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INTRODUCTION GÉNÉRALE – RÉSUMÉ 

Il y a environ 4 décennies que les premières publications sur la conception assistée par 

ordinateur (CAO) des dispositifs micro-ondes sont apparues dans la littérature [1], [2]. 

Depuis, beaucoup d'améliorations ont été apportées à l'utilisation itérative de 

techniques numériques pour l'optimisation des circuits et dispositifs micro-ondes. Ces 

améliorations ont été basées principalement au départ sur le développement d’outils 

de CAO plus rapides et plus précis. De plus, il y a eu une tendance à développer des 

outils relativement généraux s’appliquant à des structures arbitraires. Naturellement, 

la croissance rapide des moyens informatiques et des techniques de programmation a 

eu un rôle majeur dans le succès des outils de CAO dans les secteurs académique puis 

industriel. 

Une stratégie classique de CAO pour les dispositifs micro-ondes emploie une 

méthode numérique basée par exemple sur les lois de l’électromagnétisme pour 

modéliser son comportement fréquentiel ou temporel. Une fonction d’erreur par 

rapport à des spécifications électriques peut alors être calculée (automatiquement ou 

manuellement), et l’utilisateur change les paramètres de conception pour améliorer 

l'erreur jusqu'à ce que la valeur désirée soit atteinte. La boucle typique de conception 

est décrite dans la Fig. 1. Une fois la structure et les variables initiales (dimensions 

géométriques, propriétés des matériaux, etc.) sélectionnées, les variables sont mises à 

jour dans la boucle. Les mises à jour sont basées sur le calcul de la fonction d’erreur. 

La fonction d’erreur est généralement une fonction dépendante d’une valeur 

caractéristique calculée par la méthode numérique, par exemple du champ 

électromagnétique ou des paramètres de répartition. Bien que de nombreuses 

techniques différentes aient été développées jusqu'ici, toutes peuvent s'adapter à 

l'organigramme montré dans la Fig. 1. De plus, la plupart des développements pour 

l’optimisation des circuits et dispositifs micro-ondes ont été définis dans le cadre de 

l'optimisation classique, principalement dans deux voies, les stratégies efficaces de 

mise à jour des variables d’optimisation et l’analyse accélérée du champ par des 

techniques souvent approchées. 

Les stratégies classiques de mise à jour des dimensions du dispositif ont été basées 

principalement sur des méthodes de gradient. Au cours des années, beaucoup de 
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variations des techniques de gradient ont été testées, puis durant la dernière décennie 

de nouvelles techniques, radicalement différentes, sont apparues et ont révolutionné la 

stratégie de mise à jour pour la CAO des circuits. La première tendance radicale a été 

le développement de techniques évolutionnaires telles que les algorithmes génétiques 

(AG) [3]. Une autre étape notable a été l'utilisation de concepts modernes tels que les 

réseaux de neurones artificiels ou le Space Mapping [4], [5]. En dépit de tous les 

efforts conséquents rapportés dans la littérature, très peu de travail a été vraiment 

effectué pour modifier la procédure classique d'optimisation impliquant une analyse 

électromagnétique à chaque itération. 

 

Le chapitre I propose un examen détaillé des méthodes conventionnelles pour 

l'optimisation des dispositifs micro-ondes. Les différentes étapes constituant la boucle 

classique d'optimisation (Fig. 1) sont discutées en profondeur. Les étapes spécifiques 

de la procédure d’optimisation pour les dispositifs micro-ondes sont la définition de la 

fonction objectif et la méthode numérique donnant accès aux valeurs du champ 

électromagnétique. 

L'analyse numérique du champ électromagnétique est un sujet de recherche très actif 

depuis le début des années 70, arrivant actuellement à maturité, et qui bénéficie des 

avancements effectués sur les calculateurs numériques. Cependant, l'analyse 

numérique n’étant pas le sujet prépondérant du travail effectué, les différentes 

méthodes ne sont abordées que succinctement dans ce premier chapitre. 

La fonction objectif (également désignée sous le nom de fonction coût ou de fonction 

d’erreur) définie pour la CAO micro-onde doit s’adapter généralement à deux 

conditions distinctes, à savoir les caractéristiques désirée (idéale) et actuelle. Cette 

question est discutée plus en détail dans le chapitre I. 

Au delà de ces deux sujets, ce chapitre adresse plusieurs techniques d'optimisation 

contemporaines. 

 

Le chapitre II commence par l'introduction des techniques de paramétrisation en 

général. Le but de la paramétrisation est d'exprimer les caractéristiques du modèle 

numérique représentant le dispositif en fonction de ses différents paramètres sous une 

forme analytique. Normalement la réalisation d'un modèle ainsi paramétré exige 
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d’obtenir les caractéristiques de dispositif et ses dérivés dans une plage de variation 

donnée. Dans le contexte de la CAO des dispositifs micro-ondes, nous montrerons 

que le comportement du modèle peut être caractérisé convenablement en fonction de 

deux paramètres, la fréquence et la géométrie. 

La paramétrisation du champ électromagnétique en fonction de la fréquence, qui 

permet d’accélérer l'analyse électromagnétique dans la boucle d'optimisation est 

rapportée dans la première partie du chapitre II. 

Le corps principal du chapitre II est consacré à la paramétrisation de la géométrie et à 

son application à l’optimisation des dispositifs micro-ondes. Nous montrerons alors 

qu’en utilisant la paramétrisation géométrique, la boucle d'optimisation classique peut 

être fondamentalement modifiée, de sorte à limiter au strict minimum le nombre 

d’analyses électromagnétiques. En effet, une fois, la paramétrisation géométrique du 

modèle effectuée, les caractéristiques liées aux variables d’optimisation sont calculées 

aux itérations suivantes en utilisant le modèle paramété. Ainsi l’étape la plus coûteuse 

dans la boucle d'optimisation classique est court-circuitée. 

Pour effectuer une analyse électromagnétique par une méthode numérique, la 

géométrie de la structure doit être discrétisée. Pour la plupart des méthodes 

numériques, comme par exemple la méthode des éléments finis qui est utilisée dans ce 

travail, un maillage est généré de manière quasi-aléatoire. Les gradients obtenus en 

appliquant une telle technique sont alors habituellement discontinus. Ainsi une étape 

essentielle pour constituer le modèle géométriquement paramétré, est d'employer un 

maillage paramétré. La méthode classique pour déformer un maillage existant est 

basée sur l’analogie au système masse-ressort. Cette méthode recèle cependant 

quelques imperfections. Dans le chapitre II de nouvelles méthodes sont étudiées. Tout 

d'abord, une méthode dite de coordonnées barycentriques généralisées est employée 

pour exprimer chaque point intérieur (noeuds du maillage) d'un polygone en fonction 

de ses sommets. Une seconde méthode relativement semblable est aussi étudiée dans 

ce chapitre et les deux techniques, déjà employées dans le contexte de l'infographie, 

permettent de générer un maillage paramétré remplaçant sa génération pseudo-

aléatoire à chaque itération ce qui améliore d’une part les gradients donc l'exactitude 

et d’autre part la vitesse de parcours de la boucle. Toutes les améliorations apportées 

par les paramétrisations du maillage et de la géométrie sont illustrées par un exemple. 
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Un filtre 5 pôles à cavités cylindriques est ensuite optimisé par un modèle 

géométriquement paramétré avec les outils développés par la société CADOE. Le 

code éléments finis développé au laboratoire a été couplé à ce logiciel dans le cadre 

d’une action de R&T du CNES. A partir de cet exemple, une stratégie d’optimisation 

utilisant un modèle électromagnétique paramétré géométriquement est développée. 

Une initialisation performantes des variables permet d’utiliser une stratégie classique 

basée sur un calcul de gradient. Les résultats obtenus au bout de seulement quelques 

itérations sont présentés à la fin du chapitre. 

 

Le chapitre III est consacré à l'application des algorithmes évolutionnaires dans le 

cadre de l’optimisation des circuits micro-ondes. Toutes les stratégies d’optimisation 

conventionnelles mettent à jour les paramètres du modèle (paramétré ou non) sur la 

base d’un calcul de gradient. Les techniques de gradient dépendant intrinsèquement 

du point initial choisi, si le point initial devient très éloigné du point optimal, les 

risques de divergence deviennent importants. Les algorithmes évolutionnaires sont 

l'une des solutions possibles pour résoudre les problèmes d'optimisation quand le 

concepteur n’a que peu voire pas d’information lui permettant d’initialiser 

efficacement son vecteur de paramètres.  

Le chapitre débute avec une introduction générale des algorithmes évolutionnaires. 

Ces méthodes emploient habituellement l'analogie entre l'espace des paramètres et un 

système biologique. Elles consistent à sélectionner un individu parmi une population 

aléatoirement produite. Les individus dans cette population sont des vecteurs de 

paramètres et un index de forme physique (fonction objectif) est assigné à chacun des 

individus. La méthode évolutionnaire la plus populaire est certainement l'algorithme 

génétique (AG) qui est présenté avec ses dérivés dans ce chapitre. 

Les algorithmes génétiques ont été employés pour l'optimisation des structures 

électromagnétiques depuis plus d'une décennie. L'inconvénient principal de cet 

algorithme est son comportement relativement lent. Afin de maintenir une certaine 

généralité, la population témoin doit être relativement large pour s’assurer d’avoir 

inclus toutes les propriétés que peut incorporer la solution optimale. Toutefois, afin de 

générer la population témoin, plusieurs analyses électromagnétiques sont nécessaires, 

ce qui peut rendre l’étape d’initialisation assez coûteuse en temps, et l'algorithme 
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évolutionnaire totalement incompatible avec la conception d’antennes ou de 

composants micro-ondes. 

La technique d'optimisation par « essaims particulaires » (Particle swarm optimization 

- PSO) est une technique évolutionnaire plus récente qui fait son apparition dans le 

domaine de l’électromagnétisme et les quelques articles disponibles reflètent 

principalement un travail sur les antennes. La méthode permet de déterminer 

l'optimum global. En dépit de sa nature évolutionnaire, la méthode est 

considérablement plus rapide qu’un algorithme génétique et peut être vue comme un 

compromis approprié entre les méthodes de gradient et les algorithmes génétiques. 

Quelques exemples illustrent cette méthode. Les résultats montrent une rapidité 

d’exécution supérieure à l’algorithme génétique, tout en maintenant les performances 

globales. 

. 

Fig. 1. Procédure d'optimisation typique pour les dispositifs micro-ondes 



Introduction générale 

 

8

Références 

[1] J. W. Bandler, “Optimization methods for computer aided design,” IEEE 

Transaction on Microwave Theory and Techniques, vol. MTT-17, No. 8, pp. 

533-552, August 1969. 

[2] G.C. Temes and D.A. Calahan (1967), “Computer-aided network optimization 

the state of-the-art,”. Proc. IEEE, vol. 55, pp. 1832-1863. 

[3] J. M.Johnson and Y.Rahmat-Samii, “Genetic algorithms in electromagnetics,” 

Proc. IEEE Antennas Propagat. Soc. Int. Symp. Baltimore, MD, pp. 1480-1483, 

July 1996. 

[4] J. W.Bandler, R. M.Biernacki, S. H.Chen, P. A.Grobelny, and R. H.Hemmers, 

“Space mapping technique for electromagnetic optimization,” IEEE Trans. 

Microwave Theory Tech., vol. 42, pp. 2536-2544, Dec. 1994. 

[5] J. E. Rayas-Sánchez, Neural space mapping methods for modeling and design 

of microwave circuits, Ph.D. dissertation Hamilton, ON, Canada: Dept. Elect. 

Comput. Eng., McMaster Univ., 2001 

[6] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in 

electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 

52, No. 2, pp. 397 – 407, Feb. 2004  

 



Chapter I 

Generalities about EM-based Optimization of Microwave Devices 

9

 

 

 

 

 

CHAPTER I 
 

Generalities about EM-based Optimization 

of Microwave Devices  

 

 

 



Chapter I 

Generalities about EM-based Optimization of Microwave Devices 

10

 



Chapter I 

Generalities about EM-based Optimization of Microwave Devices 

11

I.1 Introduction 

Choosing the appropriate optimization techniques highly depends on the physics of 

the structure to be optimized, the required accuracy and available resources. In fact 

without comprehension of the nature of the problem the design process will be 

inefficient. Actually no algorithm for optimizing general functions exists that will 

always find the global optimum for a general minimization problem in a reasonable 

amount of time. 

This chapter presents a detailed survey of the present work on computer-aided design 

of microwave devices and circuits.  

It has been tried to provide a platforms for the suggested improvements in the 

following chapters (chapters 2 and 3). To completely understand the significance of 

the proposed techniques, certain aspects of the optimization procedure should be 

discussed in depth. 

The chapter starts with explanation of the fundamental concepts in optimization, 

followed by description of each block in a classic optimization loop. Some of the 

components of the design optimization loop such as update strategy are common in 

any design practice. In contrary, some aspects of the optimization exclusively apply to 

the optimization in electromagnetics domain. Among all this microwave-specific 

components, defining the objective function is not only distinct for microwave 

domain (in comparison to other optimization problems) but also it varies among 

different microwave design problems. Thus the derivation of the objective function in 

microwave CAD has been covered in more detail. Numerical analysis of microwave 

structures is another aspect which is distinct for microwave engineering, although 

these methods have been deployed for different applications beforehand. Thus The 

numerical analysis of the microwave devices has been studied in depth, accordingly. 

The issues to be improved in the context of microwave CAD is addressed at the end 

of this chapter. 
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I.2 Fundamental concepts in optimization 

I.2.1 Fundamental definitions 

The problem is to minimize the function T, 

: nT � � �  

( )T T p=  

 

(I-1) 

and where 

[ ]1 2 ...
T

Np p p p=  (I-2) 

T is called the objective function or error function. The procedure to construct the 

objective function is discussed in detail later. p  is an N-dimensional vector, called 

the parameter vector. The space including all the parameter vectors is called 

parameter space. The dimensionality of a parameter space is equal to the number of 

element of the vector p . 

In general the minimization is subject to constraints, 

1 1( )M MC p b× ×≤  (I-3) 

The constraints are satisfied either during optimization or by the optimum solution. 

Any vector which satisfies the constraint is called feasible. The vector 

[ ]
1

1 ,
M

T

M i ib b b
×

× = ∈ � , defines the limits or bounds for the constraints. 

Fig. I- 1 shows a 2-D contour which illustrates some features encountered in 

optimization problems. Hypercontours are described by the relation, 

( ) .T p const=  (I-4) 
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Fig. I- 1. Illustration of hyper-contours 

A minimum may be located by a point optp  on the response hyper-surface generated 

by ( )T p  such that 

( ) ( ),opt optT T p T p p= ≤ ∀  (I-5) 

If we expand T we would have, 

1( ) ( ) ( ). ...2
T TT p p T p T p p p H p+ = + ∇ + +� � � �  (I-6) 

where 

1

.

.

N

p

p

p

 
 
 =
 
 
 

�

�

�

 

(I-7) 

and, 

1

( )

.
( )

.

( )

N

T p

p

T p

T p

p

∂ 
 ∂ 
 

∇ =  
 
 ∂
 ∂ 

 

(I-8) 

is the gradient vector and 
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( ) ij N N
H p h

×
 =    (I-9) 

while, 

2 ( )

.ij
i j

T p
h

p p

∂=
∂ ∂

 
(I-10) 

Matrix ( )H p  is called Hessian matrix. One can conclude that, ( ) 0optT p∇ = and 

( )optH p is positive definite. 

We generally consider families or classes of optimization problems, characterized by 

particular forms of the objective and constraint functions. As an important example, 

the optimization problem (I-1) is called a linear problem if the objective and 

constraint functions are linear, i.e., satisfy 

( ) ( ) ( )T p q T p T qα β α β+ = +  (I-11) 

for all , Np q ∈ � and  ,α β ∈ � . If the optimization problem is not linear, it is called a 

non-linear problem.  

A convex optimization problem is one in which the objective and constraint functions 

are convex, which means they satisfy the inequality  

( ) ( ) ( )T p q T p T qα β α β+ ≤ +  (I-12) 

with , Np q ∈ � ,  ,α β ∈ � , , 0α β ≥  and 1α β+ = . Comparing (I-12)and (I-11),  we 

see that convexity is more general than linearity: inequality replaces the more 

restrictive equality, and the inequality must hold only for certain values of α and β . 

Since any linear problem is therefore a convex optimization problem, we can consider 

convex optimization to be a generalization of linear programming. 

I.2.2 Solving optimization problems  

A solution method for a class of optimization problems is an algorithm that computes 

a solution of the problem (to some given accuracy), given a particular problem from 

the class, i.e., an instance of the problem. Since the late 1940s, a large effort has gone 

into developing algorithms for solving various classes of optimization problems, 

analyzing their properties, and developing appropriate software implementations. The 

effectiveness of such an algorithm, i.e., its ability to solve the optimization problem 

(I-1), varies considerably, and depends on factors such as the particular forms of the 
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objective and constraint functions, how many variables and constraints there are, and 

special structure, such as sparsity, when each constraint function depends on only a 

small number of the variables. Even when the objective and constraint functions are 

smooth (for example, polynomials) the general optimization problem (I-1) is 

surprisingly difficult to solve.  

I.2.3 Least squares problems 

A least-squares problem is an optimization problem with no constraints (i.e., M =0) 

and an objective which is a sum of squares of terms of the form T
i ia p b−  : 

2 2

2
1

( ) ( )
N

i i
i

T p Ap b a p b
=

= − = −∑��������  
(I-13) 

Here ia ’s are rows of A.  

The solution of a least-squares problem (13) can be reduced to solving a set of linear 

equations, 

( )T TA A p A b=  (I-14) 

so we have the analytical solution 1( )opt T Tp A A A b−= . For least-squares problems 

there has been developed several algorithms (and software implementations) for 

solving the problem to high accuracy, with very high reliability. A current desktop 

computer can solve a least-squares problem with hundreds of variables, and thousands 

of terms, in a few seconds; more powerful computers, of course, can solve larger 

problems, or the same size problems, faster. Moreover, these solution times will 

decrease exponentially in the future, according to Moore's law. Algorithms and 

software for solving least-squares problems are reliable enough for embedded 

optimization. In many cases we can solve even larger least-squares problems, by 

exploiting some special structure in the coefficient matrix A. For extremely large 

problems (say, with millions of variables), or for problems with exacting real-time 

computing requirements, solving a least-squares problem can be a challenge. But in 

the vast majority of cases, one can say that existing methods are very effective, and 

extremely reliable. Indeed, we can say that solving least-squares problems that are not 

on the boundary of what is currently achievable is a mature technology that can be 

reliably used by many people who do not know, and do not need to know, the details.  
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The least-squares problem is the basis for regression analysis, optimal control, and 

many parameter estimation and data fitting methods. It has a number of statistical 

interpretations, e.g., as maximum likelihood estimation of a vector p , given linear 

measurements corrupted by Gaussian measurement errors. Recognizing an 

optimization problem as a least-squares problem is straightforward; we only need to 

verify that the objective is a quadratic function (and then test whether the associated 

quadratic form is positive semi-definite). While the basic least-squares problem has a 

simple fixed form, several standard techniques are used to increase its flexibility in 

applications. In weighted least-squares, the weighted least-squares cost  

2

1

( )
N

i i i
i

w a p b
=

−∑  
(I-15) 

where iw ’s are positive, is minimized. (This problem is readily cast and solved as a 

standard least-squares problem). 

I.2.4 Linear problems  

Another important class of optimization problems is linear programming, in which the 

objective and all constraint functions are linear: 

Tc p��������  

T
i ia p b≤��	
��� �
  

(I-16) 

, N
ia c ∈ � are problem parameters and  ib specify constraints. 

There is no simple analytical formula for the solution of a linear problem (as there is 

for a least-squares problem), but there are a variety of very effective methods for 

solving them, and the more recent interior point methods described later in this report. 

While we cannot give the exact number of arithmetic operations required solving a 

linear problem (as we can for least-squares), we can establish rigorous bounds on the 

number of operations required to solve a linear problem, to a given accuracy, using an 

interior-point method. These algorithms are quite reliable, although perhaps not quite 

as reliable as methods for least-squares. We can easily solve problems with hundreds 

of variables and thousands of constraints on a small desktop computer, in a matter of 

seconds. If the problem is sparse, or has some other exploitable structure, we can 

often solve problems with tens or hundreds of thousands of variables and constraints. 
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As with least-squares problems, it is still a challenge to solve extremely large linear 

problem, or to solve linear problem with exacting real-time computing requirements. 

But, like least-squares, we can say that solving (most) linear problem is a mature 

technology. Linear programming solvers can be (and are) embedded in many tools 

and applications. 

I.2.5 Convex optimization 

A convex optimization problem is one of the form 

( )T p��������  

( )c p b≤��	
��� ��
  

(I-17) 

where Np ∈ � the functions ( )T p  and ( )c p satisfy convexity conditions stated in (I-

12). The least-squares problem (I-13) and linear problem (I-16) are both special cases 

of the general convex optimization problem (I-17). 

There is in general no analytical formula for the solution of convex optimization 

problems, but (as with linear problems) there are very effective methods for solving 

them. Interior-point methods work very well in practice and in some cases can be 

proved to solve the problem to a specified accuracy with a number of operations that 

does not exceed a polynomial of the problem dimensions. 

Like methods for solving linear problem, these interior-point methods are quite 

reliable. We can easily solve problems with hundreds of variables and thousands of 

constraints on a current desktop computer, in at most a few tens of seconds. By 

exploiting problem structure (such as sparsity), we can solve far larger problems, with 

many thousands of variables and constraints. We cannot yet claim that solving general 

convex optimization problems is a mature technology, like solving least-squares or 

linear problems. Research on interior-point methods for general non-linear convex 

optimization is still a very active research area, and no consensus has emerged yet as 

to what the best method or methods are. 

I.2.6 Local optimization 

In local optimization, the compromise is to give up seeking the optimal p , which 

minimizes the objective over all feasible points. Instead we seek a point that is only 

locally optimal, which means that it minimizes the objective function among feasible 

points that are near it, but is not guaranteed to have a lower objective value than all 
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other feasible points. A large fraction of the research on general non-linear 

optimization problem has focused on methods for local optimization, which as a 

consequence are well developed. 

Local optimization methods can be fast, can handle large-scale problems, and are 

widely applicable, since they only require differentiability of the objective and 

constraint functions. As a result, local optimization methods are widely used in 

applications where there is value in finding a good point, if not the very best. In an 

engineering design application, for example, local optimization can be used to 

improve the performance of a design originally obtained by manual, or other, design 

methods. 

There are several disadvantages of local optimization methods, beyond (possibly) not 

finding the true, globally optimal solution. The methods require an initial guess for 

the optimization variable. This initial guess or starting point is critical, and can greatly 

affect the objective value of the local solution obtained. Little information is provided 

about how far from (globally) optimal the local solution is. Local optimization 

methods are often sensitive to algorithm parameter values, which may need to be 

adjusted for a particular problem, or family of problems. 

Using a local optimization method is trickier than solving a least-squares problem, 

linear problem, or convex optimization problem. It involves experimenting with the 

choice of algorithm, adjusting algorithm parameters, and finding a good enough initial 

guess (when one instance is to be solved) or a method for producing a good enough 

initial guess (when a family of problems is to be solved). Roughly speaking, local 

optimization methods are more art than technology. Local optimization is a well 

developed art, and often very effective, but it is nevertheless an art. In contrast, there 

is little art involved in solving a least-squares problem or a linear problem (except, of 

course, those on the boundary of what is currently possible). 

An interesting comparison can be made between local optimization methods for non-

linear programming, and convex optimization. Since differentiability of the objective 

and constraint functions is the only requirement for most local optimization methods, 

formulating a practical problem as a non-linear optimization problem is relatively 

straightforward. The art in local optimization is in solving the problem (in the 

weakened sense of finding a locally optimal point), once it is formulated. In convex 

optimization these are reversed: The art and challenge is in problem formulation; once 
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a problem is formulated as a convex optimization problem, it is relatively 

straightforward to solve it. 

I.2.7 Global optimization 

In global optimization, the true global solution of the optimization problem (I-1) is 

found; the compromise is efficiency. The worst-case complexity of global 

optimization methods grows exponentially with the problem sizes n and m; the hope 

is that in practice, for the particular problem instances encountered, the method is far 

faster. While this favorable situation does occur, it is not typical. Even small 

problems, with a few tens of variables, can take a very long time (e.g., hours or days) 

to solve. 

Global optimization is used for problems with a small number of variables, where 

computing time is not critical, and the value of finding the true global solution is very 

high. One example from engineering design is worst-case analysis or verification of a 

high value or safety-critical system. Here the variables represent uncertain parameters 

that can vary during manufacturing, or with the environment or operating condition. 

The objective function is a utility function, i.e., one for which smaller values are 

worse than larger values, and the constraints represent prior knowledge about the 

possible parameter values. The optimization problem (I-1) is the problem of finding 

the worst-case values of the parameters. If the worst-case value is acceptable, we can 

certify the system as safe or reliable (with respect to the parameter variations). A local 

optimization method can rapidly find a set of parameter values that is bad, but not 

guaranteed to be the absolute worst possible. If a local optimization method finds 

parameter values that yield unacceptable performance, it has succeeded in 

determining that the system is not reliable. But a local optimization method cannot 

certify the system as reliable; it can only fail to find bad parameter values. A global 

optimization method, in contrast, wills find the absolute worst values of the 

parameters, and if the associated performance is acceptable, can certify the system as 

safe. The cost is computation time, which can be very large, even for a relatively 

small number of parameters.  

I.2.8 Non-convex problems 

One obvious use is to convert a non-convex problem in to a convex problem by 

combining convex optimization with a local optimization method. Starting with a 
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non-convex problem, we first find an approximate, but convex, formulation of the 

problem. By solving this approximate problem, which can be done easily and without 

an initial guess, we obtain the exact solution to the approximate convex problem. This 

point is then used as the starting point for a local optimization method, applied to the 

original non-convex problem.  

Convex optimization is the basis for several heuristics for solving non-convex 

problems. One interesting example we will see is the problem of finding a sparse 

vector x (i.e., one with few nonzero entries) that satisfies some constraints. While this 

is a difficult combinatorial problem, there are some simple heuristics, based on 

convex optimization, that often find fairly sparse solutions. Another broad example is 

given by randomized algorithms, in which an approximate solution to a non-convex 

problem is found by drawing some number of candidates from a probability 

distribution, and taking the best one found as the approximate solution. Now suppose 

the family of distributions from which we will draw the candidates is parameterized, 

we can then pose the question: which of these distributions gives us the smallest 

expected value of the objective? It turns out that this problem is sometimes a convex 

problem, and therefore efficiently solved. 
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I.3 Objective function for microwave device optimization 

The design of microwave devices is normally accomplished through minimizing the 

discrepancy between the actual S-parameters and the ideal S-parameters. Thus the 

objective function is defined as a function of the difference of the device 

characteristics in terms of S- parameters with the ideal response at any stage. 

The definition of objective function affects the efficiency of optimization procedure. 

The reasons behind this are as follows, 

 

1- Convexity of objective function guarantees the convergence of the 

optimization procedure. 

2- The objective function has to be calculated for several times during the 

optimization process, thus the design time directly depends on the 

computation cost of the objective function. 

 

In this section different possible formulations of objective will be studied in detail. 

The emphasis is on formulations which can allow explicit and implicit constraints. 

This is specifically important to microwave device optimization where the range of 

permissible parameters is rather narrow. 

Let k
ijD< > be the difference between the ideal and actual S-parameters in the frequency  

f at k’th iteration, 

( , ) ( , ) ( )k k ideal
ij ij ijD f p S f p S f< > < >= −  (I-18) 

where k
ijS< > is the actual, i.e. calculated S-parameter (i,j=1,2), ( )ideal

ijS f is the ideal 

characteristic. The vector p is parameter vector. There might be some constraints 

applied on p , 

( )C p b≤  (I-19) 

where b is representing constraints. C can be a linear or nonlinear function, but more 

commonly it is linear. 
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The objective function can be defined as the sum of ijD ’s over the all the frequencies, 

1

( , )
S

k k
ij ij s

s

T D f p< > < >

=

= ∑  
(I-20) 

Fig. I- 2 illustrates a sample derivation of the function k
ijT < > . It can be seen that 

k
ijD< > is negative in some frequencies and positive in some other frequencies. Thus the 

errors with different signs cancel out each other. The equation (I-20) is modified as, 

( , ) ( , ) ( )k k ideal
ij s ij s ij sD f p S f p S f< > < >= −  (I-21) 

or, 

( )2

( , ) ( , ) ( )k k ideal
ij s ij s ij sD f p S f p S f< > < >= −  

(I-22) 

 

Fig. I- 2. ( )ideal
ij sS f , Sij and the error function 

In the last couple of equations, k
ijD< > is positive. Later we will see this property will 

help to construct a positive definite quadratic form. This is one of the conditions that 

one can assure convexity of the objective function. 
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I.3.1 Minimax optimization [44]- [46] 

The objective function at k’th iteration can ideally be expressed as, 

[ ] ( )
( )

min max,
( , ) max ( ). ( , ) ( )

                                ( ). ( , ) ( )

{

}

k k U ideal
u ij ij

f f f

k L ideal
l ij ij

T f p w f S f p S f

w f S f p S f

< > < > −

∈

< > −

= −

− −
 

(I-23) 

where  

( )uw f and ( )lw f are upper and lower weighting factors, respectively. 

( )U ideal
ijS f− is the desired upper limit of the S-parameters  

( )L ideal
ijS f− is the desired lower limit of the S-parameters  

The formulation is better understood by referring to Fig. I- 3. 

 

Fig. I- 3. Different sub-functions of the objective function with minimax 

formulation. 

