

i.e. the weights are the normalised elements of any column of the table after the latter has 

been raised to an adequately large power. For example, applying the above calculations to the 

matrix M obtained from Table  3.1 yields (w1, w2, w3) = (0.672, 0.265, 0.163) for k=16. 

3.2.4.3 Inconsistency Ratio 

The next step of the AHP method is the calculation of Inconsistency Ratio (also 

appearing as Consistency Ratio in the literature) that reveals to what extent the user has not 

respected transitivity during the completion of the pair-wise comparison table. This ratio is 

based on the eigenvalues of the positive reciprocal matrix given as input. In particular, if the 

user were perfectly consistent during the completion of the table, the maximum eigenvalue of 

the resulting matrix should be equal to its dimension whereas the non-principal eigenvalues 

should all be equal to 0. Formally, for the maximum eigenvalue λmax the following equality is 

true: 

TT wwM ⋅=⋅ maxλ  

where wT is the transposed weight vector. The formula above implies that only one 

row of M is needed for the calculation of λmax and the subsequent Inconsistency Ratio IR 

which is, formally, the average non-principal eigenvalue of M. Using the first row of the 

matrix for the calculations the next steps of the algorithm are: 
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1

1
,1

max w

wm
n

i
ii∑

==λ  

1
max

−
−

=
n

nIR λ  

where n is the dimension of the matrix. For the example input matrix of Table  3.1 we 

have λmax=3.029 and IR=0.015 whereas, ideally, they should be 3 and 0 respectively. 

3.2.4.4 Combining Results 

After the pair-wise comparisons for all levels have been completed the overall grades 

for all options can be calculated. Notice that according to the method, the pair-wise 

comparison is extended to the options themselves, in the context of each attribute. Therefore, 

after this stage the performance of each option against each attribute is available as a 

normalised value. Thus, each option may receive an overall grade as a weighted sum of the 

grades of the specific option, using the attribute weights. Formally, for an option s having 

received the following grades for each lower level attribute, 

gs=(g1,g2,…,gn) 

the corresponding overall evaluation is  

∑
=

=⋅=
n

i
ii gwgwb

1
 

where n is the total number of attributes. 

3.2.5 Simple Multi-Attribute Rating Technique – SMART 

After the construction of the attribute tree, SMART method [Goodwin04] applies a 

simple swing weights technique for the assignment of weights to each individual lower level 

attribute. In particular, the DM is first required to answer the following question:  

“Assume an option that exhibits the worst performance for every attribute. If you had 

the ability to maximise its performance for only one attribute, which attribute would you 

choose?”  
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Based on the answer to this question the most important attribute atop is selected. Then, 

in order to comparatively order the remaining attributes, the following question is repeated for 

each remaining attribute ai:  

“Assume an option that exhibits the worst performance for every attribute. What 

percentage of improvement does maximisation of performance for attribute ai represent when 

compared to the 100% improvement represented by the maximisation of performance for 

atop?”.  

Thus, all attributes are mapped to a number ranging from 0 to 100 as shown in the 

corresponding column of Table  3.2. Weight normalisation yields the final attribute weights 

appearing in the next column of the same table.  

Attribute Swing Weight Normalised Weight 

Public Zone Area 100 0.29 

Private Zone Area 90 0.26 

Non-oblong Room Percentage 20 0.06 

Private/Public Zone Separation 30 0.09 

South-Western Bedroom 10 0.03 

Number of Sleep Rooms 60 0.18 

Number of Wash Rooms 30 0.09 

Total 340 1.00 

Table  3.2 Swing and normalised attribute weights as obtained according to SMART 

 

As soon as the normalised weights are available, the overall performance of each 

option is calculated as a weighted sum. In particular, the SMART method makes use of the 

middle values, actually extending them to quarter points¸ representing 25% and 75% 

performance for a specific attribute. Based on these points, a value function is defined using a 

simple extrapolation scheme in order to allow evaluation of all intermediate values. This 

value function combined with the normalised weights leads to a unique grade for each option 

calculated as a weighted sum.  
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3.3 Standard Weights Assignment 

Standardised weight assignments have also been proposed to eliminate the need for 

explicit assignment by the DM [Roberts02]. These methods operate under the assumption that 

only the order of importance suggested by the DM is of significance and not the degree of 

importance per se. According to this approach, weights are calculated and assigned based on 

simple mathematical functions that depend only on the ranking of an attribute like the Rank 

Order Centroid (ROC), Rank Sum (RS), Rank Reciprocal (RR) and Rank Order Distribution 

(ROD). [Roberts02]. In particular, these methods require only the importance ranking Ri of 

the attributes by the DM and, based on their total number n, they automatically assign weights 

according to the formulas shown below, assuming Ri=1 for the most important attribute and 

Ri=n for the least important. 

• Rank Order Centroid: ∑
=

=
n

Rk
i

i
k

w 1
 

• Rank Sum:  )1(
)1(2

+
+−

=
nn

Rnw i
i  

• Rank Reciprocal:  
∑
=

⋅
= n
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i

k
R

w

1

1
1

 

The ROD method proposed in [Roberts02] requires more complex calculations, 

however, the comparative analysis presented therein shows ROD and RR as the most efficient 

of these weight approximation methods. Table  3.3 presents example weight values for a range 

of attribute populations according to the Rank Reciprocal standard weight assignment 

function. Notice that the weights produced are already normalised due to the function 

construction. 
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 Total Number of Attributes 

Rank 2 3 4 5 6 7 8 

1st 0.667 0.545 0.480 0.438 0.408 0.386 0.368 

2nd 0.333 0.273 0.240 0.219 0.204 0.193 0.184 

3rd  0.182 0.160 0.146 0.136 0.129 0.123 

4th   0.120 0.109 0.102 0.096 0.092 

5th    0.088 0.082 0.077 0.074 

6th     0.068 0.064 0.061 

7th      0.055 0.053 

8th       0.046 

Table  3.3 Standard Weights according to Rank Reciprocal function for 2 up to 8 attributes 

3.4 Concluding Remarks 

User evaluation of geometric object representations in the context of the Open-

MultiCAD environment has triggered the examination of User Modelling fundamentals and 

Decision Support mechanisms that could contribute towards this direction. Two main axes in 

this area exist: the classical approach, where user preference is assumed to be represented by 

a weighted sum that maps each option to a unique numerical value and the outranking 

approach, where options are evaluated based on mutual comparison. Representatives of the 

former approach include the AHP and SMART methods whereas the main representatives of 

the latter are the ELECTRE and PROMETHÉE methods.  

The increased number of solutions produced for a typical declarative description in the 

context of the Open-MultiCAD environment prohibits the mutual comparison of the 

alternative solutions which is the essence of outranking methods. Therefore, we have decided 

to apply techniques based on the classical approach in order to automate, up to an extent, 

solution evaluation with minimal user intervention. In particular, we have chosen to 

incorporate in the proposed and implemented Intelligent User Profile Module, a mechanism 
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for the assignment of weights to a set of observed attributes for the solutions to be evaluated. 

This mechanism is based on the weight assignment techniques applied in AHP and SMART 

methods and also employs the Rank Reciprocal function for this purpose. These three weight 

assignment techniques demand user feedback that varies from detailed (AHP) to average 

(SMART) and very simple (RR) thus covering the whole range of required user intervention 

for the specific task. 
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4 Machine Learning 

In this chapter, we start with a general discussion regarding the inherent difficulties of 

acquisition and application of user preferences in the current context. Next, we present the 

fundamentals of Intelligent Information Systems. We continue with the presentation of the 

most important Machine Learning mechanisms available of relevance to this work. Finally, 

we explain the rationale supporting the choice of the particular family of algorithms that has 

formed the basis of the Machine Learning Component proposed and implemented as part of 

the Intelligent User Profile Module.  

4.1 Introduction 

Human behaviour can be confusing, contradicting or even irrational in several 

occasions and for diverse reasons. Although universal notions like the survival instinct or love 

and their variations are usually considered as the controlling forces of our behaviour, they 

often fail to explain the way we react to important as well as trivial matters. Either because 

human entities and their environment are too complicated to be simulated and measured 

respectively, or because free will can not be accurately predicted (otherwise it should not 

really be considered free) it seems that, at least considering the present status of human 

knowledge and the corresponding technical capacity, a deterministic non-human system is not 

able to simulate human behaviour in its entire range. The latter becomes also evident by the 

fact that Turing’s Imitation Game, has yet to be successfully passed by any artificial 

mechanism unlike its inventor’s predictions [Turing50].  

It follows that, if we still need to simulate human behaviour for experimental or other 

reasons, we have to accept the idea of a compromise represented by reduced model accuracy 
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and/or a set of approximative assumptions. The impact of these observations is twofold. First, 

it is implied that, in experimental conditions where human feedback is not readily available 

due to limitations on time, effort, cost, etc., any artificially generated substitute feedback will 

lack accuracy. Second, even if a finite amount of human feedback is available and has been 

optimally exploited by a learning mechanism, there is no guarantee that the resulting model 

will successfully simulate future feedback originating from the same human source.  

The effort to capture and apply user morphological preferences comprises part of the 

effort to simulate and predict human behaviour. In particular, the ability of a system to learn 

from experience forms an integral part of its intelligent behaviour. However, unlike cases 

where an underlying function, unknown but existing, is to be learnt based on existing data, 

capturing user preferences presents an even higher degree of difficulty. We outline, in the 

following, the main machine learning mechanisms and next we focus on the algorithms we 

have applied and adapted in order to achieve intelligent solution selection in the context of the 

Open-MultiCAD Design Environment. Finally, we determine the degree of accuracy we 

demand from our model and the assumptions we make while pursuing it.  

4.2 Intelligent Information Systems 

Several approaches have been applied, since the dawn of the Artificial Intelligence 

field in the early 1950’s, aiming to endow artificial systems with intelligent behaviour. The 

initial ambitious visions of building robots that would act and react like humans to any 

external stimulus have gradually been replaced by efforts to imitate human behaviour in 

selected fields – image recognition, natural language processing, etc. – with carefully set 

objectives and respectively realistic expectations. This transition has been characterised as the 

shift from the romantic to the modern period in the history of AI [Jackson86],[McCarthy95]. 

It has now become apparent that human beings and their functions are far more complex than 

what we used to believe some decades ago. In another sense, it has also become apparent that 

current technical and algorithmic capabilities are not adequate2 for the specific task in its 

entirety. 

                                                 
2 Whether they may ever be seems to cross the boundary between Artificial Intelligence and Philosophy.  
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There are different directions that may be followed for the construction of an 

intelligent system, depending on the nature of the problem and the quality and quantity of the 

available data. In particular, there are two families of mechanisms regarding systems 

exhibiting intelligent behaviour. These families are often combined to produce hybrid 

approaches, supported by the corresponding machine learning mechanisms, hence they 

somehow represent the two extremes of the range [Kechman01]. 

White Box Approach. A set of rules are embedded in the system based on already 

existing knowledge about the concept. These rules may be applied to provide intelligent 

behaviour to the system and they are understandable by humans. Typically, the rules remain 

static throughout the use of the system or they are manually updated by humans. The 

performance of a mechanism of this type depends on the quality of the rules it comprises. 

Black Box Approach. An intelligent mechanism is constructed based on the available 

example data. The mechanism is able to respond in an intelligent way but the knowledge it 

acquires and uses for this behaviour is in a form not directly apprehensible by humans. 

Typically, after a pre-defined training period, this mechanism also remains static. The 

performance of the mechanism depends on the quality and quantity of the data used during 

the training period. 

The aforementioned approaches represent the two extremes of the wide range of 

intelligent systems, the emphasis being on knowledge representation rather than the learning 

process itself. In fact, both of the above definitions represent extreme cases where an 

intelligent system is built and subsequently does not exhibit machine learning capabilities at 

all in order to enhance its intelligence. However, as it is most often the case, the 

aforementioned approaches are extended towards this direction. An example of this 

enhancement is automatic rules inference where new rules are generated based on newly 

acquired examples regarding the concept under examination. Moreover, the two approaches 

may be combined to produce hybrid systems. An example of such a system is the case where 

a set of rules is automatically generated by a rule inference module whereas a separate module 

is responsible for assigning and maintaining a weight for each rule according to current and 

future examples. In other words, an intelligent system is invariably connected with learning 

capabilities.  
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Integrated intelligent systems rely on four equally important, yet distinct, tasks even 

though there are cases where some of these tasks are omitted. In particular, 

• Real world information is translated to data that can be stored and processed by a 

computer system. This stage is connected with sensor technology, sampling techniques, 

analogue-to-digital conversion as well as input explicitly formulated by humans.  

• Already existing knowledge about the concept to be learnt is encoded as a set of rules by 

human experts. 

• Already existing as well as new data, and the experiences or facts they represent, are 

exploited in order to improve the intelligent system’s behaviour. This stage is connected 

with machine learning algorithms and methodologies. 

• The system takes advantage of the results of the aforementioned tasks in order to exhibit 

intelligent behaviour. 

These tasks are typically supported by the appropriate data repository and user 

interface module. Figure  4.1 summarises the operation of a typical Intelligent Information 

System.  

 
Figure  4.1 Typical Components and Interaction with the Environment of an Intelligent 

Information System 
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Practically, due to the nature of the majority of the problems posed in the current 

context, the information that has to be processed is machine generated and/or it originates 

from direct user input to a computer system environment. In these cases, since data are readily 

available in exploitable electronic form, the first of the aforementioned stages is practically 

omitted. Moreover, in cases where prior knowledge about the concept does not exist, the 

second stage may also be omitted. An example of such a problem, where the first two tasks 

are practically redundant, is that of learning web browsing user preferences based exclusively 

on actual user navigation. In that case, indeed, information regarding user preferences consists 

solely of URL’s of visited web pages and their content, sequence of browsing, time spent at 

each one of them, time of the day and possibly some additional parameters. All this 

information is already available in electronic form and, regarding a transparent system, no 

additional information on behalf of the user is required. Similarly, in the current context, the 

task of capturing and utilising user preferences to improve the response of the Open-

MultiCAD environment belongs to an analogous category of learning problems. For this 

reason, in the following, we concentrate on the third of the aforementioned tasks, discussing 

some of the most efficient algorithms for machine learning and their applicability to the 

current context. 

4.3 Machine Learning in Intelligent Information 

Systems 

Machine Learning stands as one of the dominant subjects of modern AI and a core 

characteristic of intelligent systems. Although the interpretation of the term varies in 

literature, e.g. [Konnar00], [Kechman01], [Baldi01], we have reached to the conclusion that, 

in general, it represents a set of techniques for knowledge acquisition, elicitation and 

subsequent application of this knowledge in the context of a partially or entirely unknown 

concept.  

Several categorisations have been established regarding the nature of the machine 

learning problems [Burbidge01]. Most of them reflect differences with respect to the set of 

examples or samples used for the learning process. In particular, there are cases where a set of 

examples is available without any further characterisation regarding the unknown concept. In 
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these cases we deal with a problem of unsupervised learning where we expect the employed 

mechanism to recognise similar samples and group them without prior knowledge regarding 

the number or the qualitative differences of these groups. In other cases, each example is 

accompanied by a characterisation revealing the class it belongs. These are cases of 

supervised learning in the sense that the mechanism is provided with information regarding 

the number of the different classes and the nature of the members they contain. The specific 

example represents a problem of classification, where each current or future sample should be 

assigned to one of a finite number of discrete classes. An alternative situation, where each 

sample is mapped to a real numbered value is that of regression. In fact, both categories of 

supervised learning problems may be reduced to that of approximating a multivariate function 

[Kechman01].  

A crucial assumption in the context of supervised learning is that the attributes used 

for the description of the samples, i.e. the input, are actually related with the class or value 

corresponding to the sample, i.e. the expected output. This task of selecting or constructing 

the appropriate attributes to represent the given examples, i.e. feature selection or feature 

extraction, is far from trivial and is usually aided by already existing domain knowledge for 

the concept to be learnt and/or dedicated mechanisms. In the following we will assume that 

such a relation between the input and the expected output exists for at least some of the 

attributes used for the description. We elaborate on this in a later section discussing the 

selected approach for the current context. Moreover, since the current context refers to the 

approval or rejection of generated solutions, or, in a wider interpretation, the characterisation 

of each solution regarding user preferences, we concentrate on the most important 

mechanisms available for supervised learning for classification. 

4.3.1 Definitions 

Before we examine the specifics of the most important machine learning mechanisms 

it is useful to clarify a few terms used in the following discussion. For the rest of this chapter 

it will be assumed that the mechanisms discussed accept an input – usually represented by a 

vector of values, one for each attribute describing the concept to be learnt – and produce an 

output – represented, in general, by another vector of one or more values. Moreover, the 

mechanisms described below – or their version of interest for the current context – rely on 

examples (also referred to as samples) in order to establish and improve their intelligent 

behaviour. By the term example we refer to a correct (reflecting the real world concept or, at 
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least, the desired by the designer of the mechanism) pairing of an input and a target output 

vector. In other words, an example represents the output the mechanism should produce when 

triggered with the corresponding input. Usually a set of examples is used during the training 

of the mechanism and an alternative set of examples is used for the evaluation or testing of 

the mechanism. The idea is that the mechanism is expected to perform well on already seen 

examples but it also has to demonstrate adequate performance on yet unseen examples. The 

performance of a mechanism with respect to previously unseen examples exhibits the ability 

of the mechanism to generalise the knowledge it has acquired during its training. There are 

cases where a mechanism fails to adequately generalise because, during training, it has 

modelled too closely the specific examples included in the training set. This is a case of 

overfitting the contents of the training set. On the other hand, increased flexibility of a 

mechanism with a view to adequate generalisation ability may lead to underfitting, a case 

where the mechanism fails to perform adequately even for the contents of the training set 

itself. These two cases represent the extremes of a traditional trade-off of machine learning 

called the bias-variance dilemma. The performance of a mechanism is assessed based on a 

selected set of examples and is usually expressed as a success rate, i.e. the percentage of 

examples correctly evaluated by the mechanism, or an error rate, i.e. the percentage of 

examples incorrectly evaluated by the mechanism. Mechanisms of reduced complexity 

demonstrate reduced ability of learning the available examples thus demonstrating high bias 

(or high empirical risk) and, since they are rather insensitive with respect to the training data 

they may generalise adequately, thus demonstrating low variance (or low confidence 

interval). On the contrary, mechanisms of increased complexity are able to closely model the 

available examples thus demonstrating low bias but they often overfit the training examples 

thus yielding high variance error, i.e. low generalisation ability. 

4.3.2 Artificial Neural Networks 

According to a phrase ascribed to J.S.Denker and appearing often in the relevant 

literature “neural networks are the second best way to do almost anything”. The sentence 

implies that the (first) best way is to assign to one or more humans the tasks of understanding 

the different parameters of the problem, study its nature and implement a solution or a model 

closely resembling the reality; unfortunately, these tasks usually require a restrictive amount 

of time. In other words, neural networks have been considered the best way to exploit 

previous experience, i.e. existing examples of a concept, without necessarily delving into the 

nature of the concept itself in the form of rules or human understandable modelling.  
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Figure  4.2 Typical artificial neuron of k inputs with bias (i) explicitly shown as b or (ii) 

represented by the weight wk+1 of an additional input of fixed value 

Artificial Neural Networks (ANN), or simply Neural Networks (NN), since the context 

usually makes their artificial nature obvious, have been inspired by the structure and operation 

of the human brain. Their aim is, through a simplified model of the architecture and operation 

of the latter, to imitate, at least up to a reasonable extent, the human ability to learn from 

examples, memorise concepts and exhibit intelligent behaviour with respect to previously 

unknown concepts. Figure  4.2 shows the basic configuration of a typical artificial neuron, 

which is the building block of artificial neural networks. An artificial neural network is 

practically a weighted directed graph where each node maps its incoming edge(s) to its 

outgoing edge(s) in a specific manner. Most often, the nodes of this graph are organised in 

layers, the outputs of the neurons of one layer being submitted as input only to neurons of the 

next layer. External inputs are received by a special layer of neurons, the input layer, whereas 

the final outputs are produced by the neurons of the output layer. Additional hidden layers 

may exist between the input and the output layers. Due to the nature of information 

transmission in such a neural network, i.e. gradually, from the first layer to the last, a network 

of this architecture is characterised as a feed-forward network [Hornik89], [Leshno93]. 

Usually the graph is acyclic, however, when this is not the case, the network is additionally 

characterised as recurrent.  

The neurons of the input layer have a neutral behaviour, simply transferring the values 

of the input vector to one or more neurons of the next layer. Each neuron of the other layers, 

i.e. hidden and output, features a number of inputs ai each accompanied by a weight wi and a 

single additional fixed input, the bias b. Input values may be discrete binary, may range 
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between 0 and 1 or may range between -1 and 1, without any of these being an obligatory 

requirement. Weight value and biases usually range between -1 and 1. Due to the layered 

architecture, the values of each neuron’s inputs ai are obtained from the outputs of the neurons 

of the preceding layer – except for neurons of the input layer which receive their input 

directly from the input vector. The weights and biases, on the other hand, are only modified 

during training, according to specific rules, and they are considered as part of the 

configuration of the network which is finalised and fixed as soon as the training is over. 

Intuitively, each neuron merges its inputs, their weights and its bias to a single value 

represented by its calculated output. This calculation is suggested by the transfer (or 

activation) function f which is, in general, common for all neurons of the network or, at least, 

common for all neurons of the same layer. Several transfer functions f exist, exploiting in 

different manners the weighted sum S of the neuron’s inputs and the bias, where 
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where t is a fixed threshold value, not modified during training. An alternative 

commonly used function is also 

• Sigmoid Function: Sce
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where c is a constant positive coefficient adjusting the steepness of the sigmoid 

function. Figure  4.3 shows a typical neural network configuration comprising an input layer, 

one hidden layer and an output layer. This network is fully connected, i.e. the output of each 

neuron is submitted as input to all neurons of the next layer, as is usually the case. The 
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specific example could represent a classifier, mapping each sample represented by three 

attributes to one of two alternative classes. 
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Figure  4.3 Example neural network, mapping 3 inputs to 2 outputs, featuring a single hidden 

layer consisting of 4 neurons 

 

Before training begins all weights and biases of the network are initialised according 

to one of several initialisation methods – a simple one being random number generation 

within the range of -0.5 and 0.5 for each weight and bias. During training, the input part v of 

each sample in the training set is submitted as input to the network and the calculated output z 

is compared to the expected output e. The differences between the components of the latter 

two are used to update the configuration of the network accordingly. This update takes into 

account the difference between the expected and actual output and the first derivative of the 
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transfer function in the form of the delta quantity. Some additional parameters also participate 

in the training process, namely, the learning rate l, that suggests how fast should the weights 

and biases change during training to compensate for the error, and the momentum m, that 

intuitively represents change amplification according to previous changes, independent of the 

current error. The adaptation of the weights and biases typically takes place in reverse layer 

order, starting from the neurons of the output level towards those of the input level. This due 

to the fact that the target output contained in each example practically refers to the output 

level of the network. Networks trained according to this policy are called back-propagation 

neural networks. Several functions exist for the combination of the aforementioned training 

parameters, an example given below: 

• Delta )()( iiii Sfze ′⋅−=δ  where the latter term signifies the first derivative of the transfer 

function for the current input 

• New weight )`()( iiiiii wwmSflww −+⋅⋅+=′ δ  where the latter parenthesis signifies the 

difference between the current and the previous weight value. 