The weighting factors are supposed to be non-negative, ( ) 0uw f ≥ , ( ) 0lw f ≥  and 

( ) ( )U ideal L ideal
ij ijS f S f− −≥  for [ ]min max,f f f∈ . Under such circumstances both terms in 

equation (I-23) will be non-negative. They are equal to zero either when the weighting 

factor is zero or the ideal and actual responses are equal. The goal function is, 



Chapter I 

Generalities about EM-based Optimization of Microwave Devices 

24

therefore, to minimize the maximum possible error that the device can produce. As a 

special case, when  

( ) ( ) ( )U ideal L ideal ideal
ij ij ijS f S f S f− −= =  (I-24) 

and                             ( ) ( ) ( )u lw f w f w f= =   

[ ] ( ){ }
min max,

( , ) max ( ). ( , ) ( )k k ideal
ij ij

f f f
T f p w f S f p S f< > < >

∈
= −  

(I-25) 

A variation of minimax formulation, as addressed in [49] formulates the objective 

function in terms of inequality constraints as follows, 

�������� ( , )kT f p< >  

��	
�����
, 

( )
( )

( , ) ( ). ( ) ( )

( , ) ( ). ( ) ( )

k k U ideal
ij ij u

k k L ideal
ij ij l

T f p w f S p S f f F

T f p w f S p S f f F

< > < > −

< > < > −

 ≥ − ∈


≥ − − ∈

 

(I-26) 

where lF  and uF are two sub-sets of the range[ ]min max,f f . The subscripts l and u are 

brought as a matter of convenience and do not necessarily correspond to upper and 

lower part of frequency span. The two sub-sets are not essentially disjoint. This way 

we have taken into account the requirement for relative amplitude of S-parameters are 

different for in- and out-bands. 

I.3.2 Least squares formulation [43] 

A very common class of objective function in electromagnetic domain is the least 

squares formulation. The last squares formulation can be symbolically shown as, 

2

1

( , ) ( , )
S

k k
ij s

s

T f p D f p< > < >

=

= ∑  
(I-27) 

where ( , )k
ij sD f p< >  is introduced in (I-18). The squared terms are always positive thus 

of errors with different signs will not cancel each other when being accumulated. But 

the main idea beyond the deployment of the Least Squares was to give a more 

emphasize on larger errors than smaller ones. Also within a defined proximity of the 
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optimum point (Here we show it as optimp< > ) the rate of convergence is faster than the 

linear model. 

From an algorithmic point of view, the feature that distinguishes least squares 

problems from the general unconstrained optimization problem is the structure of the 

Hessian matrix of ( , )kT f p< > . As mentioned earlier, the Least Squares method has 

widely been used for the optimization of microwave devices. 

Examples 

In [9] the generic objective form of  

21
[ ]

2
desiredF m m= −  

(I-28) 

was used as objective function. Here, m is an arbitrary performance measure in the 

circuit. The same contribution has incorporated a linear term which basically imposes 

dimensional constraints to the design for the problem of a waveguide with multilayer 

coats, 

2

1

1 1 1
[ ]

2 12.7 20

n
desired
im im

i i i

F k k
t α=

 
= − + + − − 

∑  
(I-29) 

whereas imk  indicates the attenuation rate, iα and it  are the material property index 

and thickness of ith coating layer. In other words the constraints are directly 

integrated into the cost (objective) function. This might not be an appropriate 

approach in general since we risk moving towards a point in parameter space which 

might comply perfectly with boundary conditions while getting further form the 

desired characteristic. 

In [12] the transfer and reflection characteristics of a filter ( 21S  and 11S ) are 

approximated by rational functions both for ideal case and at each iteration. Then the 

cost (objective) function is formed by using the location of zeros and poles of filters 

reflection and transfer functions, 

2 2

1 1

M M

i i i i
i i

C Z Z P P
= =

′ ′= − + −∑ ∑  
(I-30) 

where C is the cost (objective) function, N is the number of poles, M is the number of 

(prescribed) zeros, iP  and iZ  are poles and zeros of the transfer function. Prime 
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superscripts indicate desired values. The authors have also claimed that with this new 

formation of the objective function the optimization process converges arbitrarily 

regardless of what the initial point has been chosen. Regardless of the validity of the 

claim, the fact that the choice of a proper objective function is crucial for a design has 

appropriately been addressed. Although the suggested scheme shows superb 

performance in comparison with conventional procedures the method has certain 

drawbacks such as, 

The calculation of poles and zeros imposes an extra computation cost at each step 

- One can not avoid the round off and computation errors in computing transfer 

and reflection characteristic poles and zeros. These errors together with 

computational inaccuracies and optimization procedure errors (such as 

gradient approximation) will considerably increase the risk of being lead to a 

wrong point in parameter space 

- Determining the order and form of the transfer and reflection functions is not a 

trivial issue. It needs a minimum level of priory knowledge which is not 

always available.  

In [20] the general problem of multiple coupled resonator filter is approached using 

an objective function for as follows, 

[ ] [ ]22 2

11 21
1 1

( ) ( )
N m

i j
i j

Errf S f S f ε ε
= =

 = + + − ∑ ∑ �
 

(I-31) 

where ε  and ε�  are the actual and desired scale factors related to pass-band ripple. 

Including the ripple scale factor in the objective function is the unique feature 

introduced in [20]. Convergence of the optimization does not depend on the initial 

point. As the authors claim, 

“Convergence of the minimization is very fast and all cases tested are 

independent of the initial coupling matrix guess. In contrast, optimization 

using an error function based on the difference between the mask and the 

response was slow, often did not converge to any acceptable solution and 

in all cases required an initial coupling matrix guess whose response was 

close to the desired response in order to converge.” 

However, one can not ignore the fact that such an objective function does not 

introduce any criterion for stopping the optimization process. The smallest value that 

such an objective function can possess is unclear. When using the error function, there 
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is always a desired value for the error function (ideally zero) which is a function of 

the required accuracy. On the other hand, the orders of magnitude for ε  and for S-

parameters are not the same and appropriate weighting factors need to be multiplied 

by each of the terms of (I-31). Otherwise S-parameters will dominate the variations of 

the objective function.  

Again, in [26] the least squares of S parameters is utilized for the optimization of a 

miter bend with dielectric column, 

2 2

11 21
1 1

( ) ( ) ( )

p s
f fN N

p s
i i

i i

C p S f S f
= =

   = +   ∑ ∑  
(I-32) 

where all the notations of previous formula apply and superscripts p and s indicate 

pass-band and stop-band computed performances, respectively. p
fN  and s

fN are the 

number of frequency points that in pass-band and stop-band that S-parameters are 

computed. The function in (15) is distinct from previous ones in that it considers 

different S-parameters for pass band and stop-band. In other words, while considering 

both absolute values of 11S  and 21S  rather than comparing them with a desired 

value, it essentially retains the policy to minimize the function for both terms in (I-

32). 

The same approach has been used to optimize stop-band planar filters in [36], 

2 22
10 5 10

11

1 1 621 21

( ) 40 20
( )

0.5 ( ) ( )
pb

pb sb sbsb sb

S f dB dB
F x

dB S f S f= = =

     − −= + +    −     
∑ ∑ ∑�

 
(I-33) 

Here, x
�

is the parameters vector and subscripts sb and pb represent stop-band and 

pass-band, respectively. The optimization would stop once the criterion ( ) 1F x ≤�
 is 

met. The insertion loss has two different values in the desired stop-band 

characteristics. 

I.3.3 Least pth approximation ([7], [41], [42]) 

Another general category of objective is to minimize the sum of the powered 

magnitudes of the errors at different frequencies raised to power ρ , 

1

( , ) ( , )
S

k k
ij s

s

T f p D f p
ρ

< > < >

=

= ∑  
(I-34) 
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In fact (I-34) can be considered as a generalization of the Least Squares Method. One 

significant feature of this approach is to emphasize or deemphasize on specific parts 

of frequency characteristics. While ρ =1 the equation reduces to simple integration of 

the errors in the band. With ρ =2 the method resembles to least squares. In general 

the higher ρ  is, the more emphasize is given to larger errors (See [42], [47]). A 

necessary condition for having the least p approximation as efficient as possible is to 

having sufficient samples of the calculated objective function or in other words the 

number of frequencies in which the objective function is computed should be 

sufficiently large. Moreover the larger values of ρ will lead to more emphasize on 

larger errors. This statement can be proved by representing the error function as, 

( )
max

min max
min

1

[ , ]
max min

1
max ( , ) lim ( , ) .

f
k T k T

ij ij
f f

f

D f p D f p df
f f

ρ
ρ

ρ

< > < >

→∞

 
==   − 

∫  

(I-35) 

This implies that the larger ρ is, the more emphasized will be larger errors.  

In .Fig. I- 4 the derivation of least p approximation is illustrated for different integer 

values of ρ . In Fig. I- 5 the least p approximation vs. different number of sample 

points is presented. 

 

Fig. I- 4. The derivation of least p approximation 
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Fig. I- 5. The least p approximation vs. different number of sample points 

This weighting scheme can be extended to consider the frequency aspect as well: the 

power can be a function of the deviation from central frequency. As the frequency 

gets further from a specific frequency, the errors are summed up with smaller 

exponent. 

. ( , , )

1

( , ) ( , )
p f fS

k k
ij s

s

T f p D f p
κ τ

< > < >

=

= ∑
�

�

 
(I-36) 

while ( , , )f fκ τ
� �

is a function that incorporates frequency, into the power. 

[ ]{ }min max1, 2,..., ; ,v vf f v V f f f= = ∈
�

 is a vector containing all the frequencies of 

interest. 

The size of neighborhood around each frequency vf f∈
�

 is identified by vτ τ∈ �
. Note 

that each vτ τ∈ �
is defined as a subset of the frequency range of interest and they have 

to comply with 1 1 minf fτ− ≥ and maxV Vf fτ+ ≤ . The problem of optimizing a dual-

band planar antenna seems to be an appropriate example for demonstrating the effects 

of vectors f
�

 and τ� . The ideal return loss and the least pth approximation in an 

intermediate stage are shown in Fig. I- 6. 
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Fig. I- 6. The formation of objective function in equation (I-36) as. Here, p is 

equal to 3 and the function Κ is shown in the figure. This specific weighting 

function is usually used to mask the effect of transitions which diminish 

accuracy by producing big error terms in non-essential regions. 

One potential risk of using the Least pth approximation is that the minimum of the 

function T in (I-34) does not necessarily correspond to the minimum point of (I-18) . 

The Least pth approximation has been used in few problems. In [16] the design of a 

Yagi-Yuda array and a rectangular patch antenna [16] are reported. In [38] the Least 

pth approximation is used for optimizing circuit performance. 
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I.3.4 Constrained problems 

In a real world design optimization problem in microwave domain, not all possible 

values of the design parameters are acceptable. Almost all of the problems one has to 

deal with for the design of a microwave device or a network are constrained 

problems. Constrained optimization problems can either be solved directly with a 

constrained technique or converted to an equivalent unconstrained problem. The latter 

could either be done through, 

- Defining the objective function so that all the constraints are included, or 

- Transforming parameters and leaving the objective function unaltered. 

The first approach is reported for example in [9] and also brought here. The latter will 

be explained in here, for example consider the constraint, 

min maxp p p≤ ≤  (I-37) 

Now we can define an unconstrained parameter vector p′  in such a way that, 

2
min max min( )sin ( )p p p p p′= + −  (I-38) 

or 

1
min max min

1
( )cot ( )p p p p p

π
− ′= + −  

(I-39) 

This is further addressed in [7] and [47]. 

The next step will be to solve the optimization problem for the unconstrained 

parameter p′ . Once the optimum vector for p′  is determined, it will be easy to 

convert it to the original constrained vector p . There are a handful of methods which 

have already been used for optimization problems with non-linear constraints. The 

reader is encouraged to review, for example [20] and [49]-[55]. 
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I.3.5 Penalized objectives 

Let the inequality constraints of the optimization problem be defined as a function,  

1 2( ) ( ) . . . ( )( )
T

MC p C p C pC p =     (I-40) 

The vector ( )C p  is defined in such a way that, 

( ) 0, 1,..., .C p m Mm ≥ =  (I-41) 

For example the criterion 

min maxp p p≤ ≤  (I-42) 

can be reformulated as, 

min 0p p− ≥  

max 0p p− ≥  

(I-43) 

Then to locate an initial point in feasible region, it is enough to deal with the 

following problem, 

1

( )
M

m m
m

w C p
=

−∑��������  
(I-44) 

while the weighting factor is zero for any positive value of ( )C p . Now the 

constrained domain can be transformed to an unconstrained domain with a penalized 

objective function,  

1

1
( , , ) ( , )

( )

M

m m

T f p T f p
C p

υ υ
=

= + ∑�  
(I-45) 

while 0υ > and ( , )sT f p� can be any of the objective functions introduced so far (see 

for example equations (I-23), (I-25)-(I-34)). The late equation defined the feasible 

region, as the interior of, 

{ }( ) 0F p C p= =  (I-46) 

A sample of this approach is shown in equation (I-29). A critical task in here would 

be to choose the value of υ . At each step it is tried to reduce the coefficient υ  that 

eventually diminishes the region F. In general, the requirement for convergence of 
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( , , )T f p υ  in (I-45) is that ( , )T f p� be convex and ( )qC p be concave. In any case the 

problem of convergence of the original objective function ( , )T f p� still lingers on. 

Assuming that ( , )T f p� is convex and ( )mC p is concave and both are differentiable, a 

constrained minimum at the point optp will satisfy,  

1

( ) . ( )
M

opt opt
m m

m

T p c C p
=

∇ = ∇∑  

. ( ) 0optc C p =  

 

(I-47) 

whereas .....
1 m M

c c cc  =   . These relations are proposed by Kuhn-Tucker [51]. They 

simply state that the gradient of the objective function is the linear combination of all 

constraint functions.  

I.3.6 Exponentially penalized objective function 

The goal in this section is to introduce an objective function which is as independent 

as possible to the initial point in parameter space. This depends on many factors 

including the nature of the problem and the polynomial degree of the objective 

function. 

Moreover, the objective should have a minimum dependence on the way the ideal 

function is defined. In other words the tendency should be towards the goal of having 

minimum knowledge about the ideal design. 

To define the new objective function, we restart from (I-18), and rewrite it for a single 

frequency f  as, 

( , ) ( )
( , )

( ) ( , )

k ideal
ij ij Uk

ij ideal k
ij ij L

S f p S f f F
D f p

S f S f p f F

< >

< >

< >

 − ∈= 
− ∈

 
(I-48) 

While the same nomenclature as (I-18) is used. The frequency span is subdivided into 

two subsets. The subscripts U and L are chosen symbolically and do not necessarily 

mean upper and lower bounds. This is solely done to force the ( , )k
ijD f p< >  to be 

negative when the conditions are met. For example the insertion loss of a band pass 

filter is supposed to be more than a specific value in the pass band and less than a 

predetermined value in the stop-band. For the case of other structures such as a 

transition [56]or a coupler, one of the subsets  UF  or LF  can be zero. 
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The penalized objective function has been studied in the previous chapter; the scheme 

proposed here is to apply the same concept for the error function. Let the objective 

function be defined as, 

( ( , )) ( , ) 0
( , )

0 ( , ) 0
NL D f p D f p

T f p
D f p

Φ >
=  ≤

 
(I-49) 

Here ( )NL xΦ is an arbitrary function of variable x . A discussion similar to that of the 

Least pth Approximation is valid here as well to support the idea of using nonlinear 

functions. The necessary condition for (.)NLΦ is smoothness with respect to design 

variables in the feasible subset of the N dimensional parameter space which defines 

the ( , )f p vector. As a starting point let (.)NLΦ be defined as an exponential function, 

. ( , )( ( , )) D f p
NL D f p aeχΦ =  (I-50) 

where χ and a are weighting coefficients to be determined based on the nature of 

problem. If we remove the point ( , ) 0D f p = , the derivative of this function will have 

the form, 

( , )
( , )( ( , )) ( ( , ))( )

.
D f p

D f pNL

i i i

D f p D f pae
a e

p p p

χ
χχ∂Φ ∂∂= =

∂ ∂ ∂
 

(I-51) 

and the second derivative will have the form of, 

22 2
( , )

2 2

( ( , )) ( ( , )) ( ( , ))D f pNL

i i i

D f p D f p D f p
a e

p p p
χχ χ

  ∂ Φ ∂ ∂ = +  ∂ ∂ ∂  
 

(I-52) 

The term ( , )D f p  is the difference between two scattering parameters and thus the 

derivative can be written as, 

( , )

( , )

( , )

n k
ij

Unn k
iij

n n k
i ij

Ln
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S f p
f F

pD f p

p S f p
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< >

< >

< >

 ∂
 ∈

∂∂ = ∂ ∂
− ∈ ∂

 

(I-53) 

Here ( , )k
ijS f p< >  is a smooth function of each parameter ( )ip . Thus the function 

( , )k
ijD f p< >

 is smooth with respect to ip as well. Thus the nonlinear function defined 

in (I-50) will be smooth with respect to any of design parameters. 
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The above discussion is not valid for smoothness of the objective function with 

respect to frequency but in any case the smoothness and derivability in frequency 

domain is out of our focus here because, 

- in a gradient based optimization, the sensitivities with respect to design 

parameters are considered, 

- the objective function for any fixed set of parameters (i.e. any value of 

parameter vector) is accumulated and these integrated variations are always 

smooth.   

To further justify the above claim, a typical frequency-parameter space is depicted in 

Fig. I- 7. This figure shows typical variations of a device input characteristics versus 

frequency for different parameter value. In a gradient-based optimization the value of 

objective function is calculated as the integrated errors between the ideal and actual S-

parameters in adjacent parameter planes.  

The nonlinear objective described in (I-41) to (I-45) is basically designated as an 

unconstrained function. The approach chosen here to have this objective applicable to 

constrained problems is very similar to the penalized function described in (I-45).  

 

 

 

Fig. I- 7. A typical objective function with respect to frequency and geometry 
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Weighting factor 

One major feature which improves the efficiency of the over-all optimization 

procedure is the ability to emphasize on specific parts of frequency characteristics. 

This can be done through a weighting factor. The weighting factor is a function of 

frequency. A very important application of the weighting factor is to mask the 

transient regions between pass band and stop band in filtering response for example. 

Normally the desired characteristic has a rectangular or trapezoid shape. The actual 

frequency response is an irregular curve in borders. The error produced by 

differentiating the calculated and desired characteristics will be dominated by the 

error produced in transitions. An appropriate weighting function can mask the effect 

of the error function. Fig. I- 8 illustrates the effect of weighting factor and the error 

that would appear due to the transition otherwise. For the general form of the 

objective function in (I-51) the weighting factor can be integrated as, 

( ). ( ( , )) ( , ) 0
( , )

0 ( , ) 0
NLW f D f p D f p

T f p
D f p

Φ >
=  ≤

 
(I-54) 

Another application of the weighting factors is when the objective function is formed 

of functions with different orders of magnitude. For example the objective function 

for the design of a resonator can be composed of its center frequency and quality 

factor, while these two numbers have different orders of magnitude; the center 

frequency (fc) can be of the order of GHz (109 Hz) when the quality factor (Q) is at 

most of the order of tens of thousands (104) and it’s evident that an objective function 

in the form of, 

( ) calculated ideal calculated ideal
c cT p f f Q Q= − + −  (I-55) 

is totally dominated by the frequency error. In such a case the appropriate weighting 

factors can be utilized in order to have both measures (frequency and Q) effective in 

the objective function. Thus the weighted objective function is written as,  

( ) calculated ideal calculated ideal
c cT p f f Q Qα β= − + −  (I-56) 

for a typical filter or resonator α  and β  would have a difference of (104 – 106) in 

orders of magnitude. 
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(a) 

 

(b) 

Fig. I- 8. (a) the error caused by transitions and (b) weighting factor used for 

masking the errors 
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(a) 

 
(b) 

Fig. I- 9. A problem encountered when using mathematical functions for 

modeling the ideal (desired) characteristics. In (a) absolute error is shown. In 

(b) the same ideal function is applied, but due to very small change in 

dimensions, the filter is detuned for about 0.0001 of the central frequency. A 

significant change can be seen in error function, resulting the gradients being 

completely meaningless. 
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I.3.7 Ideal characteristic 

The ideal characteristic of a microwave device is usually defined based on a specific 

mathematical function. More specifically filters have classically been designed based 

on known filtering functions such as Chebyshev functions, Butterworth functions, 

Elliptic functions, etc.[57]. For each of these functions there are very accurate 

equivalent circuit models which are both mathematically and physically feasible. 

There are established building blocks for each of these functions with given orders. 

With an optimization procedure that utilizes circuit analogy, defining the initial 

structure can be achieved through finding the appropriate microwave passive structure 

which corresponds to that equivalent circuit topology. An example of this procedure 

is explained symbolically in Fig. I- 10.  

 

Fig. I- 10. The gradients when detuning is considerable. Note that absolute error 

(which could be a base for calculating the objective function) does not change 

and thus the gradient is zero. Although the device characteristic in (b) shows a 

considerable improvement, the improvement is not reflected in the error 

function. 

Such an approach has been used in [18],[28],[45] and [56]-[58].  
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The above-mentioned approach has some prerequisites, 

- The choice of appropriate function is very critical. Such a decision appears as 

an obstacle in automation of the optimization procedure. In other words,  the 

procedure always needs an operator to choose the appropriate function which 

best fits the desired characteristic.  

- Mathematical functions have their own limitations. Sometimes none of the 

conventional mathematical functions are not capable of matching the desired 

characteristics. For example, some non-ideal filtering factors such as ripple or 

bandwidth-loss trade off affect the overall convergence of optimization.  

- Defining ideal characteristic in some few points in frequency domain, on the 

other hand, has its own drawbacks. A little discrepancy between poles and 

zeros may generates big error terms. Fig. I- 9 illustrates a typical problem 

occurred when using a pseudo-elliptic ideal characteristic. It can be viewed 

that initial response has to have the same central frequency in order to have the 

optimization converged. Thus appropriate choice of initial response is crucial 

when using mathematical functions. 

 

Fig. I- 11. The error produced using different scenarios  

The alternative method, which is simpler, is to define the virtual barriers, so that the 

frequency response is upper(or Lower) than this barrier in all frequencies. In other 

words, the desired characteristics can be defined as a set of simple linear borders in 



Chapter I 

Generalities about EM-based Optimization of Microwave Devices 

41

whole frequency range of concern. In Fig. I- 11 the ideal characteristics defined with 

linear borders is illustrated. Using this method, the optimization procedure is less 

dependent upon an operator for finding a mathematical pattern. 

Two discussed methods of defining objective functions  can function appropriately 

when the initial response is reasonably close to the ideal characteristic. Otherwise the 

calculated error(difference) is very small and the gradients obtained in this way are 

not meaningful. By meaningful we intend the gradients which really show the 

direction of the change in parameter vector. When the detuning is quite considerable, 

in such a way that the ideal and actual pass-bands have no or a very small overlap. 

Such an ideal response is utilizable as long as the initial response has a considerable 

overlap with this rectangular region. What happens in a real design practice is 

somehow different. Normally the detuning is quite considerable in such a way that the 

ideal and actual pass-bands have no or a very small overlap. This would make 

gradients approximated through Finite differencing meaningless. As a possible way, 

the proposed ideal response is slightly modified so that the gradient can be obtained 

when ideal and actual functions have no overlap; e.g. when a filter is strongly 

detuned. The modified ideal function can be expressed as, 

( )11 11

/ 2
( , ).(1 exp ) /2

/2

/2
( , ).(1 exp ) / 2

k c
ij s c
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< >

< >

< >

  − −− ≥ +  
 = − ≤

  − + − ≤ −   

 
(I-57) 

 

where ( , )k
ijD f p< >  is defined in (I-18).  

The modified ideal response is shown in Fig. I- 12. Using this ideal response, the 

gradients are less precise or better to say less sensitive to variations of the dimensions. 

This is because when integrating the error between the actual and ideal 
11S  the area 

under the ideal response is relatively larger and the error produced in this way is less 

sensitive to variations of the dimensions. On the other hand, using a bigger  would 

guarantee catching a more exaggerated detuning; i.e. when the initial working band is 

very far from the desired characteristic. 
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(a) 

 

(b) 

Fig. I- 12. The modified ideal response and calculated error 
11( )T f . It can be 

noticed that moving the central frequency (beteen the positions shown in (a) 

and (b)) could be detected in the objective function. 
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So, there should be a trade-off between sensitivity and frequency span. Let the index 

η be defined as, 

( )det ,cf fη η ζ= −  (I-58) 

which is a measure of precision. Apparently η is a function of detuning (fdet and fc are 

����������	
��
��
����
���
�����
��	���	�	�
���
 
��
(I-57). To model such a trade off 

a numerical experiment has been conducted using a sample detuned S11 and different 
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Fig. I- 13 variations of normalized η versus different parameters is demonstrated. Fig. 

I- 14 shows a normalized contour of the gradients of the objective function with 
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gradient of error function has it’s minimum acceptable value (this is a function of 

precision of numerical method chosen and the required design precision as well). 

 

Fig. I- 13. Normalized η vs different values of  / fc .  –Normalized Error Function 

of the example shown in Fig. 3. ◊-Ratio between Modified and classical error 

functions -Modified Error function  
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Fig. I- 14. Normalize η vs Detuning (fdet :Horizontal) and   / fc  ratio (Vertical). 

The feasible region is chosen on the basis of design tolerances and accuracy of 

the EM solver. 
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I.4 Search strategies 

Perhaps the core step in computer-aided design (CAD) of microwave component 

design algorithm is the optimum search process. Once an appropriate objective 

function is defined, an efficient search strategy must be utilized to update the 

dimensions in the optimization cycle until the required criterion are met. 

Optimization, as an independent research area, has been established since long time 

ago. A wide variety of optimization algorithms have been offered by researchers of 

this area, from purely random procedures to very deterministic methods. Each of these 

methods has its own advantages and drawbacks. Obviously, judging about the 

viability of a technique depends on the application and also the metrics we are trying 

the method with. Relatively long computation time of an electromagnetic field solver 

is the major bottleneck that every designer has to deal with. While a typical objective 

function calculation in other disciplines (e.g. economy, management, operational 

research) can take less than a second, every calculation of objective function in 

microwave domain might take a few hours to few days. This in turn limits both 

parameter space dimensionality and number of iterations. In other words, a proper 

candidate for search algorithm in CAD of microwave components should be a method 

which minimizes (or maximizes) the objective function in a parameter space of small 

dimensionality in the least possible iterations.  

The previous work on CAD of microwave devices and circuits can be categorized into 

three main groups, namely, stochastic methods such as Genetic Algorithms (GA) and 

Design of Experiments (DoE), indirect optimization methods such as Neural 

Networks (NN) and Gradient Optimization (GO). Among all the methods, Gradient 

Optimization method is the oldest and still the most practical method for optimization 

because of its efficiency and consistence. Comparing to two other methods, gradient 

methods require much fewer number of iteration until they converge to the desired 

solution. Moreover gradient methods are less dependent on the problem than other 

two categories. What made researchers to look for alternatives for GO is the fact that 

these methods are inherently local methods. In other words the success of 

optimization depends on the initial set of parameters chosen to start the optimization. 

All that a GO can do is to find the closest minimum (maximum) to the initial point in 

the parameter space. Thus there is always a risk of failure by being trapped in a local 
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minimum. The other shortcoming of GO’s is that they need precise calculation of 

gradients at every step. Calculating gradients is computationally an expensive task.  

Evolutionary algorithms (EA) on the other hand, are stochastic methods which reach 

to an optimum by evolving a randomly initiated population (a group of parameter 

vectors in feasible region) into minimum (maximum). Evolutionary algorithms are 

global methods, and as long as the initial population is large enough, the success of 

the optimization does not depend on the appropriate choice of initial point. 

A typical microwave design problem has to deal with a multidimensional parameter. 

The dimensionality of space usually does not exceed 20-30, and it is often smaller, but 

anyways the search algorithm should be chosen considering such a dimensionality. 

Thus most of this chapter is devoted to the introduction of multidimensional search 

algorithms which fit more to microwave design applications. The rational method to 

pursue such a design problem is to use multidimensional search, but in some cases it 

is possible to use several uni-dimensional algorithms to optimize different 

dimensions.  
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I.5 Direct search methods [59] 

Direct methods form a minor branch of search strategies. At each step, direct search 

methods decide the next trial solution based on the experience from past steps. Unlike 

gradient optimization techniques, these methods only rely on evaluation of value of 

the function for deciding the search direction. Although the direct methods have not 

been used as widely as gradient methods, they are addressed in detail since the 

understanding the methods used later in this dissertation require priori knowledge of 

direct methods. One major advantage of direct methods in microwave domain is when 

a commercial package is used as the EM solver and only absolute field values are 

available. Computing derivatives at each point requires an extra cost of multiple 

calculations which diminishes the efficiency of the algorithms. A direct algorithm 

then becomes very instrumental. 

I.5.1 Pattern search [68],[69] 

Pattern search attempts to find the direction of search along the valley. Since this 

method attempts to follow the pattern drawn by hyper contours, it performs very well 

in narrow valleys. The method is explained in Fig. I- 15. The method starts with 

comparing two adjacent points which are aligned with one of coordinates. After 

finding the right direction of declining towards the minimum, the same procedure 

repeats with other coordinates. Once the decline direction with a complete set of 

coordinates is identified, a vector addition of all the decline directions is composed 

and the next point is decided based on this vector. 

I.5.2 Simplex optimization [18]-[21] 

The simplex methods are based on an initial design of k+1 trials, where k is the 

number of variables. A k+1 geometric figure in a k-dimensional space is called a 

simplex. The corners of this figure are called vertices. Fig. I- 16 shows a simplex in 

two dimensional parameter space. 

With two variables the first simplex design is based on three trials, for three variables 

it is four trials, etc. This number of trials is also the minimum for defining a direction 

of improvement. Therefore, it is a timesaving and economical way to start an 

optimization project. 
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After the initial trials the simplex process is sequential, with the addition and 

evaluation of one new trial at a time. The simplex searches systematically for the best 

levels of the design parameters. The optimization process ends when the optimization 

objective is reached or when the responses cannot be improved further. 

 

Fig. I- 15. Pattern search method 

 

Fig. I- 16. Simplex in two and three dimensional parameter spaces 
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I.5.2.1 Basic simplex method 

The basic simplex method is easy to understand and apply. The optimization begins 

with the initial trials. The trial conditions are spread out efficiently. The number of 

initial trials is equal to the number of design parameters plus one. These initial trials 

form the first simplex. The shapes of the simplex in a one, a two and a three variable 

search space, are a line, a triangle or a tetrahedron. A geometric interpretation is 

difficult with more variables, but the basic mathematical approach outlined below can 

handle the search for optimum conditions.  

The basic simplex algorithm consists of a few rules, 

The first rule is to reject the trial with the least favorable response value in the 

current simplex. 

A new set of design parameter levels is calculated, by reflection into the design 

parameter space opposite the undesirable result. This new trial replaces the least 

favorable trial in the simplex. This leads to a new least favorable response in the 

simplex that, in turn, leads to another new trial, and so on. At each step you move 

away from the least favorable conditions. By that the simplex will move steadily 

towards more favorable conditions. 

The second rule is never to return to design parameter levels that have just been 

rejected. 