• New bias )`( iiiii bbmlbb −+⋅+=′ δ  where the latter parenthesis signifies the difference 

between the current and the previous bias value. 

4.3.3 Genetic Algorithms 

There is an extension to the “neural networks are the second best way to do almost 

anything” phrase opening the previous section that states “…and genetic algorithms are the 

third” [Russel02]. Regardless whether this is a generally accepted statement or not, it implies 

that, at least, genetic algorithms [Goldberg89], [Mitchell98], [Holland92] are valued as a 

powerful machine learning tool, comprising the most important member of the wider family 

of evolutionary search techniques. Hence, it comes as no surprise that the specific 

mechanisms, once again, have been based on an imitation of procedures originally found in 

nature. This time, it is the process of natural selection and evolution that is artificially 

reproduced, based on the survival (and reproduction) of the fittest among a population of 

representatives comprising a set of solutions to a specific problem or a set of examples of a 

specific concept.  

Genetic problem solving typically has to deal with the evaluation and improvement of 

a population of candidate solutions or concept representatives. Intuitively, the algorithm’s 
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responsibility is to improve an initial solution population, by generating subsequent 

populations, characterised as generations, of gradually improved performance. Ideally, after a 

number of generations, the representatives contained therein will be of high, although often 

not optimal, performance. In algorithmic terms, genetic techniques are hill-climbing 

algorithms, aiming to approach any local or global extrema. 

In order to achieve this, a number of tasks take place during the process of evolution, 

each serving a specific purpose in the overall mechanism. In particular, 

Representation. Each solution or example is typically encoded as a binary string or a 

vector of integer or real values – the chromosome. The kind of representation chosen plays an 

important role in the subsequent stage where representatives are used to produce the 

population of the next generation. Depending on the nature of the problem and the specific 

instance of the mechanism, one representation may be more appropriate than the other. 

Generation of the initial population. Although generation of a random set of 

individuals may seem adequate, usually it is required that the initial population contains 

diverse examples in order to ensure that a large part of the solution space will be covered by 

the subsequent search. 

Fitness function. As soon as a population is available, its members have to be 

evaluated in order to distinguish the fittest representatives. The fitness function itself may 

range from a simple weighted sum of attribute values to evaluation mechanisms of increased 

complexity. As an example of the latter, it is often the case that a neural network is employed 

as a sophisticated fitness function, thus yielding hybrid methodologies combining both 

techniques. 

Selection methods. Although the fitness function may concretely suggest the best 

performing representatives among the population, it is not necessarily implied that only these 

representatives should be selected in order to produce the subsequent generation. The reason 

is that doing so may restrict solution search around local extrema, thus preventing the 

algorithm from exploring alternative locations of the solution space which may lead to 

improved solution sets or even global extrema. Hence, several policies exist in order to 

efficiently select a subset of the current generation to be used for the task described next. 



MACHINE LEARNING 

GEORGIOS BARDIS  81 

Crossover. The selected representatives are combined in pairs to produce the 

members of the next generation. The combination usually relies on mutual exchange of a 

certain parts of their representations. The rationale is that individuals of increased 

performance are more likely to be produced from the combination of high performing parents. 

Mutation. As already mentioned, selecting the best performing individuals among a 

generation does not necessarily guarantee best overall performance since it may prevent the 

algorithm from efficiently exploring the solution space. This notion actually represents the 

exploitation vs. exploration trade-off: focusing on best performing members of the current 

population and rely on them for producing subsequent generations (exploitation) against 

putting less emphasis on the best individuals of the current population while trying to generate 

new ones, not necessarily related to them (exploration). Mutation is a technique that allows 

adjustment of the behaviour of the genetic mechanism between the two aforementioned 

extremes by randomly altering the representations of the best individuals combined to 

produce the new members. All alternative mutation methods share the common purpose of 

introducing new attribute values and, hence, new solution points that can not be found in the 

current population. 

Elitism. Instead of selecting and mutating individuals in order to produce new 

members, the best performing ones are merely copied to the next generation. In a sense, this 

method corresponds to the exploitation extreme of the aforementioned trade-off and is usually 

combined with the other techniques for the production of the new population. 

4.3.4 Support Vector Machines 

Support Vector Machines [Boser92] form the implementation of a machine learning 

methodology based on Statistical Learning Theory [Vapnik68] and represent a highly active 

contemporary research field. Although the architecture of a support vector machine is very 

similar to that of a neural network the construction method differs significantly. The learning 

process of a neural network aims to reduce the empirical risk of the network while 

maintaining a fixed network architecture, which implies a fixed confidence interval. Support 

Vector Machines, on the other hand, aim to reduce the confidence interval while maintaining 

a fixed empirical risk [Vapnik98]. Support Vector Machines for classification are based on 

the idea of finding not any but the optimal boundary hyperplane for class separation. This 

optimality is achieved by selecting the hyperplane with equal and maximum distance from the 



MACHINE LEARNING 

GEORGIOS BARDIS  82 

closest representatives of each class. These representatives, used for the selection of the most 

appropriate separating hyperplane are the support vectors. In a sense, the problem of learning 

how to separate efficiently all available examples is reduced to that of learning how to 

separate efficiently the support vectors.  

However, it is very often the case that the training examples are not linearly separable, 

at least when referring to a realistic problem, and, hence, the definition of a boundary 

hyperplane is not feasible in the space where the examples are defined. In order to overcome 

this, the examples are mapped to spaces of higher dimension in a non-linear way that ensures 

that classes will be linearly separable. The technique to achieve this is known as the kernel 

trick and the corresponding functions are the kernel functions [Burbidge01]. The latter take 

advantage of the observation that the data vectors appear only in inner products with weights 

during the calculations. Kernel functions offer the ability to calculate the inner products of the 

higher dimension representation of the data vectors. A typical example of a kernel function is 

the polynomial 

)(),(,),( wawawaK d φφ==  

i.e. the inner product of two vectors raised to an integer power is equal to the inner 

product of the higher dimension representation of these vectors.  

To illustrate these concepts we provide a simplified example based on the XOR 

function simulation. Figure  4.4(a) shows a XOR function representation where the TRUE 

combinations are represented by white dots and the FALSE combinations are represented by 

black dots. No straight line, which is the special case of hyperplane in the 2-dimensional 

space, exists that can serve as a separation boundary between the TRUE and FALSE 

instances. We now apply the mapping to the 3-dimensional space through the aforementioned 

kernel function for d=2. We provide the analysis of the kernel function calculation, thus 

showing the mapping of the 2-dimensional vectors to the 3-dimensional space. 
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Hence, each 2-dimensional vector a is mapped to a 3-dimensional one according to 

φ(a). By applying the specific mapping function to the four 2-dimensional points of Figure 
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 4.4(a) we obtain the four 3-dimensional points of Figure  4.4(b). Notice that the 3-dimensional 

TRUE and FALSE combinations are, indeed, linearly separable. 

 

 

(a) 

)2(1,1,

(b) 

Figure  4.4 Four data vectors in the 2-dimensional space and their mappings in the 3-

dimensional space according to mapping function φ 

 

 

4.3.5 Latent Semantic Indexing and Multi-Dimensional Scaling 

Latent Semantic Indexing (LSI) is a technique aiming to aid the semantic analysis of a 

large collection of documents and offer intelligent response to term-based queries upon these 

documents [Deerwester90],[Papadimitriou00]. It relies on the representation of each 

document as a multi-dimensional vector where each dimension element represents the 

presence, in the form of number of occurrences or absence, of one term. These terms exclude 

common words of reduced information value (stop words) and are usually represented by 

stems to avoid considering several forms of the same word as distinct terms. Due to the high 

dimension of this space, the technique employs Singular Value Decomposition (SVD) – a 

form of Principal Component Analysis – in order to map these vectors to a lower dimension 

space, while maintaining information regarding the relative distance between any two vectors. 

The idea is to capture and amplify the most important hidden relations between terms, thus 

improving the search outcome, while accelerating the search process and reducing the storage 
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requirements by lowering the dimension of the search space. As a result, considering words 

appearing often in the same document, the outcome of a query containing only one of these 

words may include a document containing only the other. Nevertheless, the technique requires 

considerable pre-processing regarding the extraction of meaningful participating terms.  

 Multi-dimensional Scaling (MDS) [Takane77] or Perceptual Mapping is based on the 

same idea of reducing the space dimension. However, the aim in this case is to map multi-

dimensional samples to 3-dimensional counterparts that can be visualised and, hence, 

intuitively inspected by humans.  

4.3.6 Boosting 

The fundamental idea of the Boosting technique is the employment of weak learners, 

i.e. machine learning mechanisms of low performance, in order to create a committee of much 

higher performance than any of its members [Schapire90],[Witten05]. [Schapire90] formally 

proved that any weak learner, i.e. an algorithm that may learn a class of concepts with 

accuracy slightly better than random guessing, can be recursively applied, making the error 

arbitrarily small, thus yielding a strong learner. The boosting technique practically applies the 

principles of incremental learning [Elman93] in the sense that the overall machine learning 

mechanism, i.e. the committee, is not of fixed size.  

The technique takes advantage of the fact that a considerable amount of time during 

the training of a typical machine learning mechanism is spent for the fine tuning of its 

parameters in order to optimise its performance. As it is usually the case, this stage of 

adjustments contributes a relatively small error reduction, not proportional to the time 

required to achieve it. The Boosting approach, on the other hand, proposes the termination of 

the training of each one of its members as soon as its performance falls below a relatively 

high and quickly reached error margin. In a sense, each committee member is responsible of 

learning only a small part of the example set. 

4.3.6.1 AdaBoost and Learn++  

AdaBoost [Freund97] has set the foundation for a series of variations of boosting 

algorithms. In the following we briefly describe the standard approach and the modifications 

that have lead to the Learn++ variation [Polikar01],[Polikar02], which forms the basis of the 

algorithm we have proposed and implemented in the current context. The details of the 

algorithm applied in the current work are presented in the next chapter. 
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The input of the AdaBoost classifier consists of:  

1. a set of N classified examples {(x1,c1), … , (xN,cN)}, where xi represents an example and ci 

its classification,  

2. a distribution D over these examples,  

3. a weak learning mechanism and  

4. the number of iterations the weak learning mechanism will be invoked.  

Each example is also characterised by a weight, which is updated at each iteration 

cycle and is intuitively analogous to the difficulty of the weak learning mechanism to classify 

the specific example correctly. This fact becomes apparent by the weight update rule 

presented below.  

In particular, at the very beginning of the algorithm the weights are initialised 

explicitly based on D. For example, if D implies so, all examples start with equal weights. 

Next, during each iteration cycle, the steps appearing in Algorithm  4.1 take place: 

Step 1. Normalise the weights of the examples. 

Step 2. Train a new weak learner ht on the examples, according to the distribution 

suggested by their weights. 

Step 3. Calculate εt as the sum of the weights of the examples erroneously classified by 

the current weak learner ht. 

Step 4. Calculate βt=εt/(1-εt) and multiply weights of correctly classified examples by βt. 

Algorithm  4.1 The main body of the iteration of the AdaBoost algorithm 

 

Notice that, by definition of the weak learning mechanism, εt ∈ [0,½), i.e. it performs 

slightly better than random guessing. This implies that βt<1 which, in turn, suggests that the 

weights of correctly classified examples are gradually reduced. Due to the training according 

to distribution, taking place in Step 2, the algorithm emphasises on hard-to-classify examples 

by constructing weak learners increasingly focused on them. After its construction, each weak 

learner t is characterised by a voting weight equal to log(1/βt ) calculated at the end of its 

training. The output of the overall trained mechanism for any example is the result of voting 

of the weak learners. The class representing the weak learners’ final voting decision for a 

specific example is the class for which the sum of voting weights is the highest. 
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The Learn++ algorithm applies the same principles in a more restricted context where 

not all examples are always available. Instead, examples are presented to the algorithm in 

groups, leading to the construction of sub-committees that have been trained based 

exclusively on a particular subset of the overall example set. In this context, every time a 

weak learner is added to the sub-committee, the entire committee is used to evaluate the 

current training subset to verify that the overall error does not exceed the threshold of ½. In a 

sense, Learn++ recursively applies the rationale of AdaBoost, both for weak learners with 

respect to the entire committee, as well as for the sub-committees with respect to the entire 

committee. The calculation of the overall error and the final voting decisions of the overall 

trained mechanism are exactly the same, thus maintaining the strong learning properties of the 

original approach. 

4.4 Concluding Remarks 

The context of the Open-MultiCAD design environment poses certain restrictions due 

to its functionality. These restrictions suggest corresponding requirements that had to be 

fulfilled by any mechanism employed to act as the Machine Learning Component of the 

proposed Intelligent User Profile Module. In particular, each user submits the declarative 

description of a scene and requests the generation of alternative geometric representations 

fulfilling this description. The user may subsequently inspect and evaluate these geometric 

representations at will, according to personal preferences, thus concluding a typical session of 

system use. Next time the user interacts with the system, he/she will submit another 

declarative description requesting the corresponding geometric representations. It becomes 

clear that, in the specific context, the feedback regarding the user’s preferences, i.e. the 

training examples for any mechanism chosen to learn and subsequently apply these 

preferences, are produced in bursts, at different and distinct times. Moreover, the volume of 

the produced solutions may vary, sometimes being large thus prohibiting storage of all 

generated solutions for future use. Therefore, we can define a set of requirements for the 

machine learning mechanism to be employed in the current context. In particular: 

1. It should be able to extend its knowledge regarding user preferences based on newly 

acquired examples. 
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2. It should not require previously seen examples in order to retain (at least up to an adequate 

degree) previously acquired knowledge. 

3. It should be flexible, supporting a wide range of sizes for the example set. 

4. It should not rely on similarity of examples for similarity in user preferences. 

Most of the state-of-the-art mechanisms presented in the current chapter represent 

powerful methodologies, able to capture and simulate any pattern in a given set of examples. 

However, as is usually the case, there are certain trade-offs that prevent these mechanisms 

from fulfilling the aforementioned requirements. In particular, most of the methods presented 

rely on the entire example set in order to acquire an efficient model of the data. Newly 

acquired information has to be included in the overall example set and the mechanism has to 

be retrained with the entire population in order to achieve adequate performance. If only the 

new members are presented we encounter catastrophic forgetting where the mechanism 

learns the current examples but previous knowledge is lost. Hence, even if the first of the 

aforementioned requirements is fulfilled the second is not in the majority of cases. Moreover, 

mechanisms of fixed architecture and subsequent complexity may not respond equally well in 

variable example set sizes as demanded by the third requirement. Therefore, we may 

encounter cases where the mechanism’s complexity is not analogous to the example set, given 

the fact that the generated solutions may range from a few hundreds to a few hundred 

thousands. Last but not least, since user preferences may be unpredictable, the employed 

mechanism should be flexible enough to accept very similar solutions to be classified 

differently. Hence, traditional statistical methods and unsupervised learning could not respond 

to the needs of the current context. 

For the above reasons we have chosen to propose and implement a machine learning 

algorithm based on AdaBoost and its Learn++ variation using back-propagation feed-forward 

neural networks as weak learners. The details of the implementation are given in the next 

chapter. Here, we summarise the advantages of our approach in the following: 

1. The proposed mechanism is able to incorporate new knowledge based on new examples 

while adequately retaining previously acquired knowledge.  

2. Acquisition of new knowledge is achieved through the addition of new members to the 

Machine Learning Component committee only if necessary. In this way the complexity of 
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the mechanism is adapted to the complexity of the user preferences as suggested by the 

examples. 

3. The proposed mechanism does not need to consult previously seen examples in order to 

retain previously acquired knowledge. 

4. The proposed mechanism offers a degree of flexibility regarding the weak learning 

mechanism used. 

In the following chapter we elaborate on the Machine Learning Component and the 

details of its implementation. 
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5 Intelligent User Profile Module 

Based on the research and discussion presented in the previous chapters we describe in 

the current chapter the design and implementation of a Hybrid Intelligent User Profile Module 

for the Open-MultiCAD Design Environment. The proposed module consists of two separate, 

yet complementary components, each realising an alternative approach towards intelligent 

decision support with respect to user preferences in the context of object design. 

The structure of the current chapter follows the architecture of the module. In 

particular, the chapter commences with a justification of the system architecture adopted by 

our module and continues with an overview of this architecture as proposed and implemented 

in the Intelligent User Profile Module. This overview also serves as an introduction to the 

nomenclature and the role of the prototype components of the implementation. Next, the set 

of fundamental assumptions that support the employed mechanisms and the integration of the 

latter to the already existing system are presented in detail. Each component is described 

thoroughly, regarding the underlying theoretical aspects and the respective algorithms. The 

integration of the two components to the Open-MultiCAD environment is subsequently 

presented. Finally, certain implementation issues are discussed, focusing on points that 

influence the system performance in terms of required processing time and storage space. 

5.1 Rationale 

Open-MultiCAD comprises a design framework that facilitates the transition from the 

abstract description of an object to its concrete visualised counterpart. The current stage of the 

Open-MultiCAD implementation is on the domain of Architecture, accepting descriptions of 

building scenes, and subsequently generating and visualising alternative geometric solutions 
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corresponding to these scenes. As presented in the previous chapter, a typical 

Open-MultiCAD input of moderate complexity may generate thousands of solutions as 

output. These solutions are all formally valid, at least based on the declarative description 

submitted by the user as input. Nevertheless, it quickly becomes apparent that they are not all 

equally interesting for the user and there is no practical way for him/her to actually inspect the 

visualisations of all these solutions in order to select the best, i.e. those closest to his/her 

informal preferences, among them. One may argue that the user may check solutions only 

until he/she discovers an adequate number of satisfactory ones; hence, it is very unlikely that 

he/she will have to go through the complete set of results. However, even in this case, the 

problem of presenting the solutions to the user in a meaningful order – instead of randomly or 

sequentially – can be trivially reduced to the same problem we have dealt with in this work 

and that is described in the following. 

A system destined to incorporate a computational model of user’s preferences has to 

cover two distinct and equally important stages of this process. In particular, 

User Preferences Acquisition. At this stage the system has to collect information based on 

user’s feedback regarding his/her preferences. This information has to be formulated 

appropriately in order to be exploitable by the mechanisms of the next stage. 

User Preferences Application. At this stage the system has to apply the information acquired 

during the previous stage for the user’s benefit during regular system use.  

Ideally, a system incorporating a computational model of user’s preferences, 

regardless of the specifics of the mechanism, could benefit from this model during two 

distinct phases of the Declarative Modelling Design Process presented in the corresponding 

chapter. In particular,  

Scene Generation. Applying user preferences at this stage would allow the system to 

generate only solutions complying with the input description as well as with the current 

user’s modelled preferences. 

Scene Understanding. Applying user preferences at this stage would not interfere with the 

solution generation. Thus, the system would generate all solutions complying with the 

input description. Subsequently, and due to the application of user preferences, the system 

would divide the solutions in classes of different degrees of preference, presenting them in 

descending preference order to the user. 
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We have chosen to concentrate our efforts on the latter phase; hence the main direction 

we have chosen to follow is that of intelligent solution evaluation as opposed to intelligent 

solution generation. There is more than one reason justifying this as the major step towards 

the capture and application of user preferences in the current context.  

In particular, it quickly becomes apparent that the main user feedback revealing 

morphological user preferences originates from the properties of the geometric 

representations of the solutions that have been approved by the user. In other words, 

regardless whether intelligent solution generation or intelligent solution evaluation is the 

ultimate aim, one has to deal with the geometric properties of the produced solutions in order 

to extract the morphological user preferences. This, in turn, implies the processing of the 

geometric representation of solutions and the extraction of the values for one or more 

observed attributes as the first major step towards the capture of user preferences. Once this 

model is available it may be applied to the solution generation stage, as a set of additional 

constraints further restricting the declarative description [Bardis05], or to the solution 

evaluation stage, as a filter for the already generated solutions. Since the acquisition of user 

preferences had already set the focus on the geometric solution representation we have chosen 

to further elaborate on this representation by concentrating on the Scene Understanding stage 

of the Declarative Modelling Design Process cycle. 

From the technical point of view, concentrating on the geometric solution 

representation allows for an open module and a user preference model that may be applied not 

only to solutions generated for other user’s declarative descriptions within the same 

environment but also to geometric representations from other environments, given a certain 

degree of compatibility.  

We may also mention as one of the important side-effects the fact that the chosen 

direction has lead to a less restrictive and more promising area of research. In particular, ideas 

from other areas could be tested and contribute to the current context and, alternatively, the 

insight gained from the present research might have interesting applications to other, not 

directly connected, research axes. Last but not least, as a technical advantage, we have 

managed to enrich the already existing, yet constantly changing, Open-MultiCAD 

environment with an add-on module that could provide user modelling with minimal, if any at 

all, intervention to the other modules of this environment. Dealing with the output of the 

system, i.e. the geometric representation of the solutions, has allowed us to work 
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independently and experiment at will. As it will become clear throughout the rest of this 

chapter, the Intelligent User Profile Module we have proposed and implemented, requires no 

alterations of the existing Open-MultiCAD environment thus enhancing the overall system 

modularity and extensibility. 

5.2 Module Overview 

As already discussed in the previous section, the proposed Intelligent User Profile 

Module had to fit to the already existing MultiCAD system with minimal intervention to the 

latter. Moreover, it had to offer additional functionality, in the form of user preferences 

modelling, without considerable additional overhead for the user.  

5.2.1 Requirements 

Practically, we have set and subsequently fulfilled two fundamental requirements for 

our module: 

Minimal modifications to the existing Open-MultiCAD environment. We work with the 

geometric representation of the solutions. The User Profile database forms a separate set 

of entities and relationships that requires no change to the existing Open-MultiCAD 

database. Both components – Decision Support (DS) and Machine Learning (ML) – are 

optional and easily activated from within the existing environment. 

Minimal user overhead. We require the user to initialise his/her Decision Support profile 

only in order to provide instant automatic solution evaluation and only once. 

Subsequently, it is assumed that the user evaluates some, if not all, generated solutions for 

the scene(s) he/she submits. Therefore, we take advantage of this evaluation in order to 

transparently train the Machine Learning Component thus creating the corresponding ML 

profile. If a DS profile already exists, we compare the performance of the two profiles. 

In particular, we have chosen to require only a pre-processing feedback, acquired only 

once by every user, yielding an initial Decision Support (DS) User Profile that serves as an 

evaluation mechanism for instant solution evaluation as well as reference for the Machine 

Learning (ML) User Profile which is gradually built during the normal use of the system. 

Both profiles are acquired by the corresponding DS and ML components that store this 
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information in the User Profile Database. The latter forms an interconnected yet distinct part 

of the Open-MultiCAD database, already presented in the corresponding chapter. Every time 

the user goes through a session by submitting a scene description and evaluating the solutions 

produced, the two alternative profiles are also used to transparently evaluate the solutions. 

The performance of the two profiles is compared and as soon as the ML profile outperforms 

the DS profile the user is notified. Moreover, automatic solution evaluation is available from 

the very first session through the DS profile since the latter is based on pre-processing user 

feedback.  

5.2.2 Module Operation 

The data exchange among the entities of the integrated system appears in Figure  5.1. 

The only direct feedback the user has to provide to the Intelligent User Profile Module is the 

data for the initialisation of the DS profile. Subsequent feedback is retrieved through the 

regular solution evaluation that takes place during normal system use. 

Figure  5.1 Data Exchange in User Profile MultiCAD 

 

This is concretely depicted in Figure  5.2. The integration of the components 

comprising User Profile Module is shown therein as part of a typical scenario of system use. 
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The tasks carried out in the context of the already existing Open-MultiCAD system appear 

gray-shaded in this diagram. Notice how the typical Open-MultiCAD cycle remains in tact 

despite the additional module and the consequent data exchange. Contributing to this 

direction, Profile Initialisation is a task completely disconnected from the cycle, thus not 

directly affecting it in any way. Hence, after the Profile Initialisation has taken place, the 

specific user will have to provide no additional feedback during regular use of the system.  

In order to clarify the module’s operation we will assume in the following that the user 

has already completed a certain number of sessions after profile initialisation. This implies 

that there are a number of encoded solutions already available together with the corresponding 

user’s evaluation for each one of them. This assumption will allow us to fully describe the 

operation and participation of the Machine Learning component to the automatic solution 

evaluation process. In particular, a typical session of system use starts with the submission of 

the declarative description of a scene that will be used as input to the Solution Generator. The 

user may request automatic solution evaluation for the results and may also be willing to 

manually evaluate the solutions. Automatic solution evaluation is available according to the 

Decision Support profile and the Machine Learning profile. The former has been defined 

during Profile Initialisation. The latter is gradually built and refined every time the user 

manually evaluates a solution population. Both profiles apply not to the geometric 

representation of each solution but to its encoded version as a vector of attribute values. These 

values represent each solution’s performance with respect to certain observed morphological 

characteristics.  

Hence, as soon as the solutions for the current scene are produced they are encoded 

and stored in the User Profile database, each coupled with a pointer to its geometric 

representation stored in the Open-MultiCAD database. Next, each solution is evaluated 

according to the Decision Support profile as well as the Machine Learning profile. Each 

profile yields an alternative grade for each solution that is also stored in the User Profile 

Database. In case the user has chosen not to proceed with the manual solution evaluation, the 

produced solutions are visualised and presented to him/her in descending order of 

automatically calculated preference. At the current stage of the implementation the overall 

calculated preference is assumed to be the average of the grades assigned by the alternative 

profiles. 
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Figure  5.2 Typical Session of use of the Intelligent User Profile Module 

 

In case the user decides to proceed with the manual solution evaluation the module 

takes advantage of the feedback in order to perform a number of tasks. In particular, the 

manually graded solution population is used in order to: 

• Refine the Machine Learning Profile. 

• Evaluate the consistency of the Decision Support Profile. 

• Compare the performance of the alternative profiles. 

Each encoded solution, coupled with its grade provided by the user, is used as part of a 

new training set for the Machine Learning component. Notice that the specific set of solutions 

has already been used to evaluate the Machine Learning profile up to the specific point. 

Hence, we are able to assess the improvement caused by the new training set to its 

performance. Furthermore, as it is discussed in detail in the next chapter, we are able to 
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measure the effect of the newly acquired knowledge to the ability to classify older examples, 

already used for training. 

Similarly, the user’s grading is used to assess the credibility of the Decision Support 

profile. It may be the case that the user is not consistent, up to a certain degree, with the 

answers he/she has provided during the Decision Support profile initialisation. Last but not 

least, having the user’s grading available, we are able to compare the performance of the 

alternative profiles with respect to the current scene as well as regarding the overall user’s 

statistics.  

No redundant information is stored in the User Profile database. Instead of that, the 

User Profile database is interconnected with the already existing Open-MultiCAD database 

through the required scenes and solutions ID’s thus eliminating the need for data replication 

and the consequent need for consistency checking. Moreover, since certain tasks may require 

a large amount of time in order to be completed their results are immediately stored in the 

User Profile database thus offering the user the ability to postpone further processing. For 

example, solution translation may take place at one time and automatic solution evaluation at 

another time. This architecture allows the User Profile Module to handle scenes that lead to 

large numbers of generated solutions.  

Automatic Solution Evaluation combines both components of the User Profile Module 

providing alternative evaluations for each solution as shown in Figure  5.3. Each solution is 

automatically evaluated according to the Decision Support Profile and the Machine Learning 

Profile given that the latter has already received training. In case the user is not willing to 

evaluate the specific solutions and has requested automatic solution evaluation, the output of 

the specific action is used during visualisation, in order to present solutions in descending 

preference order. The order is based on the automatically calculated degree of user preference 

with respect to the profiles the user has chosen to invoke for the current session. 
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Figure  5.3 Automatic Solution Evaluation sub-tasks 

5.3 Solution Encoding 

Each solution produced by the Solution Generator module of MultiCAD consists of a 

set of bounding boxes signifying the corresponding spaces of the building. These spaces may 

be rooms, habitation zones or even sub-buildings depending on the declarative description 

submitted as input. The geometric model used for the bounding boxes is a rather simple one 

and has already been presented in chapter the Declarative Modelling chapter. Briefly 

presented, each area is represented by its origin, its dimensions, its colour/texture and two 

labels revealing the geometric primitive it is based upon (cylinder, box, etc.) and the object 

type (kitchen, bedroom, habitation, etc.) it represents. An extra label for the entire solution 

reveals its project type (habitation, hotel, office, etc.). This geometric model has been 

intentionally kept simple throughout the development of the Open-MultiCAD environment in 
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an effort to facilitate future extensions and/or integration of alternative geometric 

representations to the existing system. We have conformed to this approach in its entirety and, 

therefore, we have based the solution encoding, described below, only on the aforementioned 

geometric representation, requiring no extra information for the spaces that would, in turn, 

demand knowledge of the corresponding declarative description. Our goal has been to create a 

module that would be extensible, in the sense that it would be feasible to apply, at the expense 

of some minor modifications, to geometric models not necessarily originating from a 

declarative description. 

Even this representation, albeit simple, may lead to a few hundred values for the 

representation of a single solution. In order to reduce the complexity of each solution and, 

moreover, introduce the qualitative aspect required by the preference mechanisms employed, 

we have chosen to observe, for each solution, a specific set of morphological and geometric 

attributes. These observed attributes, as they will be mentioned for the remainder of this 

chapter, have been chosen mainly according to the corresponding building properties used in 

[Fri03], [Mak05] and [She01] and represent the lowest level of the attribute tree already 

discussed in the Preference Modelling and Decision Analysis chapter. We will assume that, 

for the current context, this tree, although by no means exhaustive with respect to building 

assemblies properties, fulfils completeness. In particular, we assume that no attributes 

concerning materials, cost, energy performance, etc. are of interest to the user, i.e. the DM, 

mainly due to the fact that relevant information is not adequately present in the geometric 

representation of the solutions produced by the Open-MultiCAD environment. Moreover, this 

is the minimum tree that includes all attributes of interest and the evaluation of each attribute 

is independent of the others therefore decomposability and minimum size are also fulfilled. 

Finally, the specific lower level attributes have been appropriately selected to offer absence of 

redundancy and operationality, i.e. their evaluations do not overlap and they may be extracted 

directly from the geometric solution representation, thus ensuring complete fulfilment of all 

requirements for a valid attribute tree.  

The observed morphological attributes and their parameters vary for different kinds of 

buildings, i.e. different project types. However, they can always be extracted by the simple 

geometric model described before. Thus, each solution is mapped by the module to a vector of 

values, which represents the performance of the specific solution against the set of observed 

attributes. Both components of the User Profile module operate on this attribute encoded 



INTELLIGENT USER PROFILE MODULE 

GEORGIOS BARDIS  101 

version of the solutions. For the rest of this chapter, we will refer to encoded solutions 

whenever it is necessary to distinguish from their geometric counterparts. 

Depending on the project type, the observed attributes as well as their ranges vary. As 

an example, Table  5.1 summarises the observed attributes for the project type residence. The 

corresponding information for alternative project types can be trivially defined in the 

Open-MultiCAD database. Regarding the minima for the residence project type we have tried 

to capture extreme cases like studios where, for example, no explicit bedroom exists. The 

maxima, on the other hand, depend on the site dimensions and typically do not have to be 

fixed numbers. However, as it will be presented in detail in the next chapter, we have chosen 

to use similar site dimensions for each series of experiments in order to ensure comparability 

among different scenes submitted by the same user and their corresponding solutions. 

Observed Attribute Symbol Range 

Private zone area PRA 0..maxprivatezone 

Public zone area PUA 0..maxpubliczone 

Number of washrooms NOW 1..maxwashrooms 

Number of sleep rooms NOS 0..maxsleeprooms 

Non-Oblong rooms 
percentage NOP 0%..100% 

Private/Public zone 
separation PPS false,true 

South-western bedroom SWB false,true 

Table  5.1 Observed attributes for Residence project type 

 

Each attribute is calculated from the elementary geometric properties of each space. 

Only spaces of the lowest level of the part-of hierarchical decomposition of the declarative 

description are considered at this stage. Practically, these are spaces that their object type falls 

within a pre-defined set that participates in the attribute calculation. Table  5.2 presents these 

object types all together, as in object type set T, as well as in groups, reflecting the needs of 

some of the corresponding observed attributes. 
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Object Type Set 
Description 

Object Type Set
Symbol 

Object Type Set 
Contents 

Terminal T 

{Bedroom, Bathroom, Corridor, Dining 
Room, Garage, Guest, Hall Room, 

Kitchen, Living Room, Office, Play 
Room, Storage, WC} 

Public Zone PU {Corridor, Dining Room, Hall, Guest 
Room, Living Room, Play Room, WC} 

Private Zone PR {Bedroom, Bathroom, Kitchen, Office, 
Storage} 

Sleep Room SL {Bedroom, Guest Room} 

Washroom WA {Bathroom, WC} 

Potential non-
oblong PNOB 

{Bedroom, Bathroom, Dining Room, 
Guest Room, Kitchen, Living Room, Play 

Room, Office} 

Table  5.2 Object types and grouping according to attributes 

 

It holds that 

PU ⊂ T, PR ⊂ T, SR ⊂ T, WA ⊂ T, PNOB ⊂ T 

Notice that it may be the case that certain object types belong to more than one 

category. For example, bedrooms participate in the calculation of the overall private zone area 

and are also considered when checking the building for the percentage of non-oblong rooms. 

The following sections outline the specifics of the attribute values calculation for each 

solution. Some require a simple arithmetic operation whereas others an extensive search 

among all participating object types. In order to provide a concrete definition for each 

attribute we will consider each solution S as a set of objects. Therefore, for any object o 

mentioned in the following it will be implied that o∈S. Moreover, according to the 

aforementioned sets of objects types, for any object o∈S we will use the notation ot(o) to 

signify its object type. 
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5.3.1 Public Zone Area, Private Zone Area 

Intuitively, the private zone area of a solution is the sum of the areas of all spaces of 

bedroom, bathroom, kitchen, office and storage object type. The corresponding sum is 

calculated for the public zone object types. Formally for any solution s, 

∑
∈

=
PUoot

os areaPublicZA
)(

 ∑
∈

=
PRoot

os areaivateZAPr
)(

 

where area represents the area of an object as calculated by its dimensions already 

contained in the geometric representation of the solution. For example, for an object o that is 

an instance of the geometric primitive box we have 

areao = lo·wo 

l representing the length and w the width of the box.  

5.3.2 Number of Sleeping Rooms, Number of Washrooms 

The number of objects of bedroom or guest room object type appearing in the solution 

contributes to the total number of bedrooms. Similarly, the number of objects of bathroom or 

WC object type appearing in the solution contributes to the total number of bathrooms. 

Formally, 

NofSleepRoomss=|o:ot(o)∈SR| 

NofWashRoomss=|o:ot(o)∈WA| 

Although this information can be easily extracted by the declarative description of the 

scene that has been used as input for the generation of the solutions examined, we have 

chosen to include it in the observed attributes and extract it from the geometrical 

representation for a couple of reasons already outlined in the Rationale section above. In 

particular, we wanted our module to be able to directly compare solutions originating from 

alternative declarative descriptions without requiring any information from the declarative 

description itself, thus keeping the architecture open to geometric representations originating 

from alternative sources. 
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Bedroom
x=0,y=0,
l=2,w=3

Kitchen
x=2,y=1,
l=1,w=3 Living Room

x=3,y=0,
l=2,w=4

WC
x=2,y=0,
l=1,w=1

Bathroom
x=0, y=3
l=2,w=1

Bedroom
x=0,y=0,
l=2,w=3

Kitchen
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Living Room
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l=2,w=3

Bathroom
x=0, y=3,
l=3,w=1

WC
x=3,y=0,
l=2,w=1

Solution A. 
Public/Private Zone Separation is false 

because 
Max(xopr+lopr)=3 ≤ Min(xopu)=2 is false 
Max(yopr+wopr)=4 ≤ Min(yopu)=0 is false 
Max(xopu+lopu)=4 ≤ Min(xopr)=0 is false 
Max(yopu+wopu)=4 ≤ Min(yopr)=0 is false 

Solution B 
 Public/Private Zone Separation is true 

because 
Max(xopr+lopr)=3 ≤ Min(xopu)=3 is true 

Max(yopr+wopr)=4 ≤ Min(yopu)=0 is false 
Max(xopu+lopu)=4 ≤ Min(xopr)=0 is false 
Max(yopu+wopu)=4 ≤ Min(yopr)=0 is false 

Figure  5.4 Two solutions leading to different values of the public/private zone separation 

attribute 

 

5.3.3 Public/Private Zone Separation 

For an intuitive description of this attribute we may state that it is true when it is 

possible to draw a horizontal or vertical line across the top view of the building that would 

separate entirely the private zone objects from the public zone objects. The mathematical 

interpretation of this intuitive description with respect to the origin and the dimensions of 

each room is that the following logical statement is true: 

max(xopr+lopr) ≤ min(xopu) ∨ max(yopr+wopr) ≤ min(yopu) ∨  

max(xopu+lopu) ≤ min(xopr) ∨ max(yopu+wopu) ≤ min(yopr) 

where ot(opr) ∈ PR and ot(opu) ∈ PU and opr,opu∈S. 

In the specific expression we have assumed that all objects are boxes. Practically, the 

expressions in the parentheses of the first row represent the east, west, north and south 

extremes of an object respectively. The latter is clearly depicted in Figure  5.4 where the dark 
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objects represent the private zone and the light objects the public zone. The same solutions, as 

produced by the prototype appear in Figure  5.5. 

 

  

Figure  5.5 The two solutions of Figure  5.4 as produced by the system 

 

5.3.4 Non-oblong Room Percentage 

For the calculation of this attribute we consider the PNOB subset of the object types 

available for the definition of a declarative description and not the whole set of terminal 

object types T appearing in Table  5.2. The reason is that some object types are inherently 

oblong as, for example, in the case of the corridor. In other words, since we consider oblong 

rooms a disadvantage in the context of the specific attribute, it would be unfair for a solution 

to be downgraded because of the presence of an oblong corridor. Therefore, the object types 

we have chosen to consider in the calculation of this attribute are the ones appearing in the 

corresponding row of Table  5.2. Again concentrating on box instances, an object o is 

considered non-oblong when 

5.0      5.0-    ≥∧≥⇔
o

o

o

o

l
w

w
loblongnoniso  

where ot(o)∈PNOB. The attribute value for a specific solution is the percentage of 

objects for which the above condition is true, among objects of the aforementioned object 

types. Formally, 
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where o,nob∈S. Considering the solutions A and B appearing in Figure  5.4, we can 

easily calculate NonObPercentageA=80% and NonObPercentageB=60% since both solutions 

contain an oblong kitchen but Solution B also contains an oblong bathroom in a total of 5 

objects of terminal object type. 

5.3.5 Southwestern Bedroom 

This is also a binary attribute that may be true or false depending on the existence of a 

southwestern bedroom. Intuitively, we consider a solution to bear this feature when there is a 

bedroom having one of its walls completely exposed to the south and one wall completely 

exposed to the west. Formally, the observed attribute Southwestern Bedroom is true for a 

solution when 

)()(
,)(:
such that  )(:

bbobboboobbobboboo lxxwyyywywyylxxxlx
TootSo

BedroombotSb
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Bedroom
x=0,y=0,
l=2,w=3

Kitchen
x=2,y=1,
l=1,w=2

Living Room
x=3,y=1,
l=2,w=3

Bathroom
x=0, y=3,
l=3,w=1

WC
x=3,y=0,
l=2,w=1

 

Solution A. Southwestern Bedroom is false 
because for the kitchen k 
xk+lk=1 ≤ xbe=1 is true 

and 
yk+wk=3 ≤ ybe=0 is false and 
yk=1 ≥ ybe+wbe=3 is false and 

xk=0 ≥ xbe+lbe=3 is false 
 

Solution B. Southwestern Bedroom is true 
For example, considering the kitchen k 

xk+lk=3 ≤ xbe=1 is false but 
xk=2 ≥ xbe+lbe=2 is true 

and 
yk+wk=3 ≤ ybe=0 is false and 
yk=1 ≥ ybe+wbe=3 is false but 

xk=2 ≥ xbe+lbe=2 is true 
Figure  5.6 Two solutions that lead to different values of the south-western bedroom attribute 

 



INTELLIGENT USER PROFILE MODULE 

GEORGIOS BARDIS  107 

Two inequalities are required in order to discover an overlap parallel to an axis and a 

third inequality is used to eliminate the case of a “harmless” (north or east) overlap, hence the 

six inequalities in the logical condition. The operation of this logical condition is depicted in 

Figure  5.6. In particular, in Solution A, the first clause of the first parenthesis of the condition 

is true, thus eliminating the case of an overlap along the south (or north) wall, i.e. parallel to 

the xx’ axis. Regarding the yy’ axis the two false clauses in the second parenthesis reveal an 

overlap. The last clause of the second parenthesis makes the actual difference between the two 

solutions. The overlap, as far as the yy’ axis is concerned is practically the same; nevertheless, 

solution B bears a “harmless” overlap along the east wall of the bedroom whereas in Solution 

A the overlap is on the west side of the bedroom. 

  

Figure  5.7 The solutions of Figure  5.6 as produced by the system 

 

5.4 Middle Values 

The range of values for each observed attribute varies depending on the project type. 

Each attribute value extracted by the geometric representation of a solution is subsequently 

normalised to a value between 0 and 1 representing the minimum and the maximum 

respectively. In order to increase accuracy during the creation of the user’s profile, we have 

incorporated in the attribute normalisation the notion of bisection. 

In particular, it may be the case that the arithmetic mean of the range of an attribute 

does not represent a normalised performance of 0.5 according to a specific user. Therefore, 

the user is allowed to define a custom middle value for each attribute representing this 50% 

performance. For example, although the private zone area ranges from 0 to 25 in the example 

of Figure  5.8, the specific user has decided that value 7 represents the middle value for a 
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solution with respect to the specific attribute. Hence, normalisation actually takes place in two 

distinct sub-ranges of the overall attribute value range. This implies that the grading of each 

solution per attribute does not depend only on its observed attribute values but also on the 

middle values chosen by the user. Formally, the attribute grade gi the solution s receives for 

the observed attribute i is given by the formula:  
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where si is the non-normalised value of attribute i for the specific solution, and mini, 

midi, maxi, the minimum, middle and maximum values for the specific attribute respectively. 

We have chosen to assign the case of si=midi to the upper branch to avoid problems of 

division with zero when the minimum and middle values are both zero, never allowing the 

maximum and middle values to be the same.  

 

Figure  5.8 Middle Values User Interface 

 

Notice that the minimum and maximum values depend only on the project type, 

whereas the middle value is custom, defined by the user. For example, according to the values 
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appearing in Figure  5.8, a solution bearing total Public Zone Area equal to 11 units would 

receive a grade of  

72.05.0
725
711

≈+
−
−

=PZAg  

according to the specific user’s input, although 11 represents less than the middle of 

the acceptable range of values for the specific attribute. The reason is that the user has 

suggested that 7 units represents the middle value thus, intuitively, 11 units represent a more 

than adequate performance. This is exactly the kind of intuition we have tried to capture with 

the use of the bisection principle in the range of values for the observed attributes. In a sense, 

we can state that the notion of middle values offers a vertical evaluation, among values of the 

same attribute, whereas the notion of attribute weights offer a horizontal evaluation, among 

values of different attributes. 

5.5 Decision Support Component 

This is the first of the two components comprising the Intelligent User Profile Module, 

the other being the Machine Learning Component presented later in the current chapter. For 

the Decision Support component we have applied the principles for user preferences 

modelling that have been presented in chapter covering Preference Modelling and Decision 

Analysis. In particular, each user’s preferences are modelled as a vector of weights 

representing the importance of each one of the observed attributes. Using the symbols of 

Table  5.1 for the observed attributes and wi for the weight of the attribute i for a specific user 

u we have: 

Pu=(wPRA, wPUA, wNOW, wNOS, wNOP, wPPS, wSWB) 

In the following, and because of the construction method followed for the weight 

vector, it will always hold that, for a specific user, 

1=∑
∈Ai

iw  
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where A={PRA,PUA,NOW,NOS,NOP,PPS,SWB}, i.e. the weights revealing a user’s 

preferences will always be normalised. 

5.5.1 Decision Support Profile Initialisation 

In order to enhance our module’s ability to capture user preferences we have chosen to 

employ not a single but three alternative methods for this purpose. These methods originate 

from the decision support mechanisms already presented in the Preference Modelling and 

Decision Analysis chapter. Applying three alternative mechanisms offers flexibility and 

reliability to our module. In particular, flexibility stems from the fact that the user is able to 

select the method(s) that suits him/her best in expressing his/her preferences and still be able 

to take advantage of the module for intelligent decision support. The method selected can 

make a difference for the user since the three methods vary significantly regarding the input 

they require both in terms of quality and quantity. On the other hand, using all three methods 

– which is by no means obligatory – improves the reliability of the module as it will become 

apparent later when the Machine Learning Component is presented. We briefly describe 

below the three methods used for attribute weight assignment since they have already been 

presented in detail in the Preference Modelling and Decision Support chapter. 

5.5.1.1 AHP Weight Assignment 

This method requires the most detailed input on behalf of the user among the three 

weight assignment methods we have used. We have chosen to simplify the procedure, while 

maintaining the underlying principle of the method, by assuming that there exists only one 

general attribute that contains all aforementioned observed attributes. Moreover, because of 

the large number of alternative options represented by the generated solutions, it is practically 

impossible for the user to provide pair-wise comparison feedback for every pair of solutions. 

Therefore, the user has to provide feedback only in one pair-wise comparison table with 

respect to the observed attributes. 