The calculated reflection in the design parameters can also produce a least favorable 

result. Without this second rule the simplex would just oscillate between the two 

design parameter levels. This problem is nicely avoided by choosing the second least 

favorable condition and moving away from it. (Fig. I- 17) 

 

Besides the two main rules, two more rules are also used : 

− Trials retained in the simplex for a specified number of steps are reevaluated. 

The reevaluation rule avoids the simplex to be stuck around a false favorable 

response.  

− Calculated trials outside the effective boundaries of the design parameters are 

not made. Instead a very unfavorable response is applied, forcing the simplex 

to move away from the boundary. 
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Fig. I- 17. Simplex method. 

I.5.2.2 Modified simplex method 

The modified simplex method has much in common with the basic method, but can 

adjust its shape and size depending of the response in each step. This method is also 

called the variable-size simplex method. Several new rules are added to the basic 

simplex rules. These new rules make the simplex:  

− expand in a direction of more favorable conditions, or 

− contract if a move was taken in a direction of less favorable conditions.  

The procedures for expansion and contraction enable the modified simplex both to 

accelerate along a successful track of improvement and to home in on the optimum 

conditions. Therefore the modified simplex will usually reach the optimum region 

quicker than with the basic method and pinpoint the optimum levels more closely. 

The degree of contraction depends on how unfavorable the new response is. Fig. I- 18 

illustrates the different moves with the modified simplex method. 
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Fig. I- 18. Modified Simplex method 

For each simplex the following labels are used: W for the least favorable trial or the 

trial being rejected, B for the most favorable trial and Nw for the second least 

favorable trial (i.e. next-to-the worst). 

The different projections away from the rejected trial are calculated according to the 

following formulas: 

( )

( )

( )

R C C W

E C C W

C C C W

α
γ
β± ±

= + −
= + −
= + −

 

(I-59) 

where 

W is the rejected trial, 

C is the centroid of the remaining face/hyperface, i.e. the average levels for the 

remaining trials, 

α  is the reflection coefficient, 

γ is the expansion coefficient, 

β ± is the positive or negative contraction coefficient. 

Simplex method has rarely been used to optimize microwave devices and networks. 

In fact the method does not offer any specific advantages over other contemporary 

methods. Example applications of simplex method can be found in [74]and [75]. 
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I.6 Gradient search methods 

Gradient methods include all the methods that utilize partial derivatives of objective 

function at each step to find the next step. Despite shortcomings of these methods 

reported, gradient methods are still found to be the most viable techniques in 

microwave domain. The fact that these methods are very efficient has encouraged 

research to overcome their drawbacks. Here the major gradient methods are 

described. In practice, more sophisticated methods are used to meet requirements of 

complex problems. These sophisticated methods are combination of basic methods 

described in here. 

In the following chapters, it has been tried to follow a simple to complicated trend in 

explaining the gradient methods. 

I.6.1 Notations 

A microwave optimization problem can be defined as, 

{ }, ( ) min ( )optimum optimump S T p T p< > < > =���� ��� 
 ���� ���  (I-60) 

where T is the error function. 

The procedure to construct the objective function was discussed in detail before. 

[ ]1 2 ...
T

Np p p p=  is an N-dimensional vector, called the parameter vector. The space 

including all the parameter vectors is called parameter space. The dimensionality of a 

parameter space is equal to the number of element of the vector p . 

In general the minimization is subject to constraints, 

1 1( )M MC p b× ×≤  (I-61) 

The objective function can be expanded with Taylor series as, 

[ ] ( )1
( ) ( ) ( ) . . . ( ) . ...

2
T TT p p T p T p p p H T p p+ ∆ = + ∇ ∆ + ∆ ∆ +  

(I-62) 

The vector  

1 2

( ) ( ) ( )
( ) ...

T

N

T p T p T p
T p

p p p

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
 

(I-63) 
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is called the gradient vector. The vector containing the second order derivatives is 

called Hessian Matrix, 

( )

2 2 2

2
1 1 2 1

2

2 1

2 2

2
1

( ) ( ) ( )
. .

( )
. .

( ) .
. . .

. . .

( ) ( )
. . .

N

N N

T p T p T p

p p p p p

T p

p p
H T p

T p T p

p p p

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
 ∂
 

∂ ∂ =  
 
 
 ∂ ∂ 
 ∂ ∂ ∂ 

 

 

 

(I-64) 

or it can be represented as, 

( )
2 ( )

( )ij
i j

T p
H T p

p p

∂=
∂ ∂

 
(I-65) 

In the following chapter, the classical gradient-based methods are discussed. In 

practice, very often different variations of these methods or combination of different 

methods are used to fit the specific applications of interest. 

I.6.2 Steepest descent method [76]-[77]  

The core idea of the steepest descent method is to use the derivatives of the objective 

function to find the stationary point. More physically speaking, if one tries to follow a 

path towards the lowest point of the valley, the simplest possible path will be to find 

the steepest path at each point. 

The left hand side of (I-62) can be re-written as, 

( ) ( ) ( )T p p T p T p+ ∆ = + ∆  (I-66) 

Considering only first two terms of right hand side of (3) would yield a linear 

approximation, 

[ ]( ) ( ) .
T

T p T p p∆ = ∇ ∆  (I-67) 

which means that the gradient vector coincides with the direction of fastest move 

towards minimum or maximum change. The steepest descent strategy is based on 

moving backwards this gradient vector at each step, to find out the normalized vector 
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which shows the direction of steepest descent, the normalized gradient vector is 

written as, 

( )

( )

T p
s

T p

∇=
∇

�
 

(I-68) 

Thus at each iteration, the steepest descent update strategy will be, 

1k k k kp p w s< + > < > < > < >= − �
 (I-69) 

Whereas superscripts k shows the iteration number, and kw< > is a positive scalar called 

weighting factor which can be chosen adaptively. When the initial point is very far 

from the local maximum, taking long steps (bigger values of kw< > ) accelerated the 

convergence. On the other hand at vicinity of the optimum point, smaller steps should 

be taken to avoid skipping the local minimum. Fig. I- 19 shows the concept of the 

steepest descent in a two-dimensional parameter space. 

 

Fig. I- 19. Steepest descent method 

The steepest descent method and its variation is one the most frequently used 

techniques in optimization. The method is very easy to implement and flexible 

enough to be integrated to other techniques in a hybrid algorithm. Despite these 

advantages, the method suffers from extremely slow convergence. Moreover, as any 

other gradient methods the steepest descent method is a local method and the success 

of the search severely depends on the initial point. 



Chapter I 

Generalities about EM-based Optimization of Microwave Devices 

55

I.6.3 Newton’s method 

As mentioned above the steepest descent method suffers from slow convergence. This 

is a normal consequence of using a linear function as update strategy. One possible 

way of improving the convergence speed is thus using quadratic schemes. A family of 

optimization techniques which use the information of second order derivatives for 

parameter update is called Newton’s method. Given that in the minimum point the 

objective function is stationary, 

( ) 0optT p< >∇ =  (I-70) 

or in other words, 

( ) ( )T p p T p+ ∆ =   

while optp< > is the point at which optimum solution occurs. Now considering three 

terms in right hand side of (I-62), would yield, 

( ) ( ( )). 0T p H T p p∇ + ∆ ≅  (I-71) 

The step to be taken to reach the minimum (maximum) point is 

[ ] 1
( ( )) . ( )p H T p T p

−∆ ≅ − ∇  (I-72) 

thus the update equation would have the following form, 

[ ] 11 ( ( )) . ( )k k k kp p p p w H T p T p
−< + > < > < > < >= + ∆ = − ∇  (I-73) 

Again kw< >  is a positive scalar which defines the step size. An example of Newton’s 

method is illustrated in Fig. I- 20. Despite the advantages of Newton’s method over 

steepest descent, The Newton’s method is prone to diverge because of a poor initial 

point. This risk diminishes when the objective function is convex, i.e. the matrix 

( ( ))H T p  is symmetric positive definite. 

Newton’s method is extensively used for inverse scattering applications, such as 

image reconstruction, and tomography [83]-[87].  
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When using Newton’s method, the risk of diverging from the optimum increases as 

the initial point gets far from the final answer. Usually, a combination of steepest 

descent or other stable methods in first steps followed by Newton’s method at the 

proximity of the response gives the optimum result [88]. 

The update equation (I-73) required computing and inversion of the Hessian matrix 

which is computationally expensive. There are a handful of techniques to compute the 

second order derivatives, both analytically and numerically. When using full-wave 

EM solvers, the derivatives should be calculated numerically (i.e. by finite 

differencing), which is very cumbersome. Hessian matrix, on the other hand, carries 

the risk of being ill-conditioned, which in turn increases the risk of failure in 

optimization. Different variations have been suggested in order to improve this aspect 

of Newton’s method. Some of these techniques have been addressed here. 

Newton methods include several classes, including discrete Newton, quasi Newton 

(QN) (also termed variable metric), and truncated Newton (TN). Historically, the 

2( )O n memory requirements and 3( )O n computation associated with solving a linear 

system directly have restricted Newton methods only: (1) to small problems, (2) to 

problems with special sparsity patterns, or (3) near a solution, after a gradient method 

has been applied. Fortunately, advances in computing technology and software are 

making the Newton approach feasible for a wide range of problems. Particularly, with 

advances in automatic differentiation as in [89], [90] the appeal of these methods 

should increase further. Extensive treatments of Newton methods can be found in the 

literature ([91], [92] for example) and only general concepts will be outlined here. 
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Fig. I- 20. Newton’s Method in two dimensional parameter space 

 

Fig. I- 21. Comparison between steepest descent and Newton’s method. 
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I.6.4 Quasi Newton methods 

A major problem with all the “Newton type” methods is that inversion of the Hessian 

matrix is very time consuming. The central idea underlying quasi-Newton methods is 

to use an approximation of the inverse Hessian. Quasi Newton methods are simply 

those groups of methods which approximate the Hessian matrix in order to avoid the 

inversion of the Hessian matrix. Quasi-Newton or variable metric methods can be 

used when the Hessian matrix is difficult or time-consuming to evaluate. Instead of 

obtaining an estimate of the Hessian matrix at a single point, these methods gradually 

build up an approximate Hessian matrix by using gradient information from some or 

all of the previous iterates. 

The quasi-Newton methods that build up an approximation of the inverse Hessian are 

often regarded as the most sophisticated for solving unconstrained problems. The 

update equation for Newton’s and Steepest Descent methods can be written in a 

general form, 

1 . . ( )k k k k kp p p p w S T p< + > < > < > < > < >= + ∆ = − ∇  (I-74) 

For steepest descent method kS is the identity matrix kS I= while for Newton’s 

method the matrix kS is the inverse Hessian matrix [ ] 1
( ( ))kS H T p

−= . Actually there 

could be defined several different methods in between Steepest Descent and 

Newton’s, for example, 

10( ( ))kS H T p
−< > =    (I-75) 

This means for all the updates, only the inverse of the Hessian at the first iteration is 

used. Obviously this scheme is not as precise as “pure” Newton’s method but 

however has the advantage of avoiding multiple inversions of the Hessian matrix.  

In quasi-Newton methods, instead of the true Hessian, an initial matrix 0H < >  is 

chosen (usually 0 ( ( ))H T p I< > = where I is identity matrix) which is subsequently 

updated by an update formula, 

1k k k
uH H H< + > < > < >= +  (I-76) 
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whereas k
uH < > is the update matrix. This update can also be done with the inverse of 

the Hessian matrix, 

( ) ( ) ( )11 1 1k k k

uH H H
< + > < > < >− − −= +  (I-77) 

For an easier follow up, B is introduced as an intermediate function, 

( )1 kkB H
< >< > −= , ( )1 kk

u uB H
< >< > −=  And (I-77) will have the form, 

1k k k
uB B B< + > < > < >= +  (I-78) 

The Hessian matrix can be considered as the derivative of the gradient matrix,  

1( ( )). ( ) ( )k k k kH T p p T p T p< > < > < + > < >∆ = ∇ − ∇  (I-79) 

where kp< >∆ is calculated through forward-differencing 1k k kp p p< > < + > < >∆ = − . If the 

Hessian is constant, then the following condition would hold as well, 

1 1. ( ) ( ) , 1,...,k i i iB T p T p p i k< + > < + > < > < > ∇ − ∇ = ∆ =   (I-80) 

This is called the quasi-Newton condition. Now, substituting (I-78)into (I-80) would 

yield, 

( ) 1. ( ) ( ) , 1,...,k k i i i
uB B T p T p p i k< > < > < + > < > < > + ∇ − ∇ = ∆ =   (I-81) 

Again for simplification, we introduce a new variable, iq < >  as 

1( ) ( )i i iT p T p q< + > < > < >∇ − ∇ = .Then (I-81) will take the brief form of,  

( ). , 1,...,k k i i
uB B q p i k< > < > < > < >+ = ∆ =  (I-82) 

The equation (I-82) identifies the update steps, or ip< >∆ but there is still an unknown 

element in the formula: k
uB< >  or the update inverse Hessian is not known yet! 

Actually a unique solution for Hessian update does not exist, a general form can be 

written as, 



Chapter I 

Generalities about EM-based Optimization of Microwave Devices 

60

( ) ( ). .
T Tk k k k k k k

uB α β< > < > < > < > < > < > < >= +u u v v  (I-83) 

where kα < > and kβ < >  are scalars and the vectors k< >u and k< >v  should be computed so 

that they can fit in (I-82). As mentioned before (I-83) is a general form and the second 

term in the right hand side can be omitted. The choice of β  determines the rank of the 

update. Quasi-Newton methods that take 0β = are using rank one updates while the 

Quasi-Newton methods that take 0β ≠ are using rank two updates. Note that 

0β ≠ provides more flexibility. There are many update schemes suggested so far, 

among them all, we present two of them which are more frequently 

addressed[93],[94], 

 •  Davidson -Fletcher-Powell (DFP) formula 

 •  Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula. 

 

Fig. I- 22. The quasi-Newton method is illustrated by the solution path  

I.6.4.1 Davidson-Fletcher-Powell formula 

Earliest (and one of the most clever) schemes for constructing the inverse Hessian 

was originally proposed by Davidson (1959) and later developed by Fletcher and 

Powell (1963). 
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It has the interesting property that, for a quadratic objective, it simultaneously 

generates the directions of the conjugate gradient method while constructing the 

inverse Hessian. 

The method is also referred to as the variable metric method (originally suggested by 

Davidson). Substituting the update term in the equation (I-83) into (I-82) would give, 

( ) ( )( ). . . , 1,...,
T Tk k k k k k k i iB q p i kα β< > < > < > < > < > < > < > < > < >+ + = ∆ =u u v v

 

(I-84) 

Now setting  

k kp< > < >= ∆u  

k k kB q< > < > < >=v  

1k T kqα < > < > =u  

1k T kqβ < > < > = −v  

(I-85) 

 

will determine the iα < > and iβ < > . The resulting update formula will be, 

  

( )
( )

( )
( )

<k+1>
 

 =  + 

T Tk k k k k k

k
T Tk k k k k

p p B q q B
B B

p q q B q

< > < > < > < > < > < >
< >

< > < > < > < > < >

∆ ∆
−

∆
 

(I-86) 

  

I.6.4.2 Broyden–Fletcher–Goldfarb–Shanno formula 

Any update formula for kB< >  can be transformed into a corresponding complimentary 

formula for kH < >  by interchanging the roles of kB< >  and kH < >  and of p  and q .  The 

reverse is also true. 

Broyden–Fletcher–Goldfarb–Shanno formula update of kH < >  is obtained by taking 

the complimentary formula of the Davidson-Fletcher-Powel formula, 

( )
( )

( )
( )

<k+1>
 

 =  + 

T Tk k k k k k

k
T Tk k k k k

q q H p p H
H H

q p p H p

< > < > < > < > < > < >
< >

< > < > < > < > < >

∆ ∆
−

∆ ∆ ∆
 

(I-87) 
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Taking the inverse, the Broyden–Fletcher–Goldfarb–Shanno update formula 

for 1kB< + > , would result,  

( )
( )

( )
( )

( ) ( )
( )

<k>

<k+1> <k>

<k> <k>

1 B
B = B  + ( ) . 

B B
- 

T Tk k k k

T Tk k k k

T Tk k k k

Tk k

q q p p

q p p q

p q q p

q p

< > < > < > < >

< > < > < > < >

< > < > < > < >

< > < >

+ ∆ ∆

∆ ∆

∆ + ∆

∆

 

(I-88) 

It can be noticed that Broyden–Fletcher–Goldfarb–Shanno formula is more 

complicated than Davidson-Fletcher-Powell (DFP), but it is straightforward to apply. 

Both DFP and BFGS updates have symmetric rank two corrections that are 

constructed from the vectors kp< >∆  and <k>B kq < > .  Weighted combinations of these 

formulae will therefore also have the same properties. The availability of quasi-

Newton methods renders steepest-descent methods obsolete. Both types of algorithms 

require only first derivatives, and both require a line search. The quasi-Newton 

algorithms require slightly more operations to calculate iteration and somewhat more 

storage, but in almost all cases, these additional costs are outweighed by the 

advantage of superior convergence. At first glance, quasi-Newton methods may seem 

unsuitable for large problems because the approximate Hessian matrices and inverse 

Hessian matrices are generally dense. But the method pays off because of a saving the 

time required for calculating Hessian matrix. 

I.6.5 Conjugate gradient method  

The problem with the steepest descent method is that the method performs many 

small steps in going down a long, narrow valley, even if the valley is a perfect 

quadratic form. The optimistic hope is that, for example, in two dimensions, the first 

step would take to the valley floor, the second step directly down the long axis; but 

the new gradient at the minimum point of any line minimization is perpendicular to 

the direction just traversed. Therefore, with the steepest descent method, the 

consecutive updates must make a right angle turn, which does not, in general, provide 

the shortest path to the minimum. (See Fig. I- 24). 

The conjugate gradient method (also known as Powell’s method) is based on the idea 

that the convergence to the solution could be accelerated if we minimize ( )T p  over 

the hyperplane that contains all previous search directions, instead of minimizing 
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( )T p over just the line that points down gradient. To determine 1kp< + > we minimize 

( )T p  over  

1 0
0 0 1 1 2 2 ..k

k kp p s s s sα α α α< + > < >= + + + + +  (I-89) 

where 1k k k
k p p p< > < > < − >= ∆ = −s  represent previous search directions. The scalar 

products kα  are of fundamental importance for such an update and will be discussed 

in detail later. An added advantage to this approach is that, if we can select the ’ks s  

to be linearly independent, then the dimension of the hyperplane 

1 0
0 0 1 1 2 2 ..k

k kp p s s s sα α α α< + > < >= + + + + +  will grow one dimension with each 

iteration of the conjugate gradient method. This would imply that (assuming infinite 

precision arithmetic) the in the worst case the optimization will end up in N iterations.  

Ideally the conjugate gradient method is applied when the objective function can be 

convertible to a quadratic form in terms of the parameter vector 

( ) 1

2
T TT p p Ap p b= −  

(I-90) 

where A  is a symmetric positive definite matrix and  

b  is an N-dimensional column vector. 

Subsequently, these relations will hold true: 

( )T p Ap b∇ = −  and  ( )H p A=  

we also define r such that ( )r p Ap b= − . 

 

Definition- For a given symmetric positive definite matrix A we say that two vectors 

r and s  are A-conjugate if 

0Ts Ar =  (I-91) 

Since A is symmetric and positive definite, the left-hand side defines an inner product 

, T
As r s Ar〈 〉 =  (I-92) 

So, two vectors are conjugate if they are orthogonal with respect to this inner product. 
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Fig. I- 23 illustrates the conjugate directions in two dimensional Cartesian 

coordinates. If { }1̂ ˆ,..., Mu u  is any set of non-zero conjugate directions in N� , then 

1̂ ˆ,..., Mu u are linearly independent. Also 1̂ ˆ,..., Mu u  span N�  if and only if M=N. 

 

Fig. I- 23. Conjugate directions  

Theorem 1. 

If A is positive definite symmetric, and if Ap b= and { }1̂ ˆ,..., Mu u  is a set of non-zero 

conjugate directions, then  

1
1

ˆ
ˆ ˆ

ˆ ˆ

TM
i

M iT
i i i

u b
u p u

u Au+
=

= −∑  
(I-93) 

is conjugate to each of 1̂ ˆ,..., Mu u . 

Theorem 2. 

If A is positive definite symmetric,  

( ) 1

2
T TT p p Ap p b= −  

(I-94) 
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for some Nb ∈ � and { }1̂ ˆ,..., Mu u is a set of non-zero conjugate directions, then the 

minimum of ( )T p in the space spanned by { }1̂ ˆ,..., Mu u  occurs at the point 
1

ˆ
M

i i
i

uβ
=
∑  

where  

ˆ

ˆ ˆ

T
i

i T
i i

u Bb

u Au
β =  

(I-95) 

Theorem 3. 

With the notation of Theorem 2., a fixed j satisfying 1 j M≤ ≤  and fixed 

1 2 1 1, ,..., , ,...j j Mα α α α α− +  the minimum of, 

1

ˆ( )
M

j i i
i

T uα α
=

 Ψ =  
 
∑  

(I-96) 

occurs at j jα β= . 

The above theorem simply means that the minimum of a quadratic function can be 

found by M one dimensional minimizations along nonzero conjugate directions 

1̂ ˆ,..., Mu u  and the order in which one-dimensional minimizations are done is 

irrelevant. In order to use this result, we need to be able to create quadratic form. 

Apart from practical application which is being discussed here, this conclusion is 

important because it shows that computing partial derivatives is not essential for a 

quadratic problem. 

 

Let 0p< > be an initial point in the parameter space. For the first search direction the 

conventional steepest descent approach is taken, 

1 0 0
0p p sα< > < > < >= +  (I-97) 

whereas 

0 0 0 0( )s T p Ap b r< > < > < > < >= ∇ = − =  (I-98) 

From the discussion of the method of steepest descent, 
0 0

0 0 0

T

T

s s

s As
α

< > < >

< > < >= − . Also it 

worth’s to mention that in the steepest descent method the two consecutive update 

vectors were orthogonal, 
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1 0k T ks s< + > < > =  (I-99) 

This means if we follow the same trend in here, 

1 0 0Ts s< > < > =  (I-100) 

Rather than try to establish the above orthogonality relationships with a calculation, 

use the following calculus argument. By definition, 1s < > is the gradient of T at 1p< > , 

where 1p< > is the conjugate gradient estimate to follow the initial guess 0p< > .  

The conjugate gradient method calls for defining successive approximates by  

1k k k
kp p sα< + > < > < >= +  (I-101) 

1 1
1

k k k
ks r sβ< > < − > < − >

−= +  (I-102) 

where s  and r  are A-conjugates, 

0T
k kr As =  (I-103) 

The calculation of kα  and kβ  are to be discussed shortly. The things to keep in mind 

when choosing kα and kβ are : 

1. We want the span of the search directions to fill the space we are searching as 

the number of iterations increases;  

2. Searching down A-gradients was basically a good idea. But, to guarantee 

linearly independent successive search directions, we generally need to choose 

conjugate gradient search directions to be perturbations of steepest descent 

search directions.  

It was already mentioned that the first update is taken through steepest descent 

method and thus the vectors 0
0,p s< > and 1p< >  are known. 

To take the next step using the conjugate gradient method, we must determine values 

for kα  and kβ so that we can calculate 2p< >  and 1s . Then we will see a pattern 

emerge.  
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In taking this next step in the conjugate gradient method we are seeking to minimize 

( )T p  over the plane  

0
0 1( , )p span s s< > +  (I-104) 

This means that the residual kr  will have to be orthogonal to both 0s and 1s .  

From the requirement that 0 1 0s r = , it follows that the search direction 1s  must be A-

conjugate to the search direction 0s . We can now set 0β as follows, 

1 1 0 00r sβ= +s  (I-105) 

implies  

1 1 0 0As Ar Asβ= +  (I-106) 

Now considering the fact that 0s and 1s are conjugate, or 0 1 0A =s s ,hence, 

0 1 0 1 0 0 0 0s As s Ar s Asβ= + =  (I-107) 

This will lead to the calculation of 0β  as, 

0 1 1 1
0

0 0 0 0

s Ar r Ar

s As s As
β = − = −  

(I-108) 

Having decided to proceed from 1p< >  to 2p< >  along the search direction defined by 

1 1 0 0s r sβ= + , the same calculus argument used to determine gives  

1 1
1

1 1

r s

s As
α =  

(I-109) 

so a step of the conjugate gradient method is complete. 

 

The reader is referred to [61]-[63] for further explanations of the method. Also the 

application of Powell’s method is reported in [62]-[67]. 
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Fig. I- 24. In steepest descent method all the paths are normal to each other 

 

Fig. I- 25. Conjugate gradient convergence. 
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I.7 Numerical analysis of microwave devices 

I.7.1 Introduction 

An EM solver typically accepts a geometric description of the microwave device 

along with material properties for metal and dielectrics, and develops highly accurate 

electrical response models in the form of S-, Y-, Z-parameters or an extracted model 

in SPICE format. Today’s high frequency EM simulators can provide results that are 

very accurate-often S-parameters with bounded error. 

A numerical technique is the only stand-alone and most critical part of a design loop. 

The bulk of the time needed for a device design is typically spent for electromagnetic 

analysis. Due to such significance, numerical analysis of microwave devices and 

antennas has become one of the main stream research areas in electromagnetics. 

Different commercial field solvers are available in the market, each using one or more 

numerical technique or their hybrids. There different factors in considering a 

numerical techniques, namely: 

− nature of the problem, 

− computational time, 

− accuracy, 

− stability. 

Of course, these factors are not absolute and each technique might feature of or two 

depending on the conditions. Despite the amount of ongoing research, the numerical 

methods in electromagnetics are an established domain. Most of the techniques are 

now available in the textbooks and being taught in courses. However the numerical 

techniques in electromegnetics are not the main focus of this dissertation and will not 

be discussed in detail. For a detailed explanation of these methods the reader is 

encouraged to refer to the available literature like [95]-[100] along with other 

publications that will be addressed in this section. In this section a brief categorization 

of methods will be addressed. Only methods which are more utilized in during the 

present work will be covered more in more elaboration. 
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I.7.2 Classification of electromagnetic problems [95] 

Classifying EM problems helps to answer the question of what method is best for 

solving a given problem. Continuum problems are categorized differently depending 

on the particular item of interest, which could be one of these, 

(1) the solution region of the problem, 

(2) the nature of the equation describing the problem 

(3) the associated boundary conditions. 

I.7.2.1 Classification of solution regions 

In terms of the solution region or problem domain, the problem could be an interior 

problem, also variably called an inner, closed, or bounded problem, or an exterior 

problem, also variably called an outer, open, or unbounded problem. 

Consider the solution region R with boundary S, as shown in Fig. I- 26. If part or all 

of ∂Ω is at infinity, Ω  is exterior/open, otherwise Ω  is interior/closed. For example, 

wave propagation in a waveguide is an interior problem, whereas while wave 

propagation in free space, scattering of EM waves by raindrops and radiation from a 

dipole antenna are exterior problems. 

 

Fig. I- 26. Description of solution regions 

A problem can also be classified in terms of the electrical, constitutive 

properties ( , , )σ ε µ  of the solution region. The solution region could be linear (or 

nonlinear), homogeneous (or inhomogeneous), and isotropic (or anisotropic). We 

shall be concerned, for the most part, with linear, homogeneous, isotropic media in 

this text. 
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Classification of differential equations 

EM problems are classified in terms of the equations describing them. The equations 

could be differential or integral or both. Most EM problems can be stated in terms of 

an operator equation 

L gΦ =  (I-110) 

where L is an operator (differential, integral, or integro-differential), g is the known 

excitation or source, and Φ  is the unknown function to be determined.  

Generally speaking, electromagnetic problems involve linear, second-order 

differential equations. The generic form of a second-order partial differential equation 

(PDE) in 2 dimensional space is given by 

2 2 2

2 2
a b c d e f g

x x y y x y

∂ Φ ∂ Φ ∂ Φ ∂Φ ∂Φ+ + + + + Φ =
∂ ∂ ∂ ∂ ∂ ∂

 
(I-111) 

The coefficients, a, b and c in general are functions of x and y; they may also depend 

on Φ  itself, in which case the PDE is said to be nonlinear. A PDE in which g(x, y) in 

equation (I-111) equals zero is termed homogeneous; it is inhomogeneous if it does 

not. 

Notice that (I-111) has the same form as Eq. (I-110) where L is now a differential 

operator given by,  

2 2 2

2 2
L a b c d e f

x x y y x y

∂ ∂ ∂ ∂ ∂= + + + + +
∂ ∂ ∂ ∂ ∂ ∂

 
(I-112) 

A PDE in general can have both boundary values and initial values. PDEs whose 

boundary conditions are specified are called steady-state equations. If only initial 

values are specified, they are called transient equations. 

Any linear second-order PDE can be classified as elliptic, hyperbolic, or parabolic 

depending on the coefficients a, b, c, d and e. Assuming 2 4b ac∆ = − , equation (I-

111) is, 

elliptic if   < 0

parabolic if  = 0

hyperbolic if   > 0

∆
∆
∆

 

(I-113) 
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Elliptic PDEs are associated with steady-state phenomena, i.e., boundary-value 

problems. Typical examples of this type of PDE include Helmholtz equation for 

electric field in two dimensional Cartesian coordinates in free space, 

2 2
2
02 2

0k
x y

∂ ∂+ + =
∂ ∂

E E
E  

(I-114) 

where E is the electric field vector and 0k is the propagation constant in free space, a 

= c = 1 and b = 0. 

An elliptic PDE usually models an interior problem, and hence the solution region is 

usually closed or bounded. 

Hyperbolic PDEs arise in propagation problems. The solution region is usually open 

so that a solution advances outward indefinitely from initial conditions while always 

satisfying specified boundary conditions. A typical example of hyperbolic PDE is the 

wave equation in one dimension, 

2 2

2 2 2

1

x u t

∂ Φ ∂ Φ=
∂ ∂

 
(I-115) 

where a = 2u , b = 0, c = �1.  

Parabolic PDEs are generally associated with problems in which the quantity of 

interest varies slowly in comparison with the random motions which produce the 

variations. The most common parabolic PDE is the diffusion (or heat) equation in one 

dimension, 

2

2
k

x t

∂ Φ ∂Φ=
∂ ∂

 
(I-116) 

where a = 1, b = 0 = c. 

Like hyperbolic PDE, the solution region for parabolic PDE is usually open. The 

initial and boundary conditions typically associated with parabolic equations resemble 

those for hyperbolic problems except that only one initial condition at t = 0 is 

necessary since (5) is only first order in time. Also, parabolic and hyperbolic 

equations are solved using similar techniques, whereas elliptic equations are usually 

more difficult and require different techniques. 

The discussion above has been summarized in the table 1. 
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Type of 

PDE 

Sign of ∆  Application Solution 

 region 

Elliptic Negative Poissons equation 

2 2 2
2

2 2 2
( , , )x y z

x y z

∂ ∂ ∂∇ = + + =
∂ ∂ ∂

E E E
E  

Helmholtz for E  equation in free 

space 

 
2 2 2

2
02 2 2

0k
x y z

∂ ∂ ∂+ + + =
∂ ∂ ∂

E E E
E  

Closed/Bounded 

Hyperbolic Positive Wave equation 

2 2

2 2 2

1

x u t

∂ Φ ∂ Φ=
∂ ∂

 

Open 

Parabolic Zero Diffusion 

2

2
k

x t

∂ Φ ∂Φ=
∂ ∂

 

Open 

Table 1. Classification of PDE 

I.7.2.2 Classification of boundary conditions 

In addition to satisfying the equation (1) certain condition should be imposed on the 

borders.  

1- Dirichlet boundary condition 

( ) 0Φ =r  (I-117) 

2- Neumann boundary condition 

  

( )
0

∂Φ =
∂

r
n
�  

(I-118) 

3- Mixed boundary condition: 

( )
( ) ( ) 0h

∂Φ + Φ =
∂

r
r r

n
�  

(I-119) 
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where h(r) is a known function and 
( )∂Φ

∂
r

n
� is the directional derivative of ( )Φ r  along 

the outward normal to the boundary. 

Classification of Numerical Techniques 

Numerical techniques can be categorized based on different view points, such as 

solution domain (time- vs. frequency-domain) and the type of equations (integral vs. 

differential equations). The general categories of the numerical techniques, based on 

the solution approach are as follows, 

Differential equation methods 

– Finite Difference Frequency Domain method (FD) 

– Finite Difference Time Domain method (FDTD) 

– Transmission Line Matrix (TLM) 

– Finite Element method (FEM) 

Integral equation methods 

– Method of Moments (MOM) 

– Generalized Multipole Technique 

– Boundary Element Method 

Mode Matching (MM) 

Numerical methods based on asymptotic approximations 

– Ray tracing (geometrical optics) 

– Angular Spectrum 

 

A few numbers of so called techniques have been of use within the framework of this 

dissertation. Some of these techniques such as Finite Element method, Method of 

Lines and Finite-Difference Time Domain method have been developed in IRCOM 

Laboratory, while some others such as the Method of Moments are obtained through 

commercial software.  

In the following sections, some of the methods which are used within this dissertation 

will be explained briefly. 
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I.7.3 Finite element method (FEM) 

Until recently the Finite Element method has been the dominant and the most 

frequency utilized technique in microwave domain. The systematic generality of the 

method makes it possible to construct general-purpose computer programs for solving 

a wide range of problems. Consequently, programs developed for a particular 

discipline have been applied successfully to solve problems in a different field with 

little or no modification. The finite element analysis of any problem involves 

basically four steps [101], [102]: 

− discretizing the solution region into a finite number of sub regions or 

elements, 

− deriving governing equations for a typical element, 

− assembling of all elements in the solution region, and 

− solving the system of equations obtained. 

There are different variations of the finite element method. Here, we briefly present 

the FEM developed in IRCOM Laboratory [103]. This method has been utilized in 

some of the 3D examples in the following chapters. The finite elements method 

developed at  IRCOM can analyze three dimensional microwave devices of arbitrary 

shapes and material distribution. Mixed boundaries are also implementable with the 

developed software, i.e. electric magnetic walls, high impedance surfaces, and 

absorbing conditions (PML) making the solution of open problems possible.  

The structure to be analyzed into 2- or 3-dimensions can be made up of 

inhomogeneous, anisotropic, lossy media. This method can be applied to the 

calculation of the coupling between elements, and to the characterization of devices 

complex, passive microwaves or passive-credits by the introduction of local accesses. 

A variety of applications of the present software can be found in [104]-[110]. 

The approximation of the finite elements consists in discretizing the field to be 

studied in under fields. The geometric standards of reference used for the grid of the 

structure can be into 1 dimension (segments), 2-D (triangles or quadrangles), in 3-D 

(tetrahedrons, pentahedrons or hexahedrons). 

Before the resolution of the problem, these elements can be deformed to take into 

account the curved elements of the studied structure. Moreover, geometrical 

symmetries of the structure can be taken into account, thus reducing volume to be 

netted. Applying the finite element method, Maxwell’s equations are solved element 
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by element in order to determine the electric field or the magnetic field. Applying an 

electric formulation, the electric field is the solution of: 

 

1 2
0

0 0
1 1

( ).  ( ).  

.  .  
k p

i iV V

n m

k k p pSp l
k p

rotE rot dV k E dV

j J dSp j I dl

µ φ ε φ

ωµ φ ωµ φ

−

= =

−

= − −

∫∫∫ ∫∫∫
∑ ∑∫∫ ∫

� �� �� �

� �� �  

(I-120) 

with:  k0
2 = ω2ε0µ0,  

V: volume of the structure, 

E
�

: electric field, 

φ
G : test function, 

n: number of modes in distributed accesses, 

Spk: surface of the distributed access, 

kJ
�

: current surface distribution, 

m: number of localized access, 

lp: contour of the localized access, 

pI
�

: line distribution of the current 

Two possible classes of solutions are available through the present software, namely 

forced and free oscillations modes. 

In free oscillation mode, the terms related to the excitations are cancelled by shorting 

the ports. The outcome of the equations will be resonant characteristics of the 

structure such as cut-off frequency of different modes and quality factor. In forced 

oscillation mode, the excitations within a given frequency band are imposed and a 

modal decomposition on the ports outcomes the propagation and evanescent modes 

frequencies along with field distributions. 

I.7.4 Finite-difference time domain (FDTD) [112] 

Finite-difference time domain technique, was originally developed by Kane S. Yee in 

1966, but did not attract any attention till ten years later, when Taflove discovered the 

potentials of the technique [114], [115]. Despite discovering its viability, the FDTD 

method did not become popular until late 90’s. The reason was the FDTD method was 

computationally expensive method and alternative techniques were still ahead of 
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FDTD regarding the computational resources. With the advent of fast commercial 

PC’s then FDTD started to become widely used since mid-1990’s. 

 

Fig. I- 27. FDTD cell-1 

There are different variations of FDTD method; herein the original scheme proposed 

by Yee will be presented in brief. Despite its simplicity and straightforwardness, 

Yee’s algorithm is still a valid and viable technique for electromagnetic scattering 

problems. The utilization of FDTD for microwave planar devices was first reported in 

[117]. 

In an isotropic medium, Maxwell’s curl equations can be written as 

H
E

t
µ ∂∇× = −

∂

�
�

 
(I-121) 

E
H E

t
σ ε ∂∇× = +

∂

�
� �

 
(I-122) 

 

Decomposing (I-121) and (I-122) into their components will lead to a system of six 

scalar equations. Following Yee’s notation, we define a grid point in the solution 

region as 
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yx z

y xz

yxz

EH E

t z y

H EE

t x z
EEH

t y x

µ

µ

µ

∂∂ ∂= −
∂ ∂ ∂

∂ ∂∂= −
∂ ∂ ∂

∂∂∂ = −
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(I-123) 

yx z
x

y x z
y

y x z
y

HE H
E

t y z

E H H
E

t z x
E H H

E
t z x

ε σ

ε σ

ε σ

∂∂ ∂= − −
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∂ ∂ ∂= − −
∂ ∂ ∂

∂ ∂ ∂= − −
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(I-124) 

and any function of space and time as 

( , , ) ( , , , )nF i j k F i j k n tδ δ δ= ∆  (I-125) 

where x y zδ = ∆ = ∆ = ∆  is the space increment in Cartesian coordinate, and t∆  is the 

time increment, while i, j, k, and n are integers. Using central finite difference 

approximation for space and time derivatives that are second-order accurate, 

( / 2, ) ( / 2, )f f x x t f x x t

x x

∂ + ∆ − − ∆→
∂ ∆

 
(I-126) 

( , / 2) ( , / 2)f f x t t f x t t

t t

∂ + ∆ − − ∆→
∂ ∆

 
(I-127) 

In applying (I-126)and (I-125) to all the space and time derivatives in Eq. (I-127), Yee 

positions the components of E and H about a unit cell of the lattice as shown in Fig. I- 

27. To incorporate , the components of E and H are evaluated at alternate halftime 

steps. For example equation ( yx z
EH E

t z y
µ

∂∂ ∂= −
∂ ∂ ∂

) will be expanded as, 

1/ 2 1/ 2

, 1/ 2 , 1/ 2 1/ 2, 1/ 2,

( , , , ) ( , , , )

( , , ) ( , , ) ( , , ) ( , , )

x i i i n x i i i n

y i i i n y i i i n z i i i n z i i i n

H x y z t H x y z t

t
E x y z t E x y z t E x y z t E x y z t

z y

µ + −

+ − + −

− =
∆

− −
−

∆ ∆

 

(I-128) 
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Then the update equation will have the form, 

( ) ( )1/ 2 1/ 2
, , , , , , 1 , , , 1, , ,

n n n n n n
x i j k x i j k y i j k y i j k z i j k z i j k

t t
H H E E E E

z yµ µ
+ −

+ +
∆ ∆= + − − −
∆ ∆

 
(I-129) 

 

Fig. I- 28. Yee’s cell 

The second and third equations can be expanded in the same manner. Similarly the 

equation (I-124), 

yx z
x

HE H
E

t y z
ε σ

∂∂ ∂= − −
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(I-130) 

will result, 

1
, , , ,

1/ 2 1/ 2 1/ 2 1/ 2
, , , 1, , , , , 1
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− ∆ = + + ∆ 
 ∆ ∆− − − + ∆ ∆ ∆ 

 

(I-131) 

It should be noted from (I-129)and (I-131) that the components of E
�

and H
�

are 

interlaced within the unit cell and are evaluated at alternate half-time steps. All the 

field components are present in a quarter of a unit cell (known as Yee’s cell) as shown 

in Fig. I- 28. 
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After individual cells are formed, the entire computational domain is formed by 

stacking up theses rectangular (cubic) cells into the rectangular volume. One 

important issue which should be addressed here is the treatment of anisotropic 

material distribution. In such a case, after discretization, a dielectric constant is 

assigned to each cell as in Fig. I- 29. Then the dielectric constants of different cells 

will be averaged,  

1
( 1 2 3 4)

4eqε ε ε ε ε= + + +  
(I-132) 

 

 

Fig. I- 29. Dielectric borders 

Accuracy and stability 

To obtain sufficiently accurate results, the spatial increment  must be small 

compared to the wavelength (usually �
 /10) or minimum dimension of the scatterer. 

This amounts to having 10 or more cells per wavelength. To ensure the stability of the 

finite difference scheme, the time increment must comply with the stability criterion 

as follows, 

( )
1

2

2 2 2

1 1 1
c t

x y z

−
 

∆ ≤ + + ∆ ∆ ∆ 
 

(I-133) 

where c is the wave phase velocity. 
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The typical algorithm implementation for FDTD method is as presented below: 

− Set-up the geometry, 

− Set nominal value of all the filed to zero 

− Repeat the following procedure until the response is zero: 

o Impose the Gaussian excitation 

o Calculate Hn+1/2 

o Calculate En+1/2 

o Set tangential E to zero on conductors 

o Save field values 

o n → n+1 

The FDTD method is still a subject of ongoing research. There are a handful of topics 

which are not discussed here as a matter of brevity. These topics include: 

− FDTD in curvilinear coordinates 

− Equivalent circuit parameter extraction 

− Different types of Absorbing boundary conditions 

− Multi-grid FDTD algorithms 

I.7.5 The method of moments  

The method owes its name to the process of taking moments by 

multiplying with appropriate weighting functions and integrating. The 

method of moments (MoM) was first introduced to the western society by R. F. 

Harrington in early1960’s. But actually the method has originated by two Russian 

scientists [119]and [120].  

In the method of moments, prior to the discretization, Maxwell’s electromagnetic 

equations are transformed into integral equations. These follow from the definition of 

suitable electric and magnetic Green’s functions in the multilayered substrate. This 

formulation expresses the electric and magnetic field as a combination of a vector and 

a scalar potential. The unknowns are the electric and magnetic surface currents 

flowing in segments. 
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I.8 Conclusion 

Different stages of the computer-aided design (CAD) of microwave devices is 

discussed in this chapter. The design procedure consists in a design loop that updates 

dimensions of a structure in order to minimize a cost function based on the 

electromagnetic analysis of the device performance (with different metrics such as S-

parameters, impedance, etc). Different elements of such a design loop are discussed in 

detail. Many significant attempts to improve the speed and the accuracy of microwave 

CAD have been reported. In the previous work the emphasis has been mostly to 

improve the efficiency of individual elements of a design loop, more notably, 

- The speed and accuracy of EM solvers has been a matter of academic and 

industrial research, 

- The update techniques have been improved continuously. 

Since the above mentioned techniques have been conducted within the framework of 

the conventional optimization procedure their overall effect had some extents. There 

are two inherent problems of a classical technique which have not been addressed in 

the literature: 

- All the methods reported in the literature, require multiple EM analysis of the 

structure. Even though using more intelligent update techniques reduces the 

number of simulations per design, but time overhead of EM analysis is still an 

obstacle which keeps the design time in the order of hours. 

- Both convergence and the duration of these methods highly depend on the 

choice of initial point in parameter space.  

The following  chapters addresses some solutions for the two above mentioned issues. 

One possible solution to avoid multiple simulations is to create a parameterized model 

of the device. Such a model can be derived with a single EM analysis of the device. 

Consequent calculations of the objective function can be calculated using this 

parameterized model which takes several times less than performing a full analysis. In 

Chapter II derivation of a geometrically parameterized model is presented. The 

optimization procedure should be adopted to be used with this parameterized model. 

One of the required modifications to deploy the parameterized model is mesh 

parameterization. Mesh deformation and parameterization is normally studied in the 

context of computer graphics and also structural analysis (mechanical engineering). 
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The issue of mesh parameterization in EM analysis is also investigated in chapter II. 

This will lead to fully incorporating the parameterized model into an optimization 

procedure. 

Genetic algorithm (GA) has long been in practice because of their being relatively 

independent of initial point. This property is of specific interest when there is no or a 

little knowledge about the initial structure. The main drawback with GA is that the 

method requires many evaluations of the objective function at each iteration. Thus the 

method lacks speed. Particle swarm optimization (PSO) is a novel evolutionary 

method that starts with a randomly generated initial population similar to GA, but the 

evolution is faster. This method is described in chapter III followed by its application 

to device design. 

The common aspect of the described chapters is the attempt to grant more autonomy 

and robustness to the conventional optimization algorithms. 
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II.1. Introduction 

The classical approach for design of microwave circuits and devices was explained in 

Chapter I. It can be concluded: 

 

��The most time consuming part of a design loop is the Electromagnetic 

analysis.  

��Calculating gradients requires multiple computations of the objective 

function.  

��The mesh generated at each step is not usable in the next step. Even a slight 

perturbation might end to a totally different mesh. 

 

The update strategies should adaptively be changed. In order to obtain the system 

responses within the frequency range of interest, it is a common practice to solve the 

system equation directly at many frequencies. Subsequently, the results are 

interpolated to form a continuous curve. However, with the increasing size of the 

system, solving this system of equations at many discrete frequency points can be 

very time consuming. Especially when the system possesses frequency range, it may 

be necessary to solve hundreds of solutions to obtain the desired resolution in the 

spectrum. 

This chapter presents the efforts towards accelerating the optimization procedure 

through parameterization results. The core idea behind parameterization is to obtain a 

mathematical model of the response in a design problem, by only one calculation. To 

achieve a fully parameterized model, final response (e.g. frequency response) and 

intermediate functions (e.g. structure meshing) are tried to be expressed in terms of 

polynomials, so that re-calculation of these functions with perturbed parameter space 

will require much less resources. 

But beyond saving some time in a classical design loop (as shown in Fig. 1 of Chapter 

I), using a parameterized model enables us to redefine the design procedure in such a 

way that the parameter updates will be carried through a shorter path.  

Fig. II.1 illustrates the modified design flow graph with parameterized model. The 

parameterization has been done in different stages are, mesh parameterization, 

frequency parameterization, geometrical parameterization. 
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In practice some or all of these techniques may apply to a specific problem. The major 

focus in this chapter has been on frequency domain electromagnetic field solvers but 

the method can be applied to time domain techniques with slight modifications.  
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Fig. II.1. The design flowgraph using the parameterized model 
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II.2. Parameterization 

Any design procedure consists of functionals to be optimized (objective function) and 

design variables (parameters).  

In the context of microwave engineering, the objective function is normally a function 

of electromagnetic fields quantity, impedance, or related parameters such as S-

parameters.  

Design variables can be geometric variables like dimensions of a physical structure, 

material properties, or a physical quantity such as frequency or amplitude of input 

signal of a system or input electromagnetic fields of a two-port microwave network. 

The numerical procedure in a design problem can be symbolically written as,  

    

( , ( )) 0F Vφ φ =  (II- 1) 

 

where φ is the parameter vector (dimensions, material properties, etc) and ( )V φ  is an 

arbitrary function representing a physical quantity (i.e. electric field, power, etc). 

The goal of parameterization is to construct a continuous function ( )V φ�  that 

approximates the discrete solution of ( )V φ  in the whole parameter space. In practice 

it is not possible to find an appropriate function which is valid in the whole parameter 

space. The mathematical functions used for parameterization can only apply in a 

limited region, thus to span the whole feasible region in an optimization one should 

parameterize the function ( )V φ  in several points in parameter space.  

The mathematical functions used for parameterization vary depending on the behavior 

of every function with respect to different parameters. For example in order to 

parameterize the field quantity within a microwave device, the utilized parameterizing 

function should be a rational function to appropriately fit the poles and zeros.  

In the following sections, the parameterization with respect to geometry and 

frequency are discussed in detail. Consecutively, an optimization technique which 

deploys this parameterized model is presented. Finally examples of the 

parameterization will be demonstrated. 
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II.3. Literature survey 

A number of model reduction techniques have been successfully developed for 

simulating transient responses in circuit analyses [2] finding poles to determine the 

stability condition in feedback control process [4],and fast frequency-sweep 

techniques for EM devices modeling [6]. Among them, the asymptotic waveform 

evaluation (AWE) method? was originally developed for timing analysis of high-

speed circuits. Through explicit moment matching, the AWE technique approximates 

the transient response of a circuit by reducing the problem to a low-order model. The 

poles of the reduced model are good approximations of the dominant poles of the 

original system. However, one major problem of the AWE technique is that it does 

not provide an accurate approximation (even with many moments) when the 

expansion point is very close to a pole (resonance of transfer function). More stable 

model reduction approaches (using variants of Krylov subspace methods) are 

proposed by Gallivan [4]. Furthermore, a Lanczos algorithm with an implicit restart 

process is proposed in [6], which ensures the reduced model always produces a stable 

approximation, and a rational Lanczos algorithm is presented in [7] which extracts 

information from multiple points and, therefore, provides improvements in the rate of 

convergence. These methods are usually very efficient and numerically stable. 

However, for Maxwell’s equations, particularly with losses presented by lossy 

dispersive materials, as well as radiation boundary conditions, one has to extend the 

required Krylov subspaces to general matrix polynomials. In contrast, the explicit 

AWE can always be applied to realize a Padé approximation. The recently published 

complex frequency hopping (CFH) technique [7] for EM application is an AWE-

based multipoint moment-matching method. It exploited a binary search scheme to 

match all dominant poles in a systematic manner. This CFH algorithm has been 

applied to the scalar finite-element formulation of a Helmholtz equation in two 

dimensions. To the best of our knowledge, it has neither been applied to three-

dimensional (3-D) EM problems, nor used with vector finite-element formulations. 

Moreover, the conventional AWE method chooses the expansion point on the real 

frequency axis. It is known that the convergence radius of a Taylor expansion is equal 

to the distance from the expansion point to the nearest singularity (pole). By using 

only the power series expansion for the transfer function, this typically results in a 

very small convergence radius. One fact exploited by the AWE method is that the 
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solution is analytic at the expansion point, and the partial realization, being a Padé 

approximation, is able to approximate pole behaviors much better than the power 

series. Nonetheless, when the expansion point is very close to a pole, the calculation 

of the moments will become increasingly inaccurate. Consequently, the Padé 

approximation will be polluted due to this inaccuracy of the moment computations, as 

well as the ill-conditioned matrix that is used to compute the Padé coefficients. To 

overcome this difficulty, various approaches such as the multipoint Padé 

approximation, CFH scheme, and rational Lanczos algorithm are proposed in the 

literature. They avoid extracting information from remote poles by catching multiple 

poles at multiple points.  
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II.4. Frequency parameterization 

II.4.1. Formulation 

The numerical technique ends up solving a matrix equation of the form of the 

equation (II- 1). To be more specific, a slight change in the notation (II- 1) can be re-

written as, 

 

( , ). ( , ) ( )A f p f p f=e B  (II- 2) 

 

where ( , )A f p  is a complex symmetric matrix, ( , )f pe  is a vector whose entries 

represent the solution of unknown field, and ( )fB is an excitation vector. Equation 

(II- 1) is typically solved for the unknown vector at a set of discrete frequencies using 

either a direct method or an iterative matrix solver. As functions of 

frequency ( , )A f p , ( )fB  and ( , )f pe can be assembled through the FEM or any other 

numerical technique for each specified frequency. For an efficient spectral response 

evaluation, we need to express ( , )A f p and ( )fB  as explicit functions of frequency. 

One straightforward way is to construct them through a polynomial interpolation, i.e., 

to expand and as 

0

( ; ) ( ).
M

m
m

m

A f p a p f
=

= ∑
� �

 
(II- 3) 

 

0

( ) .
Q

q
q

q

f f
=

= ∑B b
� �

 
(II- 4) 

 

where ( ) ( )max mincf f f f f= − −
�

 is the normalized frequency, and cf is the central 

frequency. This normalization maps the frequency band [ ]min max,f f onto 

interval[ ]1,1− , where min max,f f are the lowest and highest frequencies of interest, 

respectively. The orders of polynomials in (II- 3) and (II- 4) should be determined by 

the characteristics of the real problem.  

If the underlying functions are nearly quadratic, so we choose. To minimize the 

numerical error and obtain stable interpolation, Chebyshev nodes can be utilized as 

the sampling points. 
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II.4.2. Moment matching 

Like ( , )A f p and ( )fB , solution ( , )f pe  is also a function of frequency and is 

approximated by 

0

( , ) ( )
M

m
m

m

f p p f
=

= ∑e e
�

 
(II- 5) 

 

Substituting (II- 3)-(II- 5) into (II- 2) and matching the coefficients with the 

assumption M Q≥ , we end up with the following system of linear equations, 

0 0 0( ). ( )a p p b=e  

0 1 1 0 1( ). ( ) ( ). ( )a p p a p p b+ =e e  

0 2 2 1 2 0 2( ). ( ) ( ). ( ) ( ). ( )a p p a p p a p p b+ + =e e e  

0 2 1 2 2( ). ( ) ( ). ( ) ( ). ( )..Q Q Q Qa p p a p p a p p b− −+ + =e e e  

0 1 2 2 1( ). ( ) ( ). ( ) ( ). ( ) ... 0Q Q Qa p p a p p a p p+ −+ + + =e e e  

. 

. 

0 1 1 2 2( ). ( ) ( ). ( ) ( ). ( ) 0M M Ma p p a p p a p p− −+ + =e e e  

(II- 6) 

 

Subsequently, the power series coefficients of the solution, or the moments, can be 

obtained recursively by 

1
0 0 0( ) ( ).p a p b−=e      (a) 

1
1 0 1 1 0( ) ( ). ( ). ( )p a p b a p p−  = − e e    (b) 

(II- 7) 

 

In modeling passive microwave components, we are usually most interested in the S-

parameters. The actual parameter calculated using a numerical method such as Finite 

Elements Method is the field quantity. Thus the parameterization should be done over 

the field quantities, 

1

( , ) e
M

m
m

m

f p f
=

= ∑E
� �

 
(II- 8) 

 

The number of moments is adaptively determined by the convergence behavior of the 

expansion, and ultimately depends on the complexity of the system of equation. 
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II.4.3. Padé approximation 

It is known that the power series of (II- 5) or (II- 8) always has, unfortunately, a finite 

radius of convergence in the presence of poles. The Padé approximation is able to 

approximate the function beyond the convergent region of its power series. 

After obtaining (II- 8), we will force it to agree with a Padé approximate of the 

electric fields. The idea of Padé approximation is to replace the polynomial with a 

rational polynomial, which is good at catching poles. The process is letting 

0

1

1

( )
( , ) ( )

1 ( )

R
r

rM
m r

m T
tm

t
t

p f
f p p f

p f

=

=

=

= =
+

∑
∑

∑

e
e e

s

�
� �

�  

(II- 9) 

 

where T + R = M. A different combination of T and R will produce the Padé table. 

This Padé approximation is a partial realization of the original system. The details of 

computing the Padé coefficients can be found in [5]. 

II.4.4. Calculating Padé approximants  

There are two methods to calculate the coefficients of the Padé approximant of 

electric fields which will be discussed in this section. The procedure is explained for 

electric fields, but it can be similarly used for any other parameters in frequency 

domain.  

Consider the Taylor series of the electric fields, 

0 0
0

1

( , ) ( ) ( )
M

m
mf f f f

m

f p p f f
= =

=

= −∑e e  
(II- 10) 

 

Provided that ( , )ijS f p is analytic at 0f f= . The coefficients can be written as,  

0

0

1( , )

( ) . ( )
!

m

m

f f
m f f

A f p
f

p B f
m

−

=
=

∂
∂

=e  

(II- 11) 

 

The first coefficient can be easily found as, 

0

1
0 0 0( ) ( , ). ( )

f f
p A f p B f−

=
=e  (II- 12) 

 

It can be shown that the rest of coefficients are calculated recursively as, 
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0

0
1

1
1 0 0

1

( , ) . ( , )

( , ) ( , ).
!

m
m

f f
m

A f p f f p
f

f f p A f p

κ

κ

κ κ

+
=−

+
=

∂ =
∂

= = − ∑
e

e  

(II- 13) 

 

Now back to equation (II- 9), there are two methods to find the coefficients of the 

Padé approximation provided the Taylor coefficients are available. The first method 

uses a set of linear equations to obtain coefficients directly. The second method 

calculates the Padé approximation recursively. 

II.4.5. Computing Padé approximants using point matching 

technique 

Equation (II- 9) can be expanded as, 

1 2
0 1 2

1

2
0 1 2

2
1 2

( ) ( ) ( ) ( ) ... ( )

( ) ( ) ( ) ... ( )

1 ( ) ( ) ... ( )

M
m P

m M
m

M
M

N
N

p f p p f p f p f

a p a p f a p f a p f

b p f b p f b p f

=

= + + + +

+ + + +=
+ + + +

∑e e e e e
� � � �

� � �
� � �

 

(II- 14) 

 

  

Multiplying the denominator polynomial with right hand side in (II- 14) and equating 

the coefficients of the identical powers of f gives, 

0 0( ) ( )p a p=e  

1 0 1 1( ) . ( ). ( ) ( )p p b p a p+ =e e  

2 1 1 0 2 2( ) ( ) ( ) ( ) ( ) ( ).p p b p p b p a p+ + =e e e  

. 

. 

1 1 0( ) ( ). ( ) ... ( ). ( ) ( )M M M Mp p b p p b p a p−+ + + =e e e  

1 1 0 1( ) ( ). ( ) ... ( ). ( ) 0M M Mp p b p p b p+ ++ + + =e e e  

1 1 0( ) ( ). ( ) ... ( ). ( ) 0P N P N P Np p b p p b p+ + − ++ + + =e e e  

(II- 15) 

 

Solving these equations would give the coefficients a and b of the Padé approximant. 

To Solve these equations one has to start with the last P+N-M equations (which are 

homogenous) and then solve the rest of M equations. Note that M, N and P are 

number of summation terms in (II- 14). 
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II.4.6. Recursive calculation of Padé approximants 

Alternatively, the coefficients of the rational function can be found by means of a 

recursive computation scheme starting from a polynomial which interpolates the 

given data set. 

This method corresponds to the computation of a cross-diagonal sequence in Padé 

table [18]. 

II.4.7. Selection of frequency points 

Selection of frequency points is very important both for computational efficiency and 

accuracy. One possible approach in this regard is to use the ideal characteristic to find 

the critical points and calculate these points for matching the coefficients. These 

critical points can be for instance the poles and zeros of ideal characteristics. In order 

to calculate the approximation with a minimum number of points sufficient enough to 

approximate the frequency characteristic. The procedure starts with one point 

expansion at two ends of frequency range of interest, namely min max,f f . The poles are 

calculated distinctly at these points, if there exists a common pole, and then the 

calculation will be terminated. Otherwise a different point is chosen in the half way 

between the two poles computed in the last two stages and the above mentioned 

criteria will be examined until the poles calculated between every two frequency 

points are the same. This “binary” search helps to minimize the number of frequency 

points to be calculated in order to obtain an accurate Padé approximant. 

II.4.8. Cauchy method 

Cauchy method is an alternative way of approximating a function (that has poles) 

with a rational function. Although the resulting rational form is very similar to Padé, 

the derivation method is very different. Here Cauchy method is brought as a matter of 

completeness. 

The field quantities can be described in the following form, 

0

1

1

( )
( , ) ( )

1 ( )

R
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e e
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(II- 16) 

 

It is essential that the function is calculated in T+R+1 points. This way up, a set of 

linear equations are formed (similar to Padé approximation).  
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An alternative algorithm is suggested by Stoer and Burlisch [19]. This method 

performs the interpolation on tabulated data in a recursive procedure and thus does 

not require matrix inversion which was essential when finding coefficients through 

linear set of equations. Fig. II.2 illustrates the Stoer and Burlisch method for recursive 

computation of Cauchy approximants.  

Let ( , )k kf p= e�  be the value at  fk of the unique rational function of degree zero (i.e., 

a constant) passing through the point ( ), ( , )k kf f pe . Now let kl�  be the rational 

polynomial of degree one passing through both ( ), ( , )k kf f pe  and ( ), ( , )l lf f pe . 