According to the method already described in detail in the Preference Modelling and 

Decision Analysis chapter, the user has to fill a table containing one row and one column for 

each observed attribute. Every cell of the table accepts the user’s input regarding the ratio of 

importance between the two attributes of the respective row and column that intersect at the 

specific cell. The diagonal of this table contains 1’s since it represents the ratio of importance 

for the same attribute. Moreover, the user is required to fill only half of the table – below or 



INTELLIGENT USER PROFILE MODULE 

GEORGIOS BARDIS  111 

above the diagonal – since the product of symmetric cells is always 1. Remember that the user 

does not have to maintain transitivity when completing the table. The input may be 

contradicting in the sense that, the ratio for any two attributes is not necessarily the ratio 

implied by the product of other related ratios. For example, according to user’s input in Figure 

 5.9, Public Zone Area is 3 times as important as Public/Private Zone Separation (second row, 

first cell). Public/Private Zone separation is, in turn, 3 times as important as Non-Oblong 

Rooms Percentage (first row, third cell). This could imply that Public Zone Area should be 9 

times as important as Non-Oblong Rooms Percentage. However, the user was free to input 

that the latter ratio is only 5 (second row, third cell). This kind of inconsistency is acceptable 

by the method and it is measured by the Inconsistency Index. If the overall Inconsistency 

Index is acceptable, i.e. below a specific threshold, then the user’s input is accepted as valid 

and the corresponding – normalised – weights are extracted from the table. 

 

Figure  5.9 Attribute Weight Assignment according to Analytic Hierarchy Process (AHP) 
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5.5.1.2 SMART Weight Assignment 

This method stands in the middle of the three methods employed for attribute weight 

assignment regarding the requirements for user input. In particular, the user here has to 

suggest the most important attribute, representing the 100% of importance. Next, he/she has 

to assign the importance percentage to each one of the other attributes when compared with 

the most important one. Typically these percentages will be less than 100%. The percentages 

assigned to each attribute by the user are then normalised to yield the corresponding weights. 

An example case of user input appears in Figure  5.10. 

 

Figure  5.10 Attribute Weight Assignment according to Simple Multi-Attribute Rating 

Technique (SMART) 

 

5.5.1.3 Standard Weight Assignment 

Finally, this method requires the minimum input on behalf of the user among the three 

alternatives since the only information he/she has to contribute is the order of importance of 

the observed attributes and no weights whatsoever. The descending order submitted by the 
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user suggests the rank of importance of each attribute and automatically implies its weight. 

The weights are predefined numbers based exclusively on the ranks and the total number of 

attributes. In particular, if attribute i has been selected as the most important one then its rank 

is 1, denoted as Ri=1. The formula for the weight of any attribute i is 

∑
=

⋅
= A

k
i

i

k
R

w

1

1
1  

 

where A is the set of observed attributes. This is the Rank Reciprocal method 

[Roberts02] presented in the Preference Modelling and Decision Support chapter. It is trivial 

to show that the weights produced by this method are already normalised. The user interface 

for this method appears in Figure  5.11. 

 

Figure  5.11 Attribute Weight Assignment according to Rank Reciprocal method 
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5.5.2 Automatic Solution Evaluation 

As it has become apparent, each one of the three alternative weight assignment 

methods leads to an alternative overall grade for each solution. The overall solution grade b is 

calculated as the inner product of its attribute grade vector with the appropriate weight vector. 

Formally, 

∑
=

=⋅=
A

i
ii gwgwb

1
 

where A is the set of observed attributes.  

 PRA PUA NOW NOS NOP PPS SWB Overall 
Grade 

Middle Values 10 7 1 2 75% N/A N/A 

Minimum Values 0 0 0 0 0 0 0 

Maximum Values 25 25 3 5 100% 1 1 

Attribute Values 11 8 2 1 60% 1 1 

Attribute Grades 0.533 0.528 0.750 0.250 0.400 1.000 1.000 

 
 

AHP Weights 0.253 0.304 0.054 0.155 0.056 0.147 0.03 0.574 

SMART Weights 0.265 0.294 0.088 0.176 0.058 0.088 0.029 0.547 

RR Weights 0.193 0.386 0.064 0.129 0.077 0.096 0.055 0.569 

Table  5.3 Overall Solution Grading 

 

The example user input appearing in the previous sections represents a user who has 

tried to maintain a consistent profile in all three alternative weight assignment methods. It is 

interesting to see to what degree this is reflected to the weight vectors extracted through each 

method and the corresponding grade assigned by them to the same solution. In particular, in 

order to offer a concrete example, we will consider the Solution B appearing in Figure  5.6 and 

grade it according to the user’s profile created by all three weight assignment methods. The 

corresponding results appear in Table  5.3. The grade of each solution according to each 
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alternative profile appears when the solution is visualised (Figure  5.5) but is calculated before 

independently of the visualisation as shown in Figure  5.12. 

 

 

Figure  5.12 Automatic Solution Evaluation Interface – Extreme Grades 

 

In order to further clarify the comparative performance of the alternative weight 

assignment techniques, Figure  5.13 presents a toy example of two decision support profiles 

for only two attributes. The grade of a solution for each attribute is the x and y value 

respectively. The grade of the solution is represented by z. The reason for this simplification 

is to make the corresponding grade functions representable in the 3D space as surfaces. The 

horizontal plane in the graph represents a hypothetical grade threshold of 0.7 that could be 

used to separate the solutions between approved and rejected.  
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Figure  5.13 Graphical representation of simplified (based only on 2 attributes) alternative 

Decision Support Profiles 

5.6 Machine Learning Component 

This is the second component of the Intelligent User Profile Module we have proposed 

and implemented for the Open-MultiCAD environment. As the name states, it is responsible 

for adapting the system’s response to the user by gradually learning the latter’s preferences. It 

operates concurrently and transparently, during regular system use, automatically evaluating 

produced solutions while learning from actual user’s evaluations. Due to the nature of the 

environment, we have chosen to apply methodologies of learning by examples instead of 

creating a set of rules to reflect user preferences. We have based our approach on the 

assumption that the average user is not – and probably not willing to be – fully aware of the 

exact nature of his/her preferences. An additional reason is the fact that, since the average user 

is not necessarily an architecture expert, it would not be feasible to impose him/her the duty 
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of formulating a rigid set of rules. Last but not least, we have aimed, throughout this work, to 

an open system with the potential to operate and learn from examples originating from 

alternative sources with minimal modifications and without the need for prior user 

engagement. 

5.6.1 Methodology 

As already discussed in the above, during normal system use, each solution is encoded 

as a set of values representing its performance with respect to a set of attributes. Note that this 

evaluation per attribute is influenced, up to an extent, by the user’s preferences in the sense 

that the user has already suggested a custom middle value for each attribute, thus defining the 

value representing 50% performance for the specific attribute. Therefore, each solution is 

encoded as a vector of normalised grades ranging between 0 and 1. However, overall solution 

evaluation, i.e. the combined result of these attribute grades remains to be discovered by the 

Machine Learning Component. During solution visualisation, the user suggests an overall 

grade for each solution ranging between 0 and 1. The Machine Learning component creates 

and enhances a Machine Learning profile for each user based on the actual user’s evaluation 

and the corresponding encoded solutions. In particular, the Machine Learning Component 

operation on the produced solutions can be distinguished as four distinct tasks: 

1. Newly generated solutions are automatically evaluated by the Machine Learning 

Component according to the current state of the Machine Learning Profile. At this 

point the Machine Learning Component is unaware of the actual user’s evaluation for 

the specific set of solutions. 

2. User evaluated solutions are used by the Machine Learning Component for further 

refinement of the Machine Learning Profile. The Machine Learning Component 

enhances the user’s already existing Machine Learning Profile based on the new set of 

evaluated solutions. At this point the Machine Learning Component becomes aware of 

the actual user’s evaluation for the specific set of solutions. 

3. The automatic solution evaluation results of Task 1. are compared to the actual user 

evaluation of Task 2. The current ability of the Machine Learning Component to 

generalise is assessed at this point, i.e. periodically for every new scene, when a new 

set of user-evaluated solutions has become available.  
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4. The automatic solution evaluation results are compared to the Decision Support 

Component results. Assuming that the Decision Support Component offers a minimal 

consistent representation of the user’s preferences, it is checked whether the Machine 

Learning profile outperforms its Decision Support counterpart.  

5.6.2 The Algorithm 

We have already discussed the fact that solution generation and evaluation by the user 

takes place in bursts, each following the submission of a new declarative description. The 

time lag between two consecutive bursts may vary, depending on the frequency of system 

usage by the specific user and the complexity of the submitted scene. This fact is an inherent 

characteristic of the Open-MultiCAD environment architecture. As a result, training data, in 

regard to the Machine Learning Component, are also available in groups, each originating 

from the same scene, available at distinct – and probably distant – time points. Hence, for the 

Machine Learning Component, we had to employ a methodology tailored for incremental 

learning, already discussed earlier in the Machine Learning chapter. The algorithm we have 

constructed belongs to the family of AdaBoost algorithms [Freund97] and has been based on 

the Learn++ approach [Polikar01].  

The formal definition of the algorithm, in pseudo-code, appears in Algorithm  5.1. 

Intuitively, the Machine Learning profile consists of a committee of artificial neural networks. 

This committee is built gradually, as a set of subcommittees. Each subcommittee is created as 

soon as a new scene has been submitted and the corresponding solutions have been evaluated 

by the user. In other words, each subcommittee is responsible for learning the user’s 

preferences as expressed in the user’s evaluation for a specific scene and in relation to the 

observed attributes. 

Each subcommittee contains a number of neural networks not exceeding a pre-defined 

threshold for maximum subcommittee members. Each one of these neural networks is trained 

to the point to be able to classify only adequately, i.e. with a relatively high error rate, the 

solutions produced for the current scene. The high error rate is the reason the learning 

mechanisms, i.e. the neural networks in the current context, comprising the committee are 

also called weak learners in the relevant literature. The subcommittee is populated with weak 

learners in a manner that focuses on solutions not correctly classified by previous weak 

learners of the same subcommittee. Every time a weak learner is added to the subcommittee 
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currently being built, the performance of the committee is checked in order to ensure that the 

newly added network does not deteriorate overall committee’s performance. Overall 

committee evaluation for any solution is calculated through a voting procedure that takes into 

account the error rate of each weak learner thus recognising higher importance for the votes of 

those weak learners with reduced error rates. Solution evaluation represents classification of 

the solution to two or more possible classes. For example, solutions may be classified as 

acceptable or rejected, implying two classes, or they may be graded on a scale ranging from 1 

to 10 implying ten distinct evaluation classes. 

Parameter Description 
m the pre-defined maximum number of members of a subcommittee 

p p∈{1..m}=the current number of weak learners in the current 

subcommittee 

n the number of solutions in the current population 

i i∈{1..n} 

k the number of scenes processed by the Machine Learning 

Component up to now=the number of committees created up to 

now 

Ck the current subcommittee 

MLCk {C1,C2,…,Ck}=the overall committee up to now, including the 

current composition of the current subcommittee 

gi grade vector of solution i in the current population 

ui the user evaluation for solution i 

si (gi,ui)=sample in the current population=grade vector of 

solution i coupled with the corresponding user grade. 

wi sample weight (not connected with attribute weights). 

ts the current training set - created for every weak learner 

based on weight distribution. 

es current evaluation set – the solutions of the current 

population not belonging to the ts. 

ep the product of the weights of all solutions classified 

incorrectly by the current weak learner 

bp =ep/(1-ep) the importance of weak learner’s p vote during 

the overall voting 

E the product of the weights of all solutions classified 

incorrectly by the current committee 

Table  5.4 Machine Learning Component’s Algorithm Parameters 
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for each new population of n samples s1, s2, …, sn   // i.e. for each new subcommittee k 

 if k>1 then     // in case the MLC already contains weak learners 

  Evaluate new population according to MLCk-1 

  Update sample weights wi according to evaluation results 

 else  

  Initialise sample weights wi to 1/n 

 p=1 

 repeat   // for all weak learners to be created in the subcommittee 

  repeat  // check new weak learner until overall performance is acceptable 

   repeat  // check new weak learner until its performance is acceptable 

    Create ts as a set of samples with at least half the total weight. 

    Create the es with the remaining samples. 

    Train a new weak learner using ts. 

    Calculate ep for the current weak learner for ts and es. 

   until ep≤0.5 

   Add current weak learner to the Ck 

   Evaluate current population according to MLCk 

   Calculate E for the current form of the committee 

  until E≤0.5 

  Store bp=ep/(1-ep) for the current weak learner 

  p=p+1 

  Update sample weights according to recent evaluation 

  Normalise weights 

 until p>m or E=0 

end of for   // subcommittee k creation loop 

Algorithm  5.1 Machine Learning Component Algorithm for Incremental Learning 

 

The shaded steps form the major differences from the algorithm proposed in 

[Polikar01]. In particular,  

• Due to the first, we focus on the samples weights, revealing the difficulty in the 

classification of the specific samples, and not on their number in order to extract the new 

training subset. In this way, the new weak learner concentrates on the hard-to-classify 

examples instead of being trained with a lot of easy examples and a few difficult ones in 

order to reach the half of the total number of available examples. This change has 

accelerated the generation of adequate weak learners especially in advanced stages of the 

training process. 
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• Due to the second, we choose to terminate the addition of new weak learners when the 

current state of the committee suggests that this is not necessary, i.e. the error has been 

minimised. In this way the size of the sub-committee is adjusted to the difficulty of the 

training subset under consideration. 

The underlined steps of Algorithm  5.1 above are described in detail in the following. 

In particular, the Evaluate population according to MLC step that takes place at two different 

points of the algorithm is explained in Algorithm  5.2. The intuition is that each sample is 

submitted as input to all weak learners. Each weak learner votes by suggesting a class for the 

specific sample. For each class the sum of b’s of the corresponding weak learners is 

maintained. After the sample has been evaluated by all weak learners, the class corresponding 

to the largest sum of b’s, represents the overall decision of the committee for the classification 

of the specific sample. In other words, the class decided by the overall committee for the 

specific sample depends not only on the number of votes it receives but also on the 

importance of these votes. 

for each sample i in the population 

 for each weak learner p in the committee 

  Submit the current sample i as input to the current weak learner p 

  Add bp to the sum of the class decided by weak learner p for sample i 

 end of for         // weak learners 

 Store the class with the largest sum as the overall committee decision for sample i 

end of for          // samples 

 

Algorithm  5.2 Algorithm for Samples Evaluation by the Machine Learning Committee 

 

The procedure for sample weights update according to the recent overall evaluation appears in 

Algorithm  5.3. The intuition in this case is that a sample that has been correctly classified by 

the overall committee should receive less attention from the weak learners to be created next. 

In other words, the algorithm concentrates on the hard-to-classify samples, i.e. those 

erroneously classified by the current form of the committee. This is exploited by the fact that 

the training set for the next weak learner to be constructed is always created based on the 

sample weight distribution. In other words, samples with larger weights are more probable to 

be selected for the next training set thus increasing the probability of the next weak learner to 

be able to classify them correctly. 
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B=E/(1-E) 

for each sample i in the population 

 if the sample i is correctly classified by the committee 

  wi=wi*B    // the weight is reduced because B<1 since E<1/2 

      // else the weight remains the same 

end of for      // samples 

Algorithm  5.3 Algorithm for Samples Weights Update 

 

The user interface where the Machine Learning Committee parameters are defined 

appears in Figure  5.14. A series of experiments is described in the next chapter, covering 

alternative values of these parameters as well as variations of certain design aspects of the 

algorithm itself. 

 
Figure  5.14 Machine Learning Component Console 

 

5.7 User Profile Database 

All information regarding the Intelligent User Profile Module operation and the 

relevant user data are stored in a dedicated database. The Entity Relationship schema of this 

database appears in Figure  5.15.  
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Figure  5.15 Entity Relationship Schema of the User Profile Database 

 

The entities dm_scene and solution contain information regarding each submitted 

scene and the connection between a solution’s unique identification and the scene for which it 

has been generated. Both entities already existed in the MultiCAD database, discussed in the 

Declarative Modelling Chapter and have been included in Figure  5.15 in order to clarify the 

connection between the two databases. Notice that no other reference exists to entities of the 

MultiCAD database although information regarding the geometric representation of solutions 

is used for the calculation of the attribute values stored in the User Profile Database. 

The latter contains all Decision Support Profile information connected to a specific 

user. This information includes the weights from all alternative methods used for weight 

assignment coupled with the middle values selected by the specific user for each observed 

attribute. Notice that each project type, i.e. residence, office, hotel, etc., is related with a 

different set of observed attributes. Therefore, the Decision Support profile contains not only 

the user’s identification but also the identification of the corresponding project type. 

The situation is similar with respect to the Machine Learning Profile information. 

However, in this case, more information has to be stored regarding not only the configuration 

characteristics of the committee, for example number of weak learners per subcommittee, or 



INTELLIGENT USER PROFILE MODULE 

GEORGIOS BARDIS  124 

also general characteristics common for all neural networks participating in the committee, for 

example learning rate and momentum, but also the specific characteristics of each neural 

network. In particular, common design information regarding the neural networks is stored in 

the database itself as shown in the entity tbl_ml_profile of the Entity Relationship schema. 

However, the current state of all neural networks participating in the committee is stored as a 

file whose name is stored in the serialised_committee field of the aforementioned entity. The 

reason for this separation of data is mainly practical in the sense that, due to technical reasons 

of the implementation, it was simpler to export the current state of the overall committee as a 

serialised object instead of storing every detail of it in the database and subsequently restoring 

it in order to resume training. Nevertheless, complete information about the state of each 

neural network is available within the User Profile Module in case it is needed for additional 

insight. 

Observed attributes are stored as a separate entity and are connected to project types 

according to the needs of the latter. Generally, during normal use of the system on behalf of 

the user this information is not modifiable by the user. However, the administrator is fully 

capable of modifying the connection between attributes and project types by simple 

modification of the contents of the corresponding tbl_proj_att entity. This entity also contains 

information regarding the characteristics of the specific observed attribute in the context of 

the specific project type. For example, the maximum and minimum values allowed are 

different for the same attribute, e.g. number of bedrooms, in the context of different project 

types, e.g. residence or hotel. 

5.8 Performance Indices 

In order to be able to compare the two components we provide the means to measure 

their performance. We concentrate on the automatic solution evaluation stage that takes place 

after solution generation and solution evaluation by the user. In particular, in the following 

discussion, solution generation has already taken place and the methods have been applied to 

the results. Moreover, for the sake of simplicity, only two possible classes for solution 

evaluation are considered. Hence, the application of each method to the solutions yields the 

corresponding subset of approved solutions. Finally, we mention only two methods in the 

following whereas, in practice, more alternatives – due to alternative weight assignment, 
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alternative network adjustments, etc. – may be concurrently evaluated. The methodology 

described below is trivially extended to support the comparison of more than two methods. 

In particular, let us define the following sets: 

G = The set of solutions generated based on the specific description of a scene and 

evaluated by the user. 

U = The set of solutions approved by the user, i.e. solutions in G that comply with the 

user preference. Formally, U ⊆ G. In the following we refer to the members of U as approved 

solutions implying user approval. 

G–U = The set of discarded solutions, i.e. the generated solutions that are rejected by 

the user.  

M1 = The set of solutions in G approved by Method 1. Formally, M1 ⊆ G. 

M2 = The set of solutions in G approved by Method 2. Formally, M2 ⊆ G. 

|S| = The number of members of any set S. 

Based on the above we have: 

M–U = The set of solutions erroneously approved by M since they belong to M but not 

to U. 

U–M = The set of solutions erroneously discarded by M since they belong to U but not 

to M. 

We may now define the overall error for a method M based on the solutions 

erroneously evaluated by it. In particular: 

G
MUUM

E
−+−

=  

Moreover, we may define the hit rate of each method as: 
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i.e. the percentage of approved solutions captured by the specific method. 

The ratio of approved vs. total solutions selected by each method can also be used as 

measurement of their performance: 
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∩
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There are more than one ways to define a miss rate. We define it as the percentage of 

discarded solutions that are selected by the method, expressed as: 
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However, it may be the case that only a small number of the generated solutions fulfil 

the user preference. This is mainly due to time limitations posed by the requirement for 

human visual inspection. On the other hand, |G| greatly depends on the description and can 

vary significantly. Therefore, we need to relate the size of the error for each method with |U| 

instead of a quantity including |G|. Hence, we alternatively define: 
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and interpret a lower value as a better performance. Intuitively, this interpretation 

implies that a method should not select many discarded solutions when only a few preferred 

solutions exist. For example, when this rate is more than 1 the method gives more discarded 

solutions than the total number of approved solutions. Instead of 1, another value may be 

selected to reflect a specific performance threshold.  

The above are clarified in the example Venn diagram of Figure  5.16, representing a 

general case (i.e. no intersection is empty, no two sets are equal). For the sake of simplicity of 

the picture, the total number of solutions is rather small, i.e. |G| is only 35 whereas, generally, 

this may not be the case. Nevertheless, for the specific example, we have the following 

numbers: 

|G| = 35, |U| = 10, |M1| = 6, |M2| = 10, |U – M1|=7, |U – M2|=6 

|M1 ∩ U| = 3, |M2 ∩ U| = 4, |M1 – U| = 3, |M2 – U| = 6. 
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Figure  5.16 Example Methods Performance 

 

Therefore for M1: E = 10/35, HR1 = 3/10, MR1 = 3/25, MMR1 = 3/10, PR1 = 3/6 and 

for M2 we have: E = 12/35, HR2 = 4/10, MR2 = 6/25, MMR2 = 6/10, PR2 = 4/10 

Method Error Hit Rate Performance 
Ratio Miss Rate Modified 

Miss Rate 

Method 1 10/35 = 28.6% 3/10 = 30% 3/6 = 50% 3/25 = 12% 3/10 = 0.3 

Method 2 12/35 = 34.3% 4/10 = 40% 4/10 = 40% 6/25 = 24% 6/10 = 0.6 

Extreme 
Case 1 9/35 = 25.7% 1/10 = 10% 1/1 = 100% 0/25 = 0% 0/10 = 0.0 

Extreme 
Case 2 25/35 = 71.2% 10/10 = 100% 10/35 = 28.6% 25/25 = 100% 25/10 = 2.5

Table  5.5 Performance Indices for Example Methods of Figure  5.16 

 

M2 could be considered a worse (because of the higher error) or a better (because of 

the higher hit rate) method than M1 depending on the interpretation of these numbers. Ideally, 

error should be equal to 0%, hit rate should be equal to 1, miss rate equal to 0 and 

performance ratio equal to 100%. Notice, however, that a method selecting only one preferred 
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solution every time it is invoked (Extreme Case 1) would yield a performance ratio of 100% 

and a low error, depending on the total number of approved solutions, without necessarily 

representing an optimal method as shown by the low hit rate. On the other hand, simply 

selecting all produced solutions (Extreme Case 2) maximizes the hit rate but yields a low 

performance ratio. In any case, Extreme Case 1 appears to represent a method with acceptable 

performance whereas Extreme Case 2 represents a trivial approach of no practical use. 

Therefore, a high Performance Ratio appears to be a necessary, although not sufficient, 

indication of an efficient method and it becomes apparent that we need a combination of these 

indices in order to evaluate in greater detail the performance of alternative configurations. 
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6 Experiments 

The prototype described in the previous chapter has undergone a series of experiments 

in order to assess the degree of its ability to capture and maintain a reliable model of user 

preferences. As it is usually the case with complicated systems, it is not only the alternative 

inputs that lead to different experimental results. Several parameters of the system may be 

assigned alternative values, within their valid range, thus yielding alternative versions of the 

system itself. Typically, each one of these versions may respond differently to the submitted 

inputs. In particular, for the Intelligent User Profile Module, it may be the case that it exhibits 

improved performance for certain settings for the solutions obtained from a specific scene but 

the same settings may not perform equally well for the solutions corresponding to an 

alternative scene. Alternatively, it may be the case that the best performing settings vary 

depending on the input. 

6.1 Methodology 

In order to achieve a consistent set of results reflecting the capabilities of the 

implemented module, we have organised the experiments in three distinct stages following a 

pre-processing stage. 

1. User Representative Scenes (Pre-processing). Before the actual experiments could 

take place we had to create a set of scenes that would be submitted to the system in 

order to obtain the corresponding sets of solutions. These scenes had to provide 

adequate flexibility and reduced size of the solution population. The former is needed 

in order to produce diverse solutions of varied performance. The latter is also 

necessary in order to allow the repetitive use of the complete solution population to 
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assess alternative settings within acceptable time. The result of this pre-processing 

stage is a set of representative scenes, each accompanied by the solutions produced for 

it. 

2. Initial Settings Evaluation. During this stage we have used the set of representative 

scenes in order to evaluate alternative settings for the parameters of the system. Some 

of the parameters of the mechanisms employed have received increased focus during 

this stage, since they are directly connected with the quality of the input produced by 

Open-MultiCAD itself. The outcome of this stage is the set of top performing 

alternative module settings to be used during the next stage. 

3. Module Evaluation. This stage forms the main core of the experiments, focusing on 

the response of the system with respect to alternative inputs representing different 

kinds of users and user behaviours. Moreover, because of the nature of the 

Open-MultiCAD solution generator, alternative parameters regarding the quality of 

the input data have also been taken into account with respect to each user. The set of 

representative scenes defined during the first stage is extended to fulfil this 

requirement. The result of this stage is an overall module evaluation with respect to 

the alternative settings. 

4. Fine Tuning. After the system performance has been assessed based on the alternative 

settings, the best performing of the latter are subject to a final series of experiments in 

order to further improve their performance. The stability of the overall results is also 

examined during this stage. 

User’s evaluation for each solution plays a crucial role to the experiments as well as to 

the overall system evaluation and parameterisation. In particular, the evaluation method could 

range from a binary classification to a real number grading scheme. We have chosen to create 

an open module, able to cope with complex grading schemes with only minor modifications 

of the prototype. However, we have started and eventually concentrated, for the series of 

experiments described in the following, on the binary classification method. The main reason 

for this has been the already large number of parameters that could affect the behaviour of the 

prototype. In other words, we have tried to focus on system settings optimisation and evaluate 

the algorithms used with respect to the minimal example of human solution evaluation before 

trying to adapt the system to more complex grading schemes. Nevertheless, all modules 
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comprising the Intelligent User Profile Module are parametric and capable to support a 

practically limitless number of alternative evaluation classes instead of the minimal two. 

6.2 User Representative Scenes 

At the first stage of this series of experiments we have created a set of alternative 

declarative descriptions as prototype examples. These scenes have been constructed in a way 

that allows the participation of all observed attributes through a wide range of attribute values. 

The main goal has been to offer a broad solution space that would make interesting not only 

the comparison of solutions among the ones generated for the same declarative description 

but also among solutions generated by different scenes. Last but not least, the scenes have 

been aimed to represent a set of realistic habitation buildings. Throughout these experiments 

we have focused on habitation project types in order to be able to concentrate on the tuning of 

the module upon a common foundation of comparable examples. 

It is also important to notice, at this point, that during the subsequent stages of initial 

settings and module evaluation, each scene used in an experiment is always filtered through 

the specific – artificial or actual – user’s profile. This implies that a solution set may receive 

an entirely different evaluation when applied to alternative user profiles. Therefore, as it has 

often been the case during the experiments, a solution which is approved according to a 

specific user’s profile may be rejected in regard to another user.  

6.2.1 The Representative Scenes 

In the following we present the declarative description of the scenes used for the 

experiments and a pair of example solutions for each scene. In order to enhance readability, 

we employ the same tree structure diagram that was used for the same purpose in the 

Declarative Modelling chapter. The names we have used for the scenes are intuitive, not 

descriptive of any particular scene properties or architectural style, just in order to facilitate 

reading of the subsequent experiments. We have used alternative dimensions and shapes for 

the site during the solution generation maintaining, however, similar site sizes. Moreover, 

since the observed attributes are all two-dimensional, we have set a fixed height for all objects 

of the representative scenes. Nevertheless, our purpose has been to construct a wide range of 
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solutions that could be used for the assessment of the alternative Intelligent User Profile 

Module parameter values. 

6.2.1.1 Naxos House 

Naxos
House

Living
Room WCParents’

BedroomKitchen Children’s
BedroomBathroom

adjacent south

adjacent north adjacent west adjacent east
wider than

wider than

Figure  6.1 First representative scene – site area for solution generation: 6×4 units 

It is interesting to see how the declarative design process may lead to solutions with 

unexpected properties, a fact that is exactly its main advantage: based on an abstract 

description, it leads to a wide range of alternative interpretations. Figure  6.2(a) shows one of 

the best performing solutions – according to a specific user’s profile – generated for the 

declarative description of Figure  6.1. Notice how the proportional size of the WC room 

(yellow) at the bottom right corner, i.e. south-east, is somehow unnatural when compared 

with the other rooms. This is due to the fact that there is no explicit declarative relation or 

property regarding this quantity therefore the size of the corresponding room is restricted only 

by the site dimensions and the positioning of the other rooms. On the contrary, the bathroom 

(light blue) on the top left, i.e. north-west, has been restricted by the declarative description to 

be narrower than the parents’ bedroom. What may seem as unnatural or odd in this case could 

be an alternative idea for the designer in another case. 

Notice also how the nature of the observed attributes affects the overall solution 

performance. The specific sample has a clear separation of the public and private zones – the 

former consisting of the WC (yellow) and the Living Room (green) – and contains no oblong 

rooms. Last but not least, it features an increased total area of private spaces which, according 

to the specific user’s decision support profile, was an important attribute. All these 

observations do not hold for the sample appearing in Figure  6.2(b) and this fact is reflected in 
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the solution evaluation. We will discuss these observations in detail in the following sections 

covering the experiments. 

(a) (b) 

Figure  6.2 One of the best (a) and worst (b) performing solutions for the Naxos scene 

declarative description 

6.2.1.2 Rentis House 

 

Figure  6.3 Second representative scene – site area for solution generation: 5×5 units 

 

In this example we have avoided to connect declarative objects of the private area with 

those of the public area thus allowing all possible overlaps. Moreover, we have connected 
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certain properties in such a way that allows multiple alternative placements of groups of 

objects in order to achieve a wide range of values for the observed properties. Example 

solutions of the declarative description of Figure  6.3 appear in Figure  6.4. Notice how the 

public zone objects – living room (yellow) and guest room (green) – have been placed on the 

north side of the site in (a) and on the south side of the site in (b) since there is no relation 

connecting objects of the two zones. 

(a) 

 

(b) 

Figure  6.4 One of the best (a) and worst (b) performing solutions for the Rentis scene 

declarative description 

6.2.1.3 Piraeus House 

 

Figure  6.5 Third representative scene – site area for solution generation: 5×5 

In this scene we have included a corridor object of fixed position and very restricted 

dimensions in order to reduce the solution space. In particular we have allowed all objects to 

be positioned either on the north or the south side of the corridor except for the bathroom. 
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Therefore, zone separation has depended on the positioning of the other objects with respect 

to the corridor. Moreover, although the corridor is oblong by construction, the intelligent user 

profile module does not consider corridor objects in the calculation of the non-oblong rooms 

percentage attribute, as already discussed in the previous chapter. Hence, the overall solution 

performance is not affected by the presence of the corridor while the solution space is reduced 

in a uniform manner, with respect to the observed attributes. Regarding the examples 

appearing in Figure  6.6, the performance of solution of (b) is mainly affected by the small size 

of the objects and the overlap of public spaces – living room (yellow) and guest room (green) 

– and private spaces. Also notice the presence of a south-western bedroom (red) in (a) that 

gives a true value to the corresponding binary observed attribute. 

(a) (b) 

Figure  6.6 One of the best (a) and worst (b) performing solutions generated for the Piraeus 

declarative scene description 

6.2.1.4 Kalamaki House 

The description of Figure  6.7 represents a simple scene with minimal relations and a 

declarative object that does not directly participate in the declarative description. However, 

this object spans across the entire width of the site, thus forcing the remaining objects towards 

one of its sides due to their relations. Space overlapping is avoided only in extreme cases of 

interpretation of the adjacent relation by the solver where the participating objects are only 

marginally in touch. An example of such a case appears in Figure  6.8(a) where the guest room 

(green) is adjacent south to the bedroom (red) as well as the kitchen (brown) is adjacent south 

to the bathroom (blue), both in a marginal manner, having only an edge in common with the 

adjacent object. 
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Kalamaki
House

Living
RoomBathroomBedroom KitchenGuest

Room

adjacent
south adjacent

east
adjacent

south
is very wide

 

Figure  6.7 Fourth representative scene – site area for solution generation: 6×4 units 

 

(a) (b) 

Figure  6.8 One of the best (a) and worst (b) performing solutions generated for the Kalamaki 

declarative scene description 
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6.2.1.5 Patras House 

Patras
House

Living
Room

Guest
Room

Children’s
BedroomKitchen Parents’

BedroomBathroom

adjacent
south adjacent

west

adjacent
eastadjacent

south

equal
length

longer
than

equal
width

wider
than

equal
length

equal
width

 

(a) 

 

(b) 

Figure  6.9 (a) Fifth representative scene (b) Site area for solution generation: L-shaped 6×6 

units, thickness 4 units 
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For this scene we have focused on correlational relations, largely connecting 

morphological properties of the declarative objects participating in the scene description. 

Moreover, we have requested an L-shaped site for solution generation in order to explore 

arrangements in a contour other than the traditional rectangle. Figure  6.10 presents two of the 

generated solutions for the specific declarative description. Notice how the guest-room 

(green) is freely positioned due to the lack of spatial relations referring to it while maintaining 

the same width with the bathroom (dark blue) and the same length with the parents’ bedroom 

(brown). 

(a) (b) 

Figure  6.10 One of the best (a) and worst (b) performing solutions generated for the Patras 

declarative scene description 

Since the aforementioned scenes produce large solution populations we have used 

only a subset for the experiments as shown in Table  6.1. The main reason for this has been the 

fact that, during actual system use, the average user will be able to evaluate at most a few 

hundreds solutions. Therefore, training the Machine Learning Component with hundreds of 

thousands of automatically produced and artificially evaluated training samples would offer 

better insight regarding the mechanism itself but in an completely unrealistic context. Hence, 

we have applied automated evaluation on a subset of the produced solutions and submitted 

these solution sets as training sets to the Machine Learning Module. The automatic 

evaluation, i.e. the artificial user’s feedback, has been obtained based on the Decision Support 

Profile of actual users and the corresponding solution grades implied by it. The advantage of 

this approach is that it is based on realistic data regarding the importance of the observed 

attributes for the specific user while producing evaluations that are consistent throughout 

alternative scenes. In a sense, we have focused the evaluation of the Machine Learning 

Component on capturing the preferences of users that would remain consistent to their 

preferences throughout the use of the system.  
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Declarative Scene 
Description Overall Solution Population Evaluated Solutions 

Naxos House 670260 670 

Rentis House 21184 411 

Piraeus House 306255 621 

Kalamaki House 212096 530 

Patras House 511450 511 

Table  6.1 The solutions produced for the representative scenes and the subsets used for the 

Machine Learning Component initial settings evaluation 

6.3 Initial Settings Evaluation 

The next stage of the experiments comprised the evaluation of the module against 

alternative settings for the parameters controlling the Machine Learning Component. These 

parameters are summarised in Table  6.2. Most of them refer to the generic neural network 

used to represent the weak learner whereas the number of members per scene refers to the 

sub-committee formed by these weak learners every time a new scene is submitted for 

training. The Typical Values column represents the best performing configuration that was 

concluded after numerous experiments that took place during the module’s development, 

debugging and testing. This is the reason we use them as basis in the following experiments, 

varying one or more configuration parameters at a time and observing the effect in 

performance.  

In the following we present the evolution of the Machine Learning Component with 

respect to the representative scenes for alternative system settings. In particular, the MLC has 

been trained incrementally, one scene at a time, thus simulating regular system use. For these 

preliminary experiments, we have used an artificial user evaluation based on the evaluation 

yielded by the Decision Support Component; the details of the corresponding Decision 

Support Profile appear in the next section, discussing the main Module Evaluation. For this 
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reason, we do not compare the performance of the two components at this stage and we 

concentrate on the performance of the MLC with respect to the expected solution 

classification.  

Parameter Typical 
Value 

Alternative 
Value(s) Examined 

Parameter 
Reference 

weak learners added per scene (WL) 5 10 3 1 committee 

first hidden layer neurons (HL1) 4 2 weak learner 

second hidden layer neurons (HL2) 0 2 weak learner 

epochs (E) 1000 300 weak learner 

learning rate (LR) 0.028 0.01 0.09 0.15 weak learner 

momentum (M) 0.5 0.1 0.3 0.9 weak learner 

error goal (EG) 0.1 0.3 weak learner 

Table  6.2 Parameters and alternative values used during initial settings evaluation 

 

Each table in the following shows the erroneously classified solutions by the MLC 

after each scene has been used for training. In particular, each column in the table represents a 

new scene that has been submitted and subsequently evaluated by the MLC whereas each row 

shows the error for the particular scene throughout the training. The shaded boxes represent 

the Error, as defined in the previous chapter, for scenes the MLC has already been trained 

with and the boldface percentage represents the Error for the most recent scene used for 

incremental training.  

6.3.1 Initial Settings Experimental Results 

In the following we present the explicit results of the initial settings experiments 

accompanied with an interpretation of the system’s behaviour regarding the specific 

parameter values. We commence this presentation with one of the best performing 

combinations and subsequently compare it with alternative configurations. 
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6.3.1.1 Configuration 1 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House  

Naxos House 1.94% 11.04% 6.57% 9.55% 3.73%   

Rentis House 21.90% 4.38% 13.38% 9.49% 11.68%   

Pireaus House 28.99% 12.56% 1.45% 15.14% 14.49%   

Kalamaki House 41.89% 2.26% 10.38% 0.94% 2.08%   

Patras House 10.76% 17.42% 0.59% 17.42% 3.33%   

       

Average 
Training Error 1.94% 7.71% 7.13% 8.78% 7.06% 6.53% 

Average 
Generalisation 

Error 
25.88% 10.75% 5.48% 17.42%  14.88% 

Overall Error 21.09% 9.53% 6.47% 10.51% 7.06% 10.93% 

Table  6.3 WL=5, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 

In this experiment the module seems to improve generalisation results after each 

scene. However, when the Patras House remains as the only unseen example description the 

generalisation error increases revealing potential particularities of the specific scene and dense 

placement of alternative classes examples in the solution space. It is important to notice that, 

despite the fact of the incremental nature of the training, the training error generally decreases 

or remains in similar levels after the first scene and for each subsequent description 

submitted, mainly due to the large number of epochs allowing the new members of the 

committee to closely capture the new scene. The overall error is more than satisfactory for 

this style of learning whereas the generalisation error seems promising. This configuration 
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exhibited the best overall performance and the smallest training error whereas it ranked 

second only in generalisation ability. 

6.3.1.2 Configuration 2 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 300 0.15 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 7.16% 10.30% 4.33% 10.90% 9.85%   

Rentis House 22.14% 8.52% 23.36% 20.92% 25.30%   

Pireaus House 31.24% 16.10% 12.56% 13.53% 9.82%   

Kalamaki House 25.47% 3.21% 4.53% 1.89% 4.72%   

Patras House 26.03% 26.61% 6.07% 20.35% 9.00%   

         

Average Training 
Error 7.16% 9.41% 13.42% 11.81% 11.74% 10.71% 

Average 
Generalisation 

Error 
26.22% 15.31% 5.30% 20.35%  16.79% 

Overall Error 22.41% 12.95% 10.17% 13.52% 11.74% 14.16% 

Table  6.4 WL=5, HL1=4, HL2=0, E=300, LR=0.15, M=0.5, EG=0.1 

 

In this experiment we have reduced the number of epochs substituting for them – in 

principle – with a more aggressive learning rate. In practice, the combination’s performance is 

inferior both in terms of training and generalisation error.  
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6.3.1.3 Configuration 3 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 2 2 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 2.99% 14.33% 3.13% 7.01% 10.30%   

Rentis House 25.79% 6.57% 24.57% 20.19% 20.19%   

Pireaus House 31.88% 15.14% 15.62% 12.08% 15.94%   

Kalamaki House 43.58% 6.42% 21.13% 4.15% 4.15%   

Patras House 12.52% 25.83% 12.33% 5.68% 11.55%   

         

Average 
Training Error 2.99% 10.45% 14.44% 10.86% 12.43% 10.23% 

Average 
Generalisation 

Error 
28.45% 15.79% 16.73% 5.68%  16.66% 

Overall Error 23.35% 13.66% 15.36% 9.82% 12.43% 14.92% 

Table  6.5 WL=5, HL1=2, HL2=2, E=1000, LR=0.028, M=0.5, EG=0.1 

 

In this case we have enhanced each weak learner to comprise 2 hidden layers however 

the configuration does not exhibit better performance when compared to the same settings 

with the equal total number of hidden neurons. 
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6.3.1.4 Configuration 4 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

1 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 4.78% 4.78% 6.12% 11.94% 6.12%   

Rentis House 20.44% 20.44% 17.03% 15.57% 17.03%   

Pireaus House 13.04% 13.04% 5.96% 19.00% 5.96%   

Kalamaki House 21.70% 21.70% 9.62% 3.21% 8.68%   

Patras House 4.31% 4.31% 4.70% 37.18% 4.70%   

         

Average Training 
Error 4.78% 12.61% 9.70% 12.43% 8.50% 9.60% 

Average 
Generalisation 

Error 
14.87% 13.02% 7.16% 37.18%  18.06% 

Overall Error 12.85% 12.85% 8.69% 17.38% 8.50% 12.05% 

Table  6.6 WL=1, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

This experiment stemmed from the idea that the artificial user preferences might not 

need many weak learners to be captured but, instead, only one for each scene. In practice, the 

configuration performed worse than the multi-member committees revealing that the dense 

placement of solutions belonging to different classes makes it difficult for the mechanism to 

locate the boundaries using just one weak learner per scene. It is also characteristic for this 

configuration the fact that the second scene does not alter the component’s behaviour. This is 

due to the fact that the weak learner corresponding to the first scene features high voting 

weight, due to its increased performance, thus out-weighing the second weak learner in every 

voting. Only after a third weak learner is added to the committee the results start to vary. 

Nevertheless, this configuration was positioned above average in terms of overall 

performance. 
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6.3.1.5 Configuration 5 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 300 0.028 0.9 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 18.06% 14.03% 10.45% 12.39% 14.78%   

Rentis House 33.09% 6.08% 20.19% 25.79% 26.03%   

Pireaus House 34.78% 16.59% 7.73% 14.98% 20.93%   

Kalamaki House 64.91% 7.36% 4.91% 4.72% 2.45%   

Patras House 10.18% 49.12% 36.40% 14.48% 7.83%   

         

Average 
Training Error 18.06% 10.06% 12.79% 14.47% 14.40% 13.96% 

Average 
Generalisation 

Error 
35.74% 24.35% 20.65% 14.48%  23.81% 

Overall Error 32.20% 18.64% 15.94% 14.47% 14.40% 19.13% 

Table  6.7 WL=5, HL1=4, HL2=0, E=300, LR=0.028, M=0.9, EG=0.1 

 

This configuration represents an effort to emphasise on the weakness of the committee 

members and rely more on the collective decisions of the overall committee. Practically, the 

configuration exhibits decreased performance both in terms of generalisation and training 

error. 
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6.3.1.6 Configuration 6 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.09 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 2.54% 11.49% 3.13% 9.70% 5.07%   

Rentis House 23.11% 2.43% 22.14% 21.65% 15.09%   

Pireaus House 18.68% 2.58% 11.27% 12.88% 13.20%   

Kalamaki House 29.81% 10.57% 15.85% 1.51% 7.92%   

Patras House 11.35% 26.03% 7.83% 7.63% 4.11%   

         

Average 
Training Error 2.54% 6.96% 12.18% 11.44% 9.08% 8.44% 

Average 
Generalisation 

Error 
20.74% 13.06% 11.84% 7.63%  13.32% 

Overall Error 17.10% 10.62% 12.04% 10.68% 9.08% 11.90% 

Table  6.8 WL=5, HL1=4, HL2=0, E=300, LR=0.09, M=0.5, EG=0.1 

 

In this case, we modified the most successful configuration by increasing the learning 

rate. The results demonstrated a decrease in training performance but also a slight increase in 

generalisation performance. Eventually, this configuration proved to be the second best in 

terms of overall performance and the best in terms of generalisation performance. 
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6.3.1.7 Configuration 7 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

3 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 2.24% 6.42% 2.84% 10.75% 7.31%   

Rentis House 23.11% 19.95% 12.65% 21.65% 21.90%   

Pireaus House 24.64% 16.26% 5.31% 18.68% 18.36%   

Kalamaki House 35.28% 17.74% 8.11% 3.40% 4.53%   

Patras House 8.81% 1.76% 8.41% 28.57% 1.57%   

       

Average Training 
Error 2.24% 13.18% 6.93% 13.62% 10.73% 9.34% 

Average 
Generalisation 

Error 
22.96% 11.92% 8.26% 28.57%  17.93% 

Overall Error 18.82% 12.43% 7.47% 16.61% 10.73% 13.21% 

Table  6.9 WL=3, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 

In this experiment we modified the most successful configuration by reducing the 

number of weak learners added for each scene, similarly to Configuration 4. The rationale 

was to check whether less weak learners were adequate to capture user preferences. If this 

were the case, the advantage would be reduced computational complexity for the training and 

the simulation of the eventual ML Component configuration used in the actual system. The 

results revealed again a decrease in the training performance and a slight increase in the 

generalisation performance. In total, this has been the second best  
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6.3.1.8 Configuration 8 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

10 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 5.22% 15.82% 6.12% 10.00% 6.12%   

Rentis House 19.95% 2.19% 21.41% 10.95% 21.17%   

Pireaus House 10.63% 13.85% 9.02% 11.76% 6.12%   

Kalamaki House 11.32% 4.15% 8.30% 2.08% 3.77%   

Patras House 9.39% 34.83% 9.39% 22.11% 3.33%   

       