Similarly, for higher order polynomials up to 123...( 1)k k−� , which is the value of the 

unique interpolating polynomial through all k points, i.e., the desired answer. The 

various � ’s form a tableau with ancestors on the left leading to a single descendant at 

the extreme right. An example is shown in Fig. II.2. 

 

 

3f

1f

2f

4f

1 1( )S f = �

2 2( )S f = �

3 3( )S f = �

4 4( )S f = �

12�

34�

23�
123�

234�
1234�

 

Fig. II.2. Recursive Cauchy method 

The Burlisch–Stoer algorithm is a recurrent way of filling in the numbers in the 

tableau one column at a time. It is based on the relationship between a child and its 

parents [21] by  

( 1)...( ) ...( 1)
( 1)...( ) ( 1)...( )

( 1)...( ) ...( 1)

( 1)...( ) ( 1)...( 1)

. 1

k k q k k q
k k k q k k q

k k q k k qk

k q k k q k k q

f f

f f

+ + + −
+ + + +

+ + + −

+ + + + + −

−
= +

 −− −  − − 

� �
� �

� �
� �

 
(II- 17) 

 

It produces the so-called diagonal rational function, with the degree of the numerator 

and denominator equal (if is odd) or with the degree of the denominator larger by one 

(if is even).  
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II.4.9. Multidimensional Cauchy method 

The rational-function interpolation can be extended to the interpolation of 

multidimensional functions. Two new approaches are shown here: a multidimensional 

recursive Cauchy method and a multidimensional rational-function expansion. 

The recursive method solves the multidimensional interpolation using a recursive 

algorithm. The algorithm itself performs a 1-D Cauchy interpolation as described 

before. Let the set �  be put together by the pairs of κ sampling points 1f  to fκ and 

their function values ( )1 1, ( , )f f pe to ( ), ( , )f f pκ κe . Thus, �can be written as 

( ) ( ) ( ){ }1 1 2 2, ( , ) , , ( , ) ,..., , ( , )f f p f f p f f pκ κe e e��  (II- 18) 

 

The algorithm can be defined as a function G , which yields the interpolated response 

Λ  for using the samples 

( ) ( ) ( ) ( ){ }( )1 1 2 2, , , ( , ) , , ( , ) ,..., , ( , )G f f f f p f f p f f pκ κ
 → Λ e e e� �  (II- 19) 

 

Using these definitions, the algorithm can now be extended to multidimensional 

interpolation. For this purpose, the set of sample points must be extended from the 1-

D sample point set to a multidimensional sample-point array. 

II.4.10. Application to microwave device design  

As mentioned before, using frequency parameterization through Padé approximations, 

will considerably accelerate the design cost. Lately, a frequency parameterization 

package which works as an add-on module to EMXD electromagnetic field solver  

package is developed by CADOE company. EMXD is a software package originally 

developed by IRCOM laboratory which uses Finite Elements Method (FEM) as its 

computational core. The developed FEM-based frequency parameterization technique 

is applied to the design of several devices such as the one reported in [83]. The project 

was conducted in the framework of a scientific collaboration between IRCOM, 

CADOE and CNES (French Space Agency- Centre National d’Etudes Spatiales). 
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II.5. Geometry parameterization 

In the previous sections of this chapter parameterization of microwave device 

characteristic using a rational approximant was explained. Through a frequency 

parameterization, one can get the device frequency characteristics in a shorter time 

and this way the design lead time is shortened. But the nature of the obtained results 

has nothing more than if one had to pursue a classical optimization. Thus the 

optimization process using a frequency parameterized model does not have any 

fundamental difference with the classical optimization procedure. 

This section presents geometrical parameterization of microwave devices. In order to 

reduce the optimization time, sole frequency parameterization does not drastically 

help. The objective function is usually a function of frequency and an N-dimensional 

geometrical parameter vector and parameterizing the objective function with respect 

to N-dimensional parameter vector will accelerate the optimization process more 

efficiently than sole parameterization with respect to frequency. Among the few 

works reported in this context, the work done by Gati et al is more prominent and at 

the same time relevant to the present study [20]. 

The geometrically parameterized model outcomes curves which represent the phase 

and amplitude of electromagnetic fields versus a given range of geometry variations at 

a given frequency. Normally a parameterized model is valid within a domain inside 

the whole parameter space. Once a parameterized model is generated, it can be used 

in different iterations until the updated parameter exits the parameterization validity 

domain. Through such a practice multiple computations can be avoided. The 

difference between the form of the outcomes of a geometrically parameterized model 

and a classical numerical model leads to need for a fundamental difference in 

optimization procedure. 

Mathematically, parameterizing a device characteristic with respect to geometrical 

parameters has a radical difference with frequency parameterization. Here, we do not 

expect to have poles and zeros when depicting the variations of field quantities with 

respect to geometrical variation. Thus, the resulting function will be a smooth 

function and a function different from a rational function, as was used for frequency 

parameterization. 
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II.5.1. Mathematical formulation 

Consider the response as,  

( , )f p=e e  (II- 20) 

 

Whereas e  is the response (Electric Field in our application), resulting from 

simulations, f is the real frequency and [ ]1 1 2 3...
T

N Np p p p p× =  is an N-dimensional 

parameter vector. e  can be derived through a linear or nonlinear equation, 

( , ). ( , ) ( , )f p f p f p=A e B�  (II- 21) 

 

Usually the objective function in frequency domain is expressed in terms of S-

parameters, so eventually any field quantity should be converted to S-parameters as 

the intermediate parameter between the objective function and the field quantities, 

( )( , ) ( , ), , 1, 2,..,ij ij ijS S f p S f p i j J= = =e  (II- 22) 

 

whereas J  is the number of device ports. 

A step-by-step procedure will be followed to explain the derivation of a fully 

parameterized model. At the very first step the parameterization with respect to a 

single parameter at a fixed frequency will be developed. Such a technique can then be 

extended to a parameter vector if arbitrary dimension. Finally, the obtained model will 

be parameterized with respect to frequency. 

Assuming that only one parameter vp  varies at any time in a given frequency, the 

parameter vector can be mentioned as, 

[ ]1 1 2 .. ...
T

N v Np p p p p× =  (II- 23) 

 

Then electric field is a function of frequency and dimensions of the structure, 

( ; ), , 1, 2,..,vf p i j J= =e e  (II- 24) 

 

while the only varying parameter is vp . For a variation vp∆  of the parameter vp the 

solution of the equation 

( , ). ( , ) ( , )v v v v v vA f p p f p p f p p+ ∆ + ∆ = + ∆e B�  (II- 25) 

 

can be determined using the Taylor Series, 
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(II- 26) 

 

where MR is the remainder of the series and tends to zero when M tends to infinity for 

any convergent series. 

The equation (II- 26) can lead to a parameterized model with respect to the parameter 

vp . In fact, with one calculation of the S and its derivatives in any point in the 

parameter space, the values of e around that point can be calculated using this 

parameterized model. 

II.5.2. Domain of validity 

The parametric expression is (II- 26) can not be used in the whole parameter span. 

The domain of validity can be defined as, 

( ){ }min max , ( ) 0limv v M
M

D p p p p R p
→∞

= ≤ ≤ =  
(II- 27) 

 

where, 

1 ( ; )
( ) .( )

!
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f p
R p p

M p

∂= ∆
∂
e

 
(II- 28) 

 

II.5.3. Calculation of the higher order derivatives 

At a first glance deriving the parameterized model seems to be as complicated as 

doing multiple computations through different iterations of optimization procedure. 

This is not true because of the fact that the derivatives of the function S can be 

computed iteratively.  

The first derivatives of (II- 25) can be taken as, 

(1) (1) (1)( , ). ( , ) ( , ). ( , ) ( , )A f p f p A f p f p f p+ =e e B   (a) 

or 

(1) (1) (1)( , ). ( , ) ( , ) ( , ). ( , )A f p f p f p A f p f p= −e B e   (b) 

(II- 29) 

 

Here the superscripts in the parentheses show the order of the derivatives. Taking the 

second derivative of (II- 29) would thus yield, 

(2) (1) (1)

(2) (1) (1) (1)

( , ). ( , ) ( , ). ( , )

( , ) ( , ). ( , ) ( , ). ( , )

A f p f p A f p f p

f p A f p f p A f p f p

+ =
− −

e e

B e e
  (a) 

(II- 30) 
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(2)

(2) (1) (1) (1)

( , ). ( , )

( , ) ( , ). ( , ) 2 ( , ). ( , )

A f p f p

f p A f p f p A f p f p

=
− −

e

B e e
 (b) 

And for the Mth derivative we would have, 

( ) ( ) ( ) ( )

1

( , ). ( , ) ( , ) ( , ). ( , )
m

m m m j m j
j

j

A f p f p f p C A f p f p−

=
= −∑e B e  

(II- 31) 

 

Equation (II- 31) can now be used to calculate m’th derivative through successive 

iterations. 

Several techniques have been reported for automatic computation of the derivatives. 

The reader is encouraged to view to [22]-[37].  

II.5.4. Parameterization with respect to two or more 

geometrical parameters 

The parameterization concept can be extended for two or more geometric parameters. 

To this end the field quantity should be expressed using a multi-dimensional Taylor 

Series. As an example, to parameterize the function e  with respect to two parameters 

vp and up ,  

1 1[ ... ... ... ]N v u Np p p p p× =�  (II- 32) 

 

With the unchanged parameter vector defined as, 

( )
[ ]

( )1 1 1 1
1 1 1 1... ... .

N N

T

fix v v u u Np p p p p p p
− × − ×

− + − −+=  (II- 33) 

 

And thus the argument of e  is redefined, 

( ; , ), , 1, 2,..,v uf p p i j J= =e e  (II- 34) 

 

Now e can be expanded with the two dimensional Taylor series, 
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or in short form, 
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1 1
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f p p
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m p p

−
−

−
= =

+ ∆ + ∆ = +

∂ ∆ ∆ +
∂ ∂∑∑

e e

e  

(II- 36) 

 

This formulation can be extended to all N dimensions of the parameter space. In 

practice the cross term errors appear as an obstacle for arbitrarily increasing 

parameterization dimensionality. 

 

The technique is applied to Finite Elements Method by CADOE. To this end, the 

FEM technique developed by IRCOM laboratory is used as the field solver. The 

project was sponsored by CNES (Centre National d’Etudes Spatiales). 
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II.6. Mesh parameterization 

Every time the structure dimensions are updated, the conventional optimization loop 

requires regenerating meshes. The meshes are generated through pseudo random 

methods. Any given structure can be discretized into a mesh grid in infinite different 

combinations through any given method. This affects the efficiency of optimization in 

different ways, namely it causes discontinuous gradients and after all it is a time-

consuming procedure. Fig. II.3 shows the flowchart of the gradient computation 

through finite differencing. 

The gradients of the objective function with respect to geometric parameters are 

normally obtained through finite differencing of the value of objective function for 

slightly perturbed geometry and its initial geometry. A totally brand new mesh should 

be generated for a slightly perturbed geometry. This “new” mesh is different both in 

number of nodes and their relation. On the other hand, the accuracy of any numerical 

method relies on the quality of the discretization. However, the quality of generated 

meshes varies each time, resulting some changes in the result accuracy. This altered 

accuracy is not considerable, of course, but can mask the changes due to slight 

perturbation. In other words gradients obtained through finite differencing of 

regenerated meshes are inaccurate. 

 Mesh 
initialization 

Geometry 
Perturbation 

EM 
Analysis 

Mesh 
Regeneration 

EM 
Analysis 

( )M M G=  

( ) ( ( ))f f M f M G= =

G G G Gδ→ = +�

( )M M G= ��

( )f f M=� �

Finite 
Differencing f f f∇ ≈ −�

G  Initial Geometry 
M  Initial mesh 

G�  Perturbed Geometry 

M�  Perturbed mesh 
f  Field Quantity 

f�  Field Quantity for the perturbed geometry 

f∇  Gradient Vector 

 

Fig. II.3. Calculating gradient through finite differencing 
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An appropriate solution would be to express mesh nodes as a function of structure 

geometry. Such a function should be smooth so that first and second order derivatives 

exist. 

Once a mesh is generated, automatically or manually, the location of nodes can be 

parameterized with respect to geometry borders. Then the same mesh can be 

deformed to accommodate any perturbed geometry.  

Another advantage of mesh parameterization is the time efficiency. The time 

consumed for mesh generation is usually a considerable portion of calculation through 

Finite-Elements methods or any numerical technique. By parameterizing meshes the 

mesh generation time reduced to the time required for evaluation of an algebraic 

expression. 

Some promising works have been done and reported in the fluid mechanics discipline. 

But no effort has been reported in electromagnetic domain to extent of authors’ 

knowledge. The following section explains some conventional methods used for mesh 

deformation.  

II.6.1. Mesh deformation techniques [38] 

Most of the already developed methods for mesh deformation are based on real world 

physical approaches such a network of springs, linear solid elastic body and so on. 

Actually there exists simpler techniques but these trivial techniques are just applicable 

to structured grid, while generating structures meshes for complex geometric domains 

is rather a tedious task. 

Here the methods are described for two-dimensional case, where they can be easily 

extended to the three-dimensional case without loss of generality. 

Referring to Fig. II.4 let’s name the original geometry in two dimensions D, and the 

deformed geometry D’. Our aim would be to find the proper displacement vector 

which maps the mesh on D to a valid mesh on D’. Let also the point a(x,y) on D be 

mapped to the point a’(x’,y’) on D’. As a result we will have the point deformation 

updates via the equation, 

x x u

y y v

′     
= +     ′     

 
(II- 37) 
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D
D′

( , )A x y
( , )A x y′ ′ ′

 

Fig. II.4. The typical geometry used for mesh deformation 

II.6.1.1 Spring analogy approach 

In this approach the mesh is modeled as a network of springs. When a cell edge is 

displaced, a force is induced in the spring assigned to this edge. The strain energy 

contained in the spring system is given by a sum over the set of edges, 

( ) ( )2 2
, ( )pq p q p q

k E

H k u u v v p q D k
∈

 = − + − ∈  ∑  
(II- 38) 

 

where pqk  is the spring stiffness and m
pq pqk l−= . pql  is assumed to be the length of the 

edge connecting node i and j and m is set to be one for small and simple networks 

[41]. For large deformation m should be set to larger values to avoid nodes being 

crossed cell edges. In (II- 38) E is the set of edges and ( )D k  is the set of points 

defining the edge k. Obtaining the gradient of energy function is extremely crucial for 

an efficient solution, 

( )

( )ij i j
j N ii

H
k w w i V

w ∈

∂ = − ∀ ∈
∂ ∑  

(II- 39) 

 

where V is the set containing all the vertices and N(i) is the set of immediate 

neighbors of the vertex i. For minimization of H a preconditioned conjugate gradient 

technique, provided by MATLAB™ optimization toolbox was utilized.  

As mentioned earlier, the main disadvantage of this method appears when the border 

deformations or displacements are of greater value than the actual size of the original 

geometry. In other words as it really happens to the real-world case of a spring grid, 
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when a border is too radically stretched, it could cause a relocation of other borders 

whom are supposed to hold their original position after all transformations. To treat 

this problem, as mentioned in [42] one can increase the spring stiffness to solidify the 

grid to prohibit far grids movements. However this issue should be taken into account 

for a class of problems when on dimension of the structure is drastically larger than 

the other, e.g. when meshing the substrate thickness of a planar structure with 

relatively big plate areas and very thin substrate. 

The very important feature of the approach is its comprehensibility through a clear 

physical interpretation, which in turn, leads to simpler and error-free numerical 

manipulation. A sample of the mesh modified through spring analogy is shown in Fig. 

II.5. The rigidity factor m is set to unity in this example. 

 

 

Fig. II.5. An example of a mesh deformed through spring analogy, original 

(grey) and deformed (black) meshes 
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II.6.1.2 Harmonic equations 

Harmonic equations are a classical approach used to deform an already generated 

mesh with deformed borders. A non-coupled system of Laplacian equations, 

2 0u∇ =  (a) 

2 0v∇ =  (b) 

(II- 40) 

 

can be considered as the governing equation for deformation of a grid. The idea 

comes from a conventional technique of using partial differential equations (PDE’s) 

for generating a grid inside a structure [43].Since the Laplacian is a linear operator, 

the original and renewed meshes and their difference, the vector (u,v) should comply 

with this equation. Regardless of the technique used to generate the primary grid, one 

can expect that this idea will accommodate the mesh deformation.  The main 

disadvantage of the Laplace equation or its variants is the lack of any coupling 

between different components of the displacement. If the borders move in a direction 

parallel to only one direction, say x, the coordinate of mesh points in y direction 

remain unchanged [44]. 

Another variation of this method is reported in [45]. The pair of biharmonic equations 

has been used to finely model mesh deformations in a two dimensional space. The 

method is capable of applying two different conditions at each geometry border which 

gives a relative degree of liberty. 

II.6.1.3 Solid body elasticity model  

The solid body elasticity method for mesh deformation was first introduced in [46] 

about two decades ago, and has been extensively used in aerodynamics. The 

technique models the grid as the particles of a linear elasticity solid body. In the 

absence of any prescribed forces on the body the motion of the grid points comply 

with the strain energy functional, 

1

i

n
i

i A

F A f dx dy−= ∑ ∫  (II- 41) 

 

where  

2 2
2

2 2
( )

u u v v
f

x y x y

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

 
(II- 42) 
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II.6.2. Deformation measure 

Defining a measure for quantifying the overall relocation of vertices or the 

accumulative effect of changes in angles of the mesh could be a proper measure to 

learn about the grid deformations. A very successful measure, introduced by Baker 

[44] is used here to quantify the grid deformation. Specifically speaking in two 

dimensions, with triangular elements an edge matrix nT  can be defined as, 

1 2( 1) ( , )n
n n n n nT w w w w+ += − − −  (II- 43) 

 

where ( , )T
n n nw x y= are the associate positions of vertices associated with very 

triangle. A simple mathematical manipulation would show that T is a two times the 

area of a triangle formed by nw , 1nw + , 2nw + . Accordingly, the edge matrix, associated 

to the deformed mesh is defined in a similar manner, let this matrix be named nT ′ . The 

deformation matrix, nB  is defined in such a way that it links the original and 

deformed matices, 

.n n nT B T′ =  (II- 44) 

 

As proven in [44] the matrix nB  does not depend on the choice of the vertices and 

could be calculated without any ambiguity. nB  can be decomposed as .B PU=  where 

P is a positive definite matrix and U is an identity matrix. The elements of P 

correspond to the modes of distortion. An eigenvalue bigger than unity corresponds to 

stretching along with the eigenvector and similarly eigenvalues less than unity 

represent compression. The eigenvalues of the matrix P are singular values of the 

matrix B and can be easily found by using Matlab software. For the case of pure 

rotation minimum and maximum singular values of B are both equal to unity and for 

the case of uniform linear scaling by a factor of k both eigenvalues will be equal to the 

scaling factor. 

The difference between edge angles can provide another basis or quantifying the grid 

deformation, 

( )2

i
i

M β= ∆∑  (II- 45) 

 

Here iβ∆  represents the difference between the angles of the deformed and initial 

grids both corresponding to the i’th node. 
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II.6.3.  Mesh parameterization 

II.6.3.1 Mesh parameterization barycentric coordinates 

All of the methods introduced so far have been relying on a sort of analogy to 

physical problems. This approach, although very easy to implement, but has 

shortcomings which have been addressed when explaining methods. Thus the search 

has been directed towards finding a pure mathematic scheme which can accommodate 

the need for a parameterization technique. 

Barycentric coordinates, known for centuries, have been used by the computer 

engineers at early ages for interpolation purposes, ray tracing, and surface smoothing. 

Because of their linear accuracy, barycentric coordinates can also be found in Finite-

Elements literature [47].  

II.6.3.2 Barycentric coordinates 

Barycentric coordinates are triplets of numbers 1 2 3( , , )w w w  corresponding to masses 

placed at the vertices of a reference triangle 1 2 3g g g�  (see Fig. II.6). These masses 

then determine a point P, which is the geometric centroid of the three masses, and is 

identified with coordinates 1 2 3( , , )w w w . The vertices of the triangle are given by 

(1,0,0), (0,1,0), and (0,0,1). Barycentric coordinates were discovered by Möbius in 

1827. 

 

Fig. II.6. Barycentric coordinates - Classical definition 

To find the barycentric coordinates for an arbitrary point a , find 2w and 3w from the 

point Q at the intersection of the line 1g a  with the side 2 3g g , and then determine 1w  

as the mass at 1g  that will balance a mass 2 3w w+  at Q, thus making P the centroid 
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(Fig. II.6). Furthermore, the areas of the triangles 1 2g g a� , 1 3g g a� , and 2 3g g a�  are 

proportional to the barycentric coordinates 3w , 2w , and 1w  of a . 

Barycentric coordinates are homogeneous, so  

1 2 3 1 2 3( , , ) ( , , )w w w w w wµ µ µ=  (II- 46) 

 

for 0µ ≠ . 

Barycentric coordinates which are normalized so that they become the actual areas of 

the sub-triangles are called homogeneous barycentric coordinates, and barycentric 

coordinates normalized as  

1 2 3 1w w w+ + =  (II- 47) 

 

so that the coordinates give the areas of the subtriangles normalized by the area of the 

original triangle are called areal coordinates. 

In barycentric coordinates, a line has a linear homogeneous equation. In particular, the 

line joining points 1 2 3( , , )r r r  and 1 2 3( , , )s s s  has equation 

1 2 3

1 2 3

1 2 3

0

r r r

s s s

w w w

=  

(II- 48) 

 

If the vertices ia  of a triangle 1 2 3a a a�  have barycentric coordinates ( , , )i i ix y z , then 

the area of the triangle is 

1 1 1

1 2 3 2 2 2 1 2 3

3 3 3

x y z

x y z

x y z

=a a a g g g� �  

(II- 49). 

 

 

II.6.4. Mesh deformation using generalized barycentric 

coordinates 

II.6.4.1 Generalized barycentric coordinates 

Barycentric coordinates has the potential of being used for mesh parameterization. It 

basically provides a function that expresses any point inside a triangle so that if the 

vertices of the triangle are displaced, that internal point will move accordingly. 
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The only problem with using the barycentric coordinates is that these coordinates are 

used only to parameterize a triangle and can not accommodate complicated 

geometries of actual structures. Obviously the geometries of microwave devices are, 

more complicated than to be represented by simple triangles. The original form of the 

barycentric coordinate which was explained earlier can not be extended to polygons.  

II.6.4.2 Notations 

Due to wide variety of applications of grid parameterization techniques different 

notations have been used for mesh generation, deformation and relevant topics. It 

necessitates us to define a concise notation before we proceed developing 

formulation. 

Referring to Fig. II.7, let 1 2, ,..., ,..i Ng g g g  be N vertices of the polygon Γ  (with 

3N ≥ ) in two dimensional Cartesian coordinates, where  

xi

i
yi

 
=  

 

g
g

g
 

(II- 50) 

 

As a matter of convenience we have picked x-y plane as our reference plane. Also let 

the vector, 

[ ]1 2 1 1... ...
T

i i i N− +=g g g g g g g  (II- 51) 

 

represents the vertices of the polygon. The edges are numbered as, 

1i i i+= −e g g  (II- 52) 

 

and obviously 1N N= −e g g . 

Now let 1 2, ,..., ,..j Ma a a a  be a set of arbitrary points inside the polygon Γ . The 

internal points are also referred to in a vector format, 

  
T

1 2 j-1 j j+1 Ma = a a ...a a a ...a  (II- 53) 

 

Each of these internal points forms a triangle with a couple of vertices. The triangle 

formed between three points ja , ig and 1i+g  is named ijτ : 

1ij i i jτ += g g a� �  (II- 54) 
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This is a general trend for naming the internal triangles, for example the points 3a , 

Ng  and 1g  is named 3Nτ . The internal angles formed inside triangles are named as 

follows, 

1ij i j iα +∠ = ∠ g a g  (a) 

1ij j i iγ +∠ = ∠ a g g  (b) 

1ij i i jθ +∠ = ∠ g g a  (c) 

(II- 55) 

 

The original concept of barycentric coordinates was explained earlier. The aim of this 

section is to extend the barycentric coordinate concept to a polygon. 

 

Fig. II.7. Description of the geometry used for generalized barycentric 

coordinate and relevant notations. 

To this end, the properties of generalized barycentric coordinates of 

  
T

1 2 j-1 j j+1 Ma = a a ...a a a ...a  with respect to [ ]1 2 1 1... ...
T

i i i N− +=g g g g g g g  is any set of 

real coefficients  1 1
...

T

ij j Nj N
w w w

×
 =   .in such a way that:  

1- The interior points can be expressed as an affine combination of vertices as, 

1

N

j ij i
i

w
=

= ∑a g  
(II- 56) 
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whereas 

1

1, 1,..., .
N

ij
i

w j M
=

= =∑  
(II- 57) 

The equation (II- 56) can also be written as, 

1

( ) 0
N

ij i j
i

w
=

− =∑ g a  
(II- 58) 

 

2- The combination much be convex, or,  

0, 1,..., , 1,... .ijw i N j M≥ = =  (II- 59) 

 

3- The elements of 1 1
...

T

ij j Nj N
w w w

×
 =    should be infinitely differentiable with 

respect to  ja  and ig . This ensures smoothness in the variation of the coefficients 

j when we move any vertex. 

II.6.4.3 Literature survey 

Several researchers have attempted to generalize barycentric coordinates to arbitrary 

n-gons. Due to the relevance of this extension in CAD, many authors have proposed 

or used a generalization for regular n-sided polygons [55], [54], [56]. Their 

expressions nicely extend the well-known formula to find barycentric coordinates in a 

triangle, Unfortunately, none of the proposed affine combinations leads to the desired 

properties for irregular polygons. However, Loop and DeRose [55] note in their 

conclusion that barycentric coordinates defined over arbitrary convex polygons would 

open many extensions to their work. 

Pinkall and Polthier [57][57], and later Eck et al [51], presented a conformal 

parameterization for a triangulated surface by solving a system of linear equations 

relating the positions of each point p to the positions of its first ring of neighbors  

1 1
1, ,

1

tan ( ) tan ( ) ( ) 0
N

i j i j i j
i

γ θ− −
−

=

 + − = ∑ g a  
(II- 60) 

 

where the angles are defined in Fig. II.7. As Desbrun et al. showed in [50], this 

formula expresses the gradient of area of the 1-ring with respect to p, therefore 

smoothness is immediately satisfied. The only problem is that the weights can be 

negative which means that the combinations can not be convex. This alters the second 

property (convexity). 
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Floater [52], [53] also attempted to solve the problem of creating a parameterization 

for a surface by solving linear equations. However, in 1975, Wachpress proposed a 

construction of rational basis functions over polygons that leads to the appropriate 

properties. 

II.6.4.4 Computation of generalized barycentric coordinates 

The same concept as in original barycentric coordinates can be used to derive the 

extended version which is applicable to any convex irregular polygon.  

Following the same procedure as original barycentric coordinates, in order to find the 

coefficient ijw , the weights of the polynomial can be defined as the area of the two 

triangles which share the line segment between the vertex ig and internal point ja ,  

1 1

1

( )

( ). ( )
i i i

ij
i i

A
w

A Aτ τ
− +

−

= g g g��  
(II- 61) 

 

Here ijw� is the non-normalized weight. This can be later normalized as, 

1

ij
ij N

ij
i

w
w

w
=

=
∑
�

�
 

(II- 62) 

 

In equation (II- 61) A represents the area of the triangle. The denominator in (II- 61) 

provides a measure of proximity, in other words, the closer the internal point ia is to 

the vertex ig , the smaller becomes the denominator. On the other hand, the nominator 

is a measure of proximity of the vertex ig  to its adjacent vertices 1i−g  and 1i+g , as well 

as the angle ig∠ . The closer the point ja gets to the vertex ig , the larger becomes ijw� . 

Once the point ja  falls inside 1 1i i i− +g g g�  , the ijw� becomes greater than unity. Equation 

(II- 61) can now be extended as,  

1
2

1 1

2

1

sin( )

sin( ). . .sin( )

sin( )

sin( )sin( )

i i i
ij

i i i j i i

i

i j i i

g
w

g

θ γ

θ γ

−

− −

−

∠
=

−

∠=
−

e e

e g a e

g a

�

 

(II- 63) 

 

Therefore, using trigonometric identities  

1 1 1sin( ) sin( ) sin( )cos( ) cos( )sin( )i i i i i i ig θ γ θ γ θ γ− − −∠ = + = +  (II- 64) 

 

would yield, 
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1 1
1

2

tan ( ) tan ( )i i
ij

i j

w
θ γ− −

− +=
−g a

�  
(II- 65) 

 

Using (II- 65), the required information are only the vertex ig  and angles 

1iθ −∠ and iγ . In a mesh parameterization practice, such a feature is quite significant: 

It gives the flexibility of parameterizing a node locally, with respect to one, or few 

vertices, without a need for going through the whole structure. However, for star-

shaped polygons the coordinate in (II- 65) can be inconsistent, and, in fact, will be so 

precisely when ig π∠ > . 

II.6.5. Mean value coordinates 

The equation (II- 65) solely depends on the angles seen from vertex. An alternative 

formulation, often called mean value coordinates uses the harmonic mapping concepts 

to derive the weights as follows, 

1, ,tan( / 2) tan( / 2)i j i j
ij

i j

w
α α− +

=
−g a

�  
(II- 66) 

 

The main feature of the equation is that it only depends on the angles seen from the 

interior point ja . These weights can be derived from an application of the mean value 

theorem for harmonic functions, which suggests calling them mean value coordinates. 

Not only are these coordinates positive, but we can bound them away from zero. The 

lower and upper bounds of the coefficient ijw� can be found as, 

{ }
{ }

{ }
{ }

1 1tan(min , / 2) tan(max , / 2)
2 2

max min

i i i i
ij

i j i j

w
α α α α− −≤ ≤

− −g a g a
�  

(II- 67) 

 

II.6.6. Three dimensional generalized barycentric coordinates 

Mean value coordinates were introduced as a way of expressing a point in the kernel 

of an arbitrary polygon as a convex combination of the vertices. These coordinates 

can be successfully used to compute good parameterizations for surfaces represented 

as triangular meshes. Since these coordinates already have several concrete 

applications, it seems worthwhile generalizing these coordinates to three dimensions.  

The notation used for the two dimensional case is extended to three dimensions. The 

N vertices of polyhedron Γ  are named 1 2, ,..., ,..i Ng g g g  (with 4N ≥ ) in three 

dimensional Cartesian coordinates, where  
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xi

i yi

zi

 
 =  
  

g

g g

g

 

(II- 68) 

 

A vertex ig  is simple if ig  is the intersection of h half-spaces, i.e. κ exactly contains h 

indices. A polygone Γ  is simple if every vertex of Γ  is simple. Note that convex 

polygons are always simple while only a subset of convex polyhedra are simple. For 

example, tetrahedrons, cubes and triangular prisms are simple while square pyramids 

and octahedrons are not. A complete definition of geometrical terms is presented in 

Appendix C. 

Referring to Fig. II.7, assume that κ  is the set of all the facets (lines) in three (two) 

dimensions that contains ig . 

The ig  is simple if it is the intersection of h half-spaces, i.e. κ exactly contains h 

indices. k ’s  are the normal vectors to the facets (edges) k. The matrix containing all 

the normal vectors of the facets which form the polyhedron. Also let [ ]h hκ ×
Λ  

correspond to the sub-matrix of Λ  whose rows are the vectors k  where k κ∈ . For a 

given point ja  strictly inside the polyhedron, as suggested in [70], one can write, 

1

( )
( )

( )
ij h

l j
l

Det
w

d

κκ

=

Λ
=

∏ a
�  

(II- 69) 

 

where ( )l jd a  is the distance between internal point ja and every facet (edge). In 

particular, the determinant in the numerator corresponds to the volume (area) of the 

parallelepiped spanned by the outward normal vectors k  associated with the facets 

incident on ig . The discussion will be continued with a couple of examples on finding 

the barycentric coordinates with the mentioned method. 

II.6.7. Algorithms implementation  

Following the same nomenclature as addressed above, the barycentric and mean value 

coefficients can be derived through computing intermediate variables. 

It will be tried to explain the algorithm in brief. The polygon sides are defined in 

vector form as, 

2 1 3 2 1 1[ .... ]N N Ng −= − − − −g g g g g g g g  (II- 70) 
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and also the matrix F  as, 

1 1 1 2 1

2 1 2

1

. .

.

. . .

. . .

. . .

M

M

N N M

F

− − − 
 − − 
 =
 
 
 − − 

g a g a g a

g a g a

g a g a

 

(II- 71) 

 

Let matrix α  be defined as, 

, 1,

, 1,

,i j i j

ij

i j i j

F F

F F
α +

+

=  
(II- 72) 

 

So the elements of α  reflect the angles between rays connecting an interior point and 

two consecutive vertices. 

The angles ijγ  and ijθ are computed with a similar approach, 

, 1

, 1

,i j i i

ij

i j i i

F

F
γ +

+

−
=

−

g g

g g
 

(II- 73) 

 

and 

ij ij ijθ π γ α= − −  (II- 74) 

 

Now to compute the Barycentric and mean value coordinates will be straightforward 

using (II- 65) and (II- 66), respectively. 

Consequently, having the coordinates of the (already generated) mesh nodes and 

polygon vertex, a matrix describing the mesh edges is formed as follows, 

0 . . .0 1 . .
1

0 1 0 00 0 0 .

2

.

.

polygonvetrexmesh nodes

edge

edge

L

edgem

 
  
 
    

=  
 
 
 

 
 

 
 
  

.

��������������

 

(II- 75) 

 



Chapter II 

Optimization using Parameterized EM-Models 

129

Where L  is a matrix that specifies the mesh edges. Every couple of consecutive rows 

show two ends of an edge. Thus the coordinates of the endpoints of the edges can be 

derived as, 

[ ].K L= a g�  (II- 76) 

 
The matrix L  is the only components which is constant during the procedure. While 

deforming a polygon and its internal mesh points, all the coordinates will change, but 

the nodes and vertex forming mesh edges will remain unchanged. Thus after 

deformation, by multiplying the deformed coordinates to L  would yield the new grid. 

II.6.8. Mesh deformation examples 

II.6.8.1 Scaling  

The implemented algorithm for mesh deformation has been tried on few meshes. As 

the first example, consider a rectangle as shown in Fig. II.8. A very plain mesh is 

demonstrated as a matter of simplicity of the demonstration. 

The rectangle g  with the vertices at the point (0,0), (2,0), (2,1) and (0,1) is 

represented in matrix form as, 

0     0

2     0

2     1

0     1

 
 
 =
 
 
 

g
 

The rectangle is segmented with a simple mesh with three nodes represented by a , 

  1.7000    0.2000

1.0000    0.6000

0.5000    0.4000

 
 =  
  

a  
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1a3a

2a

1g 2g

3g
4g

 

Fig. II.8. Example demonstration of the implementation of mean value 

coordinate.   

 
Now the rectangle is scaled in it both dimensions to yield,  

0     0

4     0

4     3

0     3

 
 
 ′ =
 
 
 

g
 

The goal is to find the coordinates of the new mesh nodes named ′a . 

Using the same notations as in the section II. 6.4. the internal angles will be as 

follows, 

139.6001  118.0725  126.4088

103.1340   52.7652   36.7328

85.3549  136.3972  108.0042

31.9110   52.7652   88.8542

 
 
 =
 
 
 

, 

6.7098   30.9638   38.6598

56.3099   59.0362   75.0686

69.4440   21.8014   21.8014

64.7989   68.1986   39.8056

 
 
 =
 
 
 

, 

and 
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33.6901   30.9638   14.9314

20.5560   68.1986   68.1986

25.2011   21.8014   50.1944

83.2902   59.0362   51.3402

 
 
 =
 
 
 

. 

angles are all in degrees. 

The normalized Mean value coordinates are computed as, 

0.1098    0.6902    0.1598    0.0402

0.2000    0.2000    0.3000    0.3000

0.4538    0.1462    0.1038    0.2962

w

 
 =  
  

. 

Now using the matrix w , the deformed mesh nodes can be computed, 

3.4000    0.6000

2.0000    1.8000

1.0000    1.2000

 
 ′ =  
  

a  

′a  is the coordinates of the mesh nodes belonging to the scaled geometry.  

II.6.8.2 Moving vertices inward and outward 

As a second mesh parameterization example consider the original geometry 1Γ  and 

deformed geometries ( 2Γ , 3Γ ) are shown in Fig. II.9 for this example the mesh 

morphing for inward and outward movements of the vertices are to be examined. 

Intentionally the geometry is not convex. 

 
Fig. II.9. Example: the original and deformed geometries.   
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The polygon 1Γ  is represented in matrix form as, 

1

     0             0

4.0000         0

5.5000         0

7.0000         0

7.0000    2.0000

5.0000    2.0000

5.0000    6.0000

3.0000    6.0000

3.0000    3.0000

     0       3.0000

 
 
 
 
 
 
 

=  
 
 
 
 
 

 

g




 

 

The rectangle is segmented with a simple mesh with three nodes represented by 1a , 

1

2.0000    1.0000

4.0000    0.5000

6.0000    1.0000

4.5000    5.0000

 
 
 =
 
 
 

a  

The mesh is parameterized through mean value coordinates as 

The polygon 1Γ  is deformed by moving one vertex ( 4g ) inward as shown here, 

    0             0

4.0000         0

5.5000         0

7.0000         0

7.0000    2.0000

5.0000    6.0000

3.0000    6.0000

3.0000    3.0000

     0        3.0000

3.8000    1.7000

 
 
 
 
 
 
 

=  
 
 
 
 
 

 

2g




 

matrix 2a now is calculated as, 

2.0024    1.1329

3.9373    0.4843

5.6759    1.1462

4.2470    4.7111

 
 
 =
 
 
 

2a  

Fig. II.10 shows the deformed geometry 2Γ  with one inward moved vertex 4g . The 

whole grid, even those points which are affected by deformation. When moving the 

points towards the interior of polygon, there is always a risk for having some nodes of 
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the deformed geometry moved out of the geometry borders. One approach to avoid 

such a scenario is to split a polygon to a number of convex shapes. 

Now the original polygon 1Γ  is deformed by moving two vertices ( 4g and 5g ) 

outward, 

     0             0

4.0000         0

5.5000         0

7.0000         0

7.0000    2.0000

3.0000    6.0000

3.0000    3.0000

      0       3.0000

5.5000    3.0000
6.0000    7.0000

 
 
 
 
 
 
 

=  
 
 
 
 


 

3g





 

the new deformed mesh is calculated as follows, 

2.0962    1.2110

4.0400    0.5661

6.0014    1.3994

5.0658    5.4632

 
 
 =
 
 
 

3a  

 

Fig. II.10. Moving one vertex inward (the original and deformed geometries) 
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Fig. II.11. Moving two vertices outward (the original and deformed geometries)   
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II.7. Design example – Optimization of a dual-mode cavity 

filter 

So far the different aspect of optimization of microwave structures have been studied 

extensively. Despite the fact that the proposed techniques are well established in 

mathematics, there are many detail which are specifically important in a microwave 

engineering point of view. To further clarify this, the efforts to use the already 

discussed method for optimizing a relatively complicated microwave device is 

presented in detail.  

II.7.1. Description of the structure 

Despite their being in use for many decades, microwave filters that manipulate the 

Chebyshev filtering functions are of great interest. Their being highly selective, gives 

an acceptable compromise between lowest signal degradation and highest 

noise/interference rejection. In the applications where filters are used for channeling, 

very high close-to-band rejections are required to prevent interference to or from 

closely neighboring channels; at the same time, the incompatible requirements of in-

band group-delay and amplitude flatness and symmetry are demanded to minimize 

signal degradation.  

A 5th order filter is designed that provides a band-pass pseudo elliptic transfer 

function, with 23dB return loss and 2 symmetrical transmission zeros at ± 1.435. The 

objective is a flat 37.5MHz pass-band centered at 12.35GHz. The structure is 

described in Fig. II.12. The filter works on its TE113 dual-mode: 2 polarizations are 

coupled in the two first cavities and only one polarization is coupled in the last one. 

The ideal scattering parameters are presented in Fig. II.13. 

II.7.1.1 The design parameters 

The twelve design variables as shown in Fig. II.12 are: 

− 5 tuning screws, each to tune one resonant frequency, 

− 2 coupling screws for the adjustment of coupling within dual mode cavities, 

− 3 coupling irises, for coupling between adjacent cavities, 

− 2 excitation irises, for input/output coupling. 
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These parameters form a sophisticated parameter space which could assure having 

embraced the desired filtering response. 

Tuning screws

Coupling screws

Coupling irises

 

Fig. II.12. The 5-pole cavity filter and relevant notations. 
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Fig. II.13. The ideal transfer function 

The initial dimensions are computed using an electromagnetic synthesis [83]. Each 

distributed element is analyzed individually. The dimensions of the cavities may be 

computed applying analytical formulas. The input/output iris dimensions are then 

determined by analyzing a cavity coupled to the standard waveguide through a 

dB
(S
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 d
B

(S
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rectangular iris. Then, the coupling iris dimensions are determined by analyzing two 

cavities coupled through a rectangular iris. The initial dimensions of the structure are 

shown in Tables I and II 

Dimension Value (mm) 
Height of cavity 1 42.2 

Height of cavity  2 42.6 

Height of cavity  3 42.2 

Diameter of cavities 27 

Width of I/O irises 2 

Width of coupling irises 1 

Thickness of irises 1.02 

Table I. Fix dimensions 

Parameter Value (mm) 
Length of input iris 9.25 

Length of iris 1-2 7.25 

Length of iris 2-5 5.4 

Length of iris 3-4 7.1 

Length of output iris 9.25 

Length of screw 1-1 2.15 

Length of screw 2-2 2.15 

Length of screw 3-3 2.15 

Length of screw 4-4 2.60 

Length of screw 5-5 1.50 

Length of screw 2-3 0.75 

Length of screw 4-5 1.25 

Table II. Initial design parameters 

II.7.1.2 Geometrical parameterization 

The structure was parameterized with respect to all the twelve geometrical parameters 

mentioned. The details of the parameterization procedure developed by CADOE are 

discussed before in II.5. 

The resulting polynomial is used to calculate the electric field within the structure. 

The parameterized model is expressed only in terms of one parameter at a single 

frequency. Parameterizing both with respect to frequency [82] and geometry or 

parameterizing with respect to more than one geometrical parameter at a time would 

result in approximate cross terms that aggrandize the error values accumulatively. As 
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a consequence, the electric field, the scattering parameters and all related functions 

are defined as functions of only one parameter pm, m ∈  [2, …, M], at a single 

frequency fs. 

The parameterization has been done in 19 frequency points. The choice of appropriate 

frequency points is very critical. With an intelligent choice of frequency point one can 

skip calculating the objective function in for too many times which makes the 

optimization more cost efficient. 

Table III shows the exact frequency points chosen for this optimization practice. 

 
No Frequency (GHz) No Frequency (GHz) 

1 12.3170 11 12.3560 

2 12.3230 12 12.3610 

3 12.3240 13 12.3660 

4 12.3280 14 12.3680 

5 12.3300 15 12.3680 

6 12.3321 16 12.3710 

7 12.3340 17 12.3750 

8 12.3381 18 12.3760 

9 12.3430 19 12.3820 

10 12.3500   

Table III. The frequencies in which the electric fields are parameterized with respect 

to geometrical parameters 

II.7.2. Interpolating discrete frequency characteristic 

The geometrical parameterization ends up with a set of results in the form of  

( , )n nS S f p= �� �  (II- 77) 

 

where f�  is the vector including all the frequency points where the field is 

parameterized versus frequency { }1 2, ,..., Nff f f f=�  

np�  is the parameter vector with the n’th element np  being varied in a range 

1 2 ,1 ,[ ....[ .... ].... ]n n n M Np p p p p p=�  while other parameters are constant. 
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Fig. II.14 shows this parameterized vector versus the frequency. As can be seen at 

each frequency point, the values of S-parameters are given while one parameter is 

varying.  

The calculated S-parameter in discrete frequency point is not appropriate for 

calculating errors. The error calculated by connecting these points is too imprecise to 

be a basis for integrating errors. This is further clarified in Fig. II.14. Please note that 

in order to calculate gradients, we will need to track the variations of S-parameter due 

to fine variations. To this end, we will need to interpolate the S-parameter versus 

frequency to be able to express it as a continuous function. Such an interpolating 

function should be able to precisely comply with specific features of a frequency 

characteristic such as poles and zeros. 

Different interpolating functions have been used to interpolate the discrete 

characteristic. The results are presented in this section. 

 

Fig. II.14. The explanation of ( , )n nS S f p= �� � .Connecting the discrete frequency 

points to obtain a continuous characteristic of S-parameters does not 

give precise results 
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II.7.2.1 Curve fitting by least squares method 

The method of least squares assumes that the best-fit curve of a given type is the 

curve that has the minimal sum of the deviations squared (least square error) from a 

given set of data. 

The fitting curve ( , )mS f p�  has the deviation (error) d from each frequency point, i.e., 

1 1 1( , ) ( , )n nd S f p S f p= − �� � , 2 2 2( , ) ( , )n nd S f p S f p= − �� � , ... ( , ) ( , )Nf Nf n Nf nd S f p S f p= − �� � . 

 

According to the method of least squares, the best fitting curve has the property that:  

2

2 2 2 2 2
1 2 3 1 1

1 1

... ( , ) ( , )
Nf Nf

Nf i n n
i i

d d d d d S f p S f p
= =

 + + + + = = − ∑ ∑ �� �  
(II- 78) 

 

is minimum. 

To fit a polynomial of degree M such as, 

1 0 1( , ) ... M
n MS f p a a f a f= + + +�  (II- 79) 

 

to the data points that we have calculated through parameterization, we would have to 

substitute the equation (II- 79) into (II- 78) such that, 

2

0 1
1

( ... ) ( , )
Nf

M
i M i i n

i

a a f a f S f p
=

 Π = + + + − ∑ � �  
(II- 80) 

 

is minimal. 

To obtain the least square error, the unknown coefficients 0a  to Ma  must yield zero 

first derivatives 

0 1
1

2 ( ... ) ( , ) 0
Nf

m M
i i M i i n

im

f a a f a f S f p
a =

∂Π  = + + + − = ∂ ∑ � �  
(II- 81) 

 

The unknown coefficients will thus be calculated through the linear system of 

equations. 

The results of fitting the curve through least squares is presented in Fig. II.15. 

Different degrees of polynomial have been tried ranging from 4 to 19 (the maximum 

possible through least squares method). Noting that the time for calculating 

coefficients increases almost linearly with the polynomial degree. In practice it was 

seen that increasing the degree of polynomial more than 8 was not affecting the 

results. 
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Fig. II.15. The interpolated results through the least squares method 

II.7.2.2 Interpolation using Padé approximants 

As mentioned earlier, rational functions are usually used to comply the filtering 

characteristics. The derivation of Padé approximant has been discussed in detail when 

explaining frequency parameterization. Here, a slightly different scheme has been 

utilized to fit Nf points of parameterized S-parameters with respect to frequency. 

Assuming that the resultant interpolation function has the form, 

0 1

1

...
( , )

1 ...

P
P

n Q
Q

a a f a f
S S f p

b f b f

+ + += =
+ + +

�  
(II- 82) 

 

The equation (II- 82) can be re-written as, 

2
0 1 1 2( , ) ... ...i

P Q
i i n i P i i Q iS S f p a a f a f b f b f b f= = + + + − − −�  (II- 83) 

 

The resulting equation can be represented as in matrix form as, 

[ ] .S X A=  

where 

1 2( , ) ( , ).... ( , )
T

NfS S f p S f p S f p =    

0 1 0 1.. .. | ... ...
T

p P q QA a a a a b b b b =    

(II- 84) 
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2 2
1 1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2 2

2 2

1 ... ( , ). ( , ). .. . ( , ).

1 ... ( , ). ( , ). .. . ( , ).

. . . ... . . . .. . .

. . . ... . . . .. . .

. . . ... . . . .. . .

1 ... ( , ). ( , ). .. . ( , ).

P Q

P Q

P Q
Nf Nf Nf Nf Nf Nf Nf Nf Nf

f f f S f p f S f p f S f p f

f f f S f p f S f p f S f p f

X

f f f S f p f S f p f S f p f

− − −
− − −

=

− − −

 







 

 

If Nf =P+Q the solution of (II- 84)is simply calculated by inversion of X. 

[ ] 1
.A X S

−=  if Nf =P+Q 

[ ] [ ] [ ]
1

. .
T T

A X X X S
−

 =    if Nf >P+Q 

(II- 85) 

 

For the case Nf < P+Q, the system of equations will be under-determined and 

solution will not be precise. The algorithm is implemented with MATLAB. The 

interpolated function is shown in Fig. II.16. 

To have a more precise result it is essential that complex values of S at sampling 

points be utilized for interpolation. This significantly ameliorates accuracy. 

Although the Padé approximant showed a better accuracy than the least squares, but 

anyways it is still nowhere near an acceptable range to follow up the small 

perturbation. 

 

Fig. II.16. The S-parameter interpolated using Padé approximants  
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II.7.2.3 Interpolation by splines 

The goal of cubic spline interpolation is to get an interpolation formula that is smooth 

in the first derivative, and continuous in the second derivative, both within an interval 

and at its boundaries. Using spline interpolation, a set on Nf piecewise polynomials 

can be computed. There is a polynomial for each interval, each with its own 

coefficients,  

2 3
1( , ) ( ) ( ) ( ) ,   i i n i i i i i i i i i iS S f p a f f b a f f c f f d f f f += = − + − + − + ≤ ≤�  (II- 86) 

 

Since there are Nf -1 intervals and four coefficients for each we require a total of 4(Nf-

1) parameters to define the spline. In other words 4(Nf-1) independent conditions are 

needed to compute all the coefficients. It is already known that 2(Nf-1) of these 

conditions come from matching the beginning and the end of each interval, 

1 1( , ), ( , )i i n i i nS S f p S S f p+ += =� �� �  (II- 87) 

 

There are still 2(Nf-1) more conditions needed. Since we would like to make the 

interpolation as smooth as possible, we require that the first and second derivatives 

also be continuous, 

1

i i

i i

f f f f

dS dS

df df
+

= =

 

and 

2 2
1

2 2

i i

i i

f f f f

d S d S

df df
+

= =

=  

(II- 88) 

 

The boundary conditions mentioned above will furnish 4Nf-2 condition. The 

remaining two conditions should be provided through setting the second derivatives 

zero at the start and the end of the whole domain, 

2
1 1

2

( , )
0nd S f p

df
=

�
 

2

2

( , )
0Nf Nf nd S f p

df
=

�
 

(II- 89) 

 

These terminating conditions are called natural in the literature.  
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Fig. II.17. The discrete frequency characteristic is interpolated through splines  

Now solving this set of linear equations will give a smooth curve as can bee seen, for 

example, in Fig. II.17. The curve is satisfactorily and follows the probable 

characteristic of a filtering characteristic.  

II.7.3. Data structure 

The parameterization with respect to geometrical parameters is always done based on 

a parametric model in a single frequency. This means that the outcome of 

parameterization is in the form of 

{ }1 1 1 2 3.. ,1 1 1 2 3.. ,2 1 1 2 3.. ,

2 2 1 2 3.. ,1 2 1 2 3.. ,2 2 1 2 3..

( , ) ( , ... ), ( , ... ),...., ( , ... )

( , ) ( , ... ), ( , ... ),...., ( ,

n n n N n n N n n Np N

n n n N n n N n

S f p S f p p p p p p S f p p p p p p S f p p p p p p

S f p S f p p p p p p S f p p p p p p S f p p p p

     = = = =     

   = = =   

�

� { }

{ }

,

1 2 3.. ,1 1 2 3.. ,2 1 2 3.. ,

... )

.

.

( , ) ( , ... ), ( , ... ),...., ( , ... )

n Np N

Nf n Nf n n N Nf n n N Nf n n Np N

p p

S f p S f p p p p p p S f p p p p p p S f p p p p p p

 = 

     = = = =     �

 

(II- 90) 

 

The calculated data now should be re-grouped in such a way that similar parameter 

sets of different frequencies form a new vector in the form of, 
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{ }
{ }

{ }

1,1 1 2 1 1,1 2 3..

1,2 1 2 1 1,1 2 3..

1, 1 2 1 1,1 2 3..

,1 1 2

( , ) ( , ,..., , ... )

( , ) ( , ,..., , ... )

.

( , ) ( , ,..., , ... )

.

.

( , ) ( , ,...,

Nf n N

Nf n N

Np Nf n N

N Nf

S f p S f f f p p p p p p

S f p S f f f p p p p p p

S f p S f f f p p p p p p

S f p S f f f

   = =  

   = =  

   = =  

= 

�

�

�

� { }

{ }

1 2 3.. ,1

,1 1 2 1 2 3.. ,

, ... )

.

.

( , ) ( , ,..., , ... )

n N N

N Nf n N N Np

p p p p p p

S f p S f f f p p p p p p

  = 

   = =   
�

 

(II- 91) 

 

The above data manipulation is depicted in Fig. II.18. 

 

Fig. II.18. The S-parameters are computed for every frequency. 

The interpolation which was explained in the previous section has been conducted 

over one set of discrete frequency points, which means that the same procedure is 

needed to be performed over different parameter values of each parameter. The data 

structure for different parameter variations is shown in Fig. II.19. 
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Fig. II.19. The parameterized model should be computed for variations of every 

parameter 

II.7.4. Objective function 

The objective function is defined using frequency characteristics of the S-parameters. 

As mentioned before, the parameterized model operates at a single frequency. 

Calculating the objective function in a complete frequency band would be 

cumbersome. Instead, the ( )p,fT m,s  function is defined as, 
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fs’s are critical frequencies where the objective function has to be computed 

accurately.  

The frequencies could be poles and zeros of the ideal transmission and reflection 

functions, obtained by a mathematical filter approximation such as Chebyshev, 

Butterworth, etc. The choice of the functions 
>< IDS11 and 

>< IDS12 should comply in 

general with the desired specifications. In other words one does not necessarily need 

to approximate the specifications with a predefined mathematical function. 

The resulting sampled frequency space is then interpolated to obtain a fine model in 

such a way that, 

( ) ( )
max

min

, .
f

m m

f

T p T f p df= ∫
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Herein the cubic spline functions have been used for interpolating the sampled S-

parameters. The goal of cubic spline interpolation is to get an interpolation formula 

that is smooth in the first derivative, and continuous in the second derivative, both 

within an interval and at its boundaries. The only drawback with splines is their being 

piecewise approximations; i.e. there is a second order polynomial defined between 

every two points. However, such a constraint would not affect the viability of splines 

for the purpose of this work. A couple of other alternatives are polynomial 

interpolation and rational functions. For the present case, a Legendre function was to 

be insufficient, because it is incapable of chasing the zeros of the filtering function. 

Padé approximations have also been examined. Although interpolating with Padé 

approximant somehow met the accuracy for the present application, there appear 

some spikes which eventually reduce the sensitivity of the error function to geometry 

perturbations. Incorporating the phase value of S-parameters helps to diminish the 

spikes to some extent.  

As a by-product, the gradients of S-parameters could be obtained through the 

parameterized model by a Finite Difference scheme. Using a chain derivatives rule, in 

turn, the sensitivities of the objective function are attainable through a set of M 

simulations. 

The ideal pseudo-elliptic filtering characteristic was shown in Fig. II.13 The primary 

objective function is formed by summation of the differences between the ideal 

function and the actual one at each step, 
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As recommended in [84] minimizing this objective function is converging very 

rapidly when zeros of the initial response Sij correspond to the ideal response. When 

there is a little discrepancy between 
><ID

ijS
 and ijS  due to sharp descents, the gradients 

obtained will be inaccurate. This leads to the definition of a generalized objective 

function which is independent of the ideal transfer function poles and zeros, i.e. a 

combination of rectangular functions which represents the ideal reflection and 

transmission specifications. The modified global objective function is represented as 

follows, 
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max max

min min

11 21( ) ( , ). ( , ).
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where the function Tij and its sub-functions are defined as, 
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The 11 ( )IDS f< > is a rectangular region in which the final result should fit. Such an ideal 

response is utilizable as long as the initial response has a considerable overlap with 

this rectangular region. What happens in a real design practice is somehow different. 

Normally the detuning is quite considerable in such a way that the ideal and actual 

pass-bands have no or a very small overlap. This would make gradients approximated 

through finite differencing meaningless. As a possible way, the proposed ideal 

response is slightly modified so that the gradient can be obtained when ideal and 

actual functions have no overlap; i.e. when the filter is strongly detuned. As one 

possible way, the proposed ideal response is slightly modified so that gradient can be 

obtained when ideal and actual functions have no overlap; i.e. when the antenna is 

strongly detuned. The modified ideal function can be expressed as, 

( )11 11
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The modified ideal response is shown in Fig. II.20. Using this ideal response, the 

gradients are less precise or better to say less sensitive to variations of the dimensions. 

This is because when integrating the error between the actual and ideal 11S   the area 

under the ideal response is relatively larger and the error produced in this way is less 

sensitive to variations of the dimensions. On the other hand, using a bigger  would 

guarantee catching a more exaggerated detuning; i.e. when the initial working band is 

very far from the desired characteristic. 

It is important to remember here that the parameters Sij are computed only at critical 

frequencies fs and the interpolated using splines. The errors are then calculated for the 

interpolated S-parameters. α and β  are weights, applied to errors. All these sub-

functions are depicted in Fig. II.21. 
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Fig. II.20. The modified ideal response and calculated weighted error, ( , )ijT f p . 

|S
11

|



Chapter II 

Optimization using Parameterized EM-Models 

150

 

Fig. II.21. Different sub-functions of the ( , )ijT f p  

II.7.5. Gradient approximation 

These derivatives are calculated through finite differencing of the slightly perturbed 

parameterized objective function. A 2-D scheme of the finite differencing is shown in 

Fig. II.22. 

 

Fig. II.22. Calculating gradients by finite differencing 
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The central differenced approximation of the first and second derivatives of the 

function 1 2( , )T p p can be calculated as follows, 

( , ) ( ) ( )
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Thus for an N-dimensional parameter space, 2N computation of the (parameterized) 

objective function is required to calculate the first derivative. This makes the 

computation very ponderous with parameter spaces of high dimensionality. A 

stochastic method can be used for an accelerated gradient approximation [85], [86]. 

To this end, the vector k∆ ⊂ N� is defined as a vector of N mutually independent 

mean-zero random variables. It could be proven that in addition to specification of k∆  

series, 
1 ( )

k
E L L−∆ ∈� �

 which implicitly precludes normal or uniform distribution 

of k∆ . Now let define (.)
ky< >

 as, 
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k ky T p c< > < > < >
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whereas kc  is a positive scalar. Now, the gradient vector at iteration k could be 

defined as, 
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where 
kT < >∇ � indicates the gradient vector obtained through simultaneous 

perturbations. The gradient approximation presented in (II-100) has the obvious 

advantage over the classical gradient that instead of 2N computation of cost function, 

it just needs two calculations of cost function per iteration. To obtain a better 

accuracy, the gradient approximation in (II-100) is repeated M times where M<<N 

and then a more accurate gradient can be derived as, 

1

1
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k k
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while each of 
k

iT
< >∇ are obtained according to (II- 99) with a new randomly 

generated 
kT < >∇  vector. 

Once the coefficients are obtained, the polynomial is formed around each point
><kp  

in the parameter space. There are different available algorithms for choosing the 

initial point
><0p . As proposed in [72], the first few steps could be taken with an 

evolutionary (pseudo-random) method. A robust method could be using the 

parameterized model to have a coarse evaluation of the objective function over the 

entire or a major part of the parameter space. This parameterized model calculated in 

nominal point for the unperturbed geometry is not sufficiently precise to be the basis 

for optimization but it could approximately locate the global minimum. 

II.7.5.1 The optimization algorithm 

The gradient-based search is a well established strategy. Having calculated the 

variations of the S-parameters with respect to each parameter the first and second 

order derivatives are available. Here, a modified scheme is utilized which converges 

quadratically with an improved stability.  

An iterative scheme which converges quadratically is utilized to find the optimum 

parameter set, 

{ }1 arg min ( )k kp T p< + > < >=  (II-102) 

 

><kp is the base parameter vector at kth iteration. The optimum at each iteration is 

pursued around the base vector. The function ( )kT p< >  is a quadratic function, as 

follows, 
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The coefficients 
><k

rsa  and 
><k

tc are derived using the derivatives of the objective 

function, 
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and ijδ is the Kronecker Delta function.  

Let the vector of parameters at iteration k be 
kp , the error function could be 

expressed as a polynomial, as shown in (II-103). Then, the vector of parameter values 

at step k+1 are chosen in such a way to minimize ( )pT k >+< 1
. The quadratic polynomial 

is calculated using first, second and cross derivatives of the objective function. 