Average Training 
Error 5.22% 9.01% 12.18% 8.69% 8.10% 8.64% 

Average 
Generalisation 

Error 
12.82% 17.61% 8.85% 22.11%  15.35% 

Overall Error 11.30% 14.17% 10.85% 11.38% 8.10% 11.16% 

Table  6.10 WL=3, HL1=4, HL2=0, E=300, LR=0.02, M=0.3, EG=0.1 

 

This configuration emphasised the weakness of the committee members and relied on 

their collective decision ability for successful classification. The results reveal a degradation 

of performance both in terms of training and generalisation error. A characteristic example is 

Piraeus House scene where the committee fails to improve its performance for the specific set 

of solutions despite the new members added to it. The reason is that new members, due to 

their low classification ability, feature less voting weight thus allowing the majority to 

misclassify the corresponding solutions. 
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6.3.1.9 Configuration 9 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.028 0.3 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 1.94% 17.91% 2.69% 8.81% 6.87%   

Rentis House 21.65% 6.08% 12.90% 14.84% 18.25%   

Pireaus House 31.88% 12.56% 4.35% 13.04% 3.06%   

Kalamaki House 43.21% 3.58% 18.68% 1.32% 9.43%   

Patras House 10.76% 37.18% 10.57% 11.15% 3.72%   

       

Average 
Training Error 1.94% 12.00% 6.64% 9.50% 8.27% 7.67% 

Average 
Generalisation 

Error 26.88% 17.78% 14.62% 11.15%  17.61% 

Overall Error 21.89% 15.46% 9.84% 9.83% 8.27% 13.06% 

Table  6.11 WL=5, HL1=4, HL2=0, E=1000, LR=0.028, M=0.3, EG=0.1 

 

Here again, we modify only one of the settings of the most efficient configuration up 

to this point by reducing the momentum parameter. The results are mediocre overall and 

training performance but, also, the second best generalisation performance. 
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6.3.1.10 Configuration 10 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.01 0.1 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 8.66% 14.93% 4.33% 11.34% 8.06%   

Rentis House 26.03% 5.84% 20.44% 17.27% 23.84%   

Pireaus House 34.46% 24.32% 6.12% 12.40% 13.69%   

Kalamaki House 43.77% 5.85% 9.81% 3.02% 7.55%   

Patras House 9.00% 32.68% 2.35% 31.70% 7.24%   

         

Average 
Training Error 8.66% 10.38% 10.30% 11.01% 12.08% 10.48% 

Average 
Generalisation 

Error 
28.32% 20.95% 6.08% 31.70%  21.76% 

Overall Error 24.39% 16.72% 8.61% 15.15% 12.08% 15.39% 

Table  6.12 WL=5, HL1=4, HL2=0, E=1000, LR=0.01, M=0.1, EG=0.1 

 

Further weakening the committee members, by reducing the learning rate and the 

momentum, leads to reduced performance in every aspect. This configuration represents one 

of the lowest ranking combinations both in overall and generalisation error. 
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6.3.1.11 Configuration 11 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 300 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 6.12% 17.76% 5.97% 10.90% 9.55%   

Rentis House 22.38% 8.52% 21.17% 20.19% 18.25%   

Pireaus House 19.81% 25.60% 8.05% 13.85% 6.60%   

Kalamaki House 23.40% 9.62% 5.66% 3.21% 4.72%   

Patras House 9.20% 41.49% 9.00% 30.72% 4.31%   

         

Average 
Training Error 6.12% 13.14% 11.73% 12.04% 8.68% 10.34% 

Average 
Generalisation 

Error 
18.70% 25.57% 7.33% 30.72%  20.58% 

Overall Error 16.18% 20.60% 9.97% 15.77% 8.68% 14.24% 

Table  6.13 WL=5, HL1=4, HL2=0, E=300, LR=0.028, M=0.5, EG=0.1 

 

Reducing only the epochs of the most efficient combination yields the current 

configuration. It is obvious that committee members are weakened and this contributes to the 

decrease of performance. This is an overall mediocre combination. 
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6.3.1.12 Configuration 12 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 300 0.028 0.5 0.3 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 5.22% 15.22% 5.67% 11.19% 18.21%   

Rentis House 23.84% 7.79% 19.22% 18.73% 24.09%   

Pireaus House 26.89% 20.93% 5.64% 20.93% 5.48%   

Kalamaki House 25.66% 6.04% 10.57% 4.15% 14.15%   

Patras House 8.22% 29.55% 9.20% 23.09% 10.18%   

       

Average 
Training Error 5.22% 11.50% 10.18% 13.75% 14.42% 11.02% 

Average 
Generalisation 

Error 
21.15% 18.84% 9.88% 23.09%  18.24% 

Overall Error 17.97% 15.91% 10.06% 15.62% 14.42% 14.79% 

Table  6.14 WL=5, HL1=4, HL2=0, E=300, LR=0.028, M=0.5, EG=0.3 

 

Despite the consensus regarding the 0.1 error goal [Lewitt03], [Polikar01], we have 

tried an average configuration with a higher error goal emphasising once again the weakness 

of the committee members. The configuration exhibits decreased performance when 

compared to the most efficient ones and produces similar results with the similar 

configuration featuring the 0.1 error goal. 
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6.3.1.13 Summary of Initial Settings Results 

The following tables summarise the experimental results for the initial settings 

configuration. In particular, Table  6.15 presents the configuration ranking according to 

average training error, Table  6.16 presents configuration performance according to average 

generalisation error and Table  6.17 presents the overall ranking. 

Exp.
No. 

Weak 
Learners 

Hidden 
Layer 1 
Neurons

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error

Goal

Average
Training

Error 

Average 
Generalisation

Error 

Overall 
Error 

1 5 4 0 1000 0.028 0.5 0.1 6.53% 14.88% 10.93%

9 5 4 0 1000 0.028 0.3 0.1 7.67% 17.61% 13.06%

6 5 4 0 1000 0.09 0.5 0.1 8.44% 13.32% 11.90%

8 10 4 0 1000 0.028 0.5 0.1 8.64% 15.35% 11.16%

7 3 4 0 1000 0.028 0.5 0.1 9.34% 17.93% 13.21%

4 1 4 0 1000 0.028 0.5 0.1 9.60% 18.06% 12.05%

3 5 2 2 1000 0.028 0.5 0.1 10.23% 16.66% 14.92%

11 5 4 0 300 0.028 0.5 0.1 10.34% 20.58% 14.24%

10 5 4 0 1000 0.01 0.1 0.1 10.48% 21.76% 15.39%

2 5 4 0 300 0.15 0.5 0.1 10.71% 16.79% 14.16%

12 5 4 0 300 0.028 0.5 0.3 11.02% 18.24% 14.79%

5 5 4 0 300 0.028 0.9 0.1 13.96% 23.81% 19.13%

Table  6.15 Initial Settings in Descending Order of Training Performance  
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Exp.
No. 

Weak 
Learners 

Hidden 
Layer 1 
Neurons

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error 

Goal

Average
Training

Error 

Average 
Generalisation 

Error 

Overall 
Error 

6 5 4 0 1000 0.09 0.5 0.1 8.44% 13.32% 11.90%

1 5 4 0 1000 0.028 0.5 0.1 6.53% 14.88% 10.93%

8 10 4 0 1000 0.028 0.5 0.1 8.64% 15.35% 11.16%

3 5 2 2 1000 0.028 0.5 0.1 10.23% 16.66% 14.92%

2 5 4 0 300 0.15 0.5 0.1 10.71% 16.79% 14.16%

9 5 4 0 1000 0.028 0.3 0.1 7.67% 17.61% 13.06%

7 3 4 0 1000 0.028 0.5 0.1 9.34% 17.93% 13.21%

4 1 4 0 1000 0.028 0.5 0.1 9.60% 18.06% 12.05%

12 5 4 0 300 0.028 0.5 0.3 11.02% 18.24% 14.79%

11 5 4 0 300 0.028 0.5 0.1 10.34% 20.58% 14.24%

10 5 4 0 1000 0.01 0.1 0.1 10.48% 21.76% 15.39%

5 5 4 0 300 0.028 0.9 0.1 13.96% 23.81% 19.13%

Table  6.16 Initial Settings in Descending Order of Generalisation Performance  
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Exp. 
No. 

Weak 
Learners 

Hidden 
Layer 1 
Neurons

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error 

Goal

Average
Training

Error 

Average 
Generalisation

Error 

Overall
Error 

1 5 4 0 1000 0.028 0.5 0.1 6.53% 14.88% 10.93%

8 10 4 0 1000 0.028 0.5 0.1 8.64% 15.35% 11.16%

6 5 4 0 1000 0.09 0.5 0.1 8.44% 13.32% 11.90%

4 1 4 0 1000 0.028 0.5 0.1 9.60% 18.06% 12.05%

9 5 4 0 1000 0.028 0.3 0.1 7.67% 17.61% 13.06%

7 3 4 0 1000 0.028 0.5 0.1 9.34% 17.93% 13.21%

2 5 4 0 300 0.15 0.5 0.1 10.71% 16.79% 14.16%

11 5 4 0 300 0.028 0.5 0.1 10.34% 20.58% 14.24%

12 5 4 0 300 0.028 0.5 0.3 11.02% 18.24% 14.79%

3 5 2 2 1000 0.028 0.5 0.1 10.23% 16.66% 14.92%

10 5 4 0 1000 0.01 0.1 0.1 10.48% 21.76% 15.39%

5 5 4 0 300 0.028 0.9 0.1 13.96% 23.81% 19.13%

Table  6.17 Initial Settings in Descending Order of Overall Performance  

 

Next, we present a chart graph of the evolution of overall error for all configurations 

where it becomes apparent that, apart from the best performing configurations, there are 

others that have exhibited a consistently reducing overall error as, for example, the ones used 

in Configuration 5 and Configuration 9.  
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Figure  6.11 Evolution of Overall Error for Each Configuration 

6.4 Module Evaluation 

After the initial settings evaluation was concluded, a series of experiments took place, 

this time based on actual user’s profiles and realistic solutions evaluations. The solutions for 

the aforementioned example scenes had already been generated and mapped to the observed 

Initial Settings
Overall Error Evolution
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Experiment 1: 5 4 0 1000 0.028 0.5 0.1
Experiment 2: 5 4 0 300 0.15 0.5 0.1
Experiment 3: 5 2 2 1000 0.028 0.5 0.1
Experiment 4: 1 4 0 1000 0.028 0.5 0.1
Experiment 5: 5 4 0 300 0.028 0.9 0.1
Experiment 6: 5 4 0 1000 0.09 0.5 0.1
Experiment 7: 3 4 0 1000 0.028 0.5 0.1
Experiment 8: 10 4 0 1000 0.028 0.5 0.1
Experiment 9: 5 4 0 1000 0.028 0.3 0.1
Experiment 10: 5 4 0 1000 0.01 0.1 0.1
Experiment 11: 5 4 0 300 0.028 0.5 0.1
Experiment 12: 5 4 0 300 0.028 0.5 0.3
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attributes; a series of alternative Decision Support user profiles was created, reflecting 

different users’ preferences, in order to be used for automatic solution evaluation. Notice that 

the same set of solutions, already mapped to the observed attributes, may be evaluated 

differently according to different users’ Decision Support profiles. The different Decision 

Support profiles include alternative middle values that modify not only the overall solution 

grades, due to different weight assignments, but also different grades per attribute due to these 

alternative middle values as was explained in the previous chapter. The alternative Decision 

Support profiles appear in Table  6.18. 

Observed Attributes 

 public 
zone 
area 

private 
zone 
area 

number 
of sleep 
rooms 

number 
of wash 
rooms 

south-
western 
bedroom 

public-
private zone 
separation 

percentage 
of non-
oblong 
rooms 

Middle 
values 6 9 1 1 0 0 80 

AHP 
weights 0.427 0.306 0.041 0.045 0.032 0.109 0.041 

SMART 
weights 0.345 0.276 0.035 0.035 0.069 0.172 0.069 Pa

ng
io

tis
 

RR 
weights 0.386 0.193 0.064 0.077 0.055 0.129 0.096 

Middle 
values 7 10 2 1 0 0 75 

AHP 
weights 0.304 0.253 0.155 0.054 0.030 0.147 0.056 

SMART 
weights 0.294 0.265 0.177 0.088 0.029 0.088 0.059 M

ar
ia

nn
a 

RR 
weights 0.386 0.193 0.129 0.064 0.055 0.096 0.077 

Middle 
values 4 14 3 2 0 0 50 

AHP 
weights 0.122 0.116 0.025 0.025 0.230 0.232 0.251 

SMART 
weights 0.125 0.125 0.025 0.025 0.225 0.250 0.225 G

io
rg

os
 

RR 
weights 0.096 0.077 0.064 0.055 0.129 0.386 0.193 

Table  6.18 Actual users’ Decision Support profiles 
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6.4.1.1 Configuration 1a: User=Panagiotis 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 16.57% 11.64% 17.91% 17.16% 14.48%   

Rentis House 6.57% 5.60% 5.35% 9.73% 16.30%   

Pireaus House 1.45% 0.16% 0.48% 0.97% 6.28%   

Kalamaki House 2.64% 2.83% 2.64% 2.83% 3.58%   

Patras House 30.33% 19.18% 17.22% 16.63% 23.48%   
       

Average 
Training Error 16.57% 8.62% 7.92% 7.67% 12.83% 10.72% 

Average 
Generalisation 

Error 
10.25% 7.39% 9.93% 16.63%  11.05% 

Overall Error 11.51% 7.88% 8.72% 9.47% 12.83% 10.08% 

Table  6.19 User=Panagiotis, WL=5, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 

In this first experiment of core module evaluation we have used the most efficient 

configuration of the Machine Learning Component in an attempt to capture and maintain a 

particular user’s preferences. We have expected worse results than the initial settings 

evaluations mostly due to the virtually unpredictable and not necessarily consistent nature of 

user preferences. This, however, has not always been the case. The module generalises 

acceptably for certain descriptions, even after the first training session, and poorly for some 

others even after a number of scenes. The overall results are promising regarding the 

dependence to the particular user’s preferences. 
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6.4.1.2 Configuration 1b: User=Marianna 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 14.18% 17.46% 18.21% 16.57% 28.66%   

Rentis House 9.73% 15.33% 31.14% 23.36% 21.17%   

Pireaus House 5.96% 2.09% 0.16% 0.00% 6.28%   

Kalamaki House 1.89% 2.45% 6.04% 1.70% 3.58%   

Patras House 26.61% 31.51% 31.31% 31.31% 35.42%   
       

Average 
Training Error 14.18% 16.40% 16.50% 10.41% 19.02% 15.30% 

Average 
Generalisation 

Error 
11.05% 12.02% 18.67% 31.31%  18.26% 

Overall Error 11.67% 13.77% 17.37% 14.59% 19.02% 15.28% 

Table  6.20 User=Marianna, WL=5, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 

The same configurations do not yield necessarily the same performance in the current 

context due to the difference in the nature of user’s preferences and their relation to each 

scene’s intricacies. In the specific example we have the case where the Machine Learning 

Component yields a better overall error after training with only the first scene than in all 

subsequent cases. This is mostly due to the fact that the user evaluation seems to represent 

contradictive classifications that mislead the committee majority. The effort of the module to 

take into account new training subsets degrades overall training performance. 
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6.4.1.3 Configuration 1c: User=Giorgos 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 6.72% 5.37% 6.27% 5.52% 6.12%   

Rentis House 12.90% 8.52% 8.52% 8.27% 10.22%   

Pireaus House 10.14% 8.53% 6.28% 7.25% 7.57%   

Kalamaki House 3.40% 3.21% 3.21% 3.21% 3.40%   

Patras House 14.09% 9.39% 8.41% 8.02% 9.39%   
       

Average 
Training Error 6.72% 6.94% 7.02% 6.06% 7.34% 6.82% 

Average 
Generalisation 

Error 
10.13% 7.05% 5.81% 8.02%  7.75% 

Overall Error 9.45% 7.00% 6.54% 6.45% 7.34% 7.36% 

Table  6.21 User=Giorgos, WL=5, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 

In this experiment user preferences are efficiently captured by the ML Component as 

demonstrated by the low error rates in the overall. Nevertheless, for the last scene, the training 

has the reverse result, increasing the training error. Similar to the previous experiment, user 

evaluation for the new training sets leads the committee members to contradictive evaluations 

in which case, the voting weights suggest the, not always correct, overall evaluation. Notice, 

however, the varied overall error response of the ML Component using the same 

configuration for different users’ solution evaluations. 

 



EXPERIMENTS 

GEORGIOS BARDIS  161 

6.4.1.4 Configuration 4a: User=Panagiotis 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

1 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 8.21% 8.21% 16.27% 19.25% 15.82%   

Rentis House 10.95% 10.95% 10.71% 14.84% 11.92%   

Pireaus House 1.77% 1.77% 0.32% 2.09% 1.77%   

Kalamaki House 2.64% 2.64% 4.53% 4.15% 2.26%   

Patras House 19.96% 19.96% 26.22% 18.20% 14.87%   
       

Average 
Training Error 8.21% 9.58% 9.10% 10.08% 9.33% 9.26% 

Average 
Generalisation 

Error 
8.83% 8.12% 15.38% 18.20%  12.63% 

Overall Error 8.71% 8.71% 11.61% 11.71% 9.33% 10.01% 

Table  6.22 User=Panagiotis, WL=1, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 

The error evolution in this experiment resembles that of the similar experiments of the 

previous section covering the initial settings evaluation. In particular, each sub-committee 

contains only a single member which, due to the low error and hence high voting weight of 

the first member, fails to impose its evaluation in the overall outcome. Thus, once again only 

after the third single-member sub-committee is added to the overall committee the results start 

to vary. The same is true for the next two users’ experiments based on the same configuration.  

 



EXPERIMENTS 

GEORGIOS BARDIS  162 

6.4.1.5 Configuration 4b: User=Marianna 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

1 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 4.18% 4.18% 11.94% 4.18% 12.84%   

Rentis House 8.52% 8.52% 9.25% 8.52% 12.90%   

Pireaus House 2.42% 2.42% 0.16% 2.42% 2.74%   

Kalamaki House 2.26% 2.26% 2.26% 2.08% 2.45%   

Patras House 15.85% 15.85% 31.31% 15.66% 17.61%   
       

Average 
Training Error 4.18% 6.35% 7.12% 4.30% 9.71% 6.33% 

Average 
Generalisation 

Error 
7.26% 6.84% 16.79% 15.66%  11.64% 

Overall Error 6.65% 6.65% 10.98% 6.57% 9.71% 8.11% 

Table  6.23 User=Marianna, WL=1, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 
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6.4.1.6 Configuration 4c: User=Giorgos 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

1 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 5.97% 5.97% 6.12% 6.12% 6.27%   

Rentis House 10.46% 10.46% 8.76% 8.76% 10.71%   

Pireaus House 10.47% 10.47% 7.57% 7.57% 7.57%   

Kalamaki House 3.77% 3.77% 3.21% 3.21% 3.40%   

Patras House 13.31% 13.31% 10.18% 10.18% 10.76%   

       

Average 
Training Error 5.97% 8.22% 7.48% 6.41% 7.74% 7.16% 

Average 
Generalisation 

Error 
9.50% 9.18% 6.69% 10.18%  8.89% 

Overall Error 8.80% 8.80% 7.17% 7.17% 7.74% 7.93% 

Table  6.24 User=Giorgos, WL=1, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 



EXPERIMENTS 

GEORGIOS BARDIS  164 

6.4.1.7 Configuration 6a: User=Panagiotis 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.09 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 14.03% 14.18% 17.61% 14.63% 14.78%   

Rentis House 17.76% 6.08% 8.03% 12.41% 9.73%   

Pireaus House 6.28% 0.16% 0.00% 2.74% 2.42%   

Kalamaki House 4.34% 4.15% 2.26% 1.13% 1.32%   

Patras House 26.22% 21.33% 26.42% 22.11% 13.70%   
         

Average 
Training Error 14.03% 10.13% 8.55% 7.73% 8.39% 9.76% 

Average 
Generalisation 

Error 
13.65% 8.55% 14.34% 22.11%  14.66% 

Overall Error 13.73% 9.18% 10.86% 10.60% 8.39% 10.55% 

Table  6.25 User=Panagiotis, WL=5, HL1=4, HL2=0, E=1000, LR=0.09, M=0.5, EG=0.1 

 

Although this configuration does not yield the best training or generalisation error, it 

exhibits a promising performance, by reducing the training error of the current training scene 

while generally improving the training error and the average generalisation. This smooth error 

reduction is also shown in the chart appearing in Figure  6.12. 