II.7.5.2 Discussion 

Due to its quadratic behavior, the proposed search algorithm is definitely faster than 

steepest descent, but on the other hand the risks for divergence are considerable. Let 

the equation (II- 81) be represented in linear matrix format, 

( ) ><><><><><><>< ++= kkTkkkTkk dp.Cp.A.ppT  (II-105) 

 

The matrix A is the Hessian. If the bowl represented by the quadratic form is convex, 

we can simply hop to its minimum: 

><−>< −= k
k

k
opt C.Ap 1

 
(II-106) 

 

Since matrix A is a symmetric matrix, the only challenging point for its convexity is 

its being positive definite. Here we have used a scheme, originally inspired by 

Levenberg and Marquardt as a solution to nonlinear equations and optimization 

problems [88]. 

Let us assume that matrix A is weakly indefinite in such a way that all its eigenvalues 

represented here as iλ , i=[1,...,M] are positive and real except for one of them which 

possesses a small negative value. 

Now let matrix A
~

, be defined as, 

k
k

k AIA
~ += ε  (II-107) 

 

whereas kε  is a small positive scalar and I is the identity matrix. 

Now the sufficient condition for A
~

 to be positive definite is that all its eigenvalues are 

positive and real. Given that the only non-positive eigenvalue is small enough not to 

dominate the positivity of the summation of eigenvalues, we can conclude 
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The only remaining restriction would be to find the smallest value of kε  in such a way 

that the product of the eigenvalues (det(A)) is positive. This leads to an inequality, 
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where h is a nonlinear function. A linear approximation of (II-105) would yield: 

( )

∑ ∏
= ≠=

≥
N

i

N

ik,k

k

Adet

1 1

λ

ε

 

(II-110) 

 

This algorithm applies for a broader class of problems with less level of certainty. For 

instance when there are more than one non-positive small eigenvalues subject to a 

positive sum of eigenvalues for the general case, equation (II-106) does not hold true. 

II.7.5.3 Results 

The results of optimization are presented in Fig. II.23. The optimization converged in 

four iterations. The final design parameters are given in Table IV. The chosen device 

is a classical case, which has been the subject of several studies, and can serve as an 

appropriate basis for comparison. The optimum dimensions and characteristics are 

compared with theoretical and experimental results in [83], as depicted in Fig. II.24. 

Parameter Value (mm) 
Length of input iris 9.2350 

Length of iris 1-2 7.290 

Length of iris 2-5 5.5500 

Length of iris 3-4 7.2200 

Length of output iris 9.2350 

Length of screw 1-1 2.1525 

Length of screw 2-2 2.1700 

Length of screw 3-3 2.1950 

Length of screw 4-4 2.5825 

Length of screw 5-5 1.5165 

Length of screw 2-3 0.7800 

Length of screw 4-5 1.2500 

Table IV. Final design parameters 
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Fig. II.23.  The different iterations 
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Fig. II.24. Comparison with the experimental results. 
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II.8. Conclusion 

The parameterization of the electromagnetic behavior of microwave devices has been 

presented in this chapter. Within the context of optimization, three different 

parameters have been of premier interest, namely, frequency, geometry and mesh 

parameterization. Frequency parameterization has been discussed in a fair detail 

although it was not the main scope of this dissertation. Although using a frequency 

parameterized model can accelerate the optimization procedure, but in fact such a 

parameterized model does not affect the optimization procedure as a whole. In other 

words the parameterized model (with respect to frequency) can easily replace the 

classical EM model within an optimization cycle.  

The main scope of the chapter has been to discuss geometrical parameterization of 

microwave devices. Due to the nature of the variations of the device performance to 

the changes in dimensions, a Taylor series featuring higher order derivatives has been 

used to parameterize the EM response of the structure. Unlike the frequency 

parameterization, the optimization procedure that uses geometrically parameterized 

model is fundamentally different from the classical optimization scheme. Using the 

geometrically parameterized model could create a shortcut in the cycle so that several 

numerical analysis of the device is avoided.  

Finally mesh parameterization of the microwave devices is discussed in the chapter. 

Different possible techniques for describing a point in a grid in terms of the borders of 

the structure are discussed. Generalized Barycentric coordinates and mean value 

coordinates have been found to be the most viable approaches. The classical approach 

for such a purpose is to depict an analogy between the grid and mechanical systems 

such as a network of springs or solid body elasticity. For obvious reasons using 

derivatives of Barycentric coordinates is advantageous over mechanical analogy. Few 

algorithms have been implemented and the results are presented in this chapter. 

The chapter ends with a detailed example. A 5-pole cylindrical cavity filter was 

chosen as a design example. The structure is optimized using a geometrically 

parameterized model. A mesh parameterization was also conducted in intermediate 

stages to give a fully integrated CAD model. The results of the optimization through 

geometrical parameterization seem to be quite satisfactory given that the optimization 

could converge to the satisfactory results in only four iterations for a 12 dimensional 

parameter space. 
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There are certain aspects of the work in this chapter which need to be ameliorated. 

The current geometrical parameterization can only consider one parameter at a time in 

a single frequency point. Parameterizing with respect to two or more variables with 

the current formulation ends up with an indecent accuracy. Furthermore the frequency 

and geometry parameterizations are done in separate steps. Having said that one is 

obliged to conduct the geometrical parameterization in discrete frequency point and 

then interpolate them. This, however can be avoided if a fully parameterized model 

(both with respect to geometry and frequency) is developed. 
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III.1. Introduction 

Improving optimization techniques yet has another aspect other than efficiency. In 

addition to the speed of the optimization technique, autonomy is an important issue 

which should not be neglected. As far as the modification of a given component is 

concerned, a key point is the development of microwave CAD environments where 

the component is modified automatically by the microwave tool itself with an 

improvement of the component performances without any contribution by the 

designer. The methods studied so far have been local methods. The search algorithms, 

no matter how fast and accurate, were bound around the closest (local) minimum 

point. Thus the appropriate choice of the initial point has a significant role in the 

success of these methods. If, for any reason the automated algorithm is trapped in a 

local minimum, then the operator should restart the procedure with a different initial 

point. 

In fact optimization techniques can be classified into two groups, gradient and 

stochastic methods. Gradient methods have been discussed so far. Evolutionary 

algorithms are a subset of stochastic methods which mimic the search process of 

natural evolution. This class of optimization algorithms relies on the collective 

learning process within a population of individuals, each of which represents a search 

point in the space of potential solutions to the given problem. Because of an implicit 

parallelism in the search behavior they avoid the common pitfalls of local 

minimization algorithms, but hold the promise of finding novel solutions perhaps not 

thought to exist. 

Perhaps the best known evolutionary method so far is the genetic algorithm (GA) [1]-

[4]. This algorithm has been utilized in a wide variety of applications in 

electromagnetic domain. The design of microwave passive devices using genetic 

algorithm is presented in [5]-[9]. In [6] the potentials of an evolutionary algorithm to 

create unknown planar topologies has been discovered. [5] and [8] report the use of 

genetic algorithm for the design of waveguide filters. There are various applications 

such as equivalent circuit parameter extraction (see for example, [10] and [13]), 

microwave absorber design [15], and material characterization [12]. Perhaps the 

majority of the work on use of genetic algorithms in electromagnetic domain has been 

reported in antenna design. References [15]-[21] represent some of the previous work 
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done in antenna design. Despite the mentioned advantage of the genetic algorithms, 

the major problem with genetic algorithm and evolutionary methods in general, is 

their high computational cost. Even for a simple design problem, an evolutionary 

design has to go through many iterations which make them impractical for most of 

applications. In fact evolutionary algorithms look for optima in the points that was not 

expected. But obviously such a mindless search can not be cost-free. The price paid 

for lack of intelligence is the exponential increase in time for optimum search. Here 

comes a compromise in mind: to add a sort of intelligence to these methods. This can 

be achieved through combining evolutionary methods with gradient methods. Such a 

“hybrid” technique will use the evolutionary technique to localize the global optimum 

point, then the gradient method can chase the optimum point more efficiently. Such a 

technique looks straightforward. The only issue will then be how and when to 

integrate these two methods, i.e. to find a method to distinguish the time, when the 

optimum point has been localized is not very trivial.  

Particle Swarm Optimization (PSO) is relatively a new approach which is aiming the 

global optimum search in a more intelligent manner. The method is similar to GA in 

that both are stochastic in principle, and both use an analogy to real life behaviors. 

The major distinction of PSO is that in PSO the randomly initiated population of 

parameter vectors learn about each other “successes”. Such a feature can drastically 

accelerate the stochastic algorithm. 

In this chapter evolutionary optimization of microwave components is presented. 

Genetic algorithm is already a well established technique in device optimization. Thus 

the core of the chapter deals with the Particle Swarm Optimization (PSO). But to 

understand well the advantages of PSO, a general preview of GA is essential. This 

issue is addressed in the next section, followed by an example application. Section 3 

explains the principles of PSO method. In Section 4 an example design is explained 

using PSO. The three proceeding sections more profoundly explore the features and 

potentials of PSO. Finally the chapter ends by few design examples using PSO 

technique. 
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III.2. Genetic algorithm for the optimization of microwave 

devices 

Genetic-algorithm optimizers are a group of search methods which function on the 

basis of natural selection and evolution. The global nature of the search mechanism 

allows its being utilized in complicated problems when there is no, or a little 

knowledge about initial structure. Some important terminology and concepts of GA 

optimizers are presented in a sidebar. This section presents the basic elements of a 

genetic-algorithm optimizer. 

III.2.1. Terminology 

As mentioned earlier the genetic algorithms work on the basis of the concept of 

natural evolution through generations. Thus it is imperative to use the original 

terminology where the concept has been borrowed from. This also helps developing 

the algorithm in a more heuristic manner. 

Population – A set of parameter vectors. Any population is a subset of parameter 

space. 

Generation –Successively created populations; the population created at each 

iteration. 

Fitness – The value of the objective function belonging to each individual (parameter 

vector). 

Parent – A parameter vector (an individual) belonging to the current generation 

(iteration) which is chosen (through a criteria) to contribute in generation of the next 

generation. 

Child  – Parameter vector (an individual) belonging to the next generation. 

Chromosome  – Coded form of the features carried in a parameter vector, these 

feature are partially transferred from a parent to its child through an evolution. 

III.2.2. Description of the algorithm 

The block diagram of genetic algorithm optimization procedure is depicted in Fig.1. 

Many different variations of this simple algorithm have been suggested but the core 

idea remains the same.  
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Fig. III.1. The block diagram of basic Genetic Algorithm 

 

In general, a GA iteratively runs the procedure shown bellow until the ending criteria 

is met,  

1. Generate the initial population. This population is a subset of the parameter 

space. In principle such population can be generated arbitrarily, although 

incorporating some intelligence in generating this population would help the 

speed. 

2. Define genes based on the features that contribute significantly the objective 

function. 

3. Create a string of the genes to form a chromosome. 

4. Evaluate fitness values (objective function) to each parameter vector in the 

population. 
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5. Perform reproduction through the fitness-weighted selection of individuals 

from the population. 

6. Conduct reproduction operators (crossover, mutation, and recombination) to 

produce the next generation. 

In the simple, typical genetic algorithm shown in Fig. 1, initialization consists of 

filling an initial population with a predetermined number randomly created, parameter 

strings (chromosomes). Each of these chromosomes represents an individual 

prototype solution or, simply, an individual. The set of individuals is called the 

current generation. Each individual in the set is assigned a fitness value by evaluating 

the fitness function for each individual. 

In reproduction, a pair of individuals is selected from the population to act as parents. 

The parents produce a pair of children. Note that in order to keep the population of 

each generation, the every couple of parents should produce two children. These 

children are then placed in the new generation. The selection, crossover, and mutation 

operations are repeated until enough children have been generated to fill the new 

generation. In some GA available in literature, the algorithm is slightly varied. 

Selection is used to fill the new generation, and then crossover and mutation are 

applied to the individuals in the new generation, through random pairings. In either 

case, the new generation replaces the old generation. In the simple genetic algorithm 

presented here, the new generation is the same size as, and completely replaces, the 

current generation. This is known as a generational GA. Furthermore, the new 

generation can be of a different size than its predecessor. 

Another variation of genetic algorithm, often called steady-state genetic algorithms, 

incorporates some overlap between the new generation and the old generation. In the 

generation-replacement phase, the new generation replaces the current generation, and 

fitness values are evaluated for and assigned to each of the new individuals. The 

termination criterion is then evaluated and, if it has not been met, the reproduction 

process is repeated. 

III.2.3. Regeneration mechanisms 

Having defined the general infrastructure of the genetic algorithm, now, we will try to 

set some details. The two main mechanisms of any GA are  

1- The way a population is formed, 
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2- The mechanism of producing a child by a couple of parents (genetic 

operators). 

In this section these two mechanisms are discussed in detail, knowing that there are 

several other variations which are not covered in here, mostly because it has not been 

the main focus of the present work. 

III.2.3.1. Forming a population 

As mentioned earlier, a population is a set of individuals, or parameter vectors, which 

is used to form a generation. There are different mechanisms under an individual 

(parameter vector) is chosen among a population to be considered as a parent. 

Different mechanisms are used to judge about an individual’s being eligible to be 

included inside a population. But all these criteria are based on the fitness value. 

However, selection cannot be based solely on choosing the best individual, because 

the best individual may not be very close to the optimal solution. Instead, some 

chance that relatively unfit individuals are selected must be preserved, to ensure that 

genes carried by these unfit individuals are not “lost” prematurely from the 

population. In general, selection involves a mechanism relating an individual’s fitness 

to the average fitness of the population. A number of selection strategies have been 

developed and utilized for GA optimization. These strategies are generally classified 

as either stochastic or deterministic. Usually, selection results in the choice of parents 

for participation in the reproduction process. The three main strategies to form a 

population are decimation, proportionate selection and tournament selection. Several 

of the more important and most widely used of these selection strategies are discussed 

below 

III.2.3.1.1. Decimation 

The simplest of the deterministic strategies is population decimation. In population 

decimation, individuals are ranked according to their fitness values. An arbitrary 

minimum fitness is chosen as a cutoff point, and any individual with a lower fitness 

than the minimum is removed from the population. The remaining individuals are 

then used to generate the new generation through random pairing. The pairing and 

application of GA operators are repeated until the new generation is filled. 

The advantage of population-decimation selection lies in its simplicity. All that is 

required is to determine which individuals are fit enough to remain in the population, 
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and to then provide a means for randomly pairing the individuals that survive the 

decimation process. The disadvantage of population decimation is that once an 

individual has been removed from the population, any unique characteristic of the 

population possessed by that individual is lost. 

This loss of diversity is a natural consequence of all successful evolutionary 

strategies. However, in population decimation, the loss can, and often does, occur 

long before the beneficial effects of a unique characteristic are recognized by the 

evolutionary process. The normal action of the genetic algorithm is to combine good 

individuals with certain characteristics to produce better. Unfortunately, good traits 

may not be directly associated with the best fitness in the early stages of evolution 

toward an optimal solution. Fig. 2. shows a simple scheme of decimation. 

 
Fig. III.2. Decimation 

III.2.3.1.2. Proportionate selection 

Individuals can be selected based on a probability of selection as bellow 
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where ( )k
iT p< >  is the fitness of the ith parent at kth generation. The probability of 

selecting an individual from the population is purely a function of the relative fitness 

of the individual. Individuals with high fitness will participate in the creation of the 

next generation more often than less-fit individuals. This has the same effect as the 

removal of the least fit in population decimation, in that characteristics associated 

with higher fitness are represented more in subsequent generations. The distinction 

between population decimation and proportionate selection is that in proportionate 

selection, there is still a finite probability that highly unfit individuals will participate 

in at least some of the matings, thereby preserving their genetic information. 

Proportionate selection is further illustrated in Fig. 3. 
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Fig. III.3. Proportionate Selection 

III.2.3.1.3. Tournament selection 

A second popular strategy (and perhaps among the most effective for many 

applications) is tournament selection. Tournament selection is depicted in Fig. 4. In 

tournament selection, a subset of the population of pN  individuals is chosen at 

random from the population. The individuals of this sub-population compete on the 

basis of their fitness. The individual in the sub-population with the highest fitness 

wins the tournament, and becomes the selected individual. All of the sub-population 

members are then placed back into the general population, and the process is repeated. 

The most commonly used form of tournament selection is binary tournament 

selection, ( 2pN = ). 

 
Fig. III.4. Tournament selection 
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III.2.3.2. Genetic operators 

The way the features of the parents from one generation are transferred to the 

successors is also very significant in the genetic conception. 

Once a pair of individuals has been selected as parents, a pair of children is created by 

recombining and mutating, the chromosomes of the parents, utilizing the basic 

genetic-algorithm operators, crossover and mutation.  

A probability is assigned to each of these operators. The assigned probability is then 

compared to kρ< >  a normalized random number at kth iteration. If the random number 

is bigger than the assigned operator probability, the operator will be effective, and 

otherwise ignored. 

III.2.3.2.1. Mutation 

In genetic algorithms, mutation is a genetic operator used to maintain genetic 

diversity from one generation of a population of chromosomes to the next. It is 

analogous to biological mutation. 

The classic example of a mutation operator involves a probability that an arbitrary bit 

in a genetic sequence will be changed from its original state. A common method of 

implementing the mutation operator involves generating a random variable for each 

bit in a sequence. This random variable tells whether or not a particular bit will be 

modified. 

The purpose of mutation in genetic algorithms is to allow the algorithm to avoid local 

minima by preventing the population of chromosomes from becoming too similar to 

each other, thus slowing or even stopping evolution. This reasoning also explains the 

fact that most GA systems avoid only taking the fittest of the population in generating 

the next but rather a random (or semi-random) selection with a weighting toward 

those that are more fit. 

In mutation, if k
mutationρ ρ< > > , an element in the string making up the chromosome is 

randomly selected and changed. In the case of binary coding, this amounts to 

selecting a bit from the chromosome string and inverting it. In other words, a “1” 

becomes a “0” and a “0” becomes a “1.” If higher order alphabets are used, slightly 

more complicated forms of mutation are required. 

Generally, it has been shown that mutation should occur with a low probability, 

usually on the order of 0.01 0.1mutationρ = − . Fig. 5. shows a randomly selected 
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element in a chromosome (shaded element) being changed to a new form (0 � 1 and 

1 � 0 in the binary case). 

 

Fig. III.5. Mutation 

III.2.3.2.2. Crossover 

The crossover operator accepts the parents and generates two children. Many 

variations of crossover have been developed. The simplest of these is single-point 

crossover. In single-point crossover, shown in Fig. 6, if k
crossoverρ ρ< > >  a random 

location in the parent’s chromosomes is selected. The portion of the chromosome 

preceding the selected point is copied from parent number 1 to child number 1, and 

from parent number 2 to child number 2. The portion of the chromosome of parent 

number 1 following the randomly selected point is placed in the corresponding 

positions in child number 2, and vice versa for the remaining portion of parent 

number 2’s chromosome. If k
crossoverρ ρ< > < , the entire chromosome of parent number 

1 is copied into child number 1, and similarly for parent number 2 and child number 

2. 

 
Fig. III.6. Cross-Over 

 

The effect of crossover is to rearrange the genes, with the objective of producing 

better combinations of genes, thereby resulting in more fit individuals. It has been 

shown [6] that the recombination process is the more important of the two GA 

operators. Typically, it has been found that probability crossoverρ  values of 0.6-0.8 are 

optimal. 



Chapter III 

Evolutionary Algorithms for EM-based Optimization 

177 

III.2.4. Fitness functions 

The fitness function, or object function, is used to assign a fitness value to each of the 

individuals in the GA population. The fitness function is the only connection between 

the physical problem being optimized and the genetic algorithm. The only constraints 

on the form and content of the fitness function, imposed by the simple GA, are that: 

1 the fitness value returned by the fitness function is in some manner 

proportional to the goodness of a given trial solution, and 

2 the fitness be a positive value. In some implementations of the GA optimizer, 

the constraint that the fitness value be a positive value is not even required. 

Genetic algorithms are maximizers by nature. To find a minimum, a slight 

modification to the usual functional form is required. It can be either taking the 

inverse of the fitness function or the subtracting it from a number 

III.2.5. Example- Optimization of a coupled line filter 

Coupled line filters have always been appropriate gauges for optimization techniques. 

It is partially due to their flexibility in design parameters as well as their versatile 

frequency characteristics. They are also easy to manipulate and thus appropriate for 

model validation. 

III.2.5.1. Description of the structure 

The structure used is a coupled line filter, as shown in the Fig. 7. The structure 

consists of five line segments connecting the two ports. All the lines have aimed to 

have the same length. The substrate is chosen as Rogers RO4350 [22] material with 

20 mil thickness (0.787 mm). The dielectric constant of the substrate is 3.38 with the 

loss tangent of 0.004.  
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Fig. III.7. The coupled line filter 
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III.2.5.2. The design goal 

The goal is to design an ultra-wideband mask filter with a 3-dB pass-band from 3.1 

GHz to 10.6 GHz. Such a mask is utilized to assure that the transmitted signal would 

comply with FCC regulations. The desired in-band insertion loss was less than 1 dB 

and an out-band rejection of 25 dB has been targeted. 

III.2.5.3. The design variables 

The parameters chosen for this optimization practice are the length of the segments 

and the width of the lines. The parameters are shown in Fig. 7. The initial parameter 

set, was generated randomly. This parameter set is presented in Table III.1. Also the 

initial response resulted from this initial set of design variable is presented in Fig. 

III.8. 

Parameter Value(mm) 

p  7.10 

p  15.00 

p  18.02 

p  0.23 

Table III.1. The initial parameter set for the Example 1. 

 
Fig. III.8. The initial coupled line filter response 
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III.2.5.4. The methodology 

The original genetic algorithm was used to optimize the structure. The initial 

parameter set has been chosen randomly. In order to minimize the computation cost, 

two symmetry planes along with x-and y-axes have been considered, dividing the 

number of parameter into a quarter.  

III.2.5.5. Implementation 

The Momentum™ package has been used as the electromagnetic field solver. 

Momentum uses the Method of Moments to compute S-parameters.  

The optimization algorithm, was developed using AEL, the language used by 

Advanced Design System™ for customized coding. 

III.2.5.6. Results 

The structure was optimized through a GA cycle. About 83 iterations were needed for 

optimizing. One important aspect was the drawbacks during the optimization, which 

is natural consequence of the random nature of the algorithm. The finalized values of 

the parameters is presented in Table III.2. The S-parameters of the structure are 

shown in Fig. III.9. 

 

Parameter Value(mm) 

p  8.249 

p  16.453 

p  16.408 

p  0.16 

Table III.2. The finalized parameters 

As mentioned earlier, the GA suffers from poor convergence, although the algorithm 

is relatively stable, given the initial population is large enough. The convergence is 

shown in Fig. III.10. 
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Fig. III.9. The response of the optimized filter 

 
Fig. III.10. The error function versus iteration number. The convergence started 

after about 30 iterations. 
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III.3. Particle swarm optimization 

III.3.1. Introduction 

The particle swarm optimization (PSO) is a novel stochastic evolutionary 

optimization technique based on the movement and intelligence of swarms. Particle 

swarm optimization has roots in two main component methodologies. Perhaps more 

obvious are its ties to artificial life in general, and to bird flocking, fish schooling, and 

swarming theory in particular. It is also related, however, to evolutionary 

computation, and has ties to genetic algorithms. 

III.3.2. Terminology 

The terminology of the particle swarm optimization is borrowed from social studies of 

animal behavior due to the existing analogy. 

III.3.2.1. Particle 

In the PSO terminology, a parameter vector is called particle. All the particles in the 

swarm act individually under the same governing principle: accelerate toward the best 

personal and best overall location while constantly checking the value of its current 

location. 

III.3.2.2. Position 

The position of the parameter vector in the parameter space is particle position.  

III.3.2.3. Fitness 

As in all evolutionary computation techniques there must be some function or method 

to evaluate the goodness of a position. The fitness function must take the position in 

the solution space and return a single number representing the value of that position. 

In the analogy above the fitness function would simply be the density of flowers: the 

higher the density, the better the location. In general this could be antenna gain, 

weight, peak cross-polarization, or some kind of weighted sum of all these factors. 

The fitness function provides the interface between the physical problem and the 

optimization algorithm. 
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III.3.2.4. Personal best 

The location with the highest fitness value individually discovered by a particle is 

known as the personal best. Each particle has its own personal best determined by the 

path that it has taken.  

III.3.2.5. Global best 

The location of highest fitness value encountered by all the particles up to a certain 

moment in time (iteration) is known as the global best. For the entire swarm there is 

one global best. Each particle has some way of knowing the global best discovered by 

the entire swarm. At each point along the path every particle compares the fitness of 

its current location to that of global best. If any particle reaches is at a location of 

higher fitness, global best is replaced by that particles current position. 

III.3.3. Development of the particle swarm optimization 

algorithm 

Understanding the conceptual basis of the PSO, the task then becomes to develop the 

algorithmic tools needed to implement the optimization. Fig. III.11. shows a general 

scheme of particle swarm optimization. Despite its novelty, many variations of the 

concept have been suggested and tried on different problems, some of these variations 

will be discussed later. The PSO randomly initializes the position and velocity of each 

particle within the swarm at the beginning of the optimization. The detailed 

explanation of the method is addressed in [3]. Each position ,
k

i jp< >  represents a 

possible solution to the problem and is specified with,  

1,1 1,

,1 ,

...

. . .

.

k k
N

k

k k
M M N

p p

P

p p

< > < >

< >

< > < >

 
 =  
  

 

(III- 2) 

 

where M is the number of particles (the initial population) and N is the number of 

dimensions of the problem. The bracketed superscript k denotes the iteration number. 

Every row in matrix P is a possible solution for kp< > . In other words the rows of the 

matrix P are each a parameter vector, resulting the matrix P have N columns. Each 

particle has an associated velocity as well, which is a function of the distance from its 

current position to the positions which have previously resulted in a good fitness 

value, 
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Fig. III.11. The particle swarm optimization algorithm 
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(III- 3) 

 

The velocity matrix is updated at each iteration. Every particle is also aware of the 

global and personal best positions. Let the personal and global best positions be 

named k
best M N

P< >

×
    and 

1

k
best N

G
×

   , respectively. Fig. III.12 further clarifies the definitions 

of the personal and global bests. 

Now, for every dimension, the particles move in the direction specified by the 

velocity matrix according to, 

1k k kP P V+ = +  (III- 4) 

 

1k k→ +  

Initialize Population  

Position: 0 0

ijM N
M N

P p< > < >
× ×

 =    
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ijM N
M N
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× ×
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1 ,

, , 1 1 , , 2 2 ,( ) ( )k k k best k k k
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Fig. III.12. (a) Global and personal best 

 
 
 

 

Fig. III.12-     (b) A sample path of the particles in the solution space 
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The update strategy for the velocity vector is to “move” particles towards the global 

best and their corresponding personal best positions, 

1 ,
, , 1 1 , , 2 2 ,( ) ( )k k k best k k k

m n m n m n m n n m nv wv c p p c g pη η< + > < > < > < > < > < >= + − + −  (III- 5) 

 

whereas  

,
k

m nv< >  is the velocity of the nth element of the mth particle in the swarm at kth 

iteration, 

,
k

m np< >  is the nth element of the mth particle in the swarm at kth iteration, k
mp< > is the 

mth particle (parameter vector) in the swarm,  

,
,
k best

m np< > represents the elements of the personal best of mth particle at kth iteration, 

1c , 2c  and w  are positive scalars which define the weight of every component of the 

velocity, 

w  is a positive scalar called inertia weight, 

1η and 2η  are normalized uniform random variables. 

1c  and 2c  specify the relative weight of the global best to the personal best positions. 

Empirically the value 2.0 is found to be a reasonable value for these coefficients [23]. 

Through the iterations, corrections have been made to the positions of personal best, 

and global best before letting the particles fly around for another second. Repetition 

of this cycle is continued until the termination criteria are met. There are several 

methods to determine these termination criteria.  

One possible criterion is to define a maximum number of iterations for terminating. 

At any time if a solution is found that is greater than or equal to the target fitness 

value, then the PSO is stopped at that point. 

III.3.4. Improved particle swarm optimization algorithms 

As mentioned previously, the algorithm explained in Fig. 11 has been patched with 

many variations. Since the introduction of the PSO algorithm, several improvements 

have been suggested. Some of these improvements have already been incorporated in 

the original formulation, e.g. the original PSO did not have an inertia weight; this 

improvement was introduced by Shi and Eberhart [31]. The addition of the inertia 

weight results in faster convergence. 
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In [32] Kennedy has suggested a technique referred to as “social stereotyping”. A 

clustering algorithm is used to group individual particles into “stereotypical groups.”  

“Individuals in the particle swarm population were “stereotyped” by cluster 

analysis of their previous best positions. The cluster centers then were 

substituted for the individuals' and neighbors' best previous positions in the 

algorithm. The experiments, which were inspired by the social-psychological 

metaphor of social stereotyping, found that performance could be generally 

improved by substituting individuals', but not neighbors', cluster centers for 

their previous bests” 

The cluster center ,
k

m np< >�  is computed for each group and then substituted into (III- 5), 

yielding three strategies to calculate the new velocity 

1
, , 1 1 , , 2 2 ,( ) ( )k k k k k k

m n m n m n m n n m nv wv c p p c g pη η< + > < > < > < > < > < >= + − + −�  (III- 6) 

 

1 ,
, , 1 1 , , 2 2 , ,( ) ( )k k k best k k k

m n m n m n m n m n m nv wv c p p c p pη η< + > < > < > < > < > < >= + − + −�  (III- 7) 

 

1
, , 1 1 , ,( )k k k k

m n m n m n m nv wv c p pη< + > < > < > < >= + −�  (III- 8) 

 

The results presented in [32] indicate that only the method in (III- 6) performs better 

than the standard PSO. The drawback with this method is the added cost of 

calculating the clusters and their centers. 

III.3.4.1. Cooperative learning 

The core concept in genetic algorithm is competition. Every member of the 

population tries to produce the best solution by combining best properties from other 

individuals. The stronger individual is rewarded with more opportunities to reproduce. 

But another aspect in GA is cooperation. Crossover operation as information 

exchange, the GA can be considered to be a cooperative system. Cooperation involves 

a collection of agents that interact by communicating information to each other while 

solving a problem.  