 



EXPERIMENTS 

GEORGIOS BARDIS  165 

6.4.1.8 Configuration 6b: User=Marianna 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.09 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 10.15% 10.00% 12.69% 15.97% 14.93%   

Rentis House 8.03% 6.57% 27.01% 11.44% 13.38%   

Pireaus House 2.42% 1.61% 0.00% 2.25% 5.80%   

Kalamaki House 1.51% 3.21% 5.66% 1.51% 3.21%   

Patras House 19.96% 15.46% 9.98% 20.35% 3.13%   

         

Average 
Training Error 10.15% 8.28% 13.23% 7.79% 8.09% 9.51% 

Average 
Generalisation 

Error 
7.98% 6.76% 7.82% 20.35%  10.73% 

Overall Error 8.41% 7.37% 11.07% 10.30% 8.09% 9.05% 

Table  6.26 User=Marianna, WL=5, HL1=4, HL2=0, E=1000, LR=0.09, M=0.5, EG=0.1 

 

Once again, the effort to integrate the knowledge suggested by the evaluated solutions 

corresponding to a new scene lead to performance degradation as is the case with the Pireaus 

House solutions. In particular, the ML Component perfectly captures user preferences for the 

specific solutions at the cost of losing a considerable amount of previous knowledge, 

especially for the Rentis House scene. However, as the experiment continues, the balance is 

restored. Once again we have to notice that actual user preferences may not follow a 

consistent pattern thus making generalisation a tough task, as it becomes apparent in the case 

of the Patras House in the specific experiment. 
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6.4.1.9 Configuration 6c: User=Giorgos 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

5 4 0 1000 0.09 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 5.67% 6.27% 6.57% 5.52% 6.12%   

Rentis House 11.19% 8.03% 11.92% 11.44% 8.03%   

Pireaus House 16.26% 7.57% 16.26% 10.79% 7.41%   

Kalamaki House 3.58% 3.40% 3.21% 3.21% 3.21%   

Patras House 16.83% 10.96% 19.18% 16.44% 8.41%   
         

Average 
Training Error 5.67% 7.15% 11.58% 7.74% 6.64% 7.76% 

Average 
Generalisation 

Error 
11.97% 7.31% 11.19% 16.44%  11.73% 

Overall Error 10.71% 7.24% 11.43% 9.48% 6.64% 9.10% 

Table  6.27 User=Giorgos, WL=5, HL1=4, HL2=0, E=1000, LR=0.09, M=0.5, EG=0.1 

 

It is worth noticing that Piraeus House, the same scene that is perfectly captured in the 

last two experiments, causes considerable error increase in the current case revealing once 

again the dynamic nature of the actual user’s preferences and its effect on the module’s 

response. 
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6.4.1.10 Configuration 8a: User=Panagiotis 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

10 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 10.15% 12.24% 19.85% 14.03% 15.07%   

Rentis House 17.52% 5.60% 8.27% 9.73% 17.76%   

Pireaus House 5.64% 0.16% 0.32% 0.16% 6.28%   

Kalamaki House 3.58% 1.32% 3.21% 0.75% 4.34%   

Patras House 36.20% 21.72% 37.77% 24.46% 12.13%   

         

Average 
Training Error 10.15% 8.92% 9.48% 6.17% 11.12% 9.17% 

Average 
Generalisation 

Error 
15.74% 7.73% 20.49% 24.46%  17.11% 

Overall Error 14.62% 8.21% 13.88% 9.83% 11.12% 11.53% 

Table  6.28 User=Panagiotis, WL=10, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, 
EG=0.1 

 

The increased number of weak learners per scene leads to a committee of strong 

majorities that fails to generalise effectively with respect to the Patras House scene. However, 

the incorporation of new solutions generally improves training error except in the case of the 

last, obviously harder to learn, set of user evaluated solutions corresponding to the Patras 

House description. 
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6.4.1.11 Configuration 8b: User=Marianna 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

10 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 6.72% 12.39% 12.69% 16.27% 12.39%   

Rentis House 8.27% 6.81% 4.14% 7.30% 12.65%   

Pireaus House 3.06% 0.16% 0.00% 1.93% 6.44%   

Kalamaki House 2.64% 1.13% 0.94% 1.32% 2.83%   

Patras House 13.70% 18.59% 18.59% 19.77% 2.54%   

         

Average 
Training Error 6.72% 9.60% 5.61% 6.71% 7.37% 7.20% 

Average 
Generalisation 

Error 
6.92% 6.63% 9.77% 19.77%  10.77% 

Overall Error 6.88% 7.82% 7.27% 9.32% 7.37% 7.73% 

Table  6.29 User=Marianna, WL=10, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 

The ML Component exhibits impressive generalisation ability for most of the scenes 

and effectively learns each submitted scene. Notice how the last scene is incorporated in the 

committee’s knowledge at a relatively low expense with respect to the error regarding 

previously seen scenes. 
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6.4.1.12 Configuration 8c: User=Giorgos 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error Goal

10 4 0 1000 0.028 0.5 0.1 

Error after training with solutions of scene 

Scene ID Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House   

Naxos House 9.85% 5.97% 12.54% 6.12% 7.16%   

Rentis House 39.66% 8.03% 17.03% 7.79% 9.98%   

Pireaus House 32.05% 7.57% 25.44% 7.57% 7.73%   

Kalamaki House 6.79% 3.21% 5.85% 3.21% 3.40%   

Patras House 20.35% 9.78% 20.55% 10.96% 11.35%   

         

Average 
Training Error 9.85% 7.00% 18.34% 6.17% 7.92% 9.86% 

Average 
Generalisation 

Error 
24.71% 6.85% 13.20% 10.96%  13.93% 

Overall Error 21.74% 6.91% 16.28% 7.13% 7.92% 12.00% 

Table  6.30 User=Giorgos, WL=10, HL1=4, HL2=0, E=1000, LR=0.028, M=0.5, EG=0.1 

 

Once again different users’ preferences lead to different behaviour. In the particular 

experiment the overall generalisation performance is satisfactory, yet each scene is accepted 

with varying responses, ranging from successful incorporation to the committee’s knowledge 

(Rentis House), indifference (Patras House) or performance degradation for the specific scene 

(Piraeus House). 
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6.4.1.13 Comparison with Decision Support Profiles 

In the following we summarise the compared performances of the Machine Learning 

Profiles for the aforementioned users based on the configurations presented above and the 

corresponding Decision Support Profiles. In order to maintain compatibility, presents the 

evolution of error after each scene was used for training of the Machine Learning Component 

although the corresponding evaluation on behalf of the Decision Support Component was 

already available as soon as the solutions had been generated, without any need for training. 

The chart in Figure  6.12 explicitly shows the performance dominance of the Machine 

Learning Profiles in general at least for the specific user. 

Error after training with scene 

User: Panagiotis Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House 

AHP 21.94% 20.22% 16.16% 13.25% 18.08% 

SMART 23.73% 21.05% 18.92% 16.05% 19.55% 

Decision 
Support 
Profile 
Error RR 23.13% 21.39% 19.83% 17.02% 20.00% 

Configuration1 16.57% 8.62% 7.92% 7.67% 12.83% 

Configuration 4 8.21% 9.58% 9.10% 10.08% 9.33% 

Configuration 6 14.03% 10.13% 8.55% 7.73% 8.39% 

Machine 
Learning 
Profile 
Error 

Configuration 8 10.15% 8.92% 9.48% 6.17% 11.12% 

Table  6.31 Comparison of error evolution for alternative Decision Support Machine 
Learning Profiles for User Panagiotis 
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Figure  6.12 Comparison of DS and ML Profiles for User Panagiotis 

 

 

Error after training with scene 

User: Marianna Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House 

AHP 21.94% 20.22% 16.16% 13.25% 18.08% 

SMART 23.73% 21.05% 18.92% 16.05% 19.55% 

Decision 
Support 
Profile 
Error RR 23.13% 21.39% 19.83% 17.02% 20.00% 

Configuration1 14.18% 16.40% 16.50% 10.41% 19.02% 

Configuration 4 4.18% 6.35% 7.12% 4.30% 9.71% 

Configuration 6 10.15% 8.28% 13.23% 7.79% 8.09% 

Machine 
Learning 
Profile 
Error 

Configuration 8 6.72% 9.60% 5.61% 6.71% 7.37% 

Table  6.32 Comparison of error evolution for alternative Decision Support Machine 
Learning Profiles for User Marianna 

 

It is interesting to observe that, in the case of the following user, the DS Profiles 

generally outperform one of the most efficient initial settings configurations for the ML 
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Component, thus proving the efficiency of the DS Profiles alternative, especially when 

considering that the latter only requires initialisation on behalf of the user and no further 

training. Of course, other configurations of the ML Profile still prove more efficient even for 

the specific user. 

Figure  6.13 Comparison of DS and ML Profiles for User Marianna 

 

Error after training with scene 

User: Giorgos Naxos 
House 

Rentis 
House 

Pireaus 
House 

Kalamaki 
House 

Patras 
House 

AHP 17.61% 24.50% 25.67% 20.06% 20.19% 

SMART 17.76% 24.57% 25.72% 20.09% 20.18% 

Decision 
Support 
Profile 
Error RR 25.67% 34.98% 34.21% 26.79% 25.62% 

Configuration1 1.94% 7.58% 11.87% 2.90% 6.33% 

Configuration 4 4.48% 11.24% 7.23% 9.25% 4.71% 

Configuration 6 5.37% 2.69% 2.62% 6.50% 19.91% 

Machine 
Learning 
Profile 
Error 

Configuration 8 11.04% 10.53% 4.63% 3.44% 2.08% 

Table  6.33 Comparison of error evolution for alternative Decision Support Machine 
Learning Profiles for User Giorgos 
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In this case we may observe that the SMART and AHP DS Profiles exhibit practically 

identical performance as opposed to the RR based DS Profile that here fails to adequately 

capture user’s preferences. The ML Profiles once again outperform the DS counterparts thus 

suggesting an overall dominance of the former. 

Figure  6.14 Comparison of DS and ML Profiles for User Giorgos 

6.5 Fine Tuning 

All experiments up to now have suggested dominance of the Machine Learning 

Profiles in most cases. Nevertheless, in an effort to cover all special cases, mostly with respect 

to user’s preferences that may not always be consistent, we have performed an additional 

series of experiments for the special case where the approved solutions are much less than the 

total solutions inspected by the user. In such a case, we have to employ the performance 

indices presented in the end of the previous chapter in order to capture the intricate details of 

the behaviour of each configuration of the Machine Learning Component. Intuitively, when 

only a few approved solutions exist, it is harder for a mechanism to classify them correctly 

and avoid discarding the whole training set. The Hit Rate, formally defined in the previous 

chapter, reveals how successful a configuration is with respect to its own approved solutions. 

In other words, a high Hit Rate implies that most of the solutions approved by the user are 
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also approved by the configuration. Using the actual solution evaluations from user Giorgos 

we obtain the following statistics regarding the approved solutions, appearing in Table  6.34, 

suggesting that can be used as the basis for this stage of the experiments. 

 Naxos 
House 

Rentis 
House 

Piraeus 
House 

Kalamaki 
House 

Patras 
House 

Approved 41 33 47 17 52 

Inspected 670 411 621 530 511 

Percentage 6.12% 8.03% 7.57% 3.21% 10.18% 

Table  6.34 Approved/Inspected Solutions Percentage 

 

Only small percentages of the solutions have been approved by the actual user. Hence 

we have performed an additional series of experiments for various configurations aiming 

explicitly to maximise Hit Rate. These experiments appear in Table  6.35 (only Naxos House 

training is presented) together with the performance of one of the already examined 

configurations from the previous section appearing in the first row. 

Weak 
Learners 

Hidden 
Layer 1 
Neurons 

Hidden 
Layer 2 
Neurons 

Epochs Learning 
Rate Momentum Error 

Goal Hit Rate 

10 4 0 1000 0.028 0.5 0.1 65.85% 

10 4 0 1000 0.09 0.5 0.1 36.59% 

10 4 0 1000 0.15 0.5 0.1 41.46% 

10 4 0 1000 0.2 0.5 0.1 92.68% 

5 4 0 1000 0.18 0.5 0.1 82.93% 

10 4 0 1000 0.18 0.5 0.1 90.24% 

10 4 0 300 0.2 0.5 0.1 80.49% 

5 4 0 1000 0.2 0.5 0.1 80.49% 

10 4 0 1000 0.25 0.5 0.1 90.24% 

Table  6.35 Machine Learning Component configurations maximising Hit Rate after training 
with the Naxos House scene 
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From these experiments we have selected the configuration exhibiting the largest Hit 

Rate for a comparison with one of the most efficient configurations of the entire experiment 

series as well as with the Decision Support Profiles of the specific user. At this stage, the 

comparison is based on the performance indices defined in the previous chapters. 

 

User: Giorgos Error Hit Rate Performance 
Ratio Miss Rate Modified 

Miss Rate 

AHP 20.19% 58.29% 16.94% 19.45% 2.29 

SMART 20.18% 58.29% 16.95% 19.44% 2.29 

Decision 
Support 
Profile 
Indices RR 25.62% 69.30% 15.94% 26.12% 3.19 

New 
Configuration 
after all scenes 

6.26% 10.51% 70.98% 0.19% 0.01 Machine 
Learning 
Profile 
Indices Configuration 

6 after all 
scenes 

7.92% 25.64% 30.21% 3.49% 0.37 

Table  6.36 Comparison of DS and ML configurations based on performance indices 

 

Both Machine Learning Component configurations exhibit extremely low Error levels 

at the end of this experiment. Moreover, Configuration 6 maintains satisfactory levels for all 

indices regarding the fact that only a small percentage of the solutions were actually approved 

by the user. The Decision Support Profiles demonstrate high Hit Rates, despite the high Error 

levels. This is mainly due to their construction that leads to the approval of a larger number of 

solutions than the Machine Learning Component similarly to one of the extreme cases in the 

discussion of the performance indices in the previous chapter. This also becomes apparent 

from the increased Miss Rates and Modified Miss Rates, suggesting increased numbers of 

erroneously approved solutions. Notice how the promising high Hit Rate of the new 

configuration has been severely decreased after training with more scenes. Nevertheless, the 

New Configuration exhibits increased Performance Ratio but a low Hit Rate, implying that it 

approves only a few solutions but most of them are also approved by the user. Hence, it seems 

more fitting to a solution search mode of the declarative design environment. 
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7 Conclusions 

In this work we have combined and adapted concepts originating from the 

Multicriteria Decision Analysis and Machine Learning areas and have applied them to the 

context of Declarative Modelling methodologies. Our aim has been to enrich an already 

existing environment of Declarative Design with intelligent features that improve the 

response of this environment to any user’s custom preferences. The exchange of ideas among 

the aforementioned areas and the adaptation and application of specific concepts to the 

prototype that has been built have provided new insight and fruitful results in the area of 

declarative modelling. On the other hand, our work has yielded interesting results regarding 

the flexibility of the decision analysis and machine learning techniques used and the degree of 

adaptability they offer when transferred to another domain.  

7.1 Comparison with Other Works 

Despite the wide range of works concerned with user preference acquisition and 

subsequent application in various fields, only a few have been recorded in the area of 

declarative modelling. In particular, [Plemenos02] represents such an effort in the current 

context whereas [Champciaux98a] addresses the same problem in a very similar environment. 

Nevertheless, as it is explained in detail in this section, both of these works operate under a 

different set of assumptions thus yielding a different form of user preference modelling. 

In the [Plemenos02] proposal, two alternative approaches have been implemented 

towards user preference modelling. According to the first, the structure of each submitted 

declarative scene is mapped to a dedicated neural network. This network is subsequently 
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trained with the user approved scenes in order to acquire the user’s interpretation of the 

declarative relations and properties comprising the specific description. After the training 

period, the network is able to evaluate and present to the user only the scenes that comply 

with his/her preferences. Similarly to our approach, the proposed system does not reduce the 

number of solutions generated by the system since it operates on the geometric 

representations produced by the solution generator. In fact, the authors mention as a future 

extension the possibility of applying the neural network’s evaluation during solution 

generation, thus preventing a number of solutions from being explored by the constraint 

satisfaction mechanism performing solution generation. Up to this date, this idea has not been 

further explored. 

The main difference of the Intelligent User Profile Module proposed and implemented 

in the current work when compared with the aforementioned proposal originates from the 

description-oriented nature of the machine learning mechanism used. In particular, the 

aforementioned methodology accurately captures and maintains user preferences for each 

declarative description separately. Practically, after a number of sessions, the user will have 

submitted a number of diverse declarative descriptions, each represented by its own neural 

network, able to recognise user approved solutions for the corresponding description. 

However, this configuration implies that, as soon as a new description is submitted by the 

user, the previously acquired knowledge regarding his/her preferences can not be exploited 

with respect to the newly generated solutions. In other words, the proposed configuration is 

able to generalise its knowledge only within the limits of previously seen declarative 

descriptions. On the other hand, due to the construction of the Intelligent User Profile Module 

proposed in the current work, previously acquired knowledge is fully exploitable in order to 

evaluate solutions originating from a new declarative description. Of course, even in our case, 

and as it became apparent during the experiments, generalisation is not always successful 

since each description may reveal different aspects of the user’s preferences. However, in a 

considerable number of experiments, our mechanism was able to adequately generalise, 

successfully selecting user approved solutions among a newly generated set. This is also due 

to the core assumption we have made that each user is interested in a specific set of observed 

attributes, which, in turn, offer a certain degree of normalisation among solutions generated 

by different descriptions. In a sense, the mechanism proposed in [Plemenos02] addresses the 

user preference problem vertically, within the limits of one declarative description at a time, 
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while we address the same problem horizontally, across the entire range of past as well as 

future declarative descriptions potentially submitted by the user. 

The alternative methodology proposed in [Plemenos02] is based on genetic 

techniques. In particular, an initial solution population is generated and gradually improved 

through the standard genetic operations of crossover, mutation and cloning. Evaluation of 

solutions by the user after inspection plays the role of the fitness function required in the 

genetic techniques context. The main difference of this approach is that it serves mainly as a 

solution search generation mechanism relying on repetitive user feedback. Unlike the case of 

the previous mechanism, not all solutions complying with the input declarative description are 

generated. This implies faster system response as an advantage at the expense of the 

requirement for considerable user intervention and the possibility that certain (possibly highly 

preferable) solutions may never be generated – due to the localised search nature of the 

genetic techniques. On the other hand, the Intelligent User Profile Module proposed and 

implemented in the current work requires minimal user intervention and guarantees discovery 

of the highest preferable solutions at the expense of slower overall system response. 

Nevertheless, the comparison between the two approaches is not entirely valid since one 

represents a solution search technique whereas the other operates in exploration mode, both 

discussed in the Declarative Modelling chapter. In fact, the aforementioned advantages and 

disadvantages represent the result of the alternative interpretations of the trade-off implied by 

the two declarative modelling modes. 

The approach proposed in [Champciaux98a] comprises two main modules: an 

unsupervised classifier, assigning solutions corresponding to each declarative description to 

an automatically generated class hierarchy based on similarity, using the Cobweb algorithm 

[Fisher87] for this purpose, and a user interface module that allows the user to inspect and 

evaluate class representatives thus training a supervised machine learning mechanism to 

recognise a target concept, i.e. a more restrictive interpretation of the initial description. The 

mechanism relies on the assumption that similar solutions share a similar degree of preference 

on behalf of the user. Moreover, the latter of the aforementioned modules implies operation in 

a mode closer to solution search in the sense that entire classes of similar solutions are 

eliminated through user evaluation to yield a small subset of geometrically similar solutions 

representing the target concept. Last but not least, the concept hierarchy and the target 

concept defined by the user are defined based on a single declarative description at a time thus 
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revealing a vertical consideration of the user preferences. Considering the notion of the target 

concept similar to that of user preferences, the Intelligent User Profile Module proposed and 

implemented in the current work provides far greater flexibility in their definition, in the 

sense that the user is free to suggest different evaluations for otherwise similar solutions 

through the Machine Learning Component whereas the Decision Support Component can still 

be used for similar solution classification. Once again, the most important difference is that a 

common model for user preferences, that is acquired and maintained through the evaluation of 

alternative declarative descriptions, can be instantly applied to any newly generated solutions 

originating from a previously unseen declarative description. In other words, the two 

approaches serve a different purpose, the one in [Champciaux98a] aiming to refine the 

submitted declarative description through classification and user feedback, whereas the one 

presented in this work is aiming to capture an overall model of a particular user’s preferences 

through regular system use. 

7.2 Declarative Modelling Benefits 

The motivation for this work stems from the problem of combinatorial explosion that 

is inherent to Declarative Modelling. Modest descriptions containing a few objects and 

relations among them may yield hundreds of thousands of alternative valid solutions. The 

capabilities of modern day equipment have made it possible to generate all alternative 

solutions within a fraction of the time once needed for the same task. However, the capability 

of humans to review these solutions and apply their judgement in order to select those closer 

to their preferences has remained more or less the same through the years. This is one of the 

reasons we have set the task of intelligent solution evaluation as the main focus of our 

research.  

7.2.1 Improved Solution Population 

Declarative Modelling offers the user the ability to start with an abstract, high level 

description of an object, in our context a building scene, relieving him/her from the need to 

specify its concrete geometric properties. Moreover, the fact that the input description is 

abstract and, up to a certain degree, ambiguous may lead to alternative solutions that may be 

of interest to the user, although not originally conceived by him/her as part of the results.  
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The incorporation of the Intelligent User Profile Module to the Open-MultiCAD 

environment offers the user the advantage of receiving a subset of the solution population 

which is closer to his/her personal preferences. Inspection of all generated solutions is still 

possible at the user’s discretion since the module presents the generated solutions in 

descending preference order. In this manner, the user who is not willing to inspect all 

generated solutions may choose to stop solution viewing after a few representatives, knowing 

that the solutions he/she has seen are those closest to his/her preferences. This fact actually 

represents an alternative approach to solution search mode, discussed in the Declarative 

Modelling chapter earlier, for the Open-MultiCAD environment. The user is indeed 

presented, in a transparent manner, with the best representative(s) of the solution space 

corresponding to the declarative description of the scene submitted as input. This corresponds 

exactly to the notion of solution search mode and, in the current context, solution quality 

when considering the best, is connected with the specific user’s preferences. 

7.2.2 Minimal Overhead 

The essence of the declarative modelling is the ability of the user to describe a scene in 

an abstract form, thus avoiding concrete geometric details. In compliance with this we have 

respected, throughout this work, this abstract form of input since it forms a fundamental 

element of declarative modelling. Hence, we have avoided requiring any additional input 

regarding each scene and we have selected to focus the operation of the transparent 

mechanism on the geometric representation of the solutions. 

The only additional input required by the user comprises a pre-processing task, that 

takes place once for every user, where he/she answers a set of questions regarding his/her 

preferences in order to initialise the corresponding decision support profile. The questions 

refer to the importance of the observed characteristics and do not require explicit geometric 

information. 

After this initialisation the user proceeds with the regular use of the system, submitting 

declarative descriptions and evaluating solutions as he/she would have done normally. Even 

at that stage, our main concern has been to avoid the introduction any additional overhead for 

the user with respect to solution evaluation. The reason is that such an overhead would be 

proportional to the – usually large – number of solutions produced and would aggravate the 

already tedious task of manual solution evaluation. On the contrary, during the user’s solution 
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evaluation both modules act transparently. In particular, the Decision Support Component 

also evaluates solutions and compares the performance of the user’s Decision Support profile 

with his/her actual choices. Moreover, at the same time, the Machine Learning Component 

learns user preferences based exclusively on user’s evaluation of the solutions. The Decision 

Support Component is available from the very first scene the user submits as an alternative 

means of automatic solution evaluation. If the user desires, he/she may assign solution 

evaluation entirely to the Decision Support Component.  

If the user decides to continue with manual evaluation, after a number of sessions, i.e. 

scenes submitted and evaluated by the user, the Machine Learning Component – given that 

the user is consistent with a basic set of preferences – outperforms the decision support 

component and/or is able to adequately generalise thus foreseeing user’s evaluation of newly 

generated solutions. At this point the user has two choices: to continue manual solution 

evaluation, thus further improving the accuracy of the Machine Learning Component, or to 

assign automatic solution evaluation entirely to the Machine Learning Component. 

From the above it becomes apparent that based on regular user input and minimal 

overhead that is required only once for each user and is of acceptable complexity, our system 

offers two alternative methods for automatic solution evaluation: 

• One based on the Decision Support Component, which is available from the very first use 

of the system and 

• One based on the Machine Learning Component, which is available after a number of 

sessions of regular system use on behalf of the user. 

7.2.3 Single User Profile for Diverse Declarative Descriptions 

The proposed and implemented Intelligent User Profile Module offers a mechanism 

able to acquire and maintain a user profile, modelling a specific user’s preferences, which is 

applicable to all previous and future declarative descriptions submitted by the user. In other 

words, the preference model obtained for a specific user is not restricted to only one of his/her 

declarative descriptions but applies, in a sense, horizontally to all past and future declarative 

descriptions submitted by the same user. 
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7.2.4 Reusability of User Profile and Generated Solutions 

Following from the previous, the stored user profile may subsequently be applied not 

only to solutions generated based on the specific user’s declarative descriptions but also to 

solutions already generated and stored in the Open-MultiCAD database, possibly for the sake 

of another user. In particular, the user may review and approve stored declarative descriptions 

for which solution generation has already taken place. Next, the user is able to request 

solution evaluation for the specific scene based on his/her personal user profile. As a result, 

the repetition of solution generation, which is an expensive task in terms of time, is avoided 

and the solutions already generated are evaluated for an alternative user.  

Nevertheless, apart from creating a new declarative description, the user is always able 

to review an already stored description and modify it in order to generate solutions according 

to his/her custom variation. However, the ability to equally apply the user’s profile to newly 

or already generated solutions, combined with the reusability of the solutions – produced for 

the sake of one user but subsequently evaluated by many – contributes to an overall increase 

in efficiency without sacrificing the flexibility of the system. 

7.3 Future Work 

Closing the current stage of this work a number of interesting directions have become 

apparent for further research and experimentation.  

One of them stems from the idea to replace the pre-defined set of observed attributes 

with attributes isolated through the application of feature extraction techniques at the 

geometric representation of the produced and/or human evaluated solutions. It is worth noting 

that such an approach could lead to a custom set of observed features, possibly different for 

each user, which, in turn, would require re-engineering of the corresponding Machine 

Learning and Decision Support Components of the Intelligent User Profile Module. Another 

issue to consider in this case is the level of detail that will serve as the basis of the available 

information. In particular, feature extraction could be based on pure geometric information, 

i.e. dimensions and positions of objects, or a more informed interpretation of each solution 

representation, taking into account the interpretation of declarative relations and properties 

appearing in the corresponding declarative description. 
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Another interesting direction to explore would be the effort to apply the user 

preference knowledge, which is currently obtained during the solution evaluation stage, to the 

solution generation stage. This could prevent the generation of uninteresting solutions for the 

specific user, thus resulting to the obvious advantage of faster system response. The main 

disadvantage of such an approach would be the potential elimination of interesting solutions 

during the solution generation stage due to incomplete training or expected error of the 

corresponding intelligent mechanism. Moreover, the solution generation module of the 

existing environment would have to be modified in order to provide the appropriate interface 

for the current form of the user preference model. 

Apart from the aforementioned directions, that form the main axes of future research, 

a few more could be explored separately or in parallel to them. In particular, it would be 

interesting to apply alternative learning algorithms and/or decision support techniques and 

experiment with already existing user preference information in the current environment. This 

experimentation could imply additional modules for the already existing system implementing 

these mechanisms.  

Last but not least, the paradigm of declarative modelling of buildings could be 

replaced by the declarative modelling of other types of objects, not necessarily physical. 

Examples of the latter case could include the abstract definition of policies, system 

organisations, etc. and the representation of their inherent constraints and relationships 

through the Declarative Modelling methodology. User preferences in this context could 

represent executive decisions and choices with respect to alternative courses of action or the 

layout of the functional units respectively. Such an approach could broaden the scope of the 

Declarative Modelling methodology and the corresponding Intelligent User Profile Module 

presented in this work, leading to an assessment of their potential application to an alternative 

category of problems. 
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Conclusions 

Dans ce travail nous avons combiné et adapté les concepts provenant des domaines 

d’aide à la décision multi-critères et d’apprentissage automatique et nous les avons appliqués 

au contexte des méthodologies de la modélisation déclarative. Notre but a été d’enrichir un 

environnement de conception déclarative déjà existant par des dispositifs intelligents qui 

améliorent la réponse de cet environnement aux préférences de chaque utilisateur. L’échange 

des idées entre les domaines mentionnés ci-dessus ainsi que l’adaptation et l’application des 

concepts spécifiques au prototype qui a été établi, ont fourni une nouvelle perception et des 

résultats fructueux dans le domaine de la modélisation déclarative. Par ailleurs, notre travail a 

donné des résultats intéressants concernant la flexibilité des techniques utilisées d’analyse de 

décision et d’apprentissage automatique et aussi concernant le degré d’adaptabilité qu’ils 

offrent lorsqu’ils sont transférés à un autre domaine.  

Comparaison aux autres travaux 

Malgré l’éventail de travaux concernant l’acquisition des préférences d’utilisateur et 

son application dans des domaines variés, peu seulement ont été proposés dans le domaine de 

la modélisation déclarative. En particulier, [Plemenos02] représente un tel effort dans ce 

contexte, tandis que [Champciaux98a] aborde le même problème dans un environnement très 

similaire. Néanmoins, comme il est expliqué en détail dans cette section, tous les deux 

travaux fonctionnent sous un ensemble différent d’hypothèses rapportant de ce fait une forme 

différente de modélisation des préférences d’utilisateur. 
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Dans la proposition [Plemenos02], deux approches alternatives ont été implémentées 

pour modeler les préférences d’utilisateur. Selon la première, la structure de chaque scène 

déclarative soumise est associée à un réseau neuronal dédié. Ce réseau est subséquemment 

entraîné avec les scènes que l’utilisateur approuve afin d’acquérir l’interprétation par 

l’utilisateur des relations et des propriétés déclaratives contenues dans la description 

spécifique. Après la période d’entraînement, le réseau peut évaluer et présenter à l’utilisateur 

seulement les scènes qui sont conformes à ses préférences. De même que dans notre 

approche, le mécanisme proposé ne réduit pas le nombre de solutions générées par le système 

puisqu’il traite les représentations géométriques produites par le générateur des solutions. En 

fait, les auteurs mentionnent comme future extension la possibilité d’appliquer l’évaluation du 

réseau neuronal pendant la génération des solutions, en empêchant un certain nombre de 

solutions d’être exploré par le mécanisme de satisfaction de contrainte exécutant la génération 

des solutions. Jusqu’ici, cette idée n’a pas été explorée plus loin. 

La différence principale du Module Intelligent de Profil d’Utilisateur proposé et mis 

en application dans ce travail en comparaison avec la proposition mentionnée ci-dessus 

provient de la nature orientée à description du mécanisme d’apprentissage automatique 

utilisé. En particulier, la méthodologie mentionnée ci-dessus acquiert et maintient de manière 

précise des préférences d’utilisateur séparément pour chaque description déclarative. Dans la 

pratique, après un certain nombre de sessions, l’utilisateur aura soumis un certain nombre de 

descriptions déclaratives diverses, chacune représentée par son propre réseau neuronal, qui 

sera capable d’identifier les solutions approuvées par l’utilisateur pour la description 

correspondante. Cependant, cette configuration implique que, dès qu’une nouvelle description 

sera soumise par l’utilisateur, la connaissance précédemment acquise concernant ses 

préférences ne peut pas être exploitée sur les solutions nouvellement produites. En d’autres 

termes, la configuration proposée peut généraliser sa connaissance seulement dans les limites 

des descriptions déclaratives précédemment vues. En revanche, la construction du Module 

Intelligent de Profil d’Utilisateur proposé dans ce travail, rend la connaissance précédemment 

acquise entièrement exploitable afin d’évaluer des solutions provenant d’une nouvelle 

description déclarative. Naturellement, même dans notre cas, et comme il est devenu évident 

pendant les expériences, la généralisation n’est pas toujours réussie puisque chaque 

description peut indiquer des aspects différents des préférences de l’utilisateur. Cependant, 

dans un nombre considérable d’expériences, notre mécanisme a pu suffisamment généraliser, 

en choisissant avec succès les solutions approuvées par l’utilisateur parmi un ensemble de 
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nouvelles solutions proposées. Ceci est également dû à l’hypothèse fondamentale que nous 

avons assumée que chaque utilisateur est intéressé à un ensemble spécifique d’attributs 

observés, qui, successivement, offrent un certain degré de normalisation parmi des solutions 

produites par des descriptions différentes. Dans un sens, le mécanisme proposé dans 

[Plemenos02] aborde le problème de préférences d’utilisateur verticalement, dans les limites 

d’une seule description déclarative chaque fois, alors que nous avons abordé le même 

problème horizontalement, à travers l’intervalle complet des descriptions déclaratives passées 

et futures potentiellement soumises par l’utilisateur. 

La méthodologie alternative proposée à [Plemenos02] est fondée sur des techniques 

génétiques. En particulier, une première population de solutions est produite et graduellement 

améliorée par les opérations génétiques standards de croisement, mutation et clonage. 

L’évaluation des solutions par l’utilisateur après l’inspection joue le rôle de la fonction 

d’évaluation exigée dans le contexte des techniques génétiques. La différence principale de 

cette approche est qu’elle sert principalement comme un mécanisme de génération de 

recherche de solution se fondant sur la rétroaction répétitive de l’utilisateur. Contrairement au 

mécanisme précédent, ne sont pas produites toutes les solutions conformes à la description 

déclarative d’entrée. Ceci implique une réaction plus rapide du système comme avantage en 

compensation à l’exigence d’une intervention considérable de l’utilisateur et à la possibilité 

que certaines (probablement meilleures) solutions peuvent ne jamais être produites – à cause 

de la nature localisée de recherche des techniques génétiques. En revanche, le Module 

Intelligent de Profil d’Utilisateur proposé et mis en application dans ce travail, exige une 

intervention minimale de l’utilisateur et garantit la découverte des toutes des solutions 

intéressantes au prix d’une réaction globale du système plus lente. Néanmoins, la 

comparaison entre les deux approches n’est pas entièrement valide puisque l’une représente 

une technique de recherche de solution tandis que l’autre fonctionne en mode d’exploration, 

toutes les deux étant discutées dans le chapitre de la Modélisation Déclarative. En fait, les 

avantages et les inconvénients mentionnés plus haut représentent le résultat des interprétations 

alternatives impliquées par les deux modes de modélisation déclarative. 

L’approche proposée à [Champciaux98a] comporte deux modules principaux : un 

classifieur non supervisé, assignant des solutions correspondant à chaque description 

déclarative à une hiérarchie de classe automatiquement produite fondée sur la similitude, à 

l’aide de l’algorithme Cobweb [Fisher87] à cette fin, et d’un module d’interface d’utilisateur 
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qui permet à l’utilisateur d’examiner et évaluer les représentants de classe, entraînant de ce 

fait une mécanisme d’apprentissage automatique supervisé pour identifier un concept cible, 

c'est-à-dire une interprétation plus restrictive de la description initiale. Le mécanisme repose 

sur l’hypothèse que les solutions semblables partagent un degré similaire de préférences de 

l’utilisateur. Par ailleurs, le dernier des modules mentionnés plus haut implique l’exécution à 

une mode plus proche à la recherche de solution dans le sens qu’on élimine des classes 

entières des solutions semblables par l’évaluation de l’utilisateur pour rapporter un petit sous-

ensemble de solutions géométriquement semblables représentant le concept cible. Enfin et 

surtout, la hiérarchie de concepts et le concept cible définis par l’utilisateur sont définis sur la 

base d’une seule description déclarative chaque fois, indiquant ainsi une considération 

verticale des préférences de l’utilisateur. En considérant la notion du concept cible similaire à 

celui des préférences d’utilisateur, le Module Intelligent de Profil d’Utilisateur proposé et mis 

en application dans ce travail fournit une flexibilité bien plus grande dans leur définition, dans 

le sens que l’utilisateur est libre de suggérer des évaluations différentes pour les solutions 

autrement similaires par le Composant d’Apprentissage Automatique tandis que le 

Composant d’Aide à la Décision peut toujours être utilisé pour classifier des solutions 

similaires. De nouveau, la différence la plus importante est qu’un modèle commun aux 

préférences de l’utilisateur, celui qui est acquis et mis à jour par l’évaluation des descriptions 

déclaratives alternatives, peut être immédiatement appliqué à toutes les solutions 

nouvellement générées, provenant d’une description déclarative précédemment inconnue. En 

d’autres termes, les deux approches servent un objectif différent, celle de [Champciaux98a] 

visant à raffiner la description déclarative suggérée par la classification et la rétroaction 

d’utilisateur, tandis que celle présentée dans ce travail vise à acquérir un modèle global des 

préférences d’un utilisateur particulier par l’utilisation régulière du système. 

Les avantages pour la modélisation déclarative 

La raison principale de ce travail provient du problème de l’explosion combinatoire 

qui est inhérente à la modélisation déclarative. Les descriptions simples contenant quelques 

objets et relations entre eux, peuvent conduire à centaines de milliers de solutions valides 

alternatives. Les capacités du matériel informatique moderne permettent la production de 

toutes les solutions alternatives dans une fraction du temps qui, autrefois, était nécessaire pour 
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la même tâche. Cependant, la capacité des gens de passer en revue ces solutions et d’appliquer 

leur jugement afin de choisir celles qui sont plus proches de leurs préférences reste plus ou 

moins la même au cours des années. C’est l’une des raisons pour laquelle nous avons placé la 

tâche de l’évaluation intelligente de solutions au centre de notre recherche.  

Ensemble de solutions amélioré 

La modélisation déclarative offre à l’utilisateur la capacité de commencer par une 

description abstraite de haut niveau d’un objet, dans notre contexte une scène de bâtiment, le 

dispensant de la nécessité d’indiquer ses propriétés géométriques concrètes. Par ailleurs, le 

fait que la description d’entrée est abstraite et, jusqu’à un certain degré, ambigüe peut mener à 

des solutions alternatives qui peuvent intéresser l’utilisateur, même si celles-ci n’étaient pas 

initialement conçues par lui comme faisant partie des résultats.  

L’incorporation du Module Intelligent de Profil d’Utilisateur à l’environnement 

Open-MultiCAD offre à l’utilisateur l’avantage de recevoir un sous-ensemble de la 

population de solutions qui est plus près de ses préférences personnelles. L’inspection de 

toutes les solutions produites est encore possible à la discrétion de l’utilisateur puisque le 

module présente les solutions produites par ordre décroissant de préférence. De cette manière, 

l’utilisateur qui n’est pas disposé à examiner toutes les solutions produites peut choisir 

d’arrêter le passage en revue des solutions après quelques représentants, sachant que les 

solutions qu’il a vues sont les plus proches de ses préférences. Ce fait représente réellement 

une approche alternative au mode de recherche de solution, discutée dans le chapitre 

Modélisation Déclarative, pour l’environnement Open-MultiCAD. L’utilisateur est, en effet, 

présenté, d’une façon transparente, avec le(s) meilleur(s) représentant(s) de l’espace de 

solutions correspondant à la description déclarative de la scène soumise comme entrée. Ceci 

correspond exactement à la notion du mode de recherche de solution et, dans le contexte 

actuel, la qualité des solutions est reliée aux préférences de l’utilisateur spécifique. 

Surcoût minimal pour le système 

L’essence de modélisation déclarative est la capacité de l’utilisateur de décrire une 

scène sous une forme abstraite évitant, de ce fait, les détails géométriques concrets. 

Conformément à ceci, nous avons respecté, dans tout ce travail, cette forme abstraite d’entrée 

puisqu’elle constitue un élément fondamental de la modélisation déclarative. Par conséquent, 

nous avons évité de demander une quelconque entrée supplémentaire concernant chaque 
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scène et nous avons choisi de concentrer l’opération du mécanisme transparent sur la 

représentation géométrique des solutions. 

La seule entrée supplémentaire exigée de l’utilisateur comporte une tâche de 

prétraitement, qui a lieu une fois pour chaque utilisateur, où il répond à un ensemble de 

questions concernant ses préférences afin d’initialiser le profil d’aide à la décision 

correspondant. Les questions portent sur l’importance des caractéristiques observées et 

n’exigent pas d’information géométrique explicite. 

Après cette initialisation, l’utilisateur procède à l’utilisation régulière du système, 

soumettant des descriptions déclaratives et évaluant des solutions comme il l’aurait fait 

normalement. Même à cette étape, notre soin principal a été d’éviter l’introduction de surcoût 

supplémentaire pour l’utilisateur en ce qui concerne l’évaluation de solution. La raison est 

qu’un tel surcoût serait proportionnel au nombre – habituellement grand – de solutions 

produites et aggraverait la tâche déjà pénible de l’évaluation manuelle de solutions. Au 

contraire, pendant l’évaluation de la solution par l’utilisateur, les deux modules agissent d’une 

manière transparente. En particulier, le Composant d’Aide à la Décision évalue également 

des solutions et compare l’exécution du profil d’aide à la décision de l’utilisateur à ses choix 

réels. Par ailleurs, en même temps, le Composant d’Apprentissage Automatique apprend les 

préférences de l’utilisateur basé exclusivement sur l’évaluation de solutions de l’utilisateur. 

Le Composant d’Aide à la Décision est disponible à partir de la première scène que 

l’utilisateur soumet, en tant que moyen alternatif d’évaluation automatique de solutions. Si 

l’utilisateur le désire, il peut confier l’évaluation de solutions entièrement au Composant 

d’Aide à la Décision.  

Si l’utilisateur décide de continuer l’évaluation manuelle, après un certain nombre de 

sessions, c’est-à-dire de scènes soumises et évaluées par l’utilisateur, le Composant 

d’Apprentissage Automatique – en supposant que les choix de l’utilisateur sont cohérents 

avec un ensemble de préférences de base – surpasse le Composant d’Aide à la Décision et il 

peut généraliser suffisamment, prévoyant, de ce fait, l’évaluation par l’utilisateur des 

solutions nouvellement produites. En ce moment l’utilisateur a deux choix : continuer 

l’évaluation manuelle de solutions, améliorant la précision du Composant d’Apprentissage 

Automatique, ou confier entièrement l’évaluation automatique de solutions au Composant 

d’Apprentissage Automatique. 



CONCLUSIONS 
 

GEORGIOS BARDIS  193 

D’après ce qui précède, il devient évident que, basé sur l’intervention normale de 

l’utilisateur plus un surcoût minimal, qui est exigé seulement une fois pour chaque utilisateur 

et est de complexité acceptable, notre système offre deux méthodes alternatives pour 

l’évaluation automatique de solutions : 

• Une méthode basée sur le Composant d’Aide à la Décision, qui est disponible même à la 

première utilisation du système et 

• Une méthode basée sur le Composant d’Apprentissage Automatique, qui est disponible 

après un certain nombre de sessions d’utilisation régulière du système par l’utilisateur. 

Profil d’utilisateur unique pour des descriptions déclaratives 

diverses 

Le Module Intelligent de Profil d’Utilisateur proposé et implémenté offre un 

mécanisme capable d’acquérir et mettre à jour un profil d’utilisateur, modelant les préférences 

de chaque utilisateur, qui est applicable à toutes les descriptions déclaratives précédentes et 

futures soumises par l’utilisateur. En d’autres termes, le modèle de préférence obtenu pour un 

utilisateur particulier n’est pas limité seulement à une de ses descriptions déclaratives mais 

s’applique, dans un sens, horizontalement à toutes les descriptions déclaratives, passées ou 

futures, soumises par le même utilisateur. 

Réutilisabilité du profil d’utilisateur et des solutions produites 

Suivant ce qui précède, le profil d’utilisateur enregistré peut subséquemment être 

appliqué non seulement aux solutions produites basées sur les descriptions déclaratives de 

l’utilisateur spécifique mais, également, aux solutions déjà produites et enregistrées dans la 

base de données d’Open-MultiCAD probablement pour un autre utilisateur. En particulier, 

l’utilisateur peut passer en revue et approuver les descriptions déclaratives enregistrées pour 

lesquelles la génération de solutions a déjà eu lieu. Ensuite, l’utilisateur peut demander 

l’évaluation de solutions pour la scène spécifique basée sur son profil d’utilisateur personnel. 

En conséquence, la répétition de la génération de solution, qui est une tâche chère en termes 

de temps, est évitée et les solutions déjà produites sont évaluées pour un autre utilisateur.  

Néanmoins, en dehors de la création d’une nouvelle description déclarative, 

l’utilisateur peut toujours examiner une description déjà enregistrée et la modifier afin de 

produire des solutions selon sa variation individuelle. Cependant, la capacité d’appliquer 
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également le profil d’utilisateur aux solutions nouvelles ou déjà produites, combinée avec la 

réutilisabilité des solutions – produites pour un utilisateur mais subséquemment évaluées par 

plusieurs – contribue à une augmentation globale d’efficacité sans y sacrifier la flexibilité du 

système. 

Recherche future 

En terminant ce travail, un certain nombre de directions intéressantes sont devenues 

évidentes pour pousser plus loin la recherche et l’expérimentation. 

L’une d’elles provient de l’idée de remplacer l’ensemble prédéfini d’attributs observés 

par des attributs isolés à travers l’application de techniques d’extraction de caractéristiques 

sur la représentation géométrique des solutions qui sont produites et/ou évaluées par une 

personne. Il vaut la peine de noter qu’une telle approche pourrait mener à un ensemble 

personnalisé de dispositifs observés, probablement différent pour chaque utilisateur, qui 

aurait, à son tour, besoin de la reconfiguration des composants correspondants d’Aide à la 

Décision et d’Apprentissage Automatique du Module Intelligent de Profil d’Utilisateur. Un 

autre point à considérer dans ce cas-ci est le niveau du détail qui servira comme base de 

l’information disponible. En particulier, l’extraction de caractéristiques pourrait être basée sur 

l’information géométrique pure, c’est-à-dire les dimensions et les positions des objets, ou sur 

une interprétation mieux renseignée de chaque représentation de solution, tenant compte de 

l’interprétation des relations déclaratives et des propriétés apparaissant dans la description 

déclarative correspondante. 

Une autre direction intéressante à explorer serait d’essayer d’appliquer la connaissance 

des préférences de l’utilisateur, qui est actuellement obtenue pendant l’étape d’évaluation de 

solutions, à l’étape de génération de solutions. Ceci pourrait empêcher la génération des 

solutions inintéressantes pour l’utilisateur spécifique, résultant, de ce fait, à l’avantage évident 

d’une réaction de système plus rapide. L’inconvénient principal d’une telle approche serait 

l’élimination potentielle de solutions intéressantes pendant l’étape de génération de solutions 

due à un entrainement incomplet ou à l’erreur prévue du mécanisme intelligent correspondant. 

D’ailleurs, le module de génération de solutions de l’environnement existant devrait être 
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modifié afin de fournir l’interface appropriée pour la forme actuelle du modèle de préférences 

de l’utilisateur. 

A part les directions mentionnées ci-dessus, qui forment les axes principaux d’une 

recherche future, quelques autres pourraient être explorées séparément ou en parallèle avec 

elles. En particulier, il serait intéressant d’appliquer des algorithmes alternatifs 

d’apprentissage automatique et/ou des techniques d’aide à la décision et les expérimenter avec 

l’information de préférences d’utilisateurs déjà existante dans l’environnement actuel. Cette 

expérimentation pourrait impliquer des modules additionnels pour le système déjà existant, 

implémentant ces mécanismes nouveaux.  

Enfin, le paradigme de modélisation déclarative de bâtiments pourrait être remplacé 

par la modélisation déclarative d’autres types d’objets, pas nécessairement physiques. 

Quelques exemples du dernier cas pourraient inclure la définition abstraite de politiques, 

d’organisations de systèmes, etc. et la représentation de leurs contraintes et rapports inhérents 

par la méthodologie de la Modélisation Déclarative. Les préférences d’utilisateur dans ce 

contexte pourraient représenter les décisions exécutives et les choix en ce qui concerne les 

lignes d’action alternatives ou la disposition des unités fonctionnelles respectivement. Une 

telle approche pourrait élargir la portée de la méthodologie de Modélisation Déclarative et du 

Module Intelligent de Profil d’Utilisateur présenté dans ce travail, menant à une évaluation de 

leur application potentielle dans une autre catégorie de problèmes. 
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