The same concept can produce hints for improvements in particle swarm 

optimization. Instead of having one swarm (of particles) trying to find the optimal N–

dimensional vector, the vector is split into its components so that swarms (of particles 

each) are optimizing a one-dimensional vector. The solution vector is split into parts, 
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each part being optimized by a swarm with particles. This allows for combinations for 

constructing the composite –component vector. The simplest approach is to select the 

best particle from each swarm (how to calculate which particle is best will be 

discussed later).  

In the classical PSO, update equation (III- 5) is aimed to change the whole N-

dimensional vector at every step. This allows for the possibility that some components 

in the vector have moved closer to the solution, while others actually moved away 

from the solution. As long as the effect of the improvement is dominant to the effect 

of the components that have downgraded, the standard PSO will consider the new 

vector an overall improvement, even though some components of the vector may have 

moved further from the solution. 

III.3.4.2. Cooperative particle swarm optimization algorithm 

The original PSO uses a population of N–dimensional vectors. These vectors can be 

partitioned into swarms of 1-D vectors, each swarm representing a dimension of the 

original problem. Each swarm attempts to optimize a single component of the solution 

vector, essentially a 1-D optimization problem. One complication to this configuration 

is the fact that the function to be minimized ( )T p  requires an N-dimensional vector 

as input. If each swarm represents only a single dimension of the search space, it is 

clearly not possible to directly compute the fitness of the individuals of a single 

population considered in isolation. A context vector is required to provide a suitable 

context in which the individuals of a population can be evaluated. 

The simplest scheme for constructing such a context vector is to take the global best 

particle from each of the swarms and concatenating them to form such an N-

dimensional vector. To calculate the fitness for all particles in swarm, the other 

components in the context vector are kept unchanged (with their values set to the 

global best particles from the other swarms). 

Fig. III.13 illustrates the cooperative algorithm first introduced by Van den Bergh and 

Engelbrecht in [29]. 

Extending the convention introduced in Fig. 11, now refers to the position of particle 

of swarm, which can therefore be substituted into the ith component of the context 

vector when needed. Each of the swarms now has a global best particle.  

This algorithm has the advantage that the error function is evaluated after each 

component in the vector is updated, resulting in much finer-grained credit assignment. 
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The current “best” context vector will be denoted. Note that is a strictly non-

increasing function, since it is composed of the global best particles of each of the 

swarms, which themselves are only updated when their fitness improves. 

 

 

Fig. III.13. Cooperative particle swarm optimization 

 

Each swarm in the group only has information regarding a specific component of the 

solution vector; the rest of the vector is provided by the other swarms. This promotes 

cooperation between the different swarms, since they all contribute to, the context 
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vector. Another interpretation of the cooperative mechanism is possible. Each particle 

of swarm represents a different context in which the vector is evaluated, so that the 

fitness of the context vector itself is measured in different contexts. The most 

successful context, corresponding to the particle yielding the highest fitness, is 

retained for future use. 

One important issue to address in here is that the correlated elements of parameter 

vector can be grouped and the update algorithm is applied to such a group at one time. 

III.3.5. Stability of particle swarm optimization 

The present study and also growing number of publications on PSO show that the 

algorithm is well capable of handling various types of problems. At this stage a more 

profound look at the mechanism of particle swarm optimization seems to be 

necessary.  

The present analysis begins with a highly simplified deterministic version of the 

particle swarm in order to provide an understanding about how it searches the 

problem space [4], then continues on to analyze the full stochastic system. A 

generalized model is proposed, including methods for controlling the convergence 

properties of the particle system. Finally, some empirical results are given, showing 

the performance of various implementations of the algorithm on a suite of test 

functions. 

In the PSO update equation (III- 5) the variables 1η  and 2η  are random positive 

numbers, drawn from a uniform random distribution. 

The random weighting of the control parameters in the algorithm results in an action 

similar to explosion. An important source of the swarm’s search capability is the 

interactions among particles as they react to one another’s findings. Analysis of 

interparticle effects is beyond the scope of this section, which focuses on the 

trajectories of single particles. 

III.3.5.1. Analogy of particle swarm optimization to gradient 

methods 

We begin the analysis by stripping the algorithm down to a most simple form; we will 

add things back in later.  

In equation (III- 5), with the substitution of variables,  
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(III- 9) 

 

and assuming w= 1c = 2c =1, The velocity expression can be reduced into two terms 

without loss of generality. Hence (III- 5) will reduce to, 

1
, , , ,( )k k k k

m n m n m n m nv v pη< + > < > < > < >= + −p
�

 (III- 10) 

 

where  

1 2η η η= +  (III- 11) 

 

Simple algebraic operations would show that (III- 10) and (III- 5) are actually 

equivalent.  

Let assume the one-dimensional parameter space. Also let’s assume the jth particle is 

the particle which achieves the global best so far. This way the equation (III- 10) will 

reduce to,  

1 ( )k k k k
m m j mv v p pη< + > < > < > < >= + −  (III- 12) 

 

The equation (III- 12) is now substituted into (III- 4), 

1 ( )k k k k k
m m m j mp p v p pη< + > < > < > < > < >= + + −  (III- 13) 

 

The third term in (III- 13) can be compared to the gradient update formulas (e.g. 

steepest descent),  

1k k kp p sη< + > < > < >= − �
 (III- 14) 

 

whereas superscripts k shows the iteration number, and η  is a positive scalar called 

weighting factor which can be chosen adaptively and ks < >�
 is the gradient vector. In 

one dimension the gradient is the same as derivative of the objective function to the 

only parameter. Equations (III- 13) and (III- 14) have some analogy in part. Note that 

the gradient vector, at each point directs to the minimum (or maximum) value of the 

objective function. The same definition can apply to the term ( )k k
j mp p< > < >−  in 

equation (III- 13). This fact implied the “gradient” nature of the PSO update strategy. 

The same statement can be extended to N-dimensions. Of course there is a little 

difference between the way the gradient is calculated in here and in a “real” gradient 

method. In a gradient optimization technique the variations of the objective function 
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in all directions are tried and the parameter vector is moved toward the direction 

which minimizes the objective function, while in here the vector ( )k k
j mp p< > < >− tends 

to the gradient if the global best is sufficiently close to the ultimate optimum point. 

Fig. III.14 depicts such an analogy in a two dimensional parameter space. 

 

Fig. III.14. Analogy between gradient methods and particle swarm 
optimization 

III.3.5.2. An analytic point of view  

The procedure can also be seen in an analytic point of view as suggested in [30]. 

Continuing the assumption of working only in a one-dimensional parameter space the 

reduced system can be expressed as in (III- 12), 

 

1 ( )k k k k
m m m mv v pη< + > < > < > < >= + −p

�
 

(III- 14) 

 

and 

1 1k k k
m m mp p v< + > < > < + >= +  (III- 15) 

 

Extending (III- 12) in time would yield, 
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2 1 1 1( )k k k k
m m m mv v pη< + > < + > < + > < + >= + −p

�
 (III- 16) 

 

and thus, 

1 1 1 2 2(1 ) ( 2) 0k k k k k k k
m m m m m m mv p v v v v vη η η< + > < + > < + > < > < + > < + > < >− + − − + − + =  (III- 17) 

 

This, in continuous domain implies the ordinary differential equation, 

2 2

1 2 1 22 2
( ) . 0m m

m

v v
c c c c v

t t

∂ ∂+ + + =
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(III- 18) 

 

where  ln( ), 1,2.i ic c i= =� and 1c� and 2c� are the roots of the equation, 

2 ( 2) 1 0c cη+ − + =� �  (III- 19) 

 

Please note that to obtain the above equation it has been assumed k t→  and 

1( )k kv v v t< + > < >− → ∂ ∂  and so on. The roots of (III- 19) can be derived as follows, 

2

1,2

4
1

2 2
c

η ηη −
= − ±�  

(III- 20) 

 

The general solution for (III- 18) is, 

1 1 2 2( ) ( , ) ( , )mv t a c t a c tη η= +� �  (III- 21) 

 

This implicitly infers that the velocity vector is composed of a phase and amplitude. 

In order to avoid the oscillation or instability of the particles path, the 

parameterη should be chosen in such a way that c� is not purely imaginary.  
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III.4. Design examples using particle swarm optimization 

III.4.1. Design of planar microwave filters using a simple FDTD 

model and particle swarm optimization 

The objective of this contribution is to present a simple and universal design 

procedure for planar microwave filters. To accelerate the computation phase an 

equivalent circuit topology is derived from FDTD formulation. The method is fast and 

robust and well suits with fast paced engineering design environment. As a case 

study, a microwave band-pass filter is designed.  

III.4.1.1. Formulation of the problem 

Let us consider the structure shown in Fig. III.15 as the structure to be modeled. The 

substrate is subdivided into a uniform square grid. The currents involved in a given 

unit cell are depicted in Fig. III.16. The separation between two planes (the dimension 

d) is considered to be small compared to the smallest operating wavelength. The 

problem is formulated using the Hertzian vector potentials, and the substrate is 

assumed to be rectangular. The space in which the wave is transmitted is restricted by 

two electric walls at z = 0, and z = a. The propagation modes could be both En and 

Hn. The Hertz potential vectors are defined as, 

tjn
ez

n
e ez

d

n
yxPa ωππ .)cos(),(ˆ=�  (III- 22) 

 

tjm
hz

m
h ez

d

m
yxPa ωππ .)sin(),(ˆ=�  (III- 23) 

 

Here, 
horeπ�  is the electric or magnetic Hertzian vector potential (corresponding to 

indexes e or h), Pe or h is the cross-section eigenfunction, d is the separation distance 

between power and ground planes, and az is the unit vector along the z-axis. 

Following the mathematical relations of Hertzian electric and magnetic vector 

potentials, the electric and magnetic field components are listed in equation (III- 24). 
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(III- 24) 
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The scalar potential is defined as, 
tj

t
n

ee eyxPdV ωβ 2),(.−=  (III- 25) 

 

 

Fig. III.15. Geometry of the structure. The structure is divided into a 
uniform grid. 

 

 
 

Fig. III.16. Currents passing through a unit grid-cell 

 

Now the relation between the surface current Je or h and the potential could be written 

as, 

e
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The relation between V and Je or h may be presented in time domain as, 

t
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Assuming a<<λ  and ∆ t<<2π  /ω , the planes are subdivided into a square grid, and 

the differentials are replaced with finite differences: 
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III.4.1.2. Optimization of planar filters 

III.4.1.2.1. Design strategy 

As illustrated in Fig. III.15 the substrate is discretized into a uniform grid of square 

patches. Each of these patches could be either metalized on non-metalized. A two 

dimensional binary-valued vector ( , )i jη  is defined as, 

1
( , )

0
k for metalized segment

i j
non metalized segment

η 
=  −

 
(III- 33) 

 

where i and j represent the segment numbers. The superscript k shows the number of 

iterations. The function ( )kC η  represents overall distribution of metalized and non-

metalized patches. Although 1( )C η  (the initial geometry) could be chosen arbitrarily, 

but to have a faster convergence, its better to start form an appropriate initial point. 

The same applies for update strategy throughout the iterations. Existence of a 

constraint in updates of ( )kC η  considerably limits the number of possible parameter 

vectors which is an essential step for reducing the number of computations required at 

each step. Design parameters ( ( ))kp C η  are defined to restrict the geometry variations 
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to specific directions. p is a N dimensional vector that represents a small parameter 

vector which could be few critical dimensions of the structure.  

III.4.1.2.2. Objective function 

The ideal filtering function is defined with the universal objective function for a filter 

could be defined as, 

( ) ( ) ( )
max max

min min

11 12( ( )) , ( ) , ( )
f f

k k k

f f

T p C T f C df T f C dfη α η β η= +∫ ∫  
(III- 34) 

 

( ) ( ) ( ) ( )( )( ), ( ( )) . ( ). , ( )
ij

k actual k ideal
ij ij ijT f p C Q f W r f S f C S fη η= −  (III- 35) 

 

( ) exp( ) 0,0 1

0 0

x x
W x

x

χ χ ≤
=  ≤

� �  (III- 36) 

 

r equals to 1 (-1) when i j=  in the passband (stopband) or or i j≠  in the stopband 

(passband). The transition bands are removed via function Q(f) which is equal to zero 

in transition and one otherwise. ( ), ( )actual k
ijS f C η is the computed S-parameter, 

( )ideal
ijS f  is the desired S-parameter (which is a function of frequency) and ( )W x  is 

the weighted error function. The derivation of nonlinearly weighted errors is 

described in chapter I. 

III.4.1.2.3. Particle swarm optimization 

The PSO randomly initializes the position and velocity of each particle within the 

swarm at the beginning of the optimization. The detailed explanation of the method is 

addressed in [3]. Each position represents a possible solution to the problem and is 

specified as,  

11 1

1

...

. . .

.

k k
N

k

k k
M MN

p p

P

p p

 
 =  
  

 
(III- 37) 

 

where M is the number of particles (the initial population) and N is the number of 

dimensions of the problem. Every row in matrix P is a possible solution for kp  .Each 

particle has an associated velocity, named 
M NV × , which is a function of the distance 

between the current position and best previously achieved fitness positions. The 

velocity matrix is updated at each iteration. Every particle is also aware of the global 
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and personal best positions. Let the personal best positions be named k
best M N

P
×

    and the 

global best position be a vector 
1 2 ...k k k k

best NG g g g =   . 

Now, for every dimension, the particles move in the direction specified by the 

velocity matrix according to, 

1k k kP P V+ = +  (III- 38) 

 

The update strategy for the velocity vector can be addressed as, 

1
1 1 2 2( ) ( )k k best k k k

mn mn mn mn n mnv v c p p c g pζ ζ+ = + − + −  (III- 39) 

 

whereas 
1,20 1ζ< <  are uniform random variables and 1c and 2c specify the relative 

weight of the global best to the personal best positions (here 1 2 2c c= = see [27]).  

III.4.2. Design of a double folded stub filter 

As an example a double folded stub filter which is shown in Fig. III.17 is designed 

and fabricated. A symmetric 3GHz band pass frequency characteristic centered at 

13.5GHz is desired. The
21
idealS should be less than -30dB for stop band and more than -

3dB in sidebands. A transition band of 3GHz is considered where the errors are 

masked. Substrate is 5 mils thick with dielectric constant of 9.8. The three parameters 

are shown in Fig. III.17 as well. 

 

Fig. III.17. The DFS filter , the design variables are as follows mil, p1=6.4 
mil, p2=84.8 and p3=86.4 mil. 

 

The square cell sizes are equal to 0.1mil*0.1mil. The search was done for a range of 

1.5 mills around the initial geometry.. The results are compared with numerical 

.p1

.p3

.p2
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analysis obtained by Momentum [35] and with measurement results in Fig. III.18. 

However the results show a slight discrepancy in magnitude compared to 

measurement while the frequencies are accurate to a satisfactory extent.  

 

Fig. III.18. The initial and final transmission (S21) characteristic, measured and 
calculated 

III.4.3. Optimization of a planar UWB band-pass filter with a 

3GHz-6GHz bandwidth and low insertion loss 

The emerging attention to ultrawideband technology has raised requirements for 

different system components such as filters, antennas, amplifiers, etc. As it is apparent 

from its name, ultrawideband wireless systems can use relatively a wide band of 

3.1GHz-10.6GHz. Using such a wide band for data transmission and reception, on the 

one hand increases the risk of interference by other sources such as 5.8GHz ISM 

band, harmonics of 2.45GHz ISM band and other sources of interference. On the 

other hand FCC regulation absolutely requires the lower cutoff frequency of the 

emitted fields be limited to 3.1GHz. In order to accommodate the above mentioned 

requirements, a filter is used both in transmitter side (before the antenna) and in the 

receive end (after the LNA). Among the other typical requirements for a filter design, 

a low insertion loss is highly desirable because of low power of the transmitted signal. 
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III.4.3.1. Description of the structure 

For the design of the filter a composite structure composed of a stepped-impedance 

low-pass and a high-pass planar topologies is selected [36].  The structure is shown in 

Fig. III.19. As can be seen the structure comprises of three stepped impedance.  

The substrate is chosen to be Rogers 4350 with 20 mils (0.508mm) of thickness [22].  

 
Fig. III.19. The topology of the UWB bandpass filter. 

III.4.3.2. The initial dimensions and response 

The initial dimensions are presented in Table III.3. The optimum search was 

conducted in a parameter space within ±30% of the initial parameter set. 

Parameter Value(mils) 

1p  150 

2p  120 

3p  200 

4p  15 

5p  40 

6p  100 

7p  40 

8p  12. 

9p  162. 

Table III.3. Initial parameter set for UWB band-pass filter 

III.4.3.3. Optimization by PSO/steepest descent 

A PSO/SD optimization algorithm was implemented using AEL language (integrated 

with ADS). The structure was analyzed using Momentum software  

A relatively big swarm (with 50 members) was generated as the initial population to 

assure the global convergence. After 8 iterations, the global optimum was localized 
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and then the optimization was continued by a smaller population of 20 members. 

Finally the last stages were done using the steepest descent (SD) method for three 

consecutive iterations. Fig. III.20 compares convergence diagrams applying PSO and 

GA. The optimized dimensions are shown in Table III.4. 

 

(a) 

 

(b) 

Fig. III.20. Convergence diagram (a) comparing the global best and the winning 
particle history (b) comparison with genetic algorithms both for initial populations of 
15 and 60. 
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Parameter Value(mils) 

1p  129 

2p  131.23 

3p  172.21 

4p  15.91 

5p  37.33 

6p  108.63 

7p  31.41 

8p  12. 

9p  162. 

Table III.4. Optimal values for the parameter set for UWB band-pass filter 

III.4.3.4. Optimization of the filter characteristic 

The simulated and measured frequency characteristics of the filter are presented in 

Fig. III.21 and Fig. III.22, respectively. As mentioned the filter was fabricated with a 

20 mils Rogers 4350 substrate. The picture of the filter is shown in Fig. III.23. 
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Fig. III.21. The optimized insertion and return loss characteristic of the UWB 
bandpass filter. 
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Fig. III.22. The measured response 

 

 

Fig. III.23. The fabricated prototype 
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III.4.4. Optimization of a planar UWB band-pass filter with a 

3GHz-8GHz bandwidth  

Another UWB filter with a wider bandwidth is designed and optimized using PSO 

algorithm. Five band-pass shorted stubs are designed as the initial circuit. In order to 

simplify the optimization procedure, the width of the line connecting the input and 

output is fixed. The structure is decided to be symmetric, leaving only three 

parameters to be optimized. The initial parameter set and the initial response are 

presented in Table III.5 and Fig. III.24, respectively. The initial parameter space has 

been limited to ± 50% of the initial parameter set which is relatively a large space for 

search. 

 

 

 

Fig. III.24. Example-Structure to be optimized. The parameters are 
depicted as well. 

 

Parameter Value(mm) 

p  0.585 

p  12.211 

p  4.356 

 

Table III.5. Initial parameter set for planar band-pass filter 
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Fig. III.25. The initial response of the UWB mask filter 

 
A cooperative PSO scheme is used in order to find the global optimum in the three 

dimensional parameter space. At each step, the parameters P3, P1 and P2 were 

cooperatively updated. The final set of parameters is presented in Table III.6 followed 

by the final characteristics in Fig. III.26, all calculated by Momentum. The 

convergence was unexpectedly slow, because of the relatively large band. The 

convergence versus iteration numbers is presented in Fig. III.27. 

 

Parameter Value(mm) 

p  0.287 

p  7.475 

p  7.833 

 

Table III.6. The optimized parameters 
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Fig. III.26. The final result of UWB mask filter 

 

Fig. III.27. The error function belonging to the ultimate winner  versus 
iteration number. 
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III.4.5. Optimization of a sapphire resonator with distributed 

Bragg reflectors 

Simple metal cavity resonators, where the enclosure wall losses determine the 

achievable Q, were superceded by dielectric loaded cavities which attained higher Q’s 

by confining more of the field of the resonant mode away from the lossy enclosure 

walls. Lately, sapphire resonators have helped to achieve higher quality factors. This 

case is specially interesting as an optimization because the objective function is 

radically different from typical  filter design problems. 

III.4.5.1. Description of the structure 

The physical shape of the distributed Bragg resonator resonant structure has the form 

of an interpenetrating set of dielectric plates and cylinders as shown in Fig. III.28. 

This resonant dielectric structure fits inside of a metal enclosure. The way it is seen 

from the central cavity region, concentric cylinders in the radial dimensions form a 

DBR.  

 

Fig. III.28. The geometry of the distributed sapphire Bragg resonator 
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III.4.5.2. Method of analysis 

The structure is analyzed by the Method of Lines. The details of the analysis are 

addressed in [37]. This method allows the approximate solution of all the dimensions 

of a multilayered dielectric cylindrical resonant cavity that constitutes a distributed 

Bragg refection (DBR) resonator. The analysis can considers an arbitrary number of 

alternating dielectric and free-space layers of cylindrical geometry enclosed by a 

metal cylinder. 

III.4.5.3. Objective function 

The definition of the objective function is very critical in this case. The design goal is 

to find the dimensions for resonant frequency of 011TE mode to be10GHz, while the 

quality factor is 300,000. The desired resonant mode imposes another constrain for 

the optimization algorithm. The formation of the electric field must follow a specific 

pattern, so that the electric field has one major peak along one axis. Thus the objective 

function is determined as, 

( , , ) ( )ideal ideal
c t c c t tT f Q f f Q Qα β γ σ= − + − + Φp  (III- 40) 

 

where,  

, ideal
c cf f are the resonant frequency and ideal resonant frequency, respectively 

, ideal
t tQ Q  are the computed and ideal quality factor at resonant frequency, respectively 

[ ]1 2 3, ,p p p=p  is the vector of the design variables(dimensions to be optimized) 

,α β  are weighting coefficients that moderates the different scales of frequency and 

quality   factor, 

ideal
t
ideal

c

Q

f

α κ
β

=   

 where 0.5 1.5κ≤ ≤  

σ is the number of the peaks of the electric field along with radial axis 

( )σΦ is the weighted field indicator, 

1 1
( )

0 1

σ
σ

σ
>

Φ =  =
 

γ is the weighting factor for the number of peaks and is normally comparable to the 

order of magnitude of the frequency(to dominate the objective function) 
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III.4.5.4. Optimization algorithm 

A hybrid optimization technique is used for this design problem. At first step a very 

big swarm ( TN =80-100 particles) is chosen randomly within the domain of the 

design parameters. A tournament selection is then chosen to filter out those solutions 

which have resulted unwanted field distribution, i.e. those with ( ) 1σΦ = .  A swarm 

of those particles which produce a desired field distribution is formed.  This swarm is 

considered as the initial swarm for the PSO algorithm with the number of particles 

being SN  . A cooperative PSO scheme is then used for minimizing the objective 

function. At this stage,  the ideal response parameters were: 

10ideal
cf GHz=  

300,000ideal
cQ =  

11.5mm 2.3mmp≤ ≤  

20.18mm 0.28mmp≤ ≤  

30.69mm 0.1mmp≤ ≤  

3 91, 33 10 , 10α β γ= = × =  

After the first tournament, the number of particles who win the first round tournament 

is a random function, forming the following particle matrix, 

1 1
11 1

1 1 1 1
21 2

1 1
31 3

. . .

. .

. . .

S

S

S

N

ij N

N

p p

p p p

p p

< > < >

< > < > < > < >

< > < >

 
 

=  
 
  

p  

(III- 41) 

 

 

This number determines the size of the initial swarm for PSO. Obviously the bigger 

the size of initial swarm, the higher is the chances of success.   

The velocities were initialized as 

1 1 10.3 0.2 ( ,3)ij ij ij sv p p rand N< > < > < >= + ×  (III- 42) 

 

whereas rand(.) is a uniform random function. 

 

For the consecutive steps, the velocity vector is chosen as, 

1
1 , 2 ,0.4 2 ( ) 2 ( )k k k k k k

ij ij i best ij i best ijv v p p g pη η< + > < > < > < > < > < >= + − + −  (III- 43) 
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 where 1 20 1andη≤ ≤ are generated through a uniform, random function. 

Fig. III.29 shows the convergence of the normalized objective function for a sample 

optimization procedure. The procedure was repeated to a number of times.  The final 

(optimum) dimensions are as follows: 

1

2

3

p = 1.9699 mm

p  = 0.2352mm

p   = 0.8651mm

 

The achieved frequency is  

9.9925 optimum
cf GHz�  

and the overall quality factor is 

53.199 10optimum
cQ = ×  

The field distribution for the optimized response is presented in Fig. III.30. 

 

Several tests have been conducted to achieve better frequency response, at this stage it 

would be very tedious with PSO method. A better approach (once the optimum point 

located) is to use a classical gradient method such as steepest descent or Newton’s 

method. 
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Fig. III.29. The objective function (global best) as a function of the 
iteration number for different tests and the corresponding size of swarms 
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Fig. III.30. The field distribution for the optimized response( sN =7) 
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III.5. Conclusion 

The potentials of particle swarm optimization for being deployed as a global 

optimization technique in microwave design is investigated in this chapter. PSO is a 

novel evolutionary algorithm with a faster convergence. PSO has the advantage of 

incorporating a pseudo-gradient scheme for updating the parameter vector. 

Despite such a fundamental difference with genetic-like algorithms, PSO can still best 

fits in the category of evolutionary algorithms.  

In order to provide an appropriate context for PSO, genetic algorithm is introduced in 

this chapter, followed by an example. In the second part of the chapter, PSO 

algorithm is explained. Basically, PSO employs the analogy between parameter 

vectors in a parameter space with social movement of birds in a flock. In such an 

analogy, the movement of the parameter vectors towards the global optimum is 

achieved through comparing the position of each member of the flock with the 

position of individual and best fitness ever achieved.  

Several improvements to the conventional PSO are suggested in this section. It was 

shown that having every particle know about the personal best position of other 

particles would improve the speed of the optimization. This “cooperative” learning 

provides and extra feedback for individuals (parameter vectors) in a swarm to modify 

their direction in (parameter) space. 

Few microwave devices are designed using different variations of PSO. A simple 

FDTD scheme was employed to design a band-reject filter while the dimension 

updates were calculated using PSO. 

The stability of PSO is also studied in this chapter. Through a simple mathematical 

manipulation, the gradient nature of PSO is claimed.  

Despite many contributions in the last year, PSO is still an immature technique and 

probably a hybrid of PSO and parameterized model can help to obtain a fast and 

global design optimization algorithm. 
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CONCLUSION GENERALE 

Ce travail de thèse est dédié à l’amélioration des méthodes d’optimisation 

classiquement utilisées pour la conception électromagnétique des circuits et 

dispositifs micro-ondes. 

Ces méthodes utilisent un modèle électromagnétique analysé par une méthode 

numérique à chaque itération et dirigé par une stratégie de mise à jour des paramètres 

le plus généralement basée sur un calcul de gradient. 

Les améliorations apportées par ce travail ont concerné deux axes : 

− L’utilisation de modèles électromagnétiques paramétrés permettant d’accélérer 

les procédures d’optimisation en court-circuitant les simulations numériques, 

− L’utilisation de méthodes évolutionnaires efficaces comme stratégie 

d’optimisation pour réduire les risques de divergence traditionnellement 

rencontrés avec les stratégies de type gradient. 

 

Le manuscrit commence par introduire au premier chapitre quelques généralités sur 

les méthodes d’optimisation électromagnétique appliquées à la conception assistée par 

ordinateur (CAO) des dispositifs micro-ondes. Divers concepts assez généraux en 

optimisation sont d’abord abordés. 

Ensuite, quelques problèmes spécifiques aux méthodes d’optimisation faisant appel à 

une simulation numérique sont explorés plus en détail. En particulier, nous montrons 

à quel point la définition de la fonction objectif est critique pour l’obtention de la 

solution optimale dans un temps raisonnable. 

Plusieurs méthodes d’optimisation classiques de type gradient sont ensuite étudiées en 

présentant différentes variantes de la plus simple à la plus élaborée. 

Enfin, la dernière partie de ce chapitre expose brièvement les techniques d’analyse 

numériques basées sur les lois de l’électromagnétisme utilisées couramment pour 

modéliser les dispositifs micro-ondes. 

Au cours du deuxième chapitre, nous introduisons tout d’abord les différents aspects 

de la paramétrisation des modèles électromagnétiques. 
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Un état de l’art des techniques de paramétrisation du champ électromagnétique en 

fonction de la fréquence et de la géométrie est tout d’abord présenté dans les deux 

premières sections. 

Pour la paramétrisation géométrique efficace d’un modèle électromagnétique, la 

déformation de son maillage, c’est à dire de sa discrétisation en éléments simples (2-D 

ou 3-D), doit être paramétrée en fonction des paramètres géométriques pour éliminer 

les discontinuités dans le calcul des gradients du champ. Plusieurs techniques de 

paramétrisation du maillage sont alors présentées et illustrées avec quelques 

exemples. 

La dernière partie du deuxième chapitre présente l’optimisation électromagnétique 

d’un circuit hyperfréquence en utilisant son modèle électromagnétique paramétré en 

géométrie. Le cas test est un filtre 5 pôles en cavités cylindriques bimodes dont le 

modèle électromagnétique est paramétré suivant 12 dimensions géométriques à l’aide 

d’un logiciel développé par CADOE et couplé au code éléments finis du laboratoire 

dans le cas d’une action de R&T du CNES. 

L’utilisation du modèle paramétré permet alors de s’affranchir de l’analyse 

électromagnétique globale du circuit à chaque itération. La stratégie de mise à jour 

des variables est basée sur une technique de type gradient. Après quelques itérations, 

le comportement en fréquence du modèle, dont les dimensions ont été initialisées 

relativement efficacement, converge facilement vers l’objectif. 

 

Le troisième chapitre introduit les algorithmes évolutionnaires présentées comme des 

méthodes d’optimisation plus globales que les méthodes de type gradient. 

L’algorithme génétique qui est certainement la technique évolutionnaire la plus 

connue et la plus appliquée dans le domaine des circuits et dispositifs micro-ondes est 

tout d’abord présentée et illustrée par un exemple. Le principal désavantage de cette 

dernière technique est sa lourdeur de mise en œuvre et d’utilisation qui en font une 

méthode relativement lente. 

Une nouvelle technique évolutionnaire, très récemment introduite dans le domaine de 

l’électromagnétisme est la méthode des « essaims particulaires » (Particle swarm 

optimization - PSO). Cette technique commence similairement à l’algorithme 

génétique par la génération d’une population initiale aléatoire mais la nature de type 
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gradient de l’optimisation permet d’obtenir une convergence beaucoup plus rapide. 

Les détails de la technique sont tout d’abord donnés puis appliqués à l’optimisation de 

circuits et dispositifs micro-ondes à travers plusieurs exemples. 
